
Solaris Security for Developers
Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–4863–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040907@9495

Contents

Preface 13

1 Solaris Security for Developers (Overview) 19

Overview of Solaris Security Features for Developers 19

System Security 20

Network Security Architecture 20

2 Developing Privileged Applications 23

Privileged Applications 23

About Privileges 24

How Administrators Assign Privileges 24

How Privileges Are Implemented 24

Compatibility Between the Superuser and Privilege Models 26

Privilege Categories 26

Programming with Privileges 27

Privilege Data Types 27

Privilege Interfaces 27

Privilege Coding Example 29

Guidelines for Developing Privileged Applications 33

About Authorizations 34

3 Writing PAM Applications and Services 37

Introduction to the PAM Framework 37

PAM Service Modules 38

PAM Library 39

3

PAM Authentication Process 39

Requirements for PAM Applications 40

PAM Configuration 40

PAM Configuration File Syntax 41

How PAM Stacking Works 41

PAM Stacking Example 45

Writing Applications That Use PAM Services 46

A Simple PAM Consumer Example 46

Other Useful PAM Functions 50

Writing Conversation Functions 50

Writing Modules That Provide PAM Services 55

Requirements for PAM Service Providers 55

Sample PAM Provider Application 56

4 Writing Applications That Use GSS-API 59

Introduction to GSS-API 59

Application Portability With GSS-API 60

Security Services in GSS-API 61

Available Mechanisms in GSS-API 61

Remote Procedure Calls With GSS-API 61

Limitations of GSS-API 62

Language Bindings for GSS-API 63

Where to Get More Information on GSS-API 63

Important Elements of GSS-API 63

GSS-API Data Types 63

GSS-API Status Codes 72

GSS-API Tokens 73

Developing Applications That Use GSS-API 75

Generalized GSS-API Usage 76

Working With Credentials in GSS-API 76

Working With Contexts in GSS-API 78

Sending Protecting Data in GSS-API 88

Cleaning Up a GSS-API Session 96

5 GSS-API Client Example 99

GSSAPI Client Example Overview 99

GSSAPI Client Example Structure 100

4 Solaris Security for Developers Guide • January 2005

Running the GSSAPI Client Example 100
GSSAPI Client Example: main() Function 101
Opening a Connection With the Server 103
Establishing a Security Context With the Server 104

Translating a Service Name into GSS-API Format 104
Establishing a Security Context for GSS-API 105

Miscellaneous GSSAPI Context Operations on the Client Side 109
Wrapping and Sending a Message 110
Reading and Verifying a Signature Block From a GSS-API Client 113
Deleting the Security Context 114

6 GSS-API Server Example 115

GSSAPI Server Example Overview 115
GSSAPI Server Example Structure 115
Running the GSSAPI Server Example 116

GSSAPI Server Example: main() Function 116
Acquiring Credentials 119
Checking for inetd 122
Receiving Data From a Client 122

Accepting a Context 124
Unwrapping the Message 128
Signing and Returning the Message 129
Using the test_import_export_context() Function 129

Cleanup in the GSSAPI Server Example 131

7 Writing Applications That Use SASL 133

Introduction to Simple Authentication Security Layer (SASL) 133
SASL Library Basics 133
Steps in the SASL Cycle 138

SASL Example 148
SASL for Service Providers 151

SASL Plug-in Overview 151
SASL Plug-in Development Guidelines 157

8 Introduction to the Solaris Cryptographic Framework 159

Solaris Cryptography Terminology 159
Overview of the Cryptographic Framework 160

5

Components of the Cryptographic Framework 162
What Cryptography Developers Need to Know 163

Requirements for Developers of User-Level Consumers 164
Requirements for Developers of User-Level Providers 164
Requirements for Developers of Kernel-Level Consumers 165
Requirements for Developers of Kernel-Level Providers 165

Avoiding Data Cleanup Collisions in User-Level Providers 165

9 Adding Cryptography to User Applications 167
Overview of the Cryptoki Library 167

PKCS #11 Function List 168
Functions for Using PKCS #11 168
Extended PKCS #11 Functions 174

User-Level Cryptographic Application Examples 175
Message Digest Example 175
Symmetric Encryption Example 178
Sign and Verify Example 182
Random Byte Generation Example 189

10 Using the Smart Card Framework 195
Solaris Smart Card Framework Overview 195
Developing Smart Card Consumer Applications 196

SCF Session Interfaces 197
SCF Terminal Interfaces 197
SCF Card and Miscellaneous Interfaces 198

Developing an IFD Handler for Smart Card Terminals 199
Installation of Smart Card Terminals 200

A Sample C–Based GSS-API Programs 201
Client-Side Application 201
Server-Side Application 212
Miscellaneous GSS-API Sample Functions 222

B GSS-API Reference 229
GSS-API Functions 229

Functions From Previous Versions of GSS-API 231
GSS-API Status Codes 232

6 Solaris Security for Developers Guide • January 2005

GSS-API Major Status Code Values 232

Displaying Status Codes 234

Status Code Macros 235

GSS-API Data Types and Values 235

Basic GSS-API Data Types 236

Name Types 237

Address Types for Channel Bindings 238

Implementation-Specific Features in GSS-API 239

Sun-Specific Functions 239

Human-Readable Name Syntax 240

Implementations of Selected Data Types 240

Deletion of Contexts and Stored Data 240

Protection of Channel-Binding Information 240

Context Exportation and Interprocess Tokens 241

Types of Credentials Supported 241

Credential Expiration 241

Context Expiration 241

Wrap Size Limits and QOP Values 241

Use of minor_status Parameter 241

Kerberos v5 Status Codes 242

Messages Returned in Kerberos v5 for Status Code 1 242

Messages Returned in Kerberos v5 for Status Code 2 243

Messages Returned in Kerberos v5 for Status Code 3 245

Messages Returned in Kerberos v5 for Status Code 4 246

Messages Returned in Kerberos v5 for Status Code 5 248

Messages Returned in Kerberos v5 for Status Code 6 249

Messages Returned in Kerberos v5 for Status Code 7 251

C Specifying an OID 255

Files with OID Values 255

/etc/gss/mech File 255

/etc/gss/qop File 256

gss_str_to_oid() Function 257

Constructing Mechanism OIDs 257

createMechOid() Function 258

Specifying a Non-Default Mechanism 259

7

D Source Code for SASL Example 261

SASL Client Example 261

SASL Server Example 270

Common Code 279

E SASL Reference Tables 283

SASL Interface Summaries 283

F Packaging and Signing Cryptographic Providers 289

Packaging Cryptographic Provider Applications and Modules 289

Complying with U.S. Government Export Laws 290

Packaging User-Level Provider Applications 290

Packaging Kernel-Level Provider Modules 291

Adding Signatures to Providers 292

� To Request a Certificate for Signing a Provider 292

� To Sign a Provider 293

� To Verify That a Provider Is Signed 294

� To Generate an Activation File for Retail Export 295

Glossary 297

Index 303

8 Solaris Security for Developers Guide • January 2005

Examples

EXAMPLE 2–1 Superuser Privilege Bracketing Example 30
EXAMPLE 2–2 Least Privilege Bracketing Example 30
EXAMPLE 2–3 Checking for Authorizations 34
EXAMPLE 3–1 Partial Contents of a Typical PAM Configuration File 45
EXAMPLE 3–2 Sample PAM Consumer Application 47
EXAMPLE 3–3 PAM Conversation Function 51
EXAMPLE 3–4 PAM Service Module Example 56
EXAMPLE 4–1 Using Strings in GSS-API 64
EXAMPLE 4–2 Using gss_import_name() 65
EXAMPLE 4–3 OIDs Structure 71
EXAMPLE 4–4 OID Set Structure 71
EXAMPLE 5–1 gss-client Example: main() 101
EXAMPLE 5–2 connect_to_server() Function 103
EXAMPLE 5–3 client_establish_context() – Translate Service Name 104
EXAMPLE 5–4 Loop for Establishing Contexts 107
EXAMPLE 5–5 gss-client: call_server() Establish Context 109
EXAMPLE 5–6 gss-client Example: call_server() – Wrap Message 110
EXAMPLE 5–7 gss-client Example – Read and Verify Signature Block 113
EXAMPLE 5–8 gss-client Example: call_server() – Delete Context 114
EXAMPLE 6–1 gss-server Example: main() 117
EXAMPLE 6–2 Sample Code for server_acquire_creds() Function 120
EXAMPLE 6–3 sign_server() Function 123
EXAMPLE 6–4 server_establish_context() Function 125
EXAMPLE 6–5 test_import_export_context() 130
EXAMPLE 8–1 Supplying _fini() to PKCS #11 Libraries 166
EXAMPLE 9–1 Creating a Message Digest Using PKCS #11 Functions 176
EXAMPLE 9–2 Creating an Encryption Key Object Using PKCS #11 Functions 179

9

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions 183

EXAMPLE 9–4 Generating Random Numbers Using PKCS #11 Functions 190

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program 201

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program 212

EXAMPLE A–3 Code Listings for Miscellaneous GSS-API Functions 223

EXAMPLE B–1 Displaying Status Codes with gss_display_status() 234

EXAMPLE C–1 The /etc/gss/mech File 256

EXAMPLE C–2 The /etc/gss/qop File 256

EXAMPLE C–3 createMechOid() Function 258

EXAMPLE C–4 parse_oid() Function 259

10 Solaris Security for Developers Guide • January 2005

Figures

FIGURE 3–1 PAM Architecture 38

FIGURE 3–2 PAM Stacking: Effect of Control Flags 43

FIGURE 3–3 PAM Stacking: How Integrated Value Is Determined 44

FIGURE 4–1 GSS-API Layer 59

FIGURE 4–2 RPCSEC_GSS and GSS-API 62

FIGURE 4–3 Internal Names and Mechanism Names 66

FIGURE 4–4 Comparing Names (Slow) 67

FIGURE 4–5 Comparing Names (Fast) 69

FIGURE 4–6 Exporting Contexts: Multithreaded Acceptor Example 86

FIGURE 4–7 gss_get_mic() vs. gss_wrap() 88

FIGURE 4–8 Message Replay and Message Out-of-Sequence 92

FIGURE 4–9 Confirming MIC Data 94

FIGURE 4–10 Confirming Wrapped Data 95

FIGURE 7–1 SASL Architecture 134

FIGURE 7–2 SASL Life Cycle 138

FIGURE 7–3 SASL Session Initialization 141

FIGURE 7–4 SASL Authentication: Sending Client Data 143

FIGURE 7–5 SASL Authentication: Processing Server Data 145

FIGURE 8–1 Overview of the Solaris Cryptographic Framework 160

FIGURE 10–1 Smart Card Framework 195

FIGURE B–1 Major-Status Encoding 232

11

12 Solaris Security for Developers Guide • January 2005

Preface

The Solaris Security for Developers Guide describes the public application programming
interfaces (API) and service provider interfaces (SPI) for the security features in the
Solaris operating environment. The term service provider refers to components that are
plugged into a framework to provide security services, such as cryptographic
algorithms and security protocols.

Note – This Solaris™ release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation
differences between the platform types.

In this document the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
The Solaris Security for Developers Guide is intended for C-language developers who
want to write the following types of programs:

� Privileged applications that can override system controls

� Applications that use authentication and related security services

� Applications that need to secure network communications.

� Applications that use cryptographic services

� Libraries, shared objects, and plug-ins that provide or consume security services

13

http://www.sun.com/bigadmin/hcl

Note – For java-language equivalents to the Solaris features, see
http://www.java.sun.com/security/index.jsp.

Before You Read This Book
Readers of this guide should be familiar with C programming. A basic knowledge of
security mechanisms is helpful but not required. You do not need to have specialized
knowledge about network programming to use this book.

How This Book Is Organized
This book is organized into the following chapters.

� Chapter 1 provides an introduction to the Solaris security.

� Chapter 2 describes how to write privileged applications that use process
privileges.

� Chapter 3 explains how to write a pluggable application module (PAM).

� Chapter 4 provides an introduction to the Generic Security Standard Application
Programming Interface (GSS-API).

� Chapter 5 and Chapter 6 each provide a walk-through of GSS-API examples.

� Chapter 7 describes how to write applications for the Simple Authentication
Security Layer (SASL).

� Chapter 8 provides an overview of the Solaris cryptographic framework, both at
the user level and kernel level.

� Chapter 9 describes how to write applications for the user level of the Solaris
cryptographic framework.

� Chapter 10 describes the Solaris Smart Card framework.

� Appendix A provides complete code listings for the GSS-API examples.

� Appendix B provides reference information for various items in the GSS-API.

� Appendix C describes how to specify a mechanism. This technique is used in cases
where a mechanism other than the default mechanism is to be used.

� Appendix D provides complete code listings for the SASL examples.

� Appendix E provides brief descriptions of the major SASL interfaces.

14 Solaris Security for Developers Guide • January 2005

http://www.java.sun.com/security/index.jsp

� Appendix F describes how to package and sign cryptographic providers.

� Glossary provides definitions for security terms that are used throughout the
manual.

Related Documentation
For other information on security features, see the following sources:

� System Administration Guide: Security Services provides descriptions of Solaris
security features from the system administrator’s point of view.

� Application Packaging Developer’s Guide

� Generic Security Service Application Program Interface document
(ftp://ftp.isi.edu/in-notes/rfc2743.txt) provides a conceptual
overview of the GSS-API.

� Generic Security Service API Version 2: C-Bindings document
(ftp://ftp.isi.edu/in-notes/rfc2744.txt) discusses the specifics of the
C-language-based GSS-API.

� ONC+ Developer’s Guide provides information on remote procedure calls.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

15

ftp://ftp.isi.edu/in-notes/rfc2743.txt
ftp://ftp.isi.edu/in-notes/rfc2744.txt
http://docs.sun.com
http://docs.sun.com

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

16 Solaris Security for Developers Guide • January 2005

TABLE P–2 Shell Prompts (Continued)
Shell Prompt

Bourne shell and Korn shell superuser prompt #

17

18 Solaris Security for Developers Guide • January 2005

CHAPTER 1

Solaris Security for Developers
(Overview)

This manual documents the public application programming interfaces (APIs) and
service provider interfaces (SPIs) for the security features in the Solaris Operating
System (Solaris OS). This chapter covers the following areas:

� “System Security” on page 20
� “Network Security Architecture” on page 20

Overview of Solaris Security Features for
Developers
This manual covers the public APIs and public SPIs to security features in the Solaris
operating system. For information on how these security features operate from the
system administrator’s viewpoint, see Chapter 1, “Security Services (Overview),” in
System Administration Guide: Security Services.

The Solaris OS provides a network security architecture that is based on standard
industry interfaces. Through the use of standardized interfaces, applications that
consume or provide cryptographic services should need no modification as security
technologies evolve.

19

System Security
For system security, the Solaris OS provides process privileges. Process privileges are an
alternative to the standard, superuser-based UNIX model for granting access to
privileged applications. The system administrator assigns users a set of process
privileges that permit access to privileged applications. A user does not need to
become superuser to use a privileged application.

Privileges enable system administrators to delegate limited permission to users to
override system security instead of giving users complete root access. Accordingly,
developers who create new privileged applications should test for specific privileges
instead of checking for UID = 0. See Chapter 2.

For highly stringent system security, Sun Microsystems, Inc. provides the Trusted
Solaris operating system, which is outside of the scope of this book. The Trusted
Solaris operating system enables system administrators to specify the applications and
files that a particular user can access. See
http://wwws.sun.com/software/solaris/trustedsolaris/ for more information.

Network Security Architecture
The network security architecture works with standard industry interfaces, such as
PAM, GSS-API, SASL, and RSA Security Inc. PKCS#11 Cryptographic Token Interface
(Cryptoki). Through the use of standardized protocols and interfaces, developers can
write both consumers and providers that need no modification as security
technologies evolve.

An application, library, or kernel module that uses security services is called a
consumer. An application that provides security services to consumers is referred to as
a provider and also as a plug-in. The software that implements a cryptographic
operation is called a mechanism. A mechanism is not just an algorithm but includes the
manner in which the algorithm is to be applied. For example, one mechanism might
apply the DES algorithm to authentication. A different mechanism might apply DES to
data protection with block-by-block encryption.

The network security architecture eliminates the need for developers of consumers to
write, maintain, and optimize cryptographic algorithms. Optimized cryptographic
mechanisms are provided as part of the architecture.

The Solaris OS provides the following public Solaris interfaces for security:

� PAM – Pluggable authentication modules. PAM modules are mainly used for the
initial authentication of a user to a system. The user can enter the system by GUI,
command line, or some other means. In addition to authentication services, PAM

20 Solaris Security for Developers Guide • January 2005

http://wwws.sun.com/software/solaris/trustedsolaris/

provides services for managing accounts, sessions, and passwords. Applications
such as login, rlogin, and telnet are typical consumers of PAM services. The
PAM SPI is supplied services by security providers, such as Kerberos v5 and
Smartcard. See Chapter 3.

� GSS-API – Generic security service application program interface. The GSS-API
provides secure communication between peer applications. The GSS-API provides
authentication, integrity, and confidentiality protection services as well. The Solaris
implementation of the GSS-API works with Kerberos v5, SPNEGO, and
Diffie-Hellman encryption. The GSS-API is primarily used to design or implement
secure application protocols. GSS-API can provide services to other kinds of
protocols, such as SASL. Through SASL, GSS-API provides services to LDAP.

GSS-API is typically used by two peer applications that are communicating over a
network after the initial establishment of credentials has occurred. GSS-API is used
by login applications, NFS, and ftp, among other applications.

See Chapter 4 for an introduction to GSS-API. Chapter 5 and Chapter 6 provides
the source code descriptions of two typical GSS-API applications. Appendix A
presents the code listings for the GSS-API examples. Appendix B provides
reference material for GSS-API. Appendix C demonstrates how to specify a
mechanism other than the default mechanism.

� SASL – Simple authentication and security layer. SASL is used largely by
protocols, for authentication, privacy, and data integrity. SASL is intended for
higher-level network-based applications that use dynamic negotiation of security
mechanisms to protect sessions. LDAP is one of the better-known consumers of
SASL. SASL is similar to GSS-API. SASL is on a somewhat higher level than
GSS-API. SASL consumes GSS-API services. See Chapter 7.

� Cryptographic framework – The cryptographic framework is the backbone of
cryptographic services in the Solaris OS. The framework provides standard PKCS
#11 interfaces to accommodate consumers and providers of cryptographic services.
The framework has two parts: the user cryptographic framework for user-level
applications and the kernel cryptographic framework for kernel-level modules.
Consumers that are connected to the framework need no special knowledge of the
installed cryptographic mechanisms. Providers plug into the framework with no
special code necessary for the different types of consumers.

The consumers of the cryptographic framework include security protocols, certain
mechanisms, and applications that need to perform cryptography. The providers to
the framework are cryptographic mechanisms as well as other mechanisms in
hardware and software plug-ins. See Chapter 8 for an overview of the
cryptographic framework. See Chapter 9 to learn how to write user-level
applications that consume services from the framework.

The library for the cryptographic framework is an implementation of the RSA
PKCS#11 v2.11 specification. Both consumers and providers communicate with the
user-level cryptographic framework through standard PKCS #11 calls.

� Smart Card – Developers of IFD handlers for smart card terminals can provide
services to consumers through the terminal interface to the smartcard framework.
Information on these interfaces is provided in Chapter 10.

Chapter 1 • Solaris Security for Developers (Overview) 21

� Java JCE – Although not covered in this manual, the Java Cryptography Extension
(JCE) provides an API to java web applications and services that need
cryptographic services. See http://www.java.sun.com/products/jce/.

22 Solaris Security for Developers Guide • January 2005

http://www.java.sun.com/products/jce

CHAPTER 2

Developing Privileged Applications

This chapter describes how to develop privileged applications. The chapter covers the
following topics:

� “Privileged Applications” on page 23
� “About Privileges” on page 24
� “Programming with Privileges” on page 27
� “About Authorizations” on page 34

Privileged Applications
A privileged application is an application that can override system controls and check
for specific user IDs (UIDs), group IDs (GIDs), authorizations, or privileges. These
access control elements are assigned by system administrators. For a general
discussion of how administrators use these access control elements, see Chapter 8,
“Using Roles and Privileges (Overview),” in System Administration Guide: Security
Services.

The Solaris operating system provides developers with two elements that enable a
finer-grained delegation of privileges:

� Privileges - A privilege is a discrete right that can be granted to an application. With
a privilege, a process can perform an operation that would otherwise be prohibited
by the Solaris OS. For example, processes cannot normally open data files without
the proper file permission. The file_dac_read privilege provides a process with
the ability to override the UNIX file permissions for reading a file. Privileges are
enforced at the kernel level.

� Authorizations - An authorization is a permission for performing a class of actions
that are otherwise prohibited by security policy. An authorization can be assigned
to a role or user. Authorizations are enforced at the user level.

23

The difference between authorizations and privileges has to do with the level at which
the policy of who can do what is enforced. Privileges are enforced at the kernel level.
Without the proper privilege, a process cannot perform specific operations in a
privileged application. Authorizations enforce policy at the user application level. An
authorization might be required for access to a privileged application or for specific
operations within a privileged application.

About Privileges
A privilege is a discrete right that is granted to a process to perform an operation that
would otherwise be prohibited by the Solaris operating system. Most programs do not
use privileges, because a program typically operates within the bounds of the system
security policy.

Privileges are assigned by an administrator. Privileges are enabled according to the
design of the program. At login or when a profile shell is entered, the administrator’s
privilege assignments apply to any commands that are executed in the shell. When an
application is run, privileges are turned on or turned off programmatically. If a new
program is started through the exec() function, that program can potentially use all
of the parent process’s inheritable privileges. However, that program cannot add any
new privileges.

How Administrators Assign Privileges
System administrators are responsible for assigning privileges to commands. For more
information on privilege assignment, see “Privileges (Overview)” in System
Administration Guide: Security Services.

How Privileges Are Implemented
Every process has four sets of privileges that determine whether a process can use a
particular privilege:

� Permitted privilege set
� Inheritable privilege set
� Limit privilege set
� Effective privilege set

Permitted Privilege Set
All privileges that a process can ever potentially use must be included in the
permitted set. Conversely, any privilege that is never to be used should be excluded
from the permitted set for that program.

24 Solaris Security for Developers Guide • January 2005

When a process is started, that process inherits the permitted privilege set from the
parent process. Typically at login or from a new profile shell, all privileges are
included in the initial set of permitted privileges. The privileges in this set are
specified by the administrator. Each child process can remove privileges from the
permitted set, but the child cannot add other privileges to the permitted set. As a
security precaution, you should remove those privileges from the permitted set that
the program never uses. In this way, a program can be protected from using an
incorrectly assigned or inherited privilege.

Privileges that are removed from the permitted set are automatically removed from
the effective set.

Inheritable Privilege Set
At login or from a new profile shell, the inheritable set contains the privileges that
have been specified by the administrator. These inheritable privileges can potentially
be passed on to child processes after an exec() call. A process should remove any
unnecessary privileges to prevent these privileges from passing on to a child process.
Often the permitted and inheritable sets are the same. However, there can be cases
where a privilege is taken out of the inheritable set, but that privilege remains in the
permitted set.

Limit Privilege Set
The limit set enables a developer to control which privileges a process can exercise or
pass on to child processes. A child process and the descendant processes can only
obtain privileges that are in the limit set. When a setuid() 0 application is executed,
the limit set determines the privileges that the application is permitted to use. The
limit set is enforced at exec() time. Removal of privileges from the limit set does not
affect any other sets until the exec() is performed.

Effective Privilege Set
The privileges that a process can actually use are in the process’s effective set. At the
start of a program, the effective set is equal to the permitted set. Afterwards, the
effective set is either a subset of or is equal to the permitted set.

A good practice is to reduce the effective set to the set of basic privileges. The basic
privilege set, which contains the core privileges, is described in “Privilege Categories”
on page 26. Remove completely any privileges that are not needed in the program.
Toggle off any basic privileges until that privilege is needed. For example, the
file_dac_read privilege, enables all files to be read. A program can have multiple
routines for reading files. The program turns off all privileges initially and turns on
file_dac_read, for appropriate reading routines. The developer thus ensures that
the program cannot exercise the file_dac_read privilege for the wrong reading
routines. This practice is called privilege bracketing. Privilege bracketing is
demonstrated in “Privilege Coding Example” on page 29.

Chapter 2 • Developing Privileged Applications 25

Compatibility Between the Superuser and Privilege
Models
To accommodate legacy applications, the implementation of privileges works with
both the superuser and privilege models. This accommodation is achieved through
use of the PRIV_AWARE flag, which indicates that a program works with privileges.
The PRIV_AWARE flag is handled automatically by the operating system.

Consider a child process that is not aware of privileges. The PRIV_AWARE flag for
that process would be false. Any privileges that have been inherited from the parent
process are available in the permitted and effective sets. If the child sets a UID to 0, the
process’s effective and permitted sets are restricted to those privileges in the limit set.
The child process does not gain full superuser powers. Thus, the limit set of a
privilege-aware process restricts the superuser privileges of any non-privilege-aware
child processes. If the child process modifies any privilege set, then the PRIV_AWARE
flag is set to true.

Privilege Categories
Privileges are logically grouped on the basis of the scope of the privilege, as follows:

� Basic privileges – The core privileges that are needed for minimal operation. The
basic privileges are as follows:

� PRIV_FILE_LINK_ANY – Allows a process to create hard links to files that are
owned by a UID other than the process’s effective UID.

� PRIV_PROC_EXEC – Allows a process to call execve().

� PRIV_PROC_FORK – Allows a process to call fork(), fork1(), or vfork().

� PRIV_PROC_SESSION – Allows a process to send signals or trace processes
outside its session.

In general, the basic privileges should be assigned as a set rather than individually.
This approach ensures that any basic privileges that are released in an update to
the Solaris OS will be included in the assignment. On the other hand, a privilege
that is known not to be needed by a program should be explicitly turned off. For
example, the proc_exec privilege should be turned off if the program is not
intended to exec sub-processes.

� File system privileges.

� System V Interprocess Communication (IPC) privileges.

� Network privileges.

� Process privileges.

� System privileges.

See the privileges(5) man page for a complete list of the Solaris privileges with
descriptions.

26 Solaris Security for Developers Guide • January 2005

Programming with Privileges
This section discusses the interfaces for working with privileges. To use the privilege
programming interfaces, you need the following header file.

#include <priv.h>

An example demonstrating how privilege interfaces are used in a privileged
application is also provided.

Privilege Data Types
The major data types that are used by the privilege interfaces are:

� Privilege type – An individual privilege is represented by the priv_t type
definition. You initialize a variable of typepriv_t with a privilege ID string, as
follows:

priv_t priv_id = PRIV_FILE_DAC_WRITE;

� Privilege set type – Privilege sets are represented by the priv_set_t data
structure. You initialize variables of type priv_set_t with one of the privilege
manipulation functions such as str_to_priv_set(3C).

� Privilege operation type – The type of operation to be performed on a file or
process privilege set is represented by the priv_op_t type definition. Not all
operations are valid for every type of privilege set. Read the privilege set
descriptions in “Programming with Privileges” on page 27 for details.

Privilege operations can have the following values:

� PRIV_ON – Turn the privileges that have been asserted in the priv_set_t
structure on in the specified file or process privilege set.

� PRIV_OFF – Turn the privileges asserted in the priv_set_t structure off in
the specified file or process privilege set.

� PRIV_SET – Set the privileges in the specified file or process privilege set to the
privileges asserted in the priv_set_t structure. If the structure is initialized to
empty, PRIV_SET sets the privilege set to none.

Privilege Interfaces
The following table lists the interfaces for using privileges. Descriptions of some major
privilege interfaces are provided after the table.

Chapter 2 • Developing Privileged Applications 27

TABLE 2–1 Interfaces for Using Privileges

Purpose Functions Additional Comments

Getting and setting privilege
sets

setppriv(2), getppriv(2),
priv_set(3C),
priv_ineffect(3C)

setppriv() and
getppriv() are system calls.
priv_ineffect() and
priv_set() are wrappers
for convenience.

Identifying and translating
privileges

priv_str_to_set(3C),
priv_set_to_str(3C),
priv_getbyname(3C),
priv_getbynum(3C),
priv_getsetbyname(3C),
priv_getsetbynum(3C)

These functions map the
specified privilege or privilege
set to a name or a number.

Manipulating privilege sets priv_allocset(3C),
priv_freeset(3C),
priv_emptyset(3C),
priv_fillset(3C),
priv_isemptyset(3C),
priv_isfullset(3C),
priv_isequalset(3C),
priv_issubset(3C),
priv_intersect(3C),
priv_union(3C),
priv_inverse(3C),
priv_addset(3C),
priv_copyset(3C),
priv_delset(3C),
priv_ismember(3C)

These functions are concerned
with privilege memory
allocation, testing, and various
set operations.

Getting and setting process
flags

getpflags(2),
setpflags(2)

The PRIV_AWARE process
flag indicates whether the
process understands
privileges or runs under the
superuser model.
PRIV_DEBUG is used for
privilege debugging.

Low-level credential
manipulation

ucred_get(3C) These routines are used for
debugging, low-level system
calls, and kernel calls.

setppriv(): for Setting Privileges
The main function for setting privileges is setppriv(), which has the following
syntax:

int setppriv(priv_op_t op, priv_ptype_t which, \

const priv_set_t *set);

28 Solaris Security for Developers Guide • January 2005

op represents the privilege operation that is to be performed. The op parameter has one
of three possible values:

� PRIV_ON – Adds the privileges that are specified by the set variable to the set type
that is specified by which

� PRIV_OFF – Removes the privileges that are specified by the set variable from the
set type that is specified by which

� PRIV_SET – Uses the privileges that are specified by the set variable to replace
privileges in the set type that is specified by which

which specifies the type of privilege set to be changed, as follows:

� PRIV_PERMITTED
� PRIV_EFFECTIVE
� PRIV_INHERITABLE
� PRIV_LIMIT

set specifies the privileges to be used in the change operation.

In addition, a convenience function is provided: priv_set().

priv_str_to_set() for Mapping Privileges
These functions are convenient for mapping privilege names with their numeric
values. priv_str_to_set() is a typical function in this family.
priv_str_to_set() has the following syntax:

priv_set_t *priv_str_to_set(const char *buf, const char *set, \

const char **endptr);

priv_str_to_set() takes a string of privilege names that are specified in buf.
priv_str_to_set() returns a set of privilege values that can be combined with one
of the four privilege sets. **endptr can be used to debug parsing errors. Note that
the following keywords can be included in buf:

� “all” indicates all defined privileges. “all,!priv_name,...” enables you to
specify all privileges except the indicated privileges.

� “none” indicates no privileges.

� “basic” indicates the set of privileges that are required to perform operations that
are traditionally granted to all users on login to a standard UNIX operating system.

Privilege Coding Example
This section compares how privileges are bracketed using the superuser model and
the least privilege model.

Chapter 2 • Developing Privileged Applications 29

Privilege Bracketing in the Superuser Model
The following example demonstrates how privileged operations are bracketed in the
superuser model.

EXAMPLE 2–1 Superuser Privilege Bracketing Example

/* Program start */
uid = getuid();
seteuid(uid);

/* Privilege bracketing */
seteuid(0);
/* Code requiring superuser capability */
...
/* End of code requiring superuser capability */
seteuid(uid);
...
/* Give up superuser ability permanently */

setreuid(uid,uid);

Privilege Bracketing in the Least Privilege Model
This example demonstrates how privileged operations are bracketed in the least
privilege model. The example uses the following assumptions:

� The program is setuid 0.

� The permitted and effective sets are initially set to all privileges as a result of
setuid 0.

� The inheritable set is initially set to the basic privileges.

� The limit set is initially set to all privileges.

An explanation of the example follows the code listing.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 2–2 Least Privilege Bracketing Example

1 #include <priv.h>
2 /* Always use the basic set. The Basic set might grow in future
3 * releases and potentially retrict actions that are currently
4 * unrestricted */
5 priv_set_t *temp = priv_str_to_set("basic", ",", NULL);

6 /* PRIV_FILE_DAC_READ is needed in this example */
7 (void) priv_addset(temp, PRIV_FILE_DAC_READ);

30 Solaris Security for Developers Guide • January 2005

EXAMPLE 2–2 Least Privilege Bracketing Example (Continued)

8 /* PRIV_PROC_EXEC is no longer needed after program starts */
9 (void) priv_delset(temp, PRIV_PROC_EXEC);

10 /* Compute the set of privileges that are never needed */
11 priv_inverse(temp);

12 /* Remove the set of unneeded privs from Permitted (and by
13 * implication from Effective) */
14 (void) setppriv(PRIV_OFF, PRIV_PERMITTED, temp);

15 /* Remove unneeded priv set from Limit to be safe */
16 (void) setppriv(PRIV_OFF, PRIV_LIMIT, temp);

17 /* Done with temp */
18 priv_freeset(temp);

19 /* Now get rid of the euid that brought us extra privs */
20 (void) seteuid(getuid());

21 /* Toggle PRIV_FILE_DAC_READ off while it is unneeded */
22 priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ, NULL);

23 /* Toggle PRIV_FILE_DAC_READ on when special privilege is needed*/
24 priv_set(PRIV_ON, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ, NULL);

25 fd = open("/some/retricted/file", O_RDONLY);

26 /* Toggle PRIV_FILE_DAC_READ off after it has been used */
27 priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ, NULL);

28 /* Remove PRIV_FILE_DAC_READ when it is no longer needed */

29 priv_set(PRIV_OFF, PRIV_ALLSETS, PRIV_FILE_DAC_READ, NULL);

The program defines a variable that is named temp. The temp variable determines the
set of privileges that are not needed by this program. Initially in line 5, temp is defined
to contain the set of basic privileges. In line 7, the file_dac_read privilege is added
to temp. The proc_exec privilege is necessary for execing new processes, which is not
permitted in this program. Therefore, proc_exec is removed from temp in line 9 so
that exec() cannot execute new processes.

At this point, temp contains only those privileges that are needed by the program, that
is, the basic set plus file_dac_read minus proc_exec. In line 11, the
priv_inverse() function computes the inverse of temp and resets the value of temp
to the inverse. The inverse is the result of subtracting the specified set, temp in this
case, from the set of all possible privileges. As a result of line 11, temp now contains
those privileges that are never needed by the program. In line 14, the unneeded
privileges that are defined by temp are subtracted from the permitted set. This removal
effectively removes the privileges from the effective set as well. In line 16, the
unneeded privileges are removed from the limit set. In line 18, the temp variable is
freed, since temp is no longer needed.

Chapter 2 • Developing Privileged Applications 31

This program is aware of privileges. Accordingly, the program does not use setuid
and can reset the effective UID to the user’s real UID in line 20.

The file_dac_read privilege is turned off in line 22 through removal from the
effective set. In a real program, other activities would take place before
file_dac_read is needed. In this sample program, file_dac_read is needed for
to read a file in line 25. Accordingly, file_dac_read is turned on in line 24.
Immediately after the file is read, file_dac_read is again removed from the
effective set. When all files have been read, file_dac_read is removed for good by
turning off file_dac_read in all privilege sets.

The following table shows the transition of the privilege sets as the program
progresses. The line numbers are indicated.

TABLE 2–2 Privilege Set Transition

Step temp Set
Permitted Privilege
Set

Effective Privilege
Set Limit Privilege Set

Initially — all all all

Line 5 – temp is set to basic
privileges

basic all all all

Line 7 – file_dac_read is
added to temp.

basic +
file_dac_read

all all all

Line 9 – proc_exec is removed
from temp.

basic +
file_dac_read
– proc_exec

all all all

Line 11 – temp is reset to the
inverse.

all – (basic +
file_dac_read
– proc_exec)

all all all

Line 14 – The unneeded privileges
are turned off in the permitted set.

all – (basic +
file_dac_read
– proc_exec)

basic +
file_dac_read
– proc_exec

basic +
file_dac_read
– proc_exec

all

Line 16 – The unneeded privileges
are turned off in the limit set.

all – (basic +
file_dac_read
– proc_exec)

basic +
file_dac_read
– proc_exec

basic +
file_dac_read
– proc_exec

basic +
file_dac_read
– proc_exec

Line 18 – The temp file is freed. — basic +
file_dac_read
– proc_exec

basic +
file_dac_read
– proc_exec

basic +
file_dac_read
– proc_exec

Line 22 – Turn off
file_dac_read until needed.

— basic –
proc_exec

basic –
proc_exec

basic +
file_dac_read
– proc_exec

32 Solaris Security for Developers Guide • January 2005

TABLE 2–2 Privilege Set Transition (Continued)

Step temp Set
Permitted Privilege
Set

Effective Privilege
Set Limit Privilege Set

Line 24 – Turn on
file_dac_read when needed.

— basic +
file_dac_read
– proc_exec

basic +
file_dac_read
– proc_exec

basic +
file_dac_read
– proc_exec

Line 27 – Turn off
file_dac_read after read()
operation.

— basic –
proc_exec

basic –
proc_exec

basic +
file_dac_read
– proc_exec

Line 29 –
Removefile_dac_read from all
sets when no longer needed.

— basic –
proc_exec

basic –
proc_exec

basic –
proc_exec

Guidelines for Developing Privileged
Applications
This section provides the following suggestions for developing privileged
applications:

� Use an isolated system. You should never debug privileged applications on a
production system, as an incomplete privileged application can compromise
security.

� Set IDs properly. The calling process needs the proc_setid privilege in its
effective set to change its user ID, group ID, or supplemental group ID.

� Use privilege bracketing. When an application uses privilege, system security
policy is being overridden. Privileged tasks should be bracketed and carefully
controlled to ensure that sensitive information is not compromised. See “Privilege
Coding Example” on page 29 for information on how to bracket privileges.

� Start with the basic privileges. The basic privileges are necessary for minimal
operation. A privileged application should start with the basic set. The application
should then subtract and add privileges appropriately. A typical start-up scenario
follows.

1. The daemon starts up as root.

2. The daemon turns on the basic privilege set.

3. The daemon turns off any basic privileges that are unnecessary, for example,
PRIV_FILE_LINK_ANY.

4. The daemon adds any other privileges that are needed, for example,
PRIV_FILE_DAC_READ.

5. The daemon switches to the daemon UID.

Chapter 2 • Developing Privileged Applications 33

� Avoid shell escapes. The new process in a shell escape can use any of the
privileges in the parent process’s inheritable set. An end user can therefore
potentially violate trust through a shell escape. For example, some mail
applications might interpret the !command line as a command and would execute
that line. An end user could thus create a script to take advantage of any mail
application privileges. The removal of unnecessary shell escapes is a good practice.

About Authorizations
Authorizations are stored in the /etc/security/auth_attr file. To create an
application that uses authorizations, take the following steps:

1. Scan the /etc/security/auth_attr for one or more appropriate
authorizations.

2. Check for the required authorization at the beginning of the program using the
chkauthattr(3SECDB) function. The chkauthattr() function searches for the
authorization in order in the following locations:

� AUTHS_GRANTED key in the policy.conf(4) database –
AUTHS_GRANTED indicates authorizations that have been assigned by
default.

� PROFS_GRANTED key in the policy.conf(4) database – PROFS_GRANTED
indicates rights profiles that have been assigned by default. chkauthattr()
checks these rights profiles for the specified authorization.

� The user_attr(4) database – This database stores security attributes that have
been assigned to users.

� The prof_attr(4) database – This database stores rights profiles that have
been assigned to users.

If chkauthattr() cannot find the right authorization in any of these places, then
the user is denied access to the program.

3. Let the administrator know which authorizations are required for this application.
You can inform the administrators through man pages or other documentation.

EXAMPLE 2–3 Checking for Authorizations

The following code snippet demonstrates how the chkauthattr() function can be
used to check a user’s authorization. In this case, the program checks for the
solaris.job.admin authorization. If the user has this authorization, the user is able
to read or write to other users’ files. Without the authorization, the user can operate on
owned files only.

/* Define override privileges */
priv_set_t *override_privs = priv_allocset();

34 Solaris Security for Developers Guide • January 2005

/* Clear privilege set before adding privileges. */
priv_set(PRIV_OFF, PRIV_EFFECTIVE, PRIV_FILE_DAC_READ,

priv_FILE_DAC_WRITE, NULL);

priv_addset(override_privs, PRIV_FILE_DAC_READ);
priv_addset(override_privs, PRIV_FILE_DAC_WRITE);

if (!chkauthattr("solaris.jobs.admin", username)) {
/* turn off privileges */
setppriv(PRIV_OFF, PRIV_EFFECTIVE, override_privs);

}
/* Authorized users continue to run with privileges */

/* Other users can read or write to their own files only */

Chapter 2 • Developing Privileged Applications 35

36 Solaris Security for Developers Guide • January 2005

CHAPTER 3

Writing PAM Applications and
Services

Pluggable authentication modules (PAM) provide system entry applications with
authentication and related security services. This chapter is intended for developers of
system entry applications who wish to provide authentication, account management,
session management, and password management through PAM modules. The
following topics are discussed:

� “Introduction to the PAM Framework” on page 37
� “PAM Configuration” on page 40
� “Writing Applications That Use PAM Services” on page 46
� “Writing Modules That Provide PAM Services” on page 55

PAM was originally developed at Sun. The PAM specification has since been
submitted to X/Open, which is now the Open Group. The PAM specification is
available in X/Open Single Sign-On Service (XSSO) - Pluggable Authentication, Open
Group, UK ISBN 1-85912-144-6 June 1997. The Solaris implementation of PAM is
described in the pam(3PAM), libpam(3LIB), and pam_sm(3PAM)man pages.

Introduction to the PAM Framework
The PAM framework consists of four parts:

� PAM applications
� PAM library
� The pam.conf(4) configuration file
� PAM service modules, also referred to as providers

37

The framework provides a uniform way for authentication-related activities to take
place. This approach enables application developers to use PAM services without
having to know the semantics of the policy. Algorithms are centrally supplied. The
algorithms can be modified independently of the individual applications. With PAM,
administrators can tailor the authentication process to the needs of a particular system
without having to change any applications. Adjustments are made through
pam.conf, the PAM configuration file.

The following figure illustrates the PAM architecture. Applications communicate with
the PAM library through the PAM application programming interface (API). PAM
modules communicate with the PAM library through the PAM service provider
interface (SPI). Thus, the PAM library enables applications and modules to
communicate with each other.

Authentication
service

modules

Account
management

modules

Session
management

modules

login ftp telnet Other
applications

Password
management

modules

PAM API

PAM
library

PAM SPI

Applications

PAM Service Modules

pam.conf

FIGURE 3–1 PAM Architecture

PAM Service Modules
A PAM service module is a shared library that provides authentication and other
security services to system entry applications such as login, rlogin, and telnet.
The four types of PAM services are:

� Authentication service modules – For granting users access to an account or
service. Modules that provide this service authenticate users and set up user
credentials.

