
Solaris 64-bit Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–5138–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

041013@10082

Contents

Preface 7

1 64-bit Computing 13

Getting Past the 4 Gigabyte Barrier 13

Beyond Large Address Spaces 15

2 When to Use 64-bit 17

Major Features 18

Large Virtual Address Space 18

Large Files 19

64–bit Arithmetic 19

System Limitations Removed 19

Interoperability Issues 19

Kernel Memory Readers 19

/proc Restrictions 20

64–bit Libraries 20

Estimating the Effort of Conversion 20

3 Comparing 32-bit Interfaces and 64–bit Interfaces 21

Application Programming Interfaces 21

Application Binary Interfaces 22

Compatibility Between 32-bit Applications and 64–bit Applications 22

Application Binaries 22

Application Source Code 22

Device Drivers 23

3

Which Solaris Operating Environment Are You Running? 23

4 Converting Applications 25

Data Model 25

Implementing Single-Source Code 28

Feature Test Macros 28

Derived Types 28

<sys/types.h> File 28

<inttypes.h> File 29

Tools Support 32

lint for 32–bit and 64–bit Environments 32

Guidelines for Converting to LP64 34

Do Not Assume int and Pointers Are the Same Size 34

Do Not Assume int and long Are the Same Size 35

Sign Extension 35

Use Pointer Arithmetic Instead of Address Arithmetic 37

Repacking a Structure 37

Check Unions 38

Specify Constant Types 38

Beware of Implicit Declaration 39

sizeof is an unsigned long 39

Use Casts to Show Your Intentions 40

Check Format String Conversion Operation 40

Other Considerations 41

Derived Types That Have Grown in Size 41

Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes 42

Algorithmic Changes 42

Checklist for Getting Started 42

Sample Program 43

5 The Development Environment 45

Build Environment 45

Header Files 45

Compiler Environments 47

32-bit and 64-bit Libraries 47

Linking Object Files 48

LD_LIBRARY_PATH Environment Variable 48

4 Solaris 64-bit Developer’s Guide • January 2005

$ORIGIN Keyword 48

Packaging 32-bit and 64-bit Applications 49

Placement of Libraries and Programs 49

Packaging Guidelines 50

Application Naming Conventions 50

Shell-Script Wrappers 50

/usr/lib/isaexec Binary File 51

isaexec(3c) Interface 52

Debugging 64-bit Applications 52

6 Advanced Topics 53

SPARC V9 ABI Features 53

Stack Bias 54

Address Space Layout of the SPARC V9 ABI 55

Placement of Text and Data of the SPARC V9 ABI 55

Code Models of the SPARC V9 ABI 56

AMD64 ABI Features 57

Address Space Layout for amd64 Applications 58

Alignment Issues 59

Interprocess Communication 60

ELF and System Generation Tools 61

/proc Interface 61

Extensions to sysinfo(2) 62

libkvm and /dev/ksyms 62

libkstat Kernel Statistics 63

Changes to stdio 63

Performance Issues 64

64-bit Application Advantages 64

64-bit Application Disadvantages 64

System Call Issues 64

What Does EOVERFLOW Mean? 64

Beware ioctl() 65

5

A Changes in Derived Types 67

B Frequently Asked Questions (FAQs) 71

Index 73

6 Solaris 64-bit Developer’s Guide • January 2005

Preface

The capabilities of the Solaris™ operating environment continue to expand to meet
customer needs. The Solaris operating environment was designed to fully support
both the 32-bit and 64-bit architectures. The Solaris operating environment provides an
environment for building and running 64-bit applications that can use large files and
large virtual address spaces. At the same time, the Solaris operating environment
continues to provide maximum source compatibility, maximum binary compatibility,
and interoperability for 32-bit applications. In fact, most of the system commands that
run and have been built on the Solaris 64-bit implementation are 32-bit programs.

Note – This Solaris release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, IA-32, AMD64. The supported
SPARC based systems are based on the Solaris Sun Hardware Platform Guide. The
supported X86 based systems appear in the Solaris Hardware Compaatibility List. This
document cites any differences between the platform types.

In this document the term “X86” refers to the Intel 32–bit family of microprocessors
and compatible 64–bit and 32–bit microprocessors made by AMD. For supported
systems, see the Solaris Hardware Compaatibility List

The major differences between the 32-bit and the 64-bit application development
environments are that 32-bit applications are based on the ILP32 data model, where
ints, longs, and pointers are 32 bits, while 64-bit applications are based on the LP64
model, where longs and pointers are 64 bits and the other fundamental types are the
same as in ILP32.

Most applications can remain as 32-bit programs with no changes required.
Conversion is necessary only if the application has one or more of the following
requirements:

� Needs more than 4 gigabytes of virtual address space
� Reads and interprets kernel memory through use of the libkvm library, and

/dev/mem, or /dev/kmem files

7

� Uses /proc to debug 64-bit processes
� Uses a library that has only a 64-bit version
� Needs full 64-bit registers to do efficient 64-bit arithmetic

Specific interoperability issues can also require code changes. For example, if your
application uses files that are larger than 2 gigabytes, you might want to convert the
application to 64-bit.

In some cases, you might want to convert applications to 64-bit for performance
reasons. For example, you might need the 64-bit registers to do efficient 64-bit
arithmetic or you might want to take advantage of other performance improvements
that a 64–bit instruction set provides.

Who Should Use This Book
This document is written for C and C++ developers and provides guidance on how to
determine whether an application is 32-bit or 64-bit. This document provides

� A list of the similarities and differences between the 32-bit and 64-bit application
environments

� An explanation of how to write code that is portable between the two
environments

� A description of the tools provided by the operating system for developing 64-bit
applications

How This Book Is Organized
This book is organized into the following chapters.

� Chapter 1 describes the motivation behind 64–bit computing and gives an
overview of the benefits of 64–bit applications.

� Chapter 2 explains the differences between the Solaris 32-bit and 64-bit build and
runtime environments. The information is written to help the application
developer determine if and when converting code to be 64-bit safe is appropriate.

� Chapter 3 focuses on the similarities between 32-bit applications and 64-bit
applications as well as the 64-bit interfaces.

� Chapter 4 describes how to convert current 32–bit code to 64-bit safe code and the
tools available for making this process easier. The focus of this chapter is on
writing portable code. The information applies to converting existing applications
or writing new applications that are capable of running in both 32-bit and 64-bit

8 Solaris 64-bit Developer’s Guide • January 2005

environments.

� Chapter 5 focuses on the build environment, including headers, compilers, and
libraries, as well as packaging guidelines and debugging tools.

� Chapter 6 is an overview of 64–bit systems programming, the ABI, and some
performance issues.

� Appendix A highlights many of the derived types that have changed in the 64-bit
application development environment.

� Appendix B provides answers to the most commonly asked questions about the
64-bit implementation and application development environment.

Related Books
For further reading, the following texts are recommended:

� American National Standard for Information Systems Programming Language - C,
ANSI X3.159-1989

� SPARC Architecture Manual, Version 9, SPARC International

� SPARC Compliance Definition, Version 2.4, SPARC International

� Large Files in Solaris: A White Paper, Part No: 96115-001

� Solaris 10 Reference Manual

� Writing Device Drivers, Part No: 816–4854

� Sun Studio 10: C User’s Guide, Part No: 819-0494-10

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

9

http://docs.sun.com

What Typographic Conventions Mean
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -ato list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words or new terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

Do not save changes yet.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

10 Solaris 64-bit Developer’s Guide • January 2005

Note – The term “IA-32” refers to the Intel 32–bit processor architecture. This
architecture includes the Pentium, Pentium Pro, Pentium II, Pentium II Xeon, and
Pentium III processors and compatible microprocessor chips made by AMD and
Cyrix.

11

12 Solaris 64-bit Developer’s Guide • January 2005

CHAPTER 1

64-bit Computing

As applications continue to become more functional and more complex, and as data
sets grow in size, the address space requirements of existing applications continue to
grow. Today, certain classes of applications need to exceed the 4 Gigabyte address
space limitations of 32-bit systems. Examples of applications that exceed the 4
Gigabyte address space include

� Various database applications, particularly those applications that perform data
mining

� Web caches and Web search engines

� Components of CAD and CAE simulation and modeling tools

� Scientific computing

The desire to make these applications and other large applications run efficiently has
been the primary impetus for the development of 64–bit computing.

Getting Past the 4 Gigabyte Barrier
The diagram in Figure 1–1 plots typical performance against problem size for an
application running on a machine with a large amount of physical memory installed.
For very small problem sizes, the entire program can fit in the data cache (D$) or the
external cache (E$). But eventually, the program’s data area becomes large enough that
the program fills the entire 4 Gigabyte virtual address space of a 32-bit application.

13

Relative
Performance

Log Problem Size

D$

E$

hw PA limit

32-bit VA limit

FIGURE 1–1 Typical Performance and Problem Size Curve

Beyond the 32-bit virtual address limit, applications programmers can still handle
large problem sizes. Usually, applications that exceed the 32-bit virtual address limit
split the application data set between primary memory and secondary memory, for
example, onto a disk. Unfortunately, transferring data to and from a disk drive takes a
longer time, in orders of magnitude, than memory-to-memory transfers.

Today, many servers can handle more than 4 Gigabytes of physical memory. High-end
desktop machines are following the same trend, but no single 32-bit program can
directly address more than 4 Gigabytes at a time. However, a 64–bit application can
use the 64-bit virtual address space capability to allow up to 18 Exabytes (1 Exabyte is
approximately 1018 bytes) to be directly addressed. Thus, larger problems can be
handled directly in primary memory. If the application is multithreaded and scalable,
then more processors can be added to the system to speed up the application even
further. Such applications become limited only by the amount of physical memory in
the machine.

It might seem obvious, but for a broad class of applications, the ability to handle larger
problems directly in primary memory is the major performance benefit of 64-bit
machines.

� A greater proportion of a database can live in primary memory.
� Larger CAD/CAE models and simulations can fit in primary memory.
� Larger scientific computing problems can fit in primary memory.
� Web caches can hold more in memory, reducing latency.

14 Solaris 64-bit Developer’s Guide • January 2005

Beyond Large Address Spaces
Other compelling reasons why you might want to create 64–bit applications include:

� You need to perform a lot of computation on 64–bit integer quantities that use the
wider data paths of a 64–bit processor to gain performance.

� Several system interfaces have been enhanced, or limitations removed, because the
underlying data types that underpin those interfaces have become larger.

� You want to obtain the performance benefits of the 64–bit instruction set, such as
improved calling conventions and full use of the register set.

Chapter 1 • 64-bit Computing 15

16 Solaris 64-bit Developer’s Guide • January 2005

CHAPTER 2

When to Use 64-bit

For application developers, the major difference between the Solaris 64-bit and 32-bit
operating environments is the C data type model used. The 64–bit version uses the
LP64 model where longs and pointers are 64–bits. All other fundamental data types
remain the same as in the 32-bit implementation, which is based on the ILP32 model.
In the ILP32 model, ints, longs, and pointers are 32-bit quantities. These models are
explained in greater detail in Chapter 3.

Few applications really require conversion. Most applications can remain as 32-bit
applications and still run on the 64-bit operating system without requiring any code
changes or recompilation. In fact, 32-bit applications that do not require 64-bit
capabilities should probably remain 32-bit to maximize portability.

You might want to convert applications with the following characteristics:

� Can benefit from more than 4 gigabytes of virtual address space

� Are restricted by 32–bit interface limitations

� Can benefit from full 64-bit registers to do efficient 64-bit arithmetic

� Can benefit from the performance improvement that the 64–bit instruction set
provides

You might need to convert applications with these characteristics:

� Read and interpret kernel memory through the use of libkvm, /dev/mem, or
/dev/kmem

� Use /proc to debug 64-bit processes

� Use a library that has only a 64-bit version

Some specific interoperability issues require code changes. Similarly, if your
application uses files that are larger than 2 gigabytes, consider conversion to a 64-bit
application instead of using the large file APIs directly.

These items are explained further in the sections that follow.

