
man pages section 3: Curses
Library Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–5169–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050105@10536

Contents

Preface 11

Curses Library Functions 17

addch(3XCURSES) 18
addchstr(3XCURSES) 20
addnstr(3XCURSES) 22
addnwstr(3XCURSES) 24
add_wch(3XCURSES) 26
add_wchnstr(3XCURSES) 28
attr_get(3XCURSES) 30
attroff(3XCURSES) 32
baudrate(3XCURSES) 34
beep(3XCURSES) 35
bkgd(3XCURSES) 36
bkgrnd(3XCURSES) 38
border(3XCURSES) 40
border_set(3XCURSES) 42

can_change_color(3XCURSES) 44

cbreak(3XCURSES) 47

chgat(3XCURSES) 48

clear(3XCURSES) 50

clearok(3XCURSES) 51

clrtobot(3XCURSES) 53

clrtoeol(3XCURSES) 54

COLS(3XCURSES) 55

copywin(3XCURSES) 56

3

curs_addch(3CURSES) 58

curs_addchstr(3CURSES) 61

curs_addstr(3CURSES) 62

curs_addwch(3CURSES) 63

curs_addwchstr(3CURSES) 66

curs_addwstr(3CURSES) 68

curs_alecompat(3CURSES) 69

curs_attr(3CURSES) 70

curs_beep(3CURSES) 72

curs_bkgd(3CURSES) 73

curs_border(3CURSES) 74

curs_clear(3CURSES) 76

curs_color(3CURSES) 77

curscr(3XCURSES) 80

curs_delch(3CURSES) 81

curs_deleteln(3CURSES) 82

curses(3CURSES) 83

curses(3XCURSES) 97

curs_getch(3CURSES) 108

curs_getstr(3CURSES) 113

curs_getwch(3CURSES) 114

curs_getwstr(3CURSES) 119

curs_getyx(3CURSES) 120

curs_inch(3CURSES) 121

curs_inchstr(3CURSES) 122

curs_initscr(3CURSES) 123

curs_inopts(3CURSES) 125

curs_insch(3CURSES) 128

curs_insstr(3CURSES) 129

curs_instr(3CURSES) 130

curs_inswch(3CURSES) 131

curs_inswstr(3CURSES) 132

curs_inwch(3CURSES) 133

curs_inwchstr(3CURSES) 134

curs_inwstr(3CURSES) 135

curs_kernel(3CURSES) 136

curs_move(3CURSES) 138

curs_outopts(3CURSES) 139

4 man pages section 3: Curses Library Functions • January 2005

curs_overlay(3CURSES) 141

curs_pad(3CURSES) 142

curs_printw(3CURSES) 144

curs_refresh(3CURSES) 145

curs_scanw(3CURSES) 147

curs_scr_dump(3CURSES) 148

curs_scroll(3CURSES) 149

curs_set(3XCURSES) 150

curs_slk(3CURSES) 151

curs_termattrs(3CURSES) 153

curs_termcap(3CURSES) 155

curs_terminfo(3CURSES) 156

curs_touch(3CURSES) 159

curs_util(3CURSES) 161

curs_window(3CURSES) 163

cur_term(3XCURSES) 165

def_prog_mode(3XCURSES) 166

delay_output(3XCURSES) 167

delch(3XCURSES) 168

del_curterm(3XCURSES) 169

deleteln(3XCURSES) 171

delscreen(3XCURSES) 172

delwin(3XCURSES) 173

derwin(3XCURSES) 174

doupdate(3XCURSES) 176

dupwin(3XCURSES) 177

echo(3XCURSES) 178

echochar(3XCURSES) 179

echo_wchar(3XCURSES) 180

endwin(3XCURSES) 181

erasechar(3XCURSES) 182

filter(3XCURSES) 183

flushinp(3XCURSES) 184

form_cursor(3CURSES) 185

form_data(3CURSES) 186

form_driver(3CURSES) 187

form_field(3CURSES) 190

form_field_attributes(3CURSES) 191

5

form_field_buffer(3CURSES) 192

form_field_info(3CURSES) 193

form_field_just(3CURSES) 194

form_field_new(3CURSES) 195

form_field_opts(3CURSES) 196

form_fieldtype(3CURSES) 198

form_field_userptr(3CURSES) 200

form_field_validation(3CURSES) 201

form_hook(3CURSES) 202

form_new(3CURSES) 204

form_new_page(3CURSES) 205

form_opts(3CURSES) 206

form_page(3CURSES) 207

form_post(3CURSES) 208

forms(3CURSES) 209

form_userptr(3CURSES) 213

form_win(3CURSES) 214

getbegyx(3XCURSES) 215

getcchar(3XCURSES) 216

getch(3XCURSES) 217

getnstr(3XCURSES) 222

getn_wstr(3XCURSES) 224

get_wch(3XCURSES) 226

getwin(3XCURSES) 228

halfdelay(3XCURSES) 229

has_ic(3XCURSES) 230

hline(3XCURSES) 231

hline_set(3XCURSES) 233

idcok(3XCURSES) 235

immedok(3XCURSES) 236

inch(3XCURSES) 237

inchnstr(3XCURSES) 238

initscr(3XCURSES) 240

innstr(3XCURSES) 241

innwstr(3XCURSES) 243

insch(3XCURSES) 245

insdelln(3XCURSES) 246

insertln(3XCURSES) 247

6 man pages section 3: Curses Library Functions • January 2005

insnstr(3XCURSES) 248

ins_nwstr(3XCURSES) 250

ins_wch(3XCURSES) 252

intrflush(3XCURSES) 254

in_wch(3XCURSES) 255

in_wchnstr(3XCURSES) 256

is_linetouched(3XCURSES) 258

keyname(3XCURSES) 260

keypad(3XCURSES) 262

libcurses(3XCURSES) 266

LINES(3XCURSES) 274

longname(3XCURSES) 275

menu_attributes(3CURSES) 276

menu_cursor(3CURSES) 278

menu_driver(3CURSES) 279

menu_format(3CURSES) 281

menu_hook(3CURSES) 282

menu_item_current(3CURSES) 284

menu_item_name(3CURSES) 285

menu_item_new(3CURSES) 286

menu_item_opts(3CURSES) 287

menu_items(3CURSES) 288

menu_item_userptr(3CURSES) 289

menu_item_value(3CURSES) 290

menu_item_visible(3CURSES) 291

menu_mark(3CURSES) 292

menu_new(3CURSES) 293

menu_opts(3CURSES) 294

menu_pattern(3CURSES) 296

menu_post(3CURSES) 297

menus(3CURSES) 298

menu_userptr(3CURSES) 302

menu_win(3CURSES) 303

meta(3XCURSES) 304

move(3XCURSES) 305

mvcur(3XCURSES) 306

mvderwin(3XCURSES) 307

mvprintw(3XCURSES) 308

7

mvscanw(3XCURSES) 309

mvwin(3XCURSES) 310

napms(3XCURSES) 311

newpad(3XCURSES) 312

nl(3XCURSES) 314

nodelay(3XCURSES) 315

noqiflush(3XCURSES) 316

notimeout(3XCURSES) 317

overlay(3XCURSES) 319

panel_above(3CURSES) 323

panel_move(3CURSES) 324

panel_new(3CURSES) 325

panels(3CURSES) 326

panel_show(3CURSES) 328

panel_top(3CURSES) 329

panel_update(3CURSES) 330

panel_userptr(3CURSES) 331

panel_window(3CURSES) 332

pechochar(3XCURSES) 333

plot(3PLOT) 334

putp(3XCURSES) 337

redrawwin(3XCURSES) 338

resetty(3XCURSES) 339

ripoffline(3XCURSES) 340

scr_dump(3XCURSES) 341

scrl(3XCURSES) 342

setcchar(3XCURSES) 343

set_term(3XCURSES) 344

slk_attroff(3XCURSES) 345

standend(3XCURSES) 348

stdscr(3XCURSES) 349

syncok(3XCURSES) 350

termattrs(3XCURSES) 351

termname(3XCURSES) 352

tgetent(3XCURSES) 353

tigetflag(3XCURSES) 355

typeahead(3XCURSES) 357

unctrl(3XCURSES) 358

8 man pages section 3: Curses Library Functions • January 2005

ungetch(3XCURSES) 359

use_env(3XCURSES) 360

vidattr(3XCURSES) 361

vw_printw(3XCURSES) 363

vwprintw(3XCURSES) 364

vw_scanw(3XCURSES) 365

vwscanw(3XCURSES) 366

wunctrl(3XCURSES) 367

Index 369

9

10 man pages section 3: Curses Library Functions • January 2005

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

11

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

12 man pages section 3: Curses Library Functions • January 2005

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the

13

conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

14 man pages section 3: Curses Library Functions • January 2005

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

15

16 man pages section 3: Curses Library Functions • January 2005

Curses Library Functions

17

addch, mvaddch, mvwaddch, waddch – add a character (with rendition) to a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

int addch(const chtype ch);

int mvaddch(int y, int x, const chtype ch);

int mvwaddch(WINDOW *win, int y, int x, const chtype ch);

int waddch(WINDOW *win, const chtype ch);

The addch() function writes a character to the stdscr window at the current cursor
position. The mvaddch() and mvwaddch() functions write the character to the
position indicated by the x (column) and y (row) parameters. The mvaddch()
function writes the character to the stdscr window, while mvwaddch() writes the
character to the window specified by win. The waddch() function is identical to
addch(), but writes the character to the window specified by win.

These functions advance the cursor after writing the character. Characters that do not
fit on the end of the current line are wrapped to the beginning of the next line unless
the current line is the last line of the window and scrolling is disabled. In that
situation, characters which extend beyond the end of the line are discarded.

When ch is a backspace, carriage return, newline, or tab, X/Open Curses moves the
cursor appropriately. Each tab character moves the cursor to the next tab stop. By
default, tab stops occur every eight columns. When ch is a control character other than
backspace, carriage return, newline, or tab, it is written using ^x notation, where x is a
printable character. When X/Open Curses writes ch to the last character position on a
line, it automatically generates a newline. When ch is written to the last character
position of a scrolling region and scrollok() is enabled, X/Open Curses scrolls the
scrolling region up one line (see clearok(3XCURSES)).

wchstr Is a pointer to the cchar_t string to be copied to the window.

n Is the maximum number of characters to be copied from wchstr. If
n is less than 0, the entire string is written or as much of it as fits
on the line.

y Is the y (row) coordinate of the starting position of wchstr in the
window.

x Is the x (column) coordinate of the starting position of wchstr in the
window.

win Is a pointer to the window to which the string is to be copied.

On success, these functions return OK. Otherwise, they return ERR.

None.

addch(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

18 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attroff(3XCURSES), bkgdset(3XCURSES), doupdate(3XCURSES),
inch(3XCURSES), insch(3XCURSES), libcurses(3XCURSES), nl(3XCURSES),
printw(3XCURSES), scrollok(3XCURSES), scrl(3XCURSES), terminfo(4),
attributes(5), standards(5)

addch(3XCURSES)

ATTRIBUTES

SEE ALSO

Curses Library Functions 19

addchstr, addchnstr, mvaddchstr, mvaddchnstr, mvwaddchnstr, mvwaddchstr,
waddchstr, waddchnstr – copy a character string (with renditions) to a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

int addchstr(const chtype *chstr);

int addchnstr(const chtype *chstr, int n);

int mvaddchnstr(int y, int x, const chtype *chstr, int n);

int mvaddchstr(int y, int x, const chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x, const chtype *chstr, int
n);

int mvwaddchstr(WINDOW *win, int y, int x, const chtype *chstr);

int waddchstr(WINDOW *win, const chtype *chstr);

int waddchnstr(WINDOW *win, const chtype *chstr, int n);

The addchstr() function copies the chtype character string to the stdscr window
at the current cursor position. The mvaddchstr() and mvwaddchstr() functions
copy the character string to the starting position indicated by the x (column) and y
(row) parameters (the former to the stdscr window; the latter to window win). The
waddchstr() is identical to addchstr(), but writes to the window specified by win.

The addchnstr(), waddchnstr(), mvaddchnstr(), and mvwaddchnstr()
functions write n characters to the window, or as many as will fit on the line. If n is
less than 0, the entire string is written, or as much of it as fits on the line. The former
two functions place the string at the current cursor position; the latter two commands
use the position specified by the x and y parameters.

These functions differ from the addstr(3XCURSES) set of functions in two important
respects. First, these functions do not advance the cursor after writing the string to the
window. Second, the current window rendition is not combined with the character;
only the attributes that are already part of the chtype character are used.

chstr Is a pointer to the chtype string to be copied to the window.

n Is the maximum number of characters to be copied from chstr. If n is less
than 0, the entire string is written or as much of it as fits on the line.

y Is the y (row) coordinate of the starting position of chstr in the window.

x Is the x (column) coordinate of the starting position of chstr in the window.

win Is a pointer to the window to which the string is to be copied.

On success, these functions return OK. Otherwise, they return ERR.

addchstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

20 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), addnstr(3XCURSES), attroff(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

addchstr(3XCURSES)

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 21

addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr, waddstr –
add a multi-byte character string (without rendition) to a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

int addnstr(const char *str, int n);

int addstr(const char *str);

int mvaddnstr(int y, int x, const char *str, int n);

int mvaddstr(int y, int x, const char *str);

int mvwaddnstr(WINDOW *win, int y, int x, const char *str, int n);

int mvwaddstr(WINDOW *win, int y, int x, const char *str);

int waddstr(WINDOW *win, const char *str);

int waddnstr(WINDOW *win, const char *str, int n);

The addstr() function writes a null-terminated string of multi-byte characters to the
stdscr window at the current cursor position. The waddstr() function performs an
identical action, but writes the character to the window specified by win. The
mvaddstr() and mvwaddstr() functions write the string to the position indicated
by the x (column) and y (row) parameters (the former to the stdscr window; the
latter to window win).

The addnstr(), waddnstr(), mvaddnstr(), and mvwaddnstr() functions are
similar but write at most n characters to the window. If n is less than 0, the entire
string is written.

All of these functions advance the cursor after writing the string.

These functions are functionally equivalent to calling the corresponding function from
the addch(3XCURSES) set of functions once for each character in the string. Refer to
the curses(3XCURSES) man page for a complete description of special character
handling and of the interaction between the window rendition (or background
character and rendition) and the character written.

Note that these functions differ from the addchstr() set of functions in that the
addchstr(3XCURSES) functions copy the string as is (without combining each
character with the window rendition or the background character and rendition.

str Is a pointer to the character string that is to be written to the window.

n Is the maximum number of characters to be copied from str. If n is less than
0, the entire string is written or as much of it as fits on the line.

y Is the y (row) coordinate of the starting position of str in the window.

addnstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

22 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

x Is the x (column) coordinate of the starting position of str in the window.

win Is a pointer to the window in which the string is to be written.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), addchstr(3XCURSES), curses(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

addnstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 23

addnwstr, addwstr, mvaddnwstr, mvaddwstr, mvwaddnwstr, mvwaddwstr,
waddnwstr, waddwstr – add a wide-character string to a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

int addnwstr(const wchar_t *wstr, int n);

int addwstr(const wchar_t *wstr);

int mvaddnwstr(int y, int x, const wchar_t *wstr, int n);

int mvaddwstr(int y, int x, const wchar_t *wstr);

int mvwaddnwstr(WINDOW*win, int y, int x, const wchar_t *wstr, int
n);

int mvwaddwstr(WINDOW*win, int y, int x, const wchar_t *wstr);

int waddnwstr(WINDOW*win, const wchar_t *wstr, int n);

int waddwstr(WINDOW*win, const wchar_t *wstr);

The addwstr() function writes a null-terminated wide-character string to the
stdscr window at the current cursor position. The waddwstr() function performs
an identical action, but writes the string to the window specified by win. The
mvaddwstr() and mvwaddwstr() functions write the string to the position
indicated by the x (column) and y (row) parameters (the former to the stdscr
window; the latter to window win).

The addnwstr(), waddnwstr(), mvaddnwstr(), and mvwaddnwstr() functions
write at most n characters to the window. If n is less than 0, the entire string is written.
The former two functions place the characters at the current cursor position; the latter
two commands use the position specified by the x and y parameters.

All of these functions advance the cursor after writing the string.

These functions are functionally equivalent to building a cchar_t from the wchar_t
and the window rendition (or background character and rendition) and calling the
wadd_wch(3XCURSES) function once for each wchar_t in the string. Refer to the
curses(3XCURSES) man page for a complete description of special character
handling and of the interaction between the window rendition (or background
character and rendition) and the character written.

Note that these functions differ from the add_wchnstr(3XCURSES) set of functions in
that the latter copy the string as is (without combining each character with the
foreground and background attributes of the window).

wstr Is a pointer to the wide-character string that is to be written to the window.

n Is the maximum number of characters to be copied from wstr. If n is less
than 0, the entire string is written or as much of it as fits on the line.

addnwstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

24 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

y Is the y (row) coordinate of the starting position of wstr in the window.

x Is the x (column) coordinate of the starting position of wstr in the window.

win Is a pointer to the window in which the string is to be written.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), add_wchnstr(3XCURSES), curses(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

addnwstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 25

add_wch, mvadd_wch, mvwadd_wch, wadd_wch – add a complex character (with
rendition) to a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

int add_wch(const cchar_t *wch);

int wadd_wch(WINDOW *win, const cchar_t *wch);

int mvadd_wch(int y, int x, const cchar_t *wch);

int mvwadd_wch(WINDOW *win, int y, int x, const cchar_t *wch);

The add_wch() function writes a complex character to the stdscr window at the
current cursor position. The mvadd_wch() and mvwadd_wch() functions write the
character to the position indicated by the x (column) and y (row) parameters. The
mvadd_wch() function writes the character to the stdscr window, while
mvwadd_wch() writes the character to the window specified by win. The
wadd_wch() function is identical to add_wch(), but writes the character to the
window specified by win. These functions advance the cursor after writing the
character.

If wch is a spacing complex character, X/Open Curses replaces any previous character
at the specified location with wch (and its rendition). If wch is a non-spacing complex
character, X/Open Curses preserves all existing characters at the specified location
and adds the non-spacing characters of wch to the spacing complex character. It
ignores the rendition associated with wch.

Characters that do not fit on the end of the current line are wrapped to the beginning
of the next line unless the current line is the last line of the window and scrolling is
disabled. In that situation, X/Open Curses discards characters which extend beyond
the end of the line.

When wch is a backspace, carriage return, newline, or tab, X/Open Curses moves the
cursor appropriately as described in the curses(3XCURSES) man page. Each tab
character moves the cursor to the next tab stop. By default, tab stops occur every eight
columns. When wch is a control character other than a backspace, carriage return,
newline, or tab, it is written using ^x notation, where x is a printable character. When
X/Open Curses writes wch to the last character position on a line, it automatically
generates a newline. When wch is written to the last character position of a scrolling
region and scrollok() is enabled, X/Open Curses scrolls the scrolling region up
one line (see clearok(3XCURSES)).

wch Is the character/attribute pair (rendition) to be written to the window.

win Is a pointer to the window in which the character is to be written.

y Is the y (row) coordinate of the character’s position in the window.

add_wch(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

26 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

x Is the x (column) coordinate of the character’s position in the window.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attr_off(3XCURSES), bkgrndset(3XCURSES), curses(3XCURSES),
doupdate(3XCURSES), in_wch(3XCURSES), ins_wch(3XCURSES),
libcurses(3XCURSES), nl(3XCURSES), printw(3XCURSES),
scrollok(3XCURSES), scrl(3XCURSES), setscrreg(3XCURSES), terminfo(4),
attributes(5), standards(5)

add_wch(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 27

add_wchnstr, add_wchstr, mvadd_wchnstr, mvadd_wchstr, mvwadd_wchnstr,
mvwadd_wchstr, wadd_wchnstr, wadd_wchstr – copy a string of complex characters
(with renditions) to a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

int add_wchnstr(const cchar_t *wchstr, int n);

int add_wchstr(const cchar_t *wchstr);

int mvadd_wchnstr(int y, int x, const cchar_t *wchstr, int n);

int mvadd_wchstr(int y, int x, const cchar_t *wchstr);

int mvwadd_wchnstr(WINDOW *win, int y, int x, const cchar_t *wchstr,
int n);

int mvwadd_wchstr(WINDOW *win, int y, int x, const cchar_t *wchstr);

int wadd_wchstr(WINDOW *win, const cchar_t *wchstr);

int wadd_wchnstr(WINDOW *win, const cchar_t *wchstr, int n);

The add_wchstr() function copies the string of cchar_t characters to the stdscr
window at the current cursor position. The mvadd_wchstr() and
mvwadd_wchstr() functions copy the string to the starting position indicated by the
x (column) and y (row) parameters (the former to the stdscr window; the latter to
window win). The wadd_wchstr() is identical to add_wchstr(), but writes to the
window specified by win.

The add_wchnstr(), wadd_wchnstr(), mvadd_wchnstr(), and
mvwadd_wchnstr() functions write n characters to the window, or as many as will
fit on the line. If n is less than 0, the entire string is written, or as much of it as fits on
the line. The former two functions place the string at the current cursor position; the
latter two commands use the position specified by the x and y parameters.

These functions differ from the addwstr(3XCURSES) set of functions in two
important respects. First, these functions do not advance the cursor after writing the
string to the window. Second, the current window rendition (that is, the combination
of attributes and color pair) is not combined with the character; only those attributes
that are already part of the cchar_t character are used.

wchstr Is a pointer to the cchar_t string to be copied to the window.

n Is the maximum number of characters to be copied from wchstr. If
n is less than 0, the entire string is written or as much of it as fits
on the line.

y Is the y (row) coordinate of the starting position of wchstr in the
window.

add_wchnstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

28 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

x Is the x (column) coordinate of the starting position of wchstr in the
window.

win Is a pointer to the window to which the string is to be copied.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addnwstr(3XCURSES), add_wch(3XCURSES), attr_off(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

add_wchnstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 29

attr_get, attr_off, attr_on, attr_set, color_set, wattr_get, wattr_off, wattr_on, wattr_set,
wcolor_set – control window attributes

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int attr_get(attr_t *attrs, short *color, void *opts);

int attr_off(attr_t attrs, void *opts);

int attr_on(attr_t attrs, void *opts);

int attr_set(attr_t attrs, short color, void *opts);

int color_set(short *color, void *opts);

int wattr_get(WINDOW *win, attr_t attrs, short *color, void *opts);

int wattr_off(WINDOW *win, attr_t attrs, void *opts);

int wattr_on(WINDOW *win, attr_t attrs, void *opts);

int wattr_set(WINDOW *win, attr_t attrs, short color, void *opts);

int wcolor_set(WINDOW *win, short color, void *opts);

The attr_get() function retrieves the current rendition of stdscr. The wattr_get()
function retrieves the current rendition of window win. If attrs or color is a null pointer,
no information is retrieved.

The attr_off() and attr_on() functions unset and set, respectively, the specified
window attributes of stdscr. These functions only affect the attributes specified;
attributes that existed before the call are retained.

The wattr_off() and wattr_on() functions unset or set the specified attributes for
window win.

The attr_set() and wattr_set() functions change the rendition of stdscr and
win; the old values are not retained.

The color_set() and wcolor_set() functions set the window color of stdscr
and win to color.

The attributes and color pairs that can be used are specified in the Attributes,
Color Pairs, and Renditions section of the curses(3XCURSES) man page.

attrs Is a pointer to the foreground window attributes to be set or unset.

color Is a pointer to a color pair number .

opts Is reserved for future use.

win Is a pointer to the window in which attribute changes are to be made.

attr_get(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

30 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

These functions always return OK.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), addnwstr(3XCURSES), attroff(3XCURSES),
bkgrndset(3XCURSES), curses(3XCURSES), init_color(3XCURSES),
libcurses(3XCURSES), start_color(3XCURSES), attributes(5),
standards(5)

attr_get(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 31

attroff, attron, attrset, wattroff, wattron, wattrset – change foreground window
attributes

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int attroff(int attrs);

int attron(int attrs);

int attrset(int attrs);

int wattroff(WINDOW *win, int attrs);

int wattron(WINDOW *win, int attrs);

int wattrset(WINDOW *win, int attrs);

The attroff() and attron() functions unset and set, respectively, the specified
window attributes of stdscr. These functions only affect the attributes specified;
attributes that existed before the call are retained. The wattroff() and wattron()
functions unset or set the specified attributes for window win.

The attrset() and wattrset() functions change the specified window renditions
of stdscr and win to new values; the old values are not retained.

The attributes that can be used are specified in the Attributes, Color Pairs,
and Renditions section of the curses(3XCURSES) man page.

Here is an example that prints some text using the current window rendition, adds
underlining, changes the attributes, prints more text, then changes the attributes back.

printw("This word is");
attron(A_UNDERLINE);
printw("underlined.");
attroff(A_NORMAL);
printw("This is back to normal text.\n");

refresh();

attrs are the foreground window attributes to be set or unset.

win Is a pointer to the window in which attribute changes are to be made.

These functions always return OK or 1.

None.

All of these functions may be macros.

attroff(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

USAGE

32 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), addnstr(3XCURSES), attr_get(3XCURSES),
bkgdset(3XCURSES), curses(3XCURSES), init_color(3XCURSES),
libcurses(3XCURSES), start_color(3XCURSES), attributes(5),
standards(5)

attroff(3XCURSES)

ATTRIBUTES

SEE ALSO

Curses Library Functions 33

baudrate – return terminal baud rate

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int baudrate(void);

The baudrate() function returns the terminal’s data communication line and output
speed in bits per second (for example, 9600).

The baudrate() function returns the output speed of the terminal.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

baudrate(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

34 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

beep, flash – activate audio-visual alarm

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int beep(void);

int flash(void);

The beep() and flash() functions produce an audio and visual alarm on the
terminal, respectively. If the terminal has the capability, beep() sounds a bell or beep
and flash() flashes the screen. One alarm is substituted for another if the terminal
does not support the capability called (see terminfo(4) bel and flash capabilities).
For example, a call to beep() for a terminal without that capability results in a flash.

These functions always return OK.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), terminfo(4), attributes(5), standards(5)

beep(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 35

bkgd, bkgdset, getbkgd, wbkgd, wbkgdset – set or get the background character (and
rendition) of window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int bkgd(chtype ch);

void bkgdset(chtype ch);

chtype getbkgd(WINDOW *win);

int wbkgd(WINDOW *win, chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

The bkgdset() and wbkgdset() functions turn off the previous background
attributes, logical OR the requested attributes into the window rendition, and set the
background property of the current or specified window based on the information in
ch. If ch refers to a multi-column character, the results are undefined.

The bkgd() and wbkgd() functions turn off the previous background attributes,
logical OR the requested attributes into the window rendition, and set the background
property of the current or specified window and then apply this setting to every
character position in that window:

� The rendition of every character on the screen is changed to the new window
rendition.

� Wherever the former background character appears, it is changed to the new
background character.

The getbkgd() function extracts the specified window’s background character and
rendition.

ch Is the background character to be set.

win Is a pointer to the window in which the background character is to be set.

Upon successful completion, the bkgd() and wbkgd() functions return OK.
Otherwise, they return ERR.

The bkgdset() and wbkgdset() functions do not return a value.

Upon successful completion, the getbkgd() function returns the specified window’s
background character and rendition. Otherwise, it returns (chtype)ERR.

No errors are defined.

bkgd(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

36 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

These functions are only guaranteed to operate reliably on character sets in which each
character fits into a single byte, whose attributes can be expressed using only constants
with the A_ prefix.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), addchstr(3XCURSES), attroff(3XCURSES),
bkgrnd(3XCURSES), clear(3XCURSES), clrtoeol(3XCURSES),
clrtobot(3XCURSES), erase(3XCURSES), inch(3XCURSES),
libcurses(3XCURSES), mvprintw(3XCURSES), attributes(5), standards(5)

bkgd(3XCURSES)

USAGE

ATTRIBUTES

SEE ALSO

Curses Library Functions 37

bkgrnd, bkgrndset, getbkgrnd, wbkgrnd, wbkgrndset, wgetbkgrnd – set or get the
background character (and rendition) of window using a complex character

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int bkgrnd(const cchar_t *wch);

void bkgrndset(const cchar_t *wch);

int getbkgrnd(cchar_t *wch);

int wbkgrnd(WINDOW *win, const cchar_t *wch);

void wbkgrndset(WINDOW *win, const cchar_t *wch);

int wgetbkgrnd(WINDOW *win, cchar_t *wch);

The bkgrndset() and wbkgrndset() functions turn off the previous background
attributes, logical OR the requested attributes into the window rendition, and set the
background property of the current or specified window based on the information in
wch.

The bkgrnd() and wbkgrnd() functions turn off the previous background attributes,
logical OR the requested attributes into the window rendition, and set the background
property of the current or specified window and then apply this setting to every
character position in that window:

� The rendition of every character on the screen is changed to the new window
rendition.

� Wherever the former background character appears, it is changed to the new
background character.

If wch refers to a non-spacing complex character for bkgrnd(), bkgrndset(),
wbkgrnd(), and wbkgrndset(), then wch is added to the existing spacing complex
character that is the background character. If wch refers to a multi-column character,
the results are unspecified.

The getbkgrnd() and wgetbkgrnd() functions store, into the area pointed to buy
wch, the window’s background character and rendition.

wch Is a pointer to the complex background character to be set.

win Is a pointer to the window in which the complex background character is
to be set.

The bkgrndset() and wbkgrndset() functions do not return a value.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

bkgrnd(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

38 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), add_wchnstr(3XCURSES), addch(3XCURSES),
addchstr(3XCURSES), attroff(3XCURSES), bkgd(3XCURSES),
clear(3XCURSES), clrtoeol(3XCURSES), clrtobot(3XCURSES),
erase(3XCURSES), inch(3XCURSES), libcurses(3XCURSES),
mvprintw(3XCURSES), attributes(5), standards(5)

bkgrnd(3XCURSES)

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 39

border, box, wborder – add a single-byte border to a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int border(chtype ls, chtype rs, chtype ts, chtype bs, chtype tl,
chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs, chtype ts, chtype bs,
chtype tl, chtype tr, chtype bl, chtype br);

int box(WINDOW *win, chtype verch, chtype horch);

The border() and wborder() functions draw a border around the specified
window. All parameters must be single-byte characters whose rendition can be
expressed using only constants beginning with ACS_. A parameter with the value of 0
is replaced by the default value.

Constant Values for Borders

Parameter Default Constant Default Character

verch ACS_VLINE |

horch ACS_HLINE -

ls ACS_VLINE |

rs ACS_VLINE |

ts ACS_HLINE -

bs ACS_HLINE -

bl ACS_BLCORNER +

br ACS_BRCORNER +

tl ACS_ULCORNER +

tr ACS_URCORNER +

The call

box(win,
verch, horch)is a short form for

wborder(win,
verch, verch,
horch, horch, 0, 0, 0,

0)When the window is boxed, the bottom and top rows and right and left columns
overwrite existing text.

border(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

40 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

ls Is the character and rendition used for the left side of the border.

rs Is the character and rendition used for the right side of the border.

ts Is the character and rendition used for the top of the border.

bs Is the character and rendition used for the bottom of the border.

tl Is the character and rendition used for the top-left corner of the
border.

tr Is the character and rendition used for the top-right corner of the
border.

bl Is the character and rendition used for the bottom-left corner of the
border.

br Is the character and rendition used for the bottom-right corner of
the border.

win Is the pointer to the window in which the border or box is to be
drawn.

verch Is the character and rendition used for the left and right columns
of the box.

horch Is the character and rendition used for the top and bottom rows of
the box.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), addch(3XCURSES), attr_get(3XCURSES),
attroff(3XCURSES), border_set(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

border(3XCURSES)

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 41

border_set, box_set, wborder_set – use complex characters (and renditions) to draw
borders

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int border_set(const cchar_t *ls, const cchar_t *rs, const cchar_t
*ts, const cchar_t *bs, const cchar_t *tl, const cchar_t *tr,
const cchar_t *bl, const cchar_t *br);

int wborder_set(WINDOW *win, const cchar_t *ls, const cchar_t *rs,
const cchar_t *ts, const cchar_t *bs, const cchar_t *tl, const
cchar_t *tr, const cchar_t *bl, const cchar_t *br);

int box_set(WINDOW *win, const cchar_t *verch, const cchar_t
*horch);

The border_set() and wborder_set() functions draw a border around the
specified window. All parameters must be spacing complex characters with renditions.
A parameter which is a null pointer is replaced by the default character.

Constant Values for Borders

Constant Values for Borders

Parameter Default Constant Default Character

verch WACS_VLINE |

horch WACS_HLINE -

ls WACS_VLINE |

rs WACS_VLINE |

ts WACS_HLINE -

bs WACS_HLINE -

bl WACS_BLCORNER +

br WACS_BRCORNER +

tl WACS_ULCORNER +

tr WACS_URCORNER +

The call

box_set(win,
verch, horch)is a short form for

border_set(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

42 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

wborder(win,
verch, verch,
horch, horch, NULL,

NULL, NULL, NULL)

When the window is boxed, the bottom and top rows and right and left columns are
unavailable for text.

ls Is the character and rendition used for the left side of the border.

rs Is the character and rendition used for the right side of the border.

ts Is the character and rendition used for the top of the border.

bs Is the character and rendition used for the bottom of the border.

tl Is the character and rendition used for the top-left corner of the
border.

tr Is the character and rendition used for the top-right corner of the
border.

bl Is the character and rendition used for the bottom-left corner of the
border.

br Is the character and rendition used for the bottom-right corner of
the border.

win Is the pointer to the window in which the border or box is to be
drawn.

verch Is the character and rendition used for the left and right columns
of the box.

horch Is the character and rendition used for the top and bottom rows of
the box.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), addch(3XCURSES), attr_get(3XCURSES),
attroff(3XCURSES), border(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

border_set(3XCURSES)

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 43

can_change_color, color_content, COLOR_PAIR, has_colors, init_color, init_pair,
pair_content, PAIR_NUMBER, start_color, COLOR_PAIRS, COLORS – manipulate
color information

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

bool can_change_color(void);

int color_content(short color, short *red, short *green, short *blue);

int COLOR_PAIR(int n);

bool has_colors(void);

int init_color(short color, short red, short green, short blue);

int init_pair(short pair, short f, short b);

int pair_content(short pair, short *f, short *b);

int PAIR_NUMBER(int value);

int start_color(void);

extern int COLOR_PAIRS;

extern int COLORS;

These functions manipulate color on terminals that support color.

The has_colors() function indicates whether the terminal is a color terminal. The
can_change_color() function indicates whether the terminal is a color terminal on
which colors can be redefined.

The start_color() function must be called to enable use of colors and before any
color manipulation function is called. The function initializes eight basic colors (black,
red, green, yellow, blue, magenta, cyan, and white) that can be specified by the color
macros (such as COLOR_BLACK) defined in <curses.h>. The initial appearance of
these colors is unspecified.

The function also initializes two global external variables:

� COLORS defines the number of colors that the terminal supports. See Color
Identification below. If COLORS is 0, the terminal does not support
redefinition of colors and can_change_color() will return FALSE.

� COLOR_PAIRS defines the maximum number of color-pairs that the terminal
supports. See User-defined Color Pairs below.

The start_color() function also restores the colors on the terminal to
terminal-specific initial values. The initial background color is assumed to be black for
all terminals.

can_change_color(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

Querying
Capabilities

Initialization

44 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

The init_color() function redefines color number color, on terminals that support
the redefinition of colors, to have the red, green, and blue intensity components
specified by red, green, and blue, respectively. Calling init_color() also changes all
occurrences of the specified color on the screen to the new definition.

The color_content() function identifies the intensity components of color number
color. It stores the red, green, and blue intensity components of this color in the
addresses pointed to by red, green, and blue, respectively.

For both functions, the color argument must be in the range from 0 to and including
COLORS−1. Valid intensity value range from 0 (no intensity component) up to and
including 1000 (maximum intensity in that component).

Calling init_pair() defines or redefines color-pair number pair to have foreground
color f and background color b. Calling init_pair() changes any characters that
were displayed in the color pair’s old definition to the new definition and refreshes the
screen.

After defining the color pair, the macro COLOR_PAIR(n) returns the value of color
pair n. This value is the color attribute as it would be extracted from a chtype.
Controversy, the macro COLOR_NUMBER(value) returns the color pair number
associated with the color attribute value.

The pair_content() retrieves the component colors of a color-pair number pair. It
stores the foreground and background color numbers in the variables pointed to by f
and b, respectively.

With init_pair() and pair_content(), the value of pair must be in a range from
0 to and including COLOR_PAIRS−1. Valid values for f and b are the range from 0 to
and including COLORS−1.

color Is the number of the color for which to provide information (0 to
COLORS−1).

red Is a pointer to the RGB value for the amount of red in color.

green Is a pointer to the RGB value for the amount of green in color.

blue Is a pointer to the RGB value for the amount of blue in color.

n Is the number of a color pair.

pair Is the number of the color pair for which to provide information (1
to COLOR_PAIRS−1).

f Is a pointer to the number of the foreground color (0 to COLORS−1)
in pair.

b Is a pointer to the number of the background color (0 to
COLORS−1) in pair.

value Is a color attribute value.

can_change_color(3XCURSES)

Color
Identification

User-defined Color
Pairs

PARAMETERS

Curses Library Functions 45

The has_colors() function returns TRUE if the terminal can manipulate colors.
Otherwise, it returns FALSE.

The can_change_color() function returns TRUE if the terminal supports colors and
is able to change their definitions. Otherwise, it returns FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

No errors are defined.

To use these functions, start_color() must be called, usually right after
initscr(3XCURSES).

The can_change_color() and has_colors() functions facilitate writing
terminal-independent applications. For example, a programmer can use them to
decide whether to use color or some other video attribute.

On color terminals, a typical value of COLORS is 8 and the macros such as
COLOR_BLACK return a value within the range from 0 to and including 7. However,
applications cannot rely on this to be true.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attroff(3XCURSES), delscreen(3XCURSES), initscr(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

can_change_color(3XCURSES)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

46 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

cbreak, nocbreak, noraw, raw – set input mode controls

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int cbreak(void);

int nocbreak(void);

int noraw(void);

int raw(void);

The cbreak() function enables the character input mode. This overrides any
previous call to the raw() function and turns the stty flag ICANON off.

The nocbreak() function sets the line canonical mode and turns the stty flag
ICANON on without touching the ISIG or IXON flags.

The noraw() function sets the line canonical mode and turns the stty flags ICANON,
ISIG, and IXON all on.

The raw() function sets the character input mode and turns the stty flags ICANON,
ISIG, and IXON all off. This mode provides maximum control over input.

It is important to remember that the terminal may or may not be in character mode
operation initially. Most interactive programs require cbreak() to be enabled.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

getch(3XCURSES), halfdelay(3XCURSES), nodelay(3XCURSES),
timeout(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5),
termio(7I)

cbreak(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 47

chgat, mvchgat, mvwchgat, wchgat – change the rendition of characters in a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int chgat(int n, attr_t attr, short color, const void *opts);

int mvchgat(int y, int x, int n, attr_t attr, short color, const void
*opts);

int mvwchgat(WINDOW *win, int y, int x, int n, attr_t attr, short
color, const void *opts);

int wchgat(WINDOW *win, int n, attr_t attr, short color, const void
*opts);

These functions change the renditions of the next n characters in the current or
specified window (or of the remaining characters on the current or specified line, if n
is −1), beginning at the current or specified cursor position. The attributes and colors
are specified by attr and color as for setcchar(3XCURSES).

These function neither update the cursor nor perform wrapping.

A value of n that is greater than the remaining characters on a line is not an error.

The opts argument is reserved for definition in a future release. Currently, the
application must provide a null pointer for opts.

n Is the number of characters whose rendition is to be changed.

attr Is the set of attributes to be assigned to the characters.

color Is the new color pair to be assigned to the characters.

opts Is reserved for future use. Currently, this must be a null pointer.

y Is the y (row) coordinate of the starting position in the window.

x Is the x (column) coordinate of the starting position in the window.
changed in the window.

win Is a pointer to the window in which the rendition of characters is
to be changed.

Upon successful completion, these functions returned OK. Otherwise, they return
ERR.

No errors are defined.

chgat(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

48 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgrnd(3XCURSES), libcurses(3XCURSES), setcchar(3XCURSES),
attributes(5), standards(5)

chgat(3XCURSES)

ATTRIBUTES

SEE ALSO

Curses Library Functions 49

clear, erase, wclear, werase – clear a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int clear(void);

int erase(void);

int wclear(WINDOW *win);

int werase(WINDOW *win);

The clear() and erase() functions clear stdscr, destroying its previous contents.
The wclear() and werase() functions perform the same action, but clear the
window specified by win instead of stdscr.

The clear() and wclear() functions also call the clearok() function. This
function clears and redraws the entire screen on the next call to refresh(3XCURSES)
or wrefresh(3XCURSES) for the window.

The current background character (and attributes) is used to clear the screen.

win Is a pointer to the window that is to be cleared.

OK Successful completion.

ERR An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgdset(3XCURSES), clearok(3XCURSES), clrtobot(3XCURSES),
clrtoeol(3XCURSES), doupdate(3XCURSES), libcurses(3XCURSES),
refresh(3XCURSES), wrefresh(3XCURSES), attributes(5), standards(5)

clear(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ERRORS

ATTRIBUTES

SEE ALSO

50 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

clearok, idlok, leaveok, scrollok, setscrreg, wsetscrreg – terminal output control
functions

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int clearok(WINDOW *win, bool bf);

int idlok(WINDOW *win, bool bf);

int leaveok(WINDOW *win, bool bf);

int scrollok(WINDOW *win, bool bf);

int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

These functions set options that deal with the output within Curses functions.

The clearok() function assigns the value of bf to an internal flag in the specified
window that governs clearing of the screen during a refresh. If, during a refresh
operation on the specified window, the flag in curscr is TRUE or the flag in the
specified window is TRUE, clearok() clears the screen, redraws it in its entirety, and
sets the flag to FALSE in curscr and in the specified window. The initial state is
unspecified

The idlok() function specifies whether the implementation may use the hardware
insert-line, delete-line, and scroll features of terminals so equipped. If bf is TRUE, use
of these features is enabled. If bf is FALSE, use of these features is disabled and lines
are instead redrawn as required. The initial state is FALSE.

The leaveok() function controls the cursor position after a refresh operation. If bf is
TRUE, refresh operations on the specified window may leave the terminal’s cursor at
an arbitrary position. If bf is FALSE, then at the end of any refresh operation, the
terminal’s cursor is positioned at the cursor position contained in the specified
window. The initial state is FALSE.

The scrollok() function controls the use of scrolling.If bf is TRUE, then scrolling is
enabled for the specified window. If bf is FALSE, scrolling is disabled for the specified
window. The initial state is FALSE.

The setscrreg() and wsetscrreg() functions define a software scrolling region
in the current or specified window. The top and bottom arguments are the line numbers
of the first and last line defining the scrolling region. (Line 0 is the top line of the
window.) If this option and scrollok() are enabled, an attempt to move off the last
line of the margin causes all lines in the scrolling region to scroll one line in the
direction of the first line. Only characters in the window are scrolled. If a software
scrolling region is set and scrollok() is not enabled, an attempt to move off the last
line of the margin does not reposition any lines in the scrolling region.

clearok(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 51

win Is a pointer to a window.

bf Is a Boolean expression.

top Is the top line of the scrolling region (top of the window is line 0).

bot Is the bottom line of the scrolling region (top of the window is line
0).

Upon successful completion, the setscrreg() and wsetscrreg() functions return
OK. Otherwise, they return ERR.

The other functions always return OK.

No errors are defined.

The only reason to enable the idlok() feature is to use scrolling to achieve the visual
effect of motion of a partial window, such as for a screen editor. In other cases, the
feature can be visually annoying.

The leaveok() option provides greater efficiency for applications that do not use the
cursor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgdset(3XCURSES), clear(3XCURSES), doupdate(3XCURSES),
libcurses(3XCURSES), scrl(3XCURSES), attributes(5), standards(5)

clearok(3XCURSES)

PARAMETERS

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

52 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

clrtobot, wclrtobot – clear to the end of a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int clrtobot(void);

int wclrtobot(WINDOW *win);

The clrtobot() function clears all characters in the stdscr window from the
cursor to the end of the window. The wclrtobot() function performs the same
action in the window specified by win instead of in stdscr. The current background
character (and rendition) is used to clear the screen.

If the clearing action results in clearing only a portion of a multicolumn character,
background characters are displayed in place of the remaining portion.

win Is a pointer to the window that is to be cleared.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgdset(3XCURSES), clear(3XCURSES), clearok(3XCURSES),
clrtoeol(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

clrtobot(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 53

clrtoeol, wclrtoeol – clear to the end of a line

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int clrtoeol(void);

int wclrtoeol(WINDOW *win);

The clrtoeol() function clears the current line from the cursor to the right margin
in the stdscr window. The wclrtoeol() function performs the same action, but in
the window specified by win instead of stdscr. The current background character
(and rendition) is used to clear the screen.

If the clearing action results in clearing only a portion of a multicolumn character,
background characters are displayed in place of the remaining portion.

win Is a pointer to the window in which to clear to the end of the line.

On success, these functions return OK. Otherwise, they return FALSE.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgdset(3XCURSES), clear(3XCURSES), clearok(3XCURSES),
clrtobot(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

clrtoeol(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

54 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

COLS – number of columns on terminal screen

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

extern int COLS;

The external variable COLS indicates the number of columns on the terminal screen.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

initscr(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

COLS(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Curses Library Functions 55

copywin – overlay or overwrite any portion of window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int copywin(const WINDOW *srcwin, WINDOW *dstwin, int sminrow, int
smincol, int dminrow, int dmincol, int dmaxrow, int dmaxcol, int
overlay);

srcwin Is a pointer to the source window to be copied.

dstwin Is a pointer to the destination window to be overlayed
or overwritten.

sminrow Is the row coordinate of the upper left corner of the
rectangular area on the source window to be copied.

smincol Is the column coordinate of the upper left corner of the
rectangular area on the source window to be copied.

dminrow Is the row coordinate of the upper left corner of the
rectangular area on the destination window to be
overlayed or overwritten.

dmincol Is the column coordinate of the upper left corner of the
rectangular area on destination window to be
overlayed or overwritten.

dmaxrow Is the row coordinate of the lower right corner of the
rectangular area on the destination window to be
overlayed or overwritten.

dmaxcol Is the column coordinate of the lower right corner of
the rectangular area on the destination window to be
overlayed or overwritten.

overlay Is a TRUE or FALSE value that determines whether the
destination window is overlayed or overwritten.

The copywin() function provides a finer granularity of control over the
overlay(3XCURSES) and overwrite(3XCURSES) functions. As in the prefresh()
function (see newpad(3XCURSES)), a rectangle is specified in the destination window,
(dminrow, dmincol) and (dmaxrow, dmaxcol), and the upper-left-corner coordinates of the
source window, (smincol, sminrow). If overlay is TRUE, then copying is non-destructive,
as in overlay(). If overlay is FALSE, then copying is destructive, as in
overwrite().

Upon successful completion, the copywin() function returns OK. Otherwise, it
returns ERR.

copywin(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

56 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

curses(3XCURSES), libcurses(3XCURSES), newpad(3XCURSES),
overlay(3XCURSES), attributes(5), standards(5)

copywin(3XCURSES)

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 57

curs_addch, addch, waddch, mvaddch, mvwaddch, echochar, wechochar – add a
character (with attributes) to a curses window and advance cursor

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

int addch(chtype ch);

int waddch(WINDOW *win, chtype ch);

int mvaddch(int y, int x, chtype ch);

int mvwaddch(WINDOW *win, int y, int x, chtype ch);

int echochar(chtype ch);

int wechochar(WINDOW *win, chtype ch);

With the addch(), waddch(), mvaddch(), and mvwaddch() routines, the character
ch is put into the window at the current cursor position of the window and the
position of the window cursor is advanced. Its function is similar to that of
putchar(). At the right margin, an automatic newline is performed. At the bottom of
the scrolling region, if scrollok() is enabled, the scrolling region is scrolled up one
line.

If ch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol() before moving. Tabs are considered to be
at every eighth column. If ch is another control character, it is drawn in the ^X
notation. Calling winch() after adding a control character does not return the control
character, but instead returns the representation of the control character. See
curs_inch(3CURSES).

Video attributes can be combined with a character by OR-ing them into the parameter.
This results in these attributes also being set. (The intent here is that text, including
attributes, can be copied from one place to another using inch() and addch().) (see
standout(), predefined video attribute constants, on the curs_attr(3CURSES)
page).

The echochar() and wechochar() routines are functionally equivalent to a call to
addch() followed by a call to refresh(), or a call to waddch followed by a call to
wrefresh(). The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain might
be seen by using these routines instead of their equivalents.

The following variables may be used to add line drawing characters to the screen with
routines of the addch() family. When variables are defined for the terminal, the
A_ALTCHARSET bit is turned on (see curs_attr(3CURSES)). Otherwise, the default
character listed below is stored in the variable. The names chosen are consistent with
the VT100 nomenclature.

curs_addch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Line Graphics

58 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

Name Default Glyph Description

ACS_ULCORNER + upper left-hand corner

ACS_LLCORNER + lower left-hand corner

ACS_URCORNER + upper right-hand corner

ACS_LRCORNER + lower right-hand corner

ACS_RTEE + right tee

ACS_LTEE + left tee

ACS_BTEE + bottom tee

ACS_TTEE + top tee

ACS_HLINE - horizontal line

ACS_VLINE | vertical line

ACS_PLUS + plus

ACS_S1 - scan line 1

ACS_S9 - scan line 9

ACS_DIAMOND + diamond

ACS_CKBOARD : checker board (stipple)

ACS_DEGREE ’ degree symbol

ACS_PLMINUS # plus/minus

ACS_BULLET o bullet

ACS_LARROW < arrow pointing left

ACS_RARROW > arrow pointing right

ACS_DARROW v arrow pointing down

ACS_UARROW ^ arrow pointing up

ACS_BOARD # board of squares

ACS_LANTERN # lantern symbol

ACS_BLOCK # solid square block

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

curs_addch(3CURSES)

RETURN VALUES

Curses Library Functions 59

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_attr(3CURSES), curs_clear(3CURSES), curs_inch(3CURSES),
curs_outopts(3CURSES), curs_refresh(3CURSES), curses(3CURSES),
putc(3C), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that addch(), mvaddch(), mvwaddch(), and echochar() may be macros.

curs_addch(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

60 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_addchstr, addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,
mvaddchnstr, mvwaddchstr, mvwaddchnstr – add string of characters and attributes
to a curses window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int addchstr(chtype *chstr);

int addchnstr(chtype *chstr, int n);

int waddchstr(WINDOW *win, chtype *chstr);

int waddchnstr(WINDOW *win, chtype *chstr, int n);

int mvaddchstr(int y, int x, chtype *chstr);

int mvaddchnstr(int y, int x, chtype *chstr, int n);

int mvwaddchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

All of these routines copy chstr directly into the window image structure starting at
the current cursor position. The four routines with n as the last argument copy at most
n elements, but no more than will fit on the line. If n=-1 then the whole string is
copied, to the maximum number that fit on the line.