38 Solaris Security for Developers Guide • January 2005

� Account management modules – For determining whether the current user’s
account is valid. Modules that provide this service can check password or account
expiration and time-restricted access.

� Session management modules – For setting up and terminating login sessions.

� Password management modules – For enforcing password strength rules and
performing authentication token updates.

A PAM module can implement one or more of these services. The use of simple
modules with well-defined tasks increases configuration flexibility. PAM services
should thus be implemented in separate modules. The services can then be used as
needed as defined in the pam.conf(4) file.

For example, the Solaris OS provides the pam_authtok_check(5) module for system
administrators to configure the site’s password policy. The pam_authtok_check(5)
module checks proposed passwords for various strength criteria.

For a complete list of Solaris PAM modules, see man pages section 5: Standards,
Environments, and Macros. The PAM modules have the prefix pam_.

PAM Library
The PAM library, libpam(3LIB), is the central element in the PAM architecture:

� libpam exports an API, pam(3PAM). Applications can call this API for
authentication, account management, credential establishment, session
management, and password changes.

� libpam imports a master configuration file pam.conf(4) . The PAM configuration
file specifies the PAM module requirements for each available service. pam.conf is
managed by a system administrator.

� libpam imports the pam_sm(3PAM) SPI, which is exported by the service
modules.

PAM Authentication Process
As an example of how applications use the PAM library for user authentication,
consider how login authenticates a user:

1. The login application initiates a PAM session by calling pam_start(3PAM) and
by specifying the login service.

2. The application calls pam_authenticate(3PAM), which is part of the PAM API
that is exported by the PAM library, libpam(3LIB).

3. The library searches for login entries in the pam.conf file.

4. For each module in pam.conf that is configured for the login service, the PAM
library calls pam_sm_authenticate(3PAM). The pam_sm_authenticate()
function is part of the PAM SPI. The control flag and results of each call determine

Chapter 3 • Writing PAM Applications and Services 39

whether the user is allowed access to the system. This process is described in more
detail in “How PAM Stacking Works” on page 41.

In this way, the PAM library connects PAM applications with the PAM modules that
have been configured by the system administrator.

Requirements for PAM Applications
Applications that use PAM must be linked with the PAM library libpam. Before an
application can use any service that is provided by the modules, the application must
initialize its instance of the PAM library by calling pam_start(3PAM). The call to
pam_start() initializes a handle that must be passed to all subsequent PAM calls.
When an application is finished with the PAM services, pam_end() is called to clean
up any data that was used by the PAM library.

Communication between the PAM application and the PAM modules takes place
through items. For example, the following items are useful for initialization:

� PAM_USER – Currently authenticated user
� PAM_AUTHTOK – Password
� PAM_USER_NAME – User name prompt
� PAM_TTY – Terminal through which the user communication takes place
� PAM_RHOST – Remote host through which user enters the system
� PAM_REPOSITORY – Any restrictions on the user account repository
� PAM_RESOURCE – Any controls on resources

For a complete list of available items, see pam(3PAM).

Items can be set by the application through pam_set_item(3PAM). Values that have
been set by the modules can be retrieved by the application through
pam_get_item(). However, PAM_AUTHTOK and PAM_OLDAUTHTOK cannot be
retrieved by the application. The PAM_SERVICE item cannot be set.

PAM Configuration
The PAM configuration file, pam.conf(4), is used to configure PAM service modules
for system services, such as login, rlogin, su, and cron. The system administrator
manages this file. An incorrect order of entries in pam.conf can cause unforeseen side
effects. For example, a badly configured pam.conf can lock out users so that
single-user mode becomes necessary for repair. For a description of setting the order,
see “How PAM Stacking Works” on page 41.

40 Solaris Security for Developers Guide • January 2005

PAM Configuration File Syntax
The entries in the configuration file are in the format:

service-name module-type control-flag module-path module-options

service-name Name of the service, for example, ftp, login, or passwd. An
application can use different service names for the services that the
application provides. For example, the Solaris secure shell daemon
uses the service names: sshd-none, sshd-password,
sshd-kbdint, sshd-pubkey, and sshd-hostbased. The
service-name other is a predefined name that is used as a wildcard
service-name. If a particular service-name is not found in the
configuration file, the configuration for other is used.

module-type The type of service, that is, auth, account, session , or
password.

control-flag Control flag. Indicates the role of the module in determining the
integrated success or failure value for the service. Valid control flags
are optional, sufficient, required, requisite, and
binding. See “How PAM Stacking Works” on page 41 for
information on the use of these flags.

module-path The path to the library object that implements the service. If the
pathname is not absolute, the pathname is assumed to be relative to
/usr/lib/security/$ISA/. Use the architecture-dependent
macro $ISA to cause libpam to look in the directory for the
particular architecture of the application.

module-options Options that are passed to the service modules. A module’s man
page describes the options that are accepted by that module. Typical
module options include nowarn and debug.

How PAM Stacking Works
When an application calls on the following functions, libpam reads the configuration
file /etc/pam.conf to determine which modules participate in the operation for this
service:

� pam_authenticate(3PAM)
� pam_acct_mgmt(3PAM)
� pam_setcred(3PAM)
� pam_open_session(3PAM)
� pam_close_session(3PAM)
� pam_chauthtok(3PAM)

Chapter 3 • Writing PAM Applications and Services 41

If /etc/pam.conf contains only one module for an operation for this service such as
authentication or account management, the result of that module determines the
outcome of the operation. For example, the default authentication operation for the
passwd application contains one module, pam_passwd_auth.so.1:

passwd auth required pam_passwd_auth.so.1

If, on the other hand, there are multiple modules defined for the service’s operation,
those modules are said to be stacked and that a PAM stack exists for that service. For
example, consider the case where pam.conf contains the following entries:

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_cred.so.1
login auth required pam_unix_auth.so.1

login auth required pam_dial_auth.so.1

These entries represent a sample auth stack for the login service. To determine the
outcome of this stack, the result codes of the individual modules require an integration
process. In the integration process, the modules are executed in order as specified in
/etc/pam.conf. Each success or failure code is integrated in the overall result
depending on the module’s control flag. The control flag can cause early termination
of the stack. For example, a requisite module might fail, or a sufficient or
binding module might succeed. After the stack has been processed, the individual
results are combined into a single, overall result that is delivered to the application.

The control flag indicates the role that a PAM module plays in determining access to
the service. The five control flags and their effects are:

� Binding – Success in meeting a binding module’s requirements returns success
immediately to the application if no previous required modules have failed. If
these conditions are met, then no further execution of modules occurs. Failure
causes a required failure to be recorded and the processing of modules to be
continued.

� Optional – Success in meeting an optional module’s requirements is not necessary
for using the service. Failure causes an optional failure to be recorded.

� Required – Success in meeting a required module’s requirements is necessary for
using the service. Failure results in an error return after the remaining modules for
this service have been executed. Final success for the service is returned only if no
binding or required modules have reported failures.

� Requisite – Success in meeting a requisite module’s requirements is necessary for
using the service. Failure results in an immediate error return with no further
execution of modules. All requisite modules for a service must return success for
the function to be able to return success to the application.

� Sufficient – If no previous required failures have occurred, success in a sufficient
module returns success to the application immediately with no further execution of
modules. Failure causes an optional failure to be recorded.

42 Solaris Security for Developers Guide • January 2005

The following two diagrams shows how access is determined in the integration
process. The first diagram indicates how success or failure is recorded for each type of
control flag. The second diagram shows how the integrated value is determined.

Chapter 3 • Writing PAM Applications and Services 43

Optional

Required

Requisite

Sufficient

Record optional success.

Record optional failure
if no other failures.

Binding

Record required success.

Record required failure.

Record required success.

Record required failure.

Record requisite success.

Record requisite failure
or first required failure.

Record required success.

Record optional failure.

Next

Execute next module in
PAM configuration file.
Determine control flag.

Last
module?

No

Yes

Finish

Next

Finish

Quit

Finish

S

F

S

F

S

F

S

F

S

F

FIGURE 3–2 PAM Stacking: Effect of Control Flags

44 Solaris Security for Developers Guide • January 2005

Required
or binding
failure(s)?

Recorded
success?

No

No

Yes

FinishQuit

Yes

Optional
failure?

No

Yes

Service denied. Report
required or binding failure.

Service permitted.
Report PAM_SUCCESS.

Service permitted.
Report optional failure.

Service denied.
Report default error.

FIGURE 3–3 PAM Stacking: How Integrated Value Is Determined

PAM Stacking Example
Consider the following example of an rlogin service that requests authentication.

EXAMPLE 3–1 Partial Contents of a Typical PAM Configuration File

The pam.conf file in this example has the following contents for rlogin services:

Authentication management
...
rlogin service
rlogin auth sufficient pam_rhosts_auth.so.1
rlogin auth requisite pam_authtok_get.so.1
rlogin auth required pam_dhkeys.so.1

Chapter 3 • Writing PAM Applications and Services 45

EXAMPLE 3–1 Partial Contents of a Typical PAM Configuration File (Continued)

rlogin auth required pam_unix_auth.so.1

...

When the rlogin service requests authentication, libpam first executes the
pam_rhosts_auth(5) module. The control flag is set to sufficient for the
pam_rhosts_auth module. If the pam_rhosts_auth module is able to authenticate
the user, then processing stops and success is returned to the application.

If the pam_rhosts_auth module fails to authenticate the user, then the next PAM
module, pam_authtok_get(5) is executed. The control flag for this module is set to
requisite. If pam_authtok_get fails, then the authentication process ends and the
failure is returned to rlogin.

If pam_authtok_get succeeds, then the next two modules, pam_dhkeys(5) and
pam_unix_auth(5), are executed. Both modules have the associated control flags that
are set to required so that the process continues regardless of whether an individual
failure is returned. After pam_unix_auth is executed, no modules for rlogin
authentication remain. At this point, if either pam_dhkeys or pam_unix_auth has
returned a failure, the user is denied access through rlogin.

Writing Applications That Use PAM
Services
This section provides a sample application that uses several PAM functions.

A Simple PAM Consumer Example
The following PAM consumer application is provided as an example. The application
checks to see if the user is a member of a group that is permitted access to this service.
The application then grants access on success or sends an error message on failure.
The example goes through the following steps:

1. Get the user’s relevant identification items.

The user’s name is obtained with the function, pam_get_user(3PAM). The
application uses pam_get_item(3PAM) to get the service type and host name.

2. Deny access if the user name is NULL.

3. Deny access if vuser group is required and the user is not in the vuser group.

46 Solaris Security for Developers Guide • January 2005

4. Ignore module if the group contains no members.

5. Check if user is in group.

If the user is in the group, grant success.

If the user is not a member of the group, deny access. Send an error message to the
user. Record the failure in the system log.

The following example shows the source code for the sample PAM consumer
application.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 3–2 Sample PAM Consumer Application

/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/

#include <stdio.h>
#include <stdlib.h>
#include <grp.h>
#include <string.h>
#include <syslog.h>
#include <libintl.h>
#include <security/pam_appl.h>

/*
* by default, only users who are a member of group "root" are allowed
* access
*/
#define DEFAULT_GROUP "root"

static char *NOMSG =
"Sorry, you are not on the access list for this host - access denied.";

int
pam_sm_acct_mgmt(pam_handle_t * pamh, int flags, int argc,

const char **argv)
{

char *user = NULL;
char *host = NULL;
char *service = NULL;
const char *allowed_grp = DEFAULT_GROUP;
char grp_buf[4096];
struct group grp;
struct pam_conv *conversation;
struct pam_message message;
struct pam_message *pmessage = &message;

Chapter 3 • Writing PAM Applications and Services 47

EXAMPLE 3–2 Sample PAM Consumer Application (Continued)

struct pam_response *resp = NULL;
int i;
int nowarn = 0;
int debug = 0;

/* Set flags to display warnings if in debug mode. */
for (i = 0; i < argc; i++) {

if (strcasecmp(argv[i], "nowarn") == 0)
nowarn = 1;

else if (strcasecmp(argv[i], "debug") == 0)
debug = 1;

else if (strncmp(argv[i], "group=", 6) == 0)
allowed_grp = &argv[i][6];

}
if (flags & PAM_SILENT)

nowarn = 1;

/* Get user name,service name, and host name. */
(void) pam_get_user(pamh, &user, NULL);
(void) pam_get_item(pamh, PAM_SERVICE, (void **) &service);
(void) pam_get_item(pamh, PAM_RHOST, (void **) &host);

if (service == NULL)
service = "unknown";

if (host == NULL)
host = "unknown";

/* Deny access if user is NULL. */
if (user == NULL) {

syslog(LOG_AUTH|LOG_DEBUG,
"%s: members_only: user not set", service);

return (PAM_USER_UNKNOWN);
}

/*
* Deny access if vuser group is required and user is not in vuser
* group
*/
if (getgrnam_r(allowed_grp, &grp, grp_buf, sizeof (grp_buf)) == NULL) {

syslog(LOG_NOTICE|LOG_AUTH,
"%s: members_only: group \"%s\" not defined",
service, allowed_grp);

return (PAM_PERM_DENIED);
}

/* Ignore this module if group contains no members. */
if (grp.gr_mem[0] == 0) {

if (debug)
syslog(LOG_AUTH|LOG_DEBUG,

"%s: members_only: group %s empty: "
"all users allowed.", service, grp.gr_name);

48 Solaris Security for Developers Guide • January 2005

EXAMPLE 3–2 Sample PAM Consumer Application (Continued)

return (PAM_IGNORE);
}

/* Check to see if user is in group. If so, return SUCCESS. */
for (; grp.gr_mem[0]; grp.gr_mem++) {

if (strcmp(grp.gr_mem[0], user) == 0) {
if (debug)

syslog(LOG_AUTH|LOG_DEBUG,
"%s: user %s is member of group %s. "
"Access allowed.",
service, user, grp.gr_name);

return (PAM_SUCCESS);
}

}

/*
* User is not a member of the group.
* Set message style to error and specify denial message.
*/
message.msg_style = PAM_ERROR_MSG;
message.msg = gettext(NOMSG);

/* Use conversation function to display denial message to user. */
(void) pam_get_item(pamh, PAM_CONV, (void **) &conversation);
if (nowarn == 0 && conversation != NULL) {

int err;
err = conversation->conv(1, &pmessage, &resp,

conversation->appdata_ptr);
if (debug && err != PAM_SUCCESS)

syslog(LOG_AUTH|LOG_DEBUG,
"%s: members_only: conversation returned "
"error %d (%s).", service, err,
pam_strerror(pamh, err));

if (resp != NULL)
free(resp);

}

/* Report denial to system log and return error to caller. */
syslog(LOG_NOTICE | LOG_AUTH, "%s: members_only: "

"Connection for %s not allowed from %s", service, user, host);

return (PAM_AUTH_ERR);

}

Chapter 3 • Writing PAM Applications and Services 49

Other Useful PAM Functions
The previous example, Example 3–2, is a simple application that demonstrates only a
few of the major PAM functions. This section describes some other PAM functions that
can be useful.

The pam_setcred(3PAM) function is used to establish, modify, or delete user
credentials. pam_setcred() is typically called when a user has been authenticated.
The call is made after the account has been validated, but before a session has been
opened. The pam_setcred() function is used with the PAM_ESTABLISH_CRED flag
to establish a new user session. If the session is the renewal of an existing session, such
as for lockscreen, pam_setcred() with the PAM_REFRESH_CRED flag should be
called. If the session is changing the credentials, such as using su or assuming a role,
then pam_setcred() with the PAM_REINITIALIZE_CRED flag should be called.

The pam_open_session(3PAM) function is called to open a new session after a user
has been successfully authenticated.

The pam_getenvlist(3PAM) function is called to establish a new environment.
pam_getenvlist() returns a new environment to be merged with the existing
environment.

Writing Conversation Functions
A user can communicate with a PAM module in a number of ways : command line,
dialog box, and so on. As a result, the designer of a PAM service module that
communicates with users needs to write a conversation function. A conversation
function passes messages between the user and module independently of the means of
communication. A conversation function derives the message type from the msg_style
parameter in the pam_start(3PAM) function.

Developers should make no assumptions about how PAM is to communicate with
users. Rather, the application should exchange messages with the user until the
operation is complete. Applications should display the message strings for the
conversation function without interpretation or modification. An individual message
can contain multiple lines, control characters, or extra blank spaces. Note that service
modules are responsible for localizing any strings sent to the conversation function.

A sample conversation function, pam_tty_conv(), is provided below. The
pam_tty_conv() takes the following arguments:

� num_msg – The number of messages that are being passed to the function.
� **mess – A pointer to the buffer that holds the messages from the user.
� **resp – A pointer to the buffer that holds the responses to the user.

50 Solaris Security for Developers Guide • January 2005

� *my_data – Pointer to the application data.

The sample function gets user input from stdin. The routine needs to allocate
memory for the message and response buffers. A maximum, PAM_MAX_NUM_MSG,
can be set to limit the number of messages. The service module is not responsible for
freeing the memory. Thus, this routine must release the message and response
memory at exit or if an error occurs. To conduct the conversation, the function loops
through the messages from the user application. Valid messages are written to
stdout, and any errors are written to stderr.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 3–3 PAM Conversation Function

/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/

#pragma ident "@(#)pam_tty_conv.c 1.3 04/08/02 SMI"
#define __EXTENSIONS__ /* to expose flockfile and friends in stdio.h */
#include <errno.h>
#include <libgen.h>
#include <malloc.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <stropts.h>
#include <unistd.h>
#include <termio.h>
#include <security/pam_appl.h>

static int ctl_c; /* was the conversation interrupted? */

/* ARGSUSED 1 */
static void
interrupt(int x)
{

ctl_c = 1;
}

/* getinput -- read user input from stdin about on ^C
* Entry noecho == TRUE, don’t echo input.
* Exit User’s input.
* If interrupted, send SIGINT to caller for processing.
*/
static char *
getinput(int noecho)

Chapter 3 • Writing PAM Applications and Services 51

EXAMPLE 3–3 PAM Conversation Function (Continued)

{
struct termio tty;
unsigned short tty_flags;
char input[PAM_MAX_RESP_SIZE];
int c;
int i = 0;
void (*sig)(int);

ctl_c = 0;
sig = signal(SIGINT, interrupt);
if (noecho) {

(void) ioctl(fileno(stdin), TCGETA, &tty);
tty_flags = tty.c_lflag;
tty.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);
(void) ioctl(fileno(stdin), TCSETAF, &tty);

}

/* go to end, but don’t overflow PAM_MAX_RESP_SIZE */
flockfile(stdin);
while (ctl_c == 0 &&

(c = getchar_unlocked()) != ’\n’ &&
c != ’\r’ &&
c != EOF) {
if (i < PAM_MAX_RESP_SIZE) {

input[i++] = (char)c;
}

}
funlockfile(stdin);
input[i] = ’\0’;
if (noecho) {

tty.c_lflag = tty_flags;
(void) ioctl(fileno(stdin), TCSETAW, &tty);
(void) fputc(’\n’, stdout);

}
(void) signal(SIGINT, sig);
if (ctl_c == 1)

(void) kill(getpid(), SIGINT);

return (strdup(input));
}

/* Service modules do not clean up responses if an error is returned.
* Free responses here.
*/
static void
free_resp(int num_msg, struct pam_response *pr)
{

int i;
struct pam_response *r = pr;

if (pr == NULL)
return;

52 Solaris Security for Developers Guide • January 2005

EXAMPLE 3–3 PAM Conversation Function (Continued)

for (i = 0; i < num_msg; i++, r++) {

if (r->resp) {
/* clear before freeing -- may be a password */
bzero(r->resp, strlen(r->resp));
free(r->resp);
r->resp = NULL;

}
}
free(pr);

}

/* ARGSUSED */
int
pam_tty_conv(int num_msg, struct pam_message **mess,

struct pam_response **resp, void *my_data)
{

struct pam_message *m = *mess;
struct pam_response *r = calloc(num_msg, sizeof (struct pam_response));
int i;

if (num_msg >= PAM_MAX_NUM_MSG) {
(void) fprintf(stderr, "too many messages %d >= %d\n",

num_msg, PAM_MAX_NUM_MSG);
free(r);
*resp = NULL;
return (PAM_CONV_ERR);

}

/* Loop through messages */
*resp = r;
for (i = 0; i < num_msg; i++) {

int echo_off;

/* bad message from service module */
if (m->msg == NULL) {

(void) fprintf(stderr, "message[%d]: %d/NULL\n",
i, m->msg_style);

goto err;
}

/*
* fix up final newline:
* removed for prompts
* added back for messages
*/
if (m->msg[strlen(m->msg)] == ’\n’)

m->msg[strlen(m->msg)] = ’\0’;

r->resp = NULL;
r->resp_retcode = 0;

Chapter 3 • Writing PAM Applications and Services 53

EXAMPLE 3–3 PAM Conversation Function (Continued)

echo_off = 0;
switch (m->msg_style) {

case PAM_PROMPT_ECHO_OFF:
echo_off = 1;
/*FALLTHROUGH*/

case PAM_PROMPT_ECHO_ON:
(void) fputs(m->msg, stdout);

r->resp = getinput(echo_off);
break;

case PAM_ERROR_MSG:
(void) fputs(m->msg, stderr);
(void) fputc(’\n’, stderr);
break;

case PAM_TEXT_INFO:
(void) fputs(m->msg, stdout);
(void) fputc(’\n’, stdout);
break;

default:
(void) fprintf(stderr, "message[%d]: unknown type "

"%d/val=\"%s\"\n",
i, m->msg_style, m->msg);

/* error, service module won’t clean up */
goto err;

}
if (errno == EINTR)

goto err;

/* next message/response */
m++;
r++;

}
return (PAM_SUCCESS);

err:
free_resp(i, r);
*resp = NULL;
return (PAM_CONV_ERR);

}

54 Solaris Security for Developers Guide • January 2005

Writing Modules That Provide PAM
Services
This section describes how to write PAM service modules.

Requirements for PAM Service Providers
PAM service modules use pam_get_item(3PAM) and pam_set_item(3PAM) to
communicate with applications. To communicate with each other, service modules use
pam_get_data(3PAM) and pam_set_data(3PAM). If service modules from the
same project need to exchange data, then a unique data name for that project should
be established. The service modules can then share this data through the
pam_get_data() and pam_set_data() functions.

Service modules must return one of three classes of PAM return code:

� PAM_SUCCESS if the module has performed some activity, such as making a
decision that is part of the requested policy.

� PAM_IGNORE if the module does not make a policy decision.

� PAM_error if the module participates in the decision that results in a failure. The
error can be either a generic error code or a code specific to the service module
type. The error cannot be an error code for another service module type. See the
specific man page for pam_sm_module-type for the error codes.

If a service module performs multiple functions, these functions should be split up
into separate modules. This approach gives system administrators finer-grained
control for configuring policy.

Man pages should be provided for any new service modules. Man pages should
include the following items:

� Arguments that the module accepts.
� All functions that the module implements.
� The effect of flags on the algorithm.
� Any required PAM items.
� Error returns that are specific to this module.

Service modules require the PAM_SILENT flag for preventing display of messages.
The debug argument is required for logging debug information to syslog. Use
syslog(3C) with LOG_AUTH and LOG_DEBUG for debug logging. Other messages
should be sent to syslog() with LOG_AUTH and the appropriate priority.
openlog(3C), closelog(3C), and setlogmask(3C) must not be used as these
functions interfere with the applications settings.

Chapter 3 • Writing PAM Applications and Services 55

Sample PAM Provider Application
A sample PAM service module follows. This module checks whether callers to the
pam_sm_acct_mgmt() function belong to the vusers group. Access to the function
is granted or denied depending on the success of these tests. The application goes
through the following steps:

1. Receive data from the pam_sm_acct_mgmt() call.

2. Set debug flag to display warnings if the program is run in debug mode.
Otherwise, the nowarn flag is set, and no messages are displayed.

3. Read the user, service, and host names. Deny access if any of these parameters are
NULL.

4. Test whether user data shows that user is a member of vusers group with
required membership.

5. Return ignore condition if all groups are permitted.

6. Search vuser group data to see if user is a member. Return SUCCESS if user is
valid member of vusers.

7. If user is not a valid member, set up an error message. This error message should
be localized. Use conversation function to display message to user. Return
authentication error.

The following example shows the source code for the sample PAM service module.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 3–4 PAM Service Module Example

/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/

/* A PAM module to grant access to members of the ’vusers’ UNIX
* group only.
*/

#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>
#include <grp.h>
#include <string.h>
#include <syslog.h>
#include <security/pam_appl.h>
#include <sys/systeminfo.h>

56 Solaris Security for Developers Guide • January 2005

EXAMPLE 3–4 PAM Service Module Example (Continued)

static char *NOMSG = "Sorry, you are not on the access list for this host - "
"access denied.";

int
pam_sm_acct_mgmt(pam_handle_t *pamh, int flags, int argc, const char **argv)
{

char *user = NULL;
char *host = NULL;
char *service = NULL;
char grname[264];
char grp_buf[4096];
struct group grp;
struct pam_conv *conversation;
struct pam_message message;
struct pam_message *pmessage = &message;
struct pam_response *resp = NULL;
int i;
int nowarn = 0;
int debug = 0;

/* Set flags to display warnings if in debug mode. */
for (i = 0; i < argc; i++) {

if (strcasecmp(argv[i], "nowarn") == 0)
nowarn = 1;

else if (strcasecmp(argv[i], "debug") == 0)
debug = 1;

}
if (flags & PAM_SILENT)

nowarn = 1;

/*Get user name,service name, and host name. */
(void) pam_get_user(pamh, &user, NULL);
(void) pam_get_item(pamh, PAM_SERVICE, (void**)&service);
(void) pam_get_item(pamh, PAM_RHOST, (void**)&host);

/* Deny access if service, host, or user is NULL. */
if (service == NULL)

service = "unknown";
if (host == NULL)

host = "unknown";
if (user == NULL) {

syslog(LOG_AUTH | LOG_DEBUG, "%s: vusers_only: user not set", service);
return (PAM_USER_UNKNOWN);

}

/* Deny access if vuser group is required and user is not in vuser group */
(void) strcpy(grname, "vusers-");
(void) sysinfo(SI_HOSTNAME, grname+7, 256);
if (getgrnam_r(grname, &grp, grp_buf, sizeof (grp_buf)) == NULL &&

getgrnam_r("vusers", &grp, grp_buf, sizeof (grp_buf)) == NULL) {
if (debug)

syslog(LOG_AUTH | LOG_DEBUG,

Chapter 3 • Writing PAM Applications and Services 57

EXAMPLE 3–4 PAM Service Module Example (Continued)

"%s: vusers_only: neither group \"%s\" nor \"%s\""
"defined", service, grname, "vusers");

return (PAM_PERM_DENIED);
}

/* Ignore this module if all groups are allowed. */
if (grp.gr_mem[0] == 0) {

if (debug)
syslog(LOG_DEBUG, "%s: vusers_only: group %s empty: "

"all users allowed.", service, grp.gr_name);
return (PAM_IGNORE);

}

/* Check to see if user is in group. If so, return SUCCESS.
* If not, set message style to error and specify denial message. */

for (; grp.gr_mem[0]; grp.gr_mem++) {
if (strcmp(grp.gr_mem[0], user) == 0) {

return (PAM_SUCCESS);
}

}
message.msg_style = PAM_ERROR_MSG;
message.msg = gettext(NOMSG);

/* Use conversation function to display denial message to user. */
(void) pam_get_item(pamh, PAM_CONV, (void**)&conversation);
if (nowarn == 0 && conversation != NULL) {

int err;
err = conversation->conv(1, &pmessage, &resp,

conversation->appdata_ptr);
if (debug && err != PAM_SUCCESS)

syslog(LOG_AUTH | LOG_DEBUG, "%s: vusers_only: conversation "
"returned error %d (%s).", service, err,
pam_strerror(pamh, err));

if (resp != NULL)
free(resp);

}

/* Report denial to system log and return error to caller. */
syslog(LOG_NOTICE|LOG_AUTH, "%s: Connection for %s not allowed from %s",

service, user, host);
return (PAM_AUTH_ERR);

}

58 Solaris Security for Developers Guide • January 2005

CHAPTER 4

Writing Applications That Use
GSS-API

The Generic Security Standard Application Programming Interface (GSS-API)
provides a means for applications to protect data to be sent to peer applications.
Typically, the connection is from a client on one machine to a server on a different
machine. This chapter provides information on the following subjects:

� “Introduction to GSS-API” on page 59
� “Important Elements of GSS-API” on page 63
� “Developing Applications That Use GSS-API” on page 75

Introduction to GSS-API
GSS-API enables programmers to write applications generically with respect to
security. Developers do not have to tailor the security implementations to any
particular platform, security mechanism, type of protection, or transport protocol.
With GSS-API, a programmer can avoid the details of protecting network data. A
program that uses GSS-API is more portable with regards to network security. This
portability is the hallmark of the Generic Security Standard API.

GSS-API is a framework that provides security services to callers in a generic fashion.
The GSS-API framework is supported by a range of underlying mechanisms and
technologies, such as Kerberos v5 or public key technologies, as shown in the
following figure.

59

SECURITY MECHANISMS
(KERBEROS v5, ...)

GSS-API

PROTOCOL (RPC, ...)
(OPTIONAL)

APPLICATION

FIGURE 4–1 GSS-API Layer

Broadly speaking, GSS-API does two main things:

1. GSS–API creates a security context in which data can be passed between
applications. A context is a state of trust between two applications. Applications
that share a context recognize each other and thus can permit data transfers while
the context lasts.

2. GSS–API applies one or more types of protection, known as security services, to the
data to be transmitted. Security services are explained in “Security Services in
GSS-API” on page 61.

In addition, GSS-API performs the following functions:

� Data conversion
� Error checking
� Delegation of user privileges
� Information display
� Identity comparison

GSS-API includes numerous support and convenience functions.

Application Portability With GSS-API
GSS-API provides several types of portability for applications:

� Mechanism independence. GSS-API provides a generic interface for security. By
specifying a default security mechanism, an application does not need to know the
mechanism to be applied nor any details about that mechanism.

� Protocol independence. GSS–API is independent of any communications protocol
or protocol suite. For example, GSS–API can be used with applications that use
sockets, RCP, or TCP/IP.

RPCSEC_GSS is an additional layer that smoothly integrates GSS-API with RPC.
For more information, see “Remote Procedure Calls With GSS-API” on page 61.

60 Solaris Security for Developers Guide • January 2005

� Platform independence. GSS-API is independent of the type of operating system
on which an application is running.

� Quality of Protection independence. Quality of Protection (QOP) refers to the type
of algorithm for encrypting data or generating cryptographic tags. GSS-API allows
a programmer to ignore QOP by using a default that is provided by GSS-API. On
the other hand, an application can specify the QOP if necessary.

Security Services in GSS-API
GSS-API provides three types of security services:

� Authentication – The basic security offered by GSS-API is authentication.
Authentication is the verification of an identity. If a user is authenticated, the
system assumes that person is the one who is entitled to operate under that user
name.

� Integrity – Integrity is the verification of the data’s validity. Even if data comes from
a valid user, the data itself could have become corrupted or compromised. Integrity
ensures that a message is complete as intended, with nothing added and nothing
missing. GSS-API provides for data to be accompanied by a cryptographic tag,
known as an Message Integrity Code (MIC). The MIC proves that the data that you
receive is the same as the data that the sender transmitted.

� Confidentiality – Confidentiality ensures that a third party who intercepted the
message would have a difficult time reading the contents. Neither authentication
nor integrity modify the data. If the data is somehow intercepted, others can read
that data. GSS-API therefore allows data to be encrypted, provided that underlying
mechanisms are available that support encryption. This encryption of data is
known as confidentiality.

Available Mechanisms in GSS-API
The current implementation of GSS-API works with the following mechanisms:
Kerberos v5™, Diffie-Hellman, and SPNEGO. For more information on the Kerberos
implementation, see Chapter 20, “Introduction to the Kerberos Service,” in System
Administration Guide: Security Services for more information. Kerberos v5 should be
installed and running on any system on which GSS-API-aware programs are running.

Remote Procedure Calls With GSS-API
Programmers who use the RPC (Remote Procedure Call) protocol for networking
applications can use RPCSEC_GSS to provide security. RPCSEC_GSS is a separate
layer that sits on top of GSS-API. RPCSEC_GSS provides all the functionality of
GSS-API in a way that is tailored to RPC. In fact, RPCSC_GSS serves to hide many
aspects of GSS-API from the programmer, making RPC security especially accessible
and portable. For more information on RPCSEC_GSS, see “Authentication Using
RPCSEC_GSS” in ONC+ Developer’s Guide.

Chapter 4 • Writing Applications That Use GSS-API 61

The following diagram illustrates how the RPCSEC_GSS layer sits between the
application and GSS-API.

GSS-API

RPCSEC_GSS

Application

Kerberos
V5

RSA
Public Key Other...

FIGURE 4–2 RPCSEC_GSS and GSS-API

Limitations of GSS-API
Although GSS-API makes protecting data simple, GSS-API avoids some tasks that
would not be consistent with GSS-API’s generic nature. Accordingly, GSS-API does not
perform the following activities:

� Provide security credentials for users or applications. Credentials must be provided
by the underlying security mechanisms. GSS-API does allow applications to acquire
credentials, either automatically or explicitly.

� Transfer data between applications. The application has the responsibility for
handling the transfer of all data between peers, whether the data is security-related
or plain data.

� Distinguish between different types of transmitted data. For example, GSS-API
does not know whether a data packet is plain data or encrypted.

� Indicate status due to asynchronous errors.

� Protect by default information that has been sent between processes of a
multiprocess program.

� Allocate string buffers to be passed to GSS-API functions. See “Strings and Similar
Data in GSS-API” on page 63.

� Deallocate GSS-API data spaces. This memory must be explicitly deallocated with
functions such as gss_release_buffer() and gss_delete_name().

62 Solaris Security for Developers Guide • January 2005

Language Bindings for GSS-API
This document currently covers only the C language bindings, that is, functions and
data types, for GSS-API. A Java-bindings version of GSS-API is now available. The
Java GSS-API contains the Java bindings for the Generic Security Services Application
Program Interface (GSS-API), as defined in RFC 2853.

Where to Get More Information on GSS-API
These two documents provide further information about GSS-API:

� Generic Security Service Application Program Interface document
(ftp://ftp.isi.edu/in-notes/rfc2743.txt) provides a conceptual
overview of GSS-API.

� Generic Security Service API Version 2: C-Bindings document
(ftp://ftp.isi.edu/in-notes/rfc2744.txt) discusses the specifics of the
C-language-based GSS-API.

Important Elements of GSS-API
This section covers the following important GSS-API concepts: principals, GSS-API
data types, status codes, and tokens.

� “GSS-API Data Types” on page 63
� “GSS-API Status Codes” on page 72
� “GSS-API Tokens” on page 73

GSS-API Data Types
The following sections explain the major GSS-API data types. For information on all
GSS-API data types, see “GSS-API Data Types and Values” on page 235.

GSS-API Integers
Because the size of an int can vary from platform to platform, GSS-API provides the
following integer data type:OM_uint32which is a 32–bit unsigned integer.

Strings and Similar Data in GSS-API
Because GSS-API handles all data in internal formats, strings must be converted to a
GSS-API format before being passed to GSS-API functions. GSS-API handles strings
with the gss_buffer_desc structure:

Chapter 4 • Writing Applications That Use GSS-API 63

ftp://ftp.isi.edu/in-notes/rfc2743.txt
ftp://ftp.isi.edu/in-notes/rfc2744.txt

typedef struct gss_buffer_desc_struct {
size_t length;
void *value;

} gss_buffer_desc *gss_buffer_t;

gss_buffer_t is a pointer to such a structure. Strings must be put into a
gss_buffer_desc structure before being passed to functions that use them. In the
following example, a generic GSS-API function applies protection to a message before
sending that message.

EXAMPLE 4–1 Using Strings in GSS-API

char *message_string;
gss_buffer_desc input_msg_buffer;

input_msg_buffer.value = message_string;
input_msg_buffer.length = strlen(input_msg_buffer.value) + 1;

gss_generic_function(arg1, &input_msg_buffer, arg2...);

gss_release_buffer(input_msg_buffer);

Note that input_msg_buffer must be deallocated with gss_release_buffer()
when you are finished with input_msg_buffer.

The gss_buffer_desc object is not just for character strings. For example, tokens
are manipulated as gss_buffer_desc objects. See “GSS-API Tokens” on page 73 for
more information.

Names in GSS-API
A name refers to a principal. In network-security terminology, a principal is a user, a
program, or a machine. Principals can be either clients or servers. Some examples of
principals follows:

� A user, such as joe@machine, who logs into another machine
� A network service, such as nfs@machine
� A machine, such as myHost@eng.company.com, that runs an application

In GSS-API, names are stored as a gss_name_t object, which is opaque to the
application. Names are converted from gss_buffer_t objects to the gss_name_t
form by the gss_import_name() function. Every imported name has an associated
name type, which indicates the format of the name. See “GSS-API OIDs” on page 71 for
more about name types. See “Name Types” on page 237 for a list of valid name types.

gss_import_name() has the following syntax:

OM_uint32 gss_import_name (
OM_uint32 *minor-status,
const gss_buffer_t input-name-buffer,

64 Solaris Security for Developers Guide • January 2005

const gss_OID input-name-type,

gss_name_t *output-name)

minor-status Status code returned by the underlying mechanism. See
“GSS-API Status Codes” on page 72.

input-name-buffer The gss_buffer_desc structure containing the name to be
imported. The application must allocate this structure explicitly.
See “Strings and Similar Data in GSS-API” on page 63 as well as
Example 4–2. This argument must be deallocated with
gss_release_buffer() when the application is finished with
the space.

input-name-type A gss_OID that specifies the format of input-name-buffer. See
“Name Types in GSS-API” on page 72. Also, “Name Types”
on page 237 contains a table of valid name types.

output-name The gss_name_t structure to receive the name.

A minor modification of the generic example shown in Example 4–1 illustrates how
gss_import_name() can be used. First, the regular string is inserted into a
gss_buffer_desc structure. Then gss_import_name() places the string into a
gss_name_t structure.

EXAMPLE 4–2 Using gss_import_name()

char *name_string;
gss_buffer_desc input_name_buffer;
gss_name_t output_name_buffer;

input_name_buffer.value = name_string;
input_name_buffer.length = strlen(input_name_buffer.value) + 1;

gss_import_name(&minor_status, input_name_buffer,
GSS_C_NT_HOSTBASED_SERVICE, &output_name);

gss_release_buffer(input_name_buffer);

An imported name can be put back into a gss_buffer_t object for display in
human-readable form with gss_display_name(). However, gss_display_name
() does not guarantee that the resulting string will be the same as the original due to
the way the underlying mechanisms store names. GSS-API includes several other
functions for manipulating names. See “GSS-API Functions” on page 229.

A gss_name_t structure can contain several versions of a single name. One version is
produced for each mechanism that is supported by GSS-API. That is, a gss_name_t
structure for joe@company might contain one version of that name as rendered by
Kerberos v5 and another version that was given by a different mechanism. The
function gss_canonicalize_name() takes as input an internal name and a
mechanism. gss_canonicalize_name() yields a second internal name that
contains a single version of the name that is specific to that mechanism.

Chapter 4 • Writing Applications That Use GSS-API 65

Such a mechanism-specific name is called a mechanism name (MN). A mechanism name
does not refer to the name of a mechanism, but to the name of a principal as produced
by a given mechanism. This process is illustrated in the following figure.

joe@machine

joe@machine
mech1

joe@machine
mech2

joe@machine
mech2

joe@machine
mechn

string

internal name format

(gss_name_t)

internal name format,

MN (Mechanism Name)

(gss_name_t)

gss_import_name()

gss_canonicalize_name(mech2)

FIGURE 4–3 Internal Names and Mechanism Names

66 Solaris Security for Developers Guide • January 2005

Comparing Names in GSS-API
Consider the case where a server has received a name from a client and needs to look
up that name in an access control list. An access control list, or ACL, is a list of
principals with particular access permissions. One way to do the lookup would be as
follows:

1. Import the client name into GSS-API internal format with gss_import_name(),
if the name has not already been imported.

In some cases, the server will receive a name in internal format, so this step will not
be necessary. For example, a server might look up the client’s own name. During
context initiation, the client’s own name is passed in internal format.

2. Import each name in the ACL with gss_import_name().

3. Compare each imported ACL name with the imported client’s name, using
gss_compare_name().

This process is shown in the following figure. In this case, Step 1 is assumed to be
needed.

Chapter 4 • Writing Applications That Use GSS-API 67

ACL

ACL Name 1 ACL Name 2 ACL Name n

SERVER

ACL Name 2
(As internal

name)

ACL Name 1
(As internal

name)

ACL Name n
(As internal

name)

Client Name
(As internal

name)

Client Name

gss_compare_name()

gss_compare_name()

gss_compare_name()

gss_import_name()

gss_import_name()

gss_import_name()

gss_import_name()
1

2

3

(From
Client)

FIGURE 4–4 Comparing Names (Slow)

68 Solaris Security for Developers Guide • January 2005

The previous approach of comparing names individually is acceptable when there are
only a few names. When there are a large number of names, using the
gss_canonicalize_name() function is more efficient. This approach uses the
following steps.

1. Import the client’s name with gss_import_name(), if the name has not already
been imported.

As with the previous method of comparing names, if the name is already in
internal format, this step is unnecessary.

2. Use gss_canonicalize_name() to produce a mechanism name version of the
client’s name.

3. Use gss_export_name() to produce an exported name, which is the client’s
name as a contiguous string.

4. Compare the exported client’s name with each name in the ACL by using
memcmp(), which is a fast, low-overhead function.

This process is shown in the following figure. Again, assume that the server needs to
import the name that is received from the client.

Chapter 4 • Writing Applications That Use GSS-API 69

ACL

ACL Name 1

ACL Name 2

ACL Name n

SERVER

Client Name
(As MN)

Client Name
(As internal

name)

Client Name

Client Name
(As exported

name)

gss_canonicalize_name()

gss_import_name()

gss_export_name() memcmp()

memcmp()

memcmp()

1

2

3

4

ACL = Access Control List
MN = Mechanism Name

(From
Client)

FIGURE 4–5 Comparing Names (Fast)

Because gss_export_name() expects a mechanism name (MN), you must run
gss_canonicalize_name() on the client’s name first.

See the gss_export_name(3GSS), gss_import_name(3GSS), and
gss_canonicalize_name(3GSS) for more information.