17

Major Features
To explain the dual 32–bit and 64–bit support in the Solaris operating environment,
the following figure shows the stacks side-by-side. The system on the left supports
only 32–bit libraries and applications on top of a 32–bit kernel that uses 32–bit device
drivers. The system on the right supports the same 32–bit applications and libraries as
on the left. This system also supports 64–bit libraries and applications simultaneously
on top of a 64–bit kernel that uses 64–bit device drivers.

32-bit apps

32-bit Solaris

32-bit libs

32-bit kernel

32-bit drivers

32-bit apps

64-bit Solaris

32-bit libs

64-bit apps

64-bit libs

64-bit kernel

64-bit drivers

FIGURE 2–1 The Solaris Operating Environment Architecture

The major features of the 64–bit environment include support for:

� Large virtual address space
� Large files
� 64–bit arithmetic
� Removal of certain system limitations

Large Virtual Address Space
In the 64-bit environment, a process can have up to 64–bits of virtual address space,
that is, 18 exabytes. This virtual address space is approximately 4 billion times the
current maximum of a 32-bit process.

Note – Because of hardware restrictions, some platforms might not support the full
64–bits of address space.

18 Solaris 64-bit Developer’s Guide • January 2005

Large Files
If an application requires only support for large files, the application can remain 32-bit
and use the Large Files interface. However, if portability is not a primary concern,
consider converting the application to a 64–bit program. A 64–bit program takes full
advantage of 64-bit capabilities with a coherent set of interfaces.

64–bit Arithmetic
64-bit arithmetic has long been available in previous 32-bit Solaris releases. However,
the 64-bit implementation now uses the full 64-bit machine registers for integer
operations and parameter passing. The 64-bit implementation allows an application to
take full advantage of the capabilities of the 64-bit CPU hardware.

System Limitations Removed
The 64–bit system interfaces are inherently more capable than some of their 32–bit
equivalents. Application programmers concerned about year 2038 problems, when
32–bit time_t runs out of time, can use the 64–bit time_t. While 2038 seems a long
way off, applications that do computations that concern future events, such as
mortgages, might require the expanded time capability.

Interoperability Issues
The interoperability issues that require an application to be made 64-bit safe or
changed to interoperate with both 32-bit or 64-bit programs can include:

� Client and server transfers
� Programs that manipulate persistent data
� Shared memory

Kernel Memory Readers
Because the kernel is an LP64 object that uses 64-bit data structures internally, existing
32-bit applications that use libkvm, /dev/mem, or /dev/kmem do not work properly
and must be converted to 64-bit programs.

Chapter 2 • When to Use 64-bit 19

/proc Restrictions
A 32-bit program that uses /proc is able to look at 32-bit processes, but is not able to
understand all attributes of a 64-bit process. The existing interfaces and data structures
that describe the process are not large enough to contain the 64-bit quantities that are
involved. Such programs need to be recompiled as 64-bit programs in order to work
with both 32-bit processes and 64-bit processes. The ability to work with both 32-bit
processes and 64-bit processes is most typically a problem for debuggers.

64–bit Libraries
32-bit applications are required to link with 32-bit libraries, and 64-bit applications are
required to link with 64-bit libraries. With the exception of those libraries that have
become obsolete, all of the system libraries are provided in both 32-bit versions and
64-bit versions.

Estimating the Effort of Conversion
After you’ve decided to convert your application to a full 64–bit program, it is worth
noting that many applications require only a little work to accomplish that goal. The
remaining chapters discuss how to evaluate your application and the effort involved
in conversion.

20 Solaris 64-bit Developer’s Guide • January 2005

CHAPTER 3

Comparing 32-bit Interfaces and 64–bit
Interfaces

As discussed in “Getting Past the 4 Gigabyte Barrier” on page 13, most 32-bit
applications run unchanged in the Solaris 64-bit operating environment. Some
applications might only need to be recompiled as 64-bit applications, others need to be
converted. This chapter is directed at developers who have determined that their
application needs to be recompiled or converted to 64-bit, based on the items
discussed in “Getting Past the 4 Gigabyte Barrier” on page 13.

Application Programming Interfaces
The 32-bit application programming interfaces (APIs) supported in the 64-bit
operating environment are the same as the APIs supported in the 32-bit operating
environment. Thus, no changes are required for 32-bit applications between the 32–bit
environment and 64–bit environment. However, recompiling as a 64-bit application can
require cleanup. See the rules that are defined in Chapter 4 for guidelines on how to
clean up code for 64-bit applications.

The default 64-bit APIs are basically the UNIX 98 family of APIs. Their specification is
written in terms of derived types. The 64-bit versions are obtained by expanding some
of the derived types to 64-bit quantities. Correctly written applications that use these
APIs are portable in source form between the 32-bit environment and 64-bit
environment. The UNIX 2001 API family is also available in Solaris 10, see
standards(5).

21

Application Binary Interfaces
The SPARC V8 ABI is the existing processor-specific Application Binary Interface (ABI)
on which the 32-bit SPARC version of the Solaris implementation is based. The SPARC
V9 ABI extends the SPARC V8 ABI to support 64-bit operations and defines new
capabilities for this extended architecture. See “SPARC V9 ABI Features” on page 53
for additional information.

The i386 ABI is the processor-specific ABI on which the 32-bit version of Solaris (Intel
Platform Edition) is based.

For the Solaris 10 release, the amd64 ABI is the processor-specific ABI on which the
64-bit version of Solaris on x86 systems is based. The amd64 ABI supports 64-bit
operations and defines new capabilities for the new architecture. Programs using the
64–bit ABI might perform better than their 32–bit counterparts. Processors that
support the amd64 ABI also support the i386 ABI. See “AMD64 ABI Features”
on page 57 for additional information.

Compatibility Between 32-bit
Applications and 64–bit Applications
The following sections discuss the different levels of compatibility between 32-bit
applications and 64–bit applications.

Application Binaries
Existing 32–bit applications can run on either 32–bit or 64–bit operating environments.
The only exceptions are those applications that use libkvm, /dev/mem, /dev/kmem,
or /proc. See “Getting Past the 4 Gigabyte Barrier” on page 13 for more information.

Application Source Code
Source level compatibility has been maintained for 32–bit applications. For 64–bit
applications, the principal changes that have been made are with respect to the
derived types used in the application programming interface. Applications that use
the derived types and interfaces correctly are source compatible for 32–bit, and make
the transition to 64–bit more easily.

22 Solaris 64-bit Developer’s Guide • January 2005

Device Drivers
Because 32-bit device drivers cannot be used with the 64-bit operating system, these
drivers must be recompiled as 64-bit objects. Moreover, the 64-bit drivers need to
support both 32-bit applications and 64-bit applications. All drivers supplied with the
64-bit operating environment support both 32-bit applications and 64-bit applications.
However, the fundamental driver model and the interfaces supported by the DDI do
not change. The principal work is to clean up the code to be correct in an LP64
environment. See the Writing Device Drivers manual for more information.

Which Solaris Operating Environment
Are You Running?
The Solaris operating environment supports two first-class ABIs simultaneously. In
other words, two separate, fully functional system call paths connect into the 64–bit
kernel. Two sets of libraries support applications.

The 64-bit operating system can run on only 64-bit CPU hardware, while the 32-bit
version can run on either 32-bit CPU hardware or 64-bit CPU hardware. Because the
Solaris 32-bit and 64-bit operating environments look very similar, it might not be
immediately apparent which version is running on a particular hardware platform.

The easiest way to determine which version is running on your system is to use the
isainfo command. This new command prints information about the application
environments supported on the system.

The following is an example of the isainfo command executed on an UltraSPARC™
system running the 64-bit operating system:

% isainfo -v
64-bit sparcv9 applications

32-bit sparc applications

When the same command is run on an x86 system runnig the 32–bit Solaris operating
system:

% isainfo -v

32-bit i386 applications

When the same command is run on an x86 system running the 64–bit Solaris operating
system:

% isainfo -v
64-bit amd64 applications

32-bit i386 applications

Chapter 3 • Comparing 32-bit Interfaces and 64–bit Interfaces 23

Note – Not all x86 systems are capable of running the 64-bit kernel. In this case, if the
system is running the in Solaris operating environment, the kernel is running in 32-bit
mode

One useful option of the isainfo(1) command is the -n option, which prints the
native instruction set of the running platform:

% isainfo -n

sparcv9

The -b option prints the number of bits in the address space of the corresponding
native applications environment:

% echo "Welcome to "‘isainfo -b‘"-bit Solaris"

Welcome to 64-bit Solaris

Applications that must run on earlier versions of the Solaris operating environment
can ascertain whether 64–bit capabilities are available. Check the output of uname(1)
or check for the existence of /usr/bin/isainfo.

A related command, isalist(1), is more suited for use in shell scripts. isalist can
be used to print the complete list of supported instruction sets on the platform.
However, as the number of instruction set extensions increases, the limitations of a list
of all subsets has become apparent. Users are advised to not rely upon this interface in
the future.

Users who create libraries that depend upon instruction set extensions should use the
hardware capability facility of the dynamic linker. Use the isainfo command to
ascertain the instruction set extensions on the current platform.

% isainfo -x
amd64: sse2 sse fxsr amd_3dnowx amd_3dnow amd_mmx mmx cmov amd_sysc cx8 tsc fpu

i386: sse2 sse fxsr amd_3dnowx amd_3dnow amd_mmx mmx cmov amd_sysc cx8 tsc fpu

24 Solaris 64-bit Developer’s Guide • January 2005

CHAPTER 4

Converting Applications

Two basic issues that regard conversion arise for applications developers:

� Data type consistency and the different data models
� Interoperation between applications that use different data models

Trying to maintain a single source with as few #ifdefs as possible is usually better
than trying to maintain multiple source trees. This chapter provides guidelines for
writing code that works correctly in both 32-bit environments and 64-bit
environments. At best, the conversion of current code might require only a
recompilation and relinking with the 64-bit libraries. However, for those cases where
code changes are required, this chapter discusses the tools that help make conversion
easier.

Data Model
As stated previously, the biggest difference between the 32-bit environment and 64-bit
environment is the change in two fundamental data types.

The C data-type model used for 32-bit applications is the ILP32 model, so named
because ints, longs, and pointers are 32-bit. The LP64 data model is the C data-type
model for 64-bit applications. This model was agreed upon by a consortium of
companies across the industry. LP64 is so named because longs and pointers grow to
64-bit quantities. The remaining C types int, short, and char are the same as in the
ILP32 model.

The following sample program, foo.c, directly illustrates the effect of the LP64 data
model in contrast to the ILP32 data models. The same program can be compiled as
either a 32–bit program or a 64–bit program.

#include <stdio.h>
int

25

main(int argc, char *argv[])
{

(void) printf("char is \t\t%lu bytes\n", sizeof (char));
(void) printf("short is \t%lu bytes\n", sizeof (short));
(void) printf("int is \t\t%lu bytes\n", sizeof (int));
(void) printf("long is \t\t%lu bytes\n", sizeof (long));
(void) printf("long long is \t\t%lu bytes\n", sizeof (long long));
(void) printf("pointer is \t%lu bytes\n", sizeof (void *));
return (0);

}

The result of 32–bit compilation is:

% cc -O -o foo32 foo.c
% foo32
char is 1 bytes
short is 2 bytes
int is 4 bytes
long is 4 bytes
long long is 8 bytes

pointer is 4 bytes

The result of 64–bit compilation is:

% cc -xarch=generic64 -O -o foo64 foo.c
% foo64
char is 1 bytes
short is 2 bytes
int is 4 bytes
long is 8 bytes
long long is 8 bytes

pointer is 8 bytes

Note – The default compilation environment is designed to maximize portability, that
is, to create 32–bit applications.

The standard relationship between C integral types still holds true.

sizeof (char) <= sizeof (short) <= sizeof (int) <= sizeof (long)

Table 4–1 lists the basic C types, and their corresponding sizes in bits in the data type
models for both LP32 and LP64.

TABLE 4–1 Data Type Sizes in Bits

C data type ILP32 LP64

char 8 unchanged

short 16 unchanged

26 Solaris 64-bit Developer’s Guide • January 2005

TABLE 4–1 Data Type Sizes in Bits (Continued)
C data type ILP32 LP64

int 32 unchanged

long 32 64

long long 64 unchanged

pointer 32 64

enum 32 unchanged

float 32 unchanged

double 64 unchanged

long double 128 unchanged

Some older 32-bit applications use int, long, and pointer types interchangeably. The
size of longs and pointers grow in the LP64 data model. You need to be aware that
this change alone can cause many 32-bit to 64-bit conversion problems.