The position of the window cursor is not advanced. These routines works faster than
waddnstr() (see curs_addstr(3CURSES)) because they merely copy chstr into the
window image structure. On the other hand, care must be taken when using these
functions because they do not perform any kind of checking (such as for the newline
character), they do not advance the current cursor position, and they truncate the
string, rather then wrapping it around to the next line.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_addstr(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all routines except waddchnstr() and waddchstr() may be macros.

curs_addchstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 61

curs_addstr, addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr, mvwaddstr,
mvwaddnstr – add a string of characters to a curses window and advance cursor

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int addstr(char *str);

int addnstr(char *str, int n);

int waddstr(WINDOW *win, char *str);

int waddnstr(WINDOW *win, char *str, int n);

int mvaddstr(int y, int x, char *str);

int mvaddnstr(int y, int x, char *str, int n);

int mvwaddstr(WINDOW *win, int y, int x, char *str);

int mvwaddnstr(WINDOW *win, int y, int x, char *str, int n);

All of these routines write all the characters of the null terminated character string str
on the given window. It is similar to calling waddch() once for each character in the
string. The four routines with n as the last argument write at most n characters. If n is
negative, then the entire string will be added.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_addch(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all routines except waddstr() and waddnstr() may not be macros.

curs_addstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

62 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_addwch, addwch, waddwch, mvaddwch, mvwaddwch, echowchar, wechowchar
– add a wchar_t character (with attributes) to a curses window and advance cursor

cc [flag…] file… -lcurses [library…]

#include<curses.h>

int addwch(chtype wch);

int waddwch(WINDOW *win, chtype wch);

int mvaddwch(int y, int x, chtype wch);

int mvwaddwch(WINDOW *win, int y, int x, chtype wch);

int echowchar(chtype wch);

int wechowchar(WINDOW *win, chtype wch);

The addwch(),waddwch(),mvaddwch(), and mvwaddwch() routines put the
character wch, holding a wchar_t character, into the window at the current cursor
position of the window and advance the position of the window cursor. Their function
is similar to that of putwchar(3C) in the C multibyte library. At the right margin, an
automatic newline is performed. At the bottom of the scrolling region, if scrollok is
enabled, the scrolling region is scrolled up one line.

If wch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol(3CURSES) before moving. Tabs are
considered to be at every eighth column. If wch is another control character, it is drawn
in the ^X notation. Calling winwch(3CURSES) after adding a control character does
not return the control character, but instead returns the representation of the control
character.

Video attributes can be combined with a wchar_t character by OR-ing them into the
parameter. This results in these attributes also being set. (The intent here is that text,
including attributes, can be copied from one place to another using inwch() and
addwch().) See standout(3CURSES), predefined video attribute constants.

The echowchar() and wechowchar() routines are functionally equivalent to a call
to addwch() followed by a call to refresh(3CURSES), or a call to waddwch()
followed by a call to wrefresh(3CURSES). The knowledge that only a single
character is being output is taken into consideration and, for non-control characters, a
considerable performance gain might be seen by using these routines instead of their
equivalents.

The following variables may be used to add line drawing characters to the screen with
routines of the addwch() family. When variables are defined for the terminal, the
A_ALTCHARSET bit is turned on. (See curs_attr(3CURSES)). Otherwise, the default
character listed below is stored in the variable. The names chosen are consistent with
the VT100 nomenclature.

curs_addwch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Line Graphics

Curses Library Functions 63

Name Default Glyph Description

ACS_ULCORNER + upper left-hand corner

ACS_LLCORNER + lower left-hand corner

ACS_URCORNER + upper right-hand corner

ACS_LRCORNER + lower right-hand corner

ACS_RTEE + right tee

ACS_LTEE + left tee

ACS_BTEE + bottom tee

ACS_TTEE + top tee

ACS_HLINE - horizontal line

ACS_VLINE | vertical line

ACS_PLUS + plus

ACS_S1 - scan line 1

ACS_S9 - scan line 9

ACS_DIAMOND + diamond

ACS_CKBOARD : checker board (stipple)

ACS_DEGREE ’ degree symbol

ACS_PLMINUS # plus/minus

ACS_BULLET o bullet

ACS_LARROW < arrow pointing left

ACS_RARRROW > arrow pointing right

ACS_DARROW v arrow pointing down

ACS_UARROW ^ arrow pointing up

ACS_BOARD # board of squares

ACS_LANTERN # lantern symbol

ACS_BLOCK # solid square block

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

curs_addwch(3CURSES)

RETURN VALUE

64 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

putwchar(3C), clrtoeol(3CURSES), curses(3CURSES), curs_attr(3CURSES),
curs_inwch(3CURSES), curs_outopts(3CURSES), refresh(3CURSES),
standout(3CURSES), winwch(3CURSES), wrefresh(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that addwch(), mvaddwch(), mvwaddwch(), and echowchar() may be
macros.

None of these routines can use the color attribute in chtype.

curs_addwch(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 65

curs_addwchstr, addwchstr, addwchnstr, waddwchstr, waddwchnstr, mvaddwchstr,
mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr – add string of wchar_t characters
(and attributes) to a curses window

cc [flag…] file… -lcurses [library…]

#include<curses.h>

int addwchstr(chtype *wchstr);

int addwchnstr(chtype *wchstr, int n);

int waddwchstr(WINDOW *win, chtype *wchstr);

int waddwchnstr(WINDOW *win, chtype *wchstr, int n);

int mvaddwchstr(int y, int x, chtype *wchstr);

int mvaddwchnstr(int y, int x, chtype *wchstr, int n);

int mvwaddwchstr(WINDOW *win, int y, int x, chtype *wchstr);

int mvwaddwchnstr(WINDOW *win, int y, int x , chtype *wchstr, int
n);

All of these routines copy wchstr, which points to a string of wchar_t characters,
directly into the window image structure starting at the current cursor position. The
four routines with n as the last argument copy at most n elements, but no more than
will fit on the line. If n=−1 then the whole string is copied, to the maximum number
that fit on the line.

The position of the window cursor is not advanced. These routines work faster than
waddnwstr(3CURSES) because they merely copy wchstr into the window image
structure. On the other hand, care must be taken when using these functions because
they don’t perform any kind of checking (such as for the newline character), they do
not advance the current cursor position, and they truncate the string, rather than
wrapping it around to the new line.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), waddnwstr(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that all routines except waddwchnstr() may be macros.

curs_addwchstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

66 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

None of these routines can use the color attribute in chtype.

curs_addwchstr(3CURSES)

Curses Library Functions 67

curs_addwstr, addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr, mvaddnwstr,
mvwaddwstr, mvwaddnwstr – add a string of wchar_t characters to a curses window
and advance cursor

cc [flag…] file… -lcurses [library…]

#include<curses.h>

int addwstr(wchar_t *wstr);

int addnwstr(wchar_t *wstr, int n);

int waddwstr(WINDOW *win, wchar_t *wstr);

int waddnwstr(WINDOW *win, wchar_t *wstr, int n);

int mvaddwstr(int y, int x, wchar_t *wstr);

int mvaddnwstr(int y, int x, wchar_t *wstr, int n);

int mvwaddwstr(WINDOW *win, int y, int x , wchar_t *wstr);

int mvwaddnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

All of these routines write all the characters of the null-terminated wchar_t character
string wstr on the given window. The effect is similar to calling waddwch(3CURSES)
once for each wchar_t character in the string. The four routines with n as the last
argument write at most n wchar_t characters. If n is negative, then the entire string
will be added.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), waddwch(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<nctrl.h> and <widec.h>.

Note that all of these routines except waddwstr() and waddnwstr() may be macros.

curs_addwstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

68 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_alecompat, movenextch, wmovenextch, moveprevch, wmoveprevch, adjcurspos,
wadjcurspos – these functions are added to ALE curses library for moving the cursor
by character.

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

int movenextch(void);

int wmovenextch(WINDOW *win);

int moveprevch(void);

int wmoveprevch(WINDOW *win);

int adjcurspos(void);

int wadjcurspos(WINDOW *win);

movenextch() and wmovenextch() move the cursor to the next character to the
right. If the next character is a multicolumn character, the cursor is positioned on the
first (left-most) column of that character. The new cursor position will be on the next
character, even if the cursor was originally positioned on the left-most column of a
multicolumn character. Note that the simple cursor increment (++x) does not
guarantee movement to the next character, if the cursor was originally positioned on a
multicolumn character. getyx(3CURSES) can be used to find the new position.

moveprevc() and wmoveprevch() routines are the opposite of movenextch() and
wmovenextch(), moving the cursor to the left-most column of the previous character.

adjcurspos() and wadjcurspos() move the cursor to the first(left-most) column
of the multicolumn character that the cursor is presently on. If the cursor is already on
the first column, or if the cursor is on a single-column character, these routines will
have no effect.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), getyx(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h> ,
<unctrl.h> and <widec.h>.

Note that movenextch(), moveprevch(), and adjcurspos() may be macros.

curs_alecompat(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 69

curs_attr, attroff, wattroff, attron, wattron, attrset, wattrset, standend, wstandend,
standout, wstandout – curses character and window attribute control routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int attroff(int attrs);

int wattroff(WINDOW *win, int attrs);

int attron(int attrs);

int wattron(WINDOW *win, int attrs);

int attrset(int attrs);

int wattrset(WINDOW *win, int attrs);

int standend(void);

int wstandend(WINDOW *win);

int standout(void);

int wstandout(WINDOW *win);

All of these routines manipulate the current attributes of the named window. The
current attributes of a window are applied to all characters that are written into the
window with waddch(), waddstr(), and wprintw(). Attributes are a property of
the character, and move with the character through any scrolling and insert/delete
line/character operations. To the extent possible on the particular terminal, they are
displayed as the graphic rendition of characters put on the screen.

The routine attrset() sets the current attributes of the given window to attrs. The
routine attroff() turns off the named attributes without turning any other
attributes on or off. The routine attron() turns on the named attributes without
affecting any others. The routine standout() is the same as attron(A_STANDOUT).
The routine standend() is the same as attrset(), that is, it turns off all attributes.

The following video attributes, defined in <curses.h>, can be passed to the routines
attron(), attroff(), and attrset(), or OR-ed with the characters passed to
addch().

A_STANDOUT Best highlighting mode of the terminal

A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_ALTCHARSET Alternate character set

A_CHARTEXT Bit-mask to extract a character

curs_attr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Attributes

70 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

COLOR_PAIR(n) Color-pair number n

The following macro is the reverse of COLOR_PAIR(n):

PAIR_NUMBER(attrs) Returns the pair number associated with the
COLOR_PAIR(n) attribute

These routines always return 1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_addch(3CURSES), curs_addstr(3CURSES), curs_printw(3CURSES),
curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that attroff(), wattroff(), attron(), wattron(), wattrset(),
standend(), and standout() may be macros.

curs_attr(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 71

curs_beep, beep, flash – curses bell and screen flash routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int beep(void);

int flash(void);

The beep() and flash() routines are used to signal the terminal user. The routine
beep() sounds the audible alarm on the terminal, if possible; if that is not possible, it
flashes the screen (visible bell), if that is possible. The routine flash() flashes the
screen, and if that is not possible, sounds the audible signal. If neither signal is
possible, nothing happens. Nearly all terminals have an audible signal (bell or beep),
but only some can flash the screen.

These routines always return OK.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

curs_beep(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

72 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_bkgd, bkgd, bkgdset, wbkgdset, wbkgd – curses window background
manipulation routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int bkgd(chtype ch);

void bkgdset(chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

int wbkgd(WINDOW *win, chtype ch);

The bkgdsets() and wbkgdset() routines manipulate the background of the
named window. Background is a chtype consisting of any combination of attributes
and a character. The attribute part of the background is combined (ORed) with all
non-blank characters that are written into the window with waddch(). Both the
character and attribute parts of the background are combined with the blank
characters. The background becomes a property of the character and moves with the
character through any scrolling and insert/delete line/character operations. To the
extent possible on a particular terminal, the attribute part of the background is
displayed as the graphic rendition of the character put on the screen.

The bkgd() and wbkgd() routines combine the new background with every position
in the window. Background is any combination of attributes and a character. Only the
attribute part is used to set the background of non-blank characters, while both
character and attributes are used for blank positions. To the extent possible on a
particular terminal, the attribute part of the background is displayed as the graphic
rendition of the character put on the screen.

bkgd() and wbkgd() return the integer OK, or a non-negative integer, if immedok()
is set. See curs_outopts(3CURSES).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_addch(3CURSES), curs_outopts(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that bkgdset() and bkgd() may be macros.

curs_bkgd(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 73

curs_border, border, wborder, box, whline, wvline – create curses borders, horizontal
and vertical lines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int border(chtype ls, chtype rs, chtype ts, chtype bs, chtype tl,
chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs, chtype ts, chtype bs,
chtype tl, chtype tr, chtype bl, chtype br);

int box(WINDOW *win, chtype verch, chtype horch);

int hline(chtype ch, int n);

int whline(WINDOW *win, chtype ch, int n);

int vline(chtype ch, int n);

int wvline(WINDOW *win, chtype ch, int n);

With the border(), wborder(), and box() routines, a border is drawn around the
edges of the window. The arguments and attributes are:

ls left side of the border

rs right side of the border

ts top side of the border

bs bottom side of the border

tl top left-hand corner

tr top right-hand corner

bl bottom left-hand corner

br bottom right-hand corner

If any of these arguments is zero, then the following default values (defined in
<curses.h>) are used respectively instead: ACS_VLINE, ACS_VLINE, ACS_HLINE,
ACS_HLINE, ACS_ULCORNER, ACS_URCORNER, ACS_BLCORNER, ACS_BRCORNER.

box(win, verch, horch) is a shorthand for the following call:

wborder(win, verch, verch, horch, horch , 0, 0, 0, 0)

hline() and whline() draw a horizontal (left to right) line using ch starting at the
current cursor position in the window. The current cursor position is not changed. The
line is at most n characters long, or as many as fit into the window.

curs_border(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

74 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

vline() and wvline() draw a vertical (top to bottom) line using ch starting at the
current cursor position in the window. The current cursor position is not changed. The
line is at most n characters long, or as many as fit into the window.

All routines return the integer OK, or a non-negative integer if immedok() is set. See
curs_outopts(3CURSES).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_outopts(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that border() and box() may be macros.

curs_border(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 75

curs_clear, erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol, wclrtoeol – clear all
or part of a curses window

cc [flag...] file ... -lcurses [library ...]

#include <curses.h>

int erase(void);

int werase(WINDOW *win);

int clear(void);

int wclear(WINDOW *win);

int clrtobot(void);

int wclrtobot(WINDOW *win);

int clrtoeol(void);

int wclrtoeol(WINDOW *win);

The erase() and werase() routines copy blanks to every position in the window.

The clear() and wclear() routines are like erase() and werase(), but they also
call clearok() , so that the screen is cleared completely on the next call to
wrefresh() for that window and repainted from scratch.

The clrtobot() and wclrtobot() routines erase all lines below the cursor in the
window. Also, the current line to the right of the cursor, inclusive, is erased.

The clrtoeol() and wclrtoeol() routines erase the current line to the right of the
cursor, inclusive.

All routines return the integer OK, or a non-negative integer if immedok() is set. See
curs_outopts(3CURSES).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_outopts(3CURSES), curs_refresh(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that erase(), werase(), clear(), wclear(), clrtobot(), and
clrtoeol() may be macros.

curs_clear(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

76 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_color, start_color, init_pair, init_color, has_colors, can_change_color,
color_content, pair_content – curses color manipulation routines

cc [flag ...] file ... -lcurses [library ...]
#include <curses.h>

int start_color(void);

int init_pair(short pair, short fg, short bg);

int init_color(short color, short red, short green, short blue);

bool has_colors(void);

bool can_change_color(void);

int color_content(short color, short *redp, short *greenp, short
*bluep);

int pair_content(short pair, short *fgp, short *bgp);

curses provides routines that manipulate color on color alphanumeric terminals. To
use these routines start_color() must be called, usually right after initscr().
See curs_initscr(3CURSES). Colors are always used in pairs (referred to as
color-pairs). A color-pair consists of a foreground color (for characters) and a
background color (for the field on which the characters are displayed). A programmer
initializes a color-pair with the routine init_pair. After it has been initialized,
COLOR_PAIR(n), a macro defined in <curses.h>, can be used in the same ways
other video attributes can be used. If a terminal is capable of redefining colors, the
programmer can use the routine init_color() to change the definition of a color.
The routines has_colors() and can_change_color() return TRUE or FALSE,
depending on whether the terminal has color capabilities and whether the
programmer can change the colors. The routine color_content() allows a
programmer to identify the amounts of red, green, and blue components in an
initialized color. The routine pair_content() allows a programmer to find out how
a given color-pair is currently defined.

The start_color() routine requires no arguments. It must be called if the
programmer wants to use colors, and before any other color manipulation routine is
called. It is good practice to call this routine right after initscr(). start_color()
initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white),
and two global variables, COLORS and COLOR_PAIRS (respectively defining the
maximum number of colors and color-pairs the terminal can support). It also restores
the colors on the terminal to the values they had when the terminal was just turned
on.

The init_pair() routine changes the definition of a color-pair. It takes three
arguments: the number of the color-pair to be changed, the foreground color number,
and the background color number. The value of the first argument must be between 1
and COLOR_PAIRS−1. The value of the second and third arguments must be between
0 and COLORS. If the color-pair was previously initialized, the screen is refreshed and
all occurrences of that color-pair is changed to the new definition.

curs_color(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Overview

Routine
Descriptions

Curses Library Functions 77

The init_color() routine changes the definition of a color. It takes four arguments:
the number of the color to be changed followed by three RGB values (for the amounts
of red, green, and blue components). The value of the first argument must be between
0 and COLORS. (See the section Colors for the default color index.) Each of the last
three arguments must be a value between 0 and 1000. When init_color() is used,
all occurrences of that color on the screen immediately change to the new definition.

The has_colors() routine requires no arguments. It returns TRUE if the terminal can
manipulate colors; otherwise, it returns FALSE. This routine facilitates writing
terminal-independent programs. For example, a programmer can use it to decide
whether to use color or some other video attribute.

The can_change_color() routine requires no arguments. It returns TRUE if the
terminal supports colors and can change their definitions; other, it returns FALSE. This
routine facilitates writing terminal-independent programs.

The color_content() routine gives users a way to find the intensity of the red,
green, and blue (RGB) components in a color. It requires four arguments: the color
number, and three addresses of shorts for storing the information about the amounts
of red, green, and blue components in the given color. The value of the first argument
must be between 0 and COLORS. The values that are stored at the addresses pointed to
by the last three arguments are between 0 (no component) and 1000 (maximum
amount of component).

The pair_content() routine allows users to find out what colors a given color-pair
consists of. It requires three arguments: the color-pair number, and two addresses of
shorts for storing the foreground and the background color numbers. The value of
the first argument must be between 1 and COLOR_PAIRS−1. The values that are stored
at the addresses pointed to by the second and third arguments are between 0 and
COLORS.

In <curses.h> the following macros are defined. These are the default colors.
curses also assumes that COLOR_BLACK is the default background color for all
terminals.

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN

COLOR_WHITE

All routines that return an integer return ERR upon failure and OK upon successful
completion.

curs_color(3CURSES)

Colors

RETURN VALUES

78 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_attr(3CURSES), curs_initscr(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

curs_color(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 79

curscr – current window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

extern WINDOW *curscr;

The external variable curscr points to an internal data structure. It can be specified
as an argument to certain functions such as clearok(3XCURSES).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

clearok(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

curscr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

80 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

curs_delch, delch, wdelch, mvdelch, mvwdelch – delete character under cursor in a
curses window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int delch(void);

int wdelch(WINDOW *win);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

With these routines the character under the cursor in the window is deleted; all
characters to the right of the cursor on the same line are moved to the left one position
and the last character on the line is filled with a blank. The cursor position does not
change (after moving to y, x, if specified). This does not imply use of the hardware
delete character feature.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that delch(), mvdelch(), and mvwdelch() may be macros.

curs_delch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 81

curs_deleteln, deleteln, wdeleteln, insdelln, winsdelln, insertln, winsertln – delete and
insert lines in a curses window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW *win);

int insdelln(int n);

int winsdelln(WINDOW *win, int n);

int insertln(void);

int winsertln(WINDOW *win);

With the deleteln() and wdeleteln() routines, the line under the cursor in the
window is deleted; all lines below the current line are moved up one line. The bottom
line of the window is cleared. The cursor position does not change. This does not
imply use of a hardware delete line feature.

With the insdelln() and winsdelln() routines, for positive n, insert n lines into
the specified window above the current line. The n bottom lines are lost. For negative
n, delete n lines (starting with the one under the cursor), and move the remaining lines
up. The bottom n lines are cleared. The current cursor position remains the same.

With the insertln() and insertln() routines, a blank line is inserted above the
current line and the bottom line is lost. This does not imply use of a hardware insert
line feature.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all but winsdelln() may be macros.

curs_deleteln(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

82 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curses – CRT screen handling and optimization package

cc [flag...] file.. .–lcurses [library...]

#include <curses.h>

The curses library routines give the user a terminal-independent method of
updating character screens with reasonable optimization.

The curses package allows: overall screen, window and pad manipulation; output to
windows and pads; reading terminal input; control over terminal and curses input
and output options; environment query routines; color manipulation; use of soft label
keys; terminfo access; and access to low-level curses routines.

To initialize the routines, the routine initscr() or newterm() must be called before
any of the other routines that deal with windows and screens are used. The routine
endwin() must be called before exiting. To get character-at-a-time input without
echoing (most interactive, screen oriented programs want this), the following sequence
should be used:

initscr,cbreak,noecho;

Most programs would additionally use the sequence:

nonl,intrflush(stdscr,FALSE),keypad(stdscr,TRUE);

Before a curses program is run, the tab stops of the terminal should be set and its
initialization strings, if defined, must be output. This can be done by executing the
tput init command after the shell environment variable TERM has been exported.
(See terminfo(4) for further details.)

The curses library permits manipulation of data structures, called windows, which
can be thought of as two-dimensional arrays of characters representing all or part of a
CRT screen. A default window called stdscr, which is the size of the terminal screen,
is supplied. Others may be created with newwin(3CURSES).

Windows are referred to by variables declared as WINDOW *. These data structures are
manipulated with routines described on 3CURSES pages (whose names begin "curs_").
Among which the most basic routines are move(3CURSES) and addch(3CURSES).
More general versions of these routines are included with names beginning with w,
allowing the user to specify a window. The routines not beginning with w affect
stdscr.

After using routines to manipulate a window, refresh(3CURSES) is called, telling
curses to make the user’s CRT screen look like stdscr. The characters in a window
are actually of type chtype, (character and attribute data) so that other information
about the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows which are
not constrained to the size of the screen and whose contents need not be completely
displayed. See curs_pad(3CURSES) for more information.

curses(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 83

In addition to drawing characters on the screen, video attributes and colors may be
included, causing the characters to show up in such modes as underlined, in reverse
video, or in color on terminals that support such display enhancements. Line drawing
characters may be specified to be output. On input, curses is also able to translate
arrow and function keys that transmit escape sequences into single values. The video
attributes, line drawing characters, and input values use names, defined in
<curses.h>, such as A_REVERSE, ACS_HLINE, and KEY_LEFT.

If the environment variables LINES and COLUMNS are set, or if the program is
executing in a window environment, line and column information in the environment
will override information read by terminfo. This would effect a program running in an
AT&T 630 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using curses checks
for a local terminal definition before checking in the standard place. For example, if
TERM is set to att4424, then the compiled terminal definition is found in

/usr/share/lib/terminfo/a/att4424.

(The ‘a’ is copied from the first letter of att4424 to avoid creation of huge
directories.) However, if TERMINFO is set to $HOME/myterms, curses first checks

$HOME/myterms/a/att4424,

and if that fails, it then checks

/usr/share/lib/terminfo/a/att4424.

This is useful for developing experimental definitions or when write permission in
/usr/share/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h> and will be filled
in by initscr with the size of the screen. The constants TRUE and FALSE have the
values 1 and 0, respectively.

The curses routines also define the WINDOW * variable curscr which is used for
certain low-level operations like clearing and redrawing a screen containing garbage.
The curscr can be used in only a few routines.

The number of bytes and the number of columns to hold a character from the
supplementary character set is locale-specific (locale category LC_CTYPE) and can be
specified in the character class table.

For editing, operating at the character level is entirely appropriate. For screen
formatting, arbitrary movement of characters on screen is not desirable.

Overwriting characters (addch, for example) operates on a screen level. Overwriting a
character by a character that requires a different number of columns may produce
orphaned columns. These orphaned columns are filled with background characters.

curses(3CURSES)

International
Functions

84 man pages section 3: Curses Library Functions • Last Revised 23 Oct 2001

Inserting characters (insch, for example) operates on a character level (that is, at the
character boundaries). The specified character is inserted right before the character,
regardless of which column of a character the cursor points to. Before insertion, the
cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (delch, for example) operates on a
character level (that is, at the character boundaries). The character at the cursor is
deleted whichever column of the character the cursor points to. Before deletion, the
cursor position is adjusted to the first column of the character.

A multi-column character cannot be put on the last column of a line. When such
attempts are made, the last column is set to the background character. In addition,
when such an operation creates orphaned columns, the orphaned columns are filled
with background characters.

Overlapping and overwriting a window follows the operation of overwriting
characters around its edge. The orphaned columns, if any, are handled as in the
character operations.

The cursor is allowed to be placed anywhere in a window. If the insertion or deletion
is made when the cursor points to the second or later column position of a character
that holds multiple columns, the cursor is adjusted to the first column of the character
before the insertion or deletion.

Many curses routines have two or more versions. The routines prefixed with w
require a window argument. The routines prefixed with p require a pad argument.
Those without a prefix generally use stdscr.

The routines prefixed with mv require an x and y coordinate to move to before
performing the appropriate action. The mv routines imply a call to move(3CURSES)
before the call to the other routine. The coordinate y always refers to the row (of the
window), and x always refers to the column. The upper left-hand corner is always
(0,0), not (1,1).

The routines prefixed with mvw take both a window argument and x and y
coordinates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad are
always pointers to type WINDOW

Option setting routines require a Boolean flag bf with the value TRUE or FALSE; bf is
always of type bool. The variables ch and attrs below are always of type chtype. The
types WINDOW, SCREEN, bool, and chtype are defined in <curses.h>. The type
TERMINAL is defined in <term.h>. All other arguments are integers.

The following table lists each curses routine and the name of the manual page on
which it is described.

curses Routine Name Manual Page Name

addch curs_addch(3CURSES)

curses(3CURSES)

Routine and
Argument Names

Routine Name
Index

Curses Library Functions 85

addchnstr curs_addchstr(3CURSES)

addchstr curs_addchstr(3CURSES)

addnstr curs_addstr(3CURSES)

addnwstr curs_addwstr(3CURSES)

addstr curs_addstr(3CURSES)

addwch curs_addwch(3CURSES)

addwchnstr curs_addwchstr(3CURSES)

addwchstr curs_addwchstr(3CURSES)

addwstr curs_addwstr(3CURSES)

adjcurspos curs_alecompat(3CURSES)

attroff curs_attr(3CURSES)

attron curs_attr(3CURSES)

attrset curs_attr(3CURSES)

baudrate curs_termattrs(3CURSES)

beep curs_beep(3CURSES)

bkgd curs_bkgd(3CURSES)

bkgdset curs_bkgd(3CURSES)

border curs_border(3CURSES)

box curs_border(3CURSES)

can_change_color curs_color(3CURSES)

cbreak curs_inopts(3CURSES)

clear curs_clear(3CURSES)

clearok curs_outopts(3CURSES)

clrtobot curs_clear(3CURSES)

clrtoeol curs_clear(3CURSES)

color_content curs_color(3CURSES)

copywin curs_overlay(3CURSES)

curs_set curs_kernel(3CURSES)

def_prog_mode curs_kernel(3CURSES)

def_shell_mode curs_kernel(3CURSES)

del_curterm curs_terminfo(3CURSES)

curses(3CURSES)

86 man pages section 3: Curses Library Functions • Last Revised 23 Oct 2001

delay_output curs_util(3CURSES)

delch curs_delch(3CURSES)

deleteln curs_deleteln(3CURSES)

delscreen curs_initscr(3CURSES)

delwin curs_window(3CURSES)

derwin curs_window(3CURSES)

doupdate curs_refresh(3CURSES)

dupwin curs_window(3CURSES)

echo curs_inopts(3CURSES)

echochar curs_addch(3CURSES)

echowchar curs_addwch(3CURSES)

endwin curs_initscr(3CURSES)

erase curs_clear(3CURSES)

erasechar curs_termattrs(3CURSES)

filter curs_util(3CURSES)

flash curs_beep(3CURSES)

flushinp curs_util(3CURSES)

getbegyx curs_getyx(3CURSES)

getch curs_getch(3CURSES)

getmaxyx curs_getyx(3CURSES)

getnwstr curs_getwstr(3CURSES)

getparyx curs_getyx(3CURSES)

getstr curs_getstr(3CURSES)

getsyx curs_kernel(3CURSES)

getwch curs_getwch(3CURSES)

getwin curs_util(3CURSES)

getwstr curs_getwstr(3CURSES)

getyx curs_getyx(3CURSES)

halfdelay curs_inopts(3CURSES)

has_colors curs_color(3CURSES)

has_ic curs_termattrs(3CURSES)

curses(3CURSES)

Curses Library Functions 87

has_il curs_termattrs(3CURSES)

idcok curs_outopts(3CURSES)

idlok curs_outopts(3CURSES)

immedok curs_outopts(3CURSES)

inch curs_inch(3CURSES)

inchnstr curs_inchstr(3CURSES)

inchstr curs_inchstr(3CURSES)

init_color curs_color(3CURSES)

init_pair curs_color(3CURSES)

initscr curs_initscr(3CURSES)

innstr curs_instr(3CURSES)

innwstr curs_inwstr(3CURSES)

insch curs_insch(3CURSES)

insdelln curs_deleteln(3CURSES)

insertln curs_deleteln(3CURSES)

insnstr curs_insstr(3CURSES)

insnwstr curs_inswstr(3CURSES)

insstr curs_insstr(3CURSES)

instr curs_instr(3CURSES)

inswch curs_inswch(3CURSES)

inswstr curs_inswstr(3CURSES)

intrflush curs_inopts(3CURSES)

inwch curs_inwch(3CURSES)

inwchnstr curs_inwchstr(3CURSES)

inwchstr curs_inwchstr(3CURSES)

inwstr curs_inwstr(3CURSES)

is_linetouched curs_touch(3CURSES)

is_wintouched curs_touch(3CURSES)

isendwin curs_initscr(3CURSES)

keyname curs_util(3CURSES)

keypad curs_inopts(3CURSES)

curses(3CURSES)

88 man pages section 3: Curses Library Functions • Last Revised 23 Oct 2001

killchar curs_termattrs(3CURSES)

leaveok curs_outopts(3CURSES)

longname curs_termattrs(3CURSES)

meta curs_inopts(3CURSES)

move curs_move(3CURSES)

movenextch curs_alecompat(3CURSES)

moveprevch curs_alecompat(3CURSES)

mvaddch curs_addch(3CURSES)

mvaddchnstr curs_addchstr(3CURSES)

mvaddchstr curs_addchstr(3CURSES)

mvaddnstr curs_addstr(3CURSES)

mvaddnwstr curs_addwstr(3CURSES)

mvaddstr curs_addstr(3CURSES)

mvaddwch curs_addwch(3CURSES)

mvaddwchnstr curs_addwchstr(3CURSES)

mvaddwchstr curs_addwchstr(3CURSES)

mvaddwstr curs_addwstr(3CURSES)

mvcur curs_terminfo(3CURSES)

mvdelch curs_delch(3CURSES)

mvderwin curs_window(3CURSES)

mvgetch curs_getch(3CURSES)

mvgetnwstr curs_getwstr(3CURSES)

mvgetstr curs_getstr(3CURSES)

mvgetwch curs_getwch(3CURSES)

mvgetwstr curs_getwstr(3CURSES)

mvinch curs_inch(3CURSES)

mvinchnstr curs_inchstr(3CURSES)

mvinchstr curs_inchstr(3CURSES)

mvinnstr curs_instr(3CURSES)

mvinnwstr curs_inwstr(3CURSES)

mvinsch curs_insch(3CURSES)

curses(3CURSES)

Curses Library Functions 89

mvinsnstr curs_insstr(3CURSES)

mvinsnwstr curs_inswstr(3CURSES)

mvinsstr curs_insstr(3CURSES)

mvinstr curs_instr(3CURSES)

mvinswch curs_inswch(3CURSES)

mvinswstr curs_inswstr(3CURSES)

mvinwch curs_inwch(3CURSES)

mvinwchnstr curs_inwchstr(3CURSES)

mvinwchstr curs_inwchstr(3CURSES)

mvinwstr curs_inwstr(3CURSES)

mvprintw curs_printw(3CURSES)

mvscanw curs_scanw(3CURSES)

mvwaddch curs_addch(3CURSES)

mvwaddchnstr curs_addchstr(3CURSES)

mvwaddchstr curs_addchstr(3CURSES)

mvwaddnstr curs_addstr(3CURSES)

mvwaddnwstr curs_addwstr(3CURSES)

mvwaddstr curs_addstr(3CURSES)

mvwaddwch curs_addwch(3CURSES)

mvwaddwchnstr curs_addwchstr(3CURSES)

mvwaddwchstr curs_addwchstr(3CURSES)

mvwaddwstr curs_addwstr(3CURSES)

mvwdelch curs_delch(3CURSES)

mvwgetch curs_getch(3CURSES)

mvwgetnwstr curs_getwstr(3CURSES)

mvwgetstr curs_getstr(3CURSES)

mvwgetwch curs_getwch(3CURSES)

mvwgetwstr curs_getwstr(3CURSES)

mvwin curs_window(3CURSES)

mvwinch curs_inch(3CURSES)

mvwinchnstr curs_inchstr(3CURSES)

curses(3CURSES)

90 man pages section 3: Curses Library Functions • Last Revised 23 Oct 2001

mvwinchstr curs_inchstr(3CURSES)

mvwinnstr curs_instr(3CURSES)

mvwinnwstr curs_inwstr(3CURSES)

mvwinsch curs_insch(3CURSES)

mvwinsnstr curs_insstr(3CURSES)

mvwinsstr curs_insstr(3CURSES)

mvwinstr curs_instr(3CURSES)

mvwinswch curs_inswch(3CURSES)

mvwinswstr curs_inswstr(3CURSES)

mvwinwch curs_inwch(3CURSES)

mvwinwchnstr curs_inwchstr(3CURSES)

mvwinwchstr curs_inwchstr(3CURSES)

mvwinwstr curs_inwstr(3CURSES)

mvwprintw curs_printw(3CURSES)

mvwscanw curs_scanw(3CURSES)

napms curs_kernel(3CURSES)

newpad curs_pad(3CURSES)

newterm curs_initscr(3CURSES)

newwin curs_window(3CURSES)

nl curs_outopts(3CURSES)

nocbreak curs_inopts(3CURSES)

nodelay curs_inopts(3CURSES)

noecho curs_inopts(3CURSES)

nonl curs_outopts(3CURSES)

noqiflush curs_inopts(3CURSES)

noraw curs_inopts(3CURSES)

notimeout curs_inopts(3CURSES)

overlay curs_overlay(3CURSES)

overwrite curs_overlay(3CURSES)

pair_content curs_color(3CURSES)

pechochar curs_pad(3CURSES)

curses(3CURSES)

Curses Library Functions 91

pechowchar curs_pad(3CURSES)

pnoutrefresh curs_pad(3CURSES)

prefresh curs_pad(3CURSES)

printw curs_printw(3CURSES)

putp curs_terminfo(3CURSES)

putwin curs_util(3CURSES)

qiflush curs_inopts(3CURSES)

raw curs_inopts(3CURSES)

redrawwin curs_refresh(3CURSES)

refresh curs_refresh(3CURSES)

reset_prog_mode curs_kernel(3CURSES)

reset_shell_mode curs_kernel(3CURSES)

resetty curs_kernel(3CURSES)

restartterm curs_terminfo(3CURSES)

ripoffline curs_kernel(3CURSES)

savetty curs_kernel(3CURSES)

scanw curs_scanw(3CURSES)

scr_dump curs_scr_dump(3CURSES)

scr_init curs_scr_dump(3CURSES)

scr_restore curs_scr_dump(3CURSES)

scr_set curs_scr_dump(3CURSES)

scroll curs_scroll(3CURSES)

scrollok curs_outopts(3CURSES)

set_curterm curs_terminfo(3CURSES)

set_term curs_initscr(3CURSES)

setscrreg curs_outopts(3CURSES)

setsyx curs_kernel(3CURSES)

setterm curs_terminfo(3CURSES)

setupterm curs_terminfo(3CURSES)

slk_attroff curs_slk(3CURSES)

slk_attron curs_slk(3CURSES)

curses(3CURSES)

92 man pages section 3: Curses Library Functions • Last Revised 23 Oct 2001

slk_attrset curs_slk(3CURSES)

slk_clear curs_slk(3CURSES)

slk_init curs_slk(3CURSES)

slk_label curs_slk(3CURSES)

slk_noutrefresh curs_slk(3CURSES)

slk_refresh curs_slk(3CURSES)

slk_restore curs_slk(3CURSES)

slk_set curs_slk(3CURSES)

slk_touch curs_slk(3CURSES)

srcl curs_scroll(3CURSES)

standend curs_attr(3CURSES)

standout curs_attr(3CURSES)

start_color curs_color(3CURSES)

subpad curs_pad(3CURSES)

subwin curs_window(3CURSES)

syncok curs_window(3CURSES)

termattrs curs_termattrs(3CURSES)

termname curs_termattrs(3CURSES)

tgetent curs_termcap(3CURSES)

tgetflag curs_termcap(3CURSES)

tgetnum curs_termcap(3CURSES)

tgetstr curs_termcap(3CURSES)

tgoto curs_termcap(3CURSES)

tigetflag curs_terminfo(3CURSES)

tigetnum curs_terminfo(3CURSES)

tigetstr curs_terminfo(3CURSES)

timeout curs_inopts(3CURSES)

touchline curs_touch(3CURSES)

touchwin curs_touch(3CURSES)

tparm curs_terminfo(3CURSES)

tputs curs_terminfo(3CURSES)

curses(3CURSES)

Curses Library Functions 93

typeahead curs_inopts(3CURSES)

unctrl curs_util(3CURSES)

ungetch curs_getch(3CURSES)

ungetwch curs_getwch(3CURSES)

untouchwin curs_touch(3CURSES)

use_env curs_util(3CURSES)

vidattr curs_terminfo(3CURSES)

vidputs curs_terminfo(3CURSES)

vwprintw curs_printw(3CURSES)

vwscanw curs_scanw(3CURSES)

waddch curs_addch(3CURSES)

waddchnstr curs_addchstr(3CURSES)

waddchstr curs_addchstr(3CURSES)

waddnstr curs_addstr(3CURSES)

waddnwstr curs_addwstr(3CURSES)

waddstr curs_addstr(3CURSES)

waddwch curs_addwch(3CURSES)

waddwchnstr curs_addwchstr(3CURSES)

waddwchstr curs_addwchstr(3CURSES)

waddwstr curs_addwstr(3CURSES)

wadjcurspos curs_alecompat(3CURSES)

wattroff curs_attr(3CURSES)

wattron curs_attr(3CURSES)

wattrset curs_attr(3CURSES)

wbkgd curs_bkgd(3CURSES)

wbkgdset curs_bkgd(3CURSES)

wborder curs_border(3CURSES)

wclear curs_clear(3CURSES)

wclrtobot curs_clear(3CURSES)

wclrtoeol curs_clear(3CURSES)

wcursyncup curs_window(3CURSES)

curses(3CURSES)

94 man pages section 3: Curses Library Functions • Last Revised 23 Oct 2001

wdelch curs_delch(3CURSES)

wdeleteln curs_deleteln(3CURSES)

wechochar curs_addch(3CURSES)

wechowchar curs_addwch(3CURSES)

werase curs_clear(3CURSES)

wgetch curs_getch(3CURSES)

wgetnstr curs_getstr(3CURSES)

wgetnwstr curs_getwstr(3CURSES)

wgetstr curs_getstr(3CURSES)

wgetwch curs_getwch(3CURSES)

wgetwstr curs_getwstr(3CURSES)

whline curs_border(3CURSES)

winch curs_inch(3CURSES)

winchnstr curs_inchstr(3CURSES)

winchstr curs_inchstr(3CURSES)

winnstr curs_instr(3CURSES)

winnwstr curs_inwstr(3CURSES)

winsch curs_insch(3CURSES)

winsdelln curs_deleteln(3CURSES)

winsertln curs_deleteln(3CURSES)

winsnstr curs_insstr(3CURSES)

winsnwstr curs_inswstr(3CURSES)

winsstr curs_insstr(3CURSES)

winstr curs_instr(3CURSES)

winswch curs_inswch(3CURSES)

winswstr curs_inswstr(3CURSES)

winwch curs_inwch(3CURSES)

winwchnstr curs_inwchstr(3CURSES)

winwchstr curs_inwchstr(3CURSES)

winwstr curs_inwstr(3CURSES)

wmove curs_move(3CURSES)

curses(3CURSES)

Curses Library Functions 95

wmovenextch curs_alecompat(3CURSES)

wmoveprevch curs_alecompat(3CURSES)

wnoutrefresh curs_refresh(3CURSES)

wprintw curs_printw(3CURSES)

wredrawln curs_refresh(3CURSES)

wrefresh curs_refresh(3CURSES)

wscanw curs_scanw(3CURSES)

wscrl curs_scroll(3CURSES)

wsetscrreg curs_outopts(3CURSES)

wstandend curs_attr(3CURSES)

wstandout curs_attr(3CURSES)

wsyncdown curs_window(3CURSES)

wsyncup curs_window(3CURSES)

wtimeout curs_inopts(3CURSES)

wtouchln curs_touch(3CURSES)

wvline curs_border(3CURSES)

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion, unless otherwise noted in the routine
descriptions.

All macros return the value of the w version, except setscrreg(), wsetscrreg(),
getyx(), getbegyx(), and getmaxyx(). The return values of setscrreg(),
wsetscrreg(), getyx(), getbegyx(), and getmaxyx() are undefined (that is,
these should not be used as the right-hand side of assignment statements).

Routines that return pointers return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3XCURSES), libcurses(3LIB), libcurses(3XCURSES), terminfo(4),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

curses(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

96 man pages section 3: Curses Library Functions • Last Revised 23 Oct 2001

curses – introduction and overview of X/Open Curses

The Curses screen management package conforms fully with Issue 4, Version 2 of the
X/Open Curses specification. It provides a set of internationalized functions and
macros for creating and modifying input and output to a terminal screen. This
includes functions for creating windows, highlighting text, writing to the screen,
reading from user input, and moving the cursor.

X/Open Curses is a terminal-independent package, providing a common user
interface to a variety of terminal types. Its portability is facilitated by the Terminfo
database which contains a compiled definition of each terminal type. By referring to
the database information X/Open Curses gains access to low-level details about
individual terminals.

X/Open Curses tailors its activities to the terminal type specified by the TERM
environment variable. The TERM environment variable may be set in the Korn Shell
(see ksh(1)) by typing:

export TERM=terminal_name
To set environment variables using other command line interfaces or shells, see the
environ(5) manual page.

Three additional environment variables are useful, and can be set in the Korn Shell:

1. If you have an alternate Terminfo database containing terminal types that are not
available in the system default database /usr/share/lib/terminfo, you can
specify the TERMINFO environment variable to point to this alternate database:

export TERMINFO=path
This path specifies the location of the alternate compiled Terminfo database whose
structure consists of directory names 0 to 9 and a to z (which represent the first
letter of the compiled terminal definition file name). The alternate database
specified by TERMINFO is examined before the system default database. If the
terminal type specified by TERM cannot be found in either database, the default
terminal type dumb is assumed.

2. To specify a window width smaller than your screen width (for example, in
situations where your communications line is slow), set the COLUMNS environment
variable to the number of vertical columns you want between the left and right
margins:

export COLUMNS=number
The number of columns may be set to a number smaller than the screen size;
however, if set larger than the screen or window width, the results are undefined.
The value set using this environment variable takes precedence over the value
normally used for the terminal.

3. To specify a window height smaller than your current screen height (for example,
in situations where your communications line is slow), override the LINES
environment variable by setting it to a smaller number of horizontal lines:

export LINES=number
The number of lines may be set to a number smaller than the screen height;
however, if set larger than the screen or window height, the results are undefined.

curses(3XCURSES)

NAME

DESCRIPTION

Curses Library Functions 97

The value set using this environment variable takes precedence over the value
normally used for the terminal.

X/Open Curses defines the following data types:

attr_t An integral type that holds an OR-ed set of attributes. The
attributes acceptable are those which begin with the WA_ prefix .

bool Boolean data type.

cchar_t A type that refers to a string consisting of a spacing wide character,
up to 5 non-spacing wide characters, and zero or more attributes
of any type. See Attributes, Color Pairs, and Renditions. A null
cchar_t object terminates arrays of cchar_t objects.

chtype An integral type whose values are formed by OR-ing an
"unsigned char" with a color pair. and with zero or more
attributes. The attributes acceptable are those which begin with the
A_ prefix and COLOR_PAIR(3XCURSES)

SCREEN An opaque data type associated with a terminal’s display screen.

TERMINAL An opaque data type associated with a terminal. It contains
information about the terminal’s capabilities (as defined by
terminfo), the terminal modes, and current state of input/output
operations.

wchar_t An integral data type whose values represent wide characters.

WINDOW An opaque data type associated with a window.

The X/Open Curses manual pages refer at various points to screens, windows (also
subwindows, derived windows, and pads), and terminals. The following list defines
each of these terms.

Screen A screen is a terminal’s physical output device. The SCREEN data
type is associated with a terminal.

Window Window objects are two-dimensional arrays of characters and their
renditions. X/Open Curses provides stdscr, a default window
which is the size of of the terminal screen. You can use the
newwin(3XCURSES) function to create others.

To refer to a window, use a variable declared as WINDOW *. X/Open Curses includes
both functions that modify stdscr, and more general versions that let you specify a
window.

There are three sub-types of windows:

curses(3XCURSES)

Data Types

Screens, Windows,
and Terminals

98 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Subwindow A window which has been created within another
window (the parent window) and whose position has
been specified with absolute screen coordinates. The
derwin(3XCURSES) and subwin(3XCURSES)
functions can be used to create subwindows.

Derived Window A subwindow whose position is defined relative to the
parent window’s coordinates rather than in absolute
terms.

Pad A special type of window that can be larger than the
screen. For more information, see the
newpad(3XCURSES) man page.

Terminal A terminal is the input and output device which
character-based applications use to interact with the
user. The TERMINAL data type is associated with such a
device.

A character’s rendition consists of its attributes (such as underlining or reverse video)
and its color pair (the foreground and background colors). When using
waddstr(3XCURSES), waddchstr(3XCURSES), wprintw(3XCURSES),
winsch(3XCURSES), and so on, the window’s rendition is combined with that
character’s renditions. The window rendition is the attributes and color set using the
attroff(3XCURSES) and attr_off(3XCURSES) sets of functions. The window’s
background character and rendition are set with the bkgdset(3XCURSES) and
bkgrndset(3XCURSES) sets of functions.

When spaces are written to the screen, the background character and window
rendition replace the space. For example, if the background rendition and character is
A_UNDERLINE|’*’, text written to the window appears underlined and the spaces
appear as underlined asterisks.

Each character written retains the rendition that it has obtained. This allows the
character to be copied "as is" to or from a window with the addchstr(3XCURSES) or
inch(3XCURSES) functions.

A_ Constant Values for Attributes

You can specify Attributes, Color Pairs, and Renditions attributes using the constants
listed in the tables below. The following constants modify objects of type chtype:

Constant Description

A_ALTCHARSET Alternate character set

A_ATTRIBUTES Bit-mask to extract attributes

A_BLINK Blinking

curses(3XCURSES)

Attributes, Color
Pairs, and

Renditions

Curses Library Functions 99

Constant Description

A_BOLD Bold

A_CHARTEXT Bit-mask to extract a character

A_COLOR Bit-mask to extract color-pair information

A_DIM Half-bright

A_INVIS Invisible

A_PROTECT Protected

A_REVERSE Reverse video

A_STANDOUT Highlights specific to terminal

A_UNDERLINE Underline

WA_ Constant Values for Attributes

The following constants modify objects of type attr_t:

Constant Description

WA_ALTCHARSET Alternate character set

WA_ATTRIBUTES Attribute mask

WA_BLINK Blinking

WA_BOLD Bold

WA_DIM Half-bright

WA_HORIZONTAL Horizontal highlight

WA_INVIS Invisible

WA_LEFT Left highlist

WA_LOW Low highlist

WA_PROTECT Protected

WA_REVERSE Reverse video

WA_RIGHT Right highlight

WA_STANDOUT Highlights specific to terminal

WA_TOP Top highlight

WA_UNDERLINE Underline

WA_VERTICAL Vertical highlight

curses(3XCURSES)

100 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Color Macros

Colors always appear in pairs; the foreground color of the character itself and the
background color of the field on which it is displayed. The following color macros are
defined:

Macro Description

COLOR_BLACK Black

COLOR_BLUE Blue

COLOR_GREEN Green

COLOR_CYAN Cyan

COLOR_RED Red

COLOR_MAGENTA Magenta

COLOR_YELLOW Yellow

COLOR_WHITE White

Together, a character’s attributes and its color pair form the character’s rendition. A
character’s rendition moves with the character during any scrolling or insert/delete
operations. If your terminal lacks support for the specified rendition, X/Open Curses
may substitute a different rendition.

The COLOR_PAIR(3XCURSES) function modifies a chtype object. The
PAIR_NUMBER(3XCURSES) function extracts the color pair from a chtype object.