70 Solaris Security for Developers Guide • January 2005

GSS-API OIDs
Object identifiers (OIDs) are used to store the following kinds of data:

� Security mechanisms
� QOPs – Quality of Protection values
� Name types

OIDs are stored in GSS-API gss_OID_desc structure. GSS-API provides a pointer to
the structure, gss_OID, as shown in the following example.

EXAMPLE 4–3 OIDs Structure

typedef struct gss_OID_desc_struct {
OM_uint32 length;
void *elements;

} gss_OID_desc, *gss_OID;

Further, one or more OIDs might be contained in a gss_OID_set_desc structure.

EXAMPLE 4–4 OID Set Structure

typedef struct gss_OID_set_desc_struct {
size_t count;
gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

Caution – Applications should not attempt to deallocate OIDs with free().

Mechanisms and QOPs in GSS-API

Although GSS-API allows applications to choose underlying security mechanisms,
applications should use the default mechanism that has been selected by GSS-API if
possible. Similarly, although GSS-API lets an application specify a Quality of
Protection level for protecting data, the default QOP should be used if possible.
Acceptance of the default mechanism is indicated by passing the value
GSS_C_NULL_OID to functions that expect a mechanism or QOP as an argument.

Chapter 4 • Writing Applications That Use GSS-API 71

Caution – Specifying a security mechanism or QOP explicitly defeats the purpose of
using GSS-API. Such a specific selection limits the portability of an application. Other
implementations of GSS-API might not support that QOP or mechanism in the
intended manner. Nonetheless, Appendix C briefly discusses how to find out which
mechanisms and QOPs are available, and how to choose one.

Name Types in GSS-API

Besides QOPs and security mechanisms, OIDs are also used to indicate name types,
which indicate the format for an associated name. For example, the function
gss_import_name(), which converts the name of a principal from a string to a
gss_name_t type, takes as one argument the format of the string to be converted. If
the name type is, for example, GSS_C_NT_HOSTBASED_SERVICE, then the function
knows that the name being input is of the form service@host. If the name type is
GSS_C_NT_EXPORT_NAME, then the function expects a GSS-API exported name.
Applications can find out which name types are available for a given mechanism with
the gss_inquire_names_for_mech() function. A list of name types used by
GSS-API is provided in “Name Types” on page 237.

GSS-API Status Codes
All GSS-API functions return two types of codes that provide information on the
function’s success or failure. Both types of status codes are returned as OM_uint32
values. The two types of return codes are as follows:

� Major status codes – Codes that indicate the following errors:

� Generic GSS-API routine errors, such as giving a routine an invalid mechanism

� Call errors that are specific to a particular GSS-API language binding, such as a
function argument that cannot be read, cannot be written, or is malformed

� Both types of errors

Additionally, major status codes can provide supplementary information about a
routine’s status. For example, a code might indicate that an operation is not
finished, or that a token has been sent out of order. If no errors occur, the routine
returns a major status value of GSS_S_COMPLETE.

Major status codes are returned as follows:

OM_uint32 major_status ; /* status returned by GSS-API */

major_status = gss_generic_function(arg1, arg2 ...);

72 Solaris Security for Developers Guide • January 2005

Major status return codes can be processed like any other OM_uint32. For
example, consider the following code.

OM_uint32 maj_stat;

maj_sta = gss_generic_function(arg1, arg2 ...);

if (maj_stat == GSS_CREDENTIALS_EXPIRED)

<do something...>

Major status codes can be processed with the macros GSS_ROUTINE_ERROR(),
GSS_CALLING_ERROR(), and GSS_SUPPLEMENTARY_INFO(). “GSS-API Status
Codes” on page 232 explains how to read major status codes and contains a list of
GSS-API status codes.

� Minor status codes – Codes that are returned by the underlying mechanism. These
codes are not specifically documented in this manual.

Every GSS-API function has as a first argument an OM_uint32 type for the minor
code status. The minor status code is stored in the OM_uint32 argument when the
function returns to the calling function. Consider the following code.

OM_uint32 *minor_status ; /* status returned by mech */

major_status = gss_generic_function(&minor_status, arg1, arg2 ...);

The minor_status parameter is always set by a GSS-API routine, even if a fatal major
status code error is returned. Note that most other output parameters can remain
unset. However, output parameters that are expected to return pointers to storage
that has been allocated by the routine are set to NULL. NULL indicates that no
storage was actually allocated. Any length field associated with such pointers, as in
a gss_buffer_desc structure, are set to zero. In such cases, applications do not
need to release these buffers.

GSS-API Tokens
The basic unit of “currency” in GSS-API is the token. Applications that use GSS-API
communicate with each other by using tokens. Tokens are used for exchanging data
and for making security arrangements. Tokens are declared as gss_buffer_t data
types. Tokens are opaque to applications.

Two types of tokens are context-level tokens and per-message tokens. Context-level tokens
are used primarily when a context is established, that is, initiated and accepted.
Context-level tokens can also be passed afterward to manage a context.

Chapter 4 • Writing Applications That Use GSS-API 73

Per-message tokens are used after a context has been established. Per-message tokens
are used to provide protection services on data. For example, consider an application
that wants to send a message to another application. That application might use
GSS-API to generate a cryptographic identifier to go along with that message. The
identifier would be stored in a token.

Per-message tokens can be considered with regard to messages as follows. A message is
a piece of data that an application sends to a peer. For example, the ls command
could be a message that is sent to an ftp server. A per-message token is an object
generated by GSS-API for that message. A per-message token could be a
cryptographic tag or the encrypted form of the message. Note that this last example is
mildly inaccurate. An encrypted message is still a message and not a token. A token is
only GSS-API-generated information. However, informally, message and per-message
token are often used interchangeably.

An application is responsible for the following activities:

1. Sending and receiving tokens. The developer usually needs to write generalized
read and write functions for performing these actions.The send_token() and
recv_token() functions in “Miscellaneous GSS-API Sample Functions” on page
222.

2. Distinguishing between types of tokens and manipulating the tokens accordingly.

Because tokens are opaque to applications, the application does not distinguish
between one token and another. Without knowing a token’s contents, an
application must be able to distinguish the token’s type to pass that token to an
appropriate GSS-API function. An application can distinguish token types through
the following methods:

� By state. Through the control-flow of a program. For example, an application
that is waiting to accept a context might assume that any received tokens are
related to context establishment. Peers are expected to wait until the context is
fully established before sending message tokens, that is, data. After the context
is established, the application assumes that new tokens are message tokens.
This approach to handling tokens is a fairly common way to handle tokens. The
sample programs in this book use this method.

� By flags. For example, if an application has a function for sending tokens to
peers, that application can include a flag to indicate the kind of token. Consider
the following code:

gss_buffer_t token; /* declare the token */
OM_uint32 token_flag /* flag for describing the type of token */

<get token from a GSS-API function>

token_flag = MIC_TOKEN; /* specify what kind of token it is */

send_a_token(&token, token_flag);

The receiving application would have a receiving function, for example,
get_a_token(), that would check the token_flag argument.

74 Solaris Security for Developers Guide • January 2005

� Through explicit tagging. Applications can use meta-tokens. A meta-token is a
user-defined structure that contain tokens that have been received from
GSS-API functions. A meta-token includes user-defined fields that signal how
the tokens that are provided by GSS-API are to be used.

Interprocess Tokens in GSS-API
GSS-API permits a security context to be passed from one process to another in a
multiprocess application. Typically, a application has accepted a client’s context. The
application then shares the context among that application’s processes. See “Exporting
and Importing Contexts in GSS-API” on page 85 for information on multiprocess
applications.

The gss_export_context() function creates an interprocess token. This token
contains information that enables the context to be reconstituted by a second process.
The application is responsible for passing the interprocess token from one process to
the other. This situation is similar to the application’s responsibility for passing tokens
to other applications.

The interprocess token might contain keys or other sensitive information. Not all
GSS-API implementations cryptographically protect interprocess tokens. Therefore,
the application must protect interprocess tokens before an exchange takes place. This
protection might involve encrypting the tokens with gss_wrap(), if encryption is
available.

Note – Do not assume that interprocess tokens are transferable across different
GSS-API implementations.

Developing Applications That Use
GSS-API
This section shows how to implement secure data exchange using GSS-API. The
section focuses on those functions that are most central to using GSS-API. For more
information , see Appendix B, which contains a list of all GSS-API functions, status
codes, and data types. To find out more about any GSS-API function, check the
individual man page.

Chapter 4 • Writing Applications That Use GSS-API 75

The examples in this manual follow a simple model. A client application sends data
directly to a remote server. No mediation by transport protocol layers such as RPC
occurs.

Generalized GSS-API Usage
The general steps for using GSS-API are as follows:

1. Each application, both sender and recipient, acquires credentials explicitly, unless
credentials have been acquired automatically.

2. The sender initiates a security context. The recipient accepts the context.

3. The sender applies security protection to the data to be transmitted. The sender
either encrypts the message or stamps the data with an identification tag. The
sender then transmits the protected message.

Note – The sender can choose not to apply either security protection, in which case
the message has only the default GSS-API security service, that is, authentication.

4. The recipient decrypts the message if needed and verifies the message if
appropriate.

5. (Optional) The recipient returns an identification tag to the sender for confirmation.

6. Both applications destroy the shared security context. If necessary, the allocations
can also deallocate any remaining GSS-API data.

7.

Caution – The calling application is responsible for freeing all data space that has
been allocated.

Applications that use GSS-API need to include the file gssapi.h.

Working With Credentials in GSS-API
A credential is a data structure that provides proof of an application’s claim to a
principal name. An application uses a credential to establish that application’s global
identity. Additionally, a credential may be used to confirm an entity’s privileges.

76 Solaris Security for Developers Guide • January 2005

GSS-API does not provide credentials. Credentials are created by the security
mechanisms that underly GSS-API, before GSS-API functions are called. In many
cases, a user receives credentials at login.

A given GSS-API credential is valid for a single principal. A single credential can
contain multiple elements for that principal, each created by a different mechanism. A
credential that is acquired on a machine with multiple security mechanisms is valid if
that credential is transferred to a machine with a subset of those mechanisms. GSS-API
accesses credentials through the gss_cred_id_t structure. This structure is called a
credential handle. Credentials are opaque to applications. Thus, the application does not
need to know the specifics of a given credential.

Credentials come in three forms:

� GSS_C_INITIATE – Identifies applications that only initiate security contexts

� GSS_C_ACCEPT – Identifies applications that only accept security contexts

� GSS_C_BOTH – Identifies applications that can initiate or accept security contexts

Acquiring Credentials in GSS-API
Before a security context can be established, both the server and the client must
acquire their respective credentials. A credential can be reused until that credential
expires, after which the application must reacquire the credential. Credentials that are
used by the client and credentials that are used by the server can have different
lifetimes.

GSS-API-based applications can acquire credentials in two ways:

� By using the gss_acquire_cred() or gss_add_cred() function

� By specifying the value GSS_C_NO_CREDENTIAL, which indicates a default
credential, when the context is established

In most cases, gss_acquire_cred() is called only by a context acceptor, that is, a
server. A context initiator, that is, a client, typically receives credentials at login. A
client, therefore, can usually specify the default credential. The server can also bypass
gss_acquire_cred() and use that server’s default credential instead.

A client’s credential proves that client’s identity to other processes. A server acquires a
credential to enable that server to accept a security context. So when a client makes an
ftp request to a server, that client might already have a credential from login.
GSS-API automatically retrieves the credential when the client attempts to initiate a
context. The server program, however, explicitly acquires credentials for the requested
service (ftp).

Chapter 4 • Writing Applications That Use GSS-API 77

If gss_acquire_cred() completes successfully, then GSS_S_COMPLETE is returned.
If a valid credential cannot be returned, then GSS_S_NO_CRED is returned. See the
gss_acquire_cred(3GSS) man page for other error codes. For an example, see
“Acquiring Credentials” in Chapter 8.

gss_add_cred() is similar to gss_acquire_cred(). However, gss_add_cred()
enables an application to use an existing credential to create a new handle or to add a
new credential element. If GSS_C_NO_CREDENTIAL is specified as the existing
credential, then gss_add_cred() creates a new credential according to the default
behavior. See the gss_add_cred(3GSS) man page for more information.

Working With Contexts in GSS-API
The two most significant tasks for GSS-API in providing security are to create security
contexts and to protect data. After an application acquires the necessary credentials, a
security context must be established. To establish a context, one application, typically a
client, initiates the context, and another application, usually a server, accepts the
context. Multiple contexts between peers are allowed.

The communicating applications establish a joint security context by exchanging
authentication tokens. The security context is a pair of GSS-API data structures that
contain information to be shared between the two applications. This information
describes the state of each application in terms of security. A security context is
required for protection of data.

Initiating a Context in GSS-API
The gss_init_sec_context() function is used to start a security context between
an application and a remote peer. If successful, this function returns a context handle for
the context to be established and a context-level token to send to the acceptor. Before
calling gss_init_sec_context(), the client should perform the following tasks:

1. Acquire credentials, if necessary, with gss_acquire_cred(). Typically, the client
receives credentials at login. gss_acquire_cred() can only retrieve initial
credentials from the running operating system.

2. Import the name of the server into GSS-API internal format with
gss_import_name(). See “Names in GSS-API” on page 64 for more information
about names and gss_import_name().

When calling gss_init_sec_context(), a client typically passes the following
argument values:

� GSS_C_NO_CREDENTIAL for the cred_handle argument, to indicate the default
credential

� GSS_C_NULL_OID for the mech_type argument, to indicate the default mechanism

78 Solaris Security for Developers Guide • January 2005

� GSS_C_NO_CONTEXT for the context_handle argument, to indicate an initial null
context. Because gss_init_sec_context() is usually called in a loop,
subsequent calls should pass the context handle that was returned by previous
calls

� GSS_C_NO_BUFFER for the input_token argument, to indicate an initially empty
token. Alternatively, the application can pass a pointer to a gss_buffer_desc
object whose length field has been set to zero

� The name of the server, imported into internal GSS-API format with
gss_import_name().

Applications are not bound to use these default values. Additionally, a client can
specify requirements for other security parameters with the req_flags argument. The
full set of gss_init_sec_context() arguments is described below.

The context acceptor might require several handshakes to establish a context. That is,
an acceptor can require the initiator to send more than one piece of context
information before the context is fully established. Therefore, for portability, context
initiation should always be done as part of a loop that checks whether the context has
been fully established.

If the context is not complete, gss_init_sec_context() returns a major status
code of GSS_C_CONTINUE_NEEDED. Therefore, a loop should use the return value
from gss_init_sec_context() to test whether to continue the initiation loop.

The client passes context information to the server in the form of the output token,
which is returned by gss_init_sec_context(). The client receives information
back from the server as an input token. The input token can then be passed as an
argument in subsequent calls of gss_init_sec_context(). If the received input
token has a length of zero, however, then no more output tokens are required by the
server.

Therefore, besides checking for the return status of gss_init_sec_context(), the
loop should check the input token’s length. If the length has a nonzero value, another
token needs to be sent to the server. Before the loop begins, the input token’s length
should be initialized to zero. Either set the input token to GSS_C_NO_BUFFER or set
the structure’s length field to a value of zero.

The following pseudocode demonstrates an example of context establishment from the
client side.

context = GSS_C_NO_CONTEXT
input token = GSS_C_NO_BUFFER

do

call gss_init_sec_context(credential, context, name, input token,
output token, other args...)

Chapter 4 • Writing Applications That Use GSS-API 79

if (there’s an output token to send to the acceptor)
send the output token to the acceptor
release the output token

if (the context is not complete)
receive an input token from the acceptor

if (there’s a GSS-API error)
delete the context

until the context is complete

A real loop would be more complete with more extensive error-checking. See
“Establishing a Security Context With the Server” on page 104 for a real example of such
a context-initiation loop. Additionally, the gss_init_sec_context(3GSS) man
page provides a less generic example.

In general, the parameter values returned when a context is not fully established are
those values that would be returned when the context is complete. See the
gss_init_sec_context() man page for more information.

If gss_init_sec_context() completes successfully, GSS_S_COMPLETE is
returned. If a context-establishment token is required from the peer application,
GSS_S_CONTINUE_NEEDED is returned. If errors occur, error codes are returned as
shown in the gss_init_sec_context(3GSS) man page.

If context initiation fails, the client should disconnect from the server.

Accepting a Context in GSS-API
The other half of context establishment is context acceptance, which is done through
the gss_accept_sec_context() function. In a typical scenario, a server accepts a
context that has been initiated by a client with gss_init_sec_context().

The main input to gss_accept_sec_context() is an input token from the initiator.
The initiator returns a context handle as well as an output token to be returned to the
initiator. Before gss_accept_sec_context() can be called, however, the server
should acquire credentials for the service that was requested by the client. The server
acquires these credentials with the gss_acquire_cred() function. Alternatively, the
server can bypass explicit acquisition of credentials by specifying the default
credential, that is, GSS_C_NO_CREDENTIAL, when the server calls
gss_accept_sec_context().

When calling gss_accept_sec_context(), the server can set the following
arguments as shown:

80 Solaris Security for Developers Guide • January 2005

� cred_handle – The credential handle returned by gss_acquire_cred().
Alternatively, GSS_C_NO_CREDENTIAL can be used to indicate the default
credential.

� context_handle – GSS_C_NO_CONTEXT indicates an initial null context. Because
gss_init_sec_context() is usually called in a loop, subsequent calls should
pass the context handle that was returned by previous calls.

� input_token – The context token received from the client.

The full set of gss_accept_sec_context() arguments is described in the
following paragraphs.

Security context establishment might require several handshakes. The initiator and
acceptor often need to send more than one piece of context information before the
context is fully established. Therefore, for portability, context acceptance should
always be done as part of a loop that checks whether the context has been fully
established. If the context is not yet established, gss_accept_sec_context()
returns a major status code of GSS_C_CONTINUE_NEEDED. Therefore, a loop should
use the value that was returned by gss_accept_sec_context() to test whether to
continue the acceptance loop.

The context acceptor returns context information to the initiator in the form of the
output token that was returned by gss_accept_sec_context(). Subsequently, the
acceptor can receive additional information from the initiator as an input token. The
input token is then passed as an argument to subsequent
gss_accept_sec_context() calls. When gss_accept_sec_context() has no
more tokens to send to the initiator, an output token with a length of zero is returned.
Besides checking for the return status gss_accept_sec_context(), the loop
should check the output token’s length to see whether another token must be sent.
Before the loop begins, the output token’s length should be initialized to zero. Either
set the output token to GSS_C_NO_BUFFER, or set the structure’s length field to a
value of zero.

The following pseudocode demonstrates an example of context establishment from the
server side.

context = GSS_C_NO_CONTEXT
output token = GSS_C_NO_BUFFER

do

receive an input token from the initiator

call gss_accept_sec_context(context, cred handle, input token,
output token, other args...)

if (there’s an output token to send to the initiator)
send the output token to the initiator

Chapter 4 • Writing Applications That Use GSS-API 81

release the output token

if (there’s a GSS-API error)
delete the context

until the context is complete

A real loop would be more complete with more extensive error-checking. See
“Establishing a Security Context With the Server” on page 104 for a real example of such
a context-acceptance loop. Additionally, the gss_accept_sec_context() man
page provides an example.

Again, GSS-API does not send or receive tokens. Tokens must be handled by the
application. Examples of token-transferring functions are found in “Miscellaneous
GSS-API Sample Functions” on page 222.

gss_accept_sec_context() returns GSS_S_COMPLETE if it completes
successfully. If the context is not complete, the function returns
GSS_S_CONTINUE_NEEDED. If errors occur, the function returns error codes. For more
information, see the gss_accept_sec_context(3GSS) man page.

Using Other Context Services in GSS-API
The gss_init_sec_context() function enables an application to request
additional data protection services beyond basic context establishment. These services
are requested through the req_flags argument to gss_init_sec_context().

Not all mechanisms offer all these services. The ret_flags argument for
gss_init_sec_context() indicates which services are available in a given context.
Similarly, the context acceptor examines the ret_flags value that is returned by
gss_accept_sec_context() to determine the available services. The additional
services are explained in the following sections.

Delegating a Credential in GSS-API
If permitted, a context initiator can request that the context acceptor act as a proxy. In
such a case, the acceptor can initiate further contexts on behalf of the initiator.

Suppose someone on Machine A wants to rlogin to Machine B, and then rlogin
from Machine B to Machine C. Depending on the mechanism, the delegated credential
identifies B either as A or B as proxy for A.

82 Solaris Security for Developers Guide • January 2005

If delegation is permitted, ret_flags can be set to GSS_C_DELEG_FLAG. The acceptor
receives a delegated credential as the delegated_cred_handle argument of
gss_accept_sec_context(). Delegating a credential is not the same as exporting
a context. See “Exporting and Importing Contexts in GSS-API” on page 85. One
difference is that an application can delegate that application’s credentials multiple
times simultaneously, while a context can only be held by one process at a time.

Performing Mutual Authentication Between Peers in
GSS-API
A user who transfers files to an ftp site typically does not need proof of the site’s
identity. On the other hand, a user who is required to provide a credit card number to
an application would want definite proof of the receiver’s identity. In such a case,
mutual authentication is required. Both the context initiator and the acceptor must
prove their identities.

A context initiator can request mutual authentication by setting the
gss_init_sec_context() req_flags argument to the value GSS_C_MUTUAL_FLAG.
If mutual authentication has been authorized, the function indicates authorization by
setting the ret_flags argument to this value. If mutual authentication is requested but
not available, the initiating application is responsible for responding accordingly.
GSS-API does not automatically terminate a context when mutual authentication is
requested but unavailable. Also, some mechanisms always perform mutual
authentication even without a specific request.

Performing Anonymous Authentication in GSS-API
In normal use of GSS-API, the initiator’s identity is made available to the acceptor as a
part of context establishment. However, a context initiator can request that its identity
not be revealed to the context acceptor.

For example, consider an application that provides unrestricted access to a medical
database. A client of such a service might want to authenticate the service. This
approach would establish trust in any information that is retrieved from the database.
The client might not want to expose its identity due to privacy concerns, for example.

To request anonymity, set the req_flags argument of gss_init_sec_context() to
GSS_C_ANON_FLAG. To verify whether anonymity is available, check the ret_flags
argument to gss_init_sec_context() or gss_accept_sec_context() to see
whether GSS_C_ANON_FLAG is returned.

When anonymity is in effect, calling gss_display_name() on a client name that
was returned by gss_accept_sec_context() or gss_inquire_context()
produces a generic anonymous name.

Chapter 4 • Writing Applications That Use GSS-API 83

Note – An application has the responsibility to take appropriate action if anonymity is
requested but not permitted. GSS-API does not terminate a context in such a case.

Using Channel Bindings in GSS-API
For many applications, basic context establishment is sufficient to assure proper
authentication of a context initiator. In cases where additional security is desired,
GSS-API offers the use of channel bindings. Channel bindings are tags that identify the
particular data channel that is used. Specifically, channel bindings identify the origin
and endpoint, that is, the initiator and acceptor of the context. Because the tags are
specific to the originator and recipient applications, such tags offer more proof of a
valid identity.

Channel bindings are pointed to by the gss_channel_bindings_t data type, which
is a pointer to a gss_channel_bindings_struct structure as shown below.

typedef struct gss_channel_bindings_struct {
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} *gss_channel_bindings_t;

The first two fields are the address of the initiator and an address type that identifies
the format in which the initiator’s address is being sent. For example, initiator_addrtype
might be sent to GSS_C_AF_INET to indicate that initiator_address is in the form of an
Internet address, that is, an IP address. Similarly, the third and fourth fields indicate
the address and address type of the acceptor. The final field, application_data, can be
used by the application as needed. Set application_data to GSS_C_NO_BUFFER if
application_data is not going to be used. If an application does not specify an address,
that application should set the address type field to GSS_C_AF_NULLADDR. The
“Address Types for Channel Bindings” on page 238 section has a list of valid address
type values.

The address types indicate address families rather than specific addressing formats.
For address families that contain several alternative address forms, the initiator_address
and acceptor_address fields must contain sufficient information to determine which
form is used. When not otherwise specified, addresses should be specified in network
byte-order, that is, native byte-ordering for the address family.

To establish a context that uses channel bindings, the input_chan_bindings argument for
gss_init_sec_context() should point to an allocated channel bindings structure.
The structure’s fields are concatenated into an octet string, and a MIC is derived. This
MIC is then bound to the output token. The application then sends the token to the
context acceptor. After receiving the token, the acceptor calls

84 Solaris Security for Developers Guide • January 2005

gss_accept_sec_context(). See “Accepting a Context in GSS-API” on page 80
for more information. gss_accept_sec_context() calculates a MIC for the
received channel bindings. gss_accept_sec_context() then returns
GSS_C_BAD_BINDINGS if the MIC does not match.

Because gss_accept_sec_context() returns the transmitted channel bindings, an
acceptor can use these values to perform security checking. For example, the acceptor
could check the value of application_data against code words that are kept in a secure
database.

Note – An underlying mechanism might not provide confidentiality for channel
binding information. Therefore, an application should not include sensitive
information as part of channel bindings unless confidentiality is ensured. To test for
confidentiality, an application can check the ret_flags argument of
gss_init_sec_context() or gss_accept_sec_context(). The values
GSS_C_CONF_FLAG and GSS_C_PROT_READY_FLAG indicate confidentiality. See
“Initiating a Context in GSS-API” on page 78 or “Accepting a Context in GSS-API”
on page 80 for information on ret_flags.

Individual mechanisms can impose additional constraints on the addresses and
address types that appear in channel bindings. For example, a mechanism might
verify that the initiator_address field of the channel bindings to be returned to
gss_init_sec_context(). Portable applications should therefore provide the
correct information for the address fields. If the correct information cannot be
determined, then GSS_C_AF_NULLADDR should be specified as the address types.

Exporting and Importing Contexts in GSS-API
GSS-API provides the means for exporting and importing contexts. This ability
enables a multiprocess application, usually the context acceptor, to transfer a context
from one process to another. For example, an acceptor might have one process that
listens for context initiators and another that uses the data that is sent in the context.
The “Using the test_import_export_context() Function” on page 129 section
shows how a context can be saved and restored with these functions.

The function gss_export_sec_context() creates an interprocess token that
contains information about the exported context. See “Interprocess Tokens in
GSS-API” on page 75 for more information. The buffer to receive the token should be
set to GSS_C_NO_BUFFER before gss_export_sec_context() is called.

The application then passes the token on to the other process. The new process accepts
the token and passes that token to gss_import_sec_context(). The same
functions that are used to pass tokens between applications can often be used to pass
tokens between processes as well.

Chapter 4 • Writing Applications That Use GSS-API 85

Only one instantiation of a security process can exist at a time.
gss_export_sec_context() deactivates the exported context and sets the context
handle to GSS_C_NO_CONTEXT. gss_export_sec_context() also deallocates any
process-wide resources that are associated with that context. If the context exportation
cannot be completed, gss_export_sec_context() leaves the existing security
context unchanged and does not return an interprocess token.

Not all mechanisms permit contexts to be exported. An application can determine
whether a context can be exported by checking the ret_flags argument to
gss_accept_sec_context() or gss_init_sec_context(). If this flag is set to
GSS_C_TRANS_FLAG, then the context can be exported. (See “Accepting a Context in
GSS-API” on page 80 and “Initiating a Context in GSS-API” on page 78.)

Figure 4–6 shows how a multiprocess acceptor might use context exporting to
multitask. In this case, Process 1 receives and processes tokens. This step separates the
context-level tokens from the data tokens and passes the tokens on to Process 2.
Process 2 deals with data in an application-specific way. In this illustration, the clients
have already obtained export tokens from gss_init_sec_context(). The clients
pass the tokens to a user-defined function, send_a_token(), which indicates
whether the token to be transmitted is a context-level token or a message token.
send_a_token() transmits the tokens to the server. Although not shown here,
send_a_token() would presumably be used to pass tokens between threads as well.

86 Solaris Security for Developers Guide • January 2005

Process 2 - processes data

Process 1 - accepts tokens

Multiprocess Server

gss_accept_sec_context()

gss_export_sec_context()

gss_import_sec_context()

send_a_token()

send_a_token()

send_a_token() takes
token, flag (data or context)
as arguments

get_a_token()

MSG

MSG

Client 1

MSG

Client 2

MSG

send_a_token()

send_a_token()

MSG

MSG

MSG

If context
token

If data
token

= context-level token

= data token

FIGURE 4–6 Exporting Contexts: Multithreaded Acceptor Example

Chapter 4 • Writing Applications That Use GSS-API 87

Obtaining Context Information in GSS-API
GSS-API provides a function, gss_inquire_context(3GSS), that obtains
information about a given security context. Note that the context does not need to be
complete. Given a context handle, gss_inquire_context() provides the following
information about context:

� Name of the context initiator

� Name of the context acceptor

� Number of seconds for which the context is valid

� Security mechanism to be used with the context

� Several context-parameter flags. These flags are the same as the ret_flags argument
of the gss_accept_sec_context(3GSS) function. The flags cover delegation,
mutual authentication, and so on. See “Accepting a Context in GSS-API” on page
80.

� A flag that indicates whether the inquiring application is the context initiator

� A flag that indicates whether the context is fully established

Sending Protecting Data in GSS-API
After a context has been established between two peers, a message can be protected
before that message is sent.

Establishing a context only uses the most basic GSS-API protection: authentication.
Depending on the underlying security mechanisms, GSS-API provides two other
levels of protection:

� Integrity – A mechanism integrity code (MIC) for the message is generated by the
gss_get_mic() function. The recipient checks the MIC to ensure that the
received message is the same as the message that was sent.

� Confidentiality – In addition to using a MIC, the message is encrypted. The
GSS-API function gss_wrap() performs the encryption.

The difference between gss_get_mic() and gss_wrap() is illustrated in the
following diagram. With gss_get_mic(), the receiver gets a tag that indicates the
message is intact. With gss_wrap() , the receiver gets an encrypted message and a
tag.

88 Solaris Security for Developers Guide • January 2005

MSG

MSG

MIC MSG

gss_wrap()
with confidentiality

gss_get_mic()

MIC = Message Integrity Code
MSG = Message

(Contains
MIC and message)

FIGURE 4–7 gss_get_mic() vs. gss_wrap()

The function to be used depends on the situation. Because gss_wrap() includes the
integrity service, many programs use gss_wrap(). A program can test for the
availability of the confidentiality service. The program can then call gss_wrap() with
or without confidentiality depending on the availability. An example is “Wrapping
and Sending a Message” on page 110. However, because messages that use
gss_get_mic() do not need to be unwrapped, fewer CPU cycles are used than
withgss_wrap(). Thus a program that does not need confidentiality might protect
messages with gss_get_mic().

Tagging Messages With gss_get_mic()

Programs can use gss_get_mic() to add a cryptographic MIC to a message. The
recipient can check the MIC for a message by calling gss_verify_mic().

In contrast to gss_wrap(), gss_get_mic() produces separate output for the
message and the MIC. This separation means that a sender application must arrange
to send both the message and the accompanying MIC. More significantly, the recipient
must be able to distinguish between the message and the MIC. The following
approaches ensure the proper processing of message and MIC:

� Through program control, that is, state. A recipient application might know to call
the receiving function twice, once to get a message and a second time to get the
message’s MIC.

Chapter 4 • Writing Applications That Use GSS-API 89

� Through flags. The sender and receiver can flag the kind of token that is included.

� Through user-defined token structures that include both the message and the MIC.

GSS_S_COMPLETE is returned if gss_get_mic() completes successfully. If the
specified QOP is not valid, GSS_S_BAD_QOP is returned. For more information, see
gss_get_mic(3GSS).

Wrapping Messages With gss_wrap()

Messages can be wrapped by the gss_wrap() function. Like gss_get_mic(),
gss_wrap() provides a MIC. gss_wrap() also encrypts a given message if
confidentiality is requested and permitted by the underlying mechanism. The message
receiver unwraps the message with gss_unwrap().

Unlike gss_get_mic(), gss_wrap() wraps the message and the MIC together in
the outgoing message. The function that transmits the bundle need be called only
once. On the other end, gss_unwrap() extracts the message. The MIC is not visible
to the application.

gss_wrap() returns GSS_S_COMPLETE if the message was successfully wrapped. If
the requested QOP is not valid, GSS_S_BAD_QOP is returned. For an example of
gss_wrap(), see “Wrapping and Sending a Message” on page 110.

Handling Wrap Size Issues in GSS-API
Wrapping a message with gss_wrap() increases the amount of data to be sent.
Because the protected message packet needs to fit through a given transportation
protocol, GSS-API provides the function gss_wrap_size_limit().
gss_wrap_size_limit() calculates the maximum size of a message that can be
wrapped without becoming too large for the protocol. The application can break up
messages that exceed this size before calling gss_wrap(). Always check the
wrap-size limit before actually wrapping the message.

The amount of the size increase depends on two factors:

� Which QOP algorithm is used for making the transformation
� Whether confidentiality is invoked

The default QOP can vary from one implementation of GSS-API to another. Thus, a
wrapped message can vary in size even if the QOP default is specified. This possibility
is illustrated in the following figure.

90 Solaris Security for Developers Guide • January 2005

MSG

MSG

gss_wrap()
(QOP 1)

gss_wrap()
(QOP 2)

Protocol

Protocol

Maximum data
packet size

permitted by
protocol

gss_wrap_size_limit()
gives maximum size
of data that will "fit

protocol" after wrapping

QOP = Quality of Protection
 (protection algorithm)

Regardless of whether confidentiality is applied, gss_wrap() still increases the size
of a message. gss_wrap() embeds a MIC into the transmitted message. However,
encrypting the message can further increase the size. The following figure shows this
process.

Chapter 4 • Writing Applications That Use GSS-API 91

MSG
gss_wrap()

(With confidentiality)

Protocol

Protocol

Maximum data
packet size

permitted by
protocol

gss_wrap_size_limit()
gives maximum size
of data that will "fit

protocol" after wrapping

gss_wrap()
(No confidentiality)

MSGMSG

(MIC is
included)

GSS_S_COMPLETE is returned if gss_wrap_size_limit() completes successfully.
If the specified QOP is not valid, GSS_S_BAD_QOP is returned. “Wrapping and
Sending a Message” on page 110 includes an example of how gss_wrap_size_limit
() can be used to return the maximum original message size.

Successful completion of this call does not necessarily guarantee that gss_wrap()
can protect a message of length max-input-size bytes. This ability depends on the
availability of system resources at the time that gss_wrap() is called. For more
information, see the gss_wrap_size_limit(3GSS) man page.

Detecting Sequence Problems in GSS-API
As a context initiator transmits sequential data packets to the acceptor, some
mechanisms allow the context acceptor to check for proper sequencing. These checks
include whether the packets arrive in the right order, and with no unwanted
duplication of packets. See following figure. An acceptor checks for these two
conditions during the verification of a packet and the unwrapping of a packet. See
“Unwrapping the Message” on page 128 for more information.

92 Solaris Security for Developers Guide • January 2005

MSG
2

MSG
1

MSG
3

MSG
2

MSG
1

MSG
3

Client

Server

MSG
2

MSG
1

MSG
1

MSG
2

MSG
1

MSG
3

Client

Server

Messages
Out of Sequence

Message
Replayed

Protocol

Protocol

FIGURE 4–8 Message Replay and Message Out-of-Sequence

With gss_init_sec_context(), an initiator can check the sequence by applying
logical OR to the req_flags argument with either GSS_C_REPLAY_FLAG or
GSS_C_SEQUENCE_FLAG.

Chapter 4 • Writing Applications That Use GSS-API 93

Confirming Message Transmission in GSS-API
After the recipient has unwrapped or verified the transmitted message, a confirmation
can be returned to the sender. This means sending back a MIC for that message.
Consider the case of a message that was not wrapped by the sender but only tagged
with a MIC with gss_get_mic(). The process, illustrated in Figure 4–9, is as follows:

1. The initiator tags the message with gss_get_mic().

2. The initiator sends the message and MIC to the acceptor.

3. The acceptor verifies the message with gss_verify_mic().

4. The acceptor sends the MIC back to the initiator.

5. The initiator verifies the received MIC against the original message with
gss_verify_mic().

CLIENT SERVER

MIC

gss_get_mic()

gss_verify_mic()

gss_verify_mic()

MIC = Message Integrity Code

?=
?=

1

2

3

4

5

MIC MSG

MIC MSG

MSG

MIC MSG

MIC

FIGURE 4–9 Confirming MIC Data

In the case of wrapped data, the gss_unwrap() function never produces a separate
MIC, so the recipient must generate it from the received and unwrapped message. The
process, illustrated in Figure 4–10, is as follows:

94 Solaris Security for Developers Guide • January 2005

1. The initiator wraps the message with gss_wrap().

2. The initiator sends the wrapped message.

3. The acceptor unwraps the message with gss_unwrap().

4. The acceptor calls gss_get_mic() to produce a MIC for the unwrapped message.

5. The acceptor sends the derived MIC to the initiator.

6. The initiator compares the received MIC against the original message with
gss_verify_mic().

Applications should deallocate any data space that has been allocated for GSS-API
data. The relevant functions are gss_release_buffer(3GSS),
gss_release_cred(3GSS), gss_release_name(3GSS), and
gss_release_oid_set(3GSS).

Chapter 4 • Writing Applications That Use GSS-API 95

CLIENT SERVER

MSG

MIC MSG

MIC

gss_wrap()

gss_verify_mic()
gss_get_mic()

MSG

gss_unwrap()

MIC = Message Integrity Code

MIC

?=

1

2

3

4

5

6

FIGURE 4–10 Confirming Wrapped Data

Cleaning Up a GSS-API Session
Finally, all messages have been sent and received, and the initiator and acceptor
applications have finished. At this point, both applications should call
gss_delete_sec_context() to destroy the shared context.
gss_delete_sec_context() deletes local data structures that are associated with
the context.

96 Solaris Security for Developers Guide • January 2005

For good measure, applications should be sure to deallocate any data space that has
been allocated for GSS-API data. The functions that do this are
gss_release_buffer(), gss_release_cred(), gss_release_name(), and
gss_release_oid_set().

Chapter 4 • Writing Applications That Use GSS-API 97

98 Solaris Security for Developers Guide • January 2005

CHAPTER 5

GSS-API Client Example

This chapter presents a walk-through of a typical GSS-API client application. The
following topics are covered:

� “GSSAPI Client Example Overview” on page 99
� “GSSAPI Client Example: main() Function” on page 101
� “Opening a Connection With the Server” on page 103
� “Establishing a Security Context With the Server” on page 104
� “Miscellaneous GSSAPI Context Operations on the Client Side” on page 109
� “Wrapping and Sending a Message” on page 110
� “Reading and Verifying a Signature Block From a GSS-API Client” on page 113
� “Deleting the Security Context” on page 114

GSSAPI Client Example Overview
The sample client-side program gss-client creates a security context with a server,
establishes security parameters, and sends the message string to the server. The
program uses a simple TCP-based sockets connection to make the connection.

The following sections provide a step-by-step description of how gss-client works.
Because gss-client is a sample program that has been designed to show off
GSSAPI functionality, only relevant parts of the program are discussed in detail. The
complete source code for the two applications appears in the appendix and can be
downloaded from

http://developers.sun.com/prodtech/solaris/downloads/index.html

99

GSSAPI Client Example Structure
The gss-client application performs the following steps:

1. Parses the command line.

2. Creates an object ID (OID) for a mechanism, if a mechanism is specified.
Otherwise, the default mechanism is used, which is most commonly the case.

3. Creates a connection to the server.

4. Establishes a security context.

5. Wraps and sends the message.

6. Verifies that the message has been “signed” correctly by the server.

7. Deletes the security context.

Running the GSSAPI Client Example
The gss-client example takes this form on the command line:

gss-client [-port port] [-d] [-mech mech] host service-name [-f] msg

� port – The port number for making the connection to the remote machine that is
specified by host.

� -d flag – Causes security credentials to be delegated to the server. Specifically, the
deleg-flag variable is set to the GSS-API value GSS_C_DELEG_FLAG. Otherwise,
deleg-flag is set to zero.

� mech – The name of the security mechanism, such as Kerberos v5 to be used. If no
mechanism is specified, the GSS-API uses a default mechanism.

� host – The name of the server.

� service-name – The name of the network service requested by the client. Some
typical examples are the telnet, ftp, and login services.

� msg – The string to send to the server as protected data. If the -f option is
specified, then msg is the name of a file from which to read the string.

A typical command line for client application program might look like the following
example:

% gss-client -port 8080 -d -mech kerberos_v5 erebos.eng nfs "ls"

The following example does not specify a mechanism, port, or delegation:

% gss-client erebos.eng nfs "ls"

100 Solaris Security for Developers Guide • January 2005

GSSAPI Client Example: main()
Function
As with all C programs, the outer shell of the program is contained in the entry-point
function, main(). main() performs four functions:

� Parses command-line arguments and assigns the arguments to variables.

� Calls parse_oid() to create a GSS-API OID, object identifier, if a mechanism
other than the default is to be used. The object identifier comes from the name of
the security mechanism, provided that a mechanism name has been supplied.

� Calls call_server(), which does the actual work of creating a context and
sending data.

� Releases the storage space for the OID if necessary, after the data is sent.

The source code for the main() routine is shown in the following example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 5–1 gss-client Example: main()

int main(argc, argv)
int argc;
char **argv;

{
char *msg;
char service_name[128];
char hostname[128];
char *mechanism = 0;
u_short port = 4444;
int use_file = 0;
OM_uint32 deleg_flag = 0, min_stat;

display_file = stdout;

/* Parse command-line arguments. */

argc--; argv++;
while (argc) {

if (strcmp(*argv, "-port") == 0) {
argc--; argv++;
if (!argc) usage();
port = atoi(*argv);

} else if (strcmp(*argv, "-mech") == 0) {
argc--; argv++;
if (!argc) usage();

Chapter 5 • GSS-API Client Example 101

EXAMPLE 5–1 gss-client Example: main() (Continued)

mechanism = *argv;
} else if (strcmp(*argv, "-d") == 0) {

deleg_flag = GSS_C_DELEG_FLAG;
} else if (strcmp(*argv, "-f") == 0) {

use_file = 1;
} else

break;
argc--; argv++;

}
if (argc != 3)

usage();

if (argc > 1) {
strcpy(hostname, argv[0]);

} else if (gethostname(hostname, sizeof(hostname)) == -1) {
perror("gethostname");
exit(1);

}

if (argc > 2) {
strcpy(service_name, argv[1]);
strcat(service_name, "@");
strcat(service_name, hostname);

}

msg = argv[2];

/* Create GSSAPI object ID. */
if (mechanism)

parse_oid(mechanism, &g_mechOid);

/* Call server to create context and send data. */
if (call_server(hostname, port, g_mechOid, service_name,

deleg_flag, msg, use_file) < 0)
exit(1);

/* Release storage space for OID, if still allocated */
if (g_mechOid != GSS_C_NULL_OID)

(void) gss_release_oid(&min_stat, &gmechOid);

return 0;

}

102 Solaris Security for Developers Guide • January 2005

Opening a Connection With the Server
The call_server() function uses the following code to make the connection with
the server:

if ((s = connect_to_server(host, port)) < 0)

return -1;

s is a file descriptor, the int that is initially returned by a call to socket().

connect_to_server() is a simple function outside GSS-API that uses sockets to
create a connection. The source code for connect_to_server() is shown in the
following example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 5–2 connect_to_server() Function

int connect_to_server(host, port)
char *host;
u_short port;

{
struct sockaddr_in saddr;
struct hostent *hp;
int s;

if ((hp = gethostbyname(host)) == NULL) {
fprintf(stderr, "Unknown host: %s\n", host);
return -1;

}

saddr.sin_family = hp->h_addrtype;
memcpy((char *)&saddr.sin_addr, hp->h_addr, sizeof(saddr.sin_addr));
saddr.sin_port = htons(port);

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("creating socket");
return -1;

}
if (connect(s, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) {

perror("connecting to server");
(void) close(s);
return -1;

}

return s;

}

Chapter 5 • GSS-API Client Example 103

Establishing a Security Context With the
Server
After the connection is made, call_server() uses the function
client_establish_context() to create the security context, as follows:

if (client_establish_context(s, service-name, deleg-flag, oid, &context,
&ret-flags) < 0) {

(void) close(s);
return -1;

}

� s is a file descriptor that represents the connection that is established by
connect_to_server().