In addition, declarations and casts become very important in showing what is
intended. How expressions are evaluated can be affected when the types change. The
effects of standard C conversion rules are influenced by the change in data-type sizes.
To adequately show what is intended, you might need to declare the types of
constants. Casts might also be needed in expressions to make certain that the
expression is evaluated the way that you intended. Correct evaluation of expressions
is particularly crucial in the case of sign extension, where explicit casting might be
essential to achieve the intended effect.

Other problems arise with built-in C operators, format strings, assembly language,
and compatibility and interoperability.

The rest of this chapter advises you how to overcome these problems by:

� Explaining the problems outlined above in more detail

� Describing some of the derived types and include files that are useful to make code
safe for both 32-bit and 64-bit

� Describing the tools available for helping to make code 64-bit safe

� Providing general rules for making code portable between the 32-bit and 64-bit
environments

Chapter 4 • Converting Applications 27

Implementing Single-Source Code
The sections that follow describe some of the resources available to application
developers that help you write single-source code that supports both 32–bit and 64–bit
compilation.

The system include files <sys/types.h> and <inttypes.h> contain constants,
macros, and derived types that are helpful in making applications 32-bit and 64-bit
safe. While a detailed discussion of these is beyond the scope of this document, some
are discussed in the sections that follow, as well as in Appendix A.

Feature Test Macros
An application source file that includes <sys/types.h> makes the definitions of the
programming model symbols, _LP64 and _ILP32, available through inclusion of
<sys/isa_defs.h>.

For information about preprocessor symbols (_LP64 and _ILP32) and macros
(_LITTLE_ENDIAN and _BIG_ENDIAN6), see types(3HEAD).

Derived Types
Using the system derived types helps make code 32-bit and 64-bit safe, since the
derived types themselves are safe for both the ILP32 and LP64 data models. In
general, using derived types to allow for change is good programming practice.
Should the data model change in the future, or when porting to a different platform,
only the system derived types need to change rather than the application.

<sys/types.h> File
The <sys/types.h> header contains a number of basic derived types that should be
used whenever appropriate. In particular, the following are of special interest:

clock_t The type clock_t represents the system times in clock ticks.

dev_t The type dev_t is used for device numbers.

off_t The type off_t is used for file sizes and offsets.

ptrdiff_t The type ptrdiff_t is the signed integral type for the result of
subtracting two pointers.

size_t The type size_t is for the size, in bytes, of objects in memory.

28 Solaris 64-bit Developer’s Guide • January 2005

ssize_t The signed size type ssize_t is used by functions that return a
count of bytes or an error indication.

time_t The type time_t is used for time in seconds.

All of these types remain 32-bit quantities in the ILP32 compilation environment and
grow to 64-bit quantities in the LP64 compilation environment.

The use of some of these types is explained in more detail later in this chapter under
“Guidelines for Converting to LP64” on page 34.

<inttypes.h> File
The include file <inttypes.h> was added to the Solaris 2.6 release to provide
constants, macros, and derived types that help programmers make their code
compatible with explicitly sized data items, independent of the compilation
environment. It contains mechanisms for manipulating 8-bit, 16-bit, 32-bit, and 64-bit
objects. The file is part of an ANSI C proposal and tracks the ISO/JTC1/SC22/WG14
C committee’s working draft for the revision of the current ISO C standard, ISO/IEC
9899:1990 Programming Language – C.

The basic features provided by <inttypes.h> are:

� A set of fixed-width integer types
� uintptr_t and other helpful types
� Constant macros
� Limits
� Format string macros

These are discussed in more detail in the sections that follow.

Fixed-Width Integer Types
The fixed-width integer types provided by <inttypes.h> include both signed and
unsigned integer types, such as int8_t, int16_t, int32_t, int64_t, uint8_t,
uint16_t, uint32_t, and uint64_t. Derived types defined as the smallest integer
types that can hold the specified number of bits include int_least8_t,
int_least64_t, uint_least8_t, uint_least64_t.

These fixed-width types should not be used indiscriminately. For example, int can
continue to be used for such things as loop counters and file descriptors, and long can
be used for array indices. On the other hand, you should use fixed-width types for
explicit binary representations of:

� On-disk data

� Over-the-wire data

Chapter 4 • Converting Applications 29

� Hardware registers

� Binary interface specifications (that have explicitly sized objects or involve sharing
or communication between 32–bit and 64–bit programs)

� Binary data structures (that are used by 32–bit and 64–bit programs through shared
memory, files, and so on)

uintptr_t and Other Helpful Types
Other useful types provided by <inttypes.h> include signed and unsigned integer
types large enough to hold a pointer. These are given as intptr_t and uintptr_t.
In addition, intmax_t and uintmax_t are defined to be the longest (in bits) signed
and unsigned integer types available.

Using the uintptr_t type as the integral type for pointers is a better option than
using a fundamental type such as unsigned long. Even though an unsigned long
is the same size as a pointer in both the ILP32 and LP64 data models, the use of the
uintptr_t requires only the definition of uintptr_t to change when a different
data model is used. This makes it portable to many other systems. It is also a clearer
way to express your intentions in C.

The intptr_t and uintptr_t types are extremely useful for casting pointers when
you want to do address arithmetic. They should be used instead of long or
unsigned long for this purpose.

Note – Use of uintptr_t for casting is usually safer than intptr_t, especially for
comparisons.

Constant Macros
Macros are provided to specify the size and sign of a given constant. The macros are
INT8_C(c), ..., INT64_C(c), UINT8_C(c),..., UINT64_C(c). Basically, these macros
place an l, ul, ll, or ull at the end of the constant, if necessary. For example,
INT64_C(1) appends ll to the constant 1 for ILP32 and an l for LP64.

Macros for making a constant the biggest type are INTMAX_C(c) and
UINTMAX_C(c). These macros can be very useful for specifying the type of constants
described in “Guidelines for Converting to LP64” on page 34.

30 Solaris 64-bit Developer’s Guide • January 2005

Limits Defined by <inttypes.h>

The limits defined by <inttypes.h> are constants specifying the minimum and
maximum values of various integer types. This includes minimum and maximum
values of each of the fixed-width types, such as INT8_MIN,..., INT64_MIN,
INT8_MAX,..., INT64_MAX, and their unsigned counterparts.

The minimum and maximum for each of the least-sized types are given, too. These
include INT_LEAST8_MIN,..., INT_LEAST64_MIN, INT_LEAST8_MAX,...,
INT_LEAST64_MAX, and their unsigned counterparts.

Finally, the minimum and maximum value of the largest supported integer types are
defined. These include INTMAX_MIN and INTMAX_MAX and their corresponding
unsigned versions.

Format String Macros
Macros for specifying the printf and scanf format specifiers are also provided in
<inttypes.h> . Essentially, these macros prepend the format specifier with an l or
ll to specify the argument as a long or long long, given the number of bits in the
argument, which is built into the name of the macro.

Macros for printf(3C) format specifiers exist for printing 8-bit, 16-bit, 32-bit, and
64-bit integers, the smallest integer types, and the biggest integer types, in decimal,
octal, unsigned, and hexadecimal. For example, printing a 64–bit integer in
hexadecimal notation:

int64_t i;

printf("i =%" PRIx64 "\n", i);

Similarly, there are macros for scanf(3C) format specifiers for reading 8-bit, 16-bit,
32-bit, and 64-bit integers and the biggest integer type in decimal, octal, unsigned, and
hexadecimal. For example, reading an unsigned 64–bit decimal integer:

uint64_t u;

scanf("%" SCNu64 "\n", &u);

Do not use these macros indiscriminately. They are best used in conjunction with the
fixed-width types. Refer to the section “Fixed-Width Integer Types” on page 29 for
more details.

Chapter 4 • Converting Applications 31

Tools Support
The lint program, available with the Sun Studio 10 compiler, can detect potential
64-bit problems and is useful in making code 64-bit safe. In addition, the -v option to
the C compiler can be very helpful. It tells the compiler to perform additional and
stricter semantic checks. It also enables certain lint-like checks on the named files.

For more information about the capabilities of the C compilers and lint, see the Sun
Studio 10: C User’s Guide.

lint for 32–bit and 64–bit Environments
lint can be used on both 32-bit and 64-bit code. Use the -errchk=longptr64
option for code that is intended to be run in both 32–bit and 64–bit environments. The
-errchk=longptr64 option checks portability to an environment in which the size
of long integers and pointers is 64 bits and the size of plain integers is 32 bits.

The -Xarch=v9 option should be used to lint code intended to be run in the 64–bit
SPARC environment. Use the -errchk=longptr64 option together with the
-Xarch=v9 option to generate warnings about potential 64–bit problems for code to
be run on 64–bit SPARC.

Starting with the Solaris 10 release, the -Xarch=amd64 option should be used to
lint code intended to be run in the 64–bit AMD environment.

Note – The -D__sparcv9 option to lint is no longer necessary and should not be
used.

For a description of lint options, see the Sun Studio 10: C User’s Guide.

When warnings are generated, lint(1) prints the line number of the offending code,
a warning message that describes the problem, and notes whether a pointer was
involved. It can also indicate the sizes of types involved. The fact that a pointer is
involved and the size of the types can be useful in finding specific 64-bit problems and
avoiding the pre-existing problems between 32-bit and smaller types.

32 Solaris 64-bit Developer’s Guide • January 2005

Note – Though lint gives warnings about potential 64-bit problems, it cannot detect
all problems. You must remember that not all warnings generated by lint are true
64-bit problems. In many cases, code that generates a warning can be intentional and
correct for the application.

The sample program and lint(1) output below illustrate most of the lint warnings
that can arise in code that is not 64–bit clean.

1 #include <inttypes.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 static char chararray[] = "abcdefghijklmnopqrstuvwxyz";
6
7 static char *myfunc(int i)
8 {
9 return(& chararray[i]);
10 }
11
12 void main(void)
13 {
14 int intx;
15 long longx;
16 char *ptrx;
17
18 (void) scanf("%d", &longx);
19 intx = longx;
20 ptrx = myfunc(longx);
21 (void) printf("%d\n", longx);
22 intx = ptrx;
23 ptrx = intx;
24 intx = (int)longx;
25 ptrx = (char *)intx;
26 intx = 2147483648L;
27 intx = (int) 2147483648L;
28 ptrx = myfunc(2147483648L);
29 }

(19) warning: assignment of 64-bit integer to 32-bit integer
(20) warning: passing 64-bit integer arg, expecting 32-bit integer: myfunc(arg 1)
(22) warning: improper pointer/integer combination: op "="
(22) warning: conversion of pointer loses bits
(23) warning: improper pointer/integer combination: op "="
(23) warning: cast to pointer from 32-bit integer
(24) warning: cast from 64-bit integer to 32-bit integer
(25) warning: cast to pointer from 32-bit integer
(26) warning: 64-bit constant truncated to 32 bits by assignment
(27) warning: cast from 64-bit integer constant expression to 32-bit integer
(28) warning: passing 64-bit integer constant arg, expecting 32-bit integer: myfunc(arg 1)
function argument (number) type inconsistent with format

Chapter 4 • Converting Applications 33

scanf (arg 2) long * :: (format) int * t.c(18)

printf (arg 2) long :: (format) int t.c(21)

(The lint warning that arises from line 27 of this code sample is issued only if the
constant expression will not fit into the type into which it is being cast.)

Warnings for a given source line can be suppressed by placing a /*LINTED*/
comment on the previous line. This is useful where you have really intended the code
to be a specific way. An example might be in the case of casts and assignments.
Exercise extreme care when using the /*LINTED*/ comment because it can mask real
problems. Refer to the Sun Studio 10: C User’s Guide or the lint(1) man page for
more information.

Guidelines for Converting to LP64
When using lint(1), remember that not all problems result in lint(1) warnings,
nor do all lint(1) warnings indicate that a change is required. Examine each
possibility for intent. The examples that follow illustrate some of the more common
problems you are likely to encounter when converting code. Where appropriate, the
corresponding lint(1) warnings are shown.