Functions for Modifying a Window’s Color

The following functions modify a window’s color:

Function Description

attr_set(), wattr_set() Change the window’s rendition.

color_set(), wcolor_set() Set the window’s color

When the wcwidth(3C) function returns a width of zero for a character, that character
is called a non-spacing character. Non-spacing characters can be written to a window.
Each non-spacing character is associated with a spacing character (that is, one which
does not have a width of zero) and modifies that character. You cannot address a
non-spacing character directly. Whenever you perform an X/Open Curses operation
on the associated character, you are implicitly addressing the non-spacing character.

curses(3XCURSES)

Non-Spacing
Characters

Curses Library Functions 101

Non-spacing characters do not have a rendition. For functions that use wide characters
and a rendition, X/Open Curses ignores any rendition specified for non-spacing
characters. Multi-column characters have one rendition that applies to all columns
spanned.

The cchar_t date type represents a complex character. A complex character may
contain a spacing character, its associated non-spacing characters, and its rendition.
This implementation of complex characters supports up to 5 non-spacing characters
for each spacing character.

When a cchar_t object representing a non-spacing complex character is written to
the screen, its rendition is not used, but rather it becomes associated with the rendition
of the existing character at that location. The setcchar(3XCURSES) function
initializes an object of type cchar_t. The getcchar(3XCURSES) function extracts the
contents of a cchar_t object.

In adding internationalization support to X/Open Curses, every attempt was made to
minimize the number of changes to the historical CURSES package. This enables
programs written to use the historical implementation of CURSES to use the
internationalized version with little or no modification. The following rules apply to
the internationalized X/Open Curses package:

� The cursor can be placed anywhere in the window. Window and screen origins are
(0,0).

� A multi-column character cannot be displayed in the last column, because the
character would appear truncated. Instead, the background character is displayed
in the last column and the multi-column character appears at the beginning of the
next line. This is called wrapping.

If the original line is the last line in the scroll region and scrolling is enabled,
X/Open Curses moves the contents of each line in the region to the previous line.
The first line of the region is lost. The last line of the scrolling region contains any
wrapped characters. The remainder of that line is filled with the background
character. If scrolling is disabled, X/Open Curses truncates any character that
would extend past the last column of the screen.

� Overwrites operate on screen columns. If displaying a single-column or
multi-column character results in overwriting only a portion of a multi-column
character or characters, background characters are displayed in place of the
non-overwritten portions.

� Insertions and deletions operate on whole characters. The cursor is moved to the
first column of the character prior to performing the operation.

When windows overlap, it may be necessary to overwrite only part of a multi-column
character. As mentioned earlier, the non-overwritten portions are replaced with the
background character. This results in issues concerning the overwrite(3XCURSES),
overlay(3XCURSES), copywin(3XCURSES), wnoutrefresh(3XCURSES), and
wrefresh(3XCURSES) functions.

Some functions assign special meanings to certain special characters:

curses(3XCURSES)

Complex
Characters

Display
Operations

Overlapping
Windows

Special Characters

102 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Backspace Moves the cursor one column towards the beginning of
the line. If the cursor was already at the beginning of
the line, it remains there. All subsequent characters are
added or inserted at this point.

Carriage Return Moves the cursor to the beginning of the current line. If
the cursor was already at the beginning of the line, it
remains there. All subsequent characters are added or
inserted at this point.

Newline When adding characters, X/Open Curses fills the
remainder of the line with the background character
(effectively truncating the newline) and scrolls the
window as described earlier. All subsequent characters
are inserted at the start of the new line.

When inserting characters, X/Open Curses fills the
remainder of the line with the background character
(effectively truncating the line), moves the cursor to the
beginning of a new line, and scrolls the window as
described earlier. All subsequent characters are placed
at the start of the new line.

Tab moves subsequent characters to next horizontal tab
strop. Default tab stops are set at 0, 8, 16, and so on.

When adding or inserting characters, X/Open Curses
inserts or adds the background character into each
column until the next tab stop is reached. If there are
no remaining tab stops on the current line, wrapping
and scrolling occur as described earlier.

Control Characters When X/Open Curses functions perform special
character processing, they convert control characters to
the ^X notation, where X is a single-column character
(uppercase, if it is a letter) and writes that notation to
the window. Functions that retrieve text from the
window will retrieve the converted notation not the
original.

X/Open Curses displays non-printable bytes, that have their high bit set, using the
M-X meta notation where X is the non-printable byte with its high bit turned off.

There are four input modes possible with X/Open Curses that affect the behavior of
input functions like getch(3XCURSES) and getnstr(3XCURSES).

Line Canonical (Cooked) In line input mode, the terminal driver handles the
input of line units as well as SIGERASE and SIGKILL
character processing. See termio(7I) for more
information.

curses(3XCURSES)

Input Processing

Curses Library Functions 103

In this mode, the getch() and getnstr() functions
will not return until a complete line has been read by
the terminal driver, at which point only the requested
number of bytes/characters are returned. The rest of
the line unit remains unread until subsequent call to
the getch() or getnstr() functions.

The functions nocbreak(3XCURSES) and
noraw(3XCURSES) are used to enter this mode. These
functions are described on the cbreak(3XCURSES)
man page which also details which termios flags are
enabled.

Of the modes available, this one gives applications the
least amount of control over input. However, it is the
only input mode possible on a block mode terminal.

cbreak Mode Byte/character input provides a finer degree of control.
The terminal driver passes each byte read to the
application without interpreting erase and kill
characters. It is the application’s responsibility to
handle line editing. It is unknown whether the signal
characters (SIGINTR, SIGQUIT, SIGSUSP) and flow
control characters (SIGSTART, SIGSTOP) are enabled.
To ensure that they are, call the noraw() function first,
then call the cbreak() function.

halfdelay Mode This is the same as the cbreak() mode with a
timeout. The terminal driver waits for a byte to be
received or for a timer to expire, in which case the
getch() function either returns a byte or ERR
respectively. This mode overrides timeouts set for an
individual window with the wtimeout() function.

raw Mode This mode provides byte/character input with the
most control for an application. It is similar to
cbreak() mode, but also disables signal character
processing (SIGINTR, SIGSUSP, SIGQUIT) and flow
control processing (SIGSTART, SIGSTOP) so that the
application can process them as it wants.

These modes affect all X/Open Curses input. The default input mode is inherited from
the parent process when the application starts up.

A timeout similar to halfdelay(3XCURSES) can be applied to individual windows
(see timeout(3XCURSES)). The nodelay(3XCURSES) function is equivalent to
setting wtimeout(3XCURSES) for a window with a zero timeout (non-blocking) or
infinite delay (blocking).

curses(3XCURSES)

104 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

To handle function keys, keypad(3XCURSES) must be enabled. When it is enabled,
the getch() function returns a KEY_ constant for a uniquely encoded key defined for
that terminal. When keypad() is disabled, the getch() function returns the
individual bytes composing the function key (see getch(3XCURSES) and
wget_wch(3XCURSES)). By default, keypad() is disabled.

When processing function keys, once the first byte is recognized, a timer is set for each
subsequent byte in the sequence. If any byte in the function key sequence is not
received before the timer expires, the bytes already received are pushed into a buffer
and the original first byte is returned. Subsequent X/Open Curses input would take
bytes from the buffer until exhausted, after which new input from the terminal will be
requested. Enabling and disabling of the function key interbyte timer is handled by
the notimeout(3XCURSES) function. By default, notimeout() is disabled (that is,
the timer is used).

X/Open Curses always disables the terminal driver’s echo processing. The
echo(3XCURSES) and noecho(3XCURSES) functions control X/Open Curses
software echoing. When software echoing is enabled, X/Open Curses input functions
echo printable characters, control keys, and meta keys in the input window at the last
cursor position. Functions keys are never echoed. When software echoing is disabled,
it is the application’s responsibility to handle echoing.

EXAMPLE 1 Copying Single-Column Characters Over Single-Column Characters

In the upcoming examples, some characters have special meanings:

� {, [, and (represent the left halves of multi-column characters. },], and)
represent the corresponding right halves of the same multi-column characters.

� Alphanumeric characters and periods (.) represent single-column characters.

� The number sign (#) represents the background character.

copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
abcdefbcd..

ghijklhij..

There are no special problems with this situation.

EXAMPLE 2 Copying Multi-column Characters Over Single-Column Characters

copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
a[]def[]d..
gh()klh()..

There are no special problems with this situation.

curses(3XCURSES)

EXAMPLES

Curses Library Functions 105

EXAMPLE 3 Copying Single-Column Characters From Source Overlaps Multi-column
Characters In Target

copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
abcdef [].... #bcd..
ghijk tol ...(). .hij#.

Overwriting multi-column characters in t has resulted in the # background characters
being required to erase the remaining halves of the target’s multi-column characters.

EXAMPLE 4 Copy Incomplete Multi-column Characters From Source To Target.

copywin(s, t, 0, 1, 0, 1, 1, 3, 0)

s t → t
[]cdef 123456 []cd56
ghi()l 789012 7hi()2

The] and (halves of the multi-column characters have been copied from the source
and expanded in the target outside of the specified target region.

Consider a pop-up dialog box that contains single-column characters and a base
window that contains multi-column characters and you do the following:

save=dupwin(dialog); /* create backing store */
overwrite(cursor, save); /* save region to be overlayed */
wrefresh(dialog); /* display dialog */
wrefresh(save); /* restore screen image */
delwin(save); /* release backing store */

You can use code similar to this to implement generic popup() and popdown()
routines in a variety of CURSES implementations (including BSD UNIX, and UNIX
System V). In the simple case where the base window contains single-column
characters only, it would correctly restore the image that appeared on the screen before
the dialog box was displayed.

However, with multi-column characters, the overwrite() function might save a
region with incomplete multi-column characters. The wrefresh(dialog) statement
results in the behavior described in example 3 above. The behavior described in this
example (that is, example 4) allows the wrefresh(save) statement to restore the
window correctly.

EXAMPLE 5 Copying An Incomplete Multi-column Character To Region Next To Screen
Margin (Not A Window Edge)

Two cases of copying an incomplete multi-column character to a region next to a
screen margin follow:

copywin(s, t, 0, 1, 0, 0, 1, 2, 0)

s t → t
[]cdef 123456 #cd456

curses(3XCURSES)

106 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

EXAMPLE 5 Copying An Incomplete Multi-column Character To Region Next To Screen
Margin (Not A Window Edge) (Continued)

ghijkl 789012 hij012

The background character (#) replaces the] character that would have been copied
from the source, because it is not possible to expand the multi-column character to its
complete form.

copywin(s, t, 0, 1, 0, 3, 1, 5, 0)

s t → t
abcdef 123456 123bcd
ghi()l 789012 789hi#

This second example is the same as the first, but with the right margin.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

ksh(1), COLOR_PAIR(3XCURSES), PAIR_NUMBER(3XCURSES),
addchstr(3XCURSES), attr_off(3XCURSES), attroff(3XCURSES),
bkgdset(3XCURSES), bkgrndset(3XCURSES), cbreak(3XCURSES),
copywin(3XCURSES), derwin(3XCURSES), echo(3XCURSES),
getcchar(3XCURSES), getch(3XCURSES), getnstr(3XCURSES),
halfdelay(3XCURSES), inch(3XCURSES), keypad(3XCURSES),
libcurses(3XCURSES), newpad(3XCURSES), newwin(3XCURSES),
nocbreak(3XCURSES), nodelay(3XCURSES), noecho(3XCURSES),
noraw(3XCURSES), notimeout(3XCURSES), overlay(3XCURSES),
overwrite(3XCURSES), setcchar(3XCURSES), subwin(3XCURSES),
timeout(3XCURSES), waddchstr(3XCURSES), waddstr(3XCURSES),
wcwidth(3C), wget_wch(3XCURSES), winsch(3XCURSES),
wnoutrefresh(3XCURSES), wprintw(3XCURSES), wrefresh(3XCURSES),
wtimeout(3XCURSES), attributes(5), environ(5), standards(5), termio(7I)

curses(3XCURSES)

ATTRIBUTES

SEE ALSO

Curses Library Functions 107

curs_getch, getch, wgetch, mvgetch, mvwgetch, ungetch – get (or push back)
characters from curses terminal keyboard

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int getch(void);

int wgetch(WINDOW *win);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int ch);

With the getch(), wgetch(), mvgetch(), and mvwgetch() routines a character is
read from the terminal associated with the window. In no-delay mode, if no input is
waiting, the value ERR is returned. In delay mode, the program waits until the system
passes text through to the program. Depending on the setting of cbreak(), this is
after one character (cbreak mode), or after the first newline (nocbreak mode). In
half-delay mode, the program waits until a character is typed or the specified timeout
has been reached. Unless noecho() has been set, the character will also be echoed
into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh(), wrefresh() will be called before another character is read.

If keypad() is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
<curses.h> with integers beginning with 0401, whose names begin with KEY_. If a
character that could be the beginning of a function key (such as escape) is received,
curses sets a timer. If the remainder of the sequence does not come in within the
designated time, the character is passed through; otherwise, the function key value is
returned. For this reason, many terminals experience a delay between the time a user
presses the escape key and the escape is returned to the program. Since tokens
returned by these routines are outside the ASCII range, they are not printable.

The ungetch() routine places ch back onto the input queue to be returned by the
next call to wgetch().

The following function keys, defined in <curses.h>, might be returned by getch()
if keypad() has been enabled. Note that not all of these may be supported on a
particular terminal if the terminal does not transmit a unique code when the key is
pressed or if the definition for the key is not present in the terminfo database.

Name Key name

KEY_BREAK Break key

KEY_DOWN The four arrow keys . . .

curs_getch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Function Keys

108 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

Name Key name

KEY_UP

KEY_LEFT

KEY_RIGHT

KEY_HOME Home key (upward+left arrow)

KEY_BACKSPACE Backspace

KEY_F0 Function keys; space for 64 keys is reserved.

KEY_F(n) For 0 ≤ n ≤ 63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send

KEY_SRESET Soft (partial) reset

KEY_RESET Reset or hard reset

KEY_PRINT Print or copy

KEY_LL Home down or bottom (lower left). Keypad is
arranged like this: (Row 1) A1 up A3 (Row 2)
left B2 right (Row 3) C1 down C3

KEY_A1 Upper left of keypad

curs_getch(3CURSES)

Curses Library Functions 109

Name Key name

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab key

KEY_BEG Beg(inning) key

KEY_CANCEL Cancel key

KEY_CLOSE Close key

KEY_COMMAND Cmd (command) key

KEY_COPY Copy key

KEY_CREATE Create key

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key

KEY_MESSAGE Message key

KEY_MOVE Move key

KEY_NEXT Next object key

KEY_OPEN Open key

KEY_OPTIONS Options key

KEY_PREVIOUS Previous object key

KEY_REDO Redo key

KEY_REFERENCE Reference key

KEY_REFRESH Refresh key

KEY_REPLACE Replace key

KEY_RESTART Restart key

KEY_RESUME Resume key

KEY_SAVE Save key

curs_getch(3CURSES)

110 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

Name Key name

KEY_SBEG Shifted beginning key

KEY_SCANCEL Shifted cancel key

KEY_SCOMMAND Shifted command key

KEY_SCOPY Shifted copy key

KEY_SCREATE Shifted create key

KEY_SDC Shifted delete char key

KEY_SDL Shifted delete line key

KEY_SELECT Select key

KEY_SEND Shifted end key

KEY_SEOL Shifted clear line key

KEY_SEXIT Shifted exit key

KEY_SFIND Shifted find key

KEY_SHELP Shifted help key

KEY_SHOME Shifted home key

KEY_SIC Shifted input key

KEY_SLEFT Shifted left arrow key

KEY_SMESSAGE Shifted message key

KEY_SMOVE Shifted move key

KEY_SNEXT Shifted next key

KEY_SOPTIONS Shifted options key

KEY_SPREVIOUS Shifted prev key

KEY_SPRINT Shifted print key

KEY_SREDO Shifted redo key

KEY_SREPLACE Shifted replace key

KEY_SRIGHT Shifted right arrow

KEY_SRSUME Shifted resume key

KEY_SSAVE Shifted save key

KEY_SSUSPEND Shifted suspend key

KEY_SUNDO Shifted undo key

curs_getch(3CURSES)

Curses Library Functions 111

Name Key name

KEY_SUSPEND Suspend key

KEY_UNDO Undo key

All routines return the integer ERR upon failure. The ungetch() routine returns an
integer value other than ERR upon successful completion. The other routines return
the next input character or function key code upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_inopts(3CURSES), curs_move(3CURSES), curs_refresh(3CURSES),
curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Use of the escape key for a single character function is discouraged.

When using getch(), wgetch(), mvgetch(), or mvwgetch(), nocbreak mode
(nocbreak()) and echo mode (echo()) should not be used at the same time.
Depending on the state of the tty driver when each character is typed, the program
may produce undesirable results.

Note that getch(), mvgetch(), and mvwgetch() may be macros.

curs_getch(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

112 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_getstr, getstr, wgetstr, mvgetstr, mvwgetstr, wgetnstr – get character strings from
curses terminal keyboard

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int getstr(char *str);

int wgetstr(WINDOW *win, char *str);

int mvgetstr(int y, int x, char *str);

int mvwgetstr(WINDOW *win, int y, int x, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

The effect of getstr() is as though a series of calls to getch() were made, until a
newline or carriage return is received. The resulting value is placed in the area pointed
to by the character pointer str. wgetnstr() reads at most n characters, thus
preventing a possible overflow of the input buffer. The user’s erase and kill characters
are interpreted, as well as any special keys (such as function keys, HOME key, and
CLEAR key.)

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_getch(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that getstr(), mvgetstr(), and mvwgetstr() may be macros.

curs_getstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 113

curs_getwch, getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch – get (or push
back) wchar_t characters from curses terminal keyboard

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

int getwch(void);

int wgetwch(WINDOW *win);

int mvgetwch(int y, int x);

int mvwgetwch(WINDOW *win, int y, int x);

int ungetwch(int wch);

The getwch(), wgetwch(), mvgetwch(), and mvwgetwch() routines read an EUC
character from the terminal associated with the window, transform it into a wchar_t
character, and return a wchar_t character. In no-delay mode, if no input is waiting,
the value ERR is returned. In delay mode, the program waits until the system passes
text through to the program. Depending on the setting of cbreak, this is after one
character (cbreak mode), or after the first newline (nocbreak mode). In
half-delay mode, the program waits until a character is typed or the specified
timeout has been reached. Unless noecho has been set, the character will also be
echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh(3CURSES), wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
<curses.h> with integers beginning with 0401, whose names begin with KEY_. If a
character that could be the beginning of a function key (such as escape) is received,
curses(3CURSES) sets a timer. If the remainder of the sequence does not come in
within the designated time, the character is passed through; otherwise, the function
key value is returned. For this reason, many terminals experience a delay between the
time a user presses the escape key and the escape is returned to the program.

The ungetwch() routine places wch back onto the input queue to be returned by the
next call to wgetwch().

The following function keys, defined in <curses.h>, might be returned by
getwch() if keypad has been enabled. Note that not all of these may be supported
on a particular terminal if the terminal does not transmit a unique code when the key
is pressed or if the definition for the key is not present in the terminfo(4) database.

Name Key name

KEY_BREAK Break key

KEY_DOWN The four arrow keys . . .

curs_getwch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Function Keys

114 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

Name Key name

KEY_UP

KEY_LEFT

KEY_RIGHT

KEY_HOME Home key (upward+left arrow)

KEY_BACKSPACE Backspace

KEY_F0 Function keys; space for 64 keys is reserved.

KEY_F(n) For 0 ≤ n ≤ 63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send

KEY_SRESET Soft (partial) reset

KEY_RESET Reset or hard reset

KEY_PRINT Print or copy

KEY_LL Home down or bottom (lower left). Keypad is
arranged like this: A1 up A3 left B2 right C1
down C3

KEY_A1 Upper left of keypad

curs_getwch(3CURSES)

Curses Library Functions 115

Name Key name

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab key

KEY_BEG Beg(inning) key

KEY_CANCEL Cancel key

KEY_CLOSE Close key

KEY_COMMAND Cmd (command) key

KEY_COPY Copy key

KEY_CREATE Create key

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key

KEY_MESSAGE Message key

KEY_MOVE Move key

KEY_NEXT Next object key

KEY_OPEN Open key

KEY_OPTIONS Options key

KEY_PREVIOUS Previous object key

KEY_REDO Redo key

KEY_REFERENCE Reference key

KEY_REFRESH Refresh key

KEY_REPLACE Replace key

KEY_RESTART Restart key

KEY_RESUME Resume key

KEY_SAVE Save key

curs_getwch(3CURSES)

116 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

Name Key name

KEY_SBEG Shifted beginning key

KEY_SCANCEL Shifted cancel key

KEY_SCOMMAND Shifted command key

KEY_SCOPY Shifted copy key

KEY_SCREATE Shifted create key

KEY_SDC Shifted delete char key

KEY_SDL Shifted delete line key

KEY_SELECT Select key

KEY_SEND Shifted end key

KEY_SEOL Shifted clear line key

KEY_SEXIT Shifted exit key

KEY_SFIND Shifted find key

KEY_SHELP Shifted help key

KEY_SHOME Shifted home key

KEY_SIC Shifted input key

KEY_SLEFT Shifted left arrow key

KEY_SMESSAGE Shifted message key

KEY_SMOVE Shifted move key

KEY_SNEXT Shifted next key

KEY_SOPTIONS Shifted options key

KEY_SPREVIOUS Shifted prev key

KEY_SPRINT Shifted print key

KEY_SREDO Shifted redo key

KEY_SREPLACE Shifted replace key

KEY_SRIGHT Shifted right arrow

KEY_SRSUME Shifted resume key

KEY_SSAVE Shifted save key

KEY_SSUSPEND Shifted suspend key

KEY_SUNDO Shifted undo key

curs_getwch(3CURSES)

Curses Library Functions 117

Name Key name

KEY_SUSPEND Suspend key

KEY_UNDO Undo key

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), curs_inopts(3CURSES), curs_move(3CURSES),
wrefresh(3CURSES), terminfo(4), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Use of the escape key by a programmer for a single character function is discouraged.

When using getwch(), wgetwch(), mvgetwch(), or mvwgetwch(), nocbreak
mode and echo mode should not be used at the same time. Depending on the state of
the tty driver when each character is typed, the program may produce undesirable
results.

Note that getwch(), mvgetwch(), and mvwgetwch() may be macros.

curs_getwch(3CURSES)

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

118 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_getwstr, getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr,
mvwgetwstr, mvwgetnwstr – get wchar_t character strings from curses terminal
keyboard

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

int getwstr(wchar_t *wstr);

int getnwstr(wchar_t *wstr, int n);

int wgetwstr(WINDOW *win, wchar_t *wstr);

int wgetnwstr(WINDOW *win, wchar_t *wstr, int n);

int mvgetwstr(int y, int x, wchar_t *wstr);

int mvgetnwstr(int y, int x, wchar_t *wstr, int n);

int mvwgetwstr(WINDOW *win, int y, int x, wchar_t *wstr);

int mvwgetnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

The effect of getwstr() is as though a series of calls to getwch(3CURSES) were
made, until a newline and carriage return is received. The resulting value is placed in
the area pointed to by the wchar_t pointer wstr. getnwstr() reads at most n
wchar_t characters, thus preventing a possible overflow of the input buffer. The
user’s erase and kill characters are interpreted, as well as any special keys (such as
function keys, HOME key, CLEAR key, etc.).

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), getwch(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h>, and <widec.h>.

Note that all routines except wgetnwstr() may be macros.

curs_getwstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 119

curs_getyx, getyx, getparyx, getbegyx, getmaxyx – get curses cursor and window
coordinates

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

void getyx(WINDOW *win, int y, int x);

void getparyx(WINDOW *win, int y, int x);

void getbegyx(WINDOW *win, int y, int x);

void getmaxyx(WINDOW *win, int y, int x);

With the getyx() macro, the cursor position of the window is placed in the two
integer variables y and x.

With the getparyx() macro, if win is a subwindow, the beginning coordinates of the
subwindow relative to the parent window are placed into two integer variables, y and
x. Otherwise, −1 is placed into y and x.

Like getyx() , the getbegyx() and getmaxyx() macros store the current
beginning coordinates and size of the specified window.

The return values of these macros are undefined (that is, they should not be used as
the right-hand side of assignment statements).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all of these interfaces are macros and that ‘‘&’’ is not necessary before the
variables y and x.

curs_getyx(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

120 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_inch, inch, winch, mvinch, mvwinch – get a character and its attributes from a
curses window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

chtype inch(void);

chtype winch(WINDOW *win);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

With these routines, the character, of type chtype, at the current position in the
named window is returned. If any attributes are set for that position, their values are
OR-ed into the value returned. Constants defined in <curses.h> can be used with
the logical AND (&) operator to extract the character or attributes alone.

The following bit-masks can be AND-ed with characters returned by winch().

A_CHARTEXT Bit-mask to extract character

A_ATTRIBUTES Bit-mask to extract attributes

A_COLOR Bit-mask to extract color-pair field information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all of these routines may be macros.

curs_inch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Attributes

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 121

curs_inchstr, inchstr, inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr,
mvwinchstr, mvwinchnstr – get a string of characters (and attributes) from a curses
window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int inchstr(chtype *chstr);

int inchnstr(chtype *chstr, int n);

int winchstr(WINDOW *win, chtype *chstr);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

With these routines, a string of type chtype, starting at the current cursor position in
the named window and ending at the right margin of the window, is returned. The
four functions with n as the last argument, return the string at most n characters long.
Constants defined in <curses.h> can be used with the & (logical AND) operator to
extract the character or the attribute alone from any position in the chstr (see
curs_inch(3CURSES)).

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_inch(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all routines except winchnstr() may be macros.

curs_inchstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

122 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_initscr, initscr, newterm, endwin, isendwin, set_term, delscreen – curses screen
initialization and manipulation routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

WINDOW *initscr(void);

int endwin(void);

int isendwin(void);

SCREEN *newterm(char *type, FILE *outfd, FILE *infd);

SCREEN *set_term(SCREEN *new);

void delscreen(SCREEN * sp);

initscr() is almost always the first routine that should be called (the exceptions are
slk_init(), filter(), ripoffline(), use_env() and, for multiple-terminal
applications, newterm().) This determines the terminal type and initializes all
curses data structures. initscr() also causes the first call to refresh() to clear
the screen. If errors occur, initscr() writes an appropriate error message to
standard error and exits; otherwise, a pointer is returned to stdscr(). If the program
needs an indication of error conditions, newterm() should be used instead of
initscr(); initscr() should only be called once per application.

A program that outputs to more than one terminal should use the newterm() routine
for each terminal instead of initscr(). A program that needs an indication of error
conditions, so it can continue to run in a line-oriented mode if the terminal cannot
support a screen-oriented program, would also use this routine. The routine
newterm() should be called once for each terminal. It returns a variable of type
SCREEN * which should be saved as a reference to that terminal. The arguments are
the type of the terminal to be used in place of $TERM, a file pointer for output to the
terminal, and another file pointer for input from the terminal (if type is NULL, $TERM
will be used). The program must also call endwin() for each terminal being used
before exiting from curses. If newterm() is called more than once for the same
terminal, the first terminal referred to must be the last one for which endwin() is
called.

A program should always call endwin() before exiting or escaping from curses
mode temporarily. This routine restores tty modes, moves the cursor to the lower
left-hand corner of the screen and resets the terminal into the proper non-visual mode.
Calling refresh() or doupdate() after a temporary escape causes the program to
resume visual mode.

The isendwin() routine returns TRUE if endwin() has been called without any
subsequent calls to wrefresh(), and FALSE otherwise.

The set_term() routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. The previous terminal is returned by
the routine. This is the only routine which manipulates SCREEN pointers; all other
routines affect only the current terminal.

curs_initscr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 123

The delscreen() routine frees storage associated with the SCREEN data structure.
The endwin() routine does not do this, so delscreen() should be called after
endwin() if a particular SCREEN is no longer needed.

endwin() returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers always return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_kernel(3CURSES), curs_refresh(3CURSES), curs_slk(3CURSES),
curs_util(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that initscr() and newterm() may be macros.

curs_initscr(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

124 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_inopts, cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta,
nodelay, notimeout, raw, noraw, noqiflush, qiflush, timeout, wtimeout, typeahead –
curses terminal input option control routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int cbreak(void);

int nocbreak(void);

int echo(void);

int noecho(void);

int halfdelay(int tenths);

int intrflush(WINDOW *win, bool bf);

int keypad(WINDOW *win, bool bf);

int meta(WINDOW *win, bool bf);

int nodelay(WINDOW *win, bool bf);

int notimeout(WINDOW *win, bool bf);

int raw(void);

int noraw(void);

void noqiflush(void);

void qiflush(void);

void timeout(int delay);

void wtimeout(WINDOW *win, int delay);

int typeahead(int fildes);

The cbreak() and nocbreak() routines put the terminal into and out of cbreak()
mode, respectively. In this mode, characters typed by the user are immediately
available to the program, and erase/kill character-processing is not performed. When
out of this mode, the tty driver buffers the typed characters until a newline or carriage
return is typed. Interrupt and flow control characters are unaffected by this mode.
Initially the terminal may or may not be in cbreak() mode, as the mode is inherited;
therefore, a program should call cbreak() or nocbreak() explicitly. Most
interactive programs using curses set the cbreak() mode.

Note that cbreak() overrides raw(). (See curs_getch(3CURSES) for a discussion
of how these routines interact with echo() and noecho().)

curs_inopts(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 125

The echo() and noecho() routines control whether characters typed by the user are
echoed by getch() as they are typed. Echoing by the tty driver is always disabled,
but initially getch() is in echo mode, so characters typed are echoed. Authors of
most interactive programs prefer to do their own echoing in a controlled area of the
screen, or not to echo at all, so they disable echoing by calling noecho(). (See
curs_getch(3CURSES) for a discussion of how these routines interact with
cbreak() and nocbreak().)

The halfdelay() routine is used for half-delay mode, which is similar to cbreak()
mode in that characters typed by the user are immediately available to the program.
However, after blocking for tenths tenths of seconds, ERR is returned if nothing has
been typed. The value of tenths must be a number between 1 and 255. Use
nocbreak() to leave half-delay mode.

If the intrflush() option is enabled, (bf is TRUE), when an interrupt key is pressed
on the keyboard (interrupt, break, quit) all output in the tty driver queue will be
flushed, giving the effect of faster response to the interrupt, but causing curses to
have the wrong idea of what is on the screen. Disabling (bf is FALSE), the option
prevents the flush. The default for the option is inherited from the tty driver settings.
The window argument is ignored.

The keypad() option enables the keypad of the user’s terminal. If enabled (bf is
TRUE), the user can press a function key (such as an arrow key) and wgetch()
returns a single value representing the function key, as in KEY_LEFT. If disabled (bf is
FALSE), curses does not treat function keys specially and the program has to
interpret the escape sequences itself. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this option causes the
terminal keypad to be turned on when wgetch() is called. The default value for
keypad is false.

Initially, whether the terminal returns 7 or 8 significant bits on input depends on the
control mode of the tty driver (see termio(7I)). To force 8 bits to be returned, invoke
meta(win, TRUE). To force 7 bits to be returned, invoke meta(win, FALSE). The
window argument, win, is always ignored. If the terminfo capabilities smm (meta_on)
and rmm (meta_off) are defined for the terminal, smm is sent to the terminal when
meta(win, TRUE) is called and rmm is sent when meta(win, FALSE) is called.

The nodelay() option causes getch() to be a non-blocking call. If no input is ready,
getch() returns ERR. If disabled (bf is FALSE), getch() waits until a key is pressed.

While interpreting an input escape sequence, wgetch() sets a timer while waiting for
the next character. If notimeout(win, TRUE) is called, then wgetch() does not set a
timer. The purpose of the timeout is to differentiate between sequences received from
a function key and those typed by a user.

curs_inopts(3CURSES)

126 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

With the raw() and noraw() routines, the terminal is placed into or out of raw
mode. Raw mode is similar to cbreak() mode, in that characters typed are
immediately passed through to the user program. The differences are that in raw
mode, the interrupt, quit, suspend, and flow control characters are all passed through
uninterpreted, instead of generating a signal. The behavior of the BREAK key depends
on other bits in the tty driver that are not set by curses.

When the noqiflush() routine is used, normal flush of input and output queues
associated with the INTR, QUIT and SUSP characters will not be done (see
termio(7I)). When qiflush() is called, the queues will be flushed when these
control characters are read.

The timeout() and wtimeout() routines set blocking or non-blocking read for a
given window. If delay is negative, blocking read is used (that is, waits indefinitely for
input). If delay is zero, then non-blocking read is used (that is, read returns ERR if no
input is waiting). If delay is positive, then read blocks for delay milliseconds, and
returns ERR if there is still no input. Hence, these routines provide the same
functionality as nodelay(), plus the additional capability of being able to block for
only delay milliseconds (where delay is positive).

curses does ‘‘line-breakout optimization’’ by looking for typeahead periodically
while updating the screen. If input is found, and it is coming from a tty, the current
update is postponed until refresh() or doupdate() is called again. This allows
faster response to commands typed in advance. Normally, the input FILE pointer
passed to newterm(), or stdin in the case that initscr() was used, will be used
to do this typeahead checking. The typeahead() routine specifies that the file
descriptor fildes is to be used to check for typeahead instead. If fildes is −1, then no
typeahead checking is done.

All routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion, unless otherwise noted in the preceding routine
descriptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_getch(3CURSES), curs_initscr(3CURSES), curses(3CURSES),
attributes(5), termio(7I)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that echo(), noecho(), halfdelay(), intrflush(), meta(), nodelay(),
notimeout(), noqiflush(), qiflush(), timeout(), and wtimeout() may be
macros.

curs_inopts(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 127

curs_insch, insch, winsch, mvinsch, mvwinsch – insert a character before the character
under the cursor in a curses window

cc [flag ...] file... -lcurses [library ...]

#include <curses.h>

int insch(chtype ch);

int winsch(WINDOW *win, chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

With these routines, the character ch is inserted before the character under the cursor.
All characters to the right of the cursor are moved one space to the right, with the
possibility of the rightmost character on the line being lost. The cursor position does
not change (after moving to y, x, if specified). (This does not imply use of the
hardware insert character feature.)

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that insch(), mvinsch(), and mvwinsch() may be macros.

curs_insch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

128 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_insstr, insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr,
mvwinsnstr – insert string before character under the cursor in a curses window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int insstr(char *str);

int insnstr(char *str, int n);

int winsstr(WINDOW *win, char *str);

int winsnstr(WINDOW *win, char *str, int n);

int mvinsstr(int y, int x, char *str);

int mvinsnstr(int y, int x, char *str, int n);

int mvwinsstr(WINDOW *win, int y, int x, char *str);

int mvwinsnstr(WINDOW *win, int y, int x, char *str, int n);

With these routines, a character string (as many characters as will fit on the line) is
inserted before the character under the cursor. All characters to the right of the cursor
are moved to the right, with the possibility of the rightmost characters on the line
being lost. The cursor position does not change (after moving to y, x, if specified).
(This does not imply use of the hardware insert character feature.) The four routines
with n as the last argument insert at most n characters. If n<=0, then the entire string is
inserted.

If a character in str is a tab, newline, carriage return or backspace, the cursor is moved
appropriately within the window. A newline also does a clrtoeol() before moving.
Tabs are considered to be at every eighth column. If a character in str is another control
character, it is drawn in the ^X notation. Calling winch() after adding a control
character (and moving to it, if necessary) does not return the control character, but
instead returns the representation of the control character.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_clear(3CURSES), curs_inch(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all but winsnstr() may be macros.

curs_insstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 129

curs_instr, instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr, mvwinnstr – get
a string of characters from a curses window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int instr(char *str);

int innstr(char *str, int n);

int winstr(WINDOW *win, char *str);

int winnstr(WINDOW *win, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

These routines return a string of characters in str, starting at the current cursor
position in the named window and ending at the right margin of the window.
Attributes are stripped from the characters. The four functions with n as the last
argument return the string at most n characters long.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that all routines except winnstr() may be macros.

curs_instr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

130 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_inswch, inswch, winswch, mvinswch, mvwinswch – insert a wchar_t character
before the character under the cursor in a curses window

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

int inswch(chtype wch);

int winswch(WINDOW *win, chtype wch);

int mvinswch(int y, int x, chtype wch);

int mvwinswch(WINDOW *win, int y, int x, chtype wch);

These routines insert the character wch, holding a wchar_t character, before the
character under the cursor. All characters to the right of the cursor are moved one
space to the right, with the possibility of the rightmost character on the line being lost.
The cursor position does not change (after moving to y, x, if specified). (This does not
imply use of the hardware insert character feature.)

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that inswch(), mvinswch(), and mvwinswch() may be macros.

None of these routines can use the color attribute in chtype.

curs_inswch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 131

curs_inswstr, inswstr, insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr,
mvwinswstr, mvwinsnwstr – insert wchar_t string before character under the cursor in
a curses window

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

int inswstr(wchar_t *wstr);

int insnwstr(wchar_t *wstr, int n);

int winswstr(WINDOW *win, wchar_t *wstr);

int winsnwstr(WINDOW *win, wchar_t *wstr, int n);

int mvinswstr(int y, int x, wchar_t *wstr);

int mvinsnwstr(int y, int x, wchar_t *wstr, int n);

int mvwinswstr(WINDOW *win, int y, int x, wchar_t *wstr);

int mvwinsnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

These routines insert a wchar_t character string (as many wchar_t characters as will
fit on the line) before the character under the cursor. All characters to the right of the
cursor are moved to the right, with the possibility of the rightmost characters on the
line being lost. The cursor position does not change (after moving to y, x, if specified).
(This does not imply use of the hardware insert character feature.) The four routines
with n as the last argument insert at most n wchar_t characters. If n<=0, then the
entire string is inserted.

If a character in wstr is a tab, newline, carriage return, or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol(3CURSES)
before moving. Tabs are considered to be at every eighth column. If a character in wstr
is another control character, it is drawn in the ^X notation. Calling winwch(3CURSES)
after adding a control character (and moving to it, if necessary) does not return the
control character, but instead returns the representation of the control character.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

clrtoeol(3CURSES), curses(3CURSES), winwch(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that all but winsnwstr() may be macros.

curs_inswstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

132 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_inwch, inwch, winwch, mvinwch, mvwinwch – get a wchar_t character and its
attributes from a curses window

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

chtype inwch(void);

chtype winwch(WINDOW *win);

chtype mvinwch(int y, int x);

chtype mvwinwch(WINDOW *win, int y, int x);

These routines return the wchar_t character, of type chtype, at the current position
in the named window. If any attributes are set for that position, their values are OR-ed
into the value returned. Constants defined in <curses.h> can be used with the
logical AND (&) operator to extract the character or attributes alone.

The following bit-masks may be AND-ed with characters returned by winwch().

A_WCHARTEXT Bit-mask to extract character

A_WATTRIBUTES Bit-mask to extract attributes

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that all of these routines may be macros.

None of these routines can use the color attribute in chtype.

curs_inwch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Attributes

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 133

curs_inwchstr, inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr – get a string of wchar_t characters (and
attributes) from a curses window

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

int inwchstr(chtype *wchstr);

int inwchnstr(chtype *wchstr, int n);

int winwchstr(WINDOW *win, chtype *wchstr);

int winwchnstr(WINDOW *win, chtype *wchstr, int n);

int mvinwchstr(int y, int x, chtype *wchstr);

int mvinwchnstr(int y, int x, chtype *wchstr, int n);

int mvwinwchstr(WINDOW *win, int y, int x, chtype *wchstr);

int mvwinwchnstr(WINDOW *win, int y, int x, chtype *wchstr, int n);

These routines return a string of type chtype, holding wchar_t characters, starting
at the current cursor position in the named window and ending at the right margin of
the window. The four functions with n as the last argument, return the string at most n
wchar_t characters long. Constants defined in <curses.h> can be used with the
logical AND (&) operator to extract the wchar_t character or the attribute alone from
any position in the wchstr (see curs_inwch(3CURSES)).

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), curs_inwch(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that all routines except winwchnstr() may be macros.

None of these routines can use the color attribute in chtype.

curs_inwchstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ATTRIBUTES

SEE ALSO

NOTES

134 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_inwstr, inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr, mvwinwstr,
mvwinnwstr – get a string of wchar_t characters from a curses window

cc [flag ...] file ... -lcurses[library ..]

#include <curses.h>

int inwstr(wchar_t *wstr);

int innwstr(wchar_t *wstr, int n);

int winwstr(WINDOW *win, wchar_t *wstr);

int winnwstr(WINDOW *win, wchar_t *wstr, int n);

int mvinwstr(int y, int x, wchar_t *wstr);

int mvinnwstr(int y, int x, wchar_t *wstr, int n);

int mvwinwstr(WINDOW *win, int y, int x, wchar_t *wstr);

int mvwinnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

These routines return the string of wchar_t characters in wstr starting at the current
cursor position in the named window and ending at the right margin of the window.
Attributes are stripped from the characters. The four functions with n as the last
argument return the string at most n wchar_t characters long.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that all routines except winnwstr() may be macros.

curs_inwstr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 135

curs_kernel, def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode,
resetty, savetty, getsyx, setsyx, ripoffline, curs_set, napms – low-level curses routines

cc [flag ...] file ... -lcurses [library ...]
#include <curses.h>

int def_prog_mode(void);

int def_shell_mode(void);

int reset_prog_mode(void);

int reset_shell_mode(void);

int resetty(void);

int savetty(void);

int getsyx(int y, int x);

int setsyx(int y, int x);

int ripoffline(int line, int (*init)(WINDOW *, int));

int curs_set(int visibility);

int napms(int ms);

The following routines give low-level access to various curses functionality. Theses
routines typically are used inside library routines.

The def_prog_mode() and def_shell_mode() routines save the current terminal
modes as the ‘‘program’’ (in curses) or ‘‘shell’’ (not in curses) state for use by the
reset_prog_mode() and reset_shell_mode() routines. This is done
automatically by initscr().

The reset_prog_mode() and reset_shell_mode() routines restore the terminal
to ‘‘program’’ (in curses) or ‘‘shell’’ (out of curses) state. These are done
automatically by endwin() and, after an endwin(), by doupdate(), so they
normally are not called.

The resetty() and savetty() routines save and restore the state of the terminal
modes. savetty() saves the current state in a buffer and resetty() restores the
state to what it was at the last call to savetty().

With the getsyx() routine, the current coordinates of the virtual screen cursor are
returned in y and x. If leaveok() is currently TRUE, then −1,−1 is returned. If lines
have been removed from the top of the screen, using ripoffline(), y and x include
these lines; therefore, y and x should be used only as arguments for setsyx().

With the setsyx() routine, the virtual screen cursor is set to y, x. If y and x are both
−1, then leaveok() is set. The two routines getsyx() and setsyx() are designed
to be used by a library routine, which manipulates curses windows but does not
want to change the current position of the program’s cursor. The library routine would
call getsyx() at the beginning, do its manipulation of its own windows, do a
wnoutrefresh() on its windows, call setsyx(), and then call doupdate().

curs_kernel(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

136 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

The ripoffline() routine provides access to the same facility that slk_init()
(see curs_slk(3CURSES)) uses to reduce the size of the screen. ripoffline() must
be called before initscr() or newterm() is called. If line is positive, a line is
removed from the top of stdscr(); if line is negative, a line is removed from the
bottom. When this is done inside initscr(), the routine init() (supplied by the
user) is called with two arguments: a window pointer to the one-line window that has
been allocated and an integer with the number of columns in the window. Inside this
initialization routine, the integer variables LINES and COLS (defined in <curses.h>)
are not guaranteed to be accurate and wrefresh() or doupdate() must not be
called. It is allowable to call wnoutrefresh() during the initialization routine.

ripoffline() can be called up to five times before calling initscr() or
newterm().

With the curs_set() routine, the cursor state is set to invisible, normal, or very
visible for visibility equal to 0, 1, or 2 respectively. If the terminal supports the visibility
requested, the previous cursor state is returned; otherwise, ERR is returned.

The napms() routine is used to sleep for ms milliseconds.

Except for curs_set(), these routines always return OK. curs_set() returns the
previous cursor state, or ERR if the requested visibility is not supported.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_initscr(3CURSES), curs_outopts(3CURSES), curs_refresh(3CURSES),
curs_scr_dump(3CURSES), curs_slk(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that getsyx() is a macro, so an ampersand (&) is not necessary before the
variables y and x.

curs_kernel(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 137

curs_move, move, wmove – move curses window cursor

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

With these routines, the cursor associated with the window is moved to line y and
column x. This routine does not move the physical cursor of the terminal until
refresh() is called. The position specified is relative to the upper left-hand corner of
the window, which is (0,0).

These routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_refresh(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that move() may be a macro.

curs_move(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

138 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_outopts, clearok, idlok, idcok, immedok, leaveok, setscrreg, wsetscrreg, scrollok,
nl, nonl – curses terminal output option control routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int clearok(WINDOW *win, bool bf);

int idlok(WINDOW *win, bool bf);

void idcok(WINDOW *win, bool bf);

void immedok(WINDOW *win, bool bf);

int leaveok(WINDOW *win, bool bf);

int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

int scrollok(WINDOW *win, bool bf);

int nl(void);

int nonl(void);

These routines set options that deal with output within curses. All options are
initially FALSE, unless otherwise stated. It is not necessary to turn these options off
before calling endwin().

With the clearok() routine, if enabled (bf is TRUE), the next call to wrefresh()
with this window will clear the screen completely and redraw the entire screen from
scratch. This is useful when the contents of the screen are uncertain, or in some cases
for a more pleasing visual effect. If the win argument to clearok() is the global
variable curscr(), the next call to wrefresh() with any window causes the screen
to be cleared and repainted from scratch.

With the idlok() routine, if enabled (bf is TRUE), curses considers using the
hardware insert/delete line feature of terminals so equipped. If disabled (bf is FALSE)
, curses very seldom uses this feature. (The insert/delete character feature is always
considered.) This option should be enabled only if the application needs insert/delete
line, for example, for a screen editor. It is disabled by default because insert/delete
line tends to be visually annoying when used in applications where it isn’t really
needed. If insert/delete line cannot be used, curses redraws the changed portions of
all lines.

With the idcok() routine, if enabled (bf is TRUE), curses considers using the
hardware insert/delete character feature of terminals so equipped. This is enabled by
default.

With the immedok() routine, if enabled (bf is TRUE), any change in the window
image, such as the ones caused by waddch(), wclrtobot(), wscrl(), etc.,
automatically cause a call to wrefresh(). However, it may degrade the performance
considerably, due to repeated calls to wrefresh(). It is disabled by default.

curs_outopts(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 139

Normally, the hardware cursor is left at the location of the window cursor being
refreshed. The leaveok() option allows the cursor to be left wherever the update
happens to leave it. It is useful for applications where the cursor is not used, since it
reduces the need for cursor motions. If possible, the cursor is made invisible when this
option is enabled.

The setscrreg() and wsetscrreg() routines allow the application programmer to
set a software scrolling region in a window. top and bot are the line numbers of the top
and bottom margin of the scrolling region. (Line 0 is the top line of the window.) If this
option and scrollok() are enabled, an attempt to move off the bottom margin line
causes all lines in the scrolling region to scroll up one line. Only the text of the
window is scrolled. (Note that this has nothing to do with the use of a physical
scrolling region capability in the terminal, like that in the VT100. If idlok() is
enabled and the terminal has either a scrolling region or insert/delete line capability,
they will probably be used by the output routines.)

The scrollok() option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either as a result of a newline
action on the bottom line, or typing the last character of the last line. If disabled, (bf is
FALSE), the cursor is left on the bottom line. If enabled, (bf is TRUE), wrefresh() is
called on the window, and the physical terminal and window are scrolled up one line.
(Note that in order to get the physical scrolling effect on the terminal, it is also
necessary to call idlok().)

The nl() and nonl() routines control whether newline is translated into carriage
return and linefeed on output, and whether return is translated into newline on input.
Initially, the translations do occur. By disabling these translations using nonl(),
curses is able to make better use of the linefeed capability, resulting in faster cursor
motion.

setscrreg() and wsetscrreg() return OK upon success and ERR upon failure. All
other routines that return an integer always return OK.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_addch(3CURSES), curs_clear(3CURSES), curs_initscr(3CURSES),
curs_refresh(3CURSES), curs_scroll(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that clearok(), leaveok(), scrollok(), idcok(), nl(), nonl(), and
setscrreg() may be macros.

The immedok() routine is useful for windows that are used as terminal emulators.

curs_outopts(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

140 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_overlay, overlay, overwrite, copywin – overlap and manipulate overlapped
curses windows

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int overlay(WINDOW *srcwin, WINDOW *dstwin);

int overwrite(WINDOW *srcwin, WINDOW *dstwin);

int copywin(WINDOW *srcwin, WINDOW *dstwin, int sminrow, int smincol,
int dminrow, int dmincol, int dmaxrow, int dmaxcol, int overlay);

The overlay() and overwrite() routines overlay srcwin on top of dstwin. scrwin
and dstwin are not required to be the same size; only text where the two windows
overlap is copied. The difference is that overlay() is non-destructive (blanks are not
copied) whereas overwrite() is destructive.

The copywin() routine provides a finer granularity of control over the overlay()
and overwrite() routines. Like in the prefresh() routine, a rectangle is specified
in the destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the
upper-left-corner coordinates of the source window, (sminrow, smincol). If the
argument overlay is true, then copying is non-destructive, as in overlay().

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_pad(3CURSES), curs_refresh(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that overlay() and overwrite may be macros.

curs_overlay(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 141

curs_pad, newpad, subpad, prefresh, pnoutrefresh, pechochar, pechowchar – create
and display curses pads

cc [flag ...] file ... -lcurses [library ..]

#include <curses.h>

WINDOW *newpad(int nlines, int ncols);

WINDOW *subpad(WINDOW *orig, int nlines, int ncols, int begin_y, int
begin_x);

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow, int
smincol, int smaxrow, int smaxcol);

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

int pechochar(WINDOW *pad, chtype ch);

int pechowchar(WINDOW *pad, chtype wch);

The newpad() routine creates and returns a pointer to a new pad data structure with
the given number of lines, nlines, and columns, ncols. A pad is like a window, except
that it is not restricted by the screen size, and is not necessarily associated with a
particular part of the screen. Pads can be used when a large window is needed, and
only a part of the window will be on the screen at one time. Automatic refreshes of
pads (for example, from scrolling or echoing of input) do not occur. It is not legal to
call wrefresh(3CURSES) with a pad as an argument; the routines prefresh() or
pnoutrefresh() should be called instead. Note that these routines require
additional parameters to specify the part of the pad to be displayed and the location
on the screen to be used for the display.