� service-name is the requested network service.

� deleg-flag specifies whether the server can act as a proxy for the client.

� oid is the mechanism.

� context is the context to be created.

� ret-flags is an int that specifies any flags to be returned by the GSS-API function
gss_init_sec_context().

The client_establish_context() performs the following tasks:

� Translates the service name into internal GSSAPI format

� Performs a loop of token exchanges between the client and the server until the
security context is complete

Translating a Service Name into GSS-API Format
The first task that client_establish_context() performs is to translate the
service name string to internal GSS-API format by using gss_import_name().

EXAMPLE 5–3 client_establish_context() – Translate Service Name

/*
* Import the name into target_name. Use send_tok to save
* local variable space.
*/

send_tok.value = service_name;
send_tok.length = strlen(service_name) + 1;
maj_stat = gss_import_name(&min_stat, &send_tok,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &target_name);
if (maj_stat != GSS_S_COMPLETE) {

104 Solaris Security for Developers Guide • January 2005

EXAMPLE 5–3 client_establish_context() – Translate Service Name (Continued)

display_status("parsing name", maj_stat, min_stat);
return -1;

}

gss_import_name() takes the name of the service, which is stored in an opaque
GSS_API buffer send_tok, and converts the string to the GSS_API internal name
target_name. send_tok is used to save space instead of declaring a new
gss_buffer_desc. The third argument is a gss_OID type that indicates the
send_tok name format. This example uses GSS_C_NT_HOSTBASED_SERVICE, which
means a service of the format service@host. See “Name Types” on page 237 for other
possible values for this argument.

Establishing a Security Context for GSS-API
Once the service has been translated to GSS-API internal format, the context can be
established. To maximize portability, establishing context should always be performed
as a loop.

Before entering the loop, client_establish_context() initializes the context and
the token_ptr parameter. There is a choice in the use of token_ptr. token_ptr can point
either to send_tok, the token to be sent to the server, or to recv_tok, the token that is sent
back by the server.

Inside the loop, two items are checked:

� The status that is returned by gss_init_sec_context()

The return status catches any errors that might require the loop to be aborted.
gss_init_sec_context() returns GSS_S_CONTINUE_NEEDED if and only if
the server has another token to send.

� The size of token to be sent to the server, which is generated by
gss_init_sec_context()

A token size of zero indicates that no more information exists that can be sent to
the server and that the loop can be exited. The token size is determined from
token_ptr.

The following pseudocode describes the loop:

do
gss_init_sec_context()
if no context was created

exit with error;
if the status is neither "complete" nor "in process"

release the service namespace and exit with error;
if there is a token to send to the server, that is, the size is nonzero

Chapter 5 • GSS-API Client Example 105

send the token;
if sending the token fails,

release the token and service namespaces. Exit with error;
release the namespace for the token that was just sent;

if the context is not completely set up
receive a token from the server;

while the context is not complete

The loop starts with a call to gss_init_sec_context(), which takes the following
arguments:

� The status code to be set by the underlying mechanism.

� The credential handle. The example uses GSS_C_NO_CREDENTIAL to act as a
default principal.

� gss-context, which represents the context handle to be created.

� target-name of the service, as a GSS_API internal name.

� oid, the ID for the mechanism.

� Request flags. In this case, the client requests that the server authenticate itself, that
message-duplication be turned on, and that the server act as a proxy if requested.

� No time limit for the context.

� No request for channel bindings.

� token_ptr, which points to the token to be received from the server.

� The mechanism actually used by the server. The mechanism is set to NULL here
because the application does not use this value.

� &send_tok, which is the token that gss_init_sec_context() creates to send to
the server.

� Return flags. Set to NULL because they are ignored in this example.

Note – The client does not need to acquire credentials before initiating a context. On
the client side, credential management is handled transparently by the GSS-API. That
is, the GSS-API knows how to get credentials that are created by this mechanism for
this principal. As a result, the application can pass gss_init_sec_context() a
default credential. On the server side, however, a server application must explicitly
acquire credentials for a service before accepting a context. See “Acquiring
Credentials” on page 119.

106 Solaris Security for Developers Guide • January 2005

After checking that a context or part of one exists and that gss_init_sec_context
() is returning valid status, connect_to_server() checks that
gss_init_sec_context() has provided a token to send to the server. If no token is
present, the server has signalled that no other tokens are needed. If a token has been
provided, then that token must be sent to the server. If sending the token fails, the
namespaces for the token and service cannot be determined, and
connect_to_server() exits. The following algorithm checks for the presence of a
token by looking at the length:

if (send_tok_length != 0) {
if (send_token(s, &send_tok) < 0) {

(void) gss_release_buffer(&min_stat, &send_tok);
(void) gss_release_name(&min_stat, &target_name);
return -1;

}

}

send_token() is not a GSS-API function and needs to be written by the user. The
send_token() function writes a token to the file descriptor. send_token() returns
0 on success and –1 on failure. GSS-API does not send or receive tokens itself. The
calling applications are responsible for sending and receiving any tokens that have
been created by GSS-API.

The source code for the context establishment loop is provided below.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 5–4 Loop for Establishing Contexts

/*
* Perform the context establishment loop.
*
* On each pass through the loop, token_ptr points to the token
* to send to the server (or GSS_C_NO_BUFFER on the first pass).
* Every generated token is stored in send_tok which is then
* transmitted to the server; every received token is stored in
* recv_tok, which token_ptr is then set to, to be processed by
* the next call to gss_init_sec_context.
*
* GSS-API guarantees that send_tok’s length will be non-zero
* if and only if the server is expecting another token from us,
* and that gss_init_sec_context returns GSS_S_CONTINUE_NEEDED if
* and only if the server has another token to send us.
*/

token_ptr = GSS_C_NO_BUFFER;
*gss_context = GSS_C_NO_CONTEXT;
1234567890123456789012345678901234567890123456789012345678901234567890123456

do {

Chapter 5 • GSS-API Client Example 107

EXAMPLE 5–4 Loop for Establishing Contexts (Continued)

maj_stat =
gss_init_sec_context(&min_stat, GSS_C_NO_CREDENTIAL,
gss_context, target_name, oid,
GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG | deleg_flag,
0, NULL, /* no channel bindings */
token_ptr, NULL, /* ignore mech type */
&send_tok, ret_flags, NULL); /* ignore time_rec */

if (gss_context == NULL){
printf("Cannot create context\n");
return GSS_S_NO_CONTEXT;

}
if (token_ptr != GSS_C_NO_BUFFER)

(void) gss_release_buffer(&min_stat, &recv_tok);
if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

display_status("initializing context", maj_stat, min_stat);
(void) gss_release_name(&min_stat, &target_name);
return -1;

}

if (send_tok.length != 0){
fprintf(stdout, "Sending init_sec_context token (size=%ld)...",

send_tok.length);
if (send_token(s, &send_tok) < 0) {

(void) gss_release_buffer(&min_stat, &send_tok);
(void) gss_release_name(&min_stat, &target_name);
return -1;

}
}
(void) gss_release_buffer(&min_stat, &send_tok);

if (maj_stat == GSS_S_CONTINUE_NEEDED) {
fprintf(stdout, "continue needed...");
if (recv_token(s, &recv_tok) < 0) {

(void) gss_release_name(&min_stat, &target_name);
return -1;

}
token_ptr = &recv_tok;

}
printf("\n");

} while (maj_stat == GSS_S_CONTINUE_NEEDED);

For more information on how send_token() and recv_token() work, see
“Miscellaneous GSS-API Sample Functions” on page 222.

108 Solaris Security for Developers Guide • January 2005

Miscellaneous GSSAPI Context
Operations on the Client Side
As a sample program, gss-client performs some functions for demonstration
purposes. The following source code is not essential for the basic task, but is provided
to demonstrate these other operations:

� Saving and restoring the context
� Displaying context flags
� Obtaining the context status

The source code for these operations is shown in the following example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 5–5 gss-client: call_server() Establish Context

/* Save and then restore the context */
maj_stat = gss_export_sec_context(&min_stat,

&context,
&context_token);

if (maj_stat != GSS_S_COMPLETE) {
display_status("exporting context", maj_stat, min_stat);
return -1;

}
maj_stat = gss_import_sec_context(&min_stat,

&context_token,
&context);

if (maj_stat != GSS_S_COMPLETE) {
display_status("importing context", maj_stat, min_stat);
return -1;

}
(void) gss_release_buffer(&min_stat, &context_token);

/* display the flags */
display_ctx_flags(ret_flags);

/* Get context information */
maj_stat = gss_inquire_context(&min_stat, context,

&src_name, &targ_name, &lifetime,
&mechanism, &context_flags,
&is_local,
&is_open);

if (maj_stat != GSS_S_COMPLETE) {
display_status("inquiring context", maj_stat, min_stat);
return -1;

Chapter 5 • GSS-API Client Example 109

EXAMPLE 5–5 gss-client: call_server() Establish Context (Continued)

}

if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
printf(" context expired\n");

display_status("Context is expired", maj_stat, min_stat);
return -1;

}

Wrapping and Sending a Message
The gss-client application needs to wrap, that is, encrypt the data before the data
can be sent. The application goes through the following steps to wrap the message:

� Determines the wrap size limit. This process ensures that the wrapped message can
be accommodated by the protocol.

� Obtains the source and destination names. Translates the names from object
identifiers to strings.

� Gets the list of mechanism names. Translates the names from object identifiers to
strings.

� Inserts the message into a buffer and wraps the message.

� Sends the message to the server.

The following source code wraps a message.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 5–6 gss-client Example: call_server() – Wrap Message

/* Test gss_wrap_size_limit */
maj_stat = gss_wrap_size_limit(&min_stat, context, conf_req_flag,

GSS_C_QOP_DEFAULT, req_output_size, &max_input_size);
if (maj_stat != GSS_S_COMPLETE) {

display_status("wrap_size_limit call", maj_stat, min_stat);
} else

fprintf (stderr, "gss_wrap_size_limit returned "
"max input size = %d \n"
"for req_output_size = %d with Integrity only\n",
max_input_size , req_output_size , conf_req_flag);

conf_req_flag = 1;

110 Solaris Security for Developers Guide • January 2005

EXAMPLE 5–6 gss-client Example: call_server() – Wrap Message (Continued)

maj_stat = gss_wrap_size_limit(&min_stat, context, conf_req_flag,
GSS_C_QOP_DEFAULT, req_output_size, &max_input_size);

if (maj_stat != GSS_S_COMPLETE) {
display_status("wrap_size_limit call", maj_stat, min_stat);

} else
fprintf (stderr, "gss_wrap_size_limit returned "

" max input size = %d \n" "for req_output_size = %d with "
"Integrity & Privacy \n", max_input_size , req_output_size);

maj_stat = gss_display_name(&min_stat, src_name, &sname, &name_type);
if (maj_stat != GSS_S_COMPLETE) {

display_status("displaying source name", maj_stat, min_stat);
return -1;

}

maj_stat = gss_display_name(&min_stat, targ_name, &tname,
(gss_OID *) NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("displaying target name", maj_stat, min_stat);
return -1;

}
fprintf(stderr, "\"%.*s\" to \"%.*s\", lifetime %u, flags %x, %s, %s\n",

(int) sname.length, (char *) sname.value, (int) tname.length,
(char *) tname.value, lifetime, context_flags,
(is_local) ? "locally initiated" : "remotely initiated",
(is_open) ? "open" : "closed");

(void) gss_release_name(&min_stat, &src_name);
(void) gss_release_name(&min_stat, &targ_name);
(void) gss_release_buffer(&min_stat, &sname);
(void) gss_release_buffer(&min_stat, &tname);

maj_stat = gss_oid_to_str(&min_stat, name_type, &oid_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(stderr, "Name type of source name is %.*s.\n", (int) oid_name.length,

(char *) oid_name.value);
(void) gss_release_buffer(&min_stat, &oid_name);

/* Now get the names supported by the mechanism */
maj_stat = gss_inquire_names_for_mech(&min_stat, mechanism, &mech_names);
if (maj_stat != GSS_S_COMPLETE) {

display_status("inquiring mech names", maj_stat, min_stat);
return -1;

}

maj_stat = gss_oid_to_str(&min_stat, mechanism, &oid_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("converting oid->string", maj_stat, min_stat);
return -1;

}

Chapter 5 • GSS-API Client Example 111

EXAMPLE 5–6 gss-client Example: call_server() – Wrap Message (Continued)

mechStr = (char *)__gss_oid_to_mech(mechanism);
fprintf(stderr, "Mechanism %.*s (%s) supports %d names\n", (int) oid_name.length,

(char *) oid_name.value, (mechStr == NULL ? "NULL" : mechStr),
mech_names->count);

(void) gss_release_buffer(&min_stat, &oid_name);

for (i=0; i < mech_names->count; i++) {
maj_stat = gss_oid_to_str(&min_stat, &mech_names->elements[i], &oid_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(stderr, " %d: %.*s\n", i, (int) oid_name.length, (
char *) oid_name.value);

(void) gss_release_buffer(&min_stat, &oid_name);
}

(void) gss_release_oid_set(&min_stat, &mech_names);

if (use_file) {
read_file(msg, &in_buf);

} else {
/* Wrap the message */
in_buf.value = msg;
in_buf.length = strlen(msg) + 1;

}

if (ret_flag & GSS_C_CONF_FLAG) {
state = 1;

else
state = 0;

}
maj_stat = gss_wrap(&min_stat, context, 1, GSS_C_QOP_DEFAULT, &in_buf,

&state, &out_buf);
if (maj_stat != GSS_S_COMPLETE) {

display_status("wrapping message", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

} else if (! state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

/* Send to server */
if (send_token(s, &out_buf) < 0) {

(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}

(void) gss_release_buffer(&min_stat, &out_buf);

112 Solaris Security for Developers Guide • January 2005

Reading and Verifying a Signature Block
From a GSS-API Client
The gss-client program can now test the validity of the message that was sent. The
server returns the MIC for the message that was sent. The message can be retrieved
with the recv_token().

The gss_verify_mic() function is then used to verify the message’s signature, that
is, the MIC. gss_verify_mic() compares the MIC that was received with the
original, unwrapped message. The received MIC comes from the server’s token, which
is stored in out_buf. The MIC from the unwrapped version of the message is held in
in_buf. If the two MICs match, the message is verified. The client then releases the
buffer for the received token, out_buf.

The process of reading and verifying a signature block is demonstrated in the
following source code.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 5–7 gss-client Example – Read and Verify Signature Block

/* Read signature block into out_buf */
if (recv_token(s, &out_buf) < 0) {

(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}

/* Verify signature block */
maj_stat = gss_(&min_stat, context, &in_buf,

&out_buf, &qop_state);
if (maj_stat != GSS_S_COMPLETE) {

display_status("verifying signature", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}
(void) gss_release_buffer(&min_stat, &out_buf);

if (use_file)
free(in_buf.value);

printf("Signature verified.\n");

Chapter 5 • GSS-API Client Example 113

Deleting the Security Context
The call_server() function finishes by deleting the context and returning to the
main() function.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 5–8 gss-client Example: call_server() – Delete Context

/* Delete context */
maj_stat = gss_delete_sec_context(&min_stat, &context, &out_buf);
if (maj_stat != GSS_S_COMPLETE) {

display_status("deleting context", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}

(void) gss_release_buffer(&min_stat, &out_buf);
(void) close(s);

return 0;

114 Solaris Security for Developers Guide • January 2005

CHAPTER 6

GSS-API Server Example

This chapter presents a walk-through of the source code for the gss-server sample
program. The following topics are covered:

� “GSSAPI Server Example Overview” on page 115
� “GSSAPI Server Example: main() Function” on page 116
� “Acquiring Credentials” on page 119
� “Checking for inetd” on page 122
� “Receiving Data From a Client” on page 122
� “Cleanup in the GSSAPI Server Example” on page 131

GSSAPI Server Example Overview
The sample server-side program gss-server works in conjunction with
gss-client, which is described in the previous chapter. The basic purpose of
gss-server is to receive, sign, and return the wrapped message from
gssapi-client.

The following sections provide a step-by-step description of how gss-server works.
Because gss-server is a sample program for demonstrating GSSAPI functionality,
only relevant parts of the program are discussed in detail. The complete source code
for the two applications appears in the appendix and can be downloaded from

http://developers.sun.com/prodtech/solaris/downloads/index.html

GSSAPI Server Example Structure
The gss-structure application performs the following steps:

1. Parses the command line.

115

2. If a mechanism is specified, translates the mechanism name to internal format.

3. Acquires credentials for the caller.

4. Checks to see whether the user has specified using the inetd daemon for
connecting.

5. Makes a connection with the client.

6. Receives the data from the client.

7. Signs and returns the data.

8. Releases namespaces and exits.

Running the GSSAPI Server Example
gss-server takes this form on the command line

gss-server [-port port] [-verbose] [-inetd] [-once] [-logfile file] \

[-mech mechanism] service-name

� port is the port number to listen on. If no port is specified, the program uses port
4444 as the default.

� -verbose causes messages to be displayed as gss-server runs.
� -inetd indicates that the program should use the -inetd daemon to listen to a

port. -inetd uses stdin and stdout to connect to the client.
� -once indicates a single-instance connection only.
� mechanism is the name of a security mechanism to use, such as Kerberos v5. If no

mechanism is specified, the GSS-API uses a default mechanism.
� service-name is the name of the network service that is requested by the client, such

as telnet, ftp, or login service.

A typical command line might look like the following example:

% gss-server -port 8080 -once -mech kerberos_v5 erebos.eng nfs "hello"

GSSAPI Server Example: main()
Function
The gss-server main() function performs the following tasks:

� Parses command-line arguments and assigns the arguments to variables
� Acquires the credentials for the service corresponding to the mechanism
� Calls the sign_server() function, which performs the work involved with

signing and returning the message

116 Solaris Security for Developers Guide • January 2005

� Releases the credentials that have been acquired

� Releases the mechanism OID namespace

� Closes the connection if the connection is still open

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 6–1 gss-server Example: main()

int
main(argc, argv)

int argc;
char **argv;

{
char *service_name;
gss_cred_id_t server_creds;
OM_uint32 min_stat;
u_short port = 4444;
int s;
int once = 0;
int do_inetd = 0;

log = stdout;
display_file = stdout;

/* Parse command-line arguments. */
argc--; argv++;
while (argc) {
if (strcmp(*argv, "-port") == 0) {

argc--; argv++;
if (!argc) usage();
port = atoi(*argv);

} else if (strcmp(*argv, "-verbose") == 0) {
verbose = 1;

} else if (strcmp(*argv, "-once") == 0) {
once = 1;

} else if (strcmp(*argv, "-inetd") == 0) {
do_inetd = 1;

} else if (strcmp(*argv, "-logfile") == 0) {
argc--; argv++;
if (!argc) usage();
log = fopen(*argv, "a");
display_file = log;
if (!log) {
perror(*argv);
exit(1);
}

} else
break;

argc--; argv++;
}

Chapter 6 • GSS-API Server Example 117

EXAMPLE 6–1 gss-server Example: main() (Continued)

if (argc != 1)
usage();

if ((*argv)[0] == ’-’)
usage();

service_name = *argv;

/* Acquire service credentials. */
if (server_acquire_creds(service_name, &server_creds) < 0)
return -1;

if (do_inetd) {
close(1);
close(2);

/* Sign and return message. */
sign_server(0, server_creds);
close(0);
} else {
int stmp;

if ((stmp = create_socket(port)) >= 0) {
do {
/* Accept a TCP connection */
if ((s = accept(stmp, NULL, 0)) < 0) {

perror("accepting connection");
continue;

}
/* this return value is not checked, because there’s

not really anything to do if it fails */
sign_server(s, server_creds);
close(s);
} while (!once);

close(stmp);
}
}

/* Close down and clean up. */
(void) gss_release_cred(&min_stat, &server_creds);

/*NOTREACHED*/
(void) close(s);
return 0;

}

118 Solaris Security for Developers Guide • January 2005

Acquiring Credentials
Credentials are created by the underlying mechanisms rather than by the client
application, server application, or GSS-API. A client program often has credentials that
are obtained at login. A server always needs to acquire credentials explicitly.

The gss-server program has a function, server_acquire_creds(), to get the
credentials for the service to be provided. server_acquire_creds() takes as input
the name of the service and the security mechanism to be used.
server_acquire_creds() then returns the credentials for the service.

server_acquire_creds() uses the GSS-API function gss_acquire_cred() to
get the credentials for the service that the server provides. Before
server_acquire_creds() accesses gss_acquire_cred(),
server_acquire_creds() must take care of two tasks:

1. Checking for a list of mechanisms and reducing the list to a single mechanism for
the purpose of getting a credential.

If a single credential can be shared by multiple mechanisms, the
gss_acquire_cred() function returns credentials for all those mechanisms.
Therefore, gss_acquire_cred() takes as input a set of mechanisms. (See
“Working With Credentials in GSS-API” on page 76.) In most cases, however,
including this one, a single credential might not work for multiple mechanisms. In
the gss-server program, either a single mechanism is specified on the command
line or else the default mechanism is used. Therefore, the first task is to make sure
that the set of mechanisms that was passed to gss_acquire_cred() contains a
single mechanism, default or otherwise, as follows:

if (mechOid != GSS_C_NULL_OID) {
desiredMechs = &mechOidSet;
mechOidSet.count = 1;
mechOidSet.elements = mechOid;

} else

desiredMechs = GSS_C_NULL_OID_SET;

GSS_C_NULL_OID_SET indicates that the default mechanism should be used.

2. Translating the service name into GSS-API format.

Because gss_acquire_cred() takes the service name in the form of a
gss_name_t structure, the name of the service must be imported into that format.
The gss_import_name() function performs this translation. Because this
function, like all GSS-API functions, requires arguments to be GSS-API types, the
service name has to be copied to a GSS-API buffer first, as follows:

name_buf.value = service_name;
name_buf.length = strlen(name_buf.value) + 1;
maj_stat = gss_import_name(&min_stat, &name_buf,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);

Chapter 6 • GSS-API Server Example 119

if (maj_stat != GSS_S_COMPLETE) {
display_status("importing name", maj_stat, min_stat);
if (mechOid != GSS_C_NO_OID)

gss_release_oid(&min_stat, &mechOid);
return -1;

}

Note again the use of the nonstandard function gss_release_oid().

The input is the service name as a string in name_buf. The output is the pointer to a
gss_name_t structure, server_name. The third argument,
GSS_C_NT_HOSTBASED_SERVICE, is the name type for the string in name_buf. In
this case, the name type indicates that the string should be interpreted as a service
of the format service@host.

After these tasks have been performed, the server program can call
gss_acquire_cred():

maj_stat = gss_acquire_cred(&min_stat, server_name, 0,
desiredMechs, GSS_C_ACCEPT,

server_creds, NULL, NULL);

� min_stat is the error code returned by the function.

� server_name is the name of the server.

� 0 indicates that the program does not need to know the maximum lifetime of the
credential.

� desiredMechs is the set of mechanisms for which this credential applies.

� GSS_C_ACCEPT means that the credential can be used only to accept security
contexts.

� server_creds is the credential handle to be returned by the function.

� NULL, NULL indicates that the program does not need to know either the specific
mechanism being employed or the amount of time that the credential will be valid.

The following source code illustrates the server_acquire_creds() function.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 6–2 Sample Code for server_acquire_creds() Function

/*
* Function: server_acquire_creds
*
* Purpose: imports a service name and acquires credentials for it
*
* Arguments:
*
* service_name (r) the ASCII service name

120 Solaris Security for Developers Guide • January 2005

EXAMPLE 6–2 Sample Code for server_acquire_creds() Function (Continued)

mechType (r) the mechanism type to use
* server_creds (w) the GSS-API service credentials
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* The service name is imported with gss_import_name, and service
* credentials are acquired with gss_acquire_cred. If either operation
* fails, an error message is displayed and -1 is returned; otherwise,
* 0 is returned.
*/
int server_acquire_creds(service_name, mechOid, server_creds)

char *service_name;
gss_OID mechOid;
gss_cred_id_t *server_creds;

{
gss_buffer_desc name_buf;
gss_name_t server_name;
OM_uint32 maj_stat, min_stat;
gss_OID_set_desc mechOidSet;
gss_OID_set desiredMechs = GSS_C_NULL_OID_SET;

if (mechOid != GSS_C_NULL_OID) {
desiredMechs = &mechOidSet;
mechOidSet.count = 1;
mechOidSet.elements = mechOid;

} else
desiredMechs = GSS_C_NULL_OID_SET;

name_buf.value = service_name;
name_buf.length = strlen(name_buf.value) + 1;
maj_stat = gss_import_name(&min_stat, &name_buf,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("importing name", maj_stat, min_stat);
if (mechOid != GSS_C_NO_OID)

gss_release_oid(&min_stat, &mechOid);
return -1;

}

maj_stat = gss_acquire_cred(&min_stat, server_name, 0,
desiredMechs, GSS_C_ACCEPT,
server_creds, NULL, NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("acquiring credentials", maj_stat, min_stat);
return -1;

}

(void) gss_release_name(&min_stat, &server_name);

return 0;

Chapter 6 • GSS-API Server Example 121

EXAMPLE 6–2 Sample Code for server_acquire_creds() Function (Continued)

}

Checking for inetd
Having acquired credentials for the service, gss-server checks to see whether the
user has specified inetd. The main function checks for inetd as follows:

if (do_inetd) {
close(1);

close(2);

If the user has specified to use inetd, then the program closes the standard output
and standard error. gss-server then calls sign_server() on the standard input,
which inetd uses to pass connections. Otherwise, gss-server creates a socket,
accepts the connection for that socket with the TCP function accept(), and calls
sign_server() on the file descriptor that is returned by accept().

If inetd is not used, the program creates connections and contexts until the program
is terminated. However, if the user has specified the -once option, the loop
terminates after the first connection.

Receiving Data From a Client
After checking for inetd, the gss-server program then calls sign_server(),
which does the main work of the program. sign_server() first establishes the
context by calling server_establish_context().

sign_server() performs the following tasks:

� Accepts the context
� Unwraps the data
� Signs the data
� Returns the data

These tasks are described in the subsequent sections. The following source code
illustrates the sign_server() function.

122 Solaris Security for Developers Guide • January 2005

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 6–3 sign_server() Function

int sign_server(s, server_creds)
int s;
gss_cred_id_t server_creds;

{
gss_buffer_desc client_name, xmit_buf, msg_buf;
gss_ctx_id_t context;
OM_uint32 maj_stat, min_stat;
int i, conf_state, ret_flags;
char *cp;

/* Establish a context with the client */
if (server_establish_context(s, server_creds, &context,

&client_name, &ret_flags) < 0)
return(-1);

printf("Accepted connection: \"%.*s\"\n",
(int) client_name.length, (char *) client_name.value);

(void) gss_release_buffer(&min_stat, &client_name);

for (i=0; i < 3; i++)
if (test_import_export_context(&context))

return -1;

/* Receive the sealed message token */
if (recv_token(s, &xmit_buf) < 0)
return(-1);

if (verbose && log) {
fprintf(log, "Sealed message token:\n");
print_token(&xmit_buf);
}

maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,
&conf_state, (gss_qop_t *) NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("unsealing message", maj_stat, min_stat);
return(-1);
} else if (! conf_state) {
fprintf(stderr, "Warning! Message not encrypted.\n");
}

(void) gss_release_buffer(&min_stat, &xmit_buf);

fprintf(log, "Received message: ");
cp = msg_buf.value;
if ((isprint(cp[0]) || isspace(cp[0])) &&
(isprint(cp[1]) || isspace(cp[1]))) {

Chapter 6 • GSS-API Server Example 123

EXAMPLE 6–3 sign_server() Function (Continued)

fprintf(log, "\"%.*s\"\n", msg_buf.length, msg_buf.value);
} else {
printf("\n");
print_token(&msg_buf);
}

/* Produce a signature block for the message */
maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

&msg_buf, &xmit_buf);
if (maj_stat != GSS_S_COMPLETE) {
display_status("signing message", maj_stat, min_stat);
return(-1);
}

(void) gss_release_buffer(&min_stat, &msg_buf);

/* Send the signature block to the client */
if (send_token(s, &xmit_buf) < 0)
return(-1);

(void) gss_release_buffer(&min_stat, &xmit_buf);

/* Delete context */
maj_stat = gss_delete_sec_context(&min_stat, &context, NULL);
if (maj_stat != GSS_S_COMPLETE) {
display_status("deleting context", maj_stat, min_stat);
return(-1);
}

fflush(log);

return(0);

}

Accepting a Context
Establishing a context typically involves a series of token exchanges between the client
and the server. Both context acceptance and context initialization should be performed
in loops to maintain program portability. The loop for accepting a context is very
similar to the loop for establishing a context, although in reverse. Compare with
“Establishing a Security Context With the Server” on page 104.

The following source code illustrates the server_establish_context() function.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

124 Solaris Security for Developers Guide • January 2005

EXAMPLE 6–4 server_establish_context() Function

/*
* Function: server_establish_context
*
* Purpose: establishes a GSS-API context as a specified service with
* an incoming client, and returns the context handle and associated
* client name
*
* Arguments:
*
* s (r) an established TCP connection to the client
* service_creds (r) server credentials, from gss_acquire_cred
* context (w) the established GSS-API context
* client_name (w) the client’s ASCII name
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* Any valid client request is accepted. If a context is established,
* its handle is returned in context and the client name is returned
* in client_name and 0 is returned. If unsuccessful, an error
* message is displayed and -1 is returned.
*/
int server_establish_context(s, server_creds, context, client_name, ret_flags)

int s;
gss_cred_id_t server_creds;
gss_ctx_id_t *context;
gss_buffer_t client_name;
OM_uint32 *ret_flags;

{
gss_buffer_desc send_tok, recv_tok;
gss_name_t client;
gss_OID doid;
OM_uint32 maj_stat, min_stat, acc_sec_min_stat;
gss_buffer_desc oid_name;

*context = GSS_C_NO_CONTEXT;

do {
if (recv_token(s, &recv_tok) < 0)

return -1;

if (verbose && log) {
fprintf(log, "Received token (size=%d): \n", recv_tok.length);
print_token(&recv_tok);

}

maj_stat =
gss_accept_sec_context(&acc_sec_min_stat,

context,
server_creds,
&recv_tok,
GSS_C_NO_CHANNEL_BINDINGS,

Chapter 6 • GSS-API Server Example 125

EXAMPLE 6–4 server_establish_context() Function (Continued)

&client,
&doid,
&send_tok,
ret_flags,
NULL, /* ignore time_rec */
NULL); /* ignore del_cred_handle */

(void) gss_release_buffer(&min_stat, &recv_tok);

if (send_tok.length != 0) {
if (verbose && log) {

fprintf(log,
"Sending accept_sec_context token (size=%d):\n",
send_tok.length);

print_token(&send_tok);
}
if (send_token(s, &send_tok) < 0) {

fprintf(log, "failure sending token\n");
return -1;

}

(void) gss_release_buffer(&min_stat, &send_tok);
}
if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

display_status("accepting context", maj_stat,
acc_sec_min_stat);

if (*context == GSS_C_NO_CONTEXT)
gss_delete_sec_context(&min_stat, context,

GSS_C_NO_BUFFER);
return -1;

}

if (verbose && log) {
if (maj_stat == GSS_S_CONTINUE_NEEDED)

fprintf(log, "continue needed...\n");
else

fprintf(log, "\n");
fflush(log);

}
} while (maj_stat == GSS_S_CONTINUE_NEEDED);

/* display the flags */
display_ctx_flags(*ret_flags);

if (verbose && log) {
maj_stat = gss_oid_to_str(&min_stat, doid, &oid_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(log, "Accepted connection using mechanism OID %.*s.\n",

(int) oid_name.length, (char *) oid_name.value);
(void) gss_release_buffer(&min_stat, &oid_name);

126 Solaris Security for Developers Guide • January 2005

EXAMPLE 6–4 server_establish_context() Function (Continued)

}

maj_stat = gss_display_name(&min_stat, client, client_name, &doid);
if (maj_stat != GSS_S_COMPLETE) {

display_status("displaying name", maj_stat, min_stat);
return -1;

}
maj_stat = gss_release_name(&min_stat, &client);
if (maj_stat != GSS_S_COMPLETE) {

display_status("releasing name", maj_stat, min_stat);
return -1;

}
return 0;

}

The sign_server() function uses the following source code to call
server_establish_context() to accept the context.

/* Establish a context with the client */
if (server_establish_context(s, server_creds, &context,

&client_name, &ret_flags) < 0)

return(-1);

The server_establish_context() function first looks for a token that the client
sends as part of the context initialization process. Because, GSS-API does not send or
receive tokens itself, programs must have their own routines for performing these
tasks. The server uses recv_token() for receiving the token:

do {
if (recv_token(s, &recv_tok) < 0)

return -1;

Next, server_establish_context() calls the GSS-API function
gss_accept_sec_context():

maj_stat = gss_accept_sec_context(&min_stat,
context,
server_creds,
&recv_tok,
GSS_C_NO_CHANNEL_BINDINGS,
&client,
&doid,
&send_tok,
ret_flags,
NULL, /* ignore time_rec */

NULL); /* ignore del_cred_handle */

� min_stat is the error status returned by the underlying mechanism.
� context is the context being established.
� server_creds is the credential for the service to be provided (see “Acquiring

Credentials” on page 119).

Chapter 6 • GSS-API Server Example 127

� recv_tok is the token received from the client by recv_token().
� GSS_C_NO_CHANNEL_BINDINGS is a flag indicating not to use channel bindings

(see “Using Channel Bindings in GSS-API” on page 84).
� client is the ASCII name of the client.
� oid is the mechanism (in OID format).
� send_tok is the token to send to the client.
� ret_flags are various flags indicating whether the context supports a given option,

such as message-sequence-detection.
� The two NULL arguments indicate that the program does not need to know the

length of time that the context will be valid, or whether the server can act as a
client’s proxy.

The acceptance loop continues, barring any errors, as long as
gss_accept_sec_context() sets maj_stat to GSS_S_CONTINUE_NEEDED. If
maj_stat is not equal to that value or to GSS_S_COMPLETE, a problem exists and the
loop exits.

gss_accept_sec_context() returns a positive value for the length of send_tok
whether a token exists to send back to the client. The next step is to see a token exists
to be sent, and, if so, to send the token:

if (send_tok.length != 0) {
. . .
if (send_token(s, &send_tok) < 0) {

fprintf(log, "failure sending token\n");
return -1;

}

(void) gss_release_buffer(&min_stat, &send_tok);

}

Unwrapping the Message
After accepting the context, the sign_server() receives the message that has been
sent by the client. Because the GSS-API does not provide a function for receiving
tokens, the program uses the recv_token() function:

if (recv_token(s, &xmit_buf) < 0)

return(-1);

Because the message might be encrypted, the program uses the GSS-API function
gss_unwrap() for unwrapping:

maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,
&conf_state, (gss_qop_t *) NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("unwrapping message", maj_stat, min_stat);
return(-1);

128 Solaris Security for Developers Guide • January 2005

} else if (! conf_state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

(void) gss_release_buffer(&min_stat, &xmit_buf);

gss_unwrap() takes the message that recv_token() has placed in xmit_buf,
translates the message, and puts the result in msg_buf. Two arguments to
gss_unwrap() are noteworthy. conf_state is a flag to indicate whether confidentiality,
that is, encryption, has been applied to this message. The final NULL indicates that the
program does not need to know that the QOP that was used to protect the message.

Signing and Returning the Message
At this point, the sign_server() function needs to sign the message. Signing a
message entails returning the message’s Message Integrity Code or MIC to the client.
Returning the message proves that the message was sent and was unwrapped
successfully. To obtain the MIC, sign_server() uses the function gss_get_mic():

maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

&msg_buf, &xmit_buf);

gss_get_mic() looks at the message in msg_buf, produces the MIC, and stores the
MIC in xmit_buf. The server then sends the MIC back to the client with
send_token(). The client verifies the MIC with gss_verify_mic(). See “Reading
and Verifying a Signature Block From a GSS-API Client” on page 113.

Finally, sign_server() performs some cleanup. sign_server() releases the
GSS-API buffers msg_buf and xmit_buf with gss_release_buffer(). Then
sign_server() destroys the context with gss_delete_sec_context().

Using the test_import_export_context()
Function
GSS-API allows you to export and import contexts. These activities enable you to
share a context between different processes in a multiprocess program.
sign_server() contains a proof-of-concept function,
test_import_export_context(), that illustrates how exporting and importing
contexts works. test_import_export_context() does not pass a context between
processes. Instead, test_import_export_context() displays the amount of time
to export and then import a context. Although an artificial function,
test_import_export_context() does indicate how to use the GSS-API
importing and exporting functions. test_import_export_context() also shows
how to use timestamps with regard to manipulating contexts.

The source code for test_import_export_context() is shown in the following
example.

Chapter 6 • GSS-API Server Example 129

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 6–5 test_import_export_context()

int test_import_export_context(context)
gss_ctx_id_t *context;

{
OM_uint32 min_stat, maj_stat;
gss_buffer_desc context_token, copied_token;
struct timeval tm1, tm2;

/*
* Attempt to save and then restore the context.
*/
gettimeofday(&tm1, (struct timezone *)0);
maj_stat = gss_export_sec_context(&min_stat, context, &context_token);
if (maj_stat != GSS_S_COMPLETE) {

display_status("exporting context", maj_stat, min_stat);
return 1;

}
gettimeofday(&tm2, (struct timezone *)0);
if (verbose && log)

fprintf(log, "Exported context: %d bytes, %7.4f seconds\n",
context_token.length, timeval_subtract(&tm2, &tm1));

copied_token.length = context_token.length;
copied_token.value = malloc(context_token.length);
if (copied_token.value == 0) {

fprintf(log, "Couldn’t allocate memory to copy context token.\n");
return 1;

}
memcpy(copied_token.value, context_token.value, copied_token.length);
maj_stat = gss_import_sec_context(&min_stat, &copied_token, context);
if (maj_stat != GSS_S_COMPLETE) {

display_status("importing context", maj_stat, min_stat);
return 1;

}
free(copied_token.value);
gettimeofday(&tm1, (struct timezone *)0);
if (verbose && log)

fprintf(log, "Importing context: %7.4f seconds\n",
timeval_subtract(&tm1, &tm2));

(void) gss_release_buffer(&min_stat, &context_token);
return 0;

}

130 Solaris Security for Developers Guide • January 2005

Cleanup in the GSSAPI Server Example
Back in the main() function, the application deletes the service credential with
gss_release_cred(). If an OID for the mechanism has been specified, the program
deletes the OID with gss_release_oid() and exits.

(void) gss_release_cred(&min_stat, &server_creds);

Chapter 6 • GSS-API Server Example 131

132 Solaris Security for Developers Guide • January 2005

CHAPTER 7

Writing Applications That Use SASL

SASL (Simple Authentication and Security Layer) is a security framework. SASL,
pronounced “sassel,” provides authentication services and optionally integrity and
confidentiality services to connection-based protocols. This chapter covers the
following topics:

� “Introduction to Simple Authentication Security Layer (SASL)” on page 133
� “SASL Example” on page 148
� “SASL for Service Providers” on page 151

Introduction to Simple Authentication
Security Layer (SASL)
SASL provides developers of applications and shared libraries with mechanisms for
authentication, data integrity-checking, and encryption. SASL enables the developer to
code to a generic API. This approach avoids dependencies on specific mechanisms.
SASL is particularly appropriate for applications that use the IMAP, SMTP, ACAP, and
LDAP protocols, as these protocols all support SASL. SASL is described in RFC 2222.

SASL Library Basics
The SASL library is called libsasl. libsasl is a framework that allows properly
written SASL consumer applications to use any SASL plug-ins that are available on the
system. The term plug-in refers to objects that provide services for SASL. Plug-ins are
external to libsasl. SASL plug-ins can be used for authentication and security,
canonicalization of names, and lookup of auxiliary properties, such as passwords.
Cryptographic algorithms are stored in plug-ins rather than in libsasl.

133

libsasl provides an application programming interface (API) for consumer
applications and libraries. A service provider interface (SPI) is provided for plug-ins to
supply services to libsasl. libsasl is not aware of the network or the protocol.
Accordingly, the application must take responsibility for sending and receiving data
between the client and server.

SASL uses two important identifiers for users. The authentication ID (authid) is the
user ID for authenticating the user. The authentication ID grants the user access to a
system. The authorization ID (userid) is used to check whether the user is allowed to
use a particular option.

The SASL client application and SASL server application negotiate a common SASL
mechanism and security level. Typically, the SASL server application sends its list of
acceptable authentication mechanisms to the client. The SASL client application can
then decide which authentication mechanism best satisfies its requirements. After this
point, the authentication takes place using the agreed–upon authentication mechanism
as a series of client-server exchanges of the SASL supplied authentication data. This
exchange continues until the authentication successfully completes, fails, or is aborted
by the client or the server.

In the process of authentication, the SASL authentication mechanism can negotiate a
security layer. If a security layer is selected, that layer must be used for the duration of
the SASL session.

SASL Architecture
The following figure shows the basic SASL architecture.