Do Not Assume int and Pointers Are the Same
Size
Since ints and pointers are the same size in the ILP32 environment, a lot of code
relies on this assumption. Pointers are often cast to int or unsigned int for address
arithmetic. Instead, pointers could be cast to long because long and pointers are the
same size in both ILP32 and LP64 worlds. Rather than explicitly using unsigned
long, use uintptr_t because it expresses the intent more closely and makes the
code more portable, insulating it against future changes. For example,

char *p;

p = (char *) ((int)p & PAGEOFFSET);

produces the warning:

warning: conversion of pointer loses bits

Using the following code will produce the clean results:

char *p;

p = (char *) ((uintptr_t)p & PAGEOFFSET);

34 Solaris 64-bit Developer’s Guide • January 2005

Do Not Assume int and long Are the Same Size
Because ints and longs were never really distinguished in ILP32, a lot of existing
code uses them indiscriminately while implicitly or explicitly assuming that they are
interchangeable. Any code that makes this assumption must be changed to work for
both ILP32 and LP64. While an int and a long are both 32–bits in the ILP32 data
model, in the LP64 data model, a long is 64–bits. For example,

int waiting;
long w_io;
long w_swap;
...

waiting = w_io + w_swap;

produces the warning:

warning: assignment of 64-bit integer to 32-bit integer

Sign Extension
Unintended sign extension is a common problem when converting to 64–bits. It is
hard to detect before the problem actually occurs because lint(1) does not warn you
about it. Furthermore, the type conversion and promotion rules are somewhat
obscure. To fix unintended sign extension problems, you must use explicit casting to
achieve the intended results.

To understand why sign extension occurs, it helps to understand the conversion rules
for ANSI C. The conversion rules that seem to cause the most sign extension problems
between 32-bit and 64-bit integral values are:

1. Integral promotion

A char, short, enumerated type, or bit-field, whether signed or unsigned, can be
used in any expression that calls for an int. If an int can hold all possible values
of the original type, the value is converted to an int. Otherwise, it is converted to
an unsigned int.

2. Conversion between signed and unsigned integers

When a negative signed integer is promoted to an unsigned integer of the same or
larger type, it is first promoted to the signed equivalent of the larger type, then
converted to the unsigned value.

For a more detailed discussion of the conversion rules, refer to the ANSI C standard.
Also included in this standard are useful rules for ordinary arithmetic conversions and
integer constants.

When compiled as a 64-bit program, the addr variable in the following example
becomes sign-extended, even though both addr and a.base are unsigned types.

Chapter 4 • Converting Applications 35

EXAMPLE 4–1 test.c

struct foo {
unsigned int base:19, rehash:13;

};

main(int argc, char *argv[])
{

struct foo a;
unsigned long addr;

a.base = 0x40000;
addr = a.base << 13; /* Sign extension here! */
printf("addr 0x%lx\n", addr);

addr = (unsigned int)(a.base << 13); /* No sign extension here! */
printf("addr 0x%lx\n", addr);

}

This sign extension occurs because the conversion rules are applied as follows:

1. a.base is converted from an unsigned int to an int because of the integral
promotion rule. Thus, the expression a.base << 13 is of type int, but no sign
extension has yet occurred.

2. The expression a.base << 13 is of type int, but it is converted to a long and
then to an unsigned long before being assigned to addr, because of the signed
and unsigned integer promotion rule. The sign extension occurs when it is
converted from an int to a long.

% cc -o test64 -xarch=v9 test.c
% ./test64
addr 0xffffffff80000000
addr 0x80000000

%

When this same example is compiled as a 32-bit program it does not display any sign
extension:

% cc -o test32 test.c
% ./test32
addr 0x80000000
addr 0x80000000

%

36 Solaris 64-bit Developer’s Guide • January 2005

Use Pointer Arithmetic Instead of Address
Arithmetic
In general, using pointer arithmetic works better than address arithmetic because
pointer arithmetic is independent of the data model, whereas address arithmetic might
not be. It usually leads to simpler code as well. For example,

int *end;
int *p;
p = malloc(4 * NUM_ELEMENTS);

end = (int *)((unsigned int)p + 4 * NUM_ELEMENTS);

produces the warning:

warning: conversion of pointer loses bits

The following code will produce clean results:

int *end;
int *p;
p = malloc(sizeof (*p) * NUM_ELEMENTS);

end = p + NUM_ELEMENTS;

Repacking a Structure
Extra padding may be added to a structure by the compiler to meet alignment
requirements as long and pointer fields grow to 64 bits for LP64. For both the
SPARCV9 ABI and the amd64 ABI, all types of structures are aligned to at least the
size of the largest quantity within them. A simple rule for repacking a structure is to
move the long and pointer fields to the beginning of the structure and rearrange the
rest of the fields—usually, but not always, in descending order of size, depending on
how well they can be packed. For example,

struct bar {
int i;
long j;
int k;
char *p;

}; /* sizeof (struct bar) = 32 */

For better results, use:

struct bar {
char *p;
long j;
int i;
int k;

}; /* sizeof (struct bar) = 24 */

Chapter 4 • Converting Applications 37

Note – The alignment of fundamental types changes between the i386 and amd64 ABIs.
See “Alignment Issues” on page 59.

Check Unions
Be sure to check unions because their fields might have changed sizes between ILP32
and LP64. For example,

typedef union {
double _d;
long _l[2];

} llx_t;

should be:

typedef union {
double _d;
int _l[2];

} llx_t;

Specify Constant Types
A loss of data can occur in some constant expressions because of lack of precision.
These types of problems are very hard to find. Be explicit about specifying the type(s)
in your constant expressions. Add some combination of {u,U,l,L} to the end of each
integer constant to specify its type. You might also use casts to specify the type of a
constant expression. For example,

int i = 32;

long j = 1 << i; /* j will get 0 because RHS is integer expression */

should be:

int i = 32;

long j = 1L << i;

38 Solaris 64-bit Developer’s Guide • January 2005

Beware of Implicit Declaration
For some compilation modes, the compiler might assume the type int for any
function or variable that is used in a module and not defined or declared externally.
Any longs and pointers used in this way are truncated by the compiler’s implicit int
declaration. The appropriate extern declaration for a function or variable should be
placed in a header and not in the C module. The header should then be included by
any C module that uses the function or variable. In the case of a function or variable
defined by the system headers, the proper header should still be included in the code.

For example, because getlogin() is not declared, the following code:

int
main(int argc, char *argv[])
{

char *name = getlogin()
printf("login = %s\n", name);
return (0);

}

produces the warnings:

warning: improper pointer/integer combination: op "="
warning: cast to pointer from 32-bit integer
implicitly declared to return int

getlogin printf

For better results, use::

#include <unistd.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

char *name = getlogin();
(void) printf("login = %s\n", name);
return (0);

}

sizeof is an unsigned long
In the LP64 environment, sizeof has the effective type of size_t which is
implemented as an unsigned long. Occasionally, sizeof is passed to a function
expecting an argument of type int, or is assigned or cast to an int. In some cases,
this truncation might cause loss of data. For example,

long a[50];

unsigned char size = sizeof (a);

Chapter 4 • Converting Applications 39

produces the warnings:

warning: 64-bit constant truncated to 8 bits by assignment

warning: initializer does not fit or is out of range: 0x190

Use Casts to Show Your Intentions
Relational expressions can be tricky because of conversion rules. You should be very
explicit about how you want the expression to be evaluated by adding casts wherever
necessary.

Check Format String Conversion Operation
The format strings for printf(3C), sprintf(3C), scanf(3C), and sscanf(3C) might
need to be changed for long or pointer arguments. For pointer arguments, the
conversion operation given in the format string should be %p to work in both the
32-bit and 64-bit environments. For example,

char *buf;
struct dev_info *devi;
...

(void) sprintf(buf, "di%x", (void *)devi);

produces the warning:

warning: function argument (number) type inconsistent with format

sprintf (arg 3) void *: (format) int

Use the following code to produce clean results:

char *buf;
struct dev_info *devi;
...

(void) sprintf(buf, "di%p", (void *)devi);

Also check to be sure that the storage pointed to by buf is large enough to contain 16
digits. For long arguments, the long size specification, l, should be prepended to the
conversion operation character in the format string. For example,

size_t nbytes;
ulong_t align, addr, raddr, alloc;
printf("kalloca:%d%%%d from heap got %x.%x returns %x\n",

nbytes, align, (int)raddr, (int)(raddr + alloc), (int)addr);

produces the warnings:

warning: cast of 64-bit integer to 32-bit integer
warning: cast of 64-bit integer to 32-bit integer

warning: cast of 64-bit integer to 32-bit integer

40 Solaris 64-bit Developer’s Guide • January 2005

The following code will produce clean results:

size_t nbytes;
ulong_t align, addr, raddr, alloc;
printf("kalloca:%lu%%%lu from heap got %lx.%lx returns %lx\n",

nbytes, align, raddr, raddr + alloc, addr);

Other Considerations
The remaining guidelines highlight common problems encountered when converting
an application to a full 64–bit program.

Derived Types That Have Grown in Size
A number of derived types have changed so they represent 64-bit quantities in the
64-bit application environment. This change does not affect 32-bit applications;
however, any 64-bit applications that consume or export data described by these types
need to be reevaluated for correctness. An example of this is in applications that
directly manipulate the utmpx(4) files. For correct operation in the 64-bit application
environment, you should not attempt to directly access these files. Instead, you should
use the getutxent(3C) and related family of functions.

A list of changed derived types is included in Appendix A.

Check for Side Effects of Changes
One problem to be aware of is that a type change in one area might result in an
unexpected 64-bit conversion in another area. For example, in the case of a function
that previously returned an int and now returns an ssize_t, all the callers need to
be checked.

Check Whether Literal Uses of long Still Make Sense
Because a long is 32 bits in the ILP32 model and 64 bits in the LP64 model, there
might be cases where what was previously defined as a long is neither appropriate
nor necessary. In this case, it might be possible to use a more portable derived type.

Chapter 4 • Converting Applications 41

Related to this, a number of derived types might have changed under the LP64 data
model for the reason stated above. For example, pid_t remains a long in the 32-bit
environment, but under the 64-bit environment, a pid_t is an int. For a list of
derived types modified for the LP64 compilation environment, see Appendix A.

Use #ifdef for Explicit 32-bit Versus 64-bit
Prototypes
In some cases, specific 32-bit and 64-bit versions of an interface are unavoidable. In the
headers, these would be distinguishable by the use of the _LP64 or _ILP32 feature
test macros. Similarly, code that is to work in 32-bit and 64-bit environments might
also need to utilize the appropriate #ifdefs, depending on the compilation mode.

Algorithmic Changes
After code has been made 64-bit safe, review it again to verify that the algorithms and
data structures still make sense. The data types are larger, so data structures might use
more space. The performance of your code might change as well. Given these
concerns, you might need to adapt your code appropriately.

Checklist for Getting Started
Assuming you need to convert your code to 64-bit, the following checklist might be
helpful:

� Read this entire document with an emphasis on the “Guidelines for Converting to
LP64” on page 34.

� Review all data structures and interfaces to verify that these are still valid in the
64-bit environment.

� Include <sys/types.h> in your code to pull in the _ILP32 or _LP64 definitions
as well as many basic derived types.

� Move function prototypes and external declarations with non-local scope to
headers and include these headers in your code.

� Run lint(1) using the -errchk=longptr64 and review each warning
individually, being aware that not all warnings require a change to the code.
Depending on the resulting changes, you might also want to run lint(1) again,
both in 32–bit and 64–bit modes.

42 Solaris 64-bit Developer’s Guide • January 2005

� Compile code as both 32-bit and 64-bit, unless the application is being provided
only as 64-bit.

� Test the application by executing the 32-bit version on the 32-bit operating system,
and the 64-bit version on the 64-bit operating system. You could include testing the
32-bit version on the 64-bit operating system, but this is not necessary.

Sample Program
The following sample program, foo.c, directly illustrates the effect of the LP64 data
model in contrast to the ILP32 data models. The same program can be compiled as
either a 32–bit program or a 64–bit program.