The subpad() routine creates and returns a pointer to a subwindow within a pad
with the given number of lines, nlines, and columns, ncols. Unlike subwin(3CURSES),
which uses screen coordinates, the window is at position (begin_x, begin_y) on the
pad. The window is made in the middle of the window orig, so that changes made to
one window affect both windows. During the use of this routine, it will often be
necessary to call touchwin(3CURSES) or touchline(3CURSES) on orig before
calling prefresh().

The prefresh() and pnoutrefresh() routines are analogous to
wrefresh(3CURSES) and wnoutrefresh(3CURSES) except that they relate to pads
instead of windows. The additional parameters are needed to indicate what part of the
pad and screen are involved. pminrow and pmincol specify the upper left-hand corner
of the rectangle to be displayed in the pad. sminrow, smincol, smaxrow, and smaxcol
specify the edges of the rectangle to be displayed on the screen. The lower right-hand
corner of the rectangle to be displayed in the pad is calculated from the screen
coordinates, since the rectangles must be the same size. Both rectangles must be
entirely contained within their respective structures. Negative values of pminrow,
pmincol, sminrow, or smincol are treated as if they were zero.

curs_pad(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

142 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

The pechochar() routine is functionally equivalent to a call to addch(3CURSES)
followed by a call to refresh(3CURSES), a call to waddch(3CURSES) followed by a
call to wrefresh(3CURSES), or a call to waddch(3CURSES) followed by a call to
prefresh(). The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain might
be seen by using these routines instead of their equivalents. In the case of
pechochar(), the last location of the pad on the screen is reused for the arguments to
prefresh().

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

addch(3CURSES), curses(3CURSES), refresh(3CURSES), subwin(3CURSES),
touchline(3CURSES), touchwin(3CURSES), waddch(3CURSES),
wnoutrefresh(3CURSES), wrefresh(3CURSES), attributes(5)

The header file <curses.h> automatically includes the header files <stdio.h>,
<unctrl.h> and <widec.h>.

Note that pechochar() may be a macro.

curs_pad(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 143

curs_printw, printw, wprintw, mvprintw, mvwprintw, vwprintw – print formatted
output in curses windows

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int printw(char *fmt, /* arg */ ...);

int wprintw(WINDOW *win, char *fmt, /* arg */ ...);

int mvprintw(int y, int x, char *fmt, /* arg */ ...);

int mvwprintw(WINDOW *win, int y, int x, char *fmt, /* arg */...);

#include <varargs.h>

int vwprintw(WINDOW *win, char *fmt, /* varglist */ ...);

The printw(), wprintw(), mvprintw(), and mvwprintw() routines are
analogous to printf() (see printf(3C)). In effect, the string that would be output
by printf() is output instead as though waddstr() were used on the given
window.

The vwprintw() routine is analogous to vprintf() (see vprintf(3C)) and
performs a wprintw() using a variable argument list. The third argument is a
va_list, a pointer to a list of arguments, as defined in <varargs.h>.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), printf(3C), vprintf(3C), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

curs_printw(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

144 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_refresh, refresh, wrefresh, wnoutrefresh, doupdate, redrawwin, wredrawln –
refresh curses windows and lines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int refresh(void);

int wrefresh(WINDOW *win);

int wnoutrefresh(WINDOW *win);

int doupdate(void);

int redrawwin(WINDOW *win);

int wredrawln(WINDOW *win, int beg_line, int num_lines);

The refresh() and wrefresh() routines (or wnoutrefresh() and doupdate())
must be called to get any output on the terminal, as other routines merely manipulate
data structures. The routine wrefresh() copies the named window to the physical
terminal screen, taking into account what is already there in order to do optimizations.
The refresh() routine is the same, using stdscr as the default window. Unless
leaveok() has been enabled, the physical cursor of the terminal is left at the location
of the cursor for that window.

The wnoutrefresh() and doupdate() routines allow multiple updates with more
efficiency than wrefresh() alone. In addition to all the window structures, curses
keeps two data structures representing the terminal screen: a physical screen,
describing what is actually on the screen, and a virtual screen, describing what the
programmer wants to have on the screen.

The routine wrefresh() works by first calling wnoutrefresh(), which copies the
named window to the virtual screen, and then calling doupdate(), which compares
the virtual screen to the physical screen and does the actual update. If the programmer
wishes to output several windows at once, a series of calls to wrefresh() results in
alternating calls to wnoutrefresh() and doupdate(), causing several bursts of
output to the screen. By first calling wnoutrefresh() for each window, it is then
possible to call doupdate() once, resulting in only one burst of output, with fewer
total characters transmitted and less CPU time used. If the win argument to
wrefresh() is the global variable curscr, the screen is immediately cleared and
repainted from scratch.

The redrawwin() routine indicates to curses that some screen lines are corrupted
and should be thrown away before anything is written over them. These routines
could be used for programs such as editors, which want a command to redraw some
part of the screen or the entire screen. The routine redrawln() is preferred over
redrawwin() where a noisy communication line exists and redrawing the entire
window could be subject to even more communication noise. Just redrawing several
lines offers the possibility that they would show up unblemished.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

curs_refresh(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Curses Library Functions 145

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_outopts(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that refresh() and redrawwin() may be macros.

curs_refresh(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

146 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_scanw, scanw, wscanw, mvscanw, mvwscanw, vwscanw – convert formatted
input from a curses widow

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int scanw(char *fmt, /* arg */ ...);

int wscanw(WINDOW *win, char *fmt, /* arg */ ...);

int mvscanw(int y, int x, char *fmt, /* arg */ ...);

int mvwscanw(WINDOW *win, int y, int x, char *fmt, /* arg */...);

int vwscanw(WINDOW *win, char *fmt, va_list varglist);

The scanw(), wscanw(), and mvscanw() routines correspond to scanf() (see
scanf(3C)). The effect of these routines is as though wgetstr() were called on the
window, and the resulting line used as input for the scan. Fields which do not map to
a variable in the fmt field are lost.

The vwscanw() routine is similar to vwprintw() in that it performs a wscanw()
using a variable argument list. The third argument is a va_list, a pointer to a list of
arguments, as defined in <varargs.h>.

vwscanw() returns ERR on failure and an integer equal to the number of fields
scanned on success.

Applications may interrogate the return value from the scanw, wscanw(),
mvscanw(), and mvwscanw() routines to determine the number of fields which were
mapped in the call.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_getstr(3CURSES), curs_printw(3CURSES), curses(3CURSES), scanf(3C),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

curs_scanw(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 147

curs_scr_dump, scr_dump, scr_restore, scr_init, scr_set – read (write) a curses screen
from (to) a file

cc [flag ...] file ... -lcurses [library ...]
#include <curses.h>

int scr_dump(char *filename);

int scr_restore(char *filename);

int scr_init(char *filename);

int scr_set(char *filename);

With the scr_dump() routine, the current contents of the virtual screen are written to
the file filename.

With the scr_restore() routine, the virtual screen is set to the contents of filename,
which must have been written using scr_dump(). The next call to doupdate()
restores the screen to the way it looked in the dump file.

With the scr_init() routine, the contents of filename are read in and used to
initialize the curses data structures about what the terminal currently has on its
screen. If the data is determined to be valid, curses bases its next update of the
screen on this information rather than clearing the screen and starting from scratch.
scr_init() is used after initscr() or a system(3C) call to share the screen with
another process which has done a scr_dump() after its endwin() call. The data is
declared invalid if the time-stamp of the tty is old or the terminfo capabilities
rmcup() and nrrmc() exist.

The scr_set() routine is a combination of scr_restore() and scr_init(). It
tells the program that the information in filename is what is currently on the screen,
and also what the program wants on the screen. This can be thought of as a screen
inheritance function.

To read (write) a window from (to) a file, use the getwin() and putwin() routines
(see curs_util(3CURSES)).

All routines return the integer ERR upon failure and OK upon success.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_initscr(3CURSES), curs_refresh(3CURSES), curs_util(3CURSES),
curses(3CURSES), system(3C), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that scr_init(), scr_set(), and scr_restore() may be macros.

curs_scr_dump(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

148 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_scroll, scroll, scrl, wscrl – scroll a curses window

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int scroll(WINDOW *win);

int scrl(int n);

int wscrl(WINDOW *win, int n);

With the scroll() routine, the window is scrolled up one line. This involves moving
the lines in the window data structure. As an optimization, if the scrolling region of
the window is the entire screen, the physical screen is scrolled at the same time.

With the scrl() and wscrl() routines, for positive n scroll the window up n lines
(line i+n becomes i); otherwise scroll the window down n lines. This involves moving
the lines in the window character image structure. The current cursor position is not
changed.

For these functions to work, scrolling must be enabled via scrollok().

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_outopts(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that scrl() and scroll() may be macros.

curs_scroll(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 149

curs_set – set visibility of cursor

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int curs_set(int visibility);

The curs_set() function sets the visibility of the cursor to invisible (0), normal (1),
or very visible (2). The exact appearance of normal and very visible cursors is terminal
dependent.

visibility Is a value of 0 (invisible), 1 (normal), or 2 (very visible).

If the terminal supports the mode specified by the visibility parameter, the
curs_set() function returns the previous cursor state. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

curs_set(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

150 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

curs_slk, slk_init, slk_set, slk_refresh, slk_noutrefresh, slk_label, slk_clear, slk_restore,
slk_touch, slk_attron, slk_attrset, slk_attroff – curses soft label routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int slk_init(int fmt);

int slk_set(int labnum, char *label, int fmt);

int slk_refresh(void);

int slk_noutrefresh(void);

char *slk_label(int labnum);

int slk_clear(void);

int slk_restore(void);

int slk_touch(void);

int slk_attron(chtype attrs);

int slk_attrset(chtype attrs);

int slk_attroff(chtype attrs);

curses manipulates the set of soft function-key labels that exist on many terminals.
For those terminals that do not have soft labels, curses takes over the bottom line of
stdscr, reducing the size of stdscr and the variable LINES. curses standardizes
on eight labels of up to eight characters each.

To use soft labels, the slk_init() routine must be called before initscr() or
newterm() is called. If initscr() eventually uses a line from stdscr to emulate
the soft labels, then fmt determines how the labels are arranged on the screen. Setting
fmt to 0 indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4 arrangement.

With the slk_set() routine, labnum is the label number, from 1 to 8. label is the
string to be put on the label, up to eight characters in length. A null string or a null
pointer sets up a blank label. fmt is either 0, 1, or 2, indicating whether the label is to
be left-justified, centered, or right-justified, respectively, within the label.

The slk_refresh() and slk_noutrefresh() routines correspond to the
wrefresh() and wnoutrefresh() routines.

With the slk_label() routine, the current label for label number labnum is returned
with leading and trailing blanks stripped.

With the slk_clear() routine, the soft labels are cleared from the screen.

With the slk_restore() routine, the soft labels are restored to the screen after a
slk_clear() is performed.

With the slk_touch() routine, all the soft labels are forced to be output the next time
a slk_noutrefresh() is performed.

curs_slk(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 151

The slk_attron(), slk_attrset(), and slk_attroff() routines correspond to
attron(), attrset(), and attroff(). They have an effect only if soft labels are
simulated on the bottom line of the screen.

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

slk_label() returns NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_attr(3CURSES), curs_initscr(3CURSES), curs_refresh(3CURSES),
curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Most applications would use slk_noutrefresh() because a wrefresh() is likely
to follow soon.

curs_slk(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

152 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_termattrs, baudrate, erasechar, has_ic, has_il, killchar, longname, termattrs,
termname – curses environment query routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int baudrate(void);

char erasechar(void);

int has_ic(void);

int has_il(void);

char killchar(void);

char *longname(void);

chtype termattrs(void);

char *termname(void);

The baudrate() routine returns the output speed of the terminal. The number
returned is in bits per second, for example 9600, and is an integer.

With the erasechar() routine, the user’s current erase character is returned.

The has_ic() routine is true if the terminal has insert- and delete-character
capabilities.

The has_il() routine is true if the terminal has insert- and delete-line capabilities, or
can simulate them using scrolling regions. This might be used to determine if it would
be appropriate to turn on physical scrolling using scrollok().

With the killchar() routine, the user’s current line kill character is returned.

The longname() routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose description is
128 characters. It is defined only after the call to initscr() or newterm(). The area
is overwritten by each call to newterm() and is not restored by set_term(), so the
value should be saved between calls to newterm() if longname() is going to be
used with multiple terminals.

If a given terminal doesn’t support a video attribute that an application program is
trying to use, curses may substitute a different video attribute for it. The
termattrs() function returns a logical OR of all video attributes supported by the
terminal. This information is useful when a curses program needs complete control
over the appearance of the screen.

The termname() routine returns the value of the environment variable TERM
(truncated to 14 characters).

longname() and termname() return NULL on error.

curs_termattrs(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Curses Library Functions 153

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_initscr(3CURSES), curs_outopts(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that termattrs() may be a macro.

curs_termattrs(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

154 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_termcap, tgetent, tgetflag, tgetnum, tgetstr, tgoto – curses interfaces (emulated) to
the termcap library

cc [flag ...] file ... -lcurses [library ...]
#include <curses.h>

#include <term.h>

int tgetent(char *bp, char *name);

int tgetflag(char id[2]);

int tgetnum(char id[2]);

char *tgetstr(char id[2], char **area);

char *tgoto(char *cap, int col, int row);

int tputs(char *str, int affcnt, int (*putc)(void));

These routines are included as a conversion aid for programs that use the termcap
library. Their parameters are the same and the routines are emulated using the terminfo
database. These routines are supported at Level 2 and should not be used in new
applications.

The tgetent() routine looks up the termcap entry for name. The emulation ignores
the buffer pointer bp.

The tgetflag() routine gets the boolean entry for id.

The tgetnum() routine gets the numeric entry for id.

The tgetstr() routine returns the string entry for id. Use tputs() to output the
returned string.

The tgoto() routine instantiates the parameters into the given capability. The output
from this routine is to be passed to tputs().

The tputs() routine is described on the curs_terminfo(3CURSES) manual page.

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_terminfo(3CURSES), curses(3CURSES), putc(3C), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

curs_termcap(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 155

curs_terminfo, setupterm, setterm, set_curterm, del_curterm, restartterm, tparm, tputs,
putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr – curses interfaces to
terminfo database

cc [flag ...] file ... -lcurses [library ...]
#include <curses.h>

#include <term.h>

int setupterm(char *term, int fildes, int *errret);

int setterm(char *term);

int set_curterm(TERMINAL *nterm);

int del_curterm(TERMINAL *oterm);

int restartterm(char *term, int fildes, int *errret);

char *tparm(char *str, long int p1, long int p2, long int p3, long
int p4, long int p5, long int p6, long int p7, long int p8, long
int p9);

int tputs(char *str, int affcnt, int (*putc)(char));

int putp(char *str);

int vidputs(chtype attrs, int (*putc)(char));

int vidattr(chtype attrs);

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

int tigetflag(char *capname);

int tigetnum(char *capname);

char *tigetstr(char *capname);

These low-level routines must be called by programs that have to deal directly with
the terminfo database to handle certain terminal capabilities, such as programming
function keys. For all other functionality, curses routines are more suitable and their
use is recommended.

Initially, setupterm() should be called. Note that setupterm() is automatically
called by initscr() and newterm(). This defines the set of terminal-dependent
variables (listed in terminfo(4)). The terminfo variables lines and columns are
initialized by setupterm() as follows: If use_env(FALSE) has been called, values
for lines and columns specified in terminfo are used. Otherwise, if the environment
variables LINES and COLUMNS exist, their values are used. If these environment
variables do not exist and the program is running in a window, the current window
size is used. Otherwise, if the environment variables do not exist, the values for lines
and columns specified in the terminfo database are used.

The headers <curses.h> and <term.h> should be included (in this order) to get the
definitions for these strings, numbers, and flags. Parameterized strings should be
passed through tparm() to instantiate them. All terminfo strings (including the output

curs_terminfo(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

156 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

of tparm()) should be printed with tputs() or putp(). Call the
reset_shell_mode() routine to restore the tty modes before exiting (see
curs_kernel(3CURSES)). Programs which use cursor addressing should output
enter_ca_mode upon startup and should output exit_ca_mode before exiting.
Programs desiring shell escapes should call reset_shell_mode and output
exit_ca_mode before the shell is called and should output enter_ca_mode and call
reset_prog_mode after returning from the shell.

The setupterm() routine reads in the terminfo database, initializing the terminfo
structures, but does not set up the output virtualization structures used by curses.
The terminal type is the character string term; if term is null, the environment variable
TERM is used. All output is to file descriptor fildes which is initialized for output. If
errret is not null, then setupterm() returns OK or ERR and stores a status value in the
integer pointed to by errret. A status of 1 in errret is normal, 0 means that the terminal
could not be found, and −1 means that the terminfo database could not be found. If
errret is null, setupterm() prints an error message upon finding an error and exits.
Thus, the simplest call is:

setupterm((char *)0, 1, (int *)0);,which uses all the defaults and sends the output to
stdout.

The setterm() routine is being replaced by setupterm(). The call:

setupterm(term, 1, (int *)0)provides the same functionality as setterm(term). The
setterm() routine is included here for compatibility and is supported at Level 2.

The set_curterm() routine sets the variable cur_term to nterm, and makes all of
the terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm() routine frees the space pointed to by oterm and makes it
available for further use. If oterm is the same as cur_term, references to any of the
terminfo boolean, numeric, and string variables thereafter may refer to invalid memory
locations until another setupterm() has been called.

The restartterm() routine is similar to setupterm() and initscr(), except that
it is called after restoring memory to a previous state. It assumes that the windows
and the input and output options are the same as when memory was saved, but the
terminal type and baud rate may be different.

The tparm() routine instantiates the string str with parameters pi. A pointer is
returned to the result of str with the parameters applied.

The tputs() routine applies padding information to the string str and outputs it. The
str must be a terminfo string variable or the return value from tparm(), tgetstr(),
or tgoto(). affcnt is the number of lines affected, or 1 if not applicable. putc is a
putchar()-like routine to which the characters are passed, one at a time.

The putp() routine calls tputs(str, 1, putchar). Note that the output of putpA()
always goes to stdout, not to the fildes specified in setupterm().

curs_terminfo(3CURSES)

Curses Library Functions 157

The vidputs() routine displays the string on the terminal in the video attribute
mode attrs, which is any combination of the attributes listed in curses(3CURSES).
The characters are passed to the putchar()-like routine putc() .

The vidattr() routine is like the vidputs() routine, except that it outputs through
putchar().

The mvcur() routine provides low-level cursor motion.

The tigetflag(), tigetnum() and tigetstr() routines return the value of the
capability corresponding to the terminfo capname passed to them, such as xenl.

With the tigetflag() routine, the value −1 is returned if capname is not a boolean
capability.

With the tigetnum() routine, the value −2 is returned if capname is not a numeric
capability.

With the tigetstr() routine, the value (char *)−1 is returned if capname is not a
string capability.

The capname for each capability is given in the table column entitled capname code in
the capabilities section of terminfo(4).

char *boolnames, *boolcodes, *boolfnames
char *numnames, *numcodes, *numfnames

char *strnames, *strcodes, *strfnames

These null-terminated arrays contain the capnames, the termcap codes, and the full C
names, for each of the terminfo variables.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

Routines that return pointers always return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_initscr(3CURSES), curs_kernel(3CURSES), curs_termcap(3CURSES),
curses(3CURSES), putc(3C), terminfo(4), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

The setupterm() routine should be used in place of setterm().

Note that vidattr() and vidputs() may be macros.

curs_terminfo(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

158 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_touch, touchwin, touchline, untouchwin, wtouchln, is_linetouched,
is_wintouched – curses refresh control routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

int touchwin(WINDOW *win);

int touchline(WINDOW *win, int start, int count);

int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win, int y, int n, int changed);

int is_linetouched(WINDOW *win, int line);

int is_wintouched(WINDOW *win);

The touchwin() and touchline() routines throw away all optimization
information about which parts of the window have been touched, by pretending that
the entire window has been drawn on. This is sometimes necessary when using
overlapping windows, since a change to one window affects the other window, but the
records of which lines have been changed in the other window do not reflect the
change. The routine touchline() only pretends that count lines have been changed,
beginning with line start.

The untouchwin() routine marks all lines in the window as unchanged since the last
call to wrefresh().

The wtouchln() routine makes n lines in the window, starting at line y, look as if
they have (changed=1) or have not (changed=0) been changed since the last call to
wrefresh().

The is_linetouched() and is_wintouched() routines return TRUE if the
specified line/window was modified since the last call to wrefresh(); otherwise
they return FALSE. In addition, is_linetouched() returns ERR if line is not valid
for the given window.

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_refresh(3CURSES), curses(3CURSES), attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

curs_touch(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 159

Note that all routines except wtouchln() may be macros.

curs_touch(3CURSES)

160 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_util, unctrl, keyname, filter, use_env, putwin, getwin, delay_output, flushinp –
curses miscellaneous utility routines

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

char *unctrl(chtype c);

char *keyname(int c);

int filter(void);

void use_env(char bool);

int putwin(WINDOW *win, FILE *filep);

WINDOW *getwin(FILE *filep);

int delay_output(int ms);

int flushinp(void);

The unctrl() macro expands to a character string which is a printable representation
of the character c. Control characters are displayed in the ^X notation. Printing
characters are displayed as is.

With the keyname() routine, a character string corresponding to the key c is returned.

The filter() routine, if used, is called before initscr() or newterm() are called.
It makes curses think that there is a one-line screen. curses does not use any
terminal capabilities that assume that they know on what line of the screen the cursor
is positioned.

The use_env() routine, if used, is called before initscr() or newterm() are
called. When called with FALSE as an argument, the values of lines and columns
specified in the terminfo database will be used, even if environment variables LINES
and COLUMNS (used by default) are set, or if curses is running in a window (in which
case default behavior would be to use the window size if LINES and COLUMNS are not
set).

With the putwin() routine, all data associated with window win is written into the
file to which filep points. This information can be later retrieved using the getwin()
function.

The getwin() routine reads window related data stored in the file by putwin(). The
routine then creates and initializes a new window using that data. It returns a pointer
to the new window.

The delay_output() routine inserts an ms millisecond pause in output. This routine
should not be used extensively because padding characters are used rather than a
CPU pause.

The flushinp() routine throws away any typeahead that has been typed by the user
and has not yet been read by the program.

curs_util(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 161

Except for flushinp(), routines that return an integer return ERR upon failure and
an integer value other than ERR upon successful completion.

flushinp() always returns OK.

Routines that return pointers return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_initscr(3CURSES), curs_scr_dump(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

Note that unctrl() is a macro, which is defined in <unctrl.h>.

curs_util(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

162 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

curs_window, newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,
wsyncup, syncok, wcursyncup, wsyncdown – create curses windows

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin_y, int begin_x);

int delwin(WINDOW *win);

int mvwin(WINDOW *win, int y, int x);

WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y, int
begin_x);

WINDOW *derwin(WINDOW *orig, int nlines, int ncols, int begin_y, int
begin_x);

int mvderwin(WINDOW *win, int par_y, int par_x);

WINDOW *dupwin(WINDOW *win);

void wsyncup(WINDOW *win);

int syncok(WINDOW *win, bool bf);

void wcursyncup(WINDOW *win);

void wsyncdown(WINDOW *win);

The newwin() routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The upper left-hand corner of the window
is at line begin_y, column begin_x. If either nlines or ncols is zero, they default to LINES
— begin_y and COLS — begin_x. A new full-screen window is created by calling
newwin(0,0,0,0).

The delwin() routine deletes the named window, freeing all memory associated with
it. Subwindows must be deleted before the main window can be deleted.

The mvwin() routine moves the window so that the upper left-hand corner is at
position (x, y). If the move would cause the window to be off the screen, it is an error
and the window is not moved. Moving subwindows is allowed, but should be
avoided.

The subwin() routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The window is at position (begin_y,
begin_x) on the screen. (This position is relative to the screen, and not to the window
orig.) The window is made in the middle of the window orig, so that changes made to
one window will affect both windows. The subwindow shares memory with the
window orig. When using this routine, it is necessary to call touchwin() or
touchline() on orig before calling wrefresh() on the subwindow.

The derwin() routine is the same as subwin(), except that begin_y and begin_x are
relative to the origin of the window orig rather than the screen. There is no difference
between the subwindows and the derived windows.

curs_window(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 163

The mvderwin() routine moves a derived window (or subwindow) inside its parent
window. The screen-relative parameters of the window are not changed. This routine
is used to display different parts of the parent window at the same physical position
on the screen.

The dupwin() routine creates an exact duplicate of the window win.

Each curses window maintains two data structures: the character image structure
and the status structure. The character image structure is shared among all windows
in the window hierarchy (that is, the window with all subwindows). The status
structure, which contains information about individual line changes in the window, is
private to each window. The routine wrefresh() uses the status data structure when
performing screen updating. Since status structures are not shared, changes made to
one window in the hierarchy may not be properly reflected on the screen.

The routine wsyncup() causes the changes in the status structure of a window to be
reflected in the status structures of its ancestors. If syncok() is called with second
argument TRUE then wsyncup() is called automatically whenever there is a change in
the window.

The routine wcursyncup() updates the current cursor position of all the ancestors of
the window to reflect the current cursor position of the window.

The routine wsyncdown() updates the status structure of the window to reflect the
changes in the status structures of its ancestors. Applications seldom call this routine
because it is called automatically by wrefresh().

Routines that return an integer return the integer ERR upon failure and an integer
value other than ERR upon successful completion.

delwin() returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_refresh(3CURSES), curs_touch(3CURSES), curses(3CURSES),
attributes(5)

The header <curses.h> automatically includes the headers <stdio.h> and
<unctrl.h>.

If many small changes are made to the window, the wsyncup() option could degrade
performance.

Note that syncok() may be a macro.

curs_window(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

164 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

cur_term – current terminal information

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

extern TERMINAL *cur_term;

The external variable cur_term to identifies the record in the terminfo associated
with the terminal currently in use.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), set_curterm(3XCURSES), tigetflag(3XCURSES),
attributes(5), standards(5)

cur_term(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Curses Library Functions 165

def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode – save/restore
terminal modes

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int def_prog_mode(void);

int def_shell_mode(void);

int reset_prog_mode(void);

int reset_shell_mode(void);

The def_prog_mode() and def_shell_mode() functions save the current
terminal modes as "program" (within X/Open Curses) or "shell" (outside X/Open
Curses). The modes are saved automatically by initscr(3XCURSES),
newterm(3XCURSES), and setupterm(3XCURSES).

The reset_prog_mode() and reset_shell_mode() functions reset the current
terminal modes to "program" (within X/Open Curses) or "shell" (outside X/Open
Curses). The endwin(3XCURSES) function automatically calls the
reset_shell_mode() function and the doupdate(3XCURSES) function calls the
reset_prog_mode() function after calling endwin().

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

endwin(3XCURSES), initscr(3XCURSES), libcurses(3XCURSES),
newterm(3XCURSES), setupterm(3XCURSES), attributes(5), standards(5)

def_prog_mode(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

166 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

delay_output – delays output

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int delay_output(int ms);

The delay_output() function delays output for ms milliseconds by inserting pad
characters in the output stream.

ms Is the number of milliseconds to delay the output.

On success, the delay_output() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), napms(3XCURSES), attributes(5), standards(5)

delay_output(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 167

delch, mvdelch, mvwdelch, wdelch – remove a character

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int delch(void);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

int wdelch(WINDOW *win);

The delch() and wdelch() functions delete the character at the current cursor
position from stdscr and win, respectively. All remaining characters after cursor
through to the end of the line are shifted one character towards the start of the line.
The last character on the line becomes a space; characters on other lines are not
affected.

The mvdelch() and mvwdelch() functions delete the character at the position
specified by the x and y parameters; the former deletes the character from stdscr; the
latter from win.

y Is the y (row) coordinate of the position of the character to be removed.

x Is the x (column) coordinate of the position of the character to be removed.

win Is a pointer to the window containing the character to be removed.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgdset(3XCURSES), insch(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

delch(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

168 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

del_curterm, restartterm, set_curterm, setupterm – interfaces to the terminfo database

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <term.h>

int del_curterm(TERMINAL *oterm);

int restartterm(char *term, int fildes, int *errret);

TERMINAL *set_curterm(TERMINAL *nterm);

int setupterm(char *term, int fildes, int *errret);

Within X/Open Curses, the setupterm() function is automatically called by the
initscr (3XC) and newterm (3XC) functions. This function can be also be used outside
of X/Open Curses when a program has to deal directly with the terminfo database
to handle certain terminal capabilities. The use of appropriate X/Open Curses
functions is recommended in all other situations.

The setupterm() function loads terminal-dependent variables for the terminfo
layer of X/Open Curses. The setupterm() function initializes the terminfo
variables lines and columns such that if use_env(FALSE) has been called, the
terminfo values assigned in the database are used regardless of the environmental
variables LINES and COLUMNS or the program’s window dimensions; when
use_env(TRUE) has been called, which is the default, the environment variables
LINES and COLUMNS are used, if they exist. If the environment variables do not exist
and the program is running in a window, the current window size is used.

The term parameter of setupterm() specifies the terminal; if null, terminal type is
taken from the TERM environment variable. All output is sent to fildes which is
initialized for output. If errret is not null, OK or ERR is returned and a status value is
stored in the integer pointed to by errret. The following status values may be returned:

Value Description

1 Normal

0 Terminal could not be found

-1 terminfo database could not be found

If errret is null, an error message is printed, and the setupterm() function calls the
exit() function with a non-zero parameter.

The set_curterm() function sets the cur_term variable to nterm. The values from
nterm as well as other state information for the terminal are used by X/Open Curses
functions such as beep(3XCURSES), flash(3XCURSES), mvcur(3XCURSES),
tigetflag(3XCURSES), tigetstr(3XCURSES), and tigetnum(3XCURSES).

del_curterm(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 169

The del_curterm() function frees the space pointed to by oterm. If oterm and the
cur_term variable are the same, all Boolean, numeric, or string terminfo variables
will refer to invalid memory locations until you call setupterm() and specify a new
terminal type.

The restartterm() function assumes that a call to setupterm() has already been
made (probably from initscr() or newterm()). It allows you to specify a new
terminal type in term and updates the data returned by baudrate(3XCURSES) based
on fildes. Other information created by the initscr(), newterm(), and
setupterm() functions is preserved.

oterm Is the terminal type for which to free space.

term Is the terminal type for which variables are set.

fildes Is a file descriptor initialized for output.

errret Is a pointer to an integer in which the status value is
stored.

nterm Is the new terminal to become the current terminal.

On success, the set_curterm() function returns the previous value of cur_term.
Otherwise, it returns a null pointer.

On success, the other functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

baudrate(3XCURSES), beep(3XCURSES), initscr(3XCURSES),
libcurses(3XCURSES), mvcur(3XCURSES), tigetflag(3XCURSES),
use_env(3XCURSES), attributes(5), standards(5)

del_curterm(3XCURSES)

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

170 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

deleteln, wdeleteln – remove a line

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW *win);

The deleteln() and wdeleteln() functions delete the line containing the cursor
from stdscr and win, respectively. All lines below the one deleted are moved up one
line. The last line of the window becomes blank. The position of the cursor is
unchanged.

win Is a pointer to the window from which the line is removed.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgdset(3XCURSES), insdelln(3XCURSES), insertln(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

deleteln(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 171

delscreen – free space associated with the SCREEN data structure

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

void delscreen(SCREEN *sp);

The delscreen() function frees space associated with the SCREEN data structure.
This function should be called after endwin(3XCURSES) if a SCREEN data structure is
no longer needed.

sp Is a pointer to the screen structure for which to free space.

The delscreen() function does not return a value.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

endwin(3XCURSES), initscr(3XCURSES), libcurses(3XCURSES),
newterm(3XCURSES), attributes(5), standards(5)

delscreen(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

172 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

delwin – delete a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int delwin(WINDOW *win);

The delwin() function deletes the specified window, freeing up the memory
associated with it.

Deleting a parent window without deleting its subwindows and then trying to
manipulate the subwindows will have undefined results.

win Is a pointer to the window that is to be deleted.

On success, this functions returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

derwin(3XCURSES), dupwin(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

delwin(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 173

derwin, newwin, subwin – create a new window or subwindow

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

WINDOW *derwin(WINDOW *orig, int nlines, int ncols, int begin_y, int
begin_x);

WINDOW *newwin(int nlines, int ncols, int begin_y, int begin_x);

WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y, int
begin_x);

The derwin() function creates a subwindow within window orig, with the specified
number of lines and columns, and upper left corner positioned at begin_x, begin_y
relative to window orig. A pointer to the new window structure is returned.

The newwin() function creates a new window with the specified number of lines and
columns and upper left corner positioned at begin_x, begin_y. A pointer to the new
window structure is returned. A full-screen window can be created by calling
newwin(0,0,0,0).

If the number of lines specified is zero, newwin() uses a default value of LINES
minus begin_y; if the number of columns specified is zero, newwin() uses the default
value of COLS minus begin_x.

The subwin() function creates a subwindow within window orig, with the specified
number of lines and columns, and upper left corner positioned at begin_x, begin_y
(relative to the physical screen, not to window orig). A pointer to the new window
structure is returned.

The original window and subwindow share character storage of the overlapping area
(each window maintains its own pointers, cursor location, and other items). This
means that characters and attributes are identical in overlapping areas regardless of
which window characters are written to.

When using subwindows, it is often necessary to call touchwin(3XCURSES) before
wrefresh(3XCURSES) to maintain proper screen contents.

orig Is a pointer to the parent window for the newly created
subwindow.

nlines Is the number of lines in the subwindow.

ncols Is the number of columns in the subwindow.

begin_y Is the y (row) coordinate of the upper left corner of the
subwindow, relative to the parent window.

begin_x Is the x (column) coordinate of the upper left corner of the
subwindow, relative to the parent window.

derwin(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

174 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

On success, these functions return a pointer to the newly-created window. Otherwise,
they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), is_linetouched(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

derwin(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 175

doupdate, refresh, wnoutrefresh, wrefresh – refresh windows and lines

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW *win);

int wrefresh(WINDOW *win);

The refresh() and wrefresh() functions copy stdscr and win, respectively, to
the terminal screen. These functions call the wnoutrefresh() function to copy the
specified window to curscr and the doupdate() function to do the actual update.
The physical cursor is mapped to the same position as the logical cursor of the last
window to update curscr unless leaveok(3XCURSES) is enabled (in which case, the
cursor is placed in a position that X/Open Curses finds convenient).

When outputting several windows at once, it is often more efficient to call the
wnoutrefresh() and doupdate() functions directly. A call to wnoutrefresh()
for each window, followed by only one call to doupdate() to update the screen,
results in one burst of output, fewer characters sent, and less CPU time used.

If the win parameter to wrefresh() is the global variable curscr, the screen is
immediately cleared and repainted from scratch.

For details on how the wnoutrefresh() function handles overlapping windows
with broad glyphs, see the Overlapping Windows section of the
curses(3XCURSES) reference manual page.

win Is a pointer to the window in which to refresh.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

clearok(3XCURSES), curses(3XCURSES), libcurses(3XCURSES),
prefresh(3XCURSES), redrawwin(3XCURSES), attributes(5), standards(5)

doupdate(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

176 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

dupwin – duplicate a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

WINDOW *dupwin(WINDOW *win);

The dupwin() function creates a duplicate of window win. A pointer to the new
window structure is returned.

win Is a pointer to the window that is to be duplicated.

On success, this function returns a pointer to new window structure; otherwise, it
returns a null pointer.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

delwin(3XCURSES), derwin(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

dupwin(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 177

echo, noecho – enable/disable terminal echo

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int echo(void);

int noecho(void);

The echo() function enables Echo mode for the current screen. The noecho()
function disables Echo mode for the current screen. Initially, curses software echo
mode is enabled and hardware echo mode of the tty driver is disabled. The echo()
and noecho() functions control software echo only. Hardware echo must remain
disabled for the duration of the application, else the behavior is undefined.

Upon successful completion, these functions return OK. Otherwise, they return ERR.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

getch(3XCURSES), getstr(3XCURSES), initscr(3XCURSES),
libcurses(3XCURSES), scanw(3XCURSES), attributes(5), standards(5)

echo(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

178 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

echochar, wechochar – add a single-byte character and refresh window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int echochar(const chtype ch);

int wechochar(WINDOW *win, const chtype ch);

The echochar() function produces the same effect as calling addch(3XCURSES) and
then refresh(3XCURSES). The wechochar() function produces the same effect as
calling waddch(3XCURSES) and then wrefresh(3XCURSES).

ch Is a pointer to the character to be written to the window.

win Is a pointer to the window in which the character is to be added.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), doupdate(3XCURSES), echo_wchar(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

echochar(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 179

echo_wchar, wecho_wchar – add a complex character and refresh window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int echo_wchar(const cchar_t *wch);

int wecho_wchar(WINDOW *win, const cchar_t *wch);

The echo_wchar() function produces the same effect as calling
add_wch(3XCURSES) and then refresh(3XCURSES). The wecho_wchar() function
produces the same effect as calling wadd_wch(3XCURSES) and then
wrefresh(3XCURSES).

wch Is a pointer to the complex character to be written to the window.

win Is a pointer to the window in which the character is to be added.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), doupdate(3XCURSES), echochar(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

echo_wchar(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

180 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

endwin, isendwin – restore initial terminal environment

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int endwin(void);

bool isendwin(void);

The endwin() function restores the terminal after Curses activity by at least restoring
the saved shell terminsl mode, flushing any output to the terminal, and moving the
cursor to the first column of the last line of the screen. Refreshing a window resumes
program mode. The application must call endwin() for each terminal being used
before exiting. If newterm(3XCURSES) is called more than once for the same terminal,
the first screen created must be the last one for which endwin() is called.

The isendiwin() function indicates whether or not a screen has been refreshed since
the last call to endwin().

Upon successful completion, the endwin() function returns OK. Otherwise, it returns
ERR.

The isendwin() function returns TRUE if endwin() has been called without any
subsequent refresh. Otherwise, it returns FALSE.

Non errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), libcurses(3XCURSES), newterm(3XCURSES),
attributes(5), standards(5)

endwin(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 181

erasechar, erasewchar, killchar, killwchar – return current ERASE or KILL characters

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

char erasechar(void);

int erasewchar(wchar_t *ch);

char killchar(void);

int killwchar(wchar_t *ch);

The erasechar() function returns the current ERASE character from the tty driver.
This character is used to delete the previous character during keyboard input. The
returned value can be used when including deletion capability in interactive
programs.

The killchar() function is similar to erasechar(). It returns the current KILL
character.

The erasewchar() and killwchar() functions are similar to erasechar() and
killchar() respectively, but store the ERASE or KILL character in the object pointed
to by ch.

ch Is a pointer to a location where a character may be stored.

For erasechar() and killchar(), the terminal’s current ERASE or KILL character
is returned.

On success, the erasewchar() and killwchar() functions return OK. Otherwise,
they return ERR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

getch(3XCURSES), getstr(3XCURSES), get_wch(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

erasechar(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

182 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

filter – disable use of certain terminal capabilities

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

void filter(void);

The filter() function changes how X/Open Curses initializes terminal capabilities
that assume the terminal has more than one line. After a call to filter(), the
initscr(3XCURSES) or newterm(3XCURSES) functions also:

� Disable use of clear, cud, cud1, cup, cuu1, and vpa.
� Set home string to the value of cr.
� Set lines to 1.

The filter() function does not return a value.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

initscr(3XCURSES), libcurses(3XCURSES), newterm(3XCURSES),
attributes(5), standards(5)

filter(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 183

flushinp – discard type-ahead characters

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int flushinp(void);

The flushinp() function discards (flushes) any characters in the input buffer
associated with the current screen.

The flushinp() function always returns OK.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

flushinp(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

184 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

form_cursor, pos_form_cursor – position forms window cursor

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int pos_form_cursor(FORM *form);

pos_form_cursor() moves the form window cursor to the location required by the
form driver to resume form processing. This may be needed after the application calls
a curses library I/O routine.

pos_form_cursor() returns one of the following:

E_OK Thefunction returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_NOT_POSTED The form is not posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_cursor(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 185

form_data, data_ahead, data_behind – tell if forms field has off-screen data ahead or
behind

cc [flag ...] file ... -lform -lcurses [library ..]

#include <form.h>

int data_ahead(FORM *form);

int data_behind(FORM *form);

data_ahead() returns TRUE (1) if the current field has more off-screen data ahead;
otherwise it returns FALSE (0).

data_behind() returns TRUE (1) if the current field has more off-screen data behind;
otherwise it returns FALSE (0).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_data(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

186 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_driver – command processor for the forms subsystem

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int form_driver(FORM *form, int c);

The form_driver() function is the workhorse of the forms subsystem; it checks to
determine whether the character c is a forms request or data. If it is a request, the
form driver executes the request and reports the result. If it is data (a printable ASCII
character), it enters the data into the current position in the current field. If it is not
recognized, the form driver assumes it is an application-defined command and returns
E_UNKNOWN_COMMAND. Application defined commands should be defined relative to
MAX_COMMAND, the maximum value of a request listed below.

Form driver requests:

REQ_NEXT_PAGE Move to the next page.

REQ_PREV_PAGE Move to the previous page.

REQ_FIRST_PAGE Move to the first page.

REQ_LAST_PAGE Move to the last page.

REQ_NEXT_FIELD Move to the next field.

REQ_PREV_FIELD Move to the previous field.

REQ_FIRST_FIELD Move to the first field.

REQ_LAST_FIELD Move to the last field.

REQ_SNEXT_FIELD Move to the sorted next field.

REQ_SPREV_FIELD Move to the sorted prev field.

REQ_SFIRST_FIELD Move to the sorted first field.

REQ_SLAST_FIELD Move to the sorted last field.

REQ_LEFT_FIELD Move left to field.

REQ_RIGHT_FIELD Move right to field.

REQ_UP_FIELD Move up to field.

REQ_DOWN_FIELD Move down to field.

REQ_NEXT_CHAR Move to the next character in the field.

REQ_PREV_CHAR Move to the previous character in the field.

REQ_NEXT_LINE Move to the next line in the field.

REQ_PREV_LINE Move to the previous line in the field.

REQ_NEXT_WORD Move to the next word in the field.

form_driver(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Curses Library Functions 187

REQ_PREV_WORD Move to the previous word in the field.

REQ_BEG_FIELD Move to the first char in the field.

REQ_END_FIELD Move after the last char in the field.

REQ_BEG_LINE Move to the beginning of the line.

REQ_END_LINE Move after the last char in the line.

REQ_LEFT_CHAR Move left in the field.

REQ_RIGHT_CHAR Move right in the field.

REQ_UP_CHAR Move up in the field.

REQ_DOWN_CHAR Move down in the field.

REQ_NEW_LINE Insert/overlay a new line.

REQ_INS_CHAR Insert the blank character at the cursor.

REQ_INS_LINE Insert a blank line at the cursor.

REQ_DEL_CHAR Delete the character at the cursor.

REQ_DEL_PREV Delete the character before the cursor.

REQ_DEL_LINE Delete the line at the cursor.

REQ_DEL_WORD Delete the word at the cursor.

REQ_CLR_EOL Clear to the end of the line.

REQ_CLR_EOF Clear to the end of the field.

REQ_CLR_FIELD Clear the entire field.

REQ_OVL_MODE Enter overlay mode.

REQ_INS_MODE Enter insert mode.

REQ_SCR_FLINE Scroll the field forward a line.

REQ_SCR_BLINE Scroll the field backward a line.

REQ_SCR_FPAGE Scroll the field forward a page.

REQ_SCR_BPAGE Scroll the field backward a page.

REQ_SCR_FHPAGE Scroll the field forward half a page.

REQ_SCR_BHPAGE Scroll the field backward half a page.

REQ_SCR_FCHAR Horizontal scroll forward a character.

REQ_SCR_BCHAR Horizontal scroll backward a character

REQ_SCR_HFLINE Horizontal scroll forward a line.

REQ_SCR_HBLINE Horizontal scroll backward a line.

form_driver(3CURSES)

188 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

REQ_SCR_HFHALF Horizontal scroll forward half a line.

REQ_SCR_HBHALF Horizontal scroll backward half a line.

REQ_VALIDATION Validate field.

REQ_PREV_CHOICE Display the previous field choice.

REQ_NEXT_CHOICE Display the next field choice.

The form_driver() function returns one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_NOT_POSTED The form is not posted.

E_INVALID_FIELD The field contents are invalid.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_REQUEST_DENIED The form driver request failed.

E_UNKNOWN_COMMAND An unknown request was passed to the form driver.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_driver(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 189

form_field, set_form_fields, form_fields, field_count, move_field – connect fields to
forms

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_form_fields(FORM *form, FIELD **field);

FIELD **form_fields(FORM *form);

int field_count(FORM *form);

int move_field(FIELD *field, int frow, int fcol);

set_form_fields() changes the fields connected to form to fields. The original fields
are disconnected.

form_fields() returns a pointer to the field pointer array connected to form.

field_count() returns the number of fields connected to form.

move_field() moves the disconnected field to the location frow, fcol in the forms
subwindow.

form_fields() returns NULL on error.

field_count() returns -1 on error.

set_form_fields() and move_field() return one of the following:

E_OK The function returned successfully.

E_CONNECTED The field is already connected to a form.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect

E_POSTED The form is posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

190 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_field_attributes, set_field_fore, field_fore, set_field_back, field_back,
set_field_pad, field_pad – format the general display attributes of forms

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_field_fore(FIELD *field, chtype attr);

chtype field_fore(FIELD *field);

int set_field_back(FIELD *field, chtype attr);

chtype field_back(FIELD *field);

int set_field_pad(FIELD *field, int pad);

int field_pad(FIELD *field);

set_field_fore() sets the foreground attribute of field. The foreground attribute is
the low-level curses display attribute used to display the field contents.
field_fore() returns the foreground attribute of field.

set_field_back() sets the background attribute of field. The background attribute
is the low-level curses display attribute used to display the extent of the field.
field_back() returns the background attribute of field.

set_field_pad() sets the pad character of field to pad. The pad character is the
character used to fill within the field. field_pad() returns the pad character of field.

field_fore(), field_back(), and field_pad() return default values if field is
NULL. If field is not NULL and is not a valid FIELD pointer, the return value from these
routines is undefined.

set_field_fore(), set_field_back(), and set_field_pad() return one of
the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_attributes(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 191

form_field_buffer, set_field_buffer, field_buffer, set_field_status, field_status,
set_max_field – set and get forms field attributes

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_field_buffer(FIELD *field, int buf, char *value);

char *field_buffer(FIELD *field, int buf);

int set_field_status(FIELD *field, int status);

int field_status(FIELD *field);

int set_max_field(FIELD *field, int max);

set_field_buffer() sets buffer buf of field to value. Buffer 0 stores the displayed
contents of the field. Buffers other than 0 are application specific and not used by the
forms library routines. field_buffer() returns the value of field buffer buf.

Every field has an associated status flag that is set whenever the contents of field
buffer 0 changes. set_field_status() sets the status flag of field to status.
field_status() returns the status of field.

set_max_field() sets a maximum growth on a dynamic field, or if max=0 turns off
any maximum growth.

field_buffer() returns NULL on error.

field_status() returns TRUE or FALSE.

set_field_buffer(), set_field_status(), and set_max_field() return one
of the following:

E_OK Thefunction returned successfully.

E_SYSTEM_ERROR System error

E_BAD_ARGUMENT An argument is incorrect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_buffer(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

192 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_field_info, field_info, dynamic_field_info – get forms field characteristics

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int field_info(FIELD *field, int *rows, int *cols, int *frow, int *fcol,
int *nrow, int *nbuf);

int dynamic_field_info(FIELD *field, int *drows, int *dcols, int
*max);

field_info() returns the size, position, and other named field characteristics, as
defined in the original call to new_field(), to the locations pointed to by the
arguments rows, cols, frow, fcol, nrow, and nbuf.

dynamic_field_info() returns the actual size of the field in the pointer arguments
drows, dcols and returns the maximum growth allowed for field in max. If no maximum
growth limit is specified for field, max will contain 0. A field can be made dynamic by
turning off the field option O_STATIC.

These routines return one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_info(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 193

form_field_just, set_field_just, field_just – format the general appearance of forms

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_field_just(FIELD *field, int justification);

int field_just(FIELD *field);

The set_field_just() function sets the justification for field. Justification can be
one of:

NO_JUSTIFICATION
JUSTIFY_RIGHT
JUSTIFY_LEFT
JUSTIFY_CENTER

The field justification is ignored if field is a dynamic field.

The field_just() function returns the type of justification assigned to field.

The field_just() function returns one of the following:

NO_JUSTIFICATION
JUSTIFY_RIGHT
JUSTIFY_LEFT
JUSTIFY_CENTER

The set_field_just() function returns one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_just(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

194 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_field_new, new_field, dup_field, link_field, free_field – create and destroy forms
fields

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

FIELD *new_field(int r, int c, int frow, int fcol, int nrow, int ncol);

FIELD *dup_field(FIELD *field, int frow, int fcol);

FIELD *link_field(FIELD *field, int frow, int fcol);

int free_field(FIELD *field);

new_field() creates a new field with r rows and c columns, starting at frow, fcol, in
the subwindow of a form. nrow is the number of off-screen rows and nbuf is the
number of additional working buffers. This routine returns a pointer to the new field.

dup_field() duplicates field at the specified location. All field attributes are
duplicated, including the current contents of the field buffers.

link_field() also duplicates field at the specified location. However, unlike
dup_field(), the new field shares the field buffers with the original field. After
creation, the attributes of the new field can be changed without affecting the original
field.

free_field() frees the storage allocated for field.

Routines that return pointers return NULL on error. free_field() returns one of the
following:

E_OK Thefunction returned successfully.

E_CONNECTED The field is already connected to a form.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_new(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 195

form_field_opts, set_field_opts, field_opts_on, field_opts_off, field_opts – forms field
option routines

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_field_opts(FIELD *field, OPTIONS opts);

int set_field_opts(FIELD *field, OPTIONS opts);

int field_opts_on(FIELD *field, OPTIONS opts);

int field_opts_off(FIELD *field, OPTIONS opts);

OPTIONS field_opts(FIELD *field);

set_field_opts() turns on the named options of field and turns off all remaining
options. Options are boolean values that can be OR-ed together.

field_opts_on() turns on the named options; no other options are changed.

field_opts_off() turns off the named options; no other options are changed.

field_opts() returns the options set for field.