SASL API

SASL
library

SASL SPI

SASL
plug-ins

Client

SASL API

SASL
library

SASL SPI

SASL
plug-ins

Server

FIGURE 7–1 SASL Architecture

Client and server applications make calls to their local copies of libsasl through the
SASL API. libsasl communicates with the SASL mechanisms through the SASL
service provider interface (SPI).

134 Solaris Security for Developers Guide • January 2005

Security Mechanisms
Security mechanism plug-ins provide security services to libsasl. Some typical
functions that are provided by security mechanisms follow:

� Authentication on the client side
� Authentication on the server side
� Integrity, that is, checking that transmitted data is intact
� Confidentiality, that is, encrypting and decrypting transmitted data

SASL Security Strength Factor
SSF, the security strength factor, indicates the strength of the SASL protection. If the
mechanism supports a security layer, the client and server negotiate the SSF. The value
of the SSF is based on the security properties that were specified before the SASL
negotiation. If a non-zero SSF is negotiated, both client and server need to use the
mechanism’s security layer when the authentication has completed. SSF is represented
by an integer with one of the following values:

� 0 – No protection.
� 1 – Integrity checking only.
� >1 – Supports authentication, integrity and confidentiality. The number represents

the encryption key length.

The confidentiality and integrity operations are performed by the security mechanism.
libsasl coordinates these requests.

Note – In the negotiation, the SASL client selects the mechanism with the maximum
SSF. However, the actual SASL mechanism that is chosen might subsequently
negotiate a lower SSF.

Communication in SASL
Applications communicate with libsasl through the libsasl API. libsasl can
request additional information by means of callbacks that are registered by the
application. Applications do not call plug-ins directly, only through libsasl. Plug-ins
generally call the libsasl framework’s plug-ins, which then call the application’s
callbacks. SASL plug-ins can also call the application directly, although the application
does not know whether the call came from a plug-in or from libsasl.

Callbacks are useful in multiple areas, as follows.

� libsasl can use callbacks to get information that is needed to complete
authentication.

� libsasl consumer applications can use callbacks to change search paths for
plug-ins and configuration data, to verify files, and to change various default
behaviors.

Chapter 7 • Writing Applications That Use SASL 135

� Servers can use callbacks to change authorization policies, to supply different
password verification methods, and to get password change information.

� Clients and servers can use callbacks to specify the language for error messages.

Applications register two sorts of callbacks: global and session. Additionally, libsasl
defines a number of callback identifiers that are used to register for different sorts of
callbacks. If a given type of callback is not registered, libsasl takes default action.

Session callbacks override global callbacks. If a session callback is specified for a given
ID, the global callback is not called for that session. Some callbacks must be global,
because these callbacks occur outside of sessions. The following instances require
global callbacks:

� Determination of search paths for plug-ins to load
� Verification of plug-ins
� Location of configuration data
� The logging of error messages
� Other global configuration of libsasl or its plug-ins

A SASL callback can be registered with a NULL callback function for a given SASL
callback ID. The NULL callback function indicates that the client is equipped to supply
the needed data. All SASL callback IDs start with the prefix SASL_CB_.

SASL provides the following callbacks for use by either a client or a server:

SASL_CB_GETOPT Sets a SASL option. Options modify the behavior of
libsasl(3LIB) and related plug-ins. Can be used by
either a client or a server.

SASL_CB_LOG Sets the logging function for libsasl and its plug-ins. The
default behavior is to use syslog.

SASL_CB_GETPATH Gets the colon-separated list of SASL plug-in search paths.
The default paths depend on the architecture as follows:

� 32-bit SPARC architecture: /usr/lib/sasl
� 64-bit SPARC architecture: /usr/lib/sasl/sparcv9
� 64-bit x86 architecture: /usr/lib/sasl/amd64

SASL_CB_GETCONF Gets the path to the SASL server’s configuration directory.
The default is /etc/sasl.

SASL_CB_LANGUAGE Specifies a comma-separated list of RFC 1766 language
codes in order of preference, for client and server error
messages and for client prompts. The default is
i-default.

SASL_CB_VERIFYFILE Verifies the configuration file and plug-in files.

SASL provides the following callbacks for use by clients only:

136 Solaris Security for Developers Guide • January 2005

SASL_CB_USER Gets the client user name. The user name is the
same as the authorization ID. The LOGNAME
environment variable is the default.

SASL_CB_AUTHNAME Gets the client authentication name.

SASL_CB_PASS ets a client passphrase-based secret.

SASL_CB_ECHOPROMPT Gets the result for a given challenge prompt. The
input from the client can be echoed.

SASL_CB_NOECHOPROMPT Gets the result for a given challenge prompt. The
input from the client should not be echoed.

SASL_CB_GETREALM Sets the realm to be used for authentication.

SASL provides the following callbacks for use by servers only:

SASL_CB_PROXY_POLICY Checks that an authenticated user is
authorized to act on behalf of the
specified user. If this callback is not
registered, then the authenticated user
and the user to be authorized must be
the same. If these IDs are not the
same, then the authentication fails.
Use the server application to take care
of nonstandard authorization policies.

SASL_CB_SERVER_USERDB_CHECKPASS Verifies a plain text password against
the caller-supplied user database.

SASL_CB_SERVER_USERDB_SETPASS Stores a plaintext password in the user
database

SASL_CB_CANON_USER Calls an application-supplied user
canonicalization function.

When the SASL library is first initialized, the server and client declare any necessary
global callbacks. The global callbacks are available prior to and during the SASL
sessions. Prior to initialization, callbacks perform such tasks as loading plug-ins,
logging data, and reading configuration files. At the start of a SASL session, additional
callbacks can be declared. Such callbacks can override global callbacks if necessary.

SASL Connection Contexts
libsasl uses a SASL connection context to maintain the state of each SASL session
for both SASL clients and SASL servers. Each context can be used for only one
authentication and security session at a time. The maintained state includes the
following information:

Chapter 7 • Writing Applications That Use SASL 137

� Connection information, such as service, naming and address information, and
protocol flags

� Callbacks specific to the connection

� Security properties for negotiating the SASL SSF

� State of the authentication along with security layer information

Steps in the SASL Cycle
The following diagram shows steps in the SASL life cycle. The client actions are shown
on the left of the diagram and the server actions on the right side. The arrows in the
middle show interactions between the client and server over an external connection.

138 Solaris Security for Developers Guide • January 2005

libsasl
initialization

SASL session
initialization

SASL
authentication

SASL privacy
and integrity

SASL session
release

libsasl
cleanup

libsasl
initialization

SASL session
initialization

SASL
authentication

SASL privacy
and integrity

SASL session
release

libsasl
cleanup

Mechanism data

Client Actions Server Actions

Connection

Encoded messages

End connection

Mechanism list

Selected
mechanism and data

FIGURE 7–2 SASL Life Cycle

The sections that follow illustrate the steps in the life cycle.

libsasl Initialization
The client calls sasl_client_init() to initialize libsasl for the client’s use. The
server calls sasl_server_init() to initialize libsasl for server use.

When sasl_client_init() is run, the SASL client, the client’s mechanisms and the
client’s canonicalization plug-in are loaded. Similarly, when sasl_server_init() is
called, the SASL server, the server’s mechanisms, the server’s canonicalization plug-in,
and the server’s auxprop plug-in are loaded . After sasl_client_init() has been
called, additional client plug—ins can be added by using

Chapter 7 • Writing Applications That Use SASL 139

sasl_client_add_plug-in() and sasl_canonuser_add_plug-in(). On the
server side, after sasl_server_init() has been called, additional server plug–ins
can be added through sasl_server_add_plug-in(),
sasl_canonuser_add_plug-in(), and sasl_auxprop_add_plug-in(). SASL
mechanisms are provided in the Solaris software in the following directories according
to the architecture:

� 32-bit SPARC architecture: /usr/lib/sasl
� 64-bit SPARC architecture: /usr/lib/sasl/sparcv9, the default
� 64-bit x86 architecture: /usr/lib/sasl/amd64

The SASL_CB_GETPATH callback can be used to override the default location.

At this point, any required global callbacks are set. SASL clients and servers might
include the following callbacks:

� SASL_CB_GETOPT
� SASL_CB_LOG
� SASL_CB_GETPATH
� SASL_CB_VERIFYFILE

A SASL server might additionally include the SASL_CB_GETCONF callback.

SASL Session Initialization
The server and client use establish the connection through the protocol. To use SASL
for authentication, the server and client create SASL connection contexts by using
sasl_server_new() and sasl_client_new() respectively. The SASL client and
server can use sasl_setprop() to set properties that impose security restrictions on
mechanisms. This approach enables a SASL consumer application to decide the
minimum SSF, the maximum SSF, and the security properties for the specified SASL
connection context.

#define SASL_SEC_NOPLAINTEXT 0x0001
#define SASL_SEC_NOACTIVE 0x0002
#define SASL_SEC_NODICTIONARY 0x0004
#define SASL_SEC_FORWARD_SECRECY 0x0008
#define SASL_SEC_NOANONYMOUS 0x0010
#define SASL_SEC_PASS_CREDENTIALS 0x0020

#define SASL_SEC_MUTUAL_AUTH 0x0040

Note – Authentication and a security layer can be provided by the client-server
protocol or by some other mechanism that is external to libsasl. In such a case,
sasl_setprop() can be used to set the external authentication ID or the external
SSF. For example, consider the case in which the protocol uses SSL with client
authentication to the server. In this case, the external authentication identity can be the
client’s subject name. The external SSF can be the key size.

140 Solaris Security for Developers Guide • January 2005

For the server, libsasl determines the available SASL mechanisms according to the
security properties and the external SSF. The client obtains the available SASL
mechanisms from the SASL server through the protocol.

For a SASL server to create a SASL connection context, the server should call
sasl_server_new(). An existing SASL connection context that is no longer in use
can be reused. However, the following parameters might need to be reset:

#define SASL_DEFUSERREALM 3 /* default realm passed to server_new or set with setprop */
#define SASL_IPLOCALPORT 8 /* iplocalport string passed to server_new */
#define SASL_IPREMOTEPORT 9 /* ipremoteport string passed to server_new */
#define SASL_SERVICE 12 /* service passed to sasl_*_new */

#define SASL_SERVERFQDN 13 /* serverFQDN passed to sasl_*_new */

You can modify any of the parameters to sasl_client_new() and
sasl_server_new() except the callbacks and protocol flags.

The server and client can also establish security policy and set connection specific
parameters by using sasl_setprop() to specify the following properties:

#define SASL_SSF_EXTERNAL 100 /* external SSF active (sasl_ssf_t *) */
#define SASL_SEC_PROPS 101 /* sasl_security_properties_t */
#define SASL_AUTH_EXTERNAL 102 /* external authentication ID (const char *)

*/

� SASL_SSF_EXTERNAL – For setting the strength factor, that is, the number of bits
in the key

� SASL_SEC_PROPS – For defining security policy

� SASL_AUTH_EXTERNAL – The external authentication ID

The server can call sasl_listmech() to get a list of the available SASL mechanisms
that satisfy the security policy. The client can generally get the list of available
mechanisms from the server in a protocol-dependent way.

The initialization of a SASL session is illustrated in the following diagram. In this
diagram and subsequent diagrams, data checks after transmission over the protocol
have been omitted for the sake of simplicity.

Chapter 7 • Writing Applications That Use SASL 141

Connect
to server.

Accept client
connection.

Get available
mechanisms.

Call sasl_client_new()
to create libsasl context.

Call sasl_setprop() to
set libsasl context properties.

Client Actions Server Actions

Call sasl_server_new()
to create libsasl context.

Call sasl_setprop() to
set libsasl context properties.

Call sasl_listmech() to
get available mechanisms.

Send mechanisms list
to client.

FIGURE 7–3 SASL Session Initialization

SASL Authentication
Authentication takes a variable number of client and server steps depending on the
security mechanism that is used. The SASL client calls sasl_client_start() with
a list of security mechanisms to use. This list typically comes from the server.
libsasl selects the best mechanism to use for this SASL session, according to the
available mechanisms and the client’s security policy. The client’s security policy
controls which mechanisms are permitted. The selected mechanism is returned by
sasl_client_start(). Sometimes the security mechanism for the client sometimes
needs additional information for authentication. For registered callbacks, libsasl
calls the specified callback unless the callback function is NULL. If the callback
function is NULL, libsasl returns SASL_INTERACT and a request for needed
information. If SASL_INTERACT is returned, then sasl_client_start() should
be called with the requested information.

142 Solaris Security for Developers Guide • January 2005

If sasl_client_start() returns SASL_CONTINUE or SASL_OK, the client should
send the selected mechanism with any resulting authentication data to the server. If
any other value is returned, an error has occurred. For example, no mechanism might
be available.

The server receives the mechanism that has been selected by the client, along with any
authentication data. The server then calls sasl_server_start() to initialize the
mechanism data for this session. sasl_server_start() also processes any
authentication data. If sasl_server_start() returns SASL_CONTINUE or
SASL_OK, the server sends authentication data. If sasl_server_start() returns
any other value, an error has occurred such as an unacceptable mechanism or an
authentication failure. The authentication must be aborted. The SASL context should
be either freed or reused.

This part of the authentication process is illustrated in the following diagram.

Chapter 7 • Writing Applications That Use SASL 143

Client Actions

Free SASL
context

Call sasl_client_start()

Call sasl_client_step()

Get requested data.

Send selected SASL
mechanism and

SASL data to server.

SASL_INTERACT

SASL_CONTINUE
SASL_OK

Check
return

Server Actions

Call
sasl_server_start()

Get SASL mechanism
and client SASL data.

SASL_CONTINUE
SASL_OK

Error

Free SASL
context

Error

FIGURE 7–4 SASL Authentication: Sending Client Data

If the server call to sasl_server_start() returns SASL_CONTINUE, the server
continues to communicate with the client to get all the necessary authentication
information. The number of subsequent steps depends on the mechanism. If needed,
the client calls sasl_client_step() to process the authentication data from the
server and to generate a reply. Similarly, the server can call sasl_server_step() to
process the authentication from the client and to generate a reply in turn. This
exchange continues until the authentication is complete or until an error has occurred.

144 Solaris Security for Developers Guide • January 2005

SASL_OK is returned to indicate that the authentication has successfully completed
for the client or server. The SASL mechanism might still have additional data to send
to the other side so the other side can complete authentication. When authentication
has been achieved on both sides, the server and client can inquire about each other’s
properties.

The following diagram shows the interactions between the server and client to transfer
the additional authentication data.

Chapter 7 • Writing Applications That Use SASL 145

Client Actions

Call sasl_client_step()

Get requested data.

Free SASL
context

SASL_INTERACT

SASL_CONTINUE
SASL_OK

Get SASL results
from server.

Send SASL
data to server.

Check
return

Error

Authenticated SASL_CONTINUE

SASL_OK Last
return

Server Actions

SASL_CONTINUE
SASL_OK

Send SASL
data to client.

Authenticated

Last
return

SASL_OK

SASL_CONTINUE

Free SASL
context

Get SASL data
from client.

Error

Call
sasl_server_step()

FIGURE 7–5 SASL Authentication: Processing Server Data

146 Solaris Security for Developers Guide • January 2005

SASL Confidentiality and Integrity
To check for a security layer, use the sasl_getprop(3SASL) function to see if the
security strength factor (SSF) has a value that is greater than 0. If a security layer has
been negotiated, the client and server must use the resulting SSF after successful
authentication. Data is exchanged between the client and server in a similar fashion to
authentication. sasl_encode() is applied to data before the data is sent by the
protocol to the client or server. On the receiving end, data is decoded by
sasl_decode(). If a security layer has not been negotiated, the SASL connection
context is not needed. The context can then be disposed of or reused.

Releasing SASL Sessions
A SASL connection context should only be freed when the session is not to be reused.
sasl_dispose() frees the SASL connection context and all associated resources and
mechanisms. The SASL connection contexts must be disposed before calling
sasl_done(). sasl_done() is not reponsible for releasing context resources for the
SASL connection. See “libsasl Cleanup” on page 147.

When a SASL session is freed, the associated mechanisms are informed that all state
can be freed. A SASL session should only be freed when the session is not to be
reused. Otherwise, the SASL state can be reused by another session. Both the client
and server use sasl_dispose() to free the SASL connection context.

libsasl Cleanup
This step releases all the resources in the SASL library and the plug-ins. The client and
server call sasl_done() to release libsasl() resources and to unload all the SASL
plug-ins. sasl_done() does not release SASL connection contexts. Note that if an
application is both a SASL client and a SASL server, sasl_done() releases both the
SASL client and SASL server resources. You cannot release the resources for just the
client or the server.

Caution – Libraries should not call sasl_done(). Applications should exercise
caution when calling sasl_done() to avoid interference with any libraries that
might be using libsasl.

Chapter 7 • Writing Applications That Use SASL 147

SASL Example
This section demonstrates a typical SASL session between a client application and
server application. The example goes through these steps:

1. The client application initializes libsasl and sets the following global callbacks:

� SASL_CB_GETREALM
� SASL_CB_USER
� SASL_CB_AUTHNAME
� SASL_CB_PASS
� SASL_CB_GETPATH
� SASL_CB_LIST_END

2. The server application initializes libsasl and sets the following global callbacks:

� SASL_CB_LOG
� SASL_CB_LIST_END

3. The client creates a SASL connection context, sets the security properties, and
requests the list of available mechanisms from the server.

4. The server creates a SASL connection context, sets the security properties, gets a list
of suitable SASL mechanisms, and sends the list to client.

5. The client receives the list of available mechanisms, chooses a mechanism, and
sends the mechanism choice to the server together with any authentication data.

6. The client and server then exchange SASL data until the authentication and
security layer negotiation is complete.

7. With the authentication complete, the client and server determine whether a
security layer was negotiated. The client encodes a test message . The message is
then sent to the server. The server also determines the user name of the
authenticated user and the user’s realm.

8. The server receives, decodes, and prints the encoded message.

9. The client calls sasl_dispose() to release the client’s SASL connection context.
The client then calls sasl_done() to release the libsasl resources.

10. The server calls sasl_dispose() to release the client connection context.

The dialogue between the client and the server follows. Each call to libsasl is
displayed as the call is made. Each transfer of data is indicated by the sender and
receiver. The data is displayed in encoded form preceded by the source: C: for the
client and S:for server. The source code for both applications is provided in the
Appendix D.

148 Solaris Security for Developers Guide • January 2005

Client

% doc-sample-client
*** Calling sasl_client_init() to initialize libsasl for client use ***
*** Calling sasl_client_new() to create client SASL connection context ***
*** Calling sasl_setprop() to set sasl context security properties ***

Waiting for mechanism list from server...

Server

% doc-sample-server digest-md5
*** Calling sasl_server_init() to initialize libsasl for server use ***
*** Calling sasl_server_new() to create server SASL connection context ***
*** Calling sasl_setprop() to set sasl context security properties ***
Forcing use of mechanism digest-md5
Sending list of 1 mechanism(s)

S: ZGlnZXN0LW1kNQ==

Client

S: ZGlnZXN0LW1kNQ==
received 10 byte message
got ’digest-md5’
Choosing best mechanism from: digest-md5
*** Calling sasl_client_start() ***
Using mechanism DIGEST-MD5
Sending initial response...
C: RElHRVNULU1ENQ==

Waiting for server reply...

Server

C: RElHRVNULU1ENQ==
got ’DIGEST-MD5’
*** Calling sasl_server_start() ***
Sending response...
S: bm9uY2U9IklicGxhRHJZNE4Z1gyVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM\
sbT0iam0xMTQxNDIiLHFvcD0iYXV0aCxhdXRoLWludCxhdXRoLWNvbmYiLGNpcGhlcj0ic\
QwLHJjNC01NixyYzQiLG1heGJ1Zj0yMDQ4LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1k\
XNz

Waiting for client reply...

Client

S: bm9uY2U9IklicGxhRHJZNE4Z1gyVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM\
sbT0iam0xMTQxNDIiLHFvcD0iYXV0aCxhdXRoLWludCxhdXRoLWNvbmYiLGNpcGhlcj0ic\
QwLHJjNC01NixyYzQiLG1heGJ1Zj0yMDQ4LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1k\
XNz
received 171 byte message
got ’nonce="IbplaDrY4N4szhgX2VneC9y16NalT9W/ju+rjybdjhs=",\
realm="jm114142",qop="auth,auth-int,auth-conf",cipher="rc4-40,rc4-56,\
rc4",maxbuf=2048,charset=utf-8,algorithm=md5-sess’
*** Calling sasl_client_step() ***
Please enter your authorization name : zzzz
Please enter your authentication name : zzzz
Please enter your password : zz

Chapter 7 • Writing Applications That Use SASL 149

*** Calling sasl_client_step() ***
Sending response...
C: dXNlcm5hbWU9Inp6enoiLHJlYWxtPSJqbTExNDE0MiIsbm9uY2U9IklicGxhRHJZNE4\
yVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM9Iixjbm9uY2U9InlqZ2hMVmhjRFJMa0Fob\
tDS0p2WVUxMUM4V1NycjJVWm5IR2Vkclk9IixuYz0wMDAwMDAwMSxxb3A9YXV0aC1jb25m\
Ghlcj0icmM0IixtYXhidWY9MjA0OCxkaWdlc3QtdXJpPSJyY21kLyIscmVzcG9uc2U9OTY\
ODI1MmRmNzY4YTJjYzkxYjJjZDMyYTk0ZWM=

Waiting for server reply...

Server

C: dXNlcm5hbWU9Inp6enoiLHJlYWxtPSJqbTExNDE0MiIsbm9uY2U9IklicGxhRHJZNE4\
yVm5lQzl5MTZOYWxUOVcvanUrcmp5YmRqaHM9Iixjbm9uY2U9InlqZ2hMVmhjRFJMa0Fob\
tDS0p2WVUxMUM4V1NycjJVWm5IR2Vkclk9IixuYz0wMDAwMDAwMSxxb3A9YXV0aC1jb25m\
Ghlcj0icmM0IixtYXhidWY9MjA0OCxkaWdlc3QtdXJpPSJyY21kLyIscmVzcG9uc2U9OTY\
ODI1MmRmNzY4YTJjYzkxYjJjZDMyYTk0ZWM=
got ’username="zzzz",realm="jm114142",\
nonce="IbplaDrY4N4szhgX2VneC9y16NalT9W/ju+rjybdjhs=",\
cnonce="yjghLVhcDRLkAhoirwKCKJvYU11C8WSrr2UZnHGedrY=", \
nc=00000001,qop=auth-conf,cipher="rc4",maxbuf=2048,digest-uri="rcmd/",\
response=966e978252df768a2cc91b2cd32a94ec’
*** Calling sasl_server_step() ***
Sending response...
S: cnNwYXV0aD0yYjEzMzRjYzU4NTE4MTEwOWM3OTdhMjUwYjkwMzk3OQ==

Waiting for client reply...

Client

S: cnNwYXV0aD0yYjEzMzRjYzU4NTE4MTEwOWM3OTdhMjUwYjkwMzk3OQ==
received 40 byte message
got ’rspauth=2b1334cc585181109c797a250b903979’
*** Calling sasl_client_step() ***
C:
Negotiation complete
*** Calling sasl_getprop() ***
Username: zzzz
SSF: 128

Waiting for encoded message...

Server

Waiting for client reply...
C: got ’’ *** Calling sasl_server_step() ***
Negotiation complete
*** Calling sasl_getprop() to get username, realm, ssf ***
Username: zzzz
Realm: 22c38
SSF: 128
*** Calling sasl_encode() *** sending encrypted message ’srv message 1’

S: AAAAHvArjnAvDFuMBqAAxkqdumzJB6VD1oajiwABAAAAAA==

Client

S: AAAAHvArjnAvDFuMBqAAxkqdumzJB6VD1oajiwABAAAAAA==
received 34 byte message
got ’’

150 Solaris Security for Developers Guide • January 2005

*** Calling sasl_decode() ***
received decoded message ’srv message 1’
*** Calling sasl_encode() ***
sending encrypted message ’client message 1’
C: AAAAIRdkTEMYOn9X4NXkxPc3OTFvAZUnLbZANqzn6gABAAAAAA==
*** Calling sasl_dispose() to release client SASL connection context ***

*** Calling sasl_done() to release libsasl resources ***

Server

Waiting for encrypted message...
C: AAAAIRdkTEMYOn9X4NXkxPc3OTFvAZUnLbZANqzn6gABAAAAAA==
got ’’
*** Calling sasl_decode() ***
received decoded message ’client message 1’
*** Calling sasl_dispose() to release client SASL connection context ***

SASL for Service Providers
This section describes how to create plug-ins for providing mechanisms and other
services to SASL applications.

Note – Due to export regulations, the Solaris SASL SPI does not support a security
layer for non-Solaris client/server mechanism plug-ins. As a result, non-Solaris
client/server mechanism plug-ins cannot offer integrity or privacy services. Solaris
client/server mechanism plug-ins do not have this restriction.

SASL Plug-in Overview
The SASL service provider interface (SPI) enables communication between plug-ins
and the libsasl library. SASL plug-ins are typically implemented as shared libraries.
A single shared library can one or more SASL plug-ins of different types. Plug-ins that
are in shared libraries are opened dynamically by libsasl through the dlopen(3C)
function.

Plug-ins can also be statically bound to an application that calls libsasl. These kinds
of plug-ins are loaded through either the sasl_client_add_plugin() function or
the sasl_server_add_plugin() function, depending on whether the application
is a client or server.

A SASL plug-in in the Solaris operating system has the following requirements:

Chapter 7 • Writing Applications That Use SASL 151

� A plug-in in a shared library must be in a valid executable object file, preferably
with the .so file extension.

� The plug-in must be in a location that can be verified. The SASL_CB_VERIFYFILE
callback is used to verify plug-ins.

� The plug– in must contain the proper entry points.

� The version of the plug-in for the SASL client must match the version of the
corresponding plug-in for the SASL server.

� The plug-in needs to be able to be initialized successfully.

� The binary type of the plug-in must match the binary type for libsasl.

SASL plug-ins fall into four categories:

� Client mechanism plug-in
� Server mechanism plug-in
� Canonicalization plug-in
� Auxprop plug-in

The sasl_client_init() function causes SASL clients to load any available client
plug-ins. The sasl_server_init() function causes SASL servers to load the server,
canonicalization, and auxprop plug-ins. All plug-ins are unloaded when
sasl_done() is called.

To locate plug-ins, libsasl uses either the SASL_CB_GETPATH callback function or
the default path. SASL_CB_GETPATH returns a colon-separated list of directories to
be searched for plug-ins. If the SASL consumer specifies a SASL_CB_GETPATH
callback, then libsasl uses the returned path for searching. Otherwise, the SASL
consumer can use the default path that corresponds to the binary type:

� 32-bit SPARC architecture: /usr/lib/sasl
� 64-bit SPARC architecture: /usr/lib/sasl/sparcv9
� 64-bit x86 architecture: /usr/lib/sasl/amd64

As part of the loading process, libsasl calls the latest, supported version of the
plug-in. The plug-in returns the version and a structure that describes the plug-in. If
the version checks out, libsasl loads the plug-in. The current version number,
SASL_UTILS_VERSION, is 4.

After a plug-in has been initialized, subsequent communication between the plug-in
and libsasl takes place through structures that have to be established. Plug–ins use
the sasl_utils_t structure to call libsasl. libsasl uses entry points in the
following structures to communicate with plug-ins:

� sasl_out_params_t
� sasl_client_params_t
� sasl_server_params_t
� sasl_client_plug_t
� sasl_server_plug_t
� sasl_canonuser_plug_t

152 Solaris Security for Developers Guide • January 2005

� sasl_auxprop_plug_t

The source code for these structures can be found in the SASL header files. The
structures are described in the following section.

Important Structures for SASL Plug-ins
Communication between libsasl and plug-ins is accomplished through the following
structures:

� sasl_utils_t – The sasl_utils_t structure contains a number of utility
functions, along with the three contexts:

This structure contains a number of utility functions that serve as a convenience for
plug-in writers. Many of the functions are pointers to public interfaces in libsasl.
Plug–ins do not need to call libsasl directly, unless for some reason the plug-in
needs to be a sasl consumer.

libsasl creates three contexts for sasl_utils_t:

� sasl_conn_t *conn
� sasl_rand_t *rpool
� void *getopt_context

In some cases, such as loading plug-ins, the conn variable in sasl_utils_t is
not actually associated with a connection. In other cases, conn is the SASL
consumer’s SASL connection context. The rpool variable is used for random
number generation functions. getopt_context is the context that should be used
with the getopt() function.

sasl_getopt_t(3SASL), sasl_log_t(3SASL), and
sasl_getcallback_t(3SASL)

� sasl_out_params_t – libsasl creates the sasl_out_params_t structure and
passes the structure to mech_step() in the client or server. This structure
communicates the following information to libsasl: authentication status, the
authid, the authzid, maxbuf, the negotiated ssf, and information for encoding
and decoding data

� sasl_client_params_t – The sasl_client_params_t structure is used by
libsasl to pass the client state to a SASL client mechanism. The client
mechanism’s mech_new(), mech_step(), and mech_idle() entry points are
used to send this state data. The canon_user_client() entry point also requires
client state to be passed along.

� sasl_server_params_t – The sasl_server_params_t structure performs a
similar function to sasl_client_params_t on the server side.

Chapter 7 • Writing Applications That Use SASL 153

Client Plug-ins
Client plug-ins are used to manage the client-side of a SASL negotiation. Client
plug-ins are usually packaged with the corresponding server plug-ins. A client plug-in
contains one or more client-side SASL mechanisms. Each SASL client mechanism
supports authentication, and optionally integrity and confidentiality. Each mechanism
provides information on that mechanism’s capabilities:

� Maximum SSF
� Maximum security flags
� Plug-in features
� Callbacks and prompt IDs for using the plug-in

Client plug-ins must export sasl_client_plug_init(). libsasl calls
sasl_client_plug_init() to initialize the plug-in for the client. The plug-in
returns a sasl_client_plug_t structure. The sasl_client_plug_t provides the
following entry points for libsasl to call the mechanism:

� mech_new() – The client starts a connection by calling sasl_client_start(),
which uses mech_new(). mech_new() performs initialization that is specific to
the mechanism. If necessary, a connection context is allocated.

� mech_step() – mech_step() can be called by sasl_client_start() and
sasl_client_step(). mech_step() performs authentication on the client side
after mech_new() has been called. mech_step() returns SASL_OK if
authentication is successful. SASL_CONTINUE is returned if more data is
required. A SASL error code is returned if authentication fails. If an error occurs,
then seterror() is called. If the authentication is successful, mech_step() must
return the sasl_out_params_t structure with the relevant security layer
information and callbacks. The canon_user() function is part of this structure.
canon_user() must be called when the client receives the authentication and
authorization IDs.

� mech_dispose() – mech_dispose() is called when the context can be safely
closed. mech_dispose() is called by sasl_dispose().

� mech_free() – mech_free() is called when libsasl shuts down. Any
remaining global state for the plug-in is freed by mech_free().

Server Plug-ins
Server plug-ins are used to manage the server-side of a SASL negotiation. Server
plug-ins are usually packaged with the corresponding client plug-ins. A server plug-in
contains one or more server-side SASL mechanisms. Each SASL server mechanism
supports authentication, and optionally integrity and confidentiality. Each mechanism
provides information on that mechanism’s capabilities:

� Maximum SSF
� Maximum security flags

154 Solaris Security for Developers Guide • January 2005

� Plug-in features
� Callbacks and prompt IDs for using the plug-in

Server plug-ins must export sasl_server_plug_init(). libsasl calls
sasl_server_plug_init() to initialize the plug-in for the server. The plug-in
returns a sasl_server_plug_t structure. The sasl_server_plug_t provides the
following entry points for libsasl to call the mechanism:

� mech_new() – The server starts a connection by calling sasl_server_start(),
which uses mech_new(). mech_new() performs initialization that is specific to
the mechanism . If necessary, mech_new() allocates a connection context.

� mech_step() – mech_step() can be called by sasl_server_start() and
sasl_server_step(). mech_step() performs authentication on the server-side
after mech_new() has been called. mech_step() returns SASL_OK if
authentication is successful. SASL_CONTINUE is returned if more data is
required. A SASL error code is returned if authentication fails. If an error occurs,
then seterror() is called. If the authentication is successful, mech_step() must
return the sasl_out_params_t structure with the relevant security layer
information and callbacks. The canon_user() function is part of this structure.
canon_user() must be called when the server receives the authentication and
authorization IDs. Calling the canon_user() function causes propctx to be
filled in. Any required auxiliary property requests should be performed before the
authentication is canonicalized. Authorization ID lookups are performed after the
authentication is canonicalized.

The mech_step() function must fill any related sasl_out_params_t fields
before SASL_OK is returned. These fields include the following functions:

� doneflag() – Indicates a complete exchange
� maxoutbuf() – Indicates maximum output size for a security layer
� mech_ssf() – Supplied SSF for the security layer
� encode() – Called by sasl_encode(), sasl_encodev(), and

sasl_decode()
� decode() – Called by sasl_encode(), sasl_encodev(), and

sasl_decode()
� encode_context() – Called by sasl_encode(), sasl_encodev(), and

sasl_decode()
� decode_context() – Called by sasl_encode(), sasl_encodev(), and

sasl_decode()

� mech_dispose() – mech_dispose() is called when the context can be safely
closed. mech_dispose() is called by sasl_dispose().

� mech_free() – mech_free() is called when libsasl shuts down. Any
remaining global state for the plug-in is freed by mech_free().

� setpass() sets a user’s password. setpass() enables a mechanism to have an
internal password.

Chapter 7 • Writing Applications That Use SASL 155

� mech_avail() is called by sasl_listmech() to check if a mechanism is
available for a given user. mech_avail() can create a new context and thus avoid
a call to mech_new(). Use this method to create a context as long as performance
is not affected.

User Canonicalization Plug-ins
A canonicalization plug-in provides support for alternate canonicalization of
authentication and authorization names for both the client and server-side. The
sasl_canonuser_plug_init() is used to load canonicalization plug-ins. A
canonicalization plug-in has the following requirements:

� The canonicalized name must be copied to the output buffers.

� The same input buffer can be used as an output buffer.

� A canonicalization plug-in must function in cases where only authentication IDs or
authorization IDs exist.

User canonicalization plug-ins must export a sasl_canonuser_init() function.
The sasl_canonuser_init() function must return sasl_canonuser_plug_t to
establish the necessary entry points. User canonicalization plug-ins must implement at
least one of the canon_user_client() or canon_user_server() members of the
sasl_canonuser_plug_t structure.

Auxiliary Property (auxprop) Plug-ins
Auxprop plug-ins provide support for the lookup of auxiliary properties for both
authid and authzid for a SASL server. For example, an application might want to
look up the user password for an internal authentication. The
sasl_auxprop_plug_init() function is used to initialize auxprop plug-ins and
returns the sasl_auxpropr_plug_t structure.

To implement an auxprop plug-in successfully, the auxprop_lookup member of the
sasl_auxprop_plug_t structure must be implemented. The auxprop_lookup()
function is called after canonicalization of the user name, with the canonicalized user
name. The plug-in can then do any lookups that are needed for the requested auxiliary
properties.

Note – Sun Microsystems, Inc. does not currently provide auxprop plug-ins.

156 Solaris Security for Developers Guide • January 2005

SASL Plug-in Development Guidelines
This section provides some additional pointers for developing SASL plug-ins.

Error Reporting in SASL Plug-ins
Good error reporting can help in tracking down authentication problems and in other
debugging. Developers of plug-ins are encouraged to use the sasl_seterror()
callback in the sasl_utils_t structure to supply detailed error information for a
given connection.

Memory Allocation in SASL Plug-ins
The general rule for allocating memory in SASL is to free any memory that you have
allocated when that memory is no longer needed. Following this rule improves
performance and portability, and prevents memory leaks.

Setting the SASL Negotiation Sequence
A plug-in mechanism can set the order in which a client and server conduct a SASL
conversation through the following flags:

� SASL_FEAT_WANT_CLIENT_FIRST – The client side begins the interchange.

� SASL_FEAT_WANT_SERVER_LAST – The server sends the final data to the client.

If neither flag is set, the mechanism plug-in sets the order internally. In this case, the
mechanism must check both the client and server for data that needs to be sent. Note
that the situation where the client sends first is only possible when the protocol
permits an initial response.

The case in which the server sends last requires that the plug-in set *serverout
when the step function returns SASL_OK. Those mechanisms that never have the
server send last must set *serverout to NULL. Those mechanisms that always have
the server send last need to point *serverout to the success data.

Chapter 7 • Writing Applications That Use SASL 157

158 Solaris Security for Developers Guide • January 2005

CHAPTER 8

Introduction to the Solaris
Cryptographic Framework

The Solaris cryptographic framework is an architecture that enables applications in the
Solaris operating system to use or provide cryptographic services. All interactions
with the framework are based on the RSA Security Inc. PKCS#11 Cryptographic Token
Interface (Cryptoki). PKCS#11 is a product by RSA Laboratories, the research arm of
RSA Security Inc. This chapter presents the following topics on the Solaris
cryptographic framework:

� “Overview of the Cryptographic Framework” on page 160
� “Components of the Cryptographic Framework” on page 162
� “What Cryptography Developers Need to Know” on page 163
� “Adding Signatures to Providers” on page 292
� “Avoiding Data Cleanup Collisions in User-Level Providers” on page 165

Solaris Cryptography Terminology
An application, library, or kernel module that obtains cryptographic services is called
a consumer. An application that provides cryptographic services to consumers through
the framework is referred to as a provider and also as a plug–in. The software that
implements a cryptographic operation is called a mechanism. A mechanism is not just
the algorithm but includes the way in which the algorithm is to be applied. For
example, the DES algorithm when applied to authentication is considered a separate
mechanism. DES when applied to block-by-block encryption would be a different
mechanism.

A token is the abstraction of a device that can perform cryptography. In addition,
tokens can store information for use in cryptographic operations. A single token can
support one or more mechanisms. Tokens can represent hardware, as in an accelerator
board. Tokens that represent pure software are referred to as soft tokens. A token can be
plugged into a slot, which continues the physical metaphor. A slot is the connecting
point for applications that use cryptographic services.

159

A session is a connection between an application that use cryptographic services and a
token. The PKCS #11 standard uses two kinds of objects: token objects and session
objects. Session objects are ephemeral, that is, objects that last only for the duration of a
session. Objects that persist beyond the length of a session are referred to as token
objects.

The default location for token objects is $HOME/.sunw/pkcs11_softtoken.
Alternatively, token objects can be stored in $SOFTTOKEN_DIR/pkcs11_softtoken.
Private token objects are protected by personal identification numbers (PIN). To create
or change a token object requires that the user be authenticated, unless the user is
accessing a private token object.

Overview of the Cryptographic
Framework
The cryptographic framework is the portion of the Solaris OS that provides
cryptographic services from Sun Microsystems, Inc., and various third-party suppliers.
The framework provides various services:

� Message encryption and message digest
� Message authentication codes (MACs)
� Digital signing
� Application programmer interfaces (APIs) for accessing cryptographic services
� Service provider interfaces (SPIs) for providing cryptographic services
� An administration command for managing cryptographic resources

The following figure provides an overview of the cryptographic framework. The light
gray shading in the figure indicates the user-level portion of the cryptographic
framework. The dark gray shading represents the kernel-level portion of the
framework. Private software is indicated by a background with diagonal striping.

160 Solaris Security for Developers Guide • January 2005

Pluggable
interface

Kernel
programmer

interface

libpkcs11.so

Application
elfsign

cryptoadm

Userland

Kernel

Private components

User portion of cryptographic framework

Kernel portion of cryptographic framework

Third-party Hardware
and Software

pluggable tokens

Kerberos
GSS Mechanism

IPsec

Other kernel
crypto consumers

Third-party
Hardware

crypto providers

Third-party
Software

crypto providers

Service provider
interface

/dev/crypto
pseudo-device

driver

pkcs11_kernel.so pkcs11_softtoken.so

Module
verification library

kernel
crypto

daemon

/dev/cryptoadm
pseudo-device

driver

Scheduler/
load balancer

Sun Hardware
and Software

crypto providers

FIGURE 8–1 Overview of the Solaris Cryptographic Framework

Chapter 8 • Introduction to the Solaris Cryptographic Framework 161

Components of the Cryptographic
Framework
The components of the cryptographic framework are described as follows.

� libpkcs11.so – The framework provides access through the RSA Security Inc.
PKCS#11 Cryptographic Token Interface (Cryptoki). Applications need to link to
the libpkcs11.so library, which implements the RSA PKCS#11 v2.11 of the
standard.

� Pluggable interface – The pluggable interface is the service provider interface (SPI)
for PKCS #11 cryptographic services that are provided by Sun Microsystems, Inc.
and third-party developers. Providers are user-level libraries. Providers are
implemented through encryption services that are available from either hardware
or software.

� pkcs11_softtoken.so – A private shared object that contains user-level
cryptographic mechanisms that are provided by Sun Microsystems, Inc. The
pkcs11_softtoken(5) library implements the RSA PKCS#11 v2.11 of the
standard.

� pkcs11_kernel.so – The private shared object used to access kernel-level
cryptographic mechanisms. pkcs11_kernel(5) implements the RSA PKCS#11
v2.11 specification. pkcs11_kernel.so offers a PKCS#11 user interface for
cryptographic services that are plugged into the kernel’s service provider interface.

� /dev/crypto pseudo device driver – The private pseudo device driver for using
kernel-level cryptographic mechanisms. This information is provided to avoid
inadvertent deletion of the pseudo device driver.

� Scheduler / load balancer – The kernel software that is responsible for
coordinating use, load balancing, and dispatching of the cryptographic service
requests.

� Kernel programmer interface – The interface for kernel-level consumers of
cryptographic services. The IPSec protocol and the kerberos GSS mechanism are
typical cryptographic consumers.

Note – This interface is only available through a special contract with Sun
Microsystems, Inc. Send email to solaris-crypto-api@sun.com for more information.

� Service provider interface – The SPI for providers of kernel-level cryptographic
services. These services can be implemented on either hardware or software. To use
the SPI, a provider must import special routines from the Solaris kernel. These
routines enable modules and device drivers to register and remove services. The
routines also notify the framework about changes in state. The framework also

162 Solaris Security for Developers Guide • January 2005

requires that providers export certain routines. The exported routines enable
consumers and other components of the cryptographic framework to send requests
to the provider.

� Sun HW and SW cryptographic providers – Kernel-level cryptographic services
that are provided by Sun Microsystems, Inc. HW refers to hardware cryptographic
services such as accelerator boards. SW refers to kernel modules that provide
cryptographic services, such as an implementation of a cryptographic algorithm.

� Kernel cryptographic framework daemon – The private daemon that is
responsible for managing system resources for cryptographic operations. The
daemon is also responsible for verifying cryptographic providers.