#include <stdio.h>
int
main(int argc, char *argv[])
{

(void) printf("char is \t\t%lu bytes\n", sizeof (char));
(void) printf("short is \t%lu bytes\n", sizeof (short));
(void) printf("int is \t\t%lu bytes\n", sizeof (int));
(void) printf("long is \t\t%lu bytes\n", sizeof (long));
(void) printf("long long is \t\t%lu bytes\n", sizeof (long long));
(void) printf("pointer is \t%lu bytes\n", sizeof (void *));
return (0);

}

The result of 32–bit compilation is:

% cc -O -o foo32 foo.c
% foo32
char is 1 bytes
short is 2 bytes
int is 4 bytes
long is 4 bytes
long long is 8 bytes

pointer is 4 bytes

The result of 64–bit compilation is:

% cc -xarch=generic64 -O -o foo64 foo.c
% foo64
char is 1 bytes
short is 2 bytes
int is 4 bytes
long is 8 bytes
long long is 8 bytes

pointer is 8 bytes

Chapter 4 • Converting Applications 43

Note – The default compilation environment is designed to maximize portability, that
is, to create 32–bit applications.

44 Solaris 64-bit Developer’s Guide • January 2005

CHAPTER 5

The Development Environment

This chapter explains the 64-bit application development environment. The chapter
describes the build environment, including header and library issues, compiler
options, linking, and debugging tools. The information also provides guidance on
packaging issues.

Before you begin, though, it is important to determine whether your installed version
of the operating system is 32-bit or 64-bit. If you have come this far, the assumption is
that you are running on the 64-bit version. To confirm this, you can use the
isainfo(1) command that was explained in Chapter 3. Even if you are using the
32-bit operating environment, you can still build your 64-bit applications, provided
you have the system header files and 64–bit libraries on your system.

Build Environment
The build environment includes the system headers, compilation system, and libraries.
These are explained in the sections that follow.

Header Files
A single set of system headers supports both 32-bit and 64-bit compilation
environments. You do not need to specify a different include path for the 64-bit
compilation environment.

To better understand the changes made to the headers for support of the 64-bit
environment, you should understand the various definitions in the header
<sys/isa_defs.h>. This header contains a group of well known #defines and
sets these for each instruction set architecture. Inclusion of <sys/types.h>
automatically includes <sys/isa_defs.h>.

45

The symbols in the following table are defined by the compilation environment:

Symbol Description

__sparc Indicates any of the SPARC family of processor architectures. This includes
SPARC V7, SPARC V8, and SPARC V9 architectures. The symbol sparc is a
deprecated historical synonym for __sparc.

__sparcv8 Indicates the 32-bit SPARC V8 architecture as defined by Version 8 of the
SPARC Architecture Manual.

__sparcv9 Indicates the 64-bit SPARC V9 architecture as defined by Version 9 of the
SPARC Architecture Manual.

__x86 Indicates any of the x86 family of processor architectures. These architectures
include the 386, 486, Pentium, IA-32, AMD64, and EM64T processors.

__i386 Indicates the 32-bit i386 architecture.

__amd64 Indicates the 64-bit amd64 architecture.

Note – __i386 and __amd64 are mutually exclusive. The symbols __sparcv8 and
__sparcv9 are mutually exclusive and are only relevant when the symbol __sparc
is defined.

The following symbols are derived from some combination of the symbols above
being defined:

Symbol Description

_ILP32 The data model where sizes of int, long, and pointer are all 32 bits.

_LP64 The data model where sizes of long and pointer are all 64 bits.

Note – The symbols _ILP32 and _LP64 are mutually exclusive.

If writing completely portable code is not possible, and specific 32-bit versus 64-bit
code is required, make the code conditional using _ILP32 or _LP64. This makes the
compilation environment machine independent and maximizes the portability of the
application to all 64-bit platforms.

46 Solaris 64-bit Developer’s Guide • January 2005

Compiler Environments
The Sun Studio C, C++, and Fortran compilation environments have been enhanced to
support the creation of both 32-bit and 64-bit applications. The 10.0 release of the C
compiler from Sun Studio provides 64–bit compilation support.

Native and cross-compilation modes are supported. The default compilation
environment continues to produce 32-bit applications. While both modes are
supported, they are still architecture-specific. It is not possible to create SPARC objects
on x86 machines, nor x86 objects on SPARC machines with the Sun compilers. In the
absence of a specification of the architecture or mode of compilation, the appropriate
__sparcv8 or __i386 symbol is defined by default, and as part of this, _ILP32 is
also defined. This maximizes interoperability with the existing applications and
hardware base.

Starting with the Sun Studio 8 release, use the cc(1) -xarch=generic64 flag to
enable the 64-bit compilation environment.

This generates LP64 code in ELF64 objects. ELF64 is a 64-bit object file format
supporting 64-bit processors and architectures. This is in contrast to the ELF32 object
files generated when compiling in the default 32-bit mode.

The -xarch=generic64 flag is used to generate 64-bit code on either 32-bit or 64-bit
system. Using the 32-bit compiler you can build 64-bit objects on a 32-bit system;
however, you cannot run the 64-bit objects on a 32–bit system. You need not specify
the library path for the 64-bit libraries. If the -l or -L option is used to specify an
additional library or library path and that path points only to 32-bit libraries, the
linker detects this and fails with an error.

For a description of compiler options, see the Sun Studio 10: C User’s Guide.

32-bit and 64-bit Libraries
The Solaris operating environment provides shared libraries for both 32-bit and 64-bit
compilation environments.

32-bit applications must link with 32-bit libraries, and 64-bit applications must link
with 64-bit libraries. It is not possible to create or execute a 32-bit application using
64-bit libraries. The 32-bit libraries continue to be located in /usr/lib and
/usr/ccs/lib. The 64-bit libraries are located in a subdirectory of the appropriate
lib directory. Because the placement of the 32-bit libraries has not changed, 32-bit
applications built on prior releases are binary compatible. Portable Makefiles should
refer to any library directories using the 64 symbolic link.

In order to build 64-bit applications, you need 64-bit libraries. It is possible to do either
native or cross-compilation, because the 64-bit libraries are available for both 32-bit
and 64-bit environments. The compiler and other miscellaneous tools (for example;

Chapter 5 • The Development Environment 47

ld, ar, and as) are 32–bit programs capable of building 64-bit programs on 32-bit or
64-bit systems. Of course, a 64-bit program built on a system running the 32-bit
operating system cannot execute in that 32-bit environment.

Linking Object Files
The linker remains a 32-bit application, but this should be transparent to most users,
since it is normally invoked indirectly by the compiler driver, for example, cc(1). If
the linker is presented with a collection of ELF32 object files as input, it creates an
ELF32 output file; similarly, if it is presented with a collection of ELF64 object files as
input, it creates an ELF64 output file. Attempts to mix ELF32 and ELF64 input files are
rejected by the linker.

LD_LIBRARY_PATH Environment Variable
SPARC. The two separate dynamic linker programs for 32-bit applications and for
64-bit applications are: /usr/lib/ld.so.1 and /usr/lib/sparcv9/ld.so.1.

x86. For the AMD64 architecture, the dynamic linker programs for 32-bit applications
and 64-bit applications are: /usr/lib/ld.so.1 and /usr/lib/amd64/ld.so.1.

At runtime, both dynamic linkers search the same list of colon-separated directories
specified by the LD_LIBRARY_PATH environment variable. However, the 32-bit
dynamic linker binds only to 32-bit libraries, while the 64-bit dynamic linker binds
only to 64-bit libraries. So directories containing both 32-bit and 64-bit libraries can be
specified via LD_LIBRARY_PATH, if needed.

The 64-bit dynamic linker’s search path can be completely overridden using the
LD_LIBRARY_PATH_64 environment variable.

$ORIGIN Keyword
A common technique for distributing and managing applications is to place related
applications and libraries into a simple directory hierarchy. Typically, the libraries
used by the applications reside in a lib subdirectory, while the applications
themselves reside in a bin subdirectory of a base directory. This base directory can
then be exported using NFS™, Sun’s distributed computing file system, and mounted
on client machines. In some environments, the automounter and the name service can
be used to distribute the applications, and to ensure the file-system namespace of the
application hierarchy is the same on all clients. In such environments, the applications
can be built using the -R flag to the linker to specify the absolute path names of the
directories that should be searched for shared libraries at runtime.

48 Solaris 64-bit Developer’s Guide • January 2005

However, in other environments, the file system namespace is not so well controlled,
and developers have resorted to using a debugging tool — the LD_LIBRARY_PATH
environment variable — to specify the library search path in a wrapper script. This is
unnecessary, because the $ORIGIN keyword can be used in path names specified to
the linker -R option. The $ORIGIN keyword is expanded at runtime to be the name of
the directory where the executable itself is located. This effectively means that the path
name to the library directory can be specified using the pathname relative to
$ORIGIN. This allows the application base directory to be relocated without having to
set LD_LIBRARY_PATH at all.

This functionality is available for both 32-bit and 64-bit applications, and it is well
worth considering when creating new applications to reduce the dependencies on
users or scripts correctly configuring LD_LIBRARY_PATH.

See the Linker and Libraries Guide for further details.

Packaging 32-bit and 64-bit Applications
The following sections discuss packaging considerations for 32–bit and 64–bit
applications.

Placement of Libraries and Programs
SPARC. The placement of new libraries and programs follows the standard
conventions described in “32-bit and 64-bit Libraries” on page 47. The 32-bit libraries
continue to be located in the same place, while the 64-bit libraries should be placed in
the specific architecture-dependent directory under the normal default directories.
Placement of 32-bit and 64-bit specific applications should be transparent to the user.

This means that 32-bit libraries should be placed in the same library directories. 64-bit
libraries should be placed in the sparcv9 subdirectory under the appropriate lib
directory.

Programs that require versions specific to 32-bit or 64-bit environments are a slightly
different case. These should be placed in the appropriate sparcv7 or sparcv9
subdirectory of the directory where they are normally located.

64-bit libraries should be placed in the amd64 subdirectory under the appropriate lib
directory.

Programs that require versions specific to 32-bit or 64-bit environments should be
placed in the appropriate i86 or amd64 subdirectory of the directory where they are
normally located.

Chapter 5 • The Development Environment 49

See “Application Naming Conventions” on page 50.

Packaging Guidelines
Packaging options include creating specific packages for 32-bit and 64-bit applications,
or combining the 32-bit and 64-bit versions in a single package. In the case where a
single package is created, you should use the subdirectory naming convention for the
contents of the package, as described in this chapter.

Application Naming Conventions
Rather than having specific names for 32-bit and 64-bit versions of an application,
such as foo32 and foo64, 32-bit and 64-bit applications can be placed in the
appropriate platform-specific subdirectory, as explained in “Placement of Libraries
and Programs” on page 49. Wrappers, which are explained in the next section, can
then be used to run the correct version of the application. One advantage is that the
user does not need to know about the specific 32-bit and 64-bit version, since the
correct version executes automatically, depending on the platform.

Shell-Script Wrappers
In the case where 32-bit and 64-bit specific versions of applications are required,
shell-script wrappers can make the version transparent to the user. This is the case
with a number of tools in the Solaris operating environment, where 32-bit and 64-bit
versions are needed. A wrapper can use the isalist command to determine the
native instruction sets executable on a particular hardware platform, and run the
appropriate version of the tool based on this.

This is an example of a native instruction set wrapper:

#! /bin/sh

CMD=‘basename $0‘
DIR=‘dirname $0‘
EXEC=
for isa in ‘/usr/bin/isalist‘; do

if [-x ${DIR}/${isa}/${CMD}]; then
EXEC=${DIR}/${isa}/${CMD}
break

fi
done
if [-z "${EXEC}"]; then

50 Solaris 64-bit Developer’s Guide • January 2005

echo 1>&2 "$0: no executable for this architecture"
exit 1

fi

exec ${EXEC} "${@}"

One problem with this example is that it expects the $0 argument to be a full
pathname to its own executable. For this reason, a generic wrapper, isaexec(), has
been created to address the problem of 32-bit and 64-bit specific applications. A
description of this wrapper follows.

/usr/lib/isaexec Binary File
isaexec(3C) is a 32-bit executable binary file that performs the wrapper function
outlined in the shell script wrapper presented in the immediately preceding
description, but with precise preservation of the argument list. The executable’s full
pathname is /usr/lib/isaexec, but it is not designed to be executed by that name.
Rather, it can be copied or linked (hard link, not soft link) to the primary name of a
program that exists in more than one version, selected using isalist(1).