O_VISIBLE The field is displayed.

O_ACTIVE The field is visited during processing.

O_PUBLIC The field contents are displayed as data is entered.

O_EDIT The field can be edited.

O_WRAP Words not fitting on a line are wrapped to the next line.

O_BLANK The whole field is cleared if a character is entered in the
first position.

O_AUTOSKIP Skip to the next field when the current field becomes
full.

O_NULLOK A blank field is considered valid.

O_STATIC The field buffers are fixed in size.

O_PASSOK Validate field only if modified by user.

set_field_opts, field_opts_on and field_opts_off return one of the
following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_CURRENT The field is the current field.

form_field_opts(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

196 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_opts(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 197

form_fieldtype, new_fieldtype, free_fieldtype, set_fieldtype_arg, set_fieldtype_choice,
link_fieldtype – forms fieldtype routines

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

FIELDTYPE *new_fieldtype(int (* field_check)(FIELD *, char *), int
(*char_check)(int, char *));

int free_fieldtype(FIELDTYPE *fieldtype);

int set_fieldtype_arg(FIELDTYPE *fieldtype, char *(* mak_arg)(va_list
*), char *(* copy_arg)(char *), void (* free_arg)(char *));

int set_fieldtype_choice(FIELDTYPE *fieldtype, int (*
next_choice)(FIELD *, char *), int (*prev_choice)(FIELD *, char
*));

FIELDTYPE *link_fieldtype(FIELDTYPE *type1, FIELDTYPE *type2);

new_fieldtype() creates a new field type. The application programmer must write
the function field_check, which validates the field value, and the function char_check,
which validates each character. free_fieldtype() frees the space allocated for the
field type.

By associating function pointers with a field type, set_fieldtype_arg() connects
to the field type additional arguments necessary for a set_field_type() call.
Function mak_arg allocates a structure for the field specific parameters to
set_field_type() and returns a pointer to the saved data. Function copy_arg
duplicates the structure created by make_arg. Function free_arg frees any storage
allocated by make_arg or copy_arg.

The form_driver() requests REQ_NEXT_CHOICE and REQ_PREV_CHOICE let the
user request the next or previous value of a field type comprising an ordered set of
values. set_fieldtype_choice() allows the application programmer to
implement these requests for the given field type. It associates with the given field
type those application-defined functions that return pointers to the next or previous
choice for the field.

link_fieldtype() returns a pointer to the field type built from the two given
types. The constituent types may be any application-defined or pre-defined types.

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_CONNECTED Type is connected to one or more fields.

form_fieldtype(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

198 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_fieldtype(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 199

form_field_userptr, set_field_userptr, field_userptr – associate application data with
forms

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_field_userptr(FIELD *field, char *ptr);

char *field_userptr(FIELD *field);

Every field has an associated user pointer that can be used to store pertinent data.
set_field_userptr() sets the user pointer of field. field_userptr() returns the
user pointer of field.

field_userptr() returns NULL on error. set_field_userptr() returns one
of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_userptr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

200 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_field_validation, set_field_type, field_type, field_arg – forms field data type
validation

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_field_type(FIELD *field, FIELDTYPE *type, ...);

FIELDTYPE *field_type(FIELD *field);

char *field_arg(FIELD *field);

set_field_type() associates the specified field type with field. Certain field types
take additional arguments. TYPE_ALNUM, for instance, requires one, the minimum
width specification for the field. The other predefined field types are: TYPE_ALPHA,
TYPE_ENUM, TYPE_INTEGER, TYPE_NUMERIC, and TYPE_REGEXP.

field_type() returns a pointer to the field type of field. NULL is returned if no field
type is assigned.

field_arg() returns a pointer to the field arguments associated with the field type
of field. NULL is returned if no field type is assigned.

field_type() and field_arg() return NULL on error.

set_field_type() returns one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_field_validation(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 201

form_hook, set_form_init, form_init, set_form_term, form_term, set_field_init,
field_init, set_field_term, field_term – assign application-specific routines for
invocation by forms

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_form_init(FORM *form, void (*func)(FORM*));

void (*form_init)(FORM *form);

int set_form_term(FORM *form, void (*func)(FORM*));

void (*form_term)(FORM *form);

int set_field_init(FORM *form, void (*func)(FORM*));

void (*field_init)(FORM *form);

int set_field_term(FORM *form, void (*func)(FORM*));

void (*field_term)(FORM *form);

These routines allow the programmer to assign application specific routines to be
executed automatically at initialization and termination points in the forms
application. The user need not specify any application-defined initialization or
termination routines at all, but they may be helpful for displaying messages or page
numbers and other chores.

set_form_init() assigns an application-defined initialization function to be called
when the form is posted and just after a page change. form_init() returns a pointer
to the initialization function, if any.

set_form_term() assigns an application-defined function to be called when the
form is unposted and just before a page change. form_term() returns a pointer to the
function, if any.

set_field_init() assigns an application-defined function to be called when the
form is posted and just after the current field changes. field_init() returns a
pointer to the function, if any.

set_field_term() assigns an application-defined function to be called when the
form is unposted and just before the current field changes. field_term() returns a
pointer to the function, if any.

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

form_hook(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

202 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_hook(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 203

form_new, new_form, free_form – create and destroy forms

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

FORM *new_form(FIELD **fields);

int free_form(FORM *form);

new_form() creates a new form connected to the designated fields and returns a
pointer to the form.

free_form() disconnects the form from its associated field pointer array and
deallocates the space for the form.

new_form() always returns NULL on error. free_form() returns one of the
following:

E_OK The function returned successfully.

E_BAD_ARGUMENT An argument is incorrect.

E_POSTED The form is posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_new(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

204 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_new_page, set_new_page, new_page – forms pagination

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_new_page(FIELD *field, int bool);

int new_page(FIELD *field);

set_new_page() marks field as the beginning of a new page on the form.

new_page() returns a boolean value indicating whether or not field begins a new
page of the form.

new_page returns TRUE or FALSE.

set_new_page() returns one of the following:

E_OK The function returned successfully.

E_CONNECTED The field is already connected to a form.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_new_page(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 205

form_opts, set_form_opts, form_opts_on, form_opts_off – forms option routines

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_form_opts(FORM *form, OPTIONS opts);

int form_opts_on(FORM *form, OPTIONS opts);

int form_opts_off(FORM *form, OPTIONS opts);

OPTIONS form_opts(FORM *form);

set_form_opts() turns on the named options for form and turns off all remaining
options. Options are boolean values which can be OR-ed together.form_opts_on()
turns on the named options; no other options are changed.form_opts_off() turns
off the named options; no other options are changed.

form_opts() returns the options set for form.

O_NL_OVERLOAD Overload the REQ_NEW_LINE form driver request.

O_BS_OVERLOAD Overload the REQ_DEL_PREV form driver request.

set_form_opts(), form_opts_on(), and form_opts_off() return one of the
following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_opts(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

206 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_page, set_form_page, set_current_field, current_field, field_index – set forms
current page and field

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_form_page(FORM *form, int page);

int form_page(FORM *form);

int set_current_field(FORM *form, FIELD *field);

FIELD *current_field(FORM*form);

int field_index(FIELD *field);

set_form_page() sets the page number of form to page. form_page() returns the
current page number of form.

set_current_field() sets the current field of form to field. current_field()
returns a pointer to the current field of form.

field_index() returns the index in the field pointer array of field.

form_page() returns -1 on error.

current_field() returns NULL on error.

field_index() returns -1 on error.

set_form_page() and set_current_field() return one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_INVALID_FIELD The field contents are invalid.

E_REQUEST_DENIED The form driver request failed

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_page(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 207

form_post, post_form, unpost_form – write or erase forms from associated
subwindows

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int post_form(FORM *form);

int unpost_form(FORM *form);

post_form() writes form into its associated subwindow. The application
programmer must use curses library routines to display the form on the physical
screen or call update_panels() if the panels library is being used.

unpost_form() erases form from its associated subwindow.

These routines return one of the following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_POSTED The form is posted.

E_NOT_POSTED The form is not posted.

E_NO_ROOM The form does not fit in the subwindow.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_NOT_CONNECTED The field is not connected to a form.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), panel_update(3CURSES),
panels(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_post(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

208 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

forms – character based forms package

#include <form.h>

The form library is built using the curses library, and any program using forms
routines must call one of the curses initialization routines such as initscr. A
program using these routines must be compiled with -lform and -lcurses on the
cc command line.

The forms package gives the applications programmer a terminal-independent
method of creating and customizing forms for user-interaction. The forms package
includes: field routines, which are used to create and customize fields, link fields and
assign field types; fieldtype routines, which are used to create new field types for
validating fields; and form routines, which are used to create and customize forms,
assign pre/post processing functions, and display and interact with forms.

The forms package establishes initial current default values for field attributes.
During field initialization, each field attribute is assigned the current default value for
that attribute. An application can change or retrieve a current default attribute value
by calling the appropriate set or retrieve routine with a NULL field pointer. If an
application changes a current default field attribute value, subsequent fields created
using new_field() will have the new default attribute value. (The attributes of
previously created fields are not changed if a current default attribute value is
changed.)

The following table lists each forms routine and the name of the manual page on
which it is described.

forms Routine Name Manual Page Name

current_field form_page(3X)

data_ahead form_data(3X)

data_behind form_data(3X)

dup_field form_field_new(3X)

dynamic_field_info form_field_info(3X)

field_arg form_field_validation(3X)

field_back form_field_attributes(3X)

field_buffer form_field_buffer(3X)

field_count form_field(3X)

field_fore form_field_attributes(3X)

field_index form_page(3X)

field_info form_field_info(3X)

field_init form_hook(3X)

forms(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Current Default
Values for Field

Attributes

Routine Name
Index

Curses Library Functions 209

field_just form_field_just(3X)

field_opts form_field_opts(3X)

field_opts_off form_field_opts(3X)

field_opts_on form_field_opts(3X)

field_pad form_field_attributes(3X)

field_status form_field_buffer(3X)

field_term form_hook(3X)

field_type form_field_validation(3X)

field_userptr form_field_userptr(3X)

form_driver form_driver(3X)

form_fields form_field(3X)

form_init form_hook(3X)

form_opts form_opts(3X)

form_opts_off form_opts(3X)

form_opts_on form_opts(3X)

form_page form_page(3X)

form_sub form_win(3X)

form_term form_hook(3X)

form_userptr form_userptr(3X)

form_win form_win(3X)

free_field form_field_new(3X)

free_fieldtype form_fieldtype(3X)

free_form form_new(3X)

link_field form_field_new(3X)

link_fieldtype form_fieldtype(3X)

move_field form_field(3X)

new_field form_field_new(3X)

new_fieldtype form_fieldtype(3X)

new_form form_new(3X)

new_page form_new_page(3X)

pos_form_cursor form_cursor(3X)

forms(3CURSES)

210 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

post_form form_post(3X)

scale_form form_win(3X)

set_current_field form_page(3X)

set_field_back form_field_attributes(3X)

set_field_buffer form_field_buffer(3X)

set_field_fore form_field_attributes(3X)

set_field_init form_hook(3X)

set_field_just form_field_just(3X)

set_field_opts form_field_opts(3X)

set_field_pad form_field_attributes(3X)

set_field_status form_field_buffer(3X)

set_field_term form_hook(3X)

set_field_type form_field_validation(3X)

set_field_userptr form_field_userptr(3X)

set_fieldtype_arg form_fieldtype(3X)

set_fieldtype_choice form_fieldtype(3X)

set_form_fields form_field(3X)

set_form_init form_hook(3X)

set_form_opts form_opts(3X)

set_form_page form_page(3X)

set_form_sub form_win(3X)

set_form_term form_hook(3X)

set_form_userptr form_userptr(3X)

set_form_win form_win(3X)

set_max_field form_field_buffer(3X)

set_new_page form_new_page(3X)

unpost_form form_post(3X)

Routines that return a pointer always return NULL on error. Routines that return an
integer return one of the following:

E_OK The function returned successfully.

E_CONNECTED The field is already connected to a form.

forms(3CURSES)

RETURN VALUES

Curses Library Functions 211

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_CURRENT The field is the current field.

E_POSTED The form is posted.

E_NOT_POSTED The form is not posted.

E_INVALID_FIELD The field contents are invalid.

E_NOT_CONNECTED The field is not connected to a form.

E_NO_ROOM The form does not fit in the subwindow.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_REQUEST_DENIED The form driver request failed.

E_UNKNOWN_COMMAND An unknown request was passed to the form driver.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

forms(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

212 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

form_userptr, set_form_userptr – associate application data with forms

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_form_userptr(FORM *form, char *ptr);

char *form_userptr(FORM *form);

Every form has an associated user pointer that can be used to store pertinent data.
set_form_userptr() sets the user pointer of form. form_userptr() returns the
user pointer of form.

form_userptr() returns NULL on error. set_form_userptr() returns one of the
following:

E_OK The function returned successfully.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_userptr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 213

form_win, set_form_win, set_form_sub, form_sub, scale_form – forms window and
subwindow association routines

cc [flag...] file... -lform -lcurses [library...]

#include <form.h>

int set_form_win(FORM *form, WINDOW *win);

WINDOW *form_win(FORM *form);

int set_form_sub(FORM *form, WINDOW *sub);

WINDOW *form_sub(FORM *form);

int scale_form(FORM *form, int *rows, int *cols);

set_form_win() sets the window of form to win. form_win() returns a pointer to
the window associated with form.set_form_sub() sets the subwindow of form to
sub. form_sub() returns a pointer to the subwindow associated with
form.scale_form() returns the smallest window size necessary for the subwindow
of form. rows and cols are pointers to the locations used to return the number of rows
and columns for the form.

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK The function returnedsuccessfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An argument is incorrect.

E_NOT_CONNECTED The field is not connected to a form.

E_POSTED The form is posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), forms(3CURSES), attributes(5)

The header <form.h> automatically includes the headers <eti.h> and
<curses.h>.

form_win(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

214 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

getbegyx, getmaxyx, getparyx, getyx – get cursor or window coordinates

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

void getbegyx(WINDOW *win, int y, int x);

void getmaxyx(WINDOW *win, int y, int x);

void getparyx(WINDOW *win, int y, int x);

void getyx(WINDOW *win, int y, int x);

The getyx() macro stores the current cursor position of the specified window in x
and y.

The getparyx() macro stores the x and y coordinates (relative to the parent window)
of the specified window’s origin (upper-left corner). If win does not point to a
subwindow, x and y are set to −1.

The getbegyx() macro stores the x and y coordinates of the specified window’s
origin (upper-left corner).

The getmaxyx() macro stores the numbers of rows in the specified window in y and
the number of columns in x.

win Is a pointer to a window.

y stores the y coordinate for the cursor or origin. The getmaxyx() macro
uses it to store the number of rows in the window.

x stores the x coordinate for the cursor or origin. The getmaxyx() macro
uses it to store the number of columns in the window.

These macros do not return a value.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

getbegyx(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 215

getcchar – get a wide character string (with rendition) from a cchar_t

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int getcchar(const cchar_t *wcval, wchar_t *wch, attr_t *attrs, short
*color_pair, void *opt);

If wch is not a null pointer, the getcchar() function splits the cchar_t object
pointed to by wcval into a wide character string, attributes, and a color pair. It stores
the attributes in the location pointed to by attrs, the color pair in the location pointed
to by color_pair, and the wide character string in the location pointed to by wch.

If wch is a null pointer, the getcchar() function simply returns the number of wide
characters in the cchar_t object pointed to by wcval. The objects pointed to by attrs
and color_pair are not changed.

wcval Is a pointer to a cchar_t object.

wch Is a pointer to an object where a wide character string can be
stored.

attrs Is a pointer to an object where attributes can be stored.

color_pair Is a pointer to an object where a color pair can be stored.

opts Is reserved for future use. Currently, this must be a null pointer.

When wch is a null pointer, the getcchar() function returns the number of wide
characters in the string pointed to by wcval including the null terminator.

When wch is not a null pointer, the getcchar() function returns OK on success and
ERR otherwise.

None

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attroff(3XCURSES), can_change_color(3XCURSES), libcurses(3XCURSES),
setcchar(3XCURSES), attributes(5), standards(5)

getcchar(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

216 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

getch, wgetch, mvgetch, mvwgetch – get a single-byte character from the terminal

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int getch(void);

int wgetch(WINDOW *win);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

win Is a pointer to the window associated with the terminal from which the
character is to be read.

y Is the y (row) coordinate for the position of the character to be read.

x Is the x (column) coordinate for the position of the character to be read.

These functions read a single-byte character from the terminal associated with the
current or specified window. The results are unspecified if the input is not a
single-byte character. If keypad(3XCURSES) is enabled, these functions respond to the
pressing of a function key by returning the corresponding KEY_ value defined in
<curses.h>

Processing of terminal input is subject to the general rules described on the
keypad(3XCURSES) manual page.

If echoing is enabled, then the character is echoed as though it were provided as an
input argument to addch(3XCURSES), except for the following characters:

<backspace> The input is interpreted as follows: unless the cursor already was
in column 0, <backspace> moves the cursor one column toward
the start of the current line and any characters after the
<backspace> are added or inserted starting there. The character at
the resulting cursor position it then deleted as though
delch(3XCURSES) were called, except that if the cursor was
originally in the first column of the line, the user is alerted as
though beep(3XCURSES) were called.

Function keys The user is alerted as though beep() were called. Information
concerning the function keys is not returned to the caller.

If the current or specified window is not a pad, and it has been moved modified since
the last refresh operation, then it will be refreshed before another character is read.

The following is a list of tokens for function keys that are returned by the getch() set
of functions if keypad handling is enabled (some terminals may not support all
tokens).

getch(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Constant Values
for Function Keys

Curses Library Functions 217

Constant Description

KEY_BREAK Break key

KEY_DOWN The down arrow key

KEY_UP The up arrow key

KEY_LEFT The left arrow key

KEY_RIGHT The right arrow key

KEY_HOME Home key

KEY_BACKSPACE Backspace

KEY_F0 Function keys. Space for 64 keys is reserved.

KEY_F(n) For 0 <= n <= 63

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backwards

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send

KEY_SRESET Soft (partial) reset

KEY_RESET Reset or hard reset

KEY_PRINT Print or copy

KEY_LL Home down or bottom (lower left)

getch(3XCURSES)

218 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Constant Description

KEY_A1 Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab

KEY_BEG Beginning key

KEY_CANCEL Cancel key

KEY_CLOSE Close key

KEY_COMMAND Cmd (command) key

KEY_COPY Copy key

KEY_CREATE Create key

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key

KEY_MESSAGE Message key

KEY_MOVE Move key

KEY_NEXT Next object key

KEY_OPEN Open key

KEY_OPTIONS Options key

KEY_PREVIOUS Previous object key

KEY_REDO Redo key

KEY_REFERENCE Reference key

KEY_REFRESH Refresh key

KEY_REPLACE Replace key

KEY_RESTART Restart key

KEY_RESUME Resume key

getch(3XCURSES)

Curses Library Functions 219

Constant Description

KEY_SAVE Save key

KEY_SBEG Shifted beginning key

KEY_SCANCEL Shifted cancel key

KEY_SCOMMAND Shifted command key

KEY_SCOPY Shifted copy key

KEY_SCREATE Shifted create key

KEY_SDC Shifted delete char key

KEY_SDL Shifted delete line key

KEY_SELECT Select key

KEY_SEND Shifted end key

KEY_SEOL Shifted clear line key

KEY_SEXIT Shifted exit key

KEY_SFIND Shifted find key

KEY_SHELP Shifted help key

KEY_SHOME Shifted home key

KEY_SIC Shifted input key

KEY_SLEFT Shifted left arrow key

KEY_SMESSAGES Shifted messages key

KEY_SMOVE Shifted move key

KEY_SNEXT Shifted next key

KEY_SOPTIONS Shifted options key

KEY_SPREVIOUS Shifted previous key

KEY_SPRINT Shifted print key

KEY_SREDO Shifted redo key

KEY_SREPLACE Shifted replace key

KEY_SRIGHT Shifted right arrow key

KEY_SRSUME Shifted resume key

KEY_SSAVE Shifted save key

KEY_SSUSPEND Shifted suspend key

getch(3XCURSES)

220 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Constant Description

KEY_SUNDO Shifted undo key

KEY_SUSPEND Suspend key

KEY_UNDO Undo key

Upon successful completion, these functions return the single-byte character, KEY_
value, or ERR. When in the nodelay mode and no data is available, ERR is returned.

No errors are defined.

Applications should not define the escape key by itself as a single-character function.

When using these functions, nocbreak mode (cbreak(3XCURSES)) and echo mode
(echo(3XCURSES)) should not be used at the same time. Depending on the state of
the terminal when each character is typed, the application may produce undesirable
results.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

cbreak(3XCURSES), echo(3XCURSES), halfdelay(3XCURSES),
keypad(3XCURSES), libcurses(3XCURSES), nodelay(3XCURSES),
notimeout(3XCURSES), raw(3XCURSES), timeout(3XCURSES), attributes(5),
standards(5)

getch(3XCURSES)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Curses Library Functions 221

getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, wgetstr – get a
multibyte character string from terminal

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int getnstr(char *str, int n);

int getstr(char *str);

int mvgetnstr(int y, int x, char *str, int n);

int mvgetstr(int y, int x, char *str);

int mvwgetnstr(WINDOW *win, int y, int x, char *str, int n);

int mvwgetstr(WINDOW *win, int y, int x, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

int wgetstr(WINDOW *win, char *str);

The getstr() and wgetstr() functions get a character string from the terminal
associated with the window stdscr or window win, respectively. The mvgetstr()
and mvwgetstr() functions move the cursor to the position specified in stdscr or
win, respectively, then get a character string.

These functions call wgetch(3XCURSES) and place each received character in str until
a newline is received, which is also placed in str. The erase and kill characters set by
the user are processed.

The getnstr(), mvgetnstr(), mvwgetnstr() and wgetnstr() functions read at
most n characters. These functions are used to prevent overflowing the input buffer.

The getnstr(), wgetnstr(), mvgetnstr(), and mvwgetnstr() functions only
return complete multibyte characters. If the area pointed to by str is not large enough
to hold at least one character, these functions fail.

str Is a pointer to the area where the character string is to
be placed.

n Is the maximum number of characters to read from
input.

y Is the y (row) coordinate of starting position of
character string to be read.

x Is the x (column) coordinate of starting position of
character string to be read.

win Points to the window associated with the terminal from
which the character is to be read.

getnstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

222 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

getch(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

getnstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 223

getn_wstr, get_wstr, mvgetn_wstr, mvget_wstr, mvwgetn_wstr, mvwget_wstr,
wgetn_wstr, wget_wstr – get a wide character string from terminal

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int getn_wstr(wint_t *wstr, int n);

int get_wstr(wint_t *wstr);

int mvgetn_wstr(int y, int x, wint_t *wstr, int n);

int mvget_wstr(int y, int x, wint_t *wstr);

int mvwgetn_wstr(WINDOW *win, int y, int x, wint_t *wstr, int n);

int mvwget_wstr(WINDOW *win, int y, int x, wint_t *wstr);

int wgetn_wstr(WINDOW *win, wint_t *wstr, int n);

int wget_wstr(WINDOW *win, wint_t *wstr);

The get_wstr() and wget_wstr() functions get a wide character string from the
terminal associated with the window stdscr or window win, respectively. The
mvget_str() and mvwget_wstr() functions move the cursor to the position
specified in stdscr or win, respectively, then get a wide character string.

These functions call wget_wch(3XCURSES) and place each received character in wstr
until a newline character, end-of-line character, or end-of-file character is received,
which is also placed in wstr. The erase and kill characters set by the user are processed.

The getn_wstr(), mvgetn_wstr(), mvwgetn_wstr() and wgetn_wstr()
functions read at most n characters. These functions are used to prevent overflowing
the input buffer.

wstr Is a pointer to the area where the character string is to be placed.

n Is the maximum number of characters to read from input.

y Is the y (row) coordinate of starting position of character string to be read.

x Is the x (column) coordinate of starting position of character string to be
read.

win points to the window associated with the terminal from which the
character is to be read.

On success, these functions return OK. Otherwise, they return ERR.

None.

getn_wstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

224 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

get_wch(3XCURSES), getnstr(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

getn_wstr(3XCURSES)

ATTRIBUTES

SEE ALSO

Curses Library Functions 225

get_wch, wget_wch, mvget_wch, mvwget_wch – get a wide character from terminal

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int get_wch(wint_t *ch);

int wget_wch(WINDOW *win, wint_t *ch);

int mvget_wch(int y, int x, wint_t *ch);

int mvwget_wch(WINDOW *win, int y, int x, wint_t *ch);

The get_wch() and wget_wch() functions get a wide character from the terminal
associated with the window stdscr or window win, respectively. The mvget_wch()
and mvwget_wch() functions move the cursor to the position specified in stdscr or
win, respectively, then get a character.

If the window is not a pad and has been changed since the last call to
refresh(3XCURSES), get_wch() calls refresh() to update the window before the
next character is read.

The setting of certain functions affects the behavior of the get_wch() set of functions.
For example, if cbreak(3XCURSES) is set, characters typed by the user are
immediately processed. If halfdelay(3XCURSES) is set, get_wch() waits until a
character is typed or returns ERR if no character is typed within the specified timeout
period. This timeout can also be specified for individual windows with the delay
parameter of timeout (3XCURSES) A negative value waits for input; a value of 0
returns ERR if no input is ready; a positive value blocks until input arrives or the time
specified expires (in which case ERR is returned). If nodelay(3XCURSES) is set, ERR is
returned if no input is waiting; if not set, get_wch() waits until input arrives. Each
character will be echoed to the window unless noecho(3XCURSES) has been set.

If keypad handling is enabled (keypad(3XCURSES) is TRUE), the token for the
function key (a KEY_ value) is stored in the object pointed to by ch and
KEY_CODE_YES is returned. If a character is received that could be the beginning of a
function key (for example, ESC), an inter-byte timer is set. If the remainder of the
sequence is not received before the time expires, the character is passed through;
otherwise, the value of the function key is returned. If notimeout() is set, the
inter-byte timer is not used.

The ESC key is typically a prefix key used with function keys and should not be used
as a single character.

See the getch(3XCURSES) manual page for a list of tokens for function keys that are
returned by the get_wch() set of functions if keypad handling is enabled (Some
terminals may not support all tokens).

get_wch(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

226 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

ch Is a pointer to a wide integer where the returned wide character or KEY_
value can be stored.

win Is a pointer to the window associated with the terminal from which the
character is to be read.

y Is the y (row) coordinate for the position of the character to be read.

x Is the x (column) coordinate for the position of the character to be read.

When these functions successfully report the pressing of a function key, they return
KEY_CODE_YES. When they successfully report a wide character, they return OK.
Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

cbreak(3XCURSES), echo(3XCURSES), halfdelay(3XCURSES),
keypad(3XCURSES), libcurses(3XCURSES), nodelay(3XCURSES),
notimeout(3XCURSES), raw(3XCURSES), timeout(3XCURSES), attributes(5),
standards(5)

get_wch(3XCURSES)

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 227

getwin, putwin – read a window from, and write a window to, a file

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

WINDOW *getwin(FILE *filep);

int putwin(WINDOW *win, FILE *filep);

The getwin() function reads window-related data (written earlier by putwin())
from the stdio stream pointed to by filep. It then creates and initializes a new
window using that data.

The putwin() function writes all the data associated with the window pointed to by
win to the stdio stream pointed to by filep. The getwin() function can later retrieve
this data.

filep Is a pointer to a stdio stream.

win Is a pointer to a window.

On success, the getwin() function returns a pointer to the new window created.
Otherwise, it returns a null pointer.

On success, the putwin() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), scr_dump(3XCURSES), attributes(5), standards(5)

getwin(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

228 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

halfdelay – enable/disable half-delay mode

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int halfdelay(int tenths);

The halfdelay() function is similar to cbreak(3XCURSES) in that when set,
characters typed by the user are immediately processed by the program. The
difference is that ERR is returned if no input is received after tenths tenths seconds.

The nocbreak(3XCURSES) function should be used to leave half-delay mode.

tenths Is the number of tenths of seconds for which to block input (1 to
255).

On success, the halfdelay() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

cbreak(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

halfdelay(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 229

has_ic, has_il – determine insert/delete character/line capability

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

bool has_ic(void);

bool has_il(void);

The has_ic() function determines whether or not the terminal has insert/delete
character capability.

The has_il() function determines whether or not the terminal has insert/delete line
capability.

The has_ic() function returns TRUE if the terminal has insert/delete character
capability and FALSE otherwise.

The has_il() function returns TRUE if the terminal has insert/delete line capability
and FALSE otherwise.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

has_ic(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

230 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

hline, mvhline, mvvline, mvwhline, mvwvline, vline, whline, wvline – use single-byte
characters (and renditions) to draw lines

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int hline(chtype ch, int n);

int mvhline(int y, int x, chtype ch, int n);

int mvvline(int y, int x, chtype ch, int n);

int mvwhline(WINDOW *win, int y, int x, chtype ch, int n);

int mvwvline(WINDOW *win, int y, int x, chtype ch, int n);

int vline(chtype ch, int n);

int whline(WINDOW *win, chtype ch, int n);

int wvline(WINDOW *win, chtype ch, int n);

The hline(), vline(), whline(), wvline() functions draw a horizontal or
vertical line, in either the window stdscr or win starting at the current cursor
position. The line is drawn using the character ch and is a maximum of n positions
long, or as many as will fit into the window. If ch is 0 (zero), the default horizontal or
vertical character is used.

The mvhline(), mvvline(), mvwhline(), mvwvline() functions are similar to the
previous group of functions but the line begins at cursor position specified by x and y.

The functions with names ending with hline() draw horizontal lines proceeding
towards the last column of the same line. The functions with names ending with
vline() draw vertical lines proceeding towards the last column of the same line.

These functions do not change the position of the cursor.

ch Is the character used to draw the line.

n Is the maximum number of characters in the line.

y Is the y (row) coordinate for the start of the line.

x Is the x (column) coordinate for the start of the line.

win Is a pointer to a window.

On success, these functions return OK. Otherwise, they return ERR.

None

hline(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

Curses Library Functions 231

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

border(3XCURSES), border_set(3XCURSES), hline_set(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

hline(3XCURSES)

ATTRIBUTES

SEE ALSO

232 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

hline_set, mvhline_set, mvvline_set, mvwhline_set, mvwvline_set, vline_set,
whline_set, wvline_set – use complex characters (and renditions) to draw lines

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int hline_set(const cchar_t *ch, int n);

int mvhline_set(int y, int x, const cchar_t *wch, int n);

int mvvline_set(int y, int x, const cchar_t *wch, int n);

int mvwhline_set(WINDOW *win, int y, int x, const cchar_t *wch, int
n);

int mvwvline_set(WINDOW *win, int y, int x, const cchar_t *wch, int
n);

int vline_set(const cchar_t *wch, int n);

int whline_set(WINDOW *win, const cchar_t *wch, int n);

int wvline_set(WINDOW *win, const cchar_t *wch, int n);

The hline_set(), vline_set(), whline_set(), wvline_set() functions draw
a line, in either the window stdscr or win starting at the current cursor position. The
line is drawn using the character wch and is a maximum of n positions long, or as
many as will fit into the window. If wch is a null pointer, the default horizontal or
vertical character is used.

The mvhline_set(), mvvline_set(), mvwhline_set(), mvwvline_set()
functions are similar to the previous group of functions but the line begins at cursor
position specified by x and y.

The functions with names ending with hline_set() draw horizontal lines
proceeding towards the last column of the same line. The functions with names
ending with vline_set() draw vertical lines proceeding towards the last column of
the same line.

These functions do not change the position of the cursor.

wch Is the complex character used to draw the line.

n Is the maximum number of characters in the line.

y Is the y (row) coordinate for the start of the line.

x Is the x (column) coordinate for the start of the line.

win Is a pointer to a window.

On success, these functions return OK. Otherwise, they return ERR.

hline_set(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

Curses Library Functions 233

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

border(3XCURSES), border_set(3XCURSES), hline(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

hline_set(3XCURSES)

ERRORS

ATTRIBUTES

SEE ALSO

234 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

idcok – enable/disable hardware insert-character and delete-character features

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

void idcok(WINDOW *win, bool bf);

The idcok() function enables or disables the use of hardware insert-character and
delete-character features in win. If bf is set to TRUE, the use of these features in win is
enabled (if the terminal is equipped). If bf is set to FALSE, their use in win is disabled.

win Is a pointer to a window.

bf Is a Boolean expression.

The idcok() function does not return a value.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

clearok(3XCURSES), doupdate(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

idcok(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 235

immedok – call refresh on changes to window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int immedok(WINDOW *win, bool bf);

If bf is TRUE, immedok() calls refresh(3XCURSES) if any change to the window
image is made (for example, through functions such as addch(3XCURSES),
clrtobot(3XCURSES), and scrl(3XCURSES)). Repeated calls to refresh() may
affect performance negatively. The immedok () function is disabled by default.

win Is a pointer to the window that is to be refreshed.

bf Is a Boolean expression.

The immedok() function does not return a value.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), clearok(3XCURSES), clrtobot(3XCURSES),
doupdate(3XCURSES), libcurses(3XCURSES), scrl(3XCURSES), attributes(5),
standards(5)

immedok(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

236 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

inch, mvinch, mvwinch, winch – return a single-byte character (with rendition)

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

chtype inch(void);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

chtype winch(WINDOW *win);

The inch() and winch() functions return the chtype character located at the
current cursor position of the stdscr window and window win, respectively. The
mvinch() and mvwinch() functions return the chtype character located at the
position indicated by the x (column) and y (row) parameters (the former in the
stdscr window; the latter in window win).

The complete character/attribute pair will be returned. The character or attributes can
be extracted by performing a bitwise AND on the returned value, using the constants
A_CHARTEXT, A_ATTRIBUTES, and A_COLOR.

y Is the y (row) coordinate of the position of the character to be returned.

x Is the x (column) coordinate of the position of the character to be returned.

win Is a pointer to the window that contains the character to be returned.

On success, these functions return the specified character and rendition. Otherwise,
they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), attroff(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

inch(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 237

inchnstr, inchstr, mvinchnstr, mvinchstr, mvwinchnstr, mvwinchstr, winchnstr,
winchstr – retrieve a single-byte character string (with rendition)

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int inchnstr(chtype *chstr, int n);

int inchstr(chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int winchstr(WINDOW *win, chtype *chstr);

The inchstr() and winchstr() functions retrieve the character string (with
rendition) starting at the current cursor position of the stdscr window and window
win, respectively, and ending at the right margin. The mvinchstr() and
mvwinchstr() functions retrieve the character string located at the position
indicated by the x (column) and y (row) parameters (the former in the stdscr
window; the latter in window win).

The inchnstr(), winchnstr(), mvinchnstr(), and mvwinchnstr() functions
retrieve at most n characters from the window stdscr and win, respectively. The
former two functions retrieve the string, starting at the current cursor position; the
latter two commands retrieve the string, starting at the position specified by the x and
y parameters.

All these functions store the retrieved character string in the object pointed to by chstr.

The complete character/attribute pair is retrieved. The character or attributes can be
extracted by performing a bitwise AND on the retrieved value, using the constants
A_CHARTEXT, A_ATTRIBUTES, and A_COLOR. The character string can also be
retrieved without attributes by using instr(3XCURSES) set of functions.

chstr Is a pointer to an object that can hold the retrieved character string.

n Is the number of characters not to exceed when retrieving chstr.

y Is the y (row) coordinate of the starting position of the string to be
retrieved.

x Is the x (column) coordinate of the starting position of the string to be
retrieved.

win Is a pointer to the window in which the string is to be retrieved.

inchnstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

238 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

inch(3XCURSES), innstr(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

inchnstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 239

initscr, newterm – screen initialization functions

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

WINDOW *initscr(void);

SCREEN *newterm(char *type, FILE *outfp, FILE *infp);

type Is a string defining the terminal type to be used in
place of TERM.

outfp Is a pointer to a file to be used for output to the
terminal.

infp Is the pointer to a file to be used for input to the
terminal.

The initscr() function initializes X/Open Curses data structures, determines the
terminal type, and ensures the first call to refresh(3XCURSES) clears the screen.

The newterm() function opens a new terminal with each call. It should be used
instead of initscr() when the program interacts with more than one terminal. It
returns a variable of type SCREEN, which should be used for later reference to that
terminal. Before program termination, endwin() should be called for each terminal.

The only functions that you can call before calling initscr() or newterm() are
filter(3XCURSES), ripoffline(3XCURSES), slk_init(3XCURSES), and
use_env(3XCURSES).

On success, the initscr() function returns a pointer to stdscr; otherwise,
initscr() does not return.

On success, the newterm() function returns a pointer to the specified terminal;
otherwise, a null pointer is returned.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

del_curterm(3XCURSES), delscreen(3XCURSES), doupdate(3XCURSES),
endwin(3XCURSES), filter(3XCURSES), libcurses(3XCURSES),
slk_attroff(3XCURSES), use_env(3XCURSES), attributes(5), standards(5)

initscr(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

240 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

innstr, instr, mvinnstr, mvinstr, mvwinnstr, mvwinstr, winnstr, winstr – retrieve a
multibyte character string (without rendition)

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

:#include <curses.h>

int innstr(char *str, int n);

int instr(char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int winstr(WINDOW *win, char *str);

int winnstr(WINDOW *win, char *str, int n);

str Is a pointer to an object that can hold the retrieved
multibyte character string.

n Is the number of characters not to exceed when
retrieving str.

y Is the y (row) coordinate of the starting position of the
string to be retrieved.

x Is the x (column) coordinate of the starting position of
the string to be retrieved.

win Is a pointer to the window in which the string is to be
retrieved.

The instr() and winstr() functions retrieve a multibyte character string (without
attributes) starting at the current cursor position of the stdscr window and window
win, respectively, and ending at the right margin. The mvinstr() and mvwinstr()
functions retrieve a multibyte character string located at the position indicated by the
x (column) and y (row) parameters (the former in the stdscr window; the latter in
window win).

The innstr(), winnstr(), mvinnstr(), and mvwinnstr() functions retrieve at
most n characters from the window stdscr and win, respectively. The former two
functions retrieve the string starting at the current cursor position; the latter two
commands return the string, starting at the position specified by the x and y
parameters.

innstr(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Curses Library Functions 241

All these functions store the retrieved string in the object pointed to by str. They only
store complete multibyte characters. If the area pointed to by str is not large enough to
hold at least one character, these functions fail.

Only the character portion of the character/rendition pair is returned. To return the
complete character/rendition pair, use winchstr().

OK Successful completion.

ERR An error occurred.

All functions except winnstr() may be macros.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

inch(3XCURSES), inchstr(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

innstr(3XCURSES)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

242 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

innwstr, inwstr, mvinnwstr, mvinwstr, mvwinnwstr, mvwinwstr, winnwstr, winwstr –
retrieve a wide character string (without rendition)

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int innwstr(wchar_t *wstr, int n);

int inwstr(wchar_t *wstr);

int mvinnwstr(int y, int x, wchar_t *wstr, int n);

int mvinwstr(int y, int x, wchar_t *wstr);

int mvwinnwstr(WINDOW*win, int y, int x, wchar_t *wstr, int n);

int mvwinwstr(WINDOW*win, int y, int x, wchar_t *wstr);

int winwstr(WINDOW*win, wchar_t *wstr);

int winnwstr(WINDOW*win, wchar_t *wstr, int n);

wstr Is a pointer to an object that can hold the retrieved multibyte character
string.

n Is the number of characters not to exceed when retrieving wstr.

y Is the y (row) coordinate of the starting position of the string to be
retrieved.

x Is the x (column) coordinate of the starting position of the string to be
retrieved.

win Is a pointer to the window in which the string is to be retrieved.

The inwstr() and winwstr() functions retrieve a wide character string (without
attributes) starting at the current cursor position of the stdscr window and window
win, respectively, and ending at the right margin. The mvinwstr() and
mvwinwstr() functions retrieve a wide character string located at the position
indicated by the x (column) and y (row) parameters (the former in the stdscr
window; the latter in window win).

The innwstr(), winnwstr(), mvinnwstr(), and mvwinnwstr() functions
retrieve at most n characters from the window stdscr and win, respectively. The
former two functions retrieve the string starting at the current cursor position; the
latter two commands return the string, starting at the position specified by the x and y
parameters.

All these functions store the retrieved string in the object pointed to by wstr. They only
store complete wide characters. If the area pointed to by wstr is not large enough to
hold at least one character, these functions fail.

innwstr(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Curses Library Functions 243

Only the character portion of the character/rendition pair is returned. To return the
complete character/rendition pair, use win_wchstr(3XCURSES).

On success, the inwstr(), mvinwstr(), mvwinwstr(), and winwstr() functions
return OK. Otherwise, they return ERR.

On success, the innwstr(), mvinnwstr(), mvwinnwstr(), and winnwstr()
functions return the number of characters read into the string. Otherwise, they return
ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

in_wch(3XCURSES), in_wchnstr(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

innwstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

244 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

insch, winsch, mvinsch, mvwinsch – insert a character

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int insch(chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

int winsch(WINDOW *win, chtype ch);

ch Is the character to be inserted.

y Is the y (row) coordinate of the position of the
character.

x Is the x (column) coordinate of the position of the
character.

win Is a pointer to the window in which the character is to
be inserted.

These functions insert the character and rendition from ch into the current or specified
window at the current or specified position.

These functions do not perform wrapping and do not advance the cursor position.
These functions perform special-character processing, with the exception that if a
newline is inserted into the last line of a window and scrolling is not enabled, the
behavior is unspecified.

Upon successful completion, these functions return OK. Otherwise, they return ERR.

No errors are defined.

These functions are only guaranteed to operate reliably on character sets in which each
character fits into a single byte, whose attributes can be expressed using only constants
with the A_ prefix.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

ins_wch(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

insch(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Curses Library Functions 245

insdelln, winsdelln – insert/delete lines to/from the window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int insdelln(int n);

int winsdelln(WINDOW *win, int n);

n Is the number of lines to insert or delete (positive n
inserts; negative n deletes).

win Is a pointer to the window in which to insert or delete a
line.

The insdelln() and winsdelln() functions insert or delete blank lines in stdscr
or win, respectively. When n is positive, n lines are added before the current line and
the bottom n lines are lost; when n is negative, n lines are deleted starting with the
current line, the remaining lines are moved up, and the bottom n lines are cleared. The
position of the cursor does not change.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

deleteln(3XCURSES), insertln(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

insdelln(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

246 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

insertln, winsertln – insert a line in a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int insertln(void);

int winsertln(WINDOW *win);

win Is a pointer to the window in which to insert the line.

The insertln() and winsertln() functions insert a blank line before the current
line in stdscr or win, respectively. The new line becomes the current line. The current
line and all lines after it in the window are moved down one line. The bottom line in
the window is discarded.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

bkgdset(3XCURSES), deleteln(3XCURSES), insdelln(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

insertln(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 247

insnstr, insstr, mvinsnstr, mvinsstr, mvwinsnstr, mvwinsstr, winsnstr, winsstr – insert a
multibyte character string

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int insnstr(const char *str, int n);

int insstr(const char *str);

int mvinsnstr(int y, int x, const char *str, int n);

int mvinsstr(int y, int x, const char *str);

int mvwinsnstr(WINDOW *win, int y, int x, const char *str, int n);

int mvwinsstr(WINDOW *win, int y, int x, const char *str);

int winsnstr(WINDOW *win, const char *str, int n);

int winsstr(WINDOW *win, const char *str);

str Is a pointer to the string to be inserted.

n Is the number of characters not to exceed when
inserting str. If n is less than 1, the entire string is
inserted.

y Is the y (row) coordinate of the starting position of the
string.

x Is the x (column) coordinate of the starting position of
the string.

win Is a pointer to the window in which the string is to be
inserted.

The insstr() function inserts str at the current cursor position of the stdscr
window. The winsstr() function performs the identical action, but in window win.
The mvinsstr() and mvwinsstr() functions insert the character string at the
starting position indicated by the x (column) and y (row) parameters (the former to the
stdscr window; the latter to window win).

The insnstr(), winsnstr(), mvinsnstr(), and mvwinsnstr() functions insert
n characters to the window or as many as will fit on the line. If n is less than 1, the
entire string is inserted or as much of it as fits on the line. The former two functions
place the string at the current cursor position; the latter two commands use the
position specified by the x and y parameters.

All characters to the right of inserted characters are moved to the right. Characters that
don’t fit on the current line are discarded. The cursor is left at the point of insertion.

insnstr(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

248 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

If a character in str is a newline, carriage return, backspace, or tab, the cursor is moved
appropriately. The cursor is moved to the next tab stop for each tab character (by
default, tabs are eight characters apart). If the character is a control character other
than those previously mentioned, the character is inserted using ^x notation, where x
is a printable character. clrtoeol(3XCURSES) is automatically done before a
newline.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addchstr(3XCURSES), addstr(3XCURSES), clrtoeol(3XCURSES),
ins_nwstr(3XCURSES), insch(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

insnstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 249

ins_nwstr, ins_wstr, mvins_nwstr, mvins_wstr, mvwins_nwstr, mvwins_wstr,
wins_nwstr, wins_wstr – insert a wide character string

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int ins_nwstr(const wchar_t *wstr, int n);

int ins_wstr(const wchar_t *wstr);

int mvins_nwstr(int y, int x, const wchar_t *wstr, int n);

int mvins_wstr(int y, int x, const wchar_t *wstr);

int mvwins_nwstr(WINDOW *win, int y, int x, const wchar_t *wstr,
int n);

int mvwins_wstr(WINDOW *win, int y, int x, const wchar_t *wstr);

int wins_nwstr(WINDOW *win, const wchar_t *wstr, int n);

int wins_wstr(WINDOW *win, const wchar_t *wstr);

wstr Is a pointer to the string to be inserted.

n Is the number of characters not to exceed when
inserting wstr. If n is less than 1, the entire string is
inserted.

y Is the y (row) coordinate of the starting position of the
string.

x Is the x (column) coordinate of the starting position of
the string.

win Is a pointer to the window in which the string is to be
inserted.

The ins_wstr() function inserts wstr at the current cursor position of the stdscr
window. The wins_wstr() function performs the identical action, but in window
win. The mvins_wstr() and mvwins_wstr() functions insert wstr string at the
starting position indicated by the x (column) and y (row) parameters (the former in the
stdscr window; the latter in window win).

The ins_nwstr(), wins_nwstr(), mvins_nwstr(), and mvwins_nwstr()
functions insert n characters to the window or as many as will fit on the line. If n is
less than 1, the entire string is inserted or as much of it as fits on the line. The former
two functions place the string at the current cursor position; the latter two commands
use the position specified by the x and y parameters.

All characters to the right of inserted characters are moved to the right. Characters that
don’t fit on the current line are discarded. The cursor is left at the point of insertion.

ins_nwstr(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

250 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

If a character in wstr is a newline, carriage return, backspace, or tab, the cursor is
moved appropriately. The cursor is moved to the next tab stop for each tab character
(by default, tabs are eight characters apart). If the character is a control character other
than those previously mentioned, the character is inserted using ^x notation, where x
is a printable character. clrtoeol(3XCURSES) is automatically done before a
newline.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wchnstr(3XCURSES), addnwstr(3XCURSES), clrtoeol(3XCURSES),
ins_wch(3XCURSES), insnstr(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

ins_nwstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 251

ins_wch, wins_wch, mvins_wch, mvwins_wch – insert a complex character

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int ins_wch(const cchar_t *wch);

int mvins_wch(int y, int x, const cchar_t *wch);

int mvwins_wch(WINDOW *win, int y, int x, const cchar_t *wch);

int wins_wch(WINDOW *win, const cchar_t *wch);

wch Is the complex character to be inserted.

y Is the y (row) coordinate of the position of the
character.

x Is the x (column) coordinate of the position of the
character.

win Is a pointer to the window in which the character is to
be inserted.

The ins_wch() function inserts the complex character wch at the current cursor
position of the stdscr window. The wins_wch() function performs the identical
action but in window win. The mvins_wch() and mvwins_wch() functions insert
the character at the position indicated by the x (column) and y (row) parameters (the
former in the stdscr window; the latter in window win). The cursor position does
not change.

All characters to the right of the inserted character are moved right one character. The
last character on the line is deleted.

Insertions and deletions occur at the character level. The cursor is adjusted to the first
column of the character prior to the operation.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

ins_wch(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

252 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

add_wch(3XCURSES), ins_nwstr(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

ins_wch(3XCURSES)

SEE ALSO

Curses Library Functions 253

intrflush – enable or disable flush on interrupt

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int intrflush(WINDOW *win, bool bf);

win Is ignored.

bf Is a Boolean expression.

The intrflush() function specifies whether pressing an interrupt key (interrupt,
suspend, or quit) will flush the input buffer associated with the current screen. If the
value of bf is TRUE, then flushing of the output buffer associated with the current
screen will occur when an interrupt key (interrupt, suspend, or quit) is pressed.If the
value of bf is FALSE, then no flushing of the buffer will occur when an interrupt key is
pressed. The default for the option is inherited from the display driver settings. The
win argument is ignored.

Upon successful completion, intrflush() returns OK. Otherwise, it returns ERR.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

flushinp(3XCURSES), libcurses(3XCURSES), qiflush(3XCURSES),
attributes(5), standards(5)

intrflush(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

254 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

in_wch, mvin_wch, mvwin_wch, win_wch – retrieve a complex character (with
rendition)

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int in_wch(cchar_t *wcval);

int mvin_wch(int y, int x, cchar_t *wcval);

int mvwin_wch(WINDOW *win, inty, cchar_t *wcval);

int win_wch(WINDOW *win, cchar_t *wcval);

The in_wch() and win_wch() functions retrieve the complex character and its
rendition located at the current cursor position of the stdscr window and window
win, respectively. The mvin_wch() and mvwin_wch() functions retrieve the complex
character and its rendition located at the position indicated by the x (column) and y
(row) parameters (the former in the stdscr window; the latter in window win).