� Module verification library – A private library used to verify the integrity and
authenticity of all binaries that the Solaris cryptographic framework is importing.

� elfsign – A utility offered to third-party providers of cryptographic services.
elfsign is used to request certificates from Sun. elfsign also enables providers
to actually sign the binaries, that is, elf objects that plug into the Solaris
cryptographic framework.

� /dev/cryptoadm pseudo device driver – The private pseudo device driver used
by cryptoadm(1M) for administering kernel-level cryptographic mechanisms.
This information is provided to avoid inadvertent deletion of the pseudo device
driver.

� cryptoadm – A user-level command for administrators to manage cryptographic
services. A typical cryptoadm task is listing cryptographic providers and their
capabilities. Disabling and enabling cryptographic mechanisms according to
security policy is also performed with cryptoadm.

What Cryptography Developers Need to
Know
This section describes the requirements to develop the four types of applications that
can plug into the Solaris cryptographic framework.

Chapter 8 • Introduction to the Solaris Cryptographic Framework 163

Requirements for Developers of User-Level
Consumers
To develop a user-level consumer, a developer needs to keep the following items in
mind:

� Include <security/cryptoki.h>.
� Make all calls through the PKCS #11 interfaces only.
� Link with libpkcs11.so.
� Libraries should not call the C_Finalize() function.

See Chapter 9 for more information.

Requirements for Developers of User-Level
Providers
To develop a user-level provider, a developer needs to keep the following items in
mind:

� Design the provider to stand alone. Although the provider shared object need not
be a full-fledged library to which applications link, all necessary symbols must
exist in the provider. Assume that the provider is to be opened by dlopen(3C) in
RTLD_GROUP and RTLD_NOW mode.

� Create a PKCS #11 Cryptoki implementation in a shared object. This shared object
should include necessary symbols rather than depend on consumer applications.

� It is highly recommended though not required to provide a _fini() routine for
data cleanup. This method is required to avoid collisions between C_Finalize()
calls when an application or shared library loads libpkcs11 and other provider
libraries concurrently. See “Avoiding Data Cleanup Collisions in User-Level
Providers” on page 165.

� Apply for a certificate from Sun Microsystems, Inc. See “To Request a Certificate
for Signing a Provider” on page 292.

� Use the certificate with elfsign to sign the binary. See “To Sign a Provider”
on page 293.

� Package the shared object according to Sun conventions. See Appendix F.

164 Solaris Security for Developers Guide • January 2005

Requirements for Developers of Kernel-Level
Consumers
To develop a kernel-level consumer, a developer needs to keep the following items in
mind:

� Include <sys/crypto/common.h> and <sys/crypto/api.h>.
� Make all calls through the kernel programming interface.

Requirements for Developers of Kernel-Level
Providers
To develop a kernel-level provider, a developer needs to keep the following items in
mind:

� Include <sys/crypto/common.h> and <sys/crypto/api.h>.

� Import required routines for registering, unregistering, and providing status.

� Export required routines to provide entry points for kernel cryptographic
framework.

� Export data structure with descriptions of supported algorithms.

� Create loadable kernel module.

� Apply for a certificate from Sun Microsystems, Inc. See “To Request a Certificate
for Signing a Provider” on page 292

� Use the certificate with elfsign to sign the binary. See “To Sign a Provider”
on page 293.

� Package the kernel module according to Sun conventions. See Appendix F.

Avoiding Data Cleanup Collisions in
User-Level Providers
User-level libraries that plug into the cryptographic framework should supply a
_fini() function. The _fini() function is called by the loader when the library is
unloaded. The _fini() function is required to ensure that all cleanup is done
correctly at the right time. Libraries that use libpkcs11 are not supposed to call
C_Finalize(), because libpkcs11 is a shared library that could potentially be in
use by the application.

Chapter 8 • Introduction to the Solaris Cryptographic Framework 165

To supply a _fini() function , you need to create a .fini section in the program
data section of a relocatable object. The .fini section provides a runtime termination
code block. See Linker and Libraries Guide. The following code sample demonstrates
how to design a .fini section.

EXAMPLE 8–1 Supplying _fini() to PKCS #11 Libraries

#pragma fini(pkcs11_fini)
static void pkcs11_fini();

/* [... (other library code omitted)] */

static void
pkcs11_fini()
{

(void) pthread_mutex_lock(&pkcs11mutex);

/* If CRYPTOKI is not initialized, do not clean up */
if (!initialized) {

(void) pthread_mutex_unlock(&pkcs11mutex);
return;

}

(void) finalize_routine(NULL_PTR);

(void) pthread_mutex_unlock(&pkcs11mutex);

}

166 Solaris Security for Developers Guide • January 2005

CHAPTER 9

Adding Cryptography to User
Applications

This chapter explains how to develop user–level applications that use the PKCS #11
functions for cryptography. The following topics are covered:

� “PKCS #11 Function List” on page 168
� “Functions for Using PKCS #11” on page 168
� “Message Digest Example” on page 175
� “Symmetric Encryption Example” on page 178
� “Sign and Verify Example” on page 182
� “Random Byte Generation Example” on page 189

For more information on the cryptographic framework, refer to Chapter 8.

Overview of the Cryptoki Library
User-level applications in the Solaris cryptographic framework access PKCS #11
functions through the cryptoki library, which is provided in the libpkcs11.so
module. The pkcs11_softtoken.so module is a PKCS #11 Soft Token
implementation that is provided by Sun Microsystems, Inc. to supply cryptographic
mechanisms. The soft token plug-in is the default source of mechanisms.
Cryptographic mechanisms can also be supplied through third-party plug-ins.

This section lists the PKCS #11 functions and return values that are supported by the
soft token. Return codes vary depending on the providers that are plugged into the
framework. The section also describes some common functions. For a complete
description of all the elements in the cryptoki library, refer to the man pages or to
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11.

167

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11

PKCS #11 Function List
The following list shows the categories of PKCS #11 functions that are supported by
pkcs11_softtoken.so in the Solaris cryptographic framework with the associated
functions:

� General purpose – C_Initialize(), C_Finalize(), C_GetInfo(),
C_GetFunctionList()

� Session management – C_OpenSession(), C_CloseSession(),
C_GetSessionInfo(), C_CloseAllSessions(), C_Login(), C_Logout()

� Slot and token management – C_GetSlotList(), C_GetSlotInfo(),
C_GetMechanismList(), C_GetMechanismInfo(), C_SetPIN()

� Encryption and decryption – C_EncryptInit(), C_Encrypt(),
C_EncryptUpdate(), C_EncryptFinal(), C_DecryptInit(),
C_Decrypt(), C_DecryptUpdate(), C_DecryptFinal()

� Message digesting – C_DigestInit(), C_Digest(), C_DigestKey(),
C_DigestUpdate(), C_DigestFinal()

� Signing and applying MAC – C_Sign(), C_SignInit(), C_SignUpdate(),
C_SignFinal(), C_SignRecoverInit(), C_SignRecover()

� Signature verification – C_Verify(), C_VerifyInit(), C_VerifyUpdate(),
C_VerifyFinal(), C_VerifyRecoverInit(), C_VerifyRecover()

� Dual-purpose cryptographic functions – C_DigestEncryptUpdate(),
C_DecryptDigestUpdate(), C_SignEncryptUpdate(),
C_DecryptVerifyUpdate()

� Random number generation – C_SeedRandom(), C_GenerateRandom()

� Object management – C_CreateObject(), C_DestroyObject(),
C_CopyObject(), C_FindObjects(), C_FindObjectsInit(),
C_FindObjectsFinal(), C_GetAttributeValue(), C_SetAttributeValue
()

� Key management – C_GenerateKey(), C_GenerateKeyPair(),
C_DeriveKey()

Functions for Using PKCS #11
This section provides descriptions of the following functions for using PKCS #11:

� “PKCS #11 Functions: C_Initialize()” on page 169
� “PKCS #11 Functions: C_GetInfo()” on page 169
� “PKCS #11 Functions: C_GetSlotList()” on page 170
� “PKCS #11 Functions: C_GetTokenInfo()” on page 170
� “PKCS #11 Functions: C_OpenSession()” on page 171
� “PKCS #11 Functions: C_GetMechanismList()” on page 172

168 Solaris Security for Developers Guide • January 2005

Note – All the PKCS #11 functions are available from libpkcs11.so library. You do
not have to use the C_GetFunctionList() function to get the list of functions
available.

PKCS #11 Functions: C_Initialize()
C_Initialize() initializes the PKCS #11 library. C_Initialize() uses the
following syntax:

C_Initialize(CK_VOID_PTR pInitArgs);

pInitArgs is either the null value NULL_PTR or else a pointer to a
CK_C_INITIALIZE_ARGS structure. With NULL_PTR, the library uses the Solaris
mutexes as locking primitives to arbitrate the access to internal shared structures
between multiple threads. Note that the Solaris cryptographic framework does not
accept mutexes. Because this implementation of the cryptoki library handles
multithreading safely and efficiently, using NULL_PTR is recommended. An
application can also use pInitArgs to set flags such as
CKF_LIBRARY_CANT_CREATE_OS_THREADS. C_Finalize() signals that the
application is through with the PKCS #11 library.

Note – C_Finalize() should never be called by libraries. By convention, applications
are responsible for calling C_Finalize() to close out a session.

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_Initialize() uses the following return
values:

� CKR_ARGUMENTS_BAD
� CKR_CANT_LOCK
� CKR_CRYPTOKI_ALREADY_INITIALIZED – This error is nonfatal.

PKCS #11 Functions: C_GetInfo()
C_GetInfo() uses manufacturer and version information about the cryptoki
library. C_GetInfo() uses the following syntax:

C_GetInfo(CK_INFO_PTR pInfo);

C_GetInfo() returns the following values:

� cryptokiVersion = 2, 11
� manufacturerID = Sun Microsystems, Inc.

Chapter 9 • Adding Cryptography to User Applications 169

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetInfo() gets the following return
values:

� CKR_ARGUMENTS_BAD
� CKR_CRYPTOKI_NOT_INITIALIZED

PKCS #11 Functions: C_GetSlotList()
C_GetSlotList() uses a list of available slots. If no additional cryptographic
providers have been installed other than pkcs11_softtoken.so, then
C_GetSlotList() returns the default slot only. C_GetSlotList() uses the
following syntax:

C_GetSlotList(CK_BBOOL tokenPresent, CK_SLOT_ID_PTR pSlotList,
CK_ULONG_PTR pulCount);

When set to TRUE, tokenPresent limits the search to those slots whose tokens are
present.

When pSlotList is set to NULL_PTR, C_GetSlotlist() returns the number of slots
only. pulCount is a pointer to the location to receive the slot count.

When pSlotList points to the buffer to receive the slots, *pulCount is set to the
maximum expected number of CK_SLOT_ID elements. On return, *pulCount is set to
the actual number of CK_SLOT_ID elements.

Typically, PKCS #11 applications call C_GetSlotList() twice. The first time,
C_GetSlotList() is called to get the number of slots for memory allocation. The
second time, C_GetSlotList() is called to retrieve the slots.

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetSlotlist() gets the following return
values:

� CKR_ARGUMENTS_BAD
� CKR_BUFFER_TOO_SMALL
� CKR_CRYPTOKI_NOT_INITIALIZED

PKCS #11 Functions: C_GetTokenInfo()
C_GetTokenInfo() gets information about a specific token. C_GetTokenInfo()
uses the following syntax:

C_GetTokenInfo(CK_SLOT_ID slotID, CK_TOKEN_INFO_PTR pInfo);

slotID identifies the slot for the token. slotID has to be a valid ID that was returned by
C_GetSlotList(). pInfo is a pointer to the location to receive the token information.

If pkcs11_softtoken.so is the only installed provider, then C_GetTokenInfo()
returns the following fields and values:

170 Solaris Security for Developers Guide • January 2005

� label – Sun Software PKCS#11 softtoken.

� flags – CKF_DUAL_CRYPTO_OPERATIONS, CKF_TOKEN_INITIALIZED, CKF_RNG,
CKF_USER_PIN_INITIALIZED, and CKF_LOGIN_REQUIRED, which are set to 1.

� ulMaxSessionCount – Set to CK_EFFECTIVELY_INFINITE.

� ulMaxRwSessionCount - Set to CK_EFFECTIVELY_INFINITE.

� ulMaxPinLen – Set to 256.

� ulMinPinLen – Set to 1.

� ulTotalPublicMemory set to CK_UNAVAILABLE_INFORMATION

� ulFreePublicMemory set to CK_UNAVAILABLE_INFORMATION

� ulTotalPrivateMemory set to CK_UNAVAILABLE_INFORMATION

� ulFreePrivateMemory set to CK_UNAVAILABLE_INFORMATION

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetSlotlist() gets the following return
values:

� CKR_ARGUMENTS_BAD
� CKR_BUFFER_TOO_SMALL
� CKR_CRYPTOKI_NOT_INITIALIZED
� CKR_SLOT_ID_INVALID

The following return values are relevant for plug-ins with hardware tokens:

� CKR_DEVICE_ERROR
� CKR_DEVICE_MEMORY
� CKR_DEVICE_REMOVED
� CKR_TOKEN_NOT_PRESENT
� CKR_TOKEN_NOT_RECOGNIZED

PKCS #11 Functions: C_OpenSession()
C_OpenSession() enables an application to start a cryptographic session with a
specific token in a specific slot. C_OpenSession() uses the following syntax:

C_OpenSession(CK_SLOT_ID slotID, CK_FLAGS flags, CK_VOID_PTR pApplication,
CK_NOTIFY Notify, CK_SESSION_HANDLE_PTR phSession);

slotID identifies the slot. flags indicates whether the session is read-write or read-only.
pApplication is a pointer that is defined by the application for use in callbacks. Notify
holds the address of an optional callback function. phSession is a pointer to the location
of the session handle.

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_OpenSession() gets the following return
values:

� CKR_ARGUMENTS_BAD

Chapter 9 • Adding Cryptography to User Applications 171

� CKR_CRYPTOKI_NOT_INITIALIZED
� CKR_SLOT_ID_INVALID
� CKR_TOKEN_WRITE_PROTECTED – Occurs with write-protected tokens.

The following return values are relevant for plug-ins with hardware tokens:

� CKR_DEVICE_ERROR
� CKR_DEVICE_MEMORY
� CKR_DEVICE_REMOVED
� CKR_SESSION_COUNT
� CKR_SESSION_PARALLEL_NOT_SUPPORTED
� CKR_SESSION_READ_WRITE_SO_EXISTS
� CKR_TOKEN_NOT_PRESENT
� CKR_TOKEN_NOT_RECOGNIZED

PKCS #11 Functions: C_GetMechanismList()
C_GetMechanismList() gets a list of mechanism types that are supported by the
specified token. C_GetMechanismList() uses the following syntax:

C_GetMechanismList(CK_SLOT_ID slotID, CK_MECHANISM_TYPE_PTR pMechanismList,
CK_ULONG_PTR pulCount);

slotID identifies the slot for the token. pulCount is a pointer to the location to receive
the number of mechanisms. When pMechanismList is set to NULL_PTR, the number of
mechanisms is returned in *pulCount. Otherwise, *pulCount must be set to the size of
the list and pMechanismList points to the buffer to hold the list.

When PKCS #11 Soft Token is plugged in, C_GetMechanismList() returns the
following list of supported mechanisms:

� CKM_AES_CBC
� CKM_AES_CBC_PAD
� CKM_AES_ECB
� CKM_AES_KEY_GEN
� CKM_DES_CBC
� CKM_DES_CBC_PAD
� CKM_DES_ECB
� CKM_DES_KEY_GEN
� CKM_DES_MAC
� CKM_DES_MAC_GENERAL
� CKM_DES3_CBC
� CKM_DES3_CBC_PAD
� CKM_DES3_ECB
� CKM_DES3_KEY_GEN
� CKM_DH_PKCS_DERIVE
� CKM_DH_PKCS_KEY_PAIR_GEN
� CKM_DSA
� CKM_DSA_KEY_PAIR_GEN

172 Solaris Security for Developers Guide • January 2005

� CKM_DSA_SHA_1
� CKM_MD5
� CKM_MD5_KEY_DERIVATION
� CKM_MD5_RSA_PKCS
� CKM_MD5_HMAC
� CKM_MD5_HMAC_GENERAL
� CKM_PBE_SHA1_RC4_128
� CKM_PKCS5_PBKD2
� CKM_RC4
� CKM_RC4_KEY_GEN
� CKM_RSA_PKCS
� CKM_RSA_X_509
� CKM_RSA_PKCS_KEY_PAIR_GEN
� CKM_SHA_1
� CKM_SHA_1_HMAC_GENERAL
� CKM_SHA_1_HMAC
� CKM_SHA_1_KEY_DERIVATION
� CKM_SHA_1_RSA_PKCS
� CKM_SSL3_KEY_AND_MAC_DERIVE
� CKM_SSL3_MASTER_KEY_DERIVE
� CKM_SSL3_MASTER_KEY_DERIVE_DH
� CKM_SSL3_MD5_MAC
� CKM_SSL3_PRE_MASTER_KEY_GEN
� CKM_SSL3_SHA1_MAC
� CKM_TLS_KEY_AND_MAC_DERIVE
� CKM_TLS_MASTER_KEY_DERIVE
� CKM_TLS_MASTER_KEY_DERIVE_DH
� CKM_TLS_PRE_MASTER_KEY_GEN

In addition to CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, and CKR_OK, C_GetSlotlist() uses the following return
values:

� CKR_ARGUMENTS_BAD
� CKR_BUFFER_TOO_SMALL
� CKR_CRYPTOKI_NOT_INITIALIZED
� CKR_SLOT_ID_INVALID

The following return values are relevant for plug-ins with hardware tokens:

� CKR_DEVICE_ERROR
� CKR_DEVICE_MEMORY
� CKR_DEVICE_REMOVED
� CKR_TOKEN_NOT_PRESENT
� CKR_TOKEN_NOT_RECOGNIZED

Chapter 9 • Adding Cryptography to User Applications 173

Extended PKCS #11 Functions
In addition to the standard PKCS #11 functions, two convenience functions are
supplied with the Solaris cryptographic framework:

� “Extended PKCS #11 Functions: SUNW_C_GetMechSession()” on page 174
� “Extended PKCS #11 Functions: SUNW_C_KeyToObject” on page 174

Extended PKCS #11 Functions:
SUNW_C_GetMechSession()

SUNW_C_GetMechSession() is a convenience function that initializes the Solaris
cryptographic framework. The function then starts a session with the specified
mechanism. SUNW_C_GetMechSession() uses the following syntax:

SUNW_C_GetMechSession(CK_MECHANISM_TYPE mech, C\

K_SESSION_HANDLE_PTR hSession)

The mech parameter is used to specify the mechanism to be used. hSession is a pointer
to the session location.

Internally, SUNW_C_GetMechSession() calls C_Initialize() to initialize the
cryptoki library. SUNW_C_GetMechSession() next calls C_GetSlotList() and
C_GetMechanismInfo() to search through the available slots for a token with the
specified mechanism. When the mechanism is found, SUNW_C_GetMechSession()
calls C_OpenSession() to open a session.

The SUNW_C_GetMechSession() only needs to be called once. However, calling
SUNW_C_GetMechSession() multiple times does not cause any problems.

Extended PKCS #11 Functions: SUNW_C_KeyToObject
SUNW_C_KeyToObject() creates a secret key object. The calling program must
specify the mechanism to be used and raw key data. Internally,
SUNW_C_KeyToObject() determines the type of key for the specified mechanism. A
generic key object is created through C_CreateObject(). SUNW_C_KeyToObject
() next calls C_GetSessionInfo() and C_GetMechanismInfo() to get the slot
and mechanism. C_SetAttributeValue() then sets the attribute flag for the key
object according to the type of mechanism.

174 Solaris Security for Developers Guide • January 2005

User-Level Cryptographic Application
Examples
This section includes the following examples:

� “Message Digest Example” on page 175
� “Symmetric Encryption Example” on page 178
� “Sign and Verify Example” on page 182
� “Random Byte Generation Example” on page 189

Message Digest Example
This example uses PKCS #11 functions to create a digest from an input file. The
example performs the following steps:

1. Specifies the digest mechanism.

In this example, the CKM_MD5 digest mechanism is used.

2. Finds a slot that is capable of the specified digest algorithm.

This example uses the Sun convenience function SUNW_C_GetMechSession().
SUNW_C_GetMechSession() opens the cryptoki library, which holds all the
PKCS #11 functions that are used in the Solaris cryptographic framework.
SUNW_C_GetMechSession() then finds the slot with the desired mechanism. The
session is then started. Effectively, this convenience function replaces the
C_Initialize() call, the C_OpenSession() call, and any code needed to find
a slot that supports the specified mechanism.

3. Obtains cryptoki information.

This part is not actually needed to create the message digest, but is included to
demonstrate use of the C_GetInfo() function. This example gets the
manufacturer ID. The other information options retrieve version and library data.

4. Conducts a digest operation with the slot.

The message digest is created in this task through these steps:

a. Opening the input file.
b. Initializing the digest operation by calling C_DigestInit().
c. Processing the data a piece at a time with C_DigestUpdate().
d. Ending the digest process by using C_DigestFinal() to get the complete

digest.

5. Ends the session.

The program uses C_CloseSession() to close the session and C_Finalize()
to close the library.

The source code for the message digest example is shown in the following example.

Chapter 9 • Adding Cryptography to User Applications 175

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 9–1 Creating a Message Digest Using PKCS #11 Functions

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>

#define BUFFERSIZ 8192
#define MAXDIGEST 64

/* Calculate the digest of a user supplied file. */
void
main(int argc, char **argv)
{

CK_BYTE digest[MAXDIGEST];
CK_INFO info;
CK_MECHANISM mechanism;
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO Info;
CK_ULONG ulDatalen = BUFFERSIZ;
CK_ULONG ulDigestLen = MAXDIGEST;
CK_RV rv;
CK_SLOT_ID SlotID;

int i, bytes_read = 0;
char inbuf[BUFFERSIZ];
FILE *fs;
int error = 0;

/* Specify the CKM_MD5 digest mechanism as the target */
mechanism.mechanism = CKM_MD5;
mechanism.pParameter = NULL_PTR;
mechanism.ulParameterLen = 0;

/* Use SUNW convenience function to initialize the cryptoki
* library, and open a session with a slot that supports
* the mechanism we plan on using. */
rv = SUNW_C_GetMechSession(mechanism.mechanism, &hSession);
if (rv != CKR_OK) {

fprintf(stderr, "SUNW_C_GetMechSession: rv = 0x%.8X\n", rv);
exit(1);

}

/* Get cryptoki information, the manufacturer ID */
rv = C_GetInfo(&info);
if (rv != CKR_OK) {

fprintf(stderr, "WARNING: C_GetInfo: rv = 0x%.8X\n", rv);

176 Solaris Security for Developers Guide • January 2005

EXAMPLE 9–1 Creating a Message Digest Using PKCS #11 Functions (Continued)

}
fprintf(stdout, "Manufacturer ID = %s\n", info.manufacturerID);

/* Open the input file */
if ((fs = fopen(argv[1], "r")) == NULL) {

perror("fopen");
fprintf(stderr, "\n\tusage: %s filename>\n", argv[0]);
error = 1;
goto exit_session;

}

/* Initialize the digest session */
if ((rv = C_DigestInit(hSession, &mechanism)) != CKR_OK) {

fprintf(stderr, "C_DigestInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_digest;

}

/* Read in the data and create digest of this portion */
while (!feof(fs) && (ulDatalen = fread(inbuf, 1, BUFFERSIZ, fs)) > 0) {

if ((rv = C_DigestUpdate(hSession, (CK_BYTE_PTR)inbuf,
ulDatalen)) != CKR_OK) {

fprintf(stderr, "C_DigestUpdate: rv = 0x%.8X\n", rv);
error = 1;
goto exit_digest;

}
bytes_read += ulDatalen;

}
fprintf(stdout, "%d bytes read and digested!!!\n\n", bytes_read);

/* Get complete digest */
ulDigestLen = sizeof (digest);
if ((rv = C_DigestFinal(hSession, (CK_BYTE_PTR)digest,

&ulDigestLen)) != CKR_OK) {
fprintf(stderr, "C_DigestFinal: rv = 0x%.8X\n", rv);
error = 1;
goto exit_digest;

}

/* Print the results */
fprintf(stdout, "The value of the digest is: ");
for (i = 0; i < ulDigestLen; i++) {

fprintf(stdout, "%.2x", digest[i]);
}
fprintf(stdout, "\nDone!!!\n");

exit_digest:
fclose(fs);

exit_session:
(void) C_CloseSession(hSession);

exit_program:

Chapter 9 • Adding Cryptography to User Applications 177

EXAMPLE 9–1 Creating a Message Digest Using PKCS #11 Functions (Continued)

(void) C_Finalize(NULL_PTR);

exit(error);

}

Symmetric Encryption Example
Example 9–2 creates a key object for encryption with the DES algorithm in the CBC
mode. This source code performs the following steps:

1. Declares key materials.

Defines DES and initialization vector. The initialization vector is declared statically
for demonstration purposes only. Initialization vectors should always be defined
dynamically and never reused.

2. Defines a key object.

For this task, you have to set up a template for the key.

3. Finds a slot that is capable of the specified encryption mechanism.

This example uses the Sun convenience function SUNW_C_GetMechSession().
SUNW_C_GetMechSession() opens the cryptoki library, which holds all the
PKCS #11 functions that are used in the Solaris cryptographic framework.
SUNW_C_GetMechSession() then finds the slot with the desired mechanism. The
session is then started. Effectively, this convenience function replaces the
C_Initialize() call, the C_OpenSession() call, and any code needed to find
a slot that supports the specified mechanism.

4. Conducts an encryption operation in the slot.

The encryption is performed in this task through these steps:

a. Opening the session by calling C_OpenSession().

b. Opening the input file.

c. Creating an object handle for the key.

d. Setting the encryption mechanism to CKM_DES_CBC_PAD by using the
mechanism structure.

e. Initializing the encryption operation by calling C_EncryptInit().

f. Processing the data a piece at a time with C_EncryptUpdate().

g. Ending the encryption process by using C_EncryptFinal() to get the last
portion of the encrypted data.

5. Conducts a decryption operation in the slot

The decryption is performed in this task through these steps. The decryption is
provided for testing purposes only.

178 Solaris Security for Developers Guide • January 2005

a. Initializes the decryption operation by calling C_DecryptInit().
b. Processes the entire string with C_Decrypt().

6. Ends the session

The program uses C_CloseSession() to close the session and C_Finalize()
to close the library.

The source code for the symmetric encryption example is shown in the following
example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 9–2 Creating an Encryption Key Object Using PKCS #11 Functions

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>

#define BUFFERSIZ 8192

/* Declare values for the key materials. DO NOT declare initialization
* vectors statically like this in real life!! */
uchar_t des_key[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef};
uchar_t des_cbc_iv[] = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef};

/* Key template related definitions. */
static CK_BBOOL truevalue = TRUE;
static CK_BBOOL falsevalue = FALSE;
static CK_OBJECT_CLASS class = CKO_SECRET_KEY;
static CK_KEY_TYPE keyType = CKK_DES;

/* Example encrypts and decrypts a file provided by the user. */
void
main(int argc, char **argv)
{

CK_RV rv;
CK_MECHANISM mechanism;
CK_OBJECT_HANDLE hKey;
CK_SESSION_HANDLE hSession;
CK_ULONG ciphertext_len = 64, lastpart_len = 64,

ciphertext_space = BUFFERSIZ;
CK_ULONG decrypttext_len;
CK_ULONG total_encrypted = 0;
CK_ULONG ulDatalen = BUFFERSIZ;
CK_SLOT_ID SlotID;

int *pi, i, bytes_read = 0;

Chapter 9 • Adding Cryptography to User Applications 179

EXAMPLE 9–2 Creating an Encryption Key Object Using PKCS #11 Functions (Continued)

int error = 0;
char inbuf[BUFFERSIZ];
FILE *fs;
uchar_t *ciphertext, *pciphertext, *decrypttext;

/* Set the key object */
CK_ATTRIBUTE template[] = {

{CKA_CLASS, &class, sizeof (class) },
{CKA_KEY_TYPE, &keyType, sizeof (keyType) },
{CKA_TOKEN, &falsevalue, sizeof (falsevalue) },
{CKA_ENCRYPT, &truevalue, sizeof (truevalue) },
{CKA_VALUE, &des_key, sizeof (des_key) }

};

/* Set the encryption mechanism to CKM_DES_CBC_PAD */
mechanism.mechanism = CKM_DES_CBC_PAD;
mechanism.pParameter = des_cbc_iv;
mechanism.ulParameterLen = 8;

/* Use SUNW convenience function to initialize the cryptoki
* library, and open a session with a slot that supports
* the mechanism we plan on using. */
rv = SUNW_C_GetMechSession(mechanism.mechanism, &hSession);

if (rv != CKR_OK) {
fprintf(stderr, "SUNW_C_GetMechSession: rv = 0x%.8X\n", rv);
exit(1);

}

/* Open the input file */
if ((fs = fopen(argv[1], "r")) == NULL) {

perror("fopen");
fprintf(stderr, "\n\tusage: %s filename>\n", argv[0]);
error = 1;
goto exit_session;

}

/* Create an object handle for the key */
rv = C_CreateObject(hSession, template,

sizeof (template) / sizeof (CK_ATTRIBUTE),
&hKey);

if (rv != CKR_OK) {
fprintf(stderr, "C_CreateObject: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;

}

/* Initialize the encryption operation in the session */
rv = C_EncryptInit(hSession, &mechanism, hKey);

if (rv != CKR_OK) {

180 Solaris Security for Developers Guide • January 2005

EXAMPLE 9–2 Creating an Encryption Key Object Using PKCS #11 Functions (Continued)

fprintf(stderr, "C_EncryptInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;

}

/* Read in the data and encrypt this portion */
pciphertext = &ciphertext[0];
while (!feof(fs) && (ciphertext_space > 0) &&

(ulDatalen = fread(inbuf, 1, ciphertext_space, fs)) > 0) {
ciphertext_len = ciphertext_space;

/* C_EncryptUpdate is only being sent one byte at a
* time, so we are not checking for CKR_BUFFER_TOO_SMALL.
* Also, we are checking to make sure we do not go
* over the alloted buffer size. A more robust program
* could incorporate realloc to enlarge the buffer
* dynamically. */
rv = C_EncryptUpdate(hSession, (CK_BYTE_PTR)inbuf, ulDatalen,

pciphertext, &ciphertext_len);
if (rv != CKR_OK) {

fprintf(stderr, "C_EncryptUpdate: rv = 0x%.8X\n", rv);
error = 1;
goto exit_encrypt;

}
pciphertext += ciphertext_len;
total_encrypted += ciphertext_len;
ciphertext_space -= ciphertext_len;
bytes_read += ulDatalen;

}

if (!feof(fs) || (ciphertext_space < 0)) {
fprintf(stderr, "Insufficient space for encrypting the file\n");
error = 1;
goto exit_encrypt;

}

/* Get the last portion of the encrypted data */
lastpart_len = ciphertext_space;
rv = C_EncryptFinal(hSession, pciphertext, &lastpart_len);
if (rv != CKR_OK) {

fprintf(stderr, "C_EncryptFinal: rv = 0x%.8X\n", rv);
error = 1;
goto exit_encrypt;

}
total_encrypted += lastpart_len;

fprintf(stdout, "%d bytes read and encrypted. Size of the "
"ciphertext: %d!\n\n", bytes_read, total_encrypted);

/* Print the encryption results */
fprintf(stdout, "The value of the encryption is:\n");
for (i = 0; i < ciphertext_len; i++) {

if (ciphertext[i] < 16)

Chapter 9 • Adding Cryptography to User Applications 181

EXAMPLE 9–2 Creating an Encryption Key Object Using PKCS #11 Functions (Continued)

fprintf(stdout, "0%x", ciphertext[i]);
else

fprintf(stdout, "%2x", ciphertext[i]);
}

/* Initialize the decryption operation in the session */
rv = C_DecryptInit(hSession, &mechanism, hKey);

/* Decrypt the entire ciphertext string */
decrypttext_len = sizeof (decrypttext);
rv = C_Decrypt(hSession, (CK_BYTE_PTR)ciphertext, total_encrypted,

decrypttext, &decrypttext_len);

if (rv != CKR_OK) {
fprintf(stderr, "C_Decrypt: rv = 0x%.8X\n", rv);
error = 1;
goto exit_encrypt;

}

fprintf(stdout, "\n\n%d bytes decrypted!!!\n\n", decrypttext_len);

/* Print the decryption results */
fprintf(stdout, "The value of the decryption is:\n%s", decrypttext);

fprintf(stdout, "\nDone!!!\n");

exit_encrypt:
fclose(fs);

exit_session:
(void) C_CloseSession(hSession);

exit_program:
(void) C_Finalize(NULL_PTR);
exit(error);

}

Sign and Verify Example
The example in this section generates an RSA key pair. The key pair is used to sign
and verify a simple string. The example goes through the following steps:

1. Defines a key object.

2. Sets the public key template.

3. Sets the private key template.

4. Creates a sample message.

5. Specifies the genmech mechanism, which generates the key pair.

6. Specifies the smech mechanism, which signs the key pair.

182 Solaris Security for Developers Guide • January 2005

7. Initializes the cryptoki library.

8. Finds a slot with mechanisms for signing, verifying, and key pair generation. The
task uses a function that is called getMySlot(), which performs the following
steps:

a. Calling the function C_GetSlotList() to get a list of the available slots.

C_GetSlotList() is called twice, as the PKCS #11 convention suggests.
C_GetSlotList() is called the first time to get the number of slots for
memory allocation. C_GetSlotList() is called the second time to retrieve the
slots.

b. Finding a slot that can supply the desired mechanisms.

For each slot, the function calls GetMechanismInfo() to find mechanisms for
signing and for key pair generation. If the mechanisms are not supported by the
slot, GetMechanismInfo() returns an error. If GetMechanismInfo()
returns successfully, then the mechanism flags are checked to make sure the
mechanisms can perform the needed operations.

9. Opens the session by calling C_OpenSession().

10. Generates the key pair by using C_GenerateKeyPair().

11. Displays the public key with C_GetAttributeValue() – For demonstration
purposes only.

12. Signing is started with C_SignInit() and completed with C_Sign().

13. Verification is started with C_VerifyInit() and completed with C_Verify().

14. Closes the session.

The program uses C_CloseSession() to close the session and C_Finalize()
to close the library.

The source code for the sign-and-verify example follows.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>

#define BUFFERSIZ 8192

/* Define key template */
static CK_BBOOL truevalue = TRUE;
static CK_BBOOL falsevalue = FALSE;

Chapter 9 • Adding Cryptography to User Applications 183

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions (Continued)

static CK_ULONG modulusbits = 1024;
static CK_BYTE public_exponent[] = {3};

boolean_t GetMySlot(CK_MECHANISM_TYPE sv_mech, CK_MECHANISM_TYPE kpgen_mech,
CK_SLOT_ID_PTR pslot);

/* Example signs and verifies a simple string, using a public/private
* key pair. */
void
main(int argc, char **argv)
{

CK_RV rv;
CK_MECHANISM genmech, smech;
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO sessInfo;
CK_SLOT_ID slotID;
int error, i = 0;

CK_OBJECT_HANDLE privatekey, publickey;

/* Set public key. */
CK_ATTRIBUTE publickey_template[] = {

{CKA_VERIFY, &truevalue, sizeof (truevalue)},
{CKA_MODULUS_BITS, &modulusbits, sizeof (modulusbits)},
{CKA_PUBLIC_EXPONENT, &public_exponent,

sizeof (public_exponent)}
};

/* Set private key. */
CK_ATTRIBUTE privatekey_template[] = {

{CKA_SIGN, &truevalue, sizeof (truevalue)},
{CKA_TOKEN, &falsevalue, sizeof (falsevalue)},
{CKA_SENSITIVE, &truevalue, sizeof (truevalue)},
{CKA_EXTRACTABLE, &truevalue, sizeof (truevalue)}

};

/* Create sample message. */
CK_ATTRIBUTE getattributes[] = {

{CKA_MODULUS_BITS, NULL_PTR, 0},
{CKA_MODULUS, NULL_PTR, 0},
{CKA_PUBLIC_EXPONENT, NULL_PTR, 0}

};

CK_ULONG messagelen, slen, template_size;

boolean_t found_slot = B_FALSE;
uchar_t *message = (uchar_t *)"Simple message for signing & verifying.";
uchar_t *modulus, *pub_exponent;
char sign[BUFFERSIZ];
slen = BUFFERSIZ;

messagelen = strlen((char *)message);

184 Solaris Security for Developers Guide • January 2005

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions (Continued)

/* Set up mechanism for generating key pair */
genmech.mechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;
genmech.pParameter = NULL_PTR;
genmech.ulParameterLen = 0;

/* Set up the signing mechanism */
smech.mechanism = CKM_RSA_PKCS;
smech.pParameter = NULL_PTR;
smech.ulParameterLen = 0;

/* Initialize the CRYPTOKI library */
rv = C_Initialize(NULL_PTR);

if (rv != CKR_OK) {
fprintf(stderr, "C_Initialize: Error = 0x%.8X\n", rv);
exit(1);

}

found_slot = GetMySlot(smech.mechanism, genmech.mechanism, &slotID);

if (!found_slot) {
fprintf(stderr, "No usable slot was found.\n");
goto exit_program;

}

fprintf(stdout, "selected slot: %d\n", slotID);

/* Open a session on the slot found */
rv = C_OpenSession(slotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR,

&hSession);

if (rv != CKR_OK) {
fprintf(stderr, "C_OpenSession: rv = 0x%.8X\n", rv);
error = 1;
goto exit_program;

}

fprintf(stdout, "Generating keypair....\n");

/* Generate Key pair for signing/verifying */
rv = C_GenerateKeyPair(hSession, &genmech, publickey_template,

(sizeof (publickey_template) / sizeof (CK_ATTRIBUTE)),
privatekey_template,
(sizeof (privatekey_template) / sizeof (CK_ATTRIBUTE)),
&publickey, &privatekey);

if (rv != CKR_OK) {
fprintf(stderr, "C_GenerateKeyPair: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;

}

/* Display the publickey. */

Chapter 9 • Adding Cryptography to User Applications 185

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions (Continued)

template_size = sizeof (getattributes) / sizeof (CK_ATTRIBUTE);

rv = C_GetAttributeValue(hSession, publickey, getattributes,
template_size);

if (rv != CKR_OK) {
/* not fatal, we can still sign/verify if this failed */
fprintf(stderr, "C_GetAttributeValue: rv = 0x%.8X\n", rv);
error = 1;

} else {
/* Allocate memory to hold the data we want */
for (i = 0; i < template_size; i++) {

getattributes[i].pValue =
malloc (getattributes[i].ulValueLen *
sizeof(CK_VOID_PTR));

if (getattributes[i].pValue == NULL) {
int j;
for (j = 0; j < i; j++)

free(getattributes[j].pValue);
goto sign_cont;

}
}

/* Call again to get actual attributes */
rv = C_GetAttributeValue(hSession, publickey, getattributes,

template_size);

if (rv != CKR_OK) {
/* not fatal, we can still sign/verify if failed */
fprintf(stderr,

"C_GetAttributeValue: rv = 0x%.8X\n", rv);
error = 1;

} else {
/* Display public key values */
fprintf(stdout, "Public Key data:\n\tModulus bits: "

"%d\n",
*((CK_ULONG_PTR)(getattributes[0].pValue)));

fprintf(stdout, "\tModulus: ");
modulus = (uchar_t *)getattributes[1].pValue;
for (i = 0; i < getattributes[1].ulValueLen; i++) {

fprintf(stdout, "%.2x", modulus[i]);
}

fprintf(stdout, "\n\tPublic Exponent: ");
pub_exponent = (uchar_t *)getattributes[2].pValue;
for (i = 0; i< getattributes[2].ulValueLen; i++) {

fprintf(stdout, "%.2x", pub_exponent[i]);
}
fprintf(stdout, "\n");

}
}

186 Solaris Security for Developers Guide • January 2005

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions (Continued)

sign_cont:
rv = C_SignInit(hSession, &smech, privatekey);

if (rv != CKR_OK) {
fprintf(stderr, "C_SignInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;

}

rv = C_Sign(hSession, (CK_BYTE_PTR)message, messagelen,
(CK_BYTE_PTR)sign, &slen);

if (rv != CKR_OK) {
fprintf(stderr, "C_Sign: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;

}

fprintf(stdout, "Message was successfully signed with private key!\n");

rv = C_VerifyInit(hSession, &smech, publickey);

if (rv != CKR_OK) {
fprintf(stderr, "C_VerifyInit: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;

}

rv = C_Verify(hSession, (CK_BYTE_PTR)message, messagelen,
(CK_BYTE_PTR)sign, slen);

if (rv != CKR_OK) {
fprintf(stderr, "C_Verify: rv = 0x%.8X\n", rv);
error = 1;
goto exit_session;

}

fprintf(stdout, "Message was successfully verified with public key!\n");

exit_session:
(void) C_CloseSession(hSession);

exit_program:
(void) C_Finalize(NULL_PTR);

for (i = 0; i < template_size; i++) {
if (getattributes[i].pValue != NULL)

free(getattributes[i].pValue);
}

exit(error);

}

Chapter 9 • Adding Cryptography to User Applications 187

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions (Continued)

/* Find a slot capable of:
* . signing and verifying with sv_mech
* . generating a key pair with kpgen_mech
* Returns B_TRUE when successful. */
boolean_t GetMySlot(CK_MECHANISM_TYPE sv_mech, CK_MECHANISM_TYPE kpgen_mech,

CK_SLOT_ID_PTR pSlotID)
{

CK_SLOT_ID_PTR pSlotList = NULL_PTR;
CK_SLOT_ID SlotID;
CK_ULONG ulSlotCount = 0;
CK_MECHANISM_INFO mech_info;
int i;
boolean_t returnval = B_FALSE;

CK_RV rv;

/* Get slot list for memory alloction */
rv = C_GetSlotList(0, NULL_PTR, &ulSlotCount);

if ((rv == CKR_OK) && (ulSlotCount > 0)) {
fprintf(stdout, "slotCount = %d\n", ulSlotCount);
pSlotList = malloc(ulSlotCount * sizeof (CK_SLOT_ID));

if (pSlotList == NULL) {
fprintf(stderr, "System error: unable to allocate "

"memory\n");
return (returnval);

}

/* Get the slot list for processing */
rv = C_GetSlotList(0, pSlotList, &ulSlotCount);
if (rv != CKR_OK) {

fprintf(stderr, "GetSlotList failed: unable to get "
"slot count.\n");

goto cleanup;
}

} else {
fprintf(stderr, "GetSlotList failed: unable to get slot "

"list.\n");
return (returnval);

}

/* Find a slot capable of specified mechanism */
for (i = 0; i < ulSlotCount; i++) {

SlotID = pSlotList[i];

/* Check if this slot is capable of signing and
* verifying with sv_mech. */
rv = C_GetMechanismInfo(SlotID, sv_mech, &mech_info);

if (rv != CKR_OK) {
continue;

188 Solaris Security for Developers Guide • January 2005

EXAMPLE 9–3 Signing and Verifying Text Using PKCS #11 Functions (Continued)

}

if (!(mech_info.flags & CKF_SIGN &&
mech_info.flags & CKF_VERIFY)) {
continue;

}

/* Check if the slot is capable of key pair generation
* with kpgen_mech. */
rv = C_GetMechanismInfo(SlotID, kpgen_mech, &mech_info);

if (rv != CKR_OK) {
continue;

}

if (!(mech_info.flags & CKF_GENERATE_KEY_PAIR)) {
continue;

}

/* If we get this far, this slot supports our mechanisms. */
returnval = B_TRUE;
*pSlotID = SlotID;
break;

}

cleanup:
if (pSlotList)

free(pSlotList);

return (returnval);

}

Random Byte Generation Example
Example 9–4 demonstrates how to find a slot with a mechanism that can generate
random bytes. The example performs the following steps:

1. Initializes the cryptoki library.

2. Calls GetRandSlot() to find a slot with a mechanism that can generate random
bytes.

Chapter 9 • Adding Cryptography to User Applications 189

The task of finding a slot performs the following steps:

a. Calling the function C_GetSlotList() to get a list of the available slots.