For example, in a SPARC environment, the command truss(1) exists as three
executable files:

/usr/bin/truss
/usr/bin/sparcv7/truss
/usr/bin/sparcv9/truss

The executables in the sparcv7 and sparcv9 subdirectories are the real truss(1)
executables, 32-bit and 64-bit respectively. The wrapper file, /usr/bin/truss, is a
hard link to /usr/lib/isaexec.

In the x86 environment, the command truss(1) exists as three executable files:

/usr/bin/truss
/usr/bin/i86/truss
/usr/bin/amd64/truss

The isaexec(3C) wrapper determines its own fully resolved symlink-free path name
using getexecname(3C), independent of its argv[0] argument, gets the isalist(1)
through sysinfo(SI_ISALIST, ...), and performs an exec(2) of the first
executable file bearing its own name found in the resulting list of subdirectories of its
own directory. It then passes the argument vector and environment vector unchanged.
In this way, argv[0] passed to the final program image appears as first specified, not
as transformed into a full path name modified to contain the name of the subdirectory.

Chapter 5 • The Development Environment 51

Note – Because wrappers might exist, you need to be careful when moving executables
to different locations. You might move the wrapper rather than the actual program.

isaexec(3c) Interface
Many applications already use startup wrapper programs to set environment
variables, clear temporary files, start daemons, and so on. The isaexec(3C) interface
in libc(3LIB) allows the same algorithm used in the shell-based wrapper example
above to be invoked directly from a custom wrapper program.

Debugging 64-bit Applications
All of the Solaris debugging tools have been updated to work with 64-bit applications.
This includes the truss(1) command, the /proc tools (proc(1)) and mdb.

The dbx debugger, capable of debugging 64-bit applications, is available as part of the
Sun Studio tool suites. The remaining tools are included with the Solaris release.

The options for all these tools are unchanged. A number of enhancements are available
in mdb for debugging 64-bit programs. As expected, using “*” to dereference a pointer
will dereference 8 bytes for 64-bit programs and 4 bytes for 32-bit programs. In
addition, the following modifiers are available:

Additional ?, /, = modifiers:

g (8) Display 8 bytes in unsigned octal
G (8) Display 8 bytes in signed octal
e (8) Display 8 bytes in signed decimal
E (8) Display 8 bytes in unsigned decimal
J (8) Display 8 bytes in hexadecimal
K (n) Print pointer or long in hexadecimal

Display 4 bytes for 32-bit programs
and 8 bytes for 64-bit programs.

y (8) Print 8 bytes in date format

Additional ? and / modifiers:

M <value> <mask> Apply <mask> and compare for 8-byte value;
move ’.’ to matching location.

Z (8) write 8 bytes

52 Solaris 64-bit Developer’s Guide • January 2005

CHAPTER 6

Advanced Topics

This chapter presents a collection of miscellaneous programming topics for systems
programmers who want to understand more about the 64-bit Solaris operating
environment.

Most of the new features of the 64–bit environment are extensions of generic 32–bit
interfaces, though several new features are unique to 64–bit environments.

SPARC V9 ABI Features
64-bit applications are described using Executable and Linking Format (ELF64), which
allows large applications and large address spaces to be described completely.

SPARCV9. The SPARC Compliance Definition, Version 2.4, contains details of the SPARC
V9 ABI. It describes the 32-bit SPARC V8 ABI and the 64-bit SPARC V9 ABI. You can
obtain this document from SPARC International at www.sparc.com.

Following is a list of the SPARC V9 ABI features.

� The SPARC V9 ABI allows all 64-bit SPARC instructions and 64-bit wide registers
to be used to their full effect. Many of the new relevant instructions are extensions
of the existing V8 instruction set. See The SPARC Architecture Manual, Version 9.

� The basic calling convention is the same. The first six arguments of the caller are
placed in the out registers %o0-%o5. The SPARC V9 ABI still uses a register
window on a larger register file to make calling a function a “cheap” operation.
Results are returned in %o0. Because all registers are now treated as 64-bit
quantities, 64-bit values can now be passed in a single register, rather than a
register pair.

� The layout of the stack is different. Apart from the increase in the basic cell size
from 32-bit to 64-bit, various hidden parameter words have been removed. The
return address is still %o7 + 8.

53

http://www.sparc.com

� %o6 is still referred to as the stack pointer register %sp, and %i6 is the frame pointer
register %fp. However, the %sp and %fp registers are offset by a constant, known
as the stack bias, from the actual memory location of the stack. The size of the stack
bias is 2047 bytes.

� Instruction sizes are still 32 bits. Address constant generation therefore takes more
instructions. The call instruction can no longer be used to branch anywhere in the
address space, since it can only reach within plus or minus 2 gigabytes of %pc.

� Integer multiply and divide functions are now implemented completely in
hardware.

� Structure passing and return are accomplished differently. Small data structures
and some floating point arguments are now passed directly in registers.

� User traps allow certain traps from non-privileged code to be handled by a user
trap handler (instead of delivering a signal).

� All data types are now aligned to their size.

� Many basic derived types are larger. Thus many system call interface data
structures are now of different sizes.

� Two different sets of libraries exist on the system: those for 32-bit SPARC
applications and those for 64-bit SPARC applications.

Stack Bias
SPARCV9. An important feature of the SPARC V9 ABI for developers is the stack bias.
For 64-bit SPARC programs, a stack bias of 2047 bytes must be added to both the
frame pointer and the stack pointer to get to the actual data of the stack frame. See the
following figure.

Stack bias

0xffffffffffffffff

0xfffffffc00000000

0x7ff

%sp

Stack

For more information on stack bias, please see the SPARC V9 ABI.

54 Solaris 64-bit Developer’s Guide • January 2005

Address Space Layout of the SPARC V9 ABI
SPARCV9. For 64-bit applications, the layout of the address space is closely related to
that of 32-bit applications, though the starting address and addressing limits are
radically different. Like SPARC V8, the SPARC V9 stack grows down from the top of
the address space, while the heap extends the data segment from the bottom.

The diagram below shows the default address space provided to a 64–bit application.
The regions of the address space marked as reserved might not be mapped by
applications. These restrictions might be relaxed on future systems.

reserved

stack

heap

data

text

shared libraries

reserved

0xffffffffffffffff

0xffffffffffbf0000

0xfffff7ff00000000

0x80100000000

0x100000000

0x0

The actual addresses in the figure above describe a particular implementation on a
particular machine, and are given for illustrative purposes only.

Placement of Text and Data of the SPARC V9 ABI
By default, 64-bit programs are linked with a starting address of 0x100000000. The
whole program is above 4 gigabytes, including its text, data, heap, stack, and shared
libraries. This helps ensure that 64-bit programs are correct by making it so the
program will fault in the lower 4 gigabytes of its address space, if it truncates any of
its pointers.

Chapter 6 • Advanced Topics 55

While 64-bit programs are linked above 4 gigabytes, you can still link them below 4
gigabytes by using a linker mapfile and the -M option to the compiler or linker. A
linker mapfile for linking a 64-bit SPARC program below 4 gigabytes is provided in
/usr/lib/ld/sparcv9/map.below4G.

See the ld(1) linker man page for more information.

Code Models of the SPARC V9 ABI
SPARCV9. Different code models are available from the compiler for different
purposes to improve performance and reduce code size in 64-bit SPARC programs.
The code model is determined by the following factors:

� Positionability (absolute versus position-independent code)
� Code size (< 2 gigabytes)
� Location (low, middle, anywhere in address space)
� External object reference model (small or large)

The following table describes the different code models available for 64-bit SPARC
programs.

TABLE 6–1 Code Model Descriptions: SPARCV9

Code Model Positionability Code Size Location
External Object
Reference Model

abs32 Absolute < 2 gigabytes Low (low 32 bits
of address space)

None

abs44 Absolute < 2 gigabytes Middle (low 44
bits of address
space)

None

abs64 Absolute < 2 gigabytes Anywhere None

pic PIC < 2 gigabytes Anywhere Small (<= 1024
external objects)

PIC PIC < 2 gigabytes Anywhere Large (<= 2**29
external objects)

Shorter instruction sequences can be achieved in some instances with the smaller code
models. The number of instructions needed to do static data references in absolute
code is the fewest for the abs32 code model and the most for the abs64 code model,
while abs44 is in the middle. Likewise, the pic code model uses fewer instructions
for static data references than the PIC code model. Consequently, the smaller code
models can reduce the code size and perhaps improve the performance of programs
that do not need the fuller functionality of the larger code models.

56 Solaris 64-bit Developer’s Guide • January 2005

To specify which code model to use, the -xcode=<model> compiler option should be
used. Currently, for 64–bit objects, the compiler uses the abs64 model by default. You
can optimize your code by using the abs44 code model; you will use fewer
instructions and still cover the 44-bit address space that the current UltraSPARC
platforms support.

See the SPARC V9 ABI and compiler documentation for more information on code
models.

Note – A program compiled with the abs32 code model must be linked below 4
gigabytes using the -M /usr/lib/ld/sparcv9/map.below4G option.

AMD64 ABI Features
64-bit applications are described using Executable and Linking Format (ELF64), which
allows large applications and large address spaces to be described completely.

Following is a list of the AMD ABI features.

� The AMD ABI allows all 64-bit instructions and 64-bit registers to be used to their
full effect. Many of the new instructions are straightforward extensions of the
existing i386 instruction set. There are now sixteen general purpose registers.

Seven general purpose registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9, and %rax)
have a well-defined role in the function call sequence which now passes arguments
in registers.
Two registers are used for stack management (%rsp and %rbp).
Two registers are temporaries (%r10 and %r11).
Five registers are callee-saved (%r12, %r13, %r14, %r15, and %rbx)

� The basic function calling convention is different for the AMD ABI. Arguments are
placed in registers. For simple integer arguments, the first arguments are placed in
the %rdi, %rsi, %rdx, %rcx, %r8, and %r9 registers, in that order.

� The layout of the stack is slightly different for AMD. In particular, the stack is
always aligned on a 16–byte boundary immediately preceding the call instruction.

� Instruction sizes are still 32 bits. Address constant generation therefore takes more
instructions. The call instruction can no longer be used to branch anywhere in the
address space, since it can only reach within plus or minus 2 gigabytes of %rip.

� Integer multiply and divide functions are now implemented completely in
hardware.

� Structure passing and return are accomplished differently. Small data structures
and some floating point arguments are now passed directly in registers.

Chapter 6 • Advanced Topics 57

� There are new PC-relative addressing modes that enable more efficient
position-independent code to be generated.

� All data types are now aligned to their size.

� Many basic derived types are larger. Thus many system call interface data
structures are now of different sizes.

� Two different sets of libraries exist on the system: those for 32-bit i386 applications
and those for 64-bit amd64 applications.

� The AMD ABI substantially enhances floating point capabilities.

The 64-bit ABI allows all the x87 and MMX instructions that operate on the x87
floating point registers (%fpr0 through %fpr7 and %mm0 through %mm7) to be
used.
Additionally, the full set of SSE and SSE2 instructions that operate on the 128-bit
XMM registers (%xmm0 through %xmm15) can be used.

See the draft amd64 psABI document System V Application Binary Interface, AMD64
Architecture Processor Supplement, Draft Version 0.90, April 26th, 2003.

Address Space Layout for amd64 Applications
For 64-bit applications, the layout of the address space is closely related to that of
32-bit applications, though the starting address and addressing limits are radically
different. Like SPARC V9, the amd64 stack grows down from the top of the address
space, while the heap extends the data segment from the bottom.

The following diagram shows the default address space provided to a 64–bit
application. The regions of the address space marked as reserved might not be
mapped by applications. These restrictions might be relaxed on future systems.

58 Solaris 64-bit Developer’s Guide • January 2005

reserved

stack

heap

data

text

shared libraries

reserved

0xffffffffffffffff

0xfffffd8000000000

0xffff7fffffffffff

0x800000000000

0x4000000

0x0

The actual addresses in the figure above describe a particular implementation on a
particular machine, and are given for illustrative purposes only.