All these functions store the retrieved character and its rendition in the object pointed
to by wcval.

wcval Is a pointer to an object that can store a complex character and its
rendition.

y Is the y (row) coordinate of the position of the character to be
returned.

x Is the x (column) coordinate of the position of the character to be
returned.

win Is a pointer to the window that contains the character to be
returned.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), inch(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

in_wch(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 255

in_wchnstr, in_wchstr, mvin_wchnstr, mvin_wchstr, mvwin_wchnstr, mvwin_wchstr,
win_wchnstr, win_wchstr – retrieve complex character string (with rendition)

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int in_wchnstr(cchar_t *wchstr, int n);

int in_wchstr(cchar_t *wchstr);

int mvin_wchnstr(int y, int x, cchar_t *wchstr, int n);

int mvin_wchstr(int y, int x, cchar_t *wchstr);

int mvwin_wchnstr(WINDOW *win, int y, int x, cchar_t *wchstr, int
n);

int mvwin_wchstr(WINDOW *win, int y, int x, cchar_t *wchstr);

int win_wchnstr(WINDOW *win, cchar_t *wchstr, int n);

int win_wchstr(WINDOW *win, cchar_t *wchstr);

The in_wchstr() and win_wchstr() functions retrieve a complex character string
(with rendition) starting at the current cursor position of the stdscr window and
window win, respectively, and ending at the right margin. The mvin_wchstr() and
mvwin_wchstr() functions retrieve a complex character string located at the position
indicated by the x (column) and y (row) parameters (the former in the stdscr
window; the latter in window win).

The in_wchnstr(), win_wchnstr(), mvin_wchnstr(), and mvwin_wchnstr()
functions retrieve at most n characters from the window stdscr and win,
respectively. The former two functions retrieve the string, starting at the current cursor
position; the latter two commands retrieve the string, starting at the position specified
by the x and y parameters.

The retrieved character string (with renditions) is stored in the object pointed to by
wcval.

wchstr Is a pointer to an object where the retrieved complex character
string can be stored.

n Is the number of characters not to exceed when retrieving wchstr.

y Is the y (row) coordinate of the starting position of the string to be
retrieved.

x Is the x (column) coordinate of the starting position of the string to
be retrieved.

in_wchnstr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

256 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

win Is a pointer to the window in which the string is to be retrieved.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

in_wch(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

in_wchnstr(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 257

is_linetouched, is_wintouched, touchline, touchwin, untouchwin, wtouchln – control
window refresh

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

bool is_linetouched(WINDOW *win, int line);

bool is_wintouched(WINDOW *win);

int touchline(WINDOW *win, int start, int count);

int touchwin(WINDOW *win);

int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win, int y, int n, int changed);

win Is a pointer to the window in which the refresh is to be
controlled or monitored.

line Is the line to be checked for change since refresh.

start Is the starting line number of the portion of the
window to make appear changed.

count Is the number of lines in the window to mark as
changed.

y Is the starting line number of the portion of the
window to make appear changed or not changed.

n Is the number of lines in the window to mark as
changed.

changed Is a flag indicating whether to make lines look changed
(0) or not changed (1).

The touchwin() function marks the entire window as dirty. This makes it appear to
X/Open Curses as if the whole window has been changed, thus causing the entire
window to be rewritten with the next call to refresh(3XCURSES). This is sometimes
necessary when using overlapping windows; the change to one window will not be
reflected in the other and, hence will not be recorded.

The touchline() function marks as dirty a portion of the window starting at line
start and continuing for count lines instead of the entire window. Consequently, that
portion of the window is updated with the next call to refresh().

The untouchwin() function marks all lines in the window as unchanged since the
last refresh, ensuring that it is not updated.

is_linetouched(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

258 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

The wtouchln() function marks n lines starting at line y as either changed
(changed=1) or unchanged (changed=0) since the last refresh.

To find out which lines or windows have been changed since the last refresh, use the
is_linetouched() and is_wintouched() functions, respectively. These return
TRUE if the specified line or window have been changed since the last call to
refresh() or FALSE if no changes have been made.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

is_linetouched(3XCURSES)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 259

keyname, key_name – return character string used as key name

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

char *keyname(int c);

char *key_name(wchar_t wc);

c Is an 8 bit-character or a key code.

wc Is a wide character key name.

The keyname() function returns a string pointer to the key name. Make a duplicate
copy of the returned string if you plan to modify it.

The key_name() function is similar except that it accepts a wide character key name.

The following table shows the format of the key name based on the input.

Input Format of Key Name

Visible character The same character

Control character ^X

Meta-character (keyname()
only)

M-X

Key value defined in
<curses.h> (keyname() only)

KEY_name

None of the above UNKNOWN KEY

In the preceding table, X can be either a visible character with the high bit cleared or a
control character.

On success, these functions return a pointer to the string used as the key’s name.
Otherwise, they return a null pointer.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

keyname(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

260 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

libcurses(3XCURSES), meta(3XCURSES), attributes(5), standards(5)

keyname(3XCURSES)

SEE ALSO

Curses Library Functions 261

keypad – enable/disable keypad handling

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int keypad(WINDOW *win, bool bf);

win Is a pointer to the window in which to enable/disable keypad handling.

bf Is a Boolean expression.

The keypad() function controls keypad translation. If bf is TRUE, keypad translation
is enabled. If bf is FALSE, keypad translation is disabled. The initial state is FALSE.

This function affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes
when a function key is pressed, then after keypad translation is first enabled, the
implementation transmits this command to the terminal before an affected input
function tries to read any characters from that terminal.

The Curses input model provides the following ways to obtain input from the
keyboard:

The application can enable or disable keypad translation by calling keypad(). When
translation is enabled, Curses attempts to translate a sequence of terminal input that
represents the pressing of a function into a single key code. When translation is
disabled, Curses passes terminal input to the application without such translation, and
any interpretation of the input as representing the pressing of a keypad key must be
done by the application.

The complete set of key codes for keypad keys that Curses can process is specified by
the constants defined in <curses.h> whose names begin with “KEY_”. Each terminal
type described in the terminfo database may support some or all of these key codes.
The terminfo database specifies the sequence of input characters from the terminal
type that correspond to each key code.

The Curses inplementation cannot translate keypad keys on terminals where pressing
the keys does not transmit a unique sequence.

When translation is enabled and a character that could be the beginning of a function
key (such as escape) is received, Curses notes the time and begins accumulating
characters. If Curses receives additional characters that represent the processing of a
keypad key within an unspecified interval from the time the character was received,
then Curses converts this input to a key code for presentation to the application. If

keypad(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Keypad processing

262 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

such characters are not received during this interval, translation of this input does not
occur and the individual characters are presented to the application separately.
(Because Curses waits for this interval to accumulate a key code, many terminals
experience a delay between the time a user presses the escape key and the time the
escape key is returned to the application.)

In addition, No Timeout Mode provides that in any case where Curses has received
part of a function key sequence, it waits indefinitely for the complete key sequence.
The “unspecified interval” in the previous paragraph becomes infinite in No Timeout
Mode. No Timeout Mode allows the use of function keys over slow communication
lines. No Timeout Mode lets the user type the individual characters of a function key
sequence, but also delays application response when the user types a character (not a
function key) that begins a function key sequence. For this reason, in No Timeout
Mode many terminals will appear to hang between the time a user presses the escape
key and the time another key is pressed. No Timeout Mode is switchable by calling
notimeout(3XCURSES).

If any special characters (<backspace>, <carriage return>, <newline>, <tab>) are
defined or redefined to be characters that are members of a function key sequence,
then Curses will be unable to recognize and translate those function keys.

Several of the modes discussed below are described in terms of availability of input. If
keypad translation is enabled, then input is not available once Curses has begun
receiving a keypad sequence until the sequence is completely received or the interval
has elapsed.

The following four mutually-specific Curses modes let the application control the
effect of flow-control characters, the interrupt character, the erase character, and the
kill character:

Input Mode Effect

Cooked Mode This achieves normal line-at-a-time processing with all special
characters handled outside the application. This achieves the same
effect as canonical-mode input processing. The state of the ISIG and
IXON flags are not changed upon entering this mode by calling
nocbreak(3XCURSES), and are set upon entering this mode by
calling noraw(3XCURSES).

Erase and kill characters are supported from any supported locale,
no matter the width of the character.

keypad(3XCURSES)

Input Mode

Curses Library Functions 263

Input Mode Effect

cbreak Mode Characters typed by the user are immediately available to the
application and Curses does not perform special processing on
either the erase character or the kill character. An application can set
cbreak mode to do its own line editing but to let the abort character
be used to abort the task. This mode achieves the same effect as
non-canonical-mode, Case B input processing (with MIN set to 1 and
ICRNL cleared.) The state of the ISIG and IXON flags are not
changed upon entering this mode.

Half-Delay Mode The effect is the same as cbreak, except that input functions wait
until a character is available or an interval defined by the application
elapses, whichever comes first. This mode achieves the same effect
as non-canonical-mode, Case C input processing (with TIME set to
the value specified by the application.) The state of the ISIG and
IXON flags are not changed upon entering this mode.

Raw Mode Raw mode gives the application maximum control over terminal
input. The application sees each character as it is typed. This
achieves the same effect as non-canonical mode, Case D input
processing. The ISIG and IXON flags are cleared upon entering this
mode.

The terminal interface settings are reported when the process calls
initscr(3XCURSES) or newterm(3XCURSES) to initialize Curses and restores these
settings when endwin(3XCURSES) is called. The initial input mode for Curses
operations is especially unless Enhanced Curses compliance, in which the initial mode
is cbreak mode, is supported.

The behavior of the BREAK key depends on other bits in the display driver that are not
set by Curses.

Two mutually-exclusive delay modes specify how quickly certain Curses functions
return to the application when there is no terminal input waiting when the function is
called:

No Delay The function fails.

Delay The application waits until text is passed through to the
application. If cbreak or Raw Mode is set, this is after one
character. Otherwise, this is after the first <newline> character,
end-of-line character, or end-of-file character.

The effect of No Delay Mode on function key processing is unspecified.

keypad(3XCURSES)

Delay Mode

264 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Echo mode determines whether Curses echoes typed characters to the screen. The
effect of Echo mode is analogous to the effect of the ECHO flag in the local mode field
of the termios structure associated with the terminal device connected to the
window. However, Curses always clears the ECHO flag when invoked, to inhibit the
operating system from performing echoing. The method of echoing characters is not
identical to the operating system’s method of echoing characters, because Curses
performs additional processing of terminal input.

If in Echo mode, Curses performs ’s’s own echoing. Any visible input character is
stored in the current or specified window by the input function that the application
called, at that window’s cursor position, as though addch(3XCURSES) were called,
with all consequent effects such as cursor movement and wrapping.

If not in Echo mode, any echoing of input must be performed by the application.
Applications often perform their own echoing in a controlled area of the screen, or do
not echo at all, so they disable Echo mode.

It may not be possible to turn off echo processing for synchronous and networked
asynchronous terminals because echo processing is done directly by the terminals.
Applications running on such terminals should be aware that any characters typed
will appear on the screen at wherever the cursor is positioned.

Upon successful completion, the keypad() function returns OK. Otherwise, it returns
ERR.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), endwin(3XCURSES), getch(3XCURSES), initscr(3XCURSES),
libcurses(3XCURSES), newterm(3XCURSES), nocbreak(3XCURSES),
noraw(3XCURSES), attributes(5), standards(5)

keypad(3XCURSES)

Echo processing

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 265

libcurses – X/Open Curses library

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \

-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

Functions in this library provide a terminal-independent method of updating
character screens with reasonable optimization, conforming to X/Open Curses, Issue
4, Version 2.

The shared object libcurses.so.2 provides the public interfaces defined below. See
intro(3) for additional information on shared object interfaces.

COLORS COLOR_PAIR

COLOR_PAIRS COLS

LINES PAIR_NUMBER

add_wch add_wchnstr

add_wchstr addch

addchnstr addchstr

addnstr addnwstr

addstr addwstr

attr_get attr_off

attr_on attr_set

attroff attron

attrset baudrate

beep bkgd

bkgdset bkgrnd

bkgrndset border

border_set box

box_set can_change_color

cbreak chgat

clear clearok

clrtobot clrtoeol

color_content color_set

libcurses(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

266 man pages section 3: Curses Library Functions • Last Revised 20 May 2003

copywin cur_term

curs_set curscr

def_prog_mode def_shell_mode

del_curterm delay_output

delch deleteln

delscreen delwin

derwin doupdate

dupwin echo

echo_wchar echochar

endwin erase

erasechar erasewchar

filter flash

flushinp get_wch

get_wstr getbkgd

getbkgrnd getcchar

getch getn_wstr

getnstr getstr

getwin halfdelay

has_colors has_ic

has_il hline

hline_set idcok

idlok immedok

in_wch in_wchnstr

in_wchstr inch

inchnstr inchstr

init_color init_pair

initscr innstr

innwstr ins_nwstr

ins_wch ins_wstr

insch insdelln

libcurses(3XCURSES)

Curses Library Functions 267

insertln insnstr

insstr instr

intrflush inwstr

is_linetouched is_wintouched

isendwin key_name

keyname keypad

killchar killwchar

leaveok longname

meta move

mvadd_wch mvadd_wchnstr

mvadd_wchstr mvaddch

mvaddchnstr mvaddchstr

mvaddnstr mvaddnwstr

mvaddstr mvaddwstr

mvchgat mvcur

mvdelch mvderwin

mvget_wch mvget_wstr

mvgetch mvgetn_wstr

mvgetnstr mvgetstr

mvhline mvhline_set

mvin_wch mvin_wchnstr

mvin_wchstr mvinch

mvinchnstr mvinchstr

mvinnstr mvinnwstr

mvins_nwstr mvins_wch

mvins_wstr mvinsch

mvinsnstr mvinsstr

mvinstr mvinwstr

mvprintw mvscanw

mvvline mvvline_set

libcurses(3XCURSES)

268 man pages section 3: Curses Library Functions • Last Revised 20 May 2003

mvwadd_wch mvwadd_wchnstr

mvwadd_wchstr mvwaddch

mvwaddchnstr mvwaddchstr

mvwaddnstr mvwaddnwstr

mvwaddstr mvwaddwstr

mvwchgat mvwdelch

mvwget_wch mvwget_wstr

mvwgetch mvwgetn_wstr

mvwgetnstr mvwgetstr

mvwhline mvwhline_set

mvwin mvwin_wch

mvwin_wchnstr mvwin_wchstr

mvwinch mvwinchnstr

mvwinchstr mvwinnstr

mvwinnwstr mvwins_nwstr

mvwins_wch mvwins_wstr

mvwinsch mvwinsnstr

mvwinsstr mvwinstr

mvwinwstr mvwprintw

mvwscanw mvwvline

mvwvline_set napms

newpad newterm

newwin nl

nocbreak nodelay

noecho nonl

noqiflush noraw

notimeout overlay

overwrite pair_content

pecho_wchar pechochar

pnoutrefresh prefresh

libcurses(3XCURSES)

Curses Library Functions 269

printw putp

putwin qiflush

raw redrawwin

refresh reset_prog_mode

reset_shell_mode resetty

restartterm ripoffline

savetty scanw

scr_dump scr_init

scr_restore scr_set

scrl scroll

scrollok set_curterm

set_term setcchar

setscrreg setupterm

slk_attr_off slk_attr_on

slk_attr_set slk_attroff

slk_attron slk_attrset

slk_clear slk_color

slk_init slk_label

slk_noutrefresh slk_refresh

slk_restore slk_set

slk_touch slk_wset

standend standout

start_color stdscr

subpad subwin

syncok term_attrs

termattrs termname

tgetent tgetflag

tgetnum tgetstr

tgoto tigetflag

tigetnum tigetstr

libcurses(3XCURSES)

270 man pages section 3: Curses Library Functions • Last Revised 20 May 2003

timeout touchline

touchwin tparm

tputs typeahead

unctrl unget_wch

ungetch untouchwin

use_env vid_attr

vid_puts vidattr

vidputs vline

vline_set vw_printw

vw_scanw vwprintw

vwscanw wadd_wch

wadd_wchnstr wadd_wchstr

waddch waddchnstr

waddchstr waddnstr

waddnwstr waddstr

waddwstr wattr_get

wattr_off wattr_on

wattr_set wattroff

wattron wattrset

wbkgd wbkgdset

wbkgrnd wbkgrndset

wborder wborder_set

wchgat wclear

wclrtobot wclrtoeol

wcolor_set wcursyncup

wdelch wdeleteln

wecho_wchar wechochar

werase wget_wch

wget_wstr wgetbkgrnd

wgetch wgetn_wstr

libcurses(3XCURSES)

Curses Library Functions 271

wgetnstr wgetstr

whline whline_set

win_wch win_wchnstr

win_wchstr winch

winchnstr winchstr

winnstr winnwstr

wins_nwstr wins_wch

wins_wstr winsch

winsdelln winsertln

winsnstr winsstr

winstr winwstr

wmove wnoutrefresh

wprintw wredrawln

wrefresh wscanw

wscrl wsetscrreg

wstandend wstandout

wsyncdown wsyncup

wtimeout wtouchln

wunctrl wvline

wvline_set

/usr/xpg4/lib/libcurses.so.1
shared object for backward compatibility

/usr/xpg4/lib/libcurses.so.2
shared object

/usr/xpg4/lib/64/libcurses.so.1
64-bit shared object for backward compatibility

/usr/xpg4/lib/64/libcurses.so.2
64-bit shared object

The libcurses.so.1 listed above is an earlier shared object that provides the
previous version of the X/Open Curses library (Issue 4). There is no binary
compatiblity between libcurses.so.1 and libcurses.so.2. This file is provided
for backwards compatiblity and will be removed in a future Solaris release. There is no
plan to fix any of its defects.

libcurses(3XCURSES)

FILES

NOTES

272 man pages section 3: Curses Library Functions • Last Revised 20 May 2003

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard

MT-Level Unsafe

intro(3), curses(3XCURSES), libcurses(3LIB), libcurses(3LIBUCB),
attributes(5), standards(5)

libcurses(3XCURSES)

ATTRIBUTES

SEE ALSO

Curses Library Functions 273

LINES – number of lines on terminal screen

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library ...]

#include <curses.h>

extern int LINES;

The external variable LINES indicates the number of lines on the terminal screen.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

initscr(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

LINES(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

274 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

longname – return full terminal type name

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

const char *longname(void);

The longname() function returns a pointer to a static area containing a verbose
description (128 characters or fewer) of the terminal. The area is defined after calls to
initscr(3XCURSES), newterm(3XCURSES), or setupterm(3XCURSES). The value
should be saved if longname() is going to be used with multiple terminals since it
will be overwritten with a new value after each call to newterm() or setupterm().

On success, the longname() function returns a pointer to a verbose description of the
terminal. Otherwise, it returns a null pointer.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

initscr(3XCURSES), libcurses(3XCURSES), newterm(3XCURSES),
setupterm(3XCURSES), attributes(5), standards(5)

longname(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 275

menu_attributes, set_menu_fore, menu_fore, set_menu_back, menu_back,
set_menu_grey, menu_grey, set_menu_pad, menu_pad – control menus display
attributes

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_menu_fore(MENU *menu, chtype attr);

chtype menu_fore(MENU *menu);

int set_menu_back(MENU *menu, chtype attr);

chtype menu_back(MENU *menu);

int set_menu_grey(MENU*menu, chtype attr);

chtype menu_grey(MENU *menu);

int set_menu_pad(MENU *menu, int pad);

int menu_pad(MENU *menu);

set_menu_fore() sets the foreground attribute of menu — the display attribute for
the current item (if selectable) on single-valued menus and for selected items on
multi-valued menus. This display attribute is a curses library visual attribute.
menu_fore() returns the foreground attribute of menu.

set_menu_back() sets the background attribute of menu — the display attribute for
unselected, yet selectable, items. This display attribute is a curses library visual
attribute.

set_menu_grey() sets the grey attribute of menu — the display attribute for
nonselectable items in multi-valued menus. This display attribute is a curses library
visual attribute. menu_grey() returns the grey attribute of menu.

The pad character is the character that fills the space between the name and
description of an item. set_menu_pad() sets the pad character for menu to pad.
menu_pad() returns the pad character of menu.

These routines return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

menu_attributes(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

276 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_attributes(3CURSES)

NOTES

Curses Library Functions 277

menu_cursor, pos_menu_cursor – correctly position a menus cursor

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int pos_menu_cursor(MENU *menu);

pos_menu_cursor() moves the cursor in the window of menu to the correct position
to resume menu processing. This is needed after the application calls a curses library
I/O routine.

This routine returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_NOT_POSTED The menu has not been posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), panel_update(3CURSES),
panels(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_cursor(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

278 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_driver – command processor for the menus subsystem

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int menu_driver(MENU *menu, int c);

menu_driver() is the workhorse of the menus subsystem. It checks to determine
whether the character c is a menu request or data. If c is a request, the menu driver
executes the request and reports the result. If c is data (a printable ASCII character), it
enters the data into the pattern buffer and tries to find a matching item. If no match is
found, the menu driver deletes the character from the pattern buffer and returns
E_NO_MATCH. If the character is not recognized, the menu driver assumes it is an
application-defined command and returns E_UNKNOWN_COMMAND.

Menu driver requests:

REQ_LEFT_ITEM Move left to an item.

REQ_RIGHT_ITEM Move right to an item

REQ_UP_ITEM Move up to an item.

REQ_DOWN_ITEM Move down to an item.

REQ_SCR_ULINE Scroll up a line.

REQ_SCR_DLINE Scroll down a line.

REQ_SCR_DPAGE Scroll up a page.

REQ_SCR_UPAGE Scroll down a page.

REQ_FIRST_ITEM Move to the first item.

REQ_LAST_ITEM Move to the last item.

REQ_NEXT_ITEM Move to the next item.

REQ_PREV_ITEM Move to the previous item.

REQ_TOGGLE_ITEM Select/de-select an item.

REQ_CLEAR_PATTERN Clear the menu pattern buffer.

REQ_BACK_PATTERN Delete the previous character from pattern buffer.

REQ_NEXT_MATCH Move the next matching item.

REQ_PREV_MATCH Move to the previous matching item.

menu_driver() returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

menu_driver(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Curses Library Functions 279

E_BAD_STATE The routine was called from an initialization or
termination function.

E_NOT_POSTED The menu has not been posted.

E_UNKNOWN_COMMAND An unknown request was passed to the menu driver.

E_NO_MATCH The character failed to match.

E_NOT_SELECTABLE The item cannot be selected.

E_REQUEST_DENIED The menu driver could not process the request.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

Application-defined commands should be defined relative to (greater than)
MAX_COMMAND, the maximum value of a request listed above.

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_driver(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

280 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_format, set_menu_format – set and get maximum numbers of rows and
columns in menus

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_menu_format(MENU *menu, int rows, int cols);

void menu_format(MENU *menu, int *rows, int *cols);

set_menu_format() sets the maximum number of rows and columns of items that
may be displayed at one time on a menu. If the menu contains more items than can be
displayed at once, the menu will be scrollable.

menu_format() returns the maximum number of rows and columns that may be
displayed at one time on menu. rows and cols are pointers to the variables used to
return these values.

set_menu_format() returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_format(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 281

menu_hook, set_item_init, item_init, set_item_term, item_term, set_menu_init,
menu_init, set_menu_term, menu_term – assign application-specific routines for
automatic invocation by menus

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_item_init(MENU *menu, void (*func)(MENU *));

int set_item_term(MENU *menu, void (*func)(MENU *));

void item_term(MENU *menu);

int set_menu_init(MENU *menu, void (*func)(MENU *));

void menu_init(MENU *menu);

int set_menu_term(MENU *menu, void (*func)(MENU *));

void menu_term(MENU *menu);

set_item_init() assigns the application-defined function to be called when the
menu is posted and just after the current item changes. item_init() returns a
pointer to the item initialization routine, if any, called when the menu is posted and
just after the current item changes.

set_item_term() assigns an application-defined function to be called when the
menu is unposted and just before the current item changes. item_term() returns a
pointer to the termination function, if any, called when the menu is unposted and just
before the current item changes.

set_menu_init() assigns an application-defined function to be called when the
menu is posted and just after the top row changes on a posted menu. menu_init()
returns a pointer to the menu initialization routine, if any, called when the menu is
posted and just after the top row changes on a posted menu.

set_menu_term() assigns an application-defined function to be called when the
menu is unposted and just before the top row changes on a posted menu.
menu_term() returns a pointer to the menu termination routine, if any, called when
the menu is unposted and just before the top row changes on a posted menu.

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

menu_hook(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

282 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_hook(3CURSES)

SEE ALSO

NOTES

Curses Library Functions 283

menu_item_current, set_current_item, current_item, set_top_row, top_row, item_index
– set and get current menus items

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_current_item(MENU *menu, ITEM *item);

ITEM *current_item(MENU *menu);

int set_top_row(MENU *menu, int row);

int top_row(MENU *menu);

int item_index(ITEM *item);

The current item of a menu is the item where the cursor is currently positioned.
set_current_item() sets the current item of menu to item. current_item()
returns a pointer to the the current item in menu.

set_top_row() sets the top row of menu to row. The left-most item on the new top
row becomes the current item. top_row() returns the number of the menu row
currently displayed at the top of menu.

item_index() returns the index to the item in the item pointer array. The value of
this index ranges from 0 through N-1, where N is the total number of items connected
to the menu.

current_item() returns NULL on error.

top_row() and index_item() return −1 on error.

set_current_item() and set_top_row() return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_NOT_CONNECTED No items are connected to the menu.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_item_current(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

284 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_item_name, item_name, item_description – get menus item name and
description

cc [flag ...] file ... -lmenu -lcurses [library ..]

#include <menu.h>

char *item_name(ITEM *item);

char *item_description(ITEM *item);

item_name() returns a pointer to the name of item.

item_description() returns a pointer to the description of item.

These routines return NULL on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), menu_new(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_item_name(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 285

menu_item_new, new_item, free_item – create and destroy menus items

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

ITEM *new_item(char *name, char *desc);

int free_item(ITEM *item);

new_item() creates a new item from name and description, and returns a pointer to
the new item.

free_item() frees the storage allocated for item. Once an item is freed, the user can
no longer connect it to a menu.

new_item() returns NULL on error.

free_item() returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_CONNECTED One or more items are already connected to another
menu.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_item_new(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

286 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_item_opts, set_item_opts, item_opts_on, item_opts_off, item_opts – menus item
option routines

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_item_opts(ITEM *item, OPTIONS opts);

int item_opts_on(ITEM *item, OPTIONS opts);

int item_opts_off(ITEM *item, OPTIONS opts);

OPTIONS item_opts(ITEM *item);

set_item_opts() turns on the named options for item and turns off all other
options. Options are boolean values that can be OR-ed together.

item_opts_on() turns on the named options for item; no other option is changed.

item_opts_off() turns off the named options for item; no other option is changed.

item_opts() returns the current options of item.

O_SELECTABLE The item can be selected during menu processing.

Except for item_opts(), these routines return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_item_opts(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 287

menu_items, set_menu_items, item_count – connect and disconnect items to and from
menus

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_menu_items(MENU *menu, ITEM **items);

ITEM **menu_items(MENU *menu);

int item_count(MENU *menu);

set_menu_items() changes the item pointer array connected to menu to the item
pointer array items.menu_items() returns a pointer to the item pointer array
connected to menu.item_count() returns the number of items in menu.

menu_items() returns NULL on error.

item_count() returns -1 on error.

set_menu_items() returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

E_CONNECTED One or more items are already connected to another
menu.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_items(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

288 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_item_userptr, set_item_userptr, item_userptr – associate application data with
menus items

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_item_userptr(ITEM *item, char *userptr);

char *item_userptr(ITEM *item);

Every item has an associated user pointer that can be used to store relevant
information. set_item_userptr() sets the user pointer of item. item_userptr()
returns the user pointer of item.

item_userptr() returns NULL on error. set_item_userptr() returns one of the
following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_item_userptr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 289

menu_item_value, set_item_value, item_value – set and get menus item values

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_item_value(ITEM *item, int bool);

int item_value(ITEM *item);

Unlike single-valued menus, multi-valued menus enable the end-user to select one or
more items from a menu. set_item_value() sets the selected value of the item —
TRUE (selected) or FALSE (not selected). set_item_value() may be used only with
multi-valued menus. To make a menu multi-valued, use set_menu_opts or
menu_opts_off() to turn off the option O_ONEVALUE. (See menu_opts(3CURSES)).

item_value() returns the select value of item, either TRUE (selected) or FALSE
(unselected).

set_item_value() returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_REQUEST_DENIED The menu driver could not process the request.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), menu_opts(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_item_value(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

290 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_item_visible, item_visible – tell if menus item is visible

cc [flag ...] file ... -lmenu -lcurses [library ..]

#include <menu.h>

int item_visible(ITEM *item);

A menu item is visible if it currently appears in the subwindow of a posted menu.
item_visible() returns TRUE if item is visible, otherwise it returns FALSE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), menu_new(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_item_visible(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 291

menu_mark, set_menu_mark – menus mark string routines

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_menu_mark(MENU *menu, char *mark);

char *menu_mark(MENU *menu);

menus displays mark strings to distinguish selected items in a menu (or the current
item in a single-valued menu). set_menu_mark() sets the mark string of menu to
mark. menu_mark() returns a pointer to the mark string of menu.

menu_mark() returns NULL on error. set_menu_mark() returns one of the
following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_mark(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

292 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_new, new_menu, free_menu – create and destroy menus

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

MENU *new_menu(ITEM **items);

int free_menu(MENU *menu);

new_menu() creates a new menu connected to the item pointer array items and
returns a pointer to the new menu.

free_menu() disconnects menu from its associated item pointer array and frees the
storage allocated for the menu.

new_menu() returns NULL on error.

free_menu() returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_new(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 293

menu_opts, set_menu_opts, menu_opts_on, menu_opts_off – menus option routines

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

OPTIONS menu_opts(MENU *menu);

int set_menu_opts(MENU *menu, OPTIONS opts);

int menu_opts_on(MENU *menu, OPTIONS opts);

int menu_opts_off(MENU *menu, OPTIONS opts);

set_menu_opts() turns on the named options for menu and turns off all other
options. Options are boolean values that can be OR-ed together.

menu_opts_on() turns on the named options for menu; no other option is changed.

menu_opts_off() turns off the named options for menu; no other option is changed.

menu_opts() returns the current options of menu.

The following values can be OR’d together to create opts.

O_ONEVALUE Only one item can be selected from the menu.

O_SHOWDESC Display the description of the items.

O_ROWMAJOR Display the menu in row major order.

O_IGNORECASE Ignore the case when pattern matching.

O_SHOWMATCH Place the cursor within the item name when pattern
matching.

O_NONCYCLIC Make certain menu driver requests non-cyclic.

Except for menu_opts(), these routines return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_POSTED The menu is already posted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

menu_opts(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Menu Options

RETURN VALUES

ATTRIBUTES

SEE ALSO

294 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_opts(3CURSES)

NOTES

Curses Library Functions 295

menu_pattern, set_menu_pattern – set and get menus pattern match buffer

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

char *menu_pattern(MENU *menu);

int set_menu_pattern(MENU *menu, char *pat);

Every menu has a pattern buffer to match entered data with menu items.
set_menu_pattern() sets the pattern buffer to pat and tries to find the first item
that matches the pattern. If it does, the matching item becomes the current item. If not,
the current item does not change. menu_pattern() returns the string in the pattern
buffer of menu.

menu_pattern() returns NULL on error. set_menu_pattern() returns one of the
following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_NO_MATCH The character failed to match.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_pattern(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

296 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_post, post_menu, unpost_menu – write or erase menus from associated
subwindows

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int post_menu(MENU *menu);

int unpost_menu(MENU *menu);

post_menu() writes menu to the subwindow. The application programmer must use
curses library routines to display the menu on the physical screen or call
update_panels() if the panels library is being used.

unpost_menu() erases menu from its associated subwindow.

These routines return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

E_BAD_STATE The routine was called from an initialization or
termination function.

E_NO_ROOM The menu does not fit within its subwindow.

E_NOT_POSTED The menu has not been posted.

E_NOT_CONNECTED No items are connected to the menu.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), panels(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_post(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 297

menus – character based menus package

#include <menu.h>

The menu library is built using the curses library, and any program using menus
routines must call one of the curses initialization routines, such as initscr. A
program using these routines must be compiled with -lmenu and -lcurses on the
cc command line.

The menus package gives the applications programmer a terminal-independent
method of creating and customizing menus for user interaction. The menus package
includes: item routines, which are used to create and customize menu items; and
menu routines, which are used to create and customize menus, assign pre- and
post-processing routines, and display and interact with menus.

The menus package establishes initial current default values for item attributes.
During item initialization, each item attribute is assigned the current default value for
that attribute. An application can change or retrieve a current default attribute value
by calling the appropriate set or retrieve routine with a NULL item pointer. If an
application changes a current default item attribute value, subsequent items created
using new_item() will have the new default attribute value. The attributes of
previously created items are not changed if a current default attribute value is
changed.

The following table lists each menus routine and the name of the manual page on
which it is described.

Menus Routine Name Manual Page Name

current_item menu_item_current(3X)

free_item menu_item_new(3X)

free_menu menu_new(3X)

item_count menu_items(3X)

item_description menu_item_name(3X)

item_index menu_item_current(3X)

item_init menu_hook(3X)

item_name menu_item_name(3X)

item_opts menu_item_opts(3X)

item_opts_off menu_item_opts(3X)

item_opts_on menu_item_opts(3X)

item_term menu_hook(3X)

menus(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Current Default
Values for Item

Attributes

Routine Name
Index

298 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

Menus Routine Name Manual Page Name

item_userptr menu_item_userptr(3X)

item_value menu_item_value(3X)

item_visible menu_item_visible(3X)

menu_back menu_attributes(3X)

menu_driver menu_driver(3X)

menu_fore menu_attributes(3X)

menu_format menu_format(3X)

menu_grey menu_attributes(3X)

menu_init menu_hook(3X)

menu_items menu_items(3X)

menu_mark menu_mark(3X)

menu_opts menu_opts(3X)

menu_opts_off menu_opts(3X)

menu_opts_on menu_opts(3X)

menu_pad menu_attributes(3X)

menu_pattern menu_pattern(3X)

menu_sub menu_win(3X)

menu_term menu_hook(3X)

menu_userptr menu_userptr(3X)

menu_win menu_win(3X)

new_item menu_item_new(3X)

new_menu menu_new(3X)

pos_menu_cursor menu_cursor(3X)

post_menu menu_post(3X)

scale_menu menu_win(3X)

set_current_item menu_item_current(3X)

set_item_init menu_hook(3X)

set_item_opts menu_item_opts(3X)

set_item_term menu_hook(3X)

menus(3CURSES)

Curses Library Functions 299

Menus Routine Name Manual Page Name

set_item_userptr menu_item_userptr(3X)

set_item_value menu_item_value(3X)

set_menu_back menu_attributes(3X)

set_menu_fore menu_attributes(3X)

set_menu_format menu_format(3X)

set_menu_grey menu_attributes(3X)

set_menu_init menu_hook(3X)

set_menu_items menu_items(3X)

set_menu_mark menu_mark(3X)

set_menu_opts menu_opts(3X)

set_menu_pad menu_attributes(3X)

set_menu_pattern menu_pattern(3X)

set_menu_sub menu_win(3X)

set_menu_term menu_hook(3X)

set_menu_userptr menu_userptr(3X)

set_menu_win menu_win(3X)

set_top_row menu_item_current(3X)

top_row menu_item_current(3X)

unpost_menu menu_post(3X)

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the
routine.

E_POSTED The menu is already posted.

E_CONNECTED One or more items are already connected to
another menu.

E_BAD_STATE The routine was called from an initialization
or termination function.

menus(3CURSES)

RETURN VALUES

300 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

E_NO_ROOM The menu does not fit within its
subwindow.

E_NOT_POSTED The menu has not been posted.

E_UNKNOWN_COMMAND An unknown request was passed to the
menu driver.

E_NO_MATCH The character failed to match.

E_NOT_SELECTABLE The item cannot be selected.

E_NOT_CONNECTED No items are connected to the menu.

E_REQUEST_DENIED The menu driver could not process the
request.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menus(3CURSES)

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 301

menu_userptr, set_menu_userptr – associate application data with menus

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

char *menu_userptr(MENU *menu);

int set_menu_userptr(MENU *menu, char *userptr);

Every menu has an associated user pointer that can be used to store relevant
information. set_menu_userptr() sets the user pointer of menu. menu_userptr()
returns the user pointer of menu.

menu_userptr() returns NULL on error.

set_menu_userptr() returns one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_userptr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

302 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

menu_win, set_menu_win, set_menu_sub, menu_sub, scale_menu – menus window
and subwindow association routines

cc [flag...] file... -lmenu -lcurses [library...]

#include <menu.h>

int set_menu_win(MENU *menu, WINDOW *win);

WINDOW *menu_win(MENU *menu);

int set_menu_sub(MENU *menu, WINDOW *sub);

WINDOW *menu_sub(MENU *menu);

int scale_window(MENU *menu, int *rows, int *cols);

set_menu_win() sets the window of menu to win. menu_win() returns a pointer to
the window of menu.set_menu_sub() sets the subwindow of menu to sub.
menu_sub() returns a pointer to the subwindow of menu.scale_window() returns
the minimum window size necessary for the subwindow of menu. rows and cols are
pointers to the locations used to return the values.

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK The routine returned successfully.

E_SYSTEM_ERROR System error.

E_BAD_ARGUMENT An incorrect argument was passed to the routine.

E_POSTED The menu is already posted.

E_NOT_CONNECTED No items are connected to the menu.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), menus(3CURSES), attributes(5)

The header <menu.h> automatically includes the headers <eti.h> and
<curses.h>.

menu_win(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 303

meta – enable/disable meta keys

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int meta(WINDOW *win, bool bf);

win Is an ignored parameter.

bf Is a Boolean expression.

Whether a terminal returns 7 or 8 significant bits initially depends on the control mode
of the terminal driver. The meta() function forces the number of bits to be returned
by getch(3XCURSES) to be 7 (if bf is FALSE) or 8 (if bf is TRUE).

If the program handling the data can only pass 7-bit characters or strips the 8th bit, 8
bits cannot be handled.

If the terminfo capabilities smm (meta_on) and rmm (meta_off) are defined for the
terminal, smm is sent to the terminal when meta(win, TRUE) is called, and rmm is
sent when meta(win, FALSE) is called.

This function is useful when extending the non-text command set in applications
where the META key is used.

On success, the meta() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

getch(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

meta(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

304 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

move, wmove – move cursor in window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

y Is the y (row) coordinate of the position of the cursor in
the window.

x Is the x (column) coordinate of the position of the
cursor in the window.

win Is a pointer to the window in which the cursor is to be
written.

The move() function moves the logical cursor (for stdscr) to the position specified
by y (row) and x (column), where the upper left corner of the window is row 0,
column 0. The wmove() function performs the same action, but moves the cursor in
the window specified by win. The physical cursor will not move until after a call to
refresh(3XCURSES) or doupdate(3XCURSES).

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

move(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 305

mvcur – move the cursor

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

oldrow Is the row from which cursor is to be moved.

oldcol Is the column from which cursor is to be moved.

newrow Is the row to which cursor is to be moved.

newcol Is the column to which cursor is to be moved.

The mvcur() function is a low-level function used only outside of X/Open Curses
when the program has to deal directly with the terminfo database to handle certain
terminal capabilities. The use of appropriate X/Open Curses functions is
recommended in all other situations, so that X/Open Curses can track the cursor.

The mvcur() function moves the cursor from the location specified by oldrow and
oldcol to the location specified by newrow and newcol. A program using this function
must keep track of the current cursor position.

On success, the mvcur() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

mvcur(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

306 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

mvderwin – map area of parent window to subwindow

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int mvderwin(WINDOW *win, int par_y, int par_x);

win Is a pointer to the window to be mapped.

par_y Is the y (row) coordinate of the placement of the upper
left corner of window relative to the parent window.

par_x Is the x (column) coordinate of the placement of the
upper left corner of the window relative to the parent
window.

The mvderwin() function defines a mapped area of win’s parent window that is the
same size as win and has its upper left corner at position par_y, par_x of the parent
window.

Whenever win is refreshed, its contents are updated to match those of the mapped
area and any reference to characters in win is treated as a reference to corresponding
characters in the mapped area.

On success, the mvderwin() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

delwin(3XCURSES), derwin(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

mvderwin(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 307

mvprintw, mvwprintw, printw, wprintw – print formatted output window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int mvprintw(int y, int x, char *fmt, …);

int mvwprintw(WINDOW *win, int y, int x, char *fmt, …);

int printw(char *fmt, …);

int wprintw(WINDOW *win, char *fmt, …);

y Is the y (row) coordinate position of the string’s
placement in the window.

x Is the x (column) coordinate position of the string’s
placement in the window.

fmt Is a printf() format string.

win Is a pointer to the window in which the string is to be
written.

The mvprintw(), mvwprintw(), printw(), and wprintw() functions are
analogous to printf(3C). The effect of these functions is as though sprintf() were
used to format the string, and then waddstr(3XCURSES) were used to add that
multi-byte string to the current or specified window at the current or specified cursor
position.

Upon successful completion, these functions return OK. Otherwise, they return ERR.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addnstr(3XCURSES), libcurses(3XCURSES), printf(3C), attributes(5),
standards(5)

mvprintw(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

308 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

mvscanw, mvwscanw, scanw, wscanw – convert formatted input from a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int mvscanw(int y, int x, char *fmt, …);

int mvwscanw(WINDOW *win, int y, int x, char *fmt, …);

int scanw(char *fmt, …);

int wscanw(WINDOW *win, char *fmt, …);

y Is the y (row) coordinate of the position of the character
to be read.

x Is the x (column) coordinate of the position of the
character to be read.

fmt Is a scanf() format string.

win Is a pointer to the window in which the character is to
be read.

These functions are similar to scanf(3C). Their effect is as though
mvwgetstr(3XCURSES) were called to get a multi-byte character string from the
current or specified window at the current or specified cursor position, and then
sscanf() were used to interpret and convert that string.

Upon successful completion, these functions return OK. Otherwise, they return ERR.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

getnstr(3XCURSES), libcurses(3XCURSES), printw(3XCURSES), scanf(3C),
wcstombs(3C), attributes(5), standards(5)

mvscanw(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 309

mvwin – move window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int mvwin(WINDOW *win, int y, int x);

win Is a pointer to the window to move.

y Is the y (row) coordinate of the upper left corner of the
window.

x Is the x (column) coordinate of the upper left corner of
the window.

The mvwin() function moves the specified window (or subwindow), placing its
upper left corner at the positions specified by x and y. The entire window must fit
within the physical boundaries of the screen or an error results. In the case of a
subwindow, the window must remain within the boundaries of the parent window.

On success, the mvwin() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

derwin(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

mvwin(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

310 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

napms – sleep process for a specified length of time

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int napms(int ms);

ms Is the number of milliseconds to sleep.

The napms() function sleeps for at least ms milliseconds.

The napms() function always returns OK.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

delay_output(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

napms(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 311

newpad, pnoutrefresh, prefresh, subpad – create or refresh a pad or subpad

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

WINDOW *newpad(int nlines, int ncols);

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,
int smincol, int smaxrow, int smaxcol);

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow, int
smincol, int smaxrow, int smaxcol);

WINDOW *subpad(WINDOW *orig, int nlines, int ncols);

nlines Is the number of lines in the pad to be created.

ncols Is the number of columns in the pad to be created.

pad Is a pointer to the pad to refresh.

pminrow Is the row coordinate of the upper left corner of the pad
rectangle to be copied

pmincol Is the column coordinate of the upper left corner of the
pad rectangle to be copied.

sminrow Is the row coordinate of the upper left corner of the
rectangle on the physical screen where pad is to be
positioned.

smincol Is the column coordinate of the upper left corner of the
rectangle on the physical screen where pad is to be
positioned.

smaxrow Is the row coordinate of the lower right corner of the
rectangle on the physical screen where the pad is to be
positioned.

smaxcol Is the column coordinate of the lower right corner of
the rectangle on the physical screen where the pad is to
be positioned.

orig Is a pointer to the parent pad within which a sub-pad is
created.

The newpad() function creates a new pad with the specified number of lines and
columns. A pointer to the new pad structure is returned. A pad differs from a window
in that it is not restricted to the size of the physical screen. It is useful when only part
of a large window will be displayed at any one time.

newpad(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

312 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Automatic refreshes by scrolling or echoing of input do not take place when pads are
used. Pads have their own refresh commands, prefresh() and pnoutrefresh().

The prefresh() function copies the specified portion of the logical pad to the
terminal screen. The parameters pmincol and pminrow specify the upper left corner of
the rectangular area of the pad to be displayed. The lower right coordinate of the
rectangular area of the pad that is to be displayed is calculated from the screen
parameters (sminrow, smincol, smaxrow, smaxcol).

This function calls the pnoutrefresh() function to copy the specified portion of pad
to the terminal screen and the doupdate(3XCURSES) function to do the actual
update. The logical cursor is copied to the same location in the physical window
unless leaveok(3XCURSES) is enabled (in which case, the cursor is placed in a
position that the program finds convenient).

When outputting several pads at once, it is often more efficient to call the
pnoutrefresh() and doupdate() functions directly. A call to pnoutrefresh()
for each pad first, followed by only one call to doupdate() to update the screen,
results in one burst of output, fewer characters sent, and less CPU time used.

The subpad() function creates a sub-pad within the pad orig with the specified
number of lines and columns. A pointer to the new pad structure is returned. The
sub-pad is positioned in the middle of orig. Any changes made to one pad affect the
other. touchwin(3XCURSES) or touchline(3XCURSES) will likely have to be called
on pad orig to correctly update the window.

On success, the newpad() and subpad() functions returns a pointer to the new pad
data structure. Otherwise, they return a null pointer.

On success, the pnoutrefresh() and prefresh() functions return OK. Otherwise,
they return ERR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

clearok(3XCURSES), doupdate(3XCURSES), is_linetouched(3XCURSES),
libcurses(3XCURSES), pechochar(3XCURSES), attributes(5), standards(5)

newpad(3XCURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Curses Library Functions 313

nl, nonl – enable/disable newline control

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int nl(void);

int nonl(void);

The nl() function enables the handling of newlines. The nl() function converts
newline into carriage return and line feed on output and converts carriage return into
newline on input. nonl() disables the handling of newlines.

The handling of newlines is initially enabled. Disabling the handling of newlines
results in faster cursor motion since X/Open Curses can use the line-feed capability
more efficiently.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

nl(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

314 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

nodelay – set blocking or non-blocking read

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int nodelay(WINDOW *win, bool bf);

win Is a pointer to the window in which to enable
non-blocking.

bf Is a Boolean expression.

If enabled, (bf is TRUE), the nodelay() function causes getch(3XCURSES) to return
ERR if no input is ready. When disabled, getch() blocks until a key is pressed.

On success, the nodelay() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

getch(3XCURSES), halfdelay(3XCURSES), libcurses(3XCURSES),
notimeout(3XCURSES), attributes(5), standards(5)

nodelay(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 315

noqiflush, qiflush – control flush of input and output on interrupt

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

void noqiflush(void);

void qiflush(void);

The qiflush() function enables the flushing of input and output queues when an
interrupt, quit, or suspend character is sent to the terminal. The noqiflush()
function disables this flushing.

These functions do not return a value.

None

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

flushinp(3XCURSES), intrflush(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

noqiflush(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

316 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

notimeout, timeout, wtimeout – set timed blocking or non-blocking read

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int notimeout(WINDOW *win, bool bf);

void timeout(int delay);

void wtimeout(WINDOW win, int delay);

win Is a pointer to the window in which to set the timed
blocking.

bf Is a Boolean expression.

delay Is the number of milliseconds to block or wait for
input.

If bool is TRUE, the notimeout() function disables a timer used by
getch(3XCURSES) when handling multibyte function key sequences.

When bool is FALSE and keypad handling is enabled, a timer is set by getch() to
handle bytes received that could be the beginning of a function key (for example,
ESC). If the remainder of the sequence is not received before the time expires, the first
byte is returned; otherwise, the value of the function key is returned. Subsequent calls
to the getch() function will return the other bytes received for the incomplete key
sequence.

The timeout() and wtimeout() functions set the length of time getch() waits for
input for windows stdscr and win, respectively. These functions are similar to
nodelay(3XCURSES) except the time to block or wait for input can be specified.

A negative delay causes the program to wait indefinitely for input; a delay of 0 returns
ERR if no input is ready; and a positive delay blocks until input arrives or the time
specified expires, (in which case, ERR is returned).

On success, the notimeout() function returns OK. Otherwise, it returns ERR.

The timeout() and wtimeout() functions do not return a value.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

notimeout(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Curses Library Functions 317

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getch(3XCURSES), halfdelay(3XCURSES), libcurses(3XCURSES),
nodelay(3XCURSES), attributes(5), standards(5)

notimeout(3XCURSES)

SEE ALSO

318 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

overlay, overwrite – copy overlapped windows

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int overlay(const WINDOW *srcwin, WINDOW *dstwin);

int overwrite(const WINDOW *srcwin, WINDOW *dstwin);

srcwin Is a pointer to the source window to be copied.

dstwin Is a pointer to the destination window to be overlayed or
overwritten.

The overwrite() and overlay() functions overlay srcwin on top of destwin. The
srcwin and dstwin arguments do not have to be the same size; only text where the two
windows overlap is copied.

The overwrite() function copies characters as though a sequence of
win_wch(3XCURSES) and wadd_wch(3XCURSES) were performed with the
destination window’s attributes and background attributes cleared.

The overlay() function does the same thing, except that, whenever a character to be
copied is the background character of the source window, overlay() does not copy
the character but merely moves the destination cursor the width of the source
background character.

If any portion of the overlaying window border is not the first column of a
multi-column character, then all the column positions will be replaced with the
background character and rendition before the overlay is done. If the default
background character is a multi-column character when this occurs, then these
functions fail.

Upon successful completion, these functions return OK. Otherwise, they return ERR.

No errors are defined.

EXAMPLE 1 Implement a pop-up dialog

The following example demonstrates the use of overwrite() to implement a pop-up
dialog box.