C_GetSlotList() is called twice, as the PKCS #11 convention suggests.
C_GetSlotList() is called the first time to get the number of slots for
memory allocation. C_GetSlotList() is called the second time to retrieve the
slots.

b. Finding a slot that can generate random bytes.

For each slot, the function obtains the token information by using
GetTokenInfo() and checks for a match with the CKF_RNG flag set. When a
slot that has the CKF_RNG flag set is found, the GetRandSlot() function
returns.

3. Opens the session by using C_OpenSession().

4. Generates random bytes by using C_GenerateRandom().

5. Ends the session.

The program uses C_CloseSession() to close the session and C_Finalize()
to close the library.

The source code for the random number generation sample is shown in the following
example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE 9–4 Generating Random Numbers Using PKCS #11 Functions

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <security/cryptoki.h>
#include <security/pkcs11.h>

#define RANDSIZE 64

boolean_t GetRandSlot(CK_SLOT_ID_PTR pslot);

/* Example generates random bytes. */
void
main(int argc, char **argv)
{

CK_RV rv;
CK_MECHANISM mech;
CK_SESSION_HANDLE hSession;
CK_SESSION_INFO sessInfo;
CK_SLOT_ID slotID;
CK_BYTE randBytes[RANDSIZE];

190 Solaris Security for Developers Guide • January 2005

EXAMPLE 9–4 Generating Random Numbers Using PKCS #11 Functions (Continued)

boolean_t found_slot = B_FALSE;
int error;
int i;

/* Initialize the CRYPTOKI library */
rv = C_Initialize(NULL_PTR);

if (rv != CKR_OK) {
fprintf(stderr, "C_Initialize: Error = 0x%.8X\n", rv);
exit(1);

}

found_slot = GetRandSlot(&slotID);

if (!found_slot) {
goto exit_program;

}

/* Open a session on the slot found */
rv = C_OpenSession(slotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR,

&hSession);

if (rv != CKR_OK) {
fprintf(stderr, "C_OpenSession: rv = 0x%.8x\n", rv);
error = 1;
goto exit_program;

}

/* Generate random bytes */
rv = C_GenerateRandom(hSession, randBytes, RANDSIZE);

if (rv != CKR_OK) {
fprintf(stderr, "C_GenerateRandom: rv = 0x%.8x\n", rv);
error = 1;
goto exit_session;

}

fprintf(stdout, "Random value: ");
for (i = 0; i < RANDSIZE; i++) {

fprintf(stdout, "%.2x", randBytes[i]);
}

exit_session:
(void) C_CloseSession(hSession);

exit_program:
(void) C_Finalize(NULL_PTR);
exit(error);

}

boolean_t

Chapter 9 • Adding Cryptography to User Applications 191

EXAMPLE 9–4 Generating Random Numbers Using PKCS #11 Functions (Continued)

GetRandSlot(CK_SLOT_ID_PTR pslot)
{

CK_SLOT_ID_PTR pSlotList;
CK_SLOT_ID SlotID;
CK_TOKEN_INFO tokenInfo;
CK_ULONG ulSlotCount;
CK_MECHANISM_TYPE_PTR pMechTypeList = NULL_PTR;
CK_ULONG ulMechTypecount;
boolean_t result = B_FALSE;
int i = 0;

CK_RV rv;

/* Get slot list for memory allocation */
rv = C_GetSlotList(0, NULL_PTR, &ulSlotCount);

if ((rv == CKR_OK) && (ulSlotCount > 0)) {
fprintf(stdout, "slotCount = %d\n", (int)ulSlotCount);
pSlotList = malloc(ulSlotCount * sizeof (CK_SLOT_ID));

if (pSlotList == NULL) {
fprintf(stderr,

"System error: unable to allocate memory\n");
return (result);

}

/* Get the slot list for processing */
rv = C_GetSlotList(0, pSlotList, &ulSlotCount);
if (rv != CKR_OK) {

fprintf(stderr, "GetSlotList failed: unable to get "
"slot list.\n");

free(pSlotList);
return (result);

}
} else {

fprintf(stderr, "GetSlotList failed: unable to get slot"
" count.\n");

return (result);
}

/* Find a slot capable of doing random number generation */
for (i = 0; i < ulSlotCount; i++) {

SlotID = pSlotList[i];

rv = C_GetTokenInfo(SlotID, &tokenInfo);

if (rv != CKR_OK) {
/* Check the next slot */
continue;

}

if (tokenInfo.flags & CKF_RNG) {
/* Found a random number generator */

192 Solaris Security for Developers Guide • January 2005

EXAMPLE 9–4 Generating Random Numbers Using PKCS #11 Functions (Continued)

*pslot = SlotID;
fprintf(stdout, "Slot # %d supports random number "

"generation!\n", SlotID);
result = B_TRUE;
break;

}
}

if (pSlotList)
free(pSlotList);

return (result);

}

Chapter 9 • Adding Cryptography to User Applications 193

194 Solaris Security for Developers Guide • January 2005

CHAPTER 10

Using the Smart Card Framework

A smart card is a portable computer with a microprocessor and memory. A smart card
usually has the shape and size of a credit card. Smart cards provide highly secure
storage for confidential information that can be protected through authentication and
encryption.

This chapter covers the following topics:

� “Solaris Smart Card Framework Overview” on page 195
� “Developing Smart Card Consumer Applications” on page 196
� “Developing an IFD Handler for Smart Card Terminals” on page 199
� “Installation of Smart Card Terminals” on page 200

Solaris Smart Card Framework
Overview
In the Solaris operating system, the smart card framework is used to connect
consumer applications with smart card terminals. A consumer application makes calls
to the smart card framework (SCF) API. A smart card terminal communicates with
consumer applications through an interface device (IFD) handler, which is basically a
device driver. IFD handlers connect to the framework through the terminal interface.
See the following figure.

195

Applications

SCF API

Smart Card
Framework

Terminal Interfaces

IFD Handler 1

Terminals

IFD Handler 2

Terminals

FIGURE 10–1 Smart Card Framework

The Solaris operating system stores smart card configuration information in a private
file. This approach is in contrast to linux implementations, where
/etc/reader.conf is generally used. To change entries in the configuration file, use
the command smartcard(1M).

At this time, the smart card framework is independent of the Solaris cryptographic
framework.

Developing Smart Card Consumer
Applications
The SCF API provides a set of interfaces for accessing smart cards. These interfaces
provide communication to the cards in low-level application protocol data unit
(APDU) form. These interfaces are provided in both C and Java. The interfaces work
with all readers that are supported by the Solaris operating system and with any smart
card that communicates with APDUs. The SCF API is based on the following
components:

� Session object – A general context for each individual thread so that can collisions
can be avoided.

� Terminal object – An abstraction of a physical smart card terminal. This object can
detect the presence, insertion, or removal of a card.

� Card object – Represents a smart card that is inserted in a terminal. The object can
send information in APDU format to the physical smart card. The object also
accommodates mutex locking so that an application can have exclusive access to
the card.

196 Solaris Security for Developers Guide • January 2005

� Listener object – An object that receives notification of events.

The SCF API provides functionality in the following areas:

� Checking for the physical presence of a smart card in the reader.
� Receiving notification of smart card movement, that is, insertion and removal.
� Exchanging data with the smart card.
� Retrieving information about the session, terminal, and smart card.
� Locking and unlocking the smart card for exclusive access.

The following sections provide information about the specific SCF interfaces.

SCF Session Interfaces
The following functions are used for SCF sessions.

SCF_Session_getSession(3SMARTCARD)
Establishes a session with a system’s smart card framework. After a session has
been opened, the session can be used with
SCF_Session_getTerminal(3SMARTCARD) to access a smart card terminal.

SCF_Session_close(3SMARTCARD)
Releases the resources that were allocated when the session was opened. Also,
closes any terminals or cards that are associated with that session.

SCF_Session_getInfo(3SMARTCARD)
Obtains information about a session.

SCF_Session_freeInfo(3SMARTCARD)
Deallocates storage that is returned from
SCF_Session_getInfo(3SMARTCARD).

SCF_Session_getTerminal(3SMARTCARD)
Establishes a context with a specific smart card terminal in the session. Terminal
objects are used for detecting card movement, that is, insertion or removal.
Terminal objects are also used to create card objects for accessing a specific card.

SCF Terminal Interfaces
The following functions are used to access SCF terminals.

SCF_Terminal_close(3SMARTCARD)
Releases the resources that were allocated when the terminal was opened. The
function also closes any cards that were associated with the terminal.

SCF_Terminal_getInfo(3SMARTCARD)
Obtains information about a terminal.

SCF_Terminal_freeInfo(3SMARTCARD)
Deallocates storage that has been returned from
SCF_Terminal_getInfo(3SMARTCARD).

Chapter 10 • Using the Smart Card Framework 197

SCF_Terminal_waitForCardPresent(3SMARTCARD)
Blocks and waits until a card is present in the specified terminal.

SCF_Terminal_waitForCardAbsent(3SMARTCARD)
Blocks and waits until the card in the specified terminal is removed.

SCF_Terminal_addEventListener(3SMARTCARD)
Allows a program to receive callback notifications when events occur on a terminal.
The concept is similar to a signal handler. When an event occurs, a service thread
executes the provided callback function.

SCF_Terminal_updateEventListener(3SMARTCARD)
Updates the specified event listener that is associated with this terminal.

SCF_Terminal_removeEventListener(3SMARTCARD)
Removes the specified event listener from the listener list that is associated with
this terminal.

SCF_Terminal_getCard(3SMARTCARD)
Establishes a context with a specific smart card in a terminal. Card objects can be
used to send APDUs to the card with SCF_Card_exchangeAPDU(3SMARTCARD).

SCF Card and Miscellaneous Interfaces
The following functions are used to access smart cards and to get status.

SCF_Card_close(3SMARTCARD)
Releases resources, such as memory and threads, that were allocated when the card
was opened. Also, releases the lock that was held by that card.

SCF_Card_getInfo(3SMARTCARD)
Obtains information about a card.

SCF_Card_freeInfo(3SMARTCARD)
Deallocates storage that has been returned from
SCF_Card_getInfo(3SMARTCARD).

SCF_Card_lock(3SMARTCARD)
Obtains a lock on a specific card. This function allows an application to perform a
multiple APDU transaction without interference from other smart card
applications.

SCF_Card_unlock(3SMARTCARD)
Removes a lock from a specific card.

SCF_Card_exchangeAPDU(3SMARTCARD)
Sends a command APDU to a card and reads the card’s response.

SCF_Card_waitForCardRemoved(3SMARTCARD)
Checks to see if a specific card has been removed. If another card or even the same
card has since been reinserted, the function reports that the old card was removed.

SCF_Card_reset(3SMARTCARD)
Resets a specific card.

198 Solaris Security for Developers Guide • January 2005

SCF_strerror(3SMARTCARD)
Gets a string that describes a status code.

Developing an IFD Handler for Smart
Card Terminals
Smart card terminals that are developed for the Solaris OS use the same set of APIs
that are used by linux smart card terminals. If you have not previously developed an
IFD handler, then you should visit one of the websites for the linux environment that
provide IFD source code, such as http://www.musclecard.com/drivers.html. To
develop an IFD handler for smart card terminals in the Solaris operating system, you
need to include /usr/include/smartcard/ifdhandler.h and implement the
following interfaces:

� IFDHCreateChannelByName(3SMARTCARD) – Opens a communication channel
with the specified smart card terminal. This interface is new in the latest version of
the MUSCLE IFD specification. As a result, IFDHCreateChannelByName()
might not be available in other IFD handlers. In the Solaris software,
IFDHCreateChannelByName() is used instead of the
IFDHCreateChannel(3SMARTCARD) function.

� IFDHICCPresence(3SMARTCARD) – Checks for the presence of an ICC, that is, a
smart card, in the reader or the slot that has been specified by the logical unit
number (LUN).

� IFDHPowerICC(3SMARTCARD) – Controls the power and reset signals of the
ICC.

� IFDHCloseChannel(3SMARTCARD) – Closes the communications channel for
the IFD that is specified by LUN.

� IFDHGetCapabilities(3SMARTCARD) – Returns the capabilities of the
specified smart card, IFD handler, or smart card terminal.

� IFDHSetProtocolParameters(3SMARTCARD) – Sets the Protocol Type
Selection (PTS) for a particular slot or card. Check the ISO 7816 standards for the
PYS values. Although this function might not be called by the framework, this
function should be implemented. Use of IFDHSetProtocolParameters()
ensures that a variety of cards can communicate with the framework.

� IFDHTransmitToICC(3SMARTCARD) – Called by the framework to
communicate with the smart card.

Chapter 10 • Using the Smart Card Framework 199

http://www.musclecard.com/

Note – The IFDHCreateChannel(), IFDHSetCapabilities(), and
IFDHControl() are not currently used, but these interfaces might be required in
future releases.

The IFDHICCPresence() and IFDHPowerICC() function are useful for testing. For
example, you can use the IFDHICCPresence() function to test the presence of a card
in the slot. One way to check the smart card power is functioning normally is to use
the IFDHPowerICC() function. This function gets the Answer to Reset (ATR) value of
the inserted smart card.

Installation of Smart Card Terminals
The Solaris smart card framework does not support hot-pluggable terminals, such as
USB terminals. Use the following approach to connect and install smart card
terminals:

1. Make the physical connection of the terminal to the system.
2. Copy the shared library for the IFD handler to the system.
3. Register the IFD handler for the terminal into the framework with

smartcard(1M).

200 Solaris Security for Developers Guide • January 2005

APPENDIX A

Sample C–Based GSS-API Programs

This appendix shows the source code for two sample applications that use GSS-API to
make a safe network connection. The first application is a typical client. The second
application demonstrates how a server works in GSS-API. The two programs display
benchmarks in the course of being run. A user can thus view GSS-API in action.
Additionally, certain miscellaneous functions are provided for use by the client and
server applications.

� “Client-Side Application” on page 201
� “Server-Side Application” on page 212
� “Miscellaneous GSS-API Sample Functions” on page 222

These programs are examined in detail in the Chapter 5 and Chapter 6.

Client-Side Application
The source code for the client-side program, gss_client, is provided in the
following example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program

/*
* Copyright 1994 by OpenVision Technologies, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appears in all copies and

201

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of OpenVision not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. OpenVision makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/

#if !defined(lint) && !defined(__CODECENTER__)
static char *rcsid = \
"$Header: /cvs/krbdev/krb5/src/appl/gss-sample/gss-client.c,\
v 1.16 1998/10/30 02:52:03 marc Exp $";
#endif

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <errno.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <gssapi/gssapi.h>
#include <gssapi/gssapi_ext.h>
#include <gss-misc.h>

void usage()
{

fprintf(stderr, "Usage: gss-client [-port port] [-d] host service \
msg\n");

exit(1);
}

/*
* Function: connect_to_server
*
* Purpose: Opens a TCP connection to the name host and port.
*
* Arguments:
*

202 Solaris Security for Developers Guide • January 2005

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

* host (r) the target host name
* port (r) the target port, in host byte order
*
* Returns: the established socket file descriptor, or -1 on failure
*
* Effects:
*
* The host name is resolved with gethostbyname(), and the socket is
* opened and connected. If an error occurs, an error message is
* displayed and -1 is returned.
*/
int connect_to_server(host, port)

char *host;
u_short port;

{
struct sockaddr_in saddr;
struct hostent *hp;
int s;

if ((hp = gethostbyname(host)) == NULL) {
fprintf(stderr, "Unknown host: %s\n", host);
return -1;

}

saddr.sin_family = hp->h_addrtype;
memcpy((char *)&saddr.sin_addr, hp->h_addr, sizeof(saddr.sin_addr));
saddr.sin_port = htons(port);

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("creating socket");
return -1;

}
if (connect(s, (struct sockaddr *)&saddr, sizeof(saddr)) < 0) {

perror("connecting to server");
(void) close(s);
return -1;

}
return s;

}

/*
* Function: client_establish_context
*
* Purpose: establishes a GSS-API context with a specified service and
* returns the context handle
*
* Arguments:
*
* s (r) an established TCP connection to the service
* service_name (r) the ASCII service name of the service
* context (w) the established GSS-API context
* ret_flags (w) the returned flags from init_sec_context
*

Appendix A • Sample C–Based GSS-API Programs 203

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

* Returns: 0 on success, -1 on failure
*
* Effects:
*
* service_name is imported as a GSS-API name and a GSS-API context is
* established with the corresponding service; the service should be
* listening on the TCP connection s. The default GSS-API mechanism
* is used, and mutual authentication and replay detection are
* requested.
*
* If successful, the context handle is returned in context. If
* unsuccessful, the GSS-API error messages are displayed on stderr
* and -1 is returned.
*/
int client_establish_context(s, service_name, deleg_flag, oid,

gss_context, ret_flags)
int s;
char *service_name;
gss_OID oid;
OM_uint32 deleg_flag;
gss_ctx_id_t *gss_context;
OM_uint32 *ret_flags;

{
gss_buffer_desc send_tok, recv_tok, *token_ptr;
gss_name_t target_name;
OM_uint32 maj_stat, min_stat, init_sec_min_stat;

/*
* Import the name into target_name. Use send_tok to save
* local variable space.
*/
send_tok.value = service_name;
send_tok.length = strlen(service_name) + 1;
maj_stat = gss_import_name(&min_stat, &send_tok,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &target_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("parsing name", maj_stat, min_stat);
return -1;

}

/*
* Perform the context-establishement loop.
*
* On each pass through the loop, token_ptr points to the token
* to send to the server (or GSS_C_NO_BUFFER on the first pass).
* Every generated token is stored in send_tok which is then
* transmitted to the server; every received token is stored in
* recv_tok, which token_ptr is then set to, to be processed by
* the next call to gss_init_sec_context.
*
* GSS-API guarantees that send_tok’s length will be non-zero
* if and only if the server is expecting another token from us,
* and that gss_init_sec_context returns GSS_S_CONTINUE_NEEDED if

204 Solaris Security for Developers Guide • January 2005

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

* and only if the server has another token to send us.
*/

token_ptr = GSS_C_NO_BUFFER;
*gss_context = GSS_C_NO_CONTEXT;

do {
maj_stat =

gss_init_sec_context(&init_sec_min_stat,
GSS_C_NO_CREDENTIAL,
gss_context,
target_name,
oid,
GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG |

deleg_flag,
0,
NULL, /* no channel bindings */
token_ptr,
NULL, /* ignore mech type */
&send_tok,
ret_flags,
NULL); /* ignore time_rec */

if (token_ptr != GSS_C_NO_BUFFER)
(void) gss_release_buffer(&min_stat, &recv_tok);

if (send_tok.length != 0) {
printf("Sending init_sec_context token (size=%d)...",

send_tok.length);
if (send_token(s, &send_tok) < 0) {

(void) gss_release_buffer(&min_stat, &send_tok);
(void) gss_release_name(&min_stat, &target_name);
return -1;

}
}
(void) gss_release_buffer(&min_stat, &send_tok);

if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {
display_status("initializing context", maj_stat,

init_sec_min_stat);
(void) gss_release_name(&min_stat, &target_name);
if (*gss_context == GSS_C_NO_CONTEXT)

gss_delete_sec_context(&min_stat, gss_context,
GSS_C_NO_BUFFER);

return -1;
}

if (maj_stat == GSS_S_CONTINUE_NEEDED) {
printf("continue needed...");
if (recv_token(s, &recv_tok) < 0) {

(void) gss_release_name(&min_stat, &target_name);
return -1;

}

Appendix A • Sample C–Based GSS-API Programs 205

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

token_ptr = &recv_tok;
}
printf("\n");

} while (maj_stat == GSS_S_CONTINUE_NEEDED);

(void) gss_release_name(&min_stat, &target_name);
return 0;

}

void read_file(file_name, in_buf)
char *file_name;
gss_buffer_t in_buf;

{
int fd, bytes_in, count;
struct stat stat_buf;

if ((fd = open(file_name, O_RDONLY, 0)) < 0) {
perror("open");
fprintf(stderr, "Couldn’t open file %s\n", file_name);
exit(1);

}
if (fstat(fd, &stat_buf) < 0) {

perror("fstat");
exit(1);

}
in_buf->length = stat_buf.st_size;

if (in_buf->length == 0) {
in_buf->value = NULL;
return;

}

if ((in_buf->value = malloc(in_buf->length)) == 0) {
fprintf(stderr, \

"Couldn’t allocate %d byte buffer for reading file\n",
in_buf->length);

exit(1);
}

/* this code used to check for incomplete reads, but you can’t get
an incomplete read on any file for which fstat() is meaningful */

count = read(fd, in_buf->value, in_buf->length);
if (count < 0) {

perror("read");
exit(1);

}
if (count < in_buf->length)

fprintf(stderr, "Warning, only read in %d bytes, expected %d\n",
count, in_buf->length);

}

/*

206 Solaris Security for Developers Guide • January 2005

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

* Function: call_server
*
* Purpose: Call the "sign" service.
*
* Arguments:
*
* host (r) the host providing the service
* port (r) the port to connect to on host
* service_name (r) the GSS-API service name to authenticate to
* msg (r) the message to have "signed"
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* call_server opens a TCP connection to <host:port> and establishes a
* GSS-API context with service_name over the connection. It then
* seals msg in a GSS-API token with gss_seal, sends it to the server,
* reads back a GSS-API signature block for msg from the server, and
* verifies it with gss_verify. -1 is returned if any step fails,
* otherwise 0 is returned. */
int call_server(host, port, oid, service_name, deleg_flag, msg, use_file)

char *host;
u_short port;
gss_OID oid;
char *service_name;
OM_uint32 deleg_flag;
char *msg;
int use_file;

{
gss_ctx_id_t context;
gss_buffer_desc in_buf, out_buf;
int s, state;
OM_uint32 ret_flags;
OM_uint32 maj_stat, min_stat;
gss_name_t src_name, targ_name;
gss_buffer_desc sname, tname;
OM_uint32 lifetime;
gss_OID mechanism, name_type;
int is_local;
OM_uint32 context_flags;
int is_open;
gss_qop_t qop_state;
gss_OID_set mech_names;
gss_buffer_desc oid_name;
size_t i;

/* Open connection */
if ((s = connect_to_server(host, port)) < 0)

return -1;

/* Establish context */
if (client_establish_context(s, service_name, deleg_flag, oid,

Appendix A • Sample C–Based GSS-API Programs 207

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

&context, &ret_flags) < 0) {
(void) close(s);
return -1;

}

/* display the flags */
display_ctx_flags(ret_flags);

/* Get context information */
maj_stat = gss_inquire_context(&min_stat, context,

&src_name, &targ_name, &lifetime,
&mechanism, &context_flags,
&is_local,
&is_open);

if (maj_stat != GSS_S_COMPLETE) {
display_status("inquiring context", maj_stat, min_stat);
return -1;

}

maj_stat = gss_display_name(&min_stat, src_name, &sname,
&name_type);

if (maj_stat != GSS_S_COMPLETE) {
display_status("displaying source name", maj_stat, min_stat);
return -1;

}
maj_stat = gss_display_name(&min_stat, targ_name, &tname,

(gss_OID *) NULL);
if (maj_stat != GSS_S_COMPLETE) {

display_status("displaying target name", maj_stat, min_stat);
return -1;

}
fprintf(stderr, "\"%.*s\" to \"%.*s\", lifetime %d, flags %x, %s,

%s\n", (int) sname.length, (char *) sname.value,
(int) tname.length, (char *) tname.value, lifetime,
context_flags,
(is_local) ? "locally initiated" : "remotely initiated",
(is_open) ? "open" : "closed");

(void) gss_release_name(&min_stat, &src_name);
(void) gss_release_name(&min_stat, &targ_name);
(void) gss_release_buffer(&min_stat, &sname);
(void) gss_release_buffer(&min_stat, &tname);

maj_stat = gss_oid_to_str(&min_stat,
name_type,
&oid_name);

if (maj_stat != GSS_S_COMPLETE) {
display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(stderr, "Name type of source name is %.*s.\n",

(int) oid_name.length, (char *) oid_name.value);
(void) gss_release_buffer(&min_stat, &oid_name);

208 Solaris Security for Developers Guide • January 2005

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

/* Now get the names supported by the mechanism */
maj_stat = gss_inquire_names_for_mech(&min_stat,

mechanism,
&mech_names);

if (maj_stat != GSS_S_COMPLETE) {
display_status("inquiring mech names", maj_stat, min_stat);
return -1;

}

maj_stat = gss_oid_to_str(&min_stat,
mechanism,
&oid_name);

if (maj_stat != GSS_S_COMPLETE) {
display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(stderr, "Mechanism %.*s supports %d names\n",

(int) oid_name.length, (char *) oid_name.value,
mech_names->count);

(void) gss_release_buffer(&min_stat, &oid_name);

for (i=0; i<mech_names->count; i++) {
maj_stat = gss_oid_to_str(&min_stat,

&mech_names->elements[i],
&oid_name);

if (maj_stat != GSS_S_COMPLETE) {
display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(stderr, " %d: %.*s\n", i,

(int) oid_name.length, (char *) oid_name.value);

(void) gss_release_buffer(&min_stat, &oid_name);
}
(void) gss_release_oid_set(&min_stat, &mech_names);

if (use_file) {
read_file(msg, &in_buf);

} else {
/* Seal the message */
in_buf.value = msg;
in_buf.length = strlen(msg);

}

maj_stat = gss_wrap(&min_stat, context, 1, GSS_C_QOP_DEFAULT,
&in_buf, &state, &out_buf);

if (maj_stat != GSS_S_COMPLETE) {
display_status("sealing message", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context,

GSS_C_NO_BUFFER);
return -1;

Appendix A • Sample C–Based GSS-API Programs 209

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

} else if (! state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

/* Send to server */
if (send_token(s, &out_buf) < 0) {

(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}
(void) gss_release_buffer(&min_stat, &out_buf);

/* Read signature block into out_buf */
if (recv_token(s, &out_buf) < 0) {

(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}

/* Verify signature block */
maj_stat = gss_verify_mic(&min_stat, context, &in_buf,

&out_buf, &qop_state);
if (maj_stat != GSS_S_COMPLETE) {

display_status("verifying signature", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}
(void) gss_release_buffer(&min_stat, &out_buf);

if (use_file)
free(in_buf.value);

printf("Signature verified.\n");

/* Delete context */
maj_stat = gss_delete_sec_context(&min_stat, &context, &out_buf);
if (maj_stat != GSS_S_COMPLETE) {

display_status("deleting context", maj_stat, min_stat);
(void) close(s);
(void) gss_delete_sec_context(&min_stat, &context, GSS_C_NO_BUFFER);
return -1;

}

(void) gss_release_buffer(&min_stat, &out_buf);
(void) close(s);
return 0;

}

static void parse_oid(char *mechanism, gss_OID *oid)
{

char *mechstr = 0, *cp;
gss_buffer_desc tok;

210 Solaris Security for Developers Guide • January 2005

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

OM_uint32 maj_stat, min_stat;

if (isdigit(mechanism[0])) {
mechstr = malloc(strlen(mechanism)+5);
if (!mechstr) {

printf("Couldn’t allocate mechanism scratch!\n");
return;

}
sprintf(mechstr, "{ %s }", mechanism);
for (cp = mechstr; *cp; cp++)

if (*cp == ’.’)
*cp = ’ ’;

tok.value = mechstr;
} else

tok.value = mechanism;
tok.length = strlen(tok.value);
maj_stat = gss_str_to_oid(&min_stat, &tok, oid);
if (maj_stat != GSS_S_COMPLETE) {

display_status("str_to_oid", maj_stat, min_stat);
return;

}
if (mechstr)

free(mechstr);
}

int main(argc, argv)
int argc;
char **argv;

{
char *service_name, *server_host, *msg;
char *mechanism = 0;
u_short port = 4444;
int use_file = 0;
OM_uint32 deleg_flag = 0, min_stat;
gss_OID oid = GSS_C_NULL_OID;

display_file = stdout;

/* Parse arguments. */
argc--; argv++;
while (argc) {

if (strcmp(*argv, "-port") == 0) {
argc--; argv++;
if (!argc) usage();
port = atoi(*argv);

} else if (strcmp(*argv, "-mech") == 0) {
argc--; argv++;
if (!argc) usage();
mechanism = *argv;

} else if (strcmp(*argv, "-d") == 0) {
deleg_flag = GSS_C_DELEG_FLAG;

} else if (strcmp(*argv, "-f") == 0) {
use_file = 1;

Appendix A • Sample C–Based GSS-API Programs 211

EXAMPLE A–1 Complete Listing of gss-client.c Sample Program (Continued)

} else
break;

argc--; argv++;
}
if (argc != 3)

usage();

server_host = *argv++;
service_name = *argv++;
msg = *argv++;

if (mechanism)
parse_oid(mechanism, &oid);

if (call_server(server_host, port, oid, service_name,
deleg_flag, msg, use_file) < 0)

exit(1);

if (oid != GSS_C_NULL_OID)
(void) gss_release_oid(&min_stat, &oid);

return 0;

}

Server-Side Application
The source code for the server-side program, gss_server, is provided in the
following example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program

/*
* Copyright 1994 by OpenVision Technologies, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of OpenVision not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. OpenVision makes no

212 Solaris Security for Developers Guide • January 2005

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/

#if !defined(lint) && !defined(__CODECENTER__)
static char *rcsid = \
"$Header: /cvs/krbdev/krb5/src/appl/gss-sample/gss-server.c, \

v 1.21 1998/12/22 \
04:10:08 tytso Exp $";
#endif

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <unistd.h>
#include <stdlib.h>
#include <ctype.h>

#include <gssapi/gssapi.h>
#include <gssapi/gssapi_ext.h>
#include <gss-misc.h>

#include <string.h>

void usage()
{

fprintf(stderr, "Usage: gss-server [-port port] [-verbose]\n");
fprintf(stderr, " [-inetd] [-logfile file] [service_name]\n");
exit(1);

}

FILE *log;

int verbose = 0;

/*
* Function: server_acquire_creds
*
* Purpose: imports a service name and acquires credentials for it
*
* Arguments:
*
* service_name (r) the ASCII service name

Appendix A • Sample C–Based GSS-API Programs 213

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

* server_creds (w) the GSS-API service credentials
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* The service name is imported with gss_import_name, and service
* credentials are acquired with gss_acquire_cred. If either operation
* fails, an error message is displayed and -1 is returned; otherwise,
* 0 is returned.
*/
int server_acquire_creds(service_name, server_creds)

char *service_name;
gss_cred_id_t *server_creds;

{
gss_buffer_desc name_buf;
gss_name_t server_name;
OM_uint32 maj_stat, min_stat;

name_buf.value = service_name;
name_buf.length = strlen(name_buf.value) + 1;
maj_stat = gss_import_name(&min_stat, &name_buf,

(gss_OID) GSS_C_NT_HOSTBASED_SERVICE, &server_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("importing name", maj_stat, min_stat);
return -1;

}

maj_stat = gss_acquire_cred(&min_stat, server_name, 0,
GSS_C_NULL_OID_SET, GSS_C_ACCEPT,
server_creds, NULL, NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("acquiring credentials", maj_stat, min_stat);
return -1;

}

(void) gss_release_name(&min_stat, &server_name);

return 0;
}

/*
* Function: server_establish_context
*
* Purpose: establishes a GSS-API context as a specified service with
* an incoming client, and returns the context handle and associated
* client name
*
* Arguments:
*
* s (r) an established TCP connection to the client
* service_creds (r) server credentials, from gss_acquire_cred
* context (w) the established GSS-API context

214 Solaris Security for Developers Guide • January 2005

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

* client_name (w) the client’s ASCII name
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* Any valid client request is accepted. If a context is established,
* its handle is returned in context and the client name is returned
* in client_name and 0 is returned. If unsuccessful, an error
* message is displayed and -1 is returned.
*/
int server_establish_context(s, server_creds, context, client_name, \

ret_flags)

int s;
gss_cred_id_t server_creds;
gss_ctx_id_t *context;
gss_buffer_t client_name;
OM_uint32 *ret_flags;

{
gss_buffer_desc send_tok, recv_tok;
gss_name_t client;
gss_OID doid;
OM_uint32 maj_stat, min_stat, acc_sec_min_stat;
gss_buffer_desc oid_name;

*context = GSS_C_NO_CONTEXT;

do {
if (recv_token(s, &recv_tok) < 0)

return -1;

if (verbose && log) {
fprintf(log, "Received token (size=%d): \n", recv_tok.length);
print_token(&recv_tok);

}

maj_stat =
gss_accept_sec_context(&acc_sec_min_stat,

context,
server_creds,
&recv_tok,
GSS_C_NO_CHANNEL_BINDINGS,
&client,
&doid,
&send_tok,
ret_flags,
NULL, /* ignore time_rec */
NULL); /* ignore del_cred_handle */

(void) gss_release_buffer(&min_stat, &recv_tok);

if (send_tok.length != 0) {

Appendix A • Sample C–Based GSS-API Programs 215

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

if (verbose && log) {
fprintf(log,

"Sending accept_sec_context token (size=%d):\n",
send_tok.length);

print_token(&send_tok);
}
if (send_token(s, &send_tok) < 0) {

fprintf(log, "failure sending token\n");
return -1;

}

(void) gss_release_buffer(&min_stat, &send_tok);
}
if (maj_stat!=GSS_S_COMPLETE && maj_stat!=GSS_S_CONTINUE_NEEDED) {

display_status("accepting context", maj_stat,
acc_sec_min_stat);

if (*context == GSS_C_NO_CONTEXT)
gss_delete_sec_context(&min_stat, context,

GSS_C_NO_BUFFER);
return -1;

}

if (verbose && log) {
if (maj_stat == GSS_S_CONTINUE_NEEDED)

fprintf(log, "continue needed...\n");
else

fprintf(log, "\n");
fflush(log);

}
} while (maj_stat == GSS_S_CONTINUE_NEEDED);

/* display the flags */
display_ctx_flags(*ret_flags);

if (verbose && log) {
maj_stat = gss_oid_to_str(&min_stat, doid, &oid_name);
if (maj_stat != GSS_S_COMPLETE) {

display_status("converting oid->string", maj_stat, min_stat);
return -1;

}
fprintf(log, "Accepted connection using mechanism OID %.*s.\n",

(int) oid_name.length, (char *) oid_name.value);
(void) gss_release_buffer(&min_stat, &oid_name);

}

maj_stat = gss_display_name(&min_stat, client, client_name, &doid);
if (maj_stat != GSS_S_COMPLETE) {

display_status("displaying name", maj_stat, min_stat);
return -1;

}
maj_stat = gss_release_name(&min_stat, &client);
if (maj_stat != GSS_S_COMPLETE) {

display_status("releasing name", maj_stat, min_stat);

216 Solaris Security for Developers Guide • January 2005

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

return -1;
}
return 0;

}

/*
* Function: create_socket
*
* Purpose: Opens a listening TCP socket.
*
* Arguments:
*
* port (r) the port number on which to listen
*
* Returns: the listening socket file descriptor, or -1 on failure
*
* Effects:
*
* A listening socket on the specified port is created and returned.
* On error, an error message is displayed and -1 is returned.
*/
int create_socket(port)

u_short port;
{

struct sockaddr_in saddr;
int s;
int on = 1;

saddr.sin_family = AF_INET;
saddr.sin_port = htons(port);
saddr.sin_addr.s_addr = INADDR_ANY;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("creating socket");
return -1;

}
/* Let the socket be reused right away */
(void) setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)&on,

sizeof(on));
if (bind(s, (struct sockaddr *) &saddr, sizeof(saddr)) < 0) {

perror("binding socket");
(void) close(s);
return -1;

}
if (listen(s, 5) < 0) {

perror("listening on socket");
(void) close(s);
return -1;

}
return s;

}

static float timeval_subtract(tv1, tv2)

Appendix A • Sample C–Based GSS-API Programs 217

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

struct timeval *tv1, *tv2;
{

return ((tv1->tv_sec - tv2->tv_sec) +
((float) (tv1->tv_usec - tv2->tv_usec)) / 1000000);

}

/*
* Yes, yes, this isn’t the best place for doing this test.
* DO NOT REMOVE THIS UNTIL A BETTER TEST HAS BEEN WRITTEN, THOUGH.
* -TYT
*/
int test_import_export_context(context)

gss_ctx_id_t *context;
{

OM_uint32 min_stat, maj_stat;
gss_buffer_desc context_token, copied_token;
struct timeval tm1, tm2;

/*
* Attempt to save and then restore the context.
*/
gettimeofday(&tm1, (struct timezone *)0);
maj_stat = gss_export_sec_context(&min_stat, context, \

&context_token);
if (maj_stat != GSS_S_COMPLETE) {

display_status("exporting context", maj_stat, min_stat);
return 1;

}
gettimeofday(&tm2, (struct timezone *)0);
if (verbose && log)

fprintf(log, "Exported context: %d bytes, %7.4f seconds\n",
context_token.length, timeval_subtract(&tm2, &tm1));

copied_token.length = context_token.length;
copied_token.value = malloc(context_token.length);
if (copied_token.value == 0) {

fprintf(log, "Couldn’t allocate memory to copy context \
token.\n");

return 1;
}
memcpy(copied_token.value, context_token.value, \

copied_token.length);
maj_stat = gss_import_sec_context(&min_stat, &copied_token, \

context);
if (maj_stat != GSS_S_COMPLETE) {

display_status("importing context", maj_stat, min_stat);
return 1;

}
free(copied_token.value);
gettimeofday(&tm1, (struct timezone *)0);
if (verbose && log)

fprintf(log, "Importing context: %7.4f seconds\n",
timeval_subtract(&tm1, &tm2));

(void) gss_release_buffer(&min_stat, &context_token);

218 Solaris Security for Developers Guide • January 2005

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

return 0;
}

/*
* Function: sign_server
*
* Purpose: Performs the "sign" service.
*
* Arguments:
*
* s (r) a TCP socket on which a connection has been
* accept()ed
* service_name (r) the ASCII name of the GSS-API service to
* establish a context as
*
* Returns: -1 on error
*
* Effects:
*
* sign_server establishes a context, and performs a single sign request.
*
* A sign request is a single GSS-API sealed token. The token is
* unsealed and a signature block, produced with gss_sign, is returned
* to the sender. The context is then destroyed and the connection
* closed.
*
* If any error occurs, -1 is returned.
*/
int sign_server(s, server_creds)

int s;
gss_cred_id_t server_creds;

{
gss_buffer_desc client_name, xmit_buf, msg_buf;
gss_ctx_id_t context;
OM_uint32 maj_stat, min_stat;
int i, conf_state, ret_flags;
char *cp;

/* Establish a context with the client */
if (server_establish_context(s, server_creds, &context,

&client_name, &ret_flags) < 0)
return(-1);

printf("Accepted connection: \"%.*s\"\n",
(int) client_name.length, (char *) client_name.value);

(void) gss_release_buffer(&min_stat, &client_name);

for (i=0; i < 3; i++)
if (test_import_export_context(&context))

return -1;

/* Receive the sealed message token */
if (recv_token(s, &xmit_buf) < 0)

Appendix A • Sample C–Based GSS-API Programs 219

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

return(-1);

if (verbose && log) {
fprintf(log, "Sealed message token:\n");
print_token(&xmit_buf);

}

maj_stat = gss_unwrap(&min_stat, context, &xmit_buf, &msg_buf,
&conf_state, (gss_qop_t *) NULL);

if (maj_stat != GSS_S_COMPLETE) {
display_status("unsealing message", maj_stat, min_stat);
return(-1);

} else if (! conf_state) {
fprintf(stderr, "Warning! Message not encrypted.\n");

}

(void) gss_release_buffer(&min_stat, &xmit_buf);

fprintf(log, "Received message: ");
cp = msg_buf.value;
if ((isprint(cp[0]) || isspace(cp[0])) &&

(isprint(cp[1]) || isspace(cp[1]))) {
fprintf(log, "\"%.*s\"\n", msg_buf.length, msg_buf.value);

} else {
printf("\n");
print_token(&msg_buf);

}

/* Produce a signature block for the message */
maj_stat = gss_get_mic(&min_stat, context, GSS_C_QOP_DEFAULT,

&msg_buf, &xmit_buf);
if (maj_stat != GSS_S_COMPLETE) {

display_status("signing message", maj_stat, min_stat);
return(-1);

}

(void) gss_release_buffer(&min_stat, &msg_buf);

/* Send the signature block to the client */
if (send_token(s, &xmit_buf) < 0)

return(-1);

(void) gss_release_buffer(&min_stat, &xmit_buf);

/* Delete context */
maj_stat = gss_delete_sec_context(&min_stat, &context, NULL);
if (maj_stat != GSS_S_COMPLETE) {

display_status("deleting context", maj_stat, min_stat);
return(-1);

}

fflush(log);

220 Solaris Security for Developers Guide • January 2005

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

return(0);
}

int
main(argc, argv)

int argc;
char **argv;

{
char *service_name;
gss_cred_id_t server_creds;
OM_uint32 min_stat;
u_short port = 4444;
int s;
int once = 0;
int do_inetd = 0;

log = stdout;
display_file = stdout;
argc--; argv++;
while (argc) {

if (strcmp(*argv, "-port") == 0) {
argc--; argv++;
if (!argc) usage();
port = atoi(*argv);

} else if (strcmp(*argv, "-verbose") == 0) {
verbose = 1;

} else if (strcmp(*argv, "-once") == 0) {
once = 1;

} else if (strcmp(*argv, "-inetd") == 0) {
do_inetd = 1;

} else if (strcmp(*argv, "-logfile") == 0) {
argc--; argv++;
if (!argc) usage();
log = fopen(*argv, "a");
display_file = log;
if (!log) {

perror(*argv);
exit(1);

}
} else

break;
argc--; argv++;

}
if (argc != 1)

usage();

if ((*argv)[0] == ’-’)
usage();

service_name = *argv;

if (server_acquire_creds(service_name, &server_creds) < 0)
return -1;

Appendix A • Sample C–Based GSS-API Programs 221

EXAMPLE A–2 Complete Code Listing for gss-server.c Sample Program (Continued)

if (do_inetd) {
close(1);
close(2);

sign_server(0, server_creds);
close(0);

} else {
int stmp;

if ((stmp = create_socket(port)) >= 0) {
do {

/* Accept a TCP connection */
if ((s = accept(stmp, NULL, 0)) < 0) {

perror("accepting connection");
continue;

}
/* this return value is not checked, because there’s

not really anything to do if it fails */
sign_server(s, server_creds);
close(s);

} while (!once);

close(stmp);
}

}

(void) gss_release_cred(&min_stat, &server_creds);

/*NOTREACHED*/
(void) close(s);
return 0;

}

Miscellaneous GSS-API Sample
Functions
To make the client and server programs work as shown, a number of other functions
are required. These functions are used to display values. The functions are not
otherwise needed.The functions in this category are as follows:

� send_token() – Transfers tokens and messages to a recipient

� recv_token() – Accepts tokens and messages from a sender

� display_status() – Shows the status returned by the last GSS-API function
called

222 Solaris Security for Developers Guide • January 2005

� write_all() – Writes a buffer to a file

� read_all() – Reads a file into a buffer

� display_ctx_flags() – Shows in a readable form information about the
current context, such as whether confidentiality or mutual authentication is
allowed

� print_token() – Prints out a token’s value

The code for these functions is shown in the following example.