Alignment Issues
There is one additional issue around the alignment of 32-bit long long elements in
data structures; i386 applications only align long long elements on 32-bit
boundaries, while the amd64 ABI places long long elements on 64-bit boundaries
potentially generating wider holes in the data structures. This is different to SPARC
where 32-bit or 64-bit, long long items were aligned on 64-bit boundaries.

The following table shows the data type alignment for the designated architectures.

TABLE 6–2 Data Type Alignment

Architecture long long double long double

i386 4 4 4

amd64 8 8 16

Chapter 6 • Advanced Topics 59

TABLE 6–2 Data Type Alignment (Continued)
Architecture long long double long double

sparcv8 8 8 8

sparcv9 8 8 16

Although code might already appear to be LP64 clean on SPARC systems, the
alignment differences might produce problems when copying data structures between
32-bit and 64-bit programming environments. These programming environments
include device driver ioctl routines, doors routines or other IPC mechanisms.
Alignment problems can be avoided by careful coding of these interfaces, and by
judicious use of the #pragma pack or _Pack directives.

Interprocess Communication
The following interprocess communication (IPC) primitives continue to work between
64-bit and 32-bit processes:

� The System V IPC primitives, such as shmop(2), semop(2), msgsnd(2)

� The call to mmap(2) on shared files

� The use of pipe(2) between processes

� The use of door_call(3DOOR) between processes

� The use of rpc(3NSL) between processes on the same or different machines using
the external data representation described in xdr(3NSL)

Although all these primitives allow interprocess communication between 32-bit and
64-bit processes, you might need to take explicit steps to ensure that data being
exchanged between processes is correctly interpreted by all of them. For example, two
processes sharing data described by a C data structure containing variables of type
long cannot do so without understanding that a 32-bit process views this variable as a
4–byte quantity, while a 64-bit process views this variable as an 8–byte quantity.

One way to handle this difference is to ensure that the data has exactly the same size
and meaning in both processes. Build the data structures using fixed-width types,
such as int32_t and int64_t. Care is still needed with alignment. Shared data
structures might need to be padded out, or repacked using compiler directives such as
#pragma pack or _Pack. See “Alignment Issues” on page 59.

A family of derived types that mirrors the system derived types is available in
<sys/types32.h>. These types possess the same sign and sizes as the fundamental
types of the 32-bit system but are defined in such a way that the sizes are invariant
between the ILP32 and LP64 compilation environments.

60 Solaris 64-bit Developer’s Guide • January 2005

Sharing pointers between 32-bit and 64-bit processes is substantially more difficult.
Obviously, pointer sizes are different, but more importantly, while there is a 64-bit
integer quantity (long long) in existing C usage, a 64-bit pointer has no equivalent in
a 32-bit environment. In order for a 64-bit process to share data with a 32-bit process,
the 32-bit process can only see up to 4 gigabytes of that shared data at a time.

The XDR routine xdr_long(3NSL) might seem to be a problem; however, it is still
handled as a 32-bit quantity over the wire to be compatible with existing protocols. If
the 64-bit version of the routine is asked to encode a long value that does not fit into a
32-bit quantity, the encode operation fails.

ELF and System Generation Tools
64-bit binaries are stored in files in ELF64 format, which is a direct analog of the ELF32
format, except that most fields have grown to accommodate full 64-bit applications.
ELF64 files can be read using elf(3ELF) APIs; for example, elf_getarhdr(3ELF).

Both 32-bit and 64-bit versions of the ELF library,elf(3ELF) , support both ELF32 and
ELF64 formats and their corresponding APIs. This allows applications to build, read,
or modify both file formats from either a 32-bit or a 64-bit system (though a 64-bit
system is still required to execute a 64-bit program).

In addition, Solaris provides a set of GELF (Generic ELF) interfaces that allow the
programmer to manipulate both formats using a single, common API. See elf(3ELF).

All of the system ELF utilities, including ar(1), nm(1), ld(1) and dump(1), have been
updated to accept both ELF formats.

/proc Interface
The /proc interfaces are available to both 32-bit and 64-bit applications. 32-bit
applications can examine and control the state of other 32-bit applications. Thus, an
existing 32-bit debugger can be used to debug a 32-bit application.

64-bit applications can examine and control 32-bit or 64-bit applications. However,
32-bit applications are unable to control 64-bit applications, because the 32-bit APIs do
not allow the full state of 64-bit processes to be described. Thus, a 64-bit debugger is
required to debug a 64-bit application.

Chapter 6 • Advanced Topics 61

Extensions to sysinfo(2)
New sysinfo(2) subcodes in the Solaris S10 operating environment enable
applications to ascertain more information about the available instruction set
architectures.

SI_ARCHITECTURE_32
SI_ARCHITECTURE_64
SI_ARCHITECTURE_K
SI_ARCHITECTURE_NATIVE

For example, the name of the 64-bit ABI available on the system (if any), is available
using the SI_ARCHITECTURE_64 subcode. See sysinfo(2) for details.

libkvm and /dev/ksyms
The 64-bit version of the Solaris system is implemented using a 64-bit kernel.
Applications that examine or modify the contents of the kernel directly must be
converted to 64-bit applications and linked with the 64-bit version of libraries.

Before doing this conversion and cleanup work, you should examine why the
application needs to look directly at kernel data structures in the first place. It is
possible that in the time since the program was first ported or created, additional
interfaces have been made available on the Solaris platform, to extract the needed data
with system calls. See sysinfo(2), kstat(3KSTAT), sysconf(3C), and proc(4) as the
most common alternative APIs. If these interfaces can be used instead of
kvm_open(3KVM), use them and leave the application as 32-bit for maximum
portability. As a further benefit, most of these APIs are probably faster and might not
require the same security privileges needed to access kernel memory.

The 32-bit version of libkvm returns a failure from any attempt to use
kvm_open(3KVM) on a 64-bit kernel or crash dump. Similarly, the 64-bit version of
libkvm returns failure from any attempt to use kvm_open(3KVM) on a 32-bit kernel
crash dump.

Because the kernel is a 64-bit program, applications that open /dev/ksyms to
examine the kernel symbol table directly need to be enhanced to understand ELF64
format.

The ambiguity over whether the address argument to kvm_read() or kvm_write()
is supposed to be a kernel address or a user address is even worse for 64-bit
applications and kernel. All applications using libkvm that are still using

62 Solaris 64-bit Developer’s Guide • January 2005

kvm_read() and kvm_write() should transition to use the appropriate
kvm_read(), kvm_write(), kvm_uread() and kvm_uwrite() routines. (These
routines were first made available in Solaris 2.5.)

Applications that read /dev/kmem or /dev/mem directly can still run, though any
attempt they make to interpret data they read from those devices might be wrong;
data structure offsets and sizes are almost certainly different between 32-bit and 64-bit
kernels.

libkstat Kernel Statistics
The sizes of many kernel statistics are completely independent of whether the kernel is
a 64-bit or 32-bit program. The data types exported by named kstats (see
kstat(3KSTAT)) are self-describing, and export signed or unsigned, 32-bit or 64-bit
counter data, appropriately tagged. Thus, applications using libkstat need not be
made into 64-bit applications to work successfully with the 64-bit kernel.

Note – If you are modifying a device driver that creates and maintains named kstats,
you should try to keep the size of the statistics you export invariant between 32-bit
and 64-bit kernels by using the fixed-width statistic types.

Changes to stdio
In the 64–bit environment, the stdio facility has been extended to allow more than
256 streams to be open simultaneously. The 32–bit stdio facility continues to have a
256 streams limit.

64-bit applications should not rely on having access to the members of the FILE data
structure. Attempts to access private implementation-specific structure members
directly can result in compilation errors. Existing 32-bit applications are unaffected by
this change, but any direct usage of these structure members should be removed from
all code.

The FILE structure has a long history, and a few applications have looked inside the
structure to glean additional information about the state of the stream. Because the
64–bit version of the structure is now opaque, a new family of routines has been
added to both 32-bit libc and 64-bit libc to allow the same state to be examined
without depending on implementation internals. See, for example, __fbufsize(3C).

Chapter 6 • Advanced Topics 63

Performance Issues
The following sections discuss advantages and disadvantages of 64–bit performance.

64-bit Application Advantages
� Arithmetic and logical operations on 64-bit quantities are more efficient.

� Operations use full-register widths, the full-register set, and new instructions.

� Parameter passing of 64-bit quantities is more efficient.

� Parameter passing of small data structures and floating point quantities is more
efficient.

� Additional integer and floating point registers.

� For amd64, PC-relative addressing modes for more efficient position-independent
code.

64-bit Application Disadvantages
� 64-bit applications require more stack space to hold the larger registers.
� Applications have a bigger cache footprint from larger pointers.
� 64–bit applications do not run on 32–bit platforms.

System Call Issues
The following sections discuss system call issues.

What Does EOVERFLOW Mean?
The EOVERFLOW return value is returned from a system call whenever one or more
fields of the data structure used to pass information out of the kernel is too small to
hold the value.

A number of 32-bit system calls now return EOVERFLOW when faced with large objects
on the 64-bit kernel. While this was already true when dealing with large files, the fact
that daddr_t, dev_t, time_t, and its derivative types struct timeval and
timespec_t now contain 64-bit quantities might mean more EOVERFLOW return
values are observed by 32-bit applications.

64 Solaris 64-bit Developer’s Guide • January 2005

Beware ioctl()
Some ioctl(2) calls have been rather poorly specified in the past. Unfortunately,
ioctl() is completely devoid of compile-time type checking; therefore, it can be a
source of bugs that are difficult to track down.

Consider two ioctl() calls—one that manipulates a pointer to a 32-bit quantity
(IOP32), the other that manipulates a pointer to a long quantity (IOPLONG).

The following code sample works as part of a 32-bit application:

int a, d;
long b;
...
if (ioctl(d, IOP32, &b) == -1)

return (errno);
if (ioctl(d, IOPLONG, &a) == -1)

return (errno);

Both ioctl(2) calls work correctly when this code fragment is compiled and run as
part of a 32-bit application.

Both ioctl() calls also return success when this code fragment is compiled and run
as a 64-bit application. However, neither ioctl() works correctly. The first ioctl()
passes a container that is too big, and on a big-endian implementation, the kernel will
copy in or copy out from the wrong part of the 64-bit word. Even on a little-endian
implementation, the container probably contains stack garbage in the upper 32-bits.
The second ioctl() will copy in or copy out too much, either reading an incorrect
value, or corrupting adjacent variables on the user stack.

Chapter 6 • Advanced Topics 65

66 Solaris 64-bit Developer’s Guide • January 2005

APPENDIX A

Changes in Derived Types

The default 32-bit compilation environment is identical to historical Solaris operating
environment releases with respect to derived types and their sizes. In the 64-bit
compilation environment, some changes in derived types are necessary. These
changed derived types are highlighted in the tables that follow.

Notice that although the 32-bit and 64-bit compilation environments differ, the same
set of headers is used for both, with the appropriate definitions determined by the
compilation options. To better understand the options available to the applications
developer, it helps to understand the _ILP32 and _LP64 feature test macros.

TABLE A–1 Feature Test Macros

Feature Test Macro Description

_ILP32 The _ILP32 feature test macro is used to specify the ILP32 data model
where ints, longs and pointers are 32-bit quantities. By itself, the use
of this macro makes visible those derived types and sizes identical to
historical Solaris implementations. This is the default compilation
environment when building 32-bit applications. It ensures complete
binary and source compatibility for both C and C++ applications.

_LP64 The _LP64 feature test macro is used to specify the _LP64 data model
where ints are 32 bit quantities and longs and pointers are 64 bit
quantities. _LP64 is defined by default when compiling in 64–bit mode.
Other than making sure that either <sys/types.h> or
<sys/feature_tests.h> is included in source in order to make
visible the _LP64 definition, the developer needs to do nothing else.

The following examples illustrate the use of feature test macros so that the correct
definitions are visible, depending on the compilation environment.