#include <curses.h>
/*
* Pop-up a window on top of curscr. If row and/or col
* are -1 then that dimension will be centered within
* curscr. Return 0 for success or -1 if malloc() failed.
* Pass back the working window and the saved window for the
* pop-up. The saved window should not be modified.
*/

overlay(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Curses Library Functions 319

EXAMPLE 1 Implement a pop-up dialog (Continued)

int
popup(work, save, nrows, ncols, row, col)
WINDOW **work, **save;
int nrows, ncols, row, col;
{

int mr, mc;
getmaxyx(curscr, mr, mc);
/* Windows are limited to the size of curscr. */
if (mr < nrows)

nrows = mr;
if (mc < ncols)

ncols = mc;
/* Center dimensions. */
if (row == -1)

row = (mr-nrows)/2;
if (col == -1)

col = (mc-ncols)/2;
/* The window must fit entirely in curscr. */
if (mr < row+nrows)

row = 0;
if (mc < col+ncols)

col = 0;
*work = newwin(nrows, ncols, row, col);
if (*work == NULL)

return (-1);
if ((*save = dupwin(*work)) == NULL) {

delwin(*work);
return (-1);

}
overwrite(curscr, *save);
return (0);

}
/*
* Restore the region covered by a pop-up window.
* Delete the working window and the saved window.
* This function is the complement to popup(). Return
* 0 for success or -1 for an error.
*/
int
popdown(work, save)
WINDOW *work, *save;
{

(void) wnoutrefresh(save);
(void) delwin(save);
(void) delwin(work);
return (0);

}
/*
* Compute the size of a dialog box that would fit around
* the string.
*/
void
dialsize(str, nrows, ncols)
char *str;

overlay(3XCURSES)

320 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

EXAMPLE 1 Implement a pop-up dialog (Continued)

int *nrows, *ncols;
{

int rows, cols, col;
for (rows = 1, cols = col = 0; *str != ’\0’; ++str) {

if (*str == ’\n’) {
if (cols < col)

cols = col;
col = 0;
++rows;

} else {
++col;

}
}
if (cols < col)

cols = col;
*nrows = rows;
*ncols = cols;

}
/*
* Write a string into a dialog box.
*/
void
dialfill(w, s)
WINDOW *w;
char *s;
{

int row;
(void) wmove(w, 1, 1);
for (row = 1; *s != ’\0’; ++s) {

(void) waddch(w, *((unsigned char*) s));
if (*s == ’\n’)

wmove(w, ++row, 1);
}
box(w, 0, 0);

}
void
dialog(str)
char *str;
{

WINDOW *work, *save;
int nrows, ncols, row, col;
/* Figure out size of window. */
dialsize(str, &nrows, &ncols);
/* Create a centered working window with extra */
/* room for a border. */
(void) popup(&work, &save, nrows+2, ncols+2, -1, -1);
/* Write text into the working window. */
dialfill(work, str);
/* Pause. Remember that wgetch() will do a wrefresh() */
/* for us. */
(void) wgetch(work);
/* Restore curscr and free windows. */
(void) popdown(work, save);
/* Redraw curscr to remove window from physical screen. */

overlay(3XCURSES)

Curses Library Functions 321

EXAMPLE 1 Implement a pop-up dialog (Continued)

(void) doupdate();

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

copywin(3XCURSES), libcurses(3XCURSES), wadd_wch(3XCURSES),
win_wch(3XCURSES), attributes(5), standards(5)

overlay(3XCURSES)

ATTRIBUTES

SEE ALSO

322 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

panel_above, panel_below – panels deck traversal primitives

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

PANEL *panel_above(PANEL *panel);

PANEL *panel_below(PANEL *panel);

panel_above() returns a pointer to the panel just above panel, or NULL if panel is
the top panel. panel_below() returns a pointer to the panel just below panel, or
NULL if panel is the bottom panel.

If NULL is passed for panel, panel_above() returns a pointer to the bottom panel in
the deck, and panel_below() returns a pointer to the top panel in the deck.

NULL is returned if an error occurs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), panels(3CURSES), attributes(5)

These routines allow traversal of the deck of currently visible panels.

The header <panel.h> automatically includes the header <curses.h>.

panel_above(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 323

panel_move, move_panel – move a panels window on the virtual screen

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

int move_panel(PANEL *panel, int starty, int startx);

move_panel() moves the curses window associated with panel so that its upper
left-hand corner is at starty, startx. See usage note, below.

OK is returned if the routine completes successfully, otherwise ERR is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), panel_update(3CURSES), panels(3CURSES), attributes(5)

For panels windows, use move_panel() instead of the mvwin() curses routine.
Otherwise, update_panels() will not properly update the virtual screen.

The header <panel.h> automatically includes the header <curses.h>.

panel_move(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

324 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

panel_new, new_panel, del_panel – create and destroy panels

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

PANEL *new_panel(WINDOW *win);

int del_panel(PANEL *panel);

new_panel() creates a new panel associated with win and returns the panel pointer.
The new panel is placed on top of the panel deck.

del_panel() destroys panel, but not its associated window.

new_panel() returns NULL if an error occurs.

del_win() returns OK if successful, ERR otherwise.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), panel_update(3CURSES), panels(3CURSES), attributes(5)

The header <panel.h> automatically includes the header <curses.h>.

panel_new(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 325

panels – character based panels package

#include <panel.h>

The panel library is built using the curses library, and any program using panels
routines must call one of the curses initialization routines such as initscr. A
program using these routines must be compiled with -lpanel and -lcurses on the
cc command line.

The panels package gives the applications programmer a way to have depth
relationships between curses windows; a curses window is associated with every
panel. The panels routines allow curses windows to overlap without making
visible the overlapped portions of underlying windows. The initial curses window,
stdscr, lies beneath all panels. The set of currently visible panels is the deck of panels.

The panels package allows the applications programmer to create panels, fetch and
set their associated windows, shuffle panels in the deck, and manipulate panels in
other ways.

The following table lists each panels routine and the name of the manual page on
which it is described.

panels Routine Name Manual Page Name

bottom_panel panel_top(3CURSES)

del_panel panel_new(3CURSES)

hide_panel panel_show(3CURSES)

move_panel panel_move(3CURSES)

new_panel panel_new(3CURSES)

panel_above panel_above(3CURSES)

panel_below panel_above(3CURSES)

panel_hidden panel_show(3CURSES)

panel_userptr panel_userptr(3CURSES)

panel_window panel_window(3CURSES)

replace_panel panel_window(3CURSES)

set_panel_userptr panel_userptr(3CURSES)

show_panel panel_show(3CURSES)

top_panel panel_top(3CURSES)

update_panels panel_update(3CURSES)

panels(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

Routine Name
Index

326 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

Each panels routine that returns a pointer to an object returns NULL if an error
occurs. Each panel routine that returns an integer, returns OK if it executes successfully
and ERR if it does not.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), attributes(5) and 3X pages whose names begin “panel_” for
detailed routine descriptions.

The header <panel.h> automatically includes the header <curses.h>.

panels(3CURSES)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 327

panel_show, show_panel, hide_panel, panel_hidden – panels deck manipulation
routines

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

int show_panel(PANEL *panel);

int hide_panel(PANEL *panel);

int panel_hidden(PANEL *panel);

show_panel() makes panel, previously hidden, visible and places it on top of the
deck of panels.

hide_panel() removes panel from the panel deck and, thus, hides it from view. The
internal data structure of the panel is retained.

panel_hidden() returns TRUE (1) or FALSE (0) indicating whether or not panel is
in the deck of panels.

show_panel() and hide_panel() return the integer OK upon successful
completion or ERR upon error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), panel_update(3CURSES), panels(3CURSES), attributes(5)

The header <panel.h> automatically includes the header <curses.h>.

panel_show(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

328 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

panel_top, top_panel, bottom_panel – panels deck manipulation routines

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

int top_panel(PANEL *panel);

int bottom_panel(PANEL *panel);

top_panel() pulls panel to the top of the desk of panels. It leaves the size, location,
and contents of its associated window unchanged.

bottom_panel() puts panel at the bottom of the deck of panels. It leaves the size,
location, and contents of its associated window unchanged.

All of these routines return the integer OK upon successful completion or ERR upon
error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), panel_update(3CURSES), panels(3CURSES), attributes(5)

The header <panel.h> automatically includes the header <curses.h>.

panel_top(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 329

panel_update, update_panels – panels virtual screen refresh routine

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

void update_panels(void);

update_panels() refreshes the virtual screen to reflect the depth relationships
between the panels in the deck. The user must use the curses library call doupdate()
(see curs_refresh(3CURSES)) to refresh the physical screen.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curs_refresh(3CURSES), curses(3CURSES), panels(3CURSES), attributes(5)

The header <panel.h> automatically includes the header <curses.h>.

panel_update(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

330 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

panel_userptr, set_panel_userptr – associate application data with a panels panel

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

int set_panel_userptr(PANEL *panel, char *ptr);

char * panel_userptr(PANEL *panel);

Each panel has a user pointer available for maintaining relevant information.

set_panel_userptr() sets the user pointer of panel to ptr.

panel_userptr() returns the user pointer of panel.

set_panel_userptr returns OK if successful, ERR otherwise.

panel_userptr returns NULL if there is no user pointer assigned to panel.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), panels(3CURSES), attributes(5)

The header <panel.h> automatically includes the header <curses.h>.

panel_userptr(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Curses Library Functions 331

panel_window, replace_panel – get or set the current window of a panels panel

cc [flag ...] file ... -lpanel -lcurses [library ..]

#include <panel.h>

WINDOW *panel_window(PANEL *panel);

int replace_panel(PANEL *panel, WINDOW *win);

panel_window() returns a pointer to the window of panel.

replace_panel() replaces the current window of panel with win.

panel_window() returns NULL on failure.

replace_panel() returns OK on successful completion, ERR otherwise.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

curses(3CURSES), panels(3CURSES), attributes(5)

The header <panel.h> automatically includes the header <curses.h>.

panel_window(3CURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

332 man pages section 3: Curses Library Functions • Last Revised 31 Dec 1996

pechochar, pecho_wchar – add character and refresh window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int pechochar(WINDOW *pad, chtype ch);

int pecho_wchar(WINDOW *pad, const chtype *wch);

pad Is a pointer to the pad in which the character is to be
added.

ch Is a pointer to the character to be written to the pad.

wch Is a pointer to the complex character to be written to
the pad.

The pechochar() function is equivalent to calling waddch(3XCURSES) followed by
a call to prefresh(3XCURSES). The pecho_wchar() function is equivalent to
calling wadd_wch(3XCURSES) followed by a call to prefresh(). prefresh()
reuses the last position of the pad on the screen for its parameters.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

add_wch(3XCURSES), addch(3XCURSES), libcurses(3XCURSES),
newpad(3XCURSES), attributes(5), standards(5)

pechochar(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 333

plot, arc, box, circle, closepl, closevt, cont, erase, label, line, linemod, move, openpl,
openvt, point, space – graphics interface

cc [flag ...] file ... -lplot [library...]

#include <plot.h>

void arc(short x0, short y0, short x1, short y1, short x2, short
y2);

void box(short x0, short y0, short x1, short y1);

void circle(short x, short y, short r);

void closepl();

void closevt();

void cont(short x, short y);

void erase();

void label(char *s);

void line(short x0, short y0, short x1, short y1);

void linemod(char *s);

void move(short x, short y);

void openpl();

void openvt();

void point(short x, short y);

void space(short x0, short y0, short x1, short y1);

These functions generate graphics output for a set of output devices. The format of the
output is dependent upon which link editor option is used when the program is
compiled and linked (see Link Editor).

The term "current point" refers to the current setting for the x and y coordinates.

The arc() function specifies a circular arc. The coordinates (x0, y0) specify the
center of the arc. The coordinates (x1, y1) specify the starting point of the arc. The
coordinates (x2, y2) specify the end point of the circular arc.

The box() function specifies a rectangle with coordinates (x0, y0), (x0, y1), (x1,
y0), and (x1, y1). The current point is set to (x1, y1).

The circle() function specifies a circle with a center at the coordinates (x, y) and a
radius of r.

The closevt() and closepl() functions flush the output.

The cont() function specifies a line beginning at the current point and ending at the
coordinates (x, y). The current point is set to (x, y).

plot(3PLOT)

NAME

SYNOPSIS

DESCRIPTION

334 man pages section 3: Curses Library Functions • Last Revised 6 Oct 2004

The erase() function starts another frame of output.

The label() function places the null terminated string s so that the first character
falls on the current point. The string is then terminated by a NEWLINE character.

The line() function draws a line starting at the coordinates (x0, y0) and ending at
the coordinates (x1, y1). The current point is set to (x1, y1).

The linemod() function specifies the style for drawing future lines. s may contain
one of the following: dotted, solid, longdashed, shortdashed, or dotdashed.

The move() function sets the current point to the coordinates (x, y).

The openpl() or openvt() function must be called to open the device before any
other plot functions are called.

The point() function plots the point given by the coordinates (x, y). The current
point is set to (x, y).

The space() function specifies the size of the plotting area. The plot will be reduced
or enlarged as necessary to fit the area specified. The coordinates (x0, y0) specify the
lower left hand corner of the plotting area. The coordinates (x1, y1) specify the
upper right hand corner of the plotting area.

Various flavors of these functions exist for different output devices. They are obtained
by using the following ld(1) options:

-lplot device-independent graphics stream on standard output in the
format described in plot(4B)

-l300 GSI 300 terminal

-l300s GSI 300S terminal

-l4014 Tektronix 4014 terminal

-l450 GSI 450 terminal

-lvt0

/usr/lib/libplot.so.1 shared object

/usr/lib/64/libplot.so.1 64-bit shared object

/usr/lib/lib300.so.1 shared object

/usr/lib/64/lib300.so.1 64-bit shared object

/usr/lib/lib300s.so.1 shared object

/usr/lib/64/lib300s.so.1 64-bit shared object

/usr/lib/lib4014.so.1 shared object

/usr/lib/64/lib4014.so.1 64-bit shared object

/usr/lib/lib450.so.1 shared object

plot(3PLOT)

Link Editor

FILES

Curses Library Functions 335

/usr/lib/64/lib450.so.1 64-bit shared object

/usr/lib/libvt0.so.1 shared object

/usr/lib/64/libvt0.so.1 64-bit shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

graph(1), ld(1), libplot(3LIB), plot(4B), attributes(5)

plot(3PLOT)

ATTRIBUTES

SEE ALSO

336 man pages section 3: Curses Library Functions • Last Revised 6 Oct 2004

putp, tputs – apply padding information and output string

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int putp(const char *str);

int tputs(const char *str, int affcnt, int (*putfunc) (int));

str Is a pointer to a terminfo variable or return value
from tgetstr(3XCURSES), tgoto(3XCURSES),
tigetstr(3XCURSES), or tparm(3XCURSES).

affcnt Is the number of lines affected, or 1 if not relevant.

putfunc Is the output function.

The putp() and tputs() functions are low-level functions used to deal directly with
the terminfo database. The use of appropriate X/Open Curses functions is
recommended for most situations.

The tputs() function adds padding information and then outputs str. str must be a
terminfo string variable or the result value from tgetstr(), tgoto(),
tigetstr(), or tparm(). The tputs() function replaces the padding specification
(if one exists) with enough characters to produce the specified delay. Characters are
output one at a time to putfunc, a user-specified function similar to putchar(3C).

The putp() function calls tputs() as follows:

tputs(str, 1, putchar)

On success, these functions return OK.

None.

The output of putp() goes to stdout, not to the file descriptor, fildes, specified in
setupterm(3XCURSES).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), putchar(3C), setupterm(3XCURSES),
tgetent(3XCURSES), tigetflag(3XCURSES), terminfo(4), attributes(5),
standards(5)

putp(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Curses Library Functions 337

redrawwin, wredrawln – redraw screen or portion of screen

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int redrawwin(WINDOW *win);

int wredrawln(WINDOW *win, int beg_line, int num_lines);

win Is a pointer to the window in which to redraw.

beg_line Is the first line to redraw.

num_lines Is the number of lines to redraw.

The redrawwin() and wredrawln() functions force portions of a window to be
redrawn to the terminal when the next refresh operation is performed.

The redrawwin() function forces the entire window win to be redrawn, while the
wredrawln() function forces only num_lines lines starting with beg_line to be
redrawn. Normally, refresh operations use optimization methods to reduce the actual
amount of the screen to redraw based on the current screen contents. These functions
tell the refresh operations not to attempt any optimization when redrawing the
indicated areas.

These functions are useful when the data that exists on the screen is believed to be
corrupt and for applications such as screen editors that redraw portions of the screen.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

redrawwin(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

338 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

resetty, savetty – restore/save terminal modes

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int resetty(void);

int savetty(void);

The savetty() and resetty() functions save and restore the terminal state,
respectively. The savetty() function saves the current state in a buffer; the
resetty() function restores the state to that stored in the buffer at the time of the last
savetty() call.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

resetty(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 339

ripoffline – reserve screen line for dedicated purpose

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int ripoffline(int line, int (*init)(WINDOW *win, int width));

line determines whether the screen line being reserved
comes from the top of stdscr (line is positive) or the
bottom (line is negative).

init Is a pointer to a function that initializes the one-line
window.

win Is a pointer to one-line window created by this
function.

width Is the number of columns in the window pointed to by
the win parameter.

The ripoffline() function reserves a screen line as a one line window.

To use this function, it must be called before you call initscr(3XCURSES) or
newterm(3XCURSES). When initscr() or newterm() is called, so is the function
pointed to by init. The function pointed to by init takes two arguments: a pointer
to the one-line window and the number of columns in that window. This function
cannot use the LINES or COLS variables and cannot call wrefresh(3XCURSES) or
doupdate(3XCURSES), but may call wnoutrefresh(3XCURSES).

The rioffline() function always returns OK.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), initscr(3XCURSES), libcurses(3XCURSES),
slk_attroff(3XCURSES), attributes(5), standards(5)

ripoffline(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

340 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

scr_dump, scr_init, scr_restore, scr_set – write screen contents to/from a file

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int scr_dump(const char *filename);

int scr_init(const char *filename);

int scr_restore(const char *filename);

int scr_set(const char *filename);

filename Is a pointer to the file in which screen contents are written.

These function perform input/output functions on a screen basis.

The scr_dump() function writes the contents of the virtual screen, curscr, to
filename.

The scr_restore() function reads the contents of filename from curscr (which
must have been written with scr_dump()). The next refresh operation restores the
screen to the way it looks in filename.

The scr_init() function reads the contents of filename and uses those contents to
initialize the X/Open Curses data structures to what is actually on screen. The next
refresh operation bases its updates on this data, unless the terminal has been written
to since filename was saved or the terminfo capabilities rmcup and nrrmc are
defined for the current terminal.

The scr_set() function combines scr_restore() and scr_init(). It informs
the program that the contents of the file filename are what is currently on the screen
and that the program wants those contents on the screen.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

delscreen(3XCURSES), doupdate(3XCURSES), endwin(3XCURSES),
getwin(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

scr_dump(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 341

scrl, scroll, wscrl – scroll a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int scrl(int n);

int scroll(WINDOW *win);

int wscrl(WINDOW *win, int n);

n number and direction of lines to scroll

win pointer to the window in which to scroll

The scroll() function scrolls the window win up one line. The current cursor
position is not changed.

The scrl() and wscrl() functions scroll the window stdscr or win up or down n
lines, where n is a positive (scroll up) or negative (scroll down) integer.

The scrollok(3XCURSES) function must be enabled for these functions to work.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

clearok(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

scrl(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

342 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

setcchar – set a cchar_t type character from a wide character and rendition

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int setcchar(cchar_t *wcval, const wchar_t *wch, const attr_t attrs,
short color_pair, const void *opts);

wcval Is a pointer to a location where a cchar_t character
(and its rendition) can be stored.

wch Is a pointer to a wide character.

attrs Is the set of attributes to apply to wch in creating wcval.

color_pair Is the color pair to apply to wch in creating wcval.

opts Is reserved for future use. Currently, this must be a null
pointer.

The setcchar() function takes the wide character pointed to by wch, combines it
with the attributes indicated by attrs and the color pair indicated by color_pair and
stores the result in the object pointed to by wcval.

On success, the setcchar() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attroff(3XCURSES), can_change_color(3XCURSES), getcchar(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

setcchar(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 343

set_term – switch between terminals

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

SCREEN *set_term(SCREEN *new);

new Is the new terminal to which the set_term() function
will switch.

The set_term() function switches to the terminal specified by new and returns a
screen reference to the previous terminal. Calls to subsequent X/Open Curses
functions affect the new terminal.

On success, the set_term() function returns a pointer to the previous screen.
Otherwise, it returns a null pointer.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), attributes(5), standards(5)

set_term(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

344 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

slk_attroff, slk_attr_off, slk_attron, slk_attr_on, slk_attrset, slk_attr_set, slk_clear,
slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set,
slk_touch, slk_wset – soft label functions

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int slk_attroff(const chtype attrs);

int slk_attr_off(const attr_t attrs, void *opts);

int slk_attron(const chtype attrs);

int slk_attr_on(const attr_t attrs, void *opts);

int slk_attrset(const chtype attrs);

int slk_attr_set(const attr_t attrs, short color_pair_number, void
*opts);

int slk_clear(void);

int slk_color(short color_pair_number);

int slk_init(int fmt);

char *slk_label(int labnum);

int slk_noutrefresh(void);

int slk_refresh(void);

int slk_restore(void);

int slk_set(int labnum, const char *label, int justify);

int slk_touch(void);

int slk_wset(int labnum, const wchar_t *label, int justify);

attrs are the window attributes to be added or removed.

opts Is reserved for future use. Currently, this must be a null
pointer.

color_pair_number Is a color pair.

fmt Is the format of how the labels are arranged on the
screen.

labnum Is the number of the soft label.

label Is the name to be given to a soft label.

justify Is a number indicating how to justify the label name.

slk_attroff(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

Curses Library Functions 345

The Curses interface manipulates the set of soft function-key labels that exist on many
terminals. For those terminals that do not have soft labels, Curses takes over the
bottom line of stdscr, reducing the size of stdscr and the value of the LINES external
variable. There can be up to eight labels of up to eight display columns each.

To use soft labels, slk_init() must be called before calling initscr(3XCURSES),
newterm(3XCURSES), or ripoffline(3XCURSES). If initscr() eventually uses a
line from stdscr to emulate the soft labels, then fmt determines how the labels are
arranged on the screen. Setting fmt to 0 indicates a 3-2-3 arrangement of the labels; 1
indicates a 4-4 arrangement. Other values for fmt are unspecified.

The slk_init() function has the effect of calling ripoffline() to reserve one
screen line to accommodate the requested format.

The slk_set() and slk_wset() functions specify the text of soft label number
labnum, within the range from 1 to and including 8. The label argument is the string to
be put the lable. With slk_set() and slk_wset(), the width of the label is limited
to eight columns positions. A null string or a null pointer specifies a blank label. The
justify argument can have the following values to indicate how to justify label within
the space reserved for it:

0 Align the start of label with the start of the space

1 Center label within the space

2 Align the end of label with the end of the space

The slk_refresh() and slk_noutrefresh() functions correspond to the
wrefresh(3XCURSES) and wnoutrefresh(3XCURSES) functions.

The slk_label() function obtains soft label number labnum.

The slk_clear() function immediately clears the soft labels from the screen.

The slk_restore() function immediately restores the soft labels to the screen after a
call to slk_clear().

The slk_touch() function forces all the soft labels to be output the next time
slk_refresh() or slk_noutrefresh() is called.

The slk_attron(), slk_attrset(), and slk_attroff() functions correspond
to the attron(3XCURSES), attrset(3XCURSES), and attroff(3XCURSES)
functions. They have an effect only if soft labels are stimulated on the bottom line of
the screen.

The slk_attr_on(), slk_attr_off(), slk_attr_set() and slk_color()
functions correspond to the attr_on(3XCURSES), attr_off(3XCURSES),
attr_set(3XCURSES), and color_set(3XCURSES) functions. As a result, they
support color and the attribute constants with the WA_ prefix.

slk_attroff(3XCURSES)

DESCRIPTION

346 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

The opts argument is reserved for definition in a future release. Currently, the opts
argument is a null pointer.

Upon successful completion, the slk_label() function returns the requested label
with leading and trailing blanks stripped. Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return
ERR.

No errors are defined.

When using multi-byte character sets, applications should check the width of the
string by calling mbstowcs(3C) and then wcswidth(3C) before calling slk_set().
When using wide characters, applications should check the width of the string by
calling wcswidth() before calling slk_set().

Since the number of columns that a wide string will occupy is codeset-specific, call
wcwidth(3C) and wcswidth(3C) to check the number of column positions in the
string before calling slk_wset().

Most applications would use slk_noutrefresh() because a wrefresh() is likely
to follow soon.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attr_get(3XCURSES), attroff(3XCURSES), delscreen(3XCURSES),
libcurses(3XCURSES), mbstowcs(3C), ripoffline(3XCURSES), wcswidth(3C),
wcwidth(3C), attributes(5), standards(5)

slk_attroff(3XCURSES)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Curses Library Functions 347

standend, standout, wstandend, wstandout – set/clear window attributes

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int standend(void);

int standout(void);

int wstandend(WINDOW *win);

int wstandout(WINDOW *win);

win Is a pointer to the window in which attribute changes
are to be made.

The standend() and wstandend() functions turn off all attributes associated with
stdscr and win respectively.

The standout() and wstandout() functions turn on the A_STANDOUT attribute of
stdscr and win respectively.

These functions always return 1.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attr_get(3XCURSES), attroff(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

standend(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

348 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

stdscr – default window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

extern WINDOW *stdscr;

The external variable stdscr specifies the default window used by functions that to
not specify a window using an argument of type WINDOW *. Other windows may be
created using newwin().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

derwin(3XCURSES), libcurses(3XCURSES), attributes(5), standards(5)

stdscr(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Curses Library Functions 349

syncok, wcursyncup, wsyncdown, wsyncup – synchronize window with its parents or
children

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int syncok(WINDOW *win, bool bf);

void wcursyncup(WINDOW *win);

void wsyncdown(WINDOW *win);

void wsyncup(WINDOW *win);

win Is a pointer to a window.

bf Is a Boolean expression.

The syncok() function uses the value of bf to determine whether or not the window
win’s ancestors are implicitly touched whenever there is a change to win. If bf is TRUE,
this touching occurs. If bf is FALSE, it does not occur. The initial value for bf is FALSE.

The wcursyncup() function moves the cursor in win’s ancestors to match its position
in win.

The wsyncdown() function touches win if any of its ancestors have been touched.

The wsyncup() function touches all ancestors of win.

On success, the syncok() function returns OK. Otherwise, it returns ERR.

The other functions do not return a value.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

derwin(3XCURSES), doupdate(3XCURSES), is_linetouched(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

syncok(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

350 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

termattrs, term_attrs – get supported terminal video attributes

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

chtype termattrs(void);

attr_t term_attrs(void);

The termattrs() function extracts the video attributes of the current terminal which
is supported by the chtype data type.

The term_attrs() function extracts information for the video attributes of the
current terminal which is supported for a cchar_t.

The termattrs() function returns a logical OR of A_ values of all video attributes
supported by the terminal.

The term_attrs() function returns a logical OR of WA_ values of all video attributes
supported by the terminal.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

attr_get(3XCURSES), attroff(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

termattrs(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 351

termname – return the value of the environmental variable TERM

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

char *termname(void);

The termname() function returns a pointer to the value of the environmental variable
TERM (truncated to 14 characters).

The termname() returns a pointer to the terminal’s name.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

del_curterm(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

termname(3XCURSES)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

352 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

tgetent, tgetflag, tgetnum, tgetstr, tgoto – emulate the termcap database

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <term.h>

int tgetent(char *bp, const char *name);

int tgetflag(char id[2]);

int tgetnum(char id[2]);

char *tgetstr(char id[2], char **area);

char *tgoto(char *cap, int col, int row);

bp Is a pointer to a buffer. This parameter is ignored.

name Is the termcap entry to look up.

cap Is the pointer to a termcap capability.

area Is a pointer to the area where tgetstr() stores the decoded
string.

col Is the column placement of the new cursor.

row Is the row placement of the new cursor.

The tgetent() function looks up the termcap entry for name. The emulation
ignores the buffer pointer bp.

The tgetflag() function gets the Boolean entry for id.

The tgetnum() function gets the numeric entry for id.

The tgetstr() function gets the string entry for id. If area is not a null pointer and
does not point to a null pointer, tgetstr() copies the string entry into the buffer
pointed to by *area and advances the variable pointed to by area to the first byte after
the copy of the string entry.

The tgoto() function instantiates the parameters col and row into the capability cap
and returns a pointer to the resulting string.

All of the information available in the terminfo database need not be available
through these functions.

Upon successful completion, those functions that return integers return OK. Otherwise,
they return ERR.

Those functions that return pointers return a null pointer when an error occurs.

No errors are defined.

tgetent(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Curses Library Functions 353

These functions are included as a conversion aid for programs that use the termcap
library. Their arguments are the same and the functions are emulated using the
terminfo database.

These functions are only guaranteed to operate reliably on character sets in which each
character fits into a single byte, whose attributes can be expressed using only constants
with the A_ prefix.

Any terminal capabilities from the terminfo database that cannot be retrieved using
these functions can be retrieved using the functions described on the
tigetflag(3XCURSES) manual page.

Portable applications must use tputs(3XCURSES) to output the strings returned by
tgetstr() and tgoto().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), putp(3XCURSES), setupterm(3XCURSES),
tigetflag(3XCURSES), attributes(5), standards(5)

tgetent(3XCURSES)

USAGE

ATTRIBUTES

SEE ALSO

354 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

tigetflag, tigetnum, tigetstr, tparm – return the value of a terminfo capability

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <term.h>

int tigetflag(char *capname);

int tigetnum(char *capname);

char *tigetstr(char *capname);

char *tparm(char *cap, long p1, long p2, long p3, long p4, long p5,
long p6, long p7, long p8, long p9);

capname Is the name of the terminfo capability for which the
value is required.

cap Is a pointer to a string capability.

p1...p9 Are the parameters to be instantiated.

The tigetflag(), tigetnum(), and tigetstr() functions return values for
terminfo capabilities passed to them.

The following null-terminated arrays contain the capnames, the termcap codes and
full C names for each of the terminfo variables.

char *boolnames, *boolcodes, *boolfnames
char *numnames, *numcodes, *numfnames
char *strnames, *strcodes, *strfnames

The tparm() function instantiates a parameterized string using nine arguments. The
string is suitable for output processing by tputs().

On success, the tigetflg(), tigetnum(), and tigetstr() functions return the
specified terminfo capability.

tigetflag() returns −1 if capname is not a Boolean capability.

tigetnum() returns −2 if capname is not a numeric capability.

tigetstr() returns (char *)−1 if capname is not a string capability.

On success, the tparm() function returns cap in a static buffer with the
parameterization resolved. Otherwise, it returns a null pointer.

None.

tigetflag(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Curses Library Functions 355

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), tgetent(3XCURSES), terminfo(4), attributes(5),
standards(5)

tigetflag(3XCURSES)

ATTRIBUTES

SEE ALSO

356 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

typeahead – check for type-ahead characters

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int typeahead(int fd);

fd Is the file descriptor that is used to check for
type-ahead characters.

The typeahead() function specifies the file descriptor (fd) to use to check for
type-ahead characters (characters typed by the user but not yet processed by X/Open
Curses).

X/Open Curses checks for type-ahead characters periodically while updating the
screen. If characters are found, the current update is postponed until the next
refresh(3XCURSES) or doupdate(3XCURSES). This speeds up response to
commands that have been typed ahead. Normally, the input file pointer passed to
newterm(3XCURSES), or stdin in the case of initscr(3XCURSES), is used for
type-ahead checking.

If fd is -1, no type-ahead checking is done.

On success, the typeahead() function returns OK. Otherwise, it returns ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), getch(3XCURSES), initscr(3XCURSES),
libcurses(3XCURSES), attributes(5), standards(5)

typeahead(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 357

unctrl – generate printable representation of a character

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <unctrl.h>

char *unctrl(chtype c);

c Is a character.

The unctrl() function generates a character string that is a printable representation
of c. If c is a control character,it is converted to the ^X notation. If c contains rendition
information, the effect is undefined.

Upon successful completion, the unctrl() function returns the generated string.
Otherwise, it returns a null pointer.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

addch(3XCURSES), addstr(3XCURSES), libcurses(3XCURSES),
wunctrl(3XCURSES), attributes(5), standards(5)

unctrl(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

358 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

ungetch, unget_wch – push character back onto the input queue

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int ungetch(int ch);

int unget_wch(const wchar_t wch);

ch Is the single byte character to be put back in the input
queue for the next call to getch(3XCURSES).

wch Is the wide character to be put back in the input queue
for the next call to get_wch(3XCURSES).

The ungetch() function pushes ch back onto the input queue until the next call to
getch().

The unget_wch() function is similar to ungetch() except that ch can be of type
wchar_t.

On success, these functions return OK. Otherwise, they return ERR.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

get_wch(3XCURSES), getch(3XCURSES), libcurses(3XCURSES), attributes(5),
standards(5)

ungetch(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 359

use_env – specify source of screen size information

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

void use_env(bool boolval);

boolval Is a Boolean expression.

The use_env() function specifies the technique by which the implementation
determines the size of the screen. If boolval is FALSE, the implementation uses the
values of lines and columns specified in the terminfo database. If boolval is TRUE, the
implementation uses the LINES and COLUMNS environmental variables. The initial
value is TRUE.

Any call to use_env() must precede calls to initscr(3XCURSES),
newterm(3XCURSES), or setupterm(3XCURSES).

The use_env() function does not return a value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

del_curterm(3XCURSES), initscr(3XCURSES), libcurses(3XCURSES),
attributes(5), standards(5)

use_env(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

360 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

vidattr, vid_attr, vidputs, vid_puts – output attributes to the terminal

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

int vidattr(chtype attr);

int vid_attr(attr_t attr, short color_pair_number, void *opt);

int vidputs(chtype attr, int (*putfunc) (int));

int vid_puts(attr_t attr, short color_pair_number, void *opt, int
(*putfunc) (int));

attr Is the rendition of the foreground window.

color_pair_number Is a color pair.

opt Is reserved for future use. Currently, this must be a null
pointer.

putfunc Is a user-supplied output function.

These functions output commands to the terminal that change the terminal’s
attributes.

If the terminfo database indicates that the terminal in use can display characters in
the rendition specified by attr, then vidattr() outputs one or more commands to
request that the terminal display subsequent characters in that rendition. The function
outputs by calling putchar(3C). The vidattr() function neither relies on your
updates the model which Curses maintains of the prior rendition mode.

The vidputs() function computes the terminal output string that vidattr() does,
based on attr, but vidputs() outputs by calling the user-supplied function putfunc.
The vid_attr() and vid_puts() functions correspond to vidattr() and
vidputs() respectively, but take a set of arguments, one of type attr_t for the
attributes, one of type short for the color pair number, and a void *, and thus
support the attribute constants with the WA_ prefix.

The opts argument is reserved for definition in a future release. Currently, it is
implemented as a null pointer.

The user-supplied function putfunc (which can be specified as an argument to either
vidputs() or vid_puts()) is either putchar() or some other function with the
same prototype. Both the vidputs() and vid_puts() functions ignore the return
value of putfunc.

Upon successful completion, these functions return OK. Otherwise, they return ERR.

No errors are defined.

vidattr(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Curses Library Functions 361

After use of any of these functions, the model Curses maintains of the state of the
terminal might not match the actual state of the terminal. The application should
touch and refresh the window before resuming conventional use of Curses.

Of these functions requires that the application contain so much information about a
particular class of terminal that it defeats the purpose of using Curses.

On some terminals, a command to change rendition conceptually occupies space in
the screen buffer (with or without width). Thus, a command to set the terminal to a
new rendition would change the rendition of some characters already displayed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

doupdate(3XCURSES), is_linetouched(3XCURSES), libcurses(3XCURSES),
putchar(3C), tigetflag(3XCURSES), attributes(5), standards(5)

vidattr(3XCURSES)

USAGE

ATTRIBUTES

SEE ALSO

362 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

vw_printw – print formatted output in window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <stdarg.h>

#include <curses.h>

int vw_printw(WINDOW *win, char *fmt, va_list varglist);

fmt Is a printf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the string is to be
written.

The vw_printw() function achieves the same effect as wprintw(3XCURSES) using a
variable argument list. The third argument is a va_list, as defined in <stdarg.h>.

Upon successful completion, vw_printw() returns OK. Otherwise, it returns ERR.

No errors are defined.

The vw_printw() function is preferred over vwprintw(3XCURSES). The use of the
vwprintw() and vw_printw() in the same file will not work, due to the
requirements to include <varargs.h> and <stdarg.h>, which both contain
definitions of va_list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), mvprintw(3XCURSES), printf(3C), attributes(5),
standards(5)

vw_printw(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Curses Library Functions 363

vwprintw – print formatted output in window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <varargs.h>

#include <curses.h>

int vwprintw(WINDOW *win, char *fmt, va_list varglist);

fmt Is a printf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the string is to be
written.

The vwprintw() function achieves the same effect as wprintw(3XCURSES) using a
variable argument list. The third argument is a va_list, as defined in <varargs.h>.

Upon successful completion, vwprintw() returns OK. Otherwise, it returns ERR.

No errors are defined.

The vwprintw() function is deprecated; the vw_printw(3XCURSES) function is
preferred. The use of the vwprintw() and vw_printw() in the same file will not
work, due to the requirements to include <varargs.h> and <stdarg.h>, which
both contain definitions of va_list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), mvprintw(3XCURSES), printf(3C),
vw_printw(3XCURSES), attributes(5), standards(5)

vwprintw(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

364 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

vw_scanw – convert formatted input from a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <stdarg.h>

#include <curses.h>

int vw_scanw(WINDOW *win, char *fmt, va_list varglist);

fmt Is a scanf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the character is to
be read.

The vw_scanw() function achieves the same effect as wscanw(3XCURSES) using a
variable argument list. The third argument is a va_list, as defined in <stdarg.h>.

Upon successful completion, vw_scanw() returns OK. Otherwise, it returns ERR.

No errors are defined.

The vw_scanw() function is preferred over vwscanw(3XCURSES). The use of the
vwscanw() and vw_scanw() in the same file will not work, due to the requirements
to include <varargs.h> and <stdarg.h>, which both contain definitions of
va_list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), mvscanw(3XCURSES), scanf(3C), attributes(5),
standards(5)

vw_scanw(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Curses Library Functions 365

vwscanw – convert formatted input from a window

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <varargs.h>

#include <curses.h>

int vwscanw(WINDOW *win, char *fmt, va_list varglist);

fmt Is a scanf() format string.

varglist Is a pointer to a list of parameters.

win Is a pointer to the window in which the character is to
be read.

The vwscanw() function achieves the same effect as wscanw(3XCURSES) using a
variable argument list. The third argument is a va_list, as defined in <varargs.h>.

Upon successful completion, vwscanw() returns OK. Otherwise, it returns ERR.

No errors are defined.

The vwscanw() function is deprecated; the vw_scanw(3XCURSES) function is
preferred. The use of the vwscanw() and vw_scanw() in the same file will not work,
due to the requirements to include <varargs.h> and <stdarg.h>, which both
contain definitions of va_list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

libcurses(3XCURSES), mvscanw(3XCURSES), scanf(3C), vw_scanw(3XCURSES),
attributes(5), standards(5)

vwscanw(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

366 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

wunctrl – generate printable representation of a wide character

cc [flag...] file... -I /usr/xpg4/include -L /usr/xpg4/lib \
-R /usr/xpg4/lib -lcurses [library...]

c89 [flag...] file... -lcurses [library...]

#include <curses.h>

wchar_t *wunctrl(cchar_t *wc);

wc Is a pointer to the wide character.

The wunctrl() function converts the a wide character string that is a printable
representation of the wide character wc.

This function also performs the following processing on the input argument:

� Control characters are converted to the ^X notation
� Any rendition information is removed.

Upon successful completion, the wunctrl() function returns the generated string.
Otherwise, it returns a null pointer.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Unsafe

keyname(3XCURSES), libcurses(3XCURSES), unctrl(3XCURSES),
attributes(5), standards(5)

wunctrl(3XCURSES)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Curses Library Functions 367

wunctrl(3XCURSES)

368 man pages section 3: Curses Library Functions • Last Revised 5 Jun 2002

Index

A
activate audio-visual alarm

— beep, 35
— flash, 35

add a string of wchar_t characters to a curses
window and advance cursor —
curs_addwstr, 68

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch, 63

add string of wchar_t characters (and attributes)
to a curses window — curs_addwchstr, 66

add a string of wchar_t characters to a curses
window and advance cursor —
curs_addwstr
addnwstr, 68

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch
addwch, 63

add string of wchar_t characters (and attributes)
to a curses window — curs_addwchstr
addwchnstr, 66
addwchstr, 66

add a string of wchar_t characters to a curses
window and advance cursor —
curs_addwstr
addwstr, 68

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch
echowchar, 63

add a string of wchar_t characters to a curses
window and advance cursor —
curs_addwstr
mvaddnwstr, 68

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch
mvaddwch, 63

add string of wchar_t characters (and attributes)
to a curses window — curs_addwchstr
mvaddwchnstr, 66
mvaddwchstr, 66

add a string of wchar_t characters to a curses
window and advance cursor —
curs_addwstr
mvaddwstr, 68
mvwaddnwstr, 68

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch
mvwaddwch, 63

add string of wchar_t characters (and attributes)
to a curses window — curs_addwchstr
mvwaddwchnstr, 66
mvwaddwchstr, 66

add a string of wchar_t characters to a curses
window and advance cursor —
curs_addwstr
mvwaddwstr, 68
waddnwstr, 68

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch

369

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch (Continued)

waddwch, 63
add string of wchar_t characters (and attributes)

to a curses window — curs_addwchstr
waddwchnstr, 66
waddwchstr, 66

add a string of wchar_t characters to a curses
window and advance cursor —
curs_addwstr
waddwstr, 68

add a wchar_t character (with attributes) to a
curses window and advance cursor —
curs_addwch
wechowchar, 63

add a character (with rendition) to a window
— addch, 18
— mvaddch, 18
— mvwaddch, 18
— waddch, 18

add a complex character (with rendition) to a
window
— add_wch, 26
— mvadd_wch, 26
— mvwadd_wch, 26
— wadd_wch, 26

add a complex character and refresh window
— echo_wchar, 180
— wecho_wchar, 180

add a multi-byte character string (without
rendition) to a window
— addnstr, 22
— addstr, 22
— mvaddnstr, 22
— mvaddstr, 22
— mvwaddstr, 22
— mwwaddnstr, 22
— waddnstr, 22
— waddstr, 22

add a single-byte border to a window
— border, 40
— box, 40
— wborder, 40

add a single-byte character and refresh window
— echochar, 179
— wechochar, 179

add a wide-character string to a window
— addnwstr, 24
— addwstr, 24
— mvaddnwstr, 24
— mvaddwstr, 24
— mvwaddnwstr, 24
— mvwaddwstr, 24
— waddnwstr, 24
— waddwstr, 24

add character and refresh window
— pecho_wchar, 333
— pechochar, 333

add_wch — add a complex character (with
rendition) to a window, 26

add_wchnstr — copy a string of complex
characters (with renditions) to a window, 28

add_wchstr — copy a string of complex
characters (with renditions) to a window, 28

addch — add a character (with rendition) to a
window, 18

addchnstr — copy a character string (with
renditions) to a window, 20

addchstr — copy a character string (with
renditions) to a window, 20

addnstr — add a multi-byte character string
(without rendition) to a window, 22

addnwstr — add a string of wchar_t characters
to a curses window and advance cursor, 68

addnwstr — add a wide-character string to a
window, 24

addstr — add a multi-byte character string
(without rendition) to a window, 22

addwch — add a wchar_t character (with
attributes) to a curses window and advance
cursor, 63

addwchnstr — add string of wchar_t characters
(and attributes) to a curses window, 66

addwchstr — add string of wchar_t characters
(and attributes) to a curses window, 66

addwstr — add a string of wchar_t characters to
a curses window and advance cursor, 68

addwstr — add a wide-character string to a
window, 24

adjcurspos — moving the cursor by
character, 69

ALE curses library, See curses library
apply padding information and output string

— putp, 337

370 man pages section 3: Curses Library Functions • January 2005

apply padding information and output string
(Continued)

— tputs, 337
arc — graphics interface, 334
attr_get — control window attributes, 30
attr_off — control window attributes, 30
attr_on — control window attributes, 30
attr_set — control window attributes, 30
attroff — change foreground window

attributes, 32
attroff — curses character and window attribute

control routines, 70
attron — change foreground window

attributes, 32
attron — curses character and window attribute

control routines, 70
attrset — change foreground window

attributes, 32
attrset — curses character and window attribute

control routines, 70

B
baudrate — return terminal baud rate, 34
beep — activate audio-visual alarm, 35
bkgd — set or get the background character

(and rendition) of window, 36
bkgdset — set or get the background character

(and rendition) of window, 36
bkgrnd — set or get the background character

(and rendition) of window using a complex
character, 38

bkgrndset — set or get the background
character (and rendition) of window using a
complex character, 38

border — add a single-byte border to a
window, 40

border_set — use complex characters (and
renditions) to draw borders, 42

box — add a single-byte border to a
window, 40

box — graphics interface, 334
box_set — use complex characters (and

renditions) to draw borders, 42

C
call refresh on changes to window —

immedok, 236
can_change_color — manipulate color

information, 44
cbreak — set input mode controls, 47
change foreground window attributes

— attroff, 32
— attron, 32
— attrset, 32
— wattroff, 32
— wattron, 32
— wattrset, 32

change the rendition of characters in a window
— chgat, 48
— mvchgat, 48
— mvwchgat, 48
— wchgat, 48

character based forms package, — forms, 209
character based menus package, — menus, 298
character based panels package, — panels, 326
check for type-ahead characters —

typeahead, 357
chgat — change the rendition of characters in a

window, 48
circle — graphics interface, 334
clear — clear a window, 50
clear a window

— clear, 50
— erase, 50
— wclear, 50
— werase, 50

clear to the end of a line
— clrtoeol, 54
— wclrtoeol, 54

clear to the end of a window
— clrtobot, 53
— wclrtobot, 53

clearok — set terminal output controls, 51
closepl — graphics interface, 334
closevt — graphics interface, 334
clrtobot — clear to the end of a window, 53
clrtoeol — clear to the end of a line, 54
color_content — manipulate color

information, 44
COLOR_PAIR — manipulate color

information, 44

371

COLOR_PAIRS — manipulate color
information, 44

color_set — control window attributes, 30
COLORS — manipulate color information, 44
COLS — number of columns on terminal

screen, 55
cont — graphics interface, 334
control flush of input and output on interrupt

— noqiflush, 316
— qiflush, 316

control window attributes
— attr_get, 30
— attr_off, 30
— attr_on, 30
— attr_set, 30
— color_set, 30
— wattr_get, 30
— wattr_off, 30
— wattr_on, 30
— wattr_set, 30
— wcolor_set, 30

control window refresh
— is_linetouched, 258
— is_wintouched, 258
— touchline, 258
— touchwin, 258
— untouchwin, 258
— wtouchln, 258

convert formatted input from a window —
mvscanw, 309

convert formatted input from a window —
mvwscanw, 309

convert formatted input from a window —
scanw, 309

convert formatted input from a window —
wscanw, 309

convert formatted input from a window —
vwscanw, 366

copy overlapped windows — overlay, 319
copy overlapped windows — overwrite, 319
copy a character string (with renditions) to a

window
— addchnstr, 20
— addchstr, 20
— mvaddchnstr, 20
— mvaddchstr, 20
— mvwaddchnstr, 20
— mvwaddchstr, 20

copy a character string (with renditions) to a
window (Continued)

— waddchnstr, 20
— waddchstr, 20

copy a string of complex characters (with
renditions) to a window
— add_wchnstr, 28
— add_wchstr, 28
— mvadd_wchnstr, 28
— mvadd_wchstr, 28
— mvwadd_wchnstr, 28
— mvwadd_wchstr, 28
— wadd_wchnstr, 28
— wadd_wchstr, 28

copywin — overlay or overwrite any portion of
window, 56

create a new window or subwindow
— derwin, 174
— newwin, 174
— subwin, 174

create or refresh a pad or subpad
— newpad, 312
— pnoutrefresh, 312
— prefresh, 312
— subpad, 312

CRT handling and optimization package, —
curses, 83

cur_term — current terminal information, 165
current terminal information — cur_term, 165
current window — curscr, 80
curs_addwch — add a wchar_t character (with

attributes) to a curses window and advance
cursor, 63

curs_addwchstr — add string of wchar_t
characters (and attributes) to a curses
window, 66

curs_addwstr — add a string of wchar_t
characters to a curses window and advance
cursor, 68

curs_alecompat — moving the cursor by
character, 69

curs_attr — curses character and window
attribute control routines, 70
Attributes, 70

curs_getwch — get (or push back) wchar_t
characters from curses terminal
keyboard, 114
Function Keys, 114

372 man pages section 3: Curses Library Functions • January 2005

curs_getwstr — get wchar_t character strings
from curses terminal keyboard, 119

curs_inswch — insert a wchar_t character
before the character under the cursor in a
curses window, 131

curs_inswstr — insert wchar_t string before
character under the cursor in a curses
window, 132

curs_inwch — get a wchar_t character and its
attributes from a curses window, 133

curs_inwchstr — get a string of wchar_t
characters (and attributes) from a curses
window, 134

curs_inwstr — get a string of wchar_t characters
from a curses window, 135

curs_pad — create and display curses
pads, 142

curs_set — set visibility of cursor, 150
curscr — current window, 80
curses — CRT handling and optimization

package, 83
curses — introduction and overview of X/Open

Curses, 97
curses pads, create and display —

curs_pad, 142
curses — introduction and overview of X/Open

Curses
Attributes, Color Pairs, and Renditions, 99
Complex Characters, 102
Data Types, 98
Display Operations, 102
Input Processing, 103

curses pads, create and display — curs_pad
newpad, 142

curses — introduction and overview of X/Open
Curses
Non-Spacing Characters, 101
Overlapping Windows, 102

curses pads, create and display — curs_pad
pechochar, 142
pechowchar, 142
pnoutrefresh, 142
prefresh, 142

curses — introduction and overview of X/Open
Curses
Screens, Windows, and Terminals, 98
Special Characters, 102

curses pads, create and display — curs_pad
subpad, 142

curses, low-level routines
— curs_kernel, 136
— curs_set, 136
— def_prog_mode, 136
— def_shell_mode, 136
— getsyx, 136
— napms, 136
— reset_prog_mode, 136
— reset_shell_mode, 136
— resettty, 136
— ripoffline, 136
— savetty, 136
— setsyx, 136

curses bell and screen flash routines
— beep, 72
— curs_beep, 72
— flash, 72

curses borders, horizontal and vertical lines,
create
— border, 74
— box, 74
— curs_border, 74
— wborder, 74
— whline, 74
— wvline, 74

curses character and window attribute control
routines
— attroff, 70
— attron, 70
— attrset, 70
— curs_attr, 70
— standend, 70
— standout, 70
— wattroff, 70
— wattron, 70
— wattrset, 70
— wstandend, 70
— wstandout, 70

curses color manipulation routines
— can_change_colors, 77
— color_content, 77
— curs_color, 77
— has_colors, 77
— init_color, 77
— init_pair, 77
— pair_content, 77