EXAMPLE A–1 size_t Defined in _LP64

#if defined(_LP64)
typedef ulong_t size_t; /* size of something in bytes */
#else

67

EXAMPLE A–1 size_t Defined in _LP64 (Continued)

typedef uint_t size_t; /* (historical version) */

#endif

When building a 64-bit application with the definition in this example, size_t is a
ulong_t, or unsigned long, which is a 64-bit quantity in the LP64 model. In
contrast, when building a 32-bit application, size_t is defined as an uint_t, or
unsigned int, a 32-bit quantity in either in the ILP32 or the LP64 models.

EXAMPLE A–2 uid_t Defined in _LP64

#if defined(_LP64)
typedef int uid_t; /* UID type */
#else
typedef long uid_t; /* (historical version) */

#endif

In either of these examples, the same end result would have been obtained had the
ILP32 type representation been identical to the LP64 type representation. For example,
if in the 32-bit application environment, size_t was changed to a ulong_t, or
uid_t was changed to an int, these would still represent 32-bit quantities. However,
retaining the historical type representation ensures consistency within 32-bit C and
C++ applications, as well as complete binary and source compatibility with prior
releases of the Solaris operating environment.

Table A–2 lists the derived types that have changed. Notice that the types listed under
the _ILP32 feature test macro match those in Solaris 2.6, before 64–bit support was
added to the Solaris software. When building a 32-bit application, the derived types
available to the developer match those in the _ILP32 column. When building a 64-bit
application, the derived types match those listed in the _LP64 column. All of these
types are defined in <sys/types.h>, with the exception of the wchar_t and
wint_t types, which are defined in <wchar.h>.

When reviewing these tables, remember that in the 32-bit environment, ints, longs,
and pointers are 32-bit quantities. In the 64-bit environment, ints are 32-bit quantities
while longs and pointers are 64-bit quantities.

TABLE A–2 Changed Derived Types — General

Derived Types Solaris 2.6 _ILP32 _LP64

blkcnt_t longlong_t longlong_t long

id_t long long int

major_t ulong_t ulong_t uint_t

minor_t ulong_t ulong_t uint_t

68 Solaris 64-bit Developer’s Guide • January 2005

TABLE A–2 Changed Derived Types — General (Continued)
Derived Types Solaris 2.6 _ILP32 _LP64

mode_t ulong_t ulong_t uint_t

nlink_t ulong_t ulong_t uint_t

paddr_t ulong_t ulong_t not defined

pid_t long long int

ptrdiff_t int int long

size_t uint_t uint_t ulong_t

ssize_t int int long

uid_t long long int

wchar_t long long int

wint_t long long int

Table A–3 lists the derived types specific to the Large Files compilation environment.
These types are only defined if the feature test macro _LARGEFILE64_SOURCE is
defined. Notice that the ILP32 compilation environment has been preserved with the
previous Solaris 2.6 release.

TABLE A–3 Changed Derived Types — Large File Specific

Derived Types Solaris 2.6 _ILP32 _LP64

blkcnt64_t longlong_t longlong_t blkcnt_t

fsblkcnt64_t u_longlong_t u_longlong_t blkcnt_t

fsfilcnt64_t u_longlong_t u_longlong_t fsfilcnt_t

ino64_t u_longlong_t u_longlong_t ino_t

off64_t longlong_t longlong_t off_t

Table A–4 lists the changed derived types with respect to the value of
_FILE_OFFSET_BITS. You cannot compile an application with both _LP64 defined
and _FILE_OFFSET_BITS==32. By default, if _LP64 is defined, then
_FILE_OFFSET_BITS==64. If _ILP32 is defined, and _FILE_OFFSET_BITS is not
defined, then by default, _FILE_OFFSET_BITS==32. These rules are defined in the
<sys/feature_tests.h> header file.

Appendix A • Changes in Derived Types 69

TABLE A–4 Changed Derived Types — FILE_OFFSET_BITS Value

Derived Types
_ILP32 _FILE_
OFFSET_BITS ==32

_ILP32 _FILE_
OFFSET_BITS ==64

_LP64 _FILE_
OFFSET_BITS==64

ino_t ulong_t u_longlong_t ulong_t

blkcnt_t long longlong_t long

fsblkcnt_t ulong_t u_longlong_t ulong_t

fsfilcnt_t ulong_t u_longlong_t ulong_t

off_t long longlong_t long

70 Solaris 64-bit Developer’s Guide • January 2005

APPENDIX B

Frequently Asked Questions (FAQs)

How can I tell if my system is running the 32-bit or the 64-bit version of the
operating system?

You can determine what applications the operating system can run using the isainfo
-v command. It displays the set of applications supported by the operating system.
See the isainfo(1) man page for more information.

Can I run the 64-bit version of the operating system on 32-bit hardware?

No. It is not possible to run the 64-bit operating system on 32-bit hardware. The 64-bit
operating system requires 64-bit MMU and CPU hardware.

Do I need to change my 32-bit application if I plan to run that application on a
system with a 32-bit operating system?

No. Your application does not require changes or recompilation if it is being executed
only on a system running the 32-bit operating system.

Do I need to change my 32-bit application if I plan to run that application on a
system with the 64-bit operating system?

Most applications can remain 32-bit and still execute on a system running the 64-bit
operating system without requiring code changes or recompilation. Those 32-bit
applications not requiring 64-bit capabilities can remain 32-bit to maximize portability.

If your application uses libkvm(3LIB) , it must be recompiled as 64-bit, to execute on
a system running the 64-bit operating system. If your application uses /proc, it might
need to be recompiled as 64-bit; otherwise it cannot understand a 64-bit process. This
is because the existing interfaces and data structures that describe the process are not
large enough to contain the 64-bit quantities involved.

What program do I need to invoke in order to get the 64-bit capabilities?

No program is available that specifically invokes 64-bit capabilities. In order to take
advantage of the 64-bit capabilities of your system running the 64-bit version of the
operating system, you need to rebuild your application.

71

Can I build a 32-bit application on a system running the 64-bit operating system?

Yes. Both native and cross-compilation modes are supported. The default compilation
mode is 32-bit, whether on a system running the 32-bit or 64-bit version of the
operating system.

Can I build a 64-bit application on a system running the 32-bit operating system?

Yes, provided you have the system headers and 64–bit libraries installed. However, it
is not possible to run the 64-bit application on a system running the 32-bit operating
system.

Can I combine 32-bit libraries and 64-bit libraries when building and linking
applications?

No. 32-bit applications must link with 32-bit libraries and 64-bit applications with
64-bit libraries. Attempts to build or link with the wrong version of a library will result
in an error.

What are the sizes of floating point data types in the 64-bit implementation?

The only types that have changed are long and pointer. See Table 4–1.

What about time_t?

The time_t type remains a long quantity. In the 64-bit environment, this grows to a
64-bit quantity. Thus, 64-bit applications will be year 2038 safe.

What is the value of uname(1) on a machine running the 64-bit Solaris operating
environment?

The output of the uname -p command is unchanged.

Can I create 64–bit XView or OLIT Applications?

No. These libraries are already obsolete for the 32–bit environment and will not be
carried forward to the 64–bit environment.

Why is there a 64–bit version of ls in /usr/bin/sparcv9/ls?

In normal operation, there is no need for a 64–bit version of ls. However, since it is
possible to create file system objects in /tmp and /proc that are “too large” for 32–bit
ls to understand, the 64–bit version of ls allows users to examine those objects.

72 Solaris 64-bit Developer’s Guide • January 2005

Index

Numbers and Symbols
<inttypes.h>, 29-31
$ORIGIN, 48-49
<sys/types.h>, 28-29
64–bit Arithmetic, 19
64–bit Libraries, 20

A
ABI, See SPARC V9 ABI
amd64 ABI, Address Space Layout, 58-59
API, 21

C
Code Models, 56-57
Compatibility

Application Binaries, 22
Application Source Code, 22
Device Drivers, 23

Compilers, 47
Constant Macros, 30

D
Data Model

See ILP32
See also LP64

Debugging, 52
Derived Types, 28

/dev/ksyms, 62-63

E
ELF, 61
EOVERFLOW, 64

F
Format String Macros, 31

G
GELF, 61

H
Headers, 45-46

I
ILP32, 7
Interoperability Issues, 19-20
Interprocess Communication, 60-61
ioctl(2), 65
isainfo(1), 23
isalist(1), 24

73

K
Kernel Memory Readers, 19

L
Large Files, 7

defined, 19
Large Virtual Address Space, defined, 18-19
Large Virtual Address Spaces, 7
LD_LIBRARY_PATH, 48
libkstat, 63
libkvm, 62-63
Libraries, 47-48
Limits, 31
Linking, 48-49
lint, 32-34
LP64, 7

Guidelines for Converting to, 34-41

P
Packaging

Application Naming Conventions, 50
Packaging Guidelines, 50
Placement of Libraries and Programs, 49-50

Pointer Arithmetic, 37
/proc, 8
/proc, 61
/proc Restrictions, defined, 20

S
Sign Extension, 35-36

Conversion, 35
Integral Promotion, 35

sizeof, 39-40
SPARC V9 ABI

Address Space Layout, 55
Stack Bias, 54

stdio, Changes to, 63
sysinfo(2), extensions to, 62

U
uintptr_t, 30

W
Wrappers

isaexec(3C), 52
/usr/lib/isaexec, 51-52

74 Solaris 64-bit Developer’s Guide • January 2005

	Solaris 64-bit Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	What Typographic Conventions Mean
	Shell Prompts in Command Examples

	64-bit Computing
	Getting Past the 4 Gigabyte Barrier
	Beyond Large Address Spaces

	When to Use 64-bit
	Major Features
	Large Virtual Address Space
	Large Files
	64–bit Arithmetic
	System Limitations Removed

	Interoperability Issues
	Kernel Memory Readers
	/proc Restrictions
	64–bit Libraries

	Estimating the Effort of Conversion

	Comparing 32-bit Interfaces and 64–bit Interfaces
	Application Programming Interfaces
	Application Binary Interfaces
	Compatibility Between 32-bit Applications and 64–bit Applications
	Application Binaries
	Application Source Code
	Device Drivers

	Which Solaris Operating Environment Are You Running?

	Converting Applications
	Data Model
	Implementing Single-Source Code
	Feature Test Macros
	Derived Types
	<sys/types.h> File
	<inttypes.h> File
	Fixed-Width Integer Types
	uintptr_t and Other Helpful Types
	Constant Macros
	Limits Defined by <inttypes.h>
	Format String Macros

	Tools Support
	lint for 32–bit and 64–bit Environments

	Guidelines for Converting to LP64
	Do Not Assume int and Pointers Are the Same Size
	Do Not Assume int and long Are the Same Size
	Sign Extension
	Use Pointer Arithmetic Instead of Address Arithmetic
	Repacking a Structure
	Check Unions
	Specify Constant Types
	Beware of Implicit Declaration
	sizeof is an unsigned long
	Use Casts to Show Your Intentions
	Check Format String Conversion Operation

	Other Considerations
	Derived Types That Have Grown in Size
	Check for Side Effects of Changes
	Check Whether Literal Uses of long Still Make Sense

	Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes
	Algorithmic Changes

	Checklist for Getting Started
	Sample Program

	The Development Environment
	Build Environment
	Header Files
	Compiler Environments
	32-bit and 64-bit Libraries

	Linking Object Files
	LD_LIBRARY_PATH Environment Variable
	$ORIGIN Keyword

	Packaging 32-bit and 64-bit Applications
	Placement of Libraries and Programs
	Packaging Guidelines
	Application Naming Conventions

	Shell-Script Wrappers
	/usr/lib/isaexec Binary File
	isaexec(3c) Interface

	Debugging 64-bit Applications

	Advanced Topics
	SPARC V9 ABI Features
	Stack Bias
	Address Space Layout of the SPARC V9 ABI
	Placement of Text and Data of the SPARC V9 ABI
	Code Models of the SPARC V9 ABI

	AMD64 ABI Features
	Address Space Layout for amd64 Applications

	Alignment Issues
	Interprocess Communication
	ELF and System Generation Tools
	/proc Interface
	Extensions to sysinfo(2)
	libkvm and /dev/ksyms
	libkstat Kernel Statistics
	Changes to stdio
	Performance Issues
	64-bit Application Advantages
	64-bit Application Disadvantages

	System Call Issues
	What Does EOVERFLOW Mean?
	Beware ioctl()

	Changes in Derived Types
	Frequently Asked Questions (FAQs)
	Index