373

curses color manipulation routines (Continued)
— start_color, 77

curses cursor and window coordinates
— curs_getyx, 120
— getbegyx, 120
— getmaxyx, 120
— getparyx, 120
— getyx, 120

curses environment query routines
— baudrate, 153
— curs_termattrs, 153
— erasechar, 153
— has_ic, 153
— has_il, 153
— killchar, 153
— longname, 153
— termattrs, 153
— termname, 153

curses interfaces to termcap library, 155
— curs_termcap, 155
— tgetent, 155
— tgetflag, 155
— tgetnum, 155
— tgetstr, 155
— tgoto, 155

curses interfaces to terminfo database
— curs_terminfo, 156
— del_curterm, 156
— mvcur, 156
— putp, 156
— restartterm, 156
— set_curterm, 156
— setterm, 156
— setupterm, 156
— tigetflag, 156
— tigetnum, 156
— tigetstr, 156
— tparm, 156
— tputs, 156
— vidattr, 156
— vidputs, 156

curses library
See also form library, menu library, or panel

library
— adjcurspos, 69
— curs_alecompat, 69
— movenextch, 69
— moveprevch, 69

curses library (Continued)
— wadjcurspos, 69
— wmovenextch, 69
— wmoveprevch, 69

curses miscellaneous utility routines
— curs_util, 161
— delay_output, 161
— filter, 161
— flushinp, 161
— getwin, 161
— keyname, 161
— putwin, 161
— unctrl, 161
— use_env, 161

curses refresh control routines
— curs_touch, 159
— is_linetouched, 159
— is_wintouched, 159
— touchline, 159
— touchwin, 159
— untouchwin, 159
— wtouchln, 159

curses screen, read/write from/to file
— curs_scr_dump, 148
— scr_dump, 148
— scr_init, 148
— scr_restore, 148
— scr_set, 148

curses screen initialization and manipulation
routines
— curs_initscr, 123
— delscreen, 123
— endwin, 123
— initscr, 123
— isendwin, 123
— newterm, 123
— set_term, 123

curses soft label routines
— curs_slk, 151
— slk_attroff, 151
— slk_attron, 151
— slk_attrset, 151
— slk_clear, 151
— slk_init, 151
— slk_label, 151
— slk_noutrefresh, 151
— slk_refresh, 151
— slk_restore, 151

374 man pages section 3: Curses Library Functions • January 2005

curses soft label routines (Continued)
— slk_set, 151
— slk_touch, 151

curses terminal input option control routines
— cbreak, 125
— curs_inopts, 125
— echo, 125
— halfdelay, 125
— intrflush, 125
— keypad, 125
— meta, 125
— nocbreak, 125
— nodelay, 125
— noecho, 125
— noqiflush, 125
— noraw, 125
— notimeout, 125
— qiflush, 125
— raw, 125
— timeout, 125
— typeahead, 125
— wtimeout, 125

curses terminal keyboard
— curs_getstr, 113
— getstr, 113
— mvgetstr, 113
— mvwgetstr, 113
— wgetnstr, 113
— wgetstr, 113

curses terminal keyboard, get characters
— curs_getch, 108
— getch, 108
— mvgetch, 108
— mvwgetch, 108
— ungetch, 108
— wgetch, 108

curses terminal output option control routines
— clearok, 139
— curs_outopts, 139
— idcok, 139
— idlok, 139
— immedok, 139
— leaveok, 139
— nl, 139
— nonl, 139
— scrollok, 139
— setscereg, 139
— wsetscrreg, 139

curses window, add character and advance
cursor
— addch, 58
— curs_addch, 58
— echochar, 58
— mvwaddch, 58
— waddch, 58
— wechochar, 58

curses window, add string of characters
— addchnstr, 61
— addchstr, 61
— curs_addchstr, 61
— mvaddchnstr, 61
— mvaddchstr, 61
— mvwaddchnstr, 61
— mvwaddchstr, 61
— waddchnstr, 61
— waddchstr, 61

curses window, add string of characters and
advance cursor
— addnstr, 62
— addstr, 62
— curs_addstr, 62
— mvaddnstr, 62
— mvaddstr, 62
— mvwaddstr, 62
— waddnstr, 62
— waddstr, 62

curses window, clear all or part
— clear, 76
— clrtobot, 76
— clrtoeol, 76
— curs_clear, 76
— erase, 76
— wclear, 76
— wclrtobot, 76
— wclrtoeol, 76
— werase, 76

curses window, convert formatted input
— curs_scanw, 147
— mvscanw, 147
— mvwscanw, 147
— scanw, 147
— vwscanw, 147
— wscanw, 147

curses window, delete and insert lines
— curs_deleteln, 82
— deleteln, 82

375

curses window, delete and insert lines
(Continued)

— insdelln, 82
— insertln, 82
— wdeleteln, 82
— winsdelln, 82
— winsertln, 82

curses window, delete character under cursor
— curs_delch, 81
— delch, 81
— mvdelch, 81
— mvwdelch, 81
— wdelch, 81

curses window, get character and its attributes
— curs_inch, 121
— inch, 121
— mvinch, 121
— mvwinch, 121
— winch, 121

curses window, get string of characters
— curs_inchstr, 122
— curs_instr, 130
— inchnstr, 122
— inchstr, 122
— innstr, 130
— instr, 130
— mvinchnstr, 122
— mvinchstr, 122
— mvinnstr, 130
— mvinstr, 130
— mvwinchnstr, 122
— mvwinchstr, 122
— mvwinnstr, 130
— mvwinstr, 130
— winchnstr, 122
— winchstr, 122
— winnstr, 130
— winstr, 130

curses window, insert character before character
under cursor
— curs_insch, 128
— insch, 128
— mvinsch, 128
— mvwinsch, 128
— winsch, 128

curses window, insert string before character
under cursor
— curs_instr, 129

curses window, insert string before character
under cursor (Continued)

— insnstr, 129
— instr, 129
— mvinsnstr, 129
— mvinsstr, 129
— mvwinsnstr, 129
— mvwinsstr, 129
— winsnstr, 129
— winsstr, 129

curses window, scroll
— curs_scroll, 149
— scrl, 149
— scroll, 149
— wscrl, 149

curses window background manipulation
routines
— bkgd, 73
— bkgdset, 73
— curs_bkgd, 73
— wbkgd, 73
— wbkgdset, 73

curses window cursor
— curs_move, 138
— move, 138
— wmove, 138

curses windows, create
— curs_window, 163
— delwin, 163
— derwin, 163
— dupwin, 163
— mvderwin, 163
— mvwin, 163
— newwin, 163
— subwin, 163
— syncok, 163
— wcursyncup, 163
— wsyncdown, 163
— wsyncup, 163

curses windows, overlap and manipulate
— copywin, 141
— curs_overlay, 141
— overlay, 141
— overwrite, 141

curses windows, print formatted output
— curs_printw, 144
— mvprintw, 144
— mvwprintw, 144

376 man pages section 3: Curses Library Functions • January 2005

curses windows, print formatted output
(Continued)

— printw, 144
— vwprintw, 144
— wprintw, 144

curses windows and lines, refresh
— curs_refresh, 145
— doupdate, 145
— redrawwin, 145
— refresh, 145
— wnoutrefresh, 145
— wredrawln, 145
— wrefresh, 145

D
def_prog_mode — save/restore terminal

modes, 166
def_shell_mode — save/restore terminal

modes, 166
default window — stdscr, 349
del_curterm — interfaces to the terminfo

database, 169
delay_output — delays output, 167
delays output — delay_output, 167
delch — remove a character, 168
delete a window — delwin, 173
deleteln — remove a line, 171
delwin — delete a window, 173
derwin — create a new window or

subwindow, 174
determine insert/delete character/line

capability
— has_ic, 230
— has_il, 230

disable use of certain terminal capabilities —
filter, 183

discard type-ahead characters — flushinp, 184
doupdate — refresh windows and lines, 176
duplicate a window — dupwin, 177
dupwin — duplicate a window, 177

E
echo — enable/disable terminal echo, 178
echo_wchar — add a complex character and

refresh window, 180
echochar — add a single-byte character and

refresh window, 179
echowchar — add a wchar_t character (with

attributes) to a curses window and advance
cursor, 63

emulate the termcap database
— tgetent, 353
— tgetflag, 353
— tgetnum, 353
— tgetstr, 353
— tgoto, 353

enable/disable half-delay mode —
halfdelay, 229

enable/disable hardware insert-character and
delete-character features — idcok, 235

enable/disable keypad handling —
keypad, 262

enable/disable meta keys — meta, 304
enable/disable newline control

— nl, 314
— nonl, 314

enable/disable terminal echo
— echo, 178
— noecho, 178

endwin — restore initial terminal
environment, 181

erase — clear a window, 50
erase — graphics interface, 334
erasechar — return current ERASE or KILL

characters, 182
erasewchar — return current ERASE or KILL

characters, 182

F
filter — disable use of certain terminal

capabilities, 183
flash — activate audio-visual alarm, 35
enable or disable flush on interrupt —

intrflush, 254
flushinp — discard type-ahead characters, 184
form library

See also curses library

377

forms — character based forms package, 209
forms, application-specific routines

— field_init, 202
— field_term, 202
— form_hook, 202
— form_init, 202
— form_term, 202
— set_field_init, 202
— set_field_term, 202
— set_form_init, 202
— set_form_term, 202

forms, associate application data
— field_userptr, 200
— form_field_userptr, 200
— form_userptr, 213
— set_field_userptr, 200
— set_form_userptr, 213

forms, command processor, — form_driver, 187
forms, connect fields

— field_count, 190
— form_field, 190
— form_fields, 190
— move_field, 190
— set_form_fields, 190

forms, create and destroy
— form_new, 204
— free_form, 204
— new_form, 204

forms, format general appearance
— field_just, 194
— form_field_just, 194
— set_field_just, 194

forms, format general display attributes
— field_back, 191
— field_fore, 191
— field_pad, 191
— form_field_attributes, 191
— set_field_back, 191
— set_field_fore, 191
— set_field_pad, 191

forms, set current page and field
— current_field, 207
— field_index, 207
— form_page, 207
— set_current_field, 207
— set_form_page, 207

forms, write/erase from associated
subwindows

forms, write/erase from associated
subwindows (Continued)

— form_post, 208
— post_form, 208
— unpost_form, 208

forms field, off-screen data ahead or behind
— data_ahead, 186
— data_behind, 186
— form_data, 186

forms field attributes, set and get
— field_buffer, 192
— field_status, 192
— form_field_buffer, 192
— set_field_buffer, 192
— set_field_status, 192
— set_max_field, 192

forms field characteristics
— dynamic_field_info, 193
— field_info, 193
— form_field_info, 193

forms field data type validation
— field_arg, 201
— field_type, 201
— form_field_validation, 201
— set_field_type, 201

forms field option routines
— field_opts, 196
— field_opts_off, 196
— field_opts_on, 196
— form_field_opts, 196
— set_field_opts, 196

forms fields, create and destroy
— dup_field, 195
— form_field_new, 195
— free_field, 195
— link_field, 195
— new_field, 195

forms fieldtype routines
— form_fieldtype, 198
— free_fieldtype, 198
— link_fieldtype, 198
— new_fieldtype, 198
— set_fieldtype_arg, 198
— set_fieldtype_choice, 198

forms option routines
— form_opts, 206
— form_opts_off, 206
— form_opts_on, 206

378 man pages section 3: Curses Library Functions • January 2005

forms option routines (Continued)
— set_form_opts, 206

forms pagination
— form_new_page, 205
— new_page, 205
— set_new_page, 205

forms window and subwindow association
routines
— form_sub, 214
— form_win, 214
— scale_form, 214
— set_form_sub, 214
— set_form_win, 214

forms window cursor, position
— form_cursor, 185
— pos_form_cursor, 185

G
generate printable representation of a character

— unctrl, 358
generate printable representation of a wide

character — wunctrl, 367
get a string of wchar_t characters (and

attributes) from a curses window —
curs_inwchstr, 134

get a string of wchar_t characters from a curses
window — curs_inwstr, 135

get a wchar_t character and its attributes from a
curses window — curs_inwch, 133

get supported terminal video attributes —
termattrs, 351

get supported terminal video attributes —
term_attrs, 351

get wchar_t character strings from curses
terminal keyboard — curs_getwstr, 119
getnwstr, 119

getwchar_t character strings from curses
terminal keyboard — curs_getwstr,
getwstr, 119

get a string of wchar_t characters from a curses
window — curs_inwstr
innwstr, 135

get a wchar_t character and its attributes from a
curses window — curs_inwch
inwch, 133

get a string of wchar_t characters (and
attributes) from a curses window —
curs_inwchstr
inwchnstr, 134
inwchstr, 134

get a string of wchar_t characters from a curses
window — curs_inwstr
inwstr, 135

get wchar_t character strings from curses
terminal keyboard — curs_getwstr
mvgetnwstr, 119
mvgetwstr, 119

get a string of wchar_t characters from a curses
window — curs_inwstr
mvinnwstr, 135

get a wchar_t character and its attributes from a
curses window — curs_inwch
mvinwch, 133

get a string of wchar_t characters (and
attributes) from a curses window —
curs_inwchstr
mvinwchnstr, 134
mvinwchstr, 134

get a string of wchar_t characters from a curses
window — curs_inwstr
mvinwstr, 135

get wchar_t character strings from curses
terminal keyboard — curs_getwstr
mvwgetnwstr, 119
mvwgetwstr, 119

get a string of wchar_t characters from a curses
window — curs_inwstr
mvwinnwstr, 135

get a wchar_t character and its attributes from a
curses window — curs_inwch
mvwinwch, 133

get a string of wchar_t characters (and
attributes) from a curses window —
curs_inwchstr
mvwinwchnstr, 134
mvwinwchstr, 134

get a string of wchar_t characters from a curses
window — curs_inwstr
mvwinwstr, 135

get wchar_t character strings from curses
terminal keyboard — curs_getwstr
wgetnwstr, 119
wgetwstr, 119

379

get a string of wchar_t characters from a curses
window — curs_inwstr
winnwstr, 135

get a wchar_t character and its attributes from a
curses window — curs_inwch
winwch, 133

get a string of wchar_t characters (and
attributes) from a curses window —
curs_inwchstr
winwchnstr, 134
winwchstr, 134

get a string of wchar_t characters from a curses
window — curs_inwstr
winwstr, 135

get (or push back) wchar_t characters from
curses terminal keyboard
— curs_getwch, 114
— getwch, 114
— mvgetwch, 114
— mvwgetwch, 114
— ungetwch, 114
— wgetwch, 114

get a multibyte character string from terminal
— getnstr, 222
— getstr, 222
— mvgetnstr, 222
— mvgetstr, 222
— mvwgetnstr, 222
— mvwgetstr, 222
— wgetnstr, 222
— wgetstr, 222

get a single-byte character from terminal
— getch, 217
— mvgetch, 217
— mvwgetch, 217
— wgetch, 217

get a wide character from terminal
— get_wch, 226
— mvget_wch, 226
— mvwget_wch, 226
— wget_wch, 226

get a wide character string (with rendition)
from a cchar_t — getcchar, 216

get a wide character string from terminal
— get_wstr, 224
— getn_wstr, 224
— mvget_wstr, 224
— mvgetn_wstr, 224

get a wide character string from terminal
(Continued)

— mvwget_wstr, 224
— mvwgetn_wstr, 224
— wget_wstr, 224
— wgetn_wstr, 224

get cursor or window coordinates
— getbegyx, 215
— getmaxyx, 215
— getparyx, 215
— getyx, 215

get_wch — get a wide character from
terminal, 226

get_wstr — get a wide character string from
terminal, 224

getbegyx — get cursor or window
coordinates, 215

getbkgd — set or get the background character
(and rendition) of window, 36

getbkgrnd — set or get the background
character (and rendition) of window using a
complex character, 38

getcchar — get a wide character string (with
rendition) from a cchar_t, 216

getch — get a single-byte character from
terminal, 217

getmaxyx — get cursor or window
coordinates, 215

getn_wstr — get a wide character string from
terminal, 224

getnstr — get a multibyte character string from
terminal, 222

getnwstr — get wchar_t character strings from
curses terminal keyboard, 119

getparyx — get cursor or window
coordinates, 215

getstr — get a multibyte character string from
terminal, 222

getwch — get (or push back) wchar_t characters
from curses terminal keyboard, 114

getwin — read a window from, and write a
window to, a file, 228

getwstr — get wchar_t character strings from
curses terminal keyboard, 119

getyx — get cursor or window coordinates, 215
graphics interface

— arc, 334
— box, 334

380 man pages section 3: Curses Library Functions • January 2005

graphics interface (Continued)
— circle, 334
— closepl, 334
— closevt, 334
— cont, 334
— erase, 334
— label, 334
— line, 334
— linemod, 334
— move, 334
— openpl, 334
— openvt, 334
— plot, 334
— point, 334
— space, 334

H
halfdelay — enable/disable half-delay

mode, 229
has_colors — manipulate color information, 44
has_ic — determine insert/delete character/line

capability, 230
has_il — determine insert/delete character/line

capability, 230
hline — use single-byte characters (and

renditions) to draw lines, 231
hline_set — use complex characters (and

renditions) to draw lines, 233

I
idcok — enable/disable hardware

insert-character and delete-character
features, 235

idlok — set terminal output controls, 51
immedok — call refresh on changes to

window, 236
in_wch — retrieve a complex character (with

rendition), 255
in_wchnstr — retrieve complex character string

(with rendition), 256
in_wchstr — retrieve complex character string

(with rendition), 256
inch — return a single-byte character (with

rendition), 237

inchnstr — retrieve a single-byte character
string (with rendition), 238

inchstr — retrieve a single-byte character string
(with rendition), 238

init_color — manipulate color information, 44
init_pair — manipulate color information, 44
initscr — screen initialization functions, 240
innstr — retrieve a multibyte character string

(without rendition), 241
innwstr — get a string of wchar_t characters

from a curses window, 135
innwstr — retrieve a wide character string

(without rendition), 243
ins_nwstr — insert a wide character string, 250
ins_wch — insert a complex character, 252
ins_wstr — insert a wide character string, 250
insch — insert a character, 245
insdelln — insert/delete lines to/from the

window, 246
insert a wchar_t character before the character

under the cursor in a curses window —
curs_inswch, 131

insert wchar_t string before character under the
cursor in a curses window —
curs_inswstr, 132
insnwstr, 132

insert a wchar_t character before the character
under the cursor in a curses window —
curs_inswch
inswch, 131

insert wchar_t string before character under the
cursor in a curses window — curs_inswstr
inswstr, 132
mvinsnwstr, 132

insert a wchar_t character before the character
under the cursor in a curses window —
curs_inswch
mvinswch, 131

insert wchar_t string before character under the
cursor in a curses window — curs_inswstr
mvinswstr, 132
mvwinsnwstr, 132

insert a wchar_t character before the character
under the cursor in a curses window —
curs_inswch
mvwinswch, 131

insert wchar_t string before character under the
cursor in a curses window — curs_inswstr

381

insert wchar_t string before character under the
cursor in a curses window — curs_inswstr
(Continued)

mvwinswstr, 132
winsnwstr, 132

insert a wchar_t character before the character
under the cursor in a curses window —
curs_inswch
winswch, 131

insert wchar_t string before character under the
cursor in a curses window — curs_inswstr
winswstr, 132

insert a character
— insch, 245
— mvinsch, 245
— mvwinsch, 245
— winsch, 245

insert a complex character
— ins_wch, 252
— mvins_wch, 252
— mvwins_wch, 252
— wins_wch, 252

insert a line in a window
— insertln, 247
— winsertln, 247

insert a multibyte character string
— insnstr, 248
— insstr, 248
— mvinsnstr, 248
— mvinsstr, 248
— mvwinsnstr, 248
— mvwinsstr, 248
— winsnstr, 248
— winsstr, 248

insert a wide character string
— ins_nwstr, 250
— ins_wstr, 250
— mvins_nwstr, 250
— mvins_wstr, 250
— mvwins_nwstr, 250
— mvwins_wstr, 250
— wins_nwstr, 250
— wins_wstr, 250

insert/delete lines to/from the window
— insdelln, 246
— winsdelln, 246

insertln — insert a line in a window, 247

insnstr — insert a multibyte character
string, 248

insnwstr — insert wchar_t string before
character under the cursor in a curses
window, 132

insstr — insert a multibyte character string, 248
instr — retrieve a multibyte character string

(without rendition), 241
inswch — insert a wchar_t character before the

character under the cursor in a curses
window, 131

inswstr — insert wchar_t string before character
under the cursor in a curses window, 132

interfaces to the terminfo database —
del_curterm, 169

interfaces to the terminfo database —
restartterm, 169

interfaces to the terminfo database —
setupterm, 169

interfaces to the terminfo database —
set_curterm, 169

intrflush — enable or disable flush on
interrupt, 254

introduction and overview of X/Open Curses
— curses, 97

inwch — get a wchar_t character and its
attributes from a curses window, 133

inwchnstr — get a string of wchar_t characters
(and attributes) from a curses window, 134

inwchstr — get a string of wchar_t characters
(and attributes) from a curses window, 134

inwstr — get a string of wchar_t characters
from a curses window, 135

inwstr — retrieve a wide character string
(without rendition), 243

is_linetouched — control window refresh, 258
is_wintouched — control window refresh, 258
isendwin — restore initial terminal

environment, 181

K
key_name — return character string used as key

name, 260
keyname — return character string used as key

name, 260

382 man pages section 3: Curses Library Functions • January 2005

keypad — enable/disable keypad
handling, 262

killchar — return current ERASE or KILL
characters, 182

killwchar — return current ERASE or KILL
characters, 182

L
label — graphics interface, 334
leaveok — set terminal output controls, 51
line — graphics interface, 334
linemod — graphics interface, 334
LINES — number of lines on terminal

screen, 274
longname — return full terminal type

name, 275

M
manipulate color information —

can_change_color, 44
manipulate color information — COLORS, 44
manipulate color information —

color_content, 44
manipulate color information —

COLOR_PAIR, 44
manipulate color information —

COLOR_PAIRS, 44
manipulate color information — has_colors, 44
manipulate color information — init_color, 44
manipulate color information — init_pair, 44
manipulate color information —

pair_content, 44
manipulate color information —

PAIR_NUMBER, 44
manipulate color information — start_color, 44
map area of parent window to subwindow —

mvderwin, 307
menu library

See also curses library
menus — character based menus package, 298
menus, application-specific routines

— item_init, 282
— item_term, 282
— menu_hook, 282

menus, application-specific routines
(Continued)

— menu_init, 282
— menu_term, 282
— set_item_init, 282
— set_item_term, 282
— set_menu_init, 282
— set_menu_term, 282

menus, associate application data
— menu_userptr, 302
— set_menu_userptr, 302

menus, create and destroy
— free_menu, 293
— menu_new, 293
— new_menu, 293

menus, rows and columns
— menu_format, 281
— set_menu_format, 281

menus cursor
— menu_cursor, 278
— pos_menu_cursor, 278

menus display attributes
— menu_attributes, 276
— menu_back, 276
— menu_fore, 276
— menu_grey, 276
— menu_pad, 276
— set_menu_back, 276
— set_menu_fore, 276
— set_menu_grey, 276
— set_menu_pad, 276

menus from associated subwindows,
write/erase
— menu_post, 297
— post_menu, 297
— unpost_menu, 297

menus item, visibility
— item_visible, 291
— menu_item_visible, 291

menus item name and description
— item_description, 285
— item_name, 285
— menu_item_name, 285

menus item options routines
— item_opts, 287
— item_opts_off, 287
— item_opts_on, 287
— menu_item_opts, 287

383

menus item options routines (Continued)
— set_item_opts, 287

menus item values, set and get
— item_value, 290
— menu_item_value, 290
— set_item_value, 290

menus items, associate application data
— item_userptr, 289
— menu_item_userptr, 289
— set_item_userptr, 289

menus items, connect and disconnect
— item_count, 288
— menu_items, 288
— set_menu_items, 288

menus items, create and destroy
— free_item, 286
— menu_item_new, 286
— new_item, 286

menus items, get and set
— current_item, 284
— item_index, 284
— menu_item_current, 284
— set_current_item, 284
— set_top_row, 284
— top_row, 284

menus mark string routines
— menu_mark, 292
— set_menu_mark, 292

menus options routines
— menu_opts, 294
— menu_opts_off, 294
— menu_opts_on, 294
— set_menu_opts, 294

menus pattern match buffer
— menu_pattern, 296
— set_menu_pattern, 296

menus subsystem, command processor, —
menu_driver, 279

menus window and subwindow association
routines
— menu_sub, 303
— menu_win, 303
— scale_menu, 303
— set_menu_sub, 303
— set_menu_win, 303

meta — enable/disable meta keys, 304
move — graphics interface, 334
move — move cursor in window, 305

move cursor in window
— move, 305
— wmove, 305

move the cursor — mvcur, 306
move window — mvwin, 310
movenextch — moving the cursor by

character, 69
moveprevch — moving the cursor by

character, 69
mvadd_wch — add a complex character (with

rendition) to a window, 26
mvadd_wchnstr — copy a string of complex

characters (with renditions) to a window, 28
mvadd_wchstr — copy a string of complex

characters (with renditions) to a window, 28
mvaddch — add a character (with rendition) to

a window, 18
mvaddchnstr — copy a character string (with

renditions) to a window, 20
mvaddchstr — copy a character string (with

renditions) to a window, 20
mvaddnstr — add a multi-byte character string

(without rendition) to a window, 22
mvaddnwstr — add a string of wchar_t

characters to a curses window and advance
cursor, 68

mvaddnwstr — add a wide-character string to a
window, 24

mvaddstr — add a multi-byte character string
(without rendition) to a window, 22

mvaddwch — add a wchar_t character (with
attributes) to a curses window and advance
cursor, 63

mvaddwchnstr — add string of wchar_t
characters (and attributes) to a curses
window, 66

mvaddwchstr — add string of wchar_t
characters (and attributes) to a curses
window, 66

mvaddwstr — add a string of wchar_t
characters to a curses window and advance
cursor, 68

mvaddwstr — add a wide-character string to a
window, 24

mvchgat — change the rendition of characters
in a window, 48

mvcur — move the cursor, 306
mvdelch — remove a character, 168

384 man pages section 3: Curses Library Functions • January 2005

mvderwin — map area of parent window to
subwindow, 307

mvget_wch — get a wide character from
terminal, 226

mvget_wstr — get a wide character string from
terminal, 224

mvgetch — get a single-byte character from
terminal, 217

mvgetn_wstr — get a wide character string
from terminal, 224

mvgetnstr — get a multibyte character string
from terminal, 222

mvgetnwstr — get wchar_t character strings
from curses terminal keyboard, 119

mvgetstr — get a multibyte character string
from terminal, 222

mvgetwch — get (or push back) wchar_t
characters from curses terminal
keyboard, 114

mvgetwstr — get wchar_t character strings
from curses terminal keyboard, 119

mvhline — use single-byte characters (and
renditions) to draw lines, 231

mvhline_set — use complex characters (and
renditions) to draw lines, 233

mvin_wch — retrieve a complex character (with
rendition), 255

mvin_wchnstr — retrieve complex character
string (with rendition), 256

mvin_wchstr — retrieve complex character
string (with rendition), 256

mvinch — return a single-byte character (with
rendition), 237

mvinchnstr — retrieve a single-byte character
string (with rendition), 238

mvinchstr — retrieve a single-byte character
string (with rendition), 238

mvinnstr — retrieve a multibyte character
string (without rendition), 241

mvinnwstr — get a string of wchar_t characters
from a curses window, 135

mvinnwstr — retrieve a wide character string
(without rendition), 243

mvins_nwstr — insert a wide character
string, 250

mvins_wch — insert a complex character, 252
mvins_wstr — insert a wide character

string, 250

mvinsch — insert a character, 245
mvinsnstr — insert a multibyte character

string, 248
mvinsnwstr — insert wchar_t string before

character under the cursor in a curses
window, 132

mvinsstr — insert a multibyte character
string, 248

mvinstr — retrieve a multibyte character string
(without rendition), 241

mvinswch — insert a wchar_t character before
the character under the cursor in a curses
window, 131

mvinswstr — insert wchar_t string before
character under the cursor in a curses
window, 132

mvinwch — get a wchar_t character and its
attributes from a curses window, 133

mvinwchnstr — get a string of wchar_t
characters (and attributes) from a curses
window, 134

mvinwchstr — get a string of wchar_t
characters (and attributes) from a curses
window, 134

mvinwstr — get a string of wchar_t characters
from a curses window, 135

mvinwstr — retrieve a wide character string
(without rendition), 243

mvprintw — print formatted output
window, 308

mvscanw — convert formatted input from a
window, 309

mvvline — use single-byte characters (and
renditions) to draw lines, 231

mvvline_set — use complex characters (and
renditions) to draw lines, 233

mvwadd_wch — add a complex character (with
rendition) to a window, 26

mvwadd_wchnstr — copy a string of complex
characters (with renditions) to a window, 28

mvwadd_wchstr — copy a string of complex
characters (with renditions) to a window, 28

mvwaddch — add a character (with rendition)
to a window, 18

mvwaddchnstr — copy a character string (with
renditions) to a window, 20

mvwaddchstr — copy a character string (with
renditions) to a window, 20

385

mvwaddnwstr — add a string of wchar_t
characters to a curses window and advance
cursor, 68

mvwaddnwstr — add a wide-character string to
a window, 24

mvwaddstr — add a multi-byte character string
(without rendition) to a window, 22

mvwaddwch — add a wchar_t character (with
attributes) to a curses window and advance
cursor, 63

mvwaddwchnstr — add string of wchar_t
characters (and attributes) to a curses
window, 66

mvwaddwchstr — add string of wchar_t
characters (and attributes) to a curses
window, 66

mvwaddwstr — add a string of wchar_t
characters to a curses window and advance
cursor, 68

mvwaddwstr — add a wide-character string to
a window, 24

mvwchgat — change the rendition of characters
in a window, 48

mvwdelch — remove a character, 168
mvwget_wch — get a wide character from

terminal, 226
mvwget_wstr — get a wide character string

from terminal, 224
mvwgetch — get a single-byte character from

terminal, 217
mvwgetn_wstr — get a wide character string

from terminal, 224
mvwgetnstr — get a multibyte character string

from terminal, 222
mvwgetnwstr — get wchar_t character strings

from curses terminal keyboard, 119
mvwgetstr — get a multibyte character string

from terminal, 222
mvwgetwch — get (or push back) wchar_t

characters from curses terminal
keyboard, 114

mvwgetwstr — get wchar_t character strings
from curses terminal keyboard, 119

mvwhline — use single-byte characters (and
renditions) to draw lines, 231

mvwhline_set — use complex characters (and
renditions) to draw lines, 233

mvwin — move window, 310

mvwin_wch — retrieve a complex character
(with rendition), 255

mvwin_wchnstr — retrieve complex character
string (with rendition), 256

mvwin_wchstr — retrieve complex character
string (with rendition), 256

mvwinch — return a single-byte character (with
rendition), 237

mvwinchnstr — retrieve a single-byte character
string (with rendition), 238

mvwinchstr — retrieve a single-byte character
string (with rendition), 238

mvwinnstr — retrieve a multibyte character
string (without rendition), 241

mvwinnwstr — get a string of wchar_t
characters from a curses window, 135

mvwinnwstr — retrieve a wide character string
(without rendition), 243

mvwins_nwstr — insert a wide character
string, 250

mvwins_wch — insert a complex character, 252
mvwins_wstr — insert a wide character

string, 250
mvwinsch — insert a character, 245
mvwinsnstr — insert a multibyte character

string, 248
mvwinsnwstr — insert wchar_t string before

character under the cursor in a curses
window, 132

mvwinsstr — insert a multibyte character
string, 248

mvwinstr — retrieve a multibyte character
string (without rendition), 241

mvwinswch — insert a wchar_t character before
the character under the cursor in a curses
window, 131

mvwinswstr — insert wchar_t string before
character under the cursor in a curses
window, 132

mvwinwch — get a wchar_t character and its
attributes from a curses window, 133

mvwinwchnstr — get a string of wchar_t
characters (and attributes) from a curses
window, 134

mvwinwchstr — get a string of wchar_t
characters (and attributes) from a curses
window, 134

386 man pages section 3: Curses Library Functions • January 2005

mvwinwstr — get a string of wchar_t characters
from a curses window, 135

mvwinwstr — retrieve a wide character string
(without rendition), 243

mvwprintw — print formatted output
window, 308

mvwscanw — convert formatted input from a
window, 309

mvwvline — use single-byte characters (and
renditions) to draw lines, 231

mvwvline_set — use complex characters (and
renditions) to draw lines, 233

mwwaddnstr — add a multi-byte character
string (without rendition) to a window, 22

N
napms — sleep process for a specified length of

time, 311
newpad — create and display curses pads, 142
newpad — create or refresh a pad or

subpad, 312
newterm — screen initialization functions, 240
newwin — create a new window or

subwindow, 174
nl — enable/disable newline control, 314
nocbreak — set input mode controls, 47
nodelay — set blocking or non-blocking

read, 315
noecho — enable/disable terminal echo, 178
nonl — enable/disable newline control, 314
noqiflush — control flush of input and output

on interrupt, 316
noraw — set input mode controls, 47
notimeout — set timed blocking or

non-blocking read, 317
number of columns on terminal screen —

COLS, 55
number of lines on terminal screen —

LINES, 274

O
openpl — graphics interface, 334
openvt — graphics interface, 334
output attributes to the terminal — vidattr, 361

output attributes to the terminal —
vidputs, 361

output attributes to the terminal —
vid_attr, 361

output attributes to the terminal —
vid_puts, 361

overlay — copy overlapped windows, 319
overlay or overwrite any portion of window —

copywin, 56
overwrite — copy overlapped windows, 319

P
pair_content — manipulate color

information, 44
PAIR_NUMBER — manipulate color

information, 44
panel library

See also curses library
panels — character based panels package, 326
panels, create and destroy

— del_panel, 325
— new_panel, 325
— panel_new, 325

panels deck manipulation routines
— bottom_panel, 329
— hide_panel, 328
— panel_hidden, 328
— panel_show, 328
— panel_top, 329
— show_panel, 328
— top_panel, 329

panels deck traversal primitives
— panel_above, 323
— panel_below, 323

panels panel, associate application data
— panel_userptr, 331
— set_panel_userptr, 331

panels panel, get or set current window
— panel_window, 332
— replace_panel, 332

panels virtual screen refresh routine
— panel_update, 330
— update_panel, 330

panels window on virtual screen, move
— move_panel, 324
— panel_move, 324

387

pecho_wchar — add character and refresh
window, 333

pechochar — add character and refresh
window, 333

pechochar — create and display curses
pads, 142

pechowchar — create and display curses
pads, 142

plot — graphics interface, 334
Link Editor, 335

pnoutrefresh — create and display curses
pads, 142

pnoutrefresh — create or refresh a pad or
subpad, 312

point — graphics interface, 334
prefresh — create and display curses pads, 142
prefresh — create or refresh a pad or

subpad, 312
print formatted output window —

mvprintw, 308
print formatted output window —

mvwprintw, 308
print formatted output window — printw, 308
print formatted output window —

wprintw, 308
print formatted output in window —

vwprintw, 364
print formatted output in window —

vw_printw, 363
print formatted output in window —

vw_scanw, 365
printw — print formatted output window, 308
push character back onto the input queue

— unget_wch, 359
— ungetch, 359

putp — apply padding information and output
string, 337

putwin — read a window from, and write a
window to, a file, 228

Q
qiflush — control flush of input and output on

interrupt, 316

R
raw — set input mode controls, 47
read a window from, and write a window to, a

file
— getwin, 228
— putwin, 228

redraw screen or portion of screen
— redrawwin, 338
— wredrawln, 338

redrawwin — redraw screen or portion of
screen, 338

refresh — refresh windows and lines, 176
refresh windows and lines

— doupdate, 176
— refresh, 176
— wnoutrefresh, 176
— wrefresh, 176

remove a character
— delch, 168
— mvdelch, 168
— mvwdelch, 168
— wdelch, 168

remove a line
— deleteln, 171
— wdeleteln, 171

reserve screen line for dedicated purpose —
ripoffline, 340

reset_prog_mode — save/restore terminal
modes, 166

reset_shell_mode — save/restore terminal
modes, 166

resetty — restore/save terminal modes, 339
restartterm — interfaces to the terminfo

database, 169
restore initial terminal environment

— endwin, 181
— isendwin, 181

restore/save terminal modes
— resetty, 339
— savetty, 339

retrieve a complex character (with rendition)
— in_wch, 255
— mvin_wch, 255
— mvwin_wch, 255
— win_wch, 255

retrieve a multibyte character string (without
rendition)
— innstr, 241

388 man pages section 3: Curses Library Functions • January 2005

retrieve a multibyte character string (without
rendition) (Continued)

— instr, 241
— mvinnstr, 241
— mvinstr, 241
— mvwinnstr, 241
— mvwinstr, 241
— winnstr, 241
— winstr, 241

retrieve a single-byte character string (with
rendition)
— inchnstr, 238
— inchstr, 238
— mvinchnstr, 238
— mvinchstr, 238
— mvwinchnstr, 238
— mvwinchstr, 238
— winchnstr, 238
— winchstr, 238

retrieve a wide character string (without
rendition)
— innwstr, 243
— inwstr, 243
— mvinnwstr, 243
— mvinwstr, 243
— mvwinnwstr, 243
— mvwinwstr, 243
— winnwstr, 243
— winwstr, 243

retrieve complex character string (with
rendition)
— in_wchnstr, 256
— in_wchstr, 256
— mvin_wchnstr, 256
— mvin_wchstr, 256
— mvwin_wchnstr, 256
— mvwin_wchstr, 256
— win_wchnstr, 256
— win_wchstr, 256

return a single-byte character (with rendition)
— inch, 237
— mvinch, 237
— mvwinch, 237
— winch, 237

return character string used as key name
— key_name, 260
— keyname, 260

return current ERASE or KILL characters
— erasechar, 182
— erasewchar, 182
— killchar, 182
— killwchar, 182

return full terminal type name —
longname, 275

return terminal baud rate — baudrate, 34
return the value of a terminfo capability

— tigetflag, 355
— tigetnum, 355
— tigetstr, 355
— tparm, 355

return the value of the environmental variable
TERM — termname, 352

ripoffline — reserve screen line for dedicated
purpose, 340

S
save/restore terminal modes

— def_prog_mode, 166
— def_shell_mode, 166
— reset_prog_mode, 166
— reset_shell_mode, 166

savetty — restore/save terminal modes, 339
scanw — convert formatted input from a

window, 309
scr_dump — write screen contents to/from a

file, 341
scr_init — write screen contents to/from a

file, 341
scr_restore — write screen contents to/from a

file, 341
scr_set — write screen contents to/from a

file, 341
screen initialization functions

— initscr, 240
— newterm, 240

scrl — scroll a window, 342
scroll — scroll a window, 342
scroll a window

— scrl, 342
— scroll, 342
— wscrl, 342

scrollok — set terminal output controls, 51

389

set or get the background character (and
rendition) of window — bkgd, 36

set or get the background character (and
rendition) of window — bkgdset, 36

set or get the background character (and
rendition) of window — getbkgd, 36

set or get the background character (and
rendition) of window — wbkgd, 36

set or get the background character (and
rendition) of window — wbkgdset, 36

set a cchar_t type character from a wide
character and rendition — setcchar, 343

set blocking or non-blocking read —
nodelay, 315

set/clear window attributes
— standend, 348
— standout, 348
— wstandend, 348
— wstandout, 348

set_curterm — interfaces to the terminfo
database, 169

set input mode controls
— cbreak, 47
— nocbreak, 47
— noraw, 47
— raw, 47

set or get the background character (and
rendition) of window using a complex
character
— bkgrnd, 38
— bkgrndset, 38
— getbkgrnd, 38
— wbkgrnd, 38
— wbkgrndset, 38
— wgetbkgrnd, 38

set_term — switch between terminals, 344
set terminal output controls

— clearok, 51
— idlok, 51
— leaveok, 51
— scrollok, 51
— setscrreg, 51
— wsetscrreg, 51

set timed blocking or non-blocking read
— notimeout, 317
— timeout, 317
— wtimeout, 317

set visibility of cursor — curs_set, 150

setcchar — set a cchar_t type character from a
wide character and rendition, 343

setscrreg — set terminal output controls, 51
setupterm — interfaces to the terminfo

database, 169
sleep process for a specified length of time —

napms, 311
slk_attr_off — soft label functions, 346
slk_attr_on — soft label functions, 346
slk_attr_set — soft label functions, 346
slk_attroff — soft label functions, 346
slk_attron — soft label functions, 346
slk_attrset — soft label functions, 346
slk_clear — soft label functions, 346
slk_color — soft label functions, 346
slk_init — soft label functions, 346
slk_label — soft label functions, 346
slk_noutrefresh — soft label functions, 346
slk_refresh — soft label functions, 346
slk_restore — soft label functions, 346
slk_set — soft label functions, 346
slk_touch — soft label functions, 346
slk_wset — soft label functions, 346
soft label functions — slk_attroff, 346
soft label functions — slk_attron, 346
soft label functions — slk_attrset, 346
soft label functions — slk_attr_off, 346
soft label functions — slk_attr_on, 346
soft label functions — slk_attr_set, 346
soft label functions — slk_clear, 346
soft label functions — slk_color, 346
soft label functions — slk_init, 346
soft label functions — slk_label, 346
soft label functions — slk_noutrefresh, 346
soft label functions — slk_refresh, 346
soft label functions — slk_restore, 346
soft label functions — slk_set, 346
soft label functions — slk_touch, 346
soft label functions — slk_wset, 346
space — graphics interface, 334
specify source of screen size information —

use_env, 360
standend — curses character and window

attribute control routines, 70
standend — set/clear window attributes, 348
standout — curses character and window

attribute control routines, 70
standout — set/clear window attributes, 348

390 man pages section 3: Curses Library Functions • January 2005

start_color — manipulate color information, 44
stdscr — default window, 349
subpad — create and display curses pads, 142
subpad — create or refresh a pad or

subpad, 312
subwin — create a new window or

subwindow, 174
switch between terminals — set_term, 344
synchronize window with its parents or

children
— syncok, 350
— wcursyncup, 350
— wsyncdown, 350
— wsyncup, 350

syncok — synchronize window with its parents
or children, 350

T
term_attrs — get supported terminal video

attributes, 351
termattrs — get supported terminal video

attributes, 351
termname — return the value of the

environmental variable TERM, 352
tgetent — emulate the termcap database, 353
tgetflag — emulate the termcap database, 353
tgetnum — emulate the termcap database, 353
tgetstr — emulate the termcap database, 353
tgoto — emulate the termcap database, 353
tigetflag — return the value of a terminfo

capability, 355
tigetnum — return the value of a terminfo

capability, 355
tigetstr — return the value of a terminfo

capability, 355
timeout — set timed blocking or non-blocking

read, 317
touchline — control window refresh, 258
touchwin — control window refresh, 258
tparm — return the value of a terminfo

capability, 355
tputs — apply padding information and output

string, 337
typeahead — check for type-ahead

characters, 357

U
unctrl — generate printable representation of a

character, 358
unget_wch — push character back onto the

input queue, 359
ungetch — push character back onto the input

queue, 359
ungetwch — get (or push back) wchar_t

characters from curses terminal
keyboard, 114

untouchwin — control window refresh, 258
use complex characters (and renditions) to draw

borders
— border_set, 42
— box_set, 42
— wborder_set, 42

use complex characters (and renditions) to draw
lines
— hline_set, 233
— mvhline_set, 233
— mvvline_set, 233
— mvwhline_set, 233
— mvwvline_set, 233
— vline_set, 233
— whline_set, 233
— wvline_set, 233

use_env — specify source of screen size
information, 360

use single-byte characters (and renditions) to
draw lines
— hline, 231
— mvhline, 231
— mvvline, 231
— mvwhline, 231
— mvwvline, 231
— vline, 231
— whline, 231
— wvline, 231

V
vid_attr — output attributes to the

terminal, 361
vid_puts — output attributes to the

terminal, 361
vidattr — output attributes to the terminal, 361

391

vidputs — output attributes to the
terminal, 361

vline — use single-byte characters (and
renditions) to draw lines, 231

vline_set — use complex characters (and
renditions) to draw lines, 233

vwprintw — print formatted output in
window, 364

vw_printw — print formatted output in
window, 363

vw_scanw — print formatted output in
window, 365

vwscanw — convert formatted input from a
window, 366

W
wadd_wch — add a complex character (with

rendition) to a window, 26
wadd_wchnstr — copy a string of complex

characters (with renditions) to a window, 28
wadd_wchstr — copy a string of complex

characters (with renditions) to a window, 28
waddch — add a character (with rendition) to a

window, 18
waddchnstr — copy a character string (with

renditions) to a window, 20
waddchstr — copy a character string (with

renditions) to a window, 20
waddnstr — add a multi-byte character string

(without rendition) to a window, 22
waddnwstr — add a string of wchar_t

characters to a curses window and advance
cursor, 68

waddnwstr — add a wide-character string to a
window, 24

waddstr — add a multi-byte character string
(without rendition) to a window, 22

waddwch — add a wchar_t character (with
attributes) to a curses window and advance
cursor, 63

waddwchnstr — add string of wchar_t
characters (and attributes) to a curses
window, 66

waddwchstr — add string of wchar_t characters
(and attributes) to a curses window, 66

waddwstr — add a string of wchar_t characters
to a curses window and advance cursor, 68

waddwstr — add a wide-character string to a
window, 24

wadjcurspos — moving the cursor by
character, 69

wattr_get — control window attributes, 30
wattr_off — control window attributes, 30
wattr_on — control window attributes, 30
wattr_set — control window attributes, 30
wattroff — change foreground window

attributes, 32
wattroff — curses character and window

attribute control routines, 70
wattron — change foreground window

attributes, 32
wattron — curses character and window

attribute control routines, 70
wattrset — change foreground window

attributes, 32
wattrset — curses character and window

attribute control routines, 70
wbkgd — set or get the background character

(and rendition) of window, 36
wbkgdset — set or get the background

character (and rendition) of window, 36
wbkgrnd — set or get the background character

(and rendition) of window using a complex
character, 38

wbkgrndset — set or get the background
character (and rendition) of window using a
complex character, 38

wborder — add a single-byte border to a
window, 40

wborder_set — use complex characters (and
renditions) to draw borders, 42

wchgat — change the rendition of characters in
a window, 48

wclear — clear a window, 50
wclrtobot — clear to the end of a window, 53
wclrtoeol — clear to the end of a line, 54
wcolor_set — control window attributes, 30
wcursyncup — synchronize window with its

parents or children, 350
wdelch — remove a character, 168
wdeleteln — remove a line, 171
wecho_wchar — add a complex character and

refresh window, 180

392 man pages section 3: Curses Library Functions • January 2005

wechochar — add a single-byte character and
refresh window, 179

wechowchar — add a wchar_t character (with
attributes) to a curses window and advance
cursor, 63

werase — clear a window, 50
wget_wch — get a wide character from

terminal, 226
wget_wstr — get a wide character string from

terminal, 224
wgetbkgrnd — set or get the background

character (and rendition) of window using a
complex character, 38

wgetch — get a single-byte character from
terminal, 217

wgetn_wstr — get a wide character string from
terminal, 224

wgetnstr — get a multibyte character string
from terminal, 222

wgetnwstr — get wchar_t character strings
from curses terminal keyboard, 119

wgetstr — get a multibyte character string from
terminal, 222

wgetwch — get (or push back) wchar_t
characters from curses terminal
keyboard, 114

wgetwstr — get wchar_t character strings from
curses terminal keyboard, 119

whline — use single-byte characters (and
renditions) to draw lines, 231

whline_set — use complex characters (and
renditions) to draw lines, 233

win_wch — retrieve a complex character (with
rendition), 255

win_wchnstr — retrieve complex character
string (with rendition), 256

win_wchstr — retrieve complex character string
(with rendition), 256

winch — return a single-byte character (with
rendition), 237

winchnstr — retrieve a single-byte character
string (with rendition), 238

winchstr — retrieve a single-byte character
string (with rendition), 238

winnstr — retrieve a multibyte character string
(without rendition), 241

winnwstr — get a string of wchar_t characters
from a curses window, 135

winnwstr — retrieve a wide character string
(without rendition), 243

wins_nwstr — insert a wide character
string, 250

wins_wch — insert a complex character, 252
wins_wstr — insert a wide character string, 250
winsch — insert a character, 245
winsdelln — insert/delete lines to/from the

window, 246
winsertln — insert a line in a window, 247
winsnstr — insert a multibyte character

string, 248
winsnwstr — insert wchar_t string before

character under the cursor in a curses
window, 132

winsstr — insert a multibyte character
string, 248

winstr — retrieve a multibyte character string
(without rendition), 241

winswch — insert a wchar_t character before
the character under the cursor in a curses
window, 131

winswstr — insert wchar_t string before
character under the cursor in a curses
window, 132

winwch — get a wchar_t character and its
attributes from a curses window, 133

winwchnstr — get a string of wchar_t
characters (and attributes) from a curses
window, 134

winwchstr — get a string of wchar_t characters
(and attributes) from a curses window, 134

winwstr — get a string of wchar_t characters
from a curses window, 135

winwstr — retrieve a wide character string
(without rendition), 243

wmove — move cursor in window, 305
wmovenextch — moving the cursor by

character, 69
wmoveprevch — moving the cursor by

character, 69
wnoutrefresh — refresh windows and

lines, 176
wprintw — print formatted output

window, 308
wredrawln — redraw screen or portion of

screen, 338
wrefresh — refresh windows and lines, 176

393

write screen contents to/from a file
— scr_dump, 341
— scr_init, 341
— scr_restore, 341
— scr_set, 341

wscanw — convert formatted input from a
window, 309

wscrl — scroll a window, 342
wsetscrreg — set terminal output controls, 51
wstandend — curses character and window

attribute control routines, 70
wstandend — set/clear window attributes, 348
wstandout — curses character and window

attribute control routines, 70
wstandout — set/clear window attributes, 348
wsyncdown — synchronize window with its

parents or children, 350
wsyncup — synchronize window with its

parents or children, 350
wtimeout — set timed blocking or non-blocking

read, 317
wtouchln — control window refresh, 258
wunctrl — generate printable representation of

a wide character, 367
wvline — use single-byte characters (and

renditions) to draw lines, 231
wvline_set — use complex characters (and

renditions) to draw lines, 233

394 man pages section 3: Curses Library Functions • January 2005

	man pages section 3: Curses Library Functions
	Preface
	Overview

	Index