Note – The source code for this example is also available through the Sun download
center. See http://wwws.sun.com/software/solaris/get.html

EXAMPLE A–3 Code Listings for Miscellaneous GSS-API Functions

/*
* Copyright 1994 by OpenVision Technologies, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of OpenVision not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. OpenVision makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/

#if !defined(lint) && !defined(__CODECENTER__)
static char *rcsid = "$Header: /cvs/krbdev/krb5/src/appl/gss-sample/\

gss-misc.c, v 1.15 1996/07/22 20:21:20 marc Exp $";
#endif

#include <stdio.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

#include <gssapi/gssapi.h>
#include <gssapi/gssapi_ext.h>

Appendix A • Sample C–Based GSS-API Programs 223

EXAMPLE A–3 Code Listings for Miscellaneous GSS-API Functions (Continued)

#include <gss-misc.h>

#include <stdlib.h>

FILE *display_file;

static void display_status_1
(char *m, OM_uint32 code, int type);

static int write_all(int fildes, char *buf, unsigned int nbyte)
{

int ret;
char *ptr;

for (ptr = buf; nbyte; ptr += ret, nbyte -= ret) {
ret = write(fildes, ptr, nbyte);
if (ret < 0) {

if (errno == EINTR)
continue;

return(ret);
} else if (ret == 0) {

return(ptr-buf);
}

}

return(ptr-buf);
}

static int read_all(int fildes, char *buf, unsigned int nbyte)
{

int ret;
char *ptr;

for (ptr = buf; nbyte; ptr += ret, nbyte -= ret) {
ret = read(fildes, ptr, nbyte);
if (ret < 0) {

if (errno == EINTR)
continue;

return(ret);
} else if (ret == 0) {

return(ptr-buf);
}

}

return(ptr-buf);
}

/*
* Function: send_token
*
* Purpose: Writes a token to a file descriptor.
*
* Arguments:

224 Solaris Security for Developers Guide • January 2005

EXAMPLE A–3 Code Listings for Miscellaneous GSS-API Functions (Continued)

*
* s (r) an open file descriptor
* tok (r) the token to write
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* send_token writes the token length (as a network long) and then the
* token data to the file descriptor s. It returns 0 on success, and
* -1 if an error occurs or if it could not write all the data.
*/
int send_token(s, tok)

int s;
gss_buffer_t tok;

{
int len, ret;

len = htonl(tok->length);

ret = write_all(s, (char *) &len, 4);
if (ret < 0) {

perror("sending token length");
return -1;

} else if (ret != 4) {
if (display_file)

fprintf(display_file,
"sending token length: %d of %d bytes written\n",
ret, 4);

return -1;
}

ret = write_all(s, tok->value, tok->length);
if (ret < 0) {

perror("sending token data");
return -1;

} else if (ret != tok->length) {
if (display_file)

fprintf(display_file,
"sending token data: %d of %d bytes written\n",
ret, tok->length);

return -1;
}

return 0;
}

/*
* Function: recv_token
*
* Purpose: Reads a token from a file descriptor.
*
* Arguments:

Appendix A • Sample C–Based GSS-API Programs 225

EXAMPLE A–3 Code Listings for Miscellaneous GSS-API Functions (Continued)

*
* s (r) an open file descriptor
* tok (w) the read token
*
* Returns: 0 on success, -1 on failure
*
* Effects:
*
* recv_token reads the token length (as a network long), allocates
* memory to hold the data, and then reads the token data from the
* file descriptor s. It blocks to read the length and data, if
* necessary. On a successful return, the token should be freed with
* gss_release_buffer. It returns 0 on success, and -1 if an error
* occurs or if it could not read all the data.
*/
int recv_token(s, tok)

int s;
gss_buffer_t tok;

{
int ret;

ret = read_all(s, (char *) &tok->length, 4);
if (ret < 0) {

perror("reading token length");
return -1;

} else if (ret != 4) {
if (display_file)

fprintf(display_file,
"reading token length: %d of %d bytes read\n",
ret, 4);

return -1;
}

tok->length = ntohl(tok->length);
tok->value = (char *) malloc(tok->length);
if (tok->value == NULL) {

if (display_file)
fprintf(display_file,

"Out of memory allocating token data\n");
return -1;

}

ret = read_all(s, (char *) tok->value, tok->length);
if (ret < 0) {

perror("reading token data");
free(tok->value);
return -1;

} else if (ret != tok->length) {
fprintf(stderr, "sending token data: %d of %d bytes written\n",

ret, tok->length);
free(tok->value);
return -1;

}

226 Solaris Security for Developers Guide • January 2005

EXAMPLE A–3 Code Listings for Miscellaneous GSS-API Functions (Continued)

return 0;
}

static void display_status_1(m, code, type)
char *m;
OM_uint32 code;
int type;

{
OM_uint32 maj_stat, min_stat;
gss_buffer_desc msg;
OM_uint32 msg_ctx;

msg_ctx = 0;
while (1) {

maj_stat = gss_display_status(&min_stat, code,
type, GSS_C_NULL_OID,
&msg_ctx, &msg);

if (display_file)
fprintf(display_file, "GSS-API error %s: %s\n", m,

(char *)msg.value);
(void) gss_release_buffer(&min_stat, &msg);

if (!msg_ctx)
break;

}
}

/*
* Function: display_status
*
* Purpose: displays GSS-API messages
*
* Arguments:
*
* msg a string to be displayed with the message
* maj_stat the GSS-API major status code
* min_stat the GSS-API minor status code
*
* Effects:
*
* The GSS-API messages associated with maj_stat and min_stat are
* displayed on stderr, each preceded by "GSS-API error <msg>: " and
* followed by a newline.
*/
void display_status(msg, maj_stat, min_stat)

char *msg;
OM_uint32 maj_stat;
OM_uint32 min_stat;

{
display_status_1(msg, maj_stat, GSS_C_GSS_CODE);
display_status_1(msg, min_stat, GSS_C_MECH_CODE);

}

Appendix A • Sample C–Based GSS-API Programs 227

EXAMPLE A–3 Code Listings for Miscellaneous GSS-API Functions (Continued)

/*
* Function: display_ctx_flags
*
* Purpose: displays the flags returned by context initiation in
* a human-readable form
*
* Arguments:
*
* int ret_flags
*
* Effects:
*
* Strings corresponding to the context flags are printed on
* stdout, preceded by "context flag: " and followed by a newline
*/

void display_ctx_flags(flags)
OM_uint32 flags;

{
if (flags & GSS_C_DELEG_FLAG)

fprintf(display_file, "context flag: GSS_C_DELEG_FLAG\n");
if (flags & GSS_C_MUTUAL_FLAG)

fprintf(display_file, "context flag: GSS_C_MUTUAL_FLAG\n");
if (flags & GSS_C_REPLAY_FLAG)

fprintf(display_file, "context flag: GSS_C_REPLAY_FLAG\n");
if (flags & GSS_C_SEQUENCE_FLAG)

fprintf(display_file, "context flag: GSS_C_SEQUENCE_FLAG\n");
if (flags & GSS_C_CONF_FLAG)

fprintf(display_file, "context flag: GSS_C_CONF_FLAG \n");
if (flags & GSS_C_INTEG_FLAG)

fprintf(display_file, "context flag: GSS_C_INTEG_FLAG \n");
}

void print_token(tok)
gss_buffer_t tok;

{
int i;
unsigned char *p = tok->value;

if (!display_file)
return;

for (i=0; i < tok->length; i++, p++) {
fprintf(display_file, "%02x ", *p);
if ((i % 16) == 15) {

fprintf(display_file, "\n");
}

}
fprintf(display_file, "\n");
fflush(display_file);

}

228 Solaris Security for Developers Guide • January 2005

APPENDIX B

GSS-API Reference

This appendix includes the following sections:

� “GSS-API Functions” on page 229 provides a table of GSS-API functions.

� “GSS-API Status Codes” on page 232 discusses status codes returned by GSS-API
functions, and provides a list of those status codes.

� “GSS-API Data Types and Values” on page 235 discusses the various data types used
by GSS-API.

� “Implementation-Specific Features in GSS-API” on page 239 covers features that are
unique to the Sun implementation of GSS-API.

� “Kerberos v5 Status Codes” on page 242 lists the status codes that can be returned by
the Kerberos v5 mechanism.

Additional GSS-API definitions can be found in the file gssapi.h.

GSS-API Functions
The Solaris software implements the GSS-API functions. For more information on each
function, see its man page. See also “Functions From Previous Versions of GSS-API”
on page 231.

gss_acquire_cred() Assume a global identity by obtaining a
GSS-API credential handle for preexisting
credentials

gss_add_cred() Construct credentials incrementally

gss_inquire_cred() Obtain information about a credential

gss_inquire_cred_by_mech() Obtain per-mechanism information about a
credential

229

gss_release_cred() Discard a credential handle

gss_init_sec_context() Initiate a security context with a peer
application

gss_accept_sec_context() Accept a security context initiated by a peer
application

gss_delete_sec_context() Discard a security context

gss_process_context_token() Process a token on a security context from a
peer application

gss_context_time() Determine how long a context is to remain
valid

gss_inquire_context() Obtain information about a security context

gss_wrap_size_limit() Determine token-size limit for gss_wrap()
on a context

gss_export_sec_context() Transfer a security context to another
process

gss_import_sec_context() Import a transferred context

gss_get_mic() Calculate a cryptographic message integrity
code (MIC) for a message

gss_verify_mic() Check a MIC against a message to verify
integrity of a received message

gss_wrap() Attach a MIC to a message, and optionally
encrypt the message content

gss_unwrap() Verify a message with attached MIC.
Decrypt message content if necessary

gss_import_name() Convert a contiguous string name to an
internal-form name

gss_display_name() Convert internal-form name to text

gss_compare_name() Compare two internal-form names

gss_release_name() Discard an internal-form name

gss_inquire_names_for_mech() List the name types supported by the
specified mechanism

gss_inquire_mechs_for_name() List mechanisms that support the specified
name type

gss_canonicalize_name() Convert an internal name to a mechanism
name (MN)

gss_export_name() Convert an MN to export form

230 Solaris Security for Developers Guide • January 2005

gss_duplicate_name() Create a copy of an internal name

gss_add_oid_set_member() Add an object identifier to a set

gss_display_status() Convert a GSS-API status code to text

gss_indicate_mechs() Determine available underlying
authentication mechanisms

gss_release_buffer() Discard a buffer

gss_release_oid_set() Discard a set of object identifiers

gss_create_empty_oid_set() Create a set with no object identifiers

gss_test_oid_set_member() Determine whether an object identifier is a
member of a set

Functions From Previous Versions of GSS-API
This section explains functions that were included in previous versions of the
GSS-API.

Functions for Manipulating OIDs
The Sun implementation of GSS-API provides the following functions for convenience
and for backward compatibility. However, these functions might not be supported by
other implementations of GSS-API.

� gss_delete_oid()
� gss_oid_to_str()
� gss_str_to_oid()

Although a mechanism’s name can be converted from a string to an OID,
programmers should use the default GSS-API mechanism if at all possible.

Renamed Functions
The following functions have been supplanted by newer functions. In each case, the
new function is the functional equivalent of the older function. Although the old
functions are supported, developers should replace these functions with the newer
functions whenever possible.

� gss_sign() has been replaced with gss_get_mic().
� gss_verify() has been replaced with gss_verify_mic().
� gss_seal() has been replaced with gss_wrap().
� gss_unseal() has been replaced with gss_unwrap().

Appendix B • GSS-API Reference 231

GSS-API Status Codes
Major status codes are encoded in the OM_uint32 as shown in the following figure.

Most Significant Bit (MSB) LSB

016 1524 23Bit 31

Calling Error Supplementary Info

Major Status Code OM_uint32

Routine Error

FIGURE B–1 Major-Status Encoding

If a GSS-API routine returns a GSS status code whose upper 16 bits contain a nonzero
value, the call has failed. If the calling error field is nonzero, the application’s call of
the routine was erroneous. The calling errors are listed in Table B–1. If the routine error
field is nonzero, the routine failed because of a routine-specific error, as listed in Table
B–2. The bits in the supplementary information field of the status code can be set
whether the upper 16 bits indicate a failure or a success.The meaning of individual
bits is listed in Table B–3.

GSS-API Major Status Code Values
The following tables list the calling errors that are returned by GSS-API. These errors
are specific to a particular language-binding, which is C in this case.

TABLE B–1 GSS-API Calling Errors

Error Value in Field Meaning

GSS_S_CALL_INACCESSIBLE_READ 1 An input parameter that is
required could not be read

GSS_S_CALL_INACCESSIBLE_WRITE 2 A required output parameter
could not be written

232 Solaris Security for Developers Guide • January 2005

TABLE B–1 GSS-API Calling Errors (Continued)
Error Value in Field Meaning

GSS_S_CALL_BAD_STRUCTURE 3 A parameter was malformed

The following table lists the GSS-API routine errors, generic errors that are returned by
GSS-API functions.

TABLE B–2 GSS-API Routine Errors

Error Value in Field Meaning

GSS_S_BAD_MECH 1 An unsupported mechanism was
requested.

GSS_S_BAD_NAME 2 An invalid name was supplied.

GSS_S_BAD_NAMETYPE 3 A supplied name was of an
unsupported type.

GSS_S_BAD_BINDINGS 4 Incorrect channel bindings were
supplied.

GSS_S_BAD_STATUS 5 An invalid status code was supplied.

GSS_S_BAD_MIC, GSS_S_BAD_SIG 6 A token had an invalid MIC.

GSS_S_NO_CRED 7 The credentials were unavailable,
inaccessible, or not supplied.

GSS_S_NO_CONTEXT 8 No context has been established.

GSS_S_DEFECTIVE_TOKEN 9 A token was invalid.

GSS_S_DEFECTIVE_CREDENTIAL 10 A credential was invalid.

GSS_S_CREDENTIALS_EXPIRED 11 The referenced credentials have
expired.

GSS_S_CONTEXT_EXPIRED 12 The context has expired.

GSS_S_FAILURE 13 Miscellaneous failure. The underlying
mechanism detected an error for which
no specific GSS–API status code is
defined. The mechanism-specific status
code, that is, the minor-status code,
provides more details about the error.

GSS_S_BAD_QOP 14 The quality-of-protection that was
requested could not be provided.

GSS_S_UNAUTHORIZED 15 The operation is forbidden by local
security policy.

GSS_S_UNAVAILABLE 16 The operation or option is unavailable.

Appendix B • GSS-API Reference 233

TABLE B–2 GSS-API Routine Errors (Continued)
Error Value in Field Meaning

GSS_S_DUPLICATE_ELEMENT 17 The requested credential element
already exists.

GSS_S_NAME_NOT_MN 18 The provided name was not a
mechanism name (MN).

The name GSS_S_COMPLETE, which is a zero value, indicates an absence of any API
errors or supplementary information bits.

The following table lists the supplementary information values returned by GSS-API
functions.

TABLE B–3 GSS-API Supplementary Information Codes

Code Bit Number Meaning

GSS_S_CONTINUE_NEEDED 0 (LSB) Returned only by
gss_init_sec_context() or
gss_accept_sec_context(). The
routine must be called again to complete
its function.

GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of an earlier
token.

GSS_S_OLD_TOKEN 2 The token’s validity period has expired.

GSS_S_UNSEQ_TOKEN 3 A later token has already been processed.

GSS_S_GAP_TOKEN 4 An expected per-message token was not
received.

For more on status codes, see “GSS-API Status Codes” on page 72.

Displaying Status Codes
The function gss_display_status() translates GSS-API status codes into text
format. This format allows the codes to be displayed to a user or put in a text log.
gss_display_status() only displays one status code at a time, and some
functions can return multiple status conditions. Accordingly, gss_display_status
() should be called as part of a loop. When gss_display_status() indicates a
non-zero status code, another status code is available for the function to fetch.

EXAMPLE B–1 Displaying Status Codes with gss_display_status()

OM_uint32 message_context;
OM_uint32 status_code;
OM_uint32 maj_status;

234 Solaris Security for Developers Guide • January 2005

EXAMPLE B–1 Displaying Status Codes with gss_display_status() (Continued)

OM_uint32 min_status;
gss_buffer_desc status_string;

...

message_context = 0;

do {

maj_status = gss_display_status(
&min_status,
status_code,
GSS_C_GSS_CODE,
GSS_C_NO_OID,
&message_context,
&status_string);

fprintf(stderr, "%.*s\n", \
(int)status_string.length, \
(char *)status_string.value);

gss_release_buffer(&min_status, &status_string,);

} while (message_context != 0);

Status Code Macros
The macros, GSS_CALLING_ERROR(), GSS_ROUTINE_ERROR() and
GSS_SUPPLEMENTARY_INFO(), take a GSS status code. These macros remove all
information except for the relevant field. For example, the GSS_ROUTINE_ERROR()
can be applied to a status code to remove the calling errors and supplementary
information fields. This operation leaves the routine errors field only. The values
delivered by these macros can be directly compared with a GSS_S_xxx symbol of the
appropriate type. The macro GSS_ERROR() returns a non-zero value if a status code
indicates a calling or routine error, and a zero value otherwise. All macros that are
defined by GSS-API evaluate the arguments exactly once.

GSS-API Data Types and Values
This section describes various types of GSS-API data types and values. Some data
types, such as gss_cred_id_t or gss_name_t, are opaque to the user. These data
types do not need to be discussed.This section explains the following topics:

Appendix B • GSS-API Reference 235

� “Basic GSS-API Data Types” on page 236 – Shows the definitions of the
OM_uint32, gss_buffer_desc, gss_OID_desc,
gss_OID_set_desc_struct, and gss_channel_bindings_struct data
types.

� “Name Types” on page 237 – Shows the various name formats recognized by the
GSS-API for specifying names.

� “Address Types for Channel Bindings” on page 238 – Shows the various values that
can be used as the initiator_addrtype and acceptor_addrtype fields of the
gss_channel_bindings_t structure.

Basic GSS-API Data Types
This section describes data types that are used by GSS-API.

OM_uint32

The OM_uint32 is a platform-independent 32–bit unsigned integer.

gss_buffer_desc

The definition of the gss_buffer_desc with the gss_buffer_t pointer takes the
following form:

typedef struct gss_buffer_desc_struct {
size_t length;
void *value;

} gss_buffer_desc, *gss_buffer_t;

gss_OID_desc

The definition of the gss_OID_desc with the gss_OID pointer takes the following
form:

typedef struct gss_OID_desc_struct {
OM_uint32 length;
void*elements;

} gss_OID_desc, *gss_OID;

gss_OID_set_desc

The definition of the gss_OID_set_desc with the gss_OID_set pointer takes the
following form:

236 Solaris Security for Developers Guide • January 2005

typedef struct gss_OID_set_desc_struct {
size_t count;
gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

gss_channel_bindings_struct

The definition of the gss_channel_bindings_struct structure and the
gss_channel_bindings_t pointer has the following form:

typedef struct gss_channel_bindings_struct {
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} *gss_channel_bindings_t;

Name Types
A name type indicates the format of the associated name. See “Names in GSS-API”
on page 64 and “GSS-API OIDs” on page 71 for more on names and name types. The
GSS-API supports the gss_OID name types in the following table.

GSS_C_NO_NAME The symbolic name
GSS_C_NO_NAME is recommended
as a parameter value to indicate that
no value is supplied in the transfer of
names.

GSS_C_NO_OID This value corresponds to a null input
value instead of an actual object
identifier. Where specified, the value
indicates interpretation of an
associated name that is based on a
mechanism-specific default printable
syntax.

GSS_C_NT_ANONYMOUS A means to identify anonymous
names. This value can be compared
with to determine in a
mechanism-independent fashion
whether a name refers to an
anonymous principal.

GSS_C_NT_EXPORT_NAME A name that has been exported with
the gss_export_name() function.

GSS_C_NT_HOSTBASED_SERVICE Used to represent services that are
associated with host computers. This

Appendix B • GSS-API Reference 237

name form is constructed using two
elements, service and hostname, as
follows: service@hostname.

GSS_C_NT_MACHINE_UID_NAME Used to indicate a numeric user
identifier corresponding to a user on a
local system. The interpretation of this
value is OS-specific. The
gss_import_name() function
resolves this UID into a user name,
which is then treated as the User
Name Form.

GSS_C_NT_STRING_STRING_UID_NAME Used to indicate a string of digits that
represents the numeric user identifier
of a user on a local system. The
interpretation of this value is
OS-specific. This name type is similar
to the Machine UID Form, except that
the buffer contains a string that
represents the user ID.

GSS_C_NT_USER_NAME A named user on a local system. The
interpretation of this value is
OS-specific. The value takes the form:
username.

Address Types for Channel Bindings
The following table shows the possible values for the initiator_addrtype and
acceptor_addrtype fields of the gss_channel_bindings_struct structure. These
fields indicate the format that a name can take, for example, ARPAnet IMP address or
AppleTalk address. Channel bindings are discussed in “Using Channel Bindings in
GSS-API” on page 84.

TABLE B–4 Channel Binding Address Types

Field Value (Decimal) Address Type

GSS_C_AF_UNSPEC 0 Unspecified address type

GSS_C_AF_LOCAL 1 Host-local

GSS_C_AF_INET 2 Internet address type, for example, IP

GSS_C_AF_IMPLINK 3 ARPAnet IMP

GSS_C_AF_PUP 4 pup protocols, for example, BSP

238 Solaris Security for Developers Guide • January 2005

TABLE B–4 Channel Binding Address Types (Continued)
Field Value (Decimal) Address Type

GSS_C_AF_CHAOS 5 MIT CHAOS protocol

GSS_C_AF_NS 6 XEROX NS

GSS_C_AF_NBS 7 nbs

GSS_C_AF_ECMA 8 ECMA

GSS_C_AF_DATAKIT 9 Datakit protocols

GSS_C_AF_CCITT 10 CCITT

GSS_C_AF_SNA 11 IBM SNA

GSS_C_AF_DECnet 12 DECnet

GSS_C_AF_DLI 13 Direct data link interface

GSS_C_AF_LAT 14 LAT

GSS_C_AF_HYLINK 15 NSC Hyperchannel

GSS_C_AF_APPLETALK 16 AppleTalk

GSS_C_AF_BSC 17 BISYNC

GSS_C_AF_DSS 18 Distributed system services

GSS_C_AF_OSI 19 OSI TP4

GSS_C_AF_X25 21 X.25

GSS_C_AF_NULLADDR 255 No address specified

Implementation-Specific Features in
GSS-API
Some aspects of the GSS-API can differ between implementations of the API. In most
cases, differences in implementations have only minimal effect on programs. In all
cases, developers can maximize portability by not relying on any behavior that is
specific to a given implementation, including the Sun implementation.

Sun-Specific Functions
The Sun implementation does not have customized GSS-API functions.

Appendix B • GSS-API Reference 239

Human-Readable Name Syntax
Implementations of GSS-API can differ in the printable syntax that corresponds to
names. For portability, applications should not compare names that use
human—readable, that is, printable, forms. Instead, such applications should use
gss_compare_name() to determine whether an internal-format name matches any
other name.

The Sun implementation of gss_display_name() displays names as follows. If the
input_nameargument denotes a user principal, the gss_display_name() returns
user_principal@realm as the output_name_buffer and the gss_OID value as the
output_name_type. If Kerberos v5 is the underlying mechanism, gss_OID is
1.2.840.11354.1.2.2.

If gss_display_name() receives a name that was created by gss_import_name()
with the GSS_C_NO_OID name type, gss_display_name() returns GSS_C_NO_OID
in the output_name_type parameter.

Format of Anonymous Names
The gss_display_name() function outputs the string ’<anonymous>’ to indicate
an anonymous GSS-API principal. The name type OID associated with this name is
GSS_C_NT_ANONYMOUS. No other valid printable names supported by the Sun
implementation should be surrounded by angle brackets (<>).

Implementations of Selected Data Types
The following data types have been implemented as pointers, although some
implementations might specify these types as arithmetic types: gss_cred_t,
gss_ctx_id_t, and gss_name_t.

Deletion of Contexts and Stored Data
When context establishment fails, the Sun implementation does not automatically
delete partially built contexts. Applications should therefore handle this event by
deleting the contexts with gss_delete_sec_context().

The Sun implementation automatically releases stored data, such as internal names,
through memory management. However, applications should still call appropriate
functions, such as gss_release_name(), when data elements are no longer needed.

Protection of Channel-Binding Information
Support for channel bindings varies by mechanism. Both the Diffie-Hellman
mechanism and the Kerberos v5 mechanism support channel bindings.

240 Solaris Security for Developers Guide • January 2005

Developers should assume that channel bindings data do not have confidentiality
protection. Although the Kerberos v5 mechanism provides this protection,
confidentiality for channel-bindings data is not available with the Diffie-Hellman
mechanism.

Context Exportation and Interprocess Tokens
The Sun implementation detects and rejects attempted multiple imports of the same
context.

Types of Credentials Supported
The Sun implementation of the GSS-API supports the acquisition of
GSS_C_INITIATE, GSS_C_ACCEPT, and GSS_C_BOTH credentials through
gss_acquire_cred().

Credential Expiration
The Sun implementation of the GSS-API supports credential expiration. Therefore,
programmers can use parameters that relate to credential lifetime in functions such as
gss_acquire_cred() and gss_add_cred().

Context Expiration
The Sun implementation of the GSS-API supports context expiration. Therefore,
programmers can use parameters that relate to context lifetime in functions such as
gss_init_sec_context() and gss_inquire_context().

Wrap Size Limits and QOP Values
The Sun implementation of the GSS-API, as opposed to any underlying mechanism,
does not impose a maximum size for messages to be processed by gss_wrap().
Applications can determine the maximum message size with
gss_wrap_size_limit().

The Sun implementation of the GSS-API detects invalid QOP values when
gss_wrap_size_limit() is called.

Use of minor_status Parameter
In the Sun implementation of the GSS-API, functions return only mechanism-specific
information in the minor_status parameter. Other implementations might include
implementation-specific return values as part of the returned minor-status code.

Appendix B • GSS-API Reference 241

Kerberos v5 Status Codes
Each GSS-API function returns two status codes: a major status code and a minor status
code. Major status codes relate to the behavior of GSS-API. For example, if an
application attempts to transmit a message after a security context has expired,
GSS-API returns a major status code of GSS_S_CONTEXT_EXPIRED. Major status
codes are listed in “GSS-API Status Codes” on page 232.

Minor status codes are returned by the underlying security mechanisms supported by
a given implementation of GSS-API. Every GSS-API function takes as the first
argument a minor_status or minor_stat parameter. An application can examine this
parameter when the function returns, successfully or not, to see the status that is
returned by the underlying mechanism.

The following tables list the status messages that can be returned by Kerberos v5 in
the minor_status argument. For more on GSS-API status codes, see “GSS-API Status
Codes” on page 72.

Messages Returned in Kerberos v5 for Status Code
1
The following table lists the minor status messages that are returned in Kerberos v5
for status code 1.

TABLE B–5 Kerberos v5 Status Codes 1

Minor Status Value Meaning

KRB5KDC_ERR_NONE -1765328384L No error

KRB5KDC_ERR_NAME_EXP -1765328383L Client’s entry in
database has expired

KRB5KDC_ERR_SERVICE_EXP -1765328382L Server’s entry in
database has expired

KRB5KDC_ERR_BAD_PVNO -1765328381L Requested protocol
version not supported

KRB5KDC_ERR_C_OLD_MAST_KVNO -1765328380L Client’s key is encrypted
in an old master key

KRB5KDC_ERR_S_OLD_MAST_KVNO -1765328379L Server’s key is
encrypted in an old
master key

242 Solaris Security for Developers Guide • January 2005

TABLE B–5 Kerberos v5 Status Codes 1 (Continued)
Minor Status Value Meaning

KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN -1765328378L Client not found in
Kerberos database

KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN -1765328377L Server not found in
Kerberos database

KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE -1765328376L Principal has multiple
entries in Kerberos
database

KRB5KDC_ERR_NULL_KEY -1765328375L Client or server has a
null key

KRB5KDC_ERR_CANNOT_POSTDATE -1765328374L Ticket is ineligible for
postdating

KRB5KDC_ERR_NEVER_VALID -1765328373L Requested effective
lifetime is negative or
too short

KRB5KDC_ERR_POLICY -1765328372L KDC policy rejects
request

KRB5KDC_ERR_BADOPTION -1765328371L KDC can’t fulfill
requested option

KRB5KDC_ERR_ETYPE_NOSUPP -1765328370L KDC has no support for
encryption type

KRB5KDC_ERR_SUMTYPE_NOSUPP -1765328369L KDC has no support for
checksum type

KRB5KDC_ERR_PADATA_TYPE_NOSUPP -1765328368L KDC has no support for
padata type

KRB5KDC_ERR_TRTYPE_NOSUPP -1765328367L KDC has no support for
transited type

KRB5KDC_ERR_CLIENT_REVOKED -1765328366L Client’s credentials have
been revoked

KRB5KDC_ERR_SERVICE_REVOKED -1765328365L Credentials for server
have been revoked

Messages Returned in Kerberos v5 for Status Code
2
The following table lists the minor status messages that are returned in Kerberos v5
for status code 2.

Appendix B • GSS-API Reference 243

TABLE B–6 Kerberos v5 Status Codes 2

Minor Status Value Meaning

KRB5KDC_ERR_TGT_REVOKED -1765328364L TGT has been revoked

KRB5KDC_ERR_CLIENT_NOTYET -1765328363L Client not yet valid, try
again later

KRB5KDC_ERR_SERVICE_NOTYET -1765328362L Server not yet valid, try
again later

KRB5KDC_ERR_KEY_EXP -1765328361L Password has expired

KRB5KDC_ERR_PREAUTH_FAILED -1765328360L Preauthentication failed

KRB5KDC_ERR_PREAUTH_REQUIRED -1765328359L Additional
preauthentication
required

KRB5KDC_ERR_SERVER_NOMATCH -1765328358L Requested server and
ticket don’t match

KRB5PLACEHOLD_27 through KRB5PLACEHOLD_30 -1765328357L through
-1765328354L

KRB5 error codes 27
through 30 (reserved)

KRB5KRB_AP_ERR_BAD_INTEGRITY -1765328353L Decrypt integrity check
failed

KRB5KRB_AP_ERR_TKT_EXPIRED -1765328352L Ticket expired

KRB5KRB_AP_ERR_TKT_NYV -1765328351L Ticket not yet valid

KRB5KRB_AP_ERR_REPEAT -1765328350L Request is a replay

KRB5KRB_AP_ERR_NOT_US -1765328349L The ticket isn’t for us

KRB5KRB_AP_ERR_BADMATCH -1765328348L Ticket/authenticator do
not match

KRB5KRB_AP_ERR_SKEW -1765328347L Clock skew too great

KRB5KRB_AP_ERR_BADADDR -1765328346L Incorrect net address

KRB5KRB_AP_ERR_BADVERSION -1765328345L Protocol version
mismatch

KRB5KRB_AP_ERR_MSG_TYPE -1765328344L Invalid message type

KRB5KRB_AP_ERR_MODIFIED -1765328343L Message stream
modified

KRB5KRB_AP_ERR_BADORDER -1765328342L Message out of order

KRB5KRB_AP_ERR_ILL_CR_TKT -1765328341L Illegal cross-realm ticket

KRB5KRB_AP_ERR_BADKEYVER -1765328340L Key version is not
available

244 Solaris Security for Developers Guide • January 2005

Messages Returned in Kerberos v5 for Status Code
3
The following table lists the minor status messages that are returned in Kerberos v5
for status code 3.

TABLE B–7 Kerberos v5 Status Codes 3

Minor Status Value Meaning

KRB5KRB_AP_ERR_NOKEY -1765328339L Service key not
available

KRB5KRB_AP_ERR_MUT_FAIL -1765328338L Mutual authentication
failed

KRB5KRB_AP_ERR_BADDIRECTION -1765328337L Incorrect message
direction

KRB5KRB_AP_ERR_METHOD -1765328336L Alternative
authentication method
required

KRB5KRB_AP_ERR_BADSEQ -1765328335L Incorrect sequence
number in message

KRB5KRB_AP_ERR_INAPP_CKSUM -1765328334L Inappropriate type of
checksum in message

KRB5PLACEHOLD_51 throughKRB5PLACEHOLD_59 -1765328333L through
-1765328325L

KRB5 error codes 51
through 59 (reserved)

KRB5KRB_ERR_GENERIC -1765328324L Generic error

KRB5KRB_ERR_FIELD_TOOLONG -1765328323L Field is too long for this
implementation

KRB5PLACEHOLD_62 through KRB5PLACEHOLD_127 -1765328322L through
-1765328257L

KRB5 error codes 62
through 127 (reserved)

value not returned -1765328256L For internal use only

KRB5_LIBOS_BADLOCKFLAG -1765328255L Invalid flag for file lock
mode

KRB5_LIBOS_CANTREADPWD -1765328254L Cannot read password

KRB5_LIBOS_BADPWDMATCH -1765328253L Password mismatch

KRB5_LIBOS_PWDINTR -1765328252L Password read
interrupted

KRB5_PARSE_ILLCHAR -1765328251L Illegal character in
component name

Appendix B • GSS-API Reference 245

TABLE B–7 Kerberos v5 Status Codes 3 (Continued)
Minor Status Value Meaning

KRB5_PARSE_MALFORMED -1765328250L Malformed
representation of
principal

KRB5_CONFIG_CANTOPEN -1765328249L Can’t open/find
Kerberos
/etc/krb5/krb5
configuration file

KRB5_CONFIG_BADFORMAT -1765328248L Improper format of
Kerberos
/etc/krb5/krb5
configuration file

KRB5_CONFIG_NOTENUFSPACE -1765328247L Insufficient space to
return complete
information

KRB5_BADMSGTYPE -1765328246L Invalid message type
has been specified for
encoding

KRB5_CC_BADNAME -1765328245L Credential cache name
malformed

Messages Returned in Kerberos v5 for Status Code
4
The following table lists the minor status messages that are returned in Kerberos v5
for status code 4.

TABLE B–8 Kerberos v5 Status Codes 4

Minor Status Value Meaning

KRB5_CC_UNKNOWN_TYPE -1765328244L Unknown credential
cache type

KRB5_CC_NOTFOUND -1765328243L No matching credential
has been found

KRB5_CC_END -1765328242L End of credential cache
reached

KRB5_NO_TKT_SUPPLIED -1765328241L Request did not supply
a ticket

246 Solaris Security for Developers Guide • January 2005

TABLE B–8 Kerberos v5 Status Codes 4 (Continued)
Minor Status Value Meaning

KRB5KRB_AP_WRONG_PRINC -1765328240L Wrong principal in
request

KRB5KRB_AP_ERR_TKT_INVALID -1765328239L Ticket has invalid flag
set

KRB5_PRINC_NOMATCH -1765328238L Requested principal and
ticket don’t match

KRB5_KDCREP_MODIFIED -1765328237L KDC reply did not
match expectations

KRB5_KDCREP_SKEW -1765328236L Clock skew too great in
KDC reply

KRB5_IN_TKT_REALM_MISMATCH -1765328235L Client/server realm
mismatch in initial
ticket request

KRB5_PROG_ETYPE_NOSUPP -1765328234L Program lacks support
for encryption type

KRB5_PROG_KEYTYPE_NOSUPP -1765328233L Program lacks support
for key type

KRB5_WRONG_ETYPE -1765328232L Requested encryption
type not used in
message

KRB5_PROG_SUMTYPE_NOSUPP -1765328231L Program lacks support
for checksum type

KRB5_REALM_UNKNOWN -1765328230L Cannot find KDC for
requested realm

KRB5_SERVICE_UNKNOWN -1765328229L Kerberos service
unknown

KRB5_KDC_UNREACH -1765328228L Cannot contact any
KDC for requested
realm

KRB5_NO_LOCALNAME -1765328227L No local name found for
principal name

KRB5_MUTUAL_FAILED -1765328226L Mutual authentication
failed

KRB5_RC_TYPE_EXISTS -1765328225L Replay cache type is
already registered

Appendix B • GSS-API Reference 247

TABLE B–8 Kerberos v5 Status Codes 4 (Continued)
Minor Status Value Meaning

KRB5_RC_MALLOC -1765328224L No more memory to
allocate in replay cache
code

KRB5_RC_TYPE_NOTFOUND -1765328223L Replay cache type is
unknown

Messages Returned in Kerberos v5 for Status Code
5
The following table lists the minor status messages that are returned in Kerberos v5
for status code .

TABLE B–9 Kerberos v5 Status Codes 5

Minor Status Value Meaning

KRB5_RC_UNKNOWN -1765328222L Generic unknown RC
error

KRB5_RC_REPLAY -1765328221L Message is a replay

KRB5_RC_IO -1765328220L Replay I/O operation
failed

KRB5_RC_NOIO -1765328219L Replay cache type does
not support non-volatile
storage

KRB5_RC_PARSE -1765328218L Replay cache name
parse and format error

KRB5_RC_IO_EOF -1765328217L End-of-file on replay
cache I/O

KRB5_RC_IO_MALLOC -1765328216L No more memory to
allocate in replay cache
I/O code

KRB5_RC_IO_PERM -1765328215L Permission denied in
replay cache code

KRB5_RC_IO_IO -1765328214L I/O error in replay
cache i/o code

KRB5_RC_IO_UNKNOWN -1765328213L Generic unknown
RC/IO error

248 Solaris Security for Developers Guide • January 2005

TABLE B–9 Kerberos v5 Status Codes 5 (Continued)
Minor Status Value Meaning

KRB5_RC_IO_SPACE -1765328212L Insufficient system space
to store replay
information

KRB5_TRANS_CANTOPEN -1765328211L Can’t open/find realm
translation file

KRB5_TRANS_BADFORMAT -1765328210L Improper format of
realm translation file

KRB5_LNAME_CANTOPEN -1765328209L Can’t open or find
lname translation
database

KRB5_LNAME_NOTRANS -1765328208L No translation is
available for requested
principal

KRB5_LNAME_BADFORMAT -1765328207L Improper format of
translation database
entry

KRB5_CRYPTO_INTERNAL -1765328206L Cryptosystem internal
error

KRB5_KT_BADNAME -1765328205L Key table name
malformed

KRB5_KT_UNKNOWN_TYPE -1765328204L Unknown Key table
type

KRB5_KT_NOTFOUND -1765328203L Key table entry not
found

KRB5_KT_END -1765328202L End of key table reached

KRB5_KT_NOWRITE -1765328201L Cannot write to
specified key table

Messages Returned in Kerberos v5 for Status Code
6
The following table lists the minor status messages that are returned in Kerberos v5
for status code 6.

Appendix B • GSS-API Reference 249

TABLE B–10 Kerberos v5 Status Codes 6

Minor Status Value Meaning

KRB5_KT_IOERR -1765328200L Error writing to key
table

KRB5_NO_TKT_IN_RLM -1765328199L Cannot find ticket for
requested realm

KRB5DES_BAD_KEYPAR -1765328198L DES key has bad parity

KRB5DES_WEAK_KEY -1765328197L DES key is a weak key

KRB5_BAD_ENCTYPE -1765328196L Bad encryption type

KRB5_BAD_KEYSIZE -1765328195L Key size is incompatible
with encryption type

KRB5_BAD_MSIZE -1765328194L Message size is
incompatible with
encryption type

KRB5_CC_TYPE_EXISTS -1765328193L Credentials cache type
is already registered

KRB5_KT_TYPE_EXISTS -1765328192L Key table type is already
registered

KRB5_CC_IO -1765328191L Credentials cache I/O
operation failed

KRB5_FCC_PERM -1765328190L Credentials cache file
permissions incorrect

KRB5_FCC_NOFILE -1765328189L No credentials cache file
found

KRB5_FCC_INTERNAL -1765328188L Internal file credentials
cache error

KRB5_CC_WRITE -1765328187L Error writing to
credentials cache file

KRB5_CC_NOMEM -1765328186L No more memory to
allocate in credentials
cache code

KRB5_CC_FORMAT -1765328185L Bad format in
credentials cache

KRB5_INVALID_FLAGS -1765328184L Invalid KDC option
combination, which is
an internal library error

250 Solaris Security for Developers Guide • January 2005

TABLE B–10 Kerberos v5 Status Codes 6 (Continued)
Minor Status Value Meaning

KRB5_NO_2ND_TKT -1765328183L Request missing second
ticket

KRB5_NOCREDS_SUPPLIED -1765328182L No credentials supplied
to library routine

KRB5_SENDAUTH_BADAUTHVERS -1765328181L Bad sendauth version
was sent

KRB5_SENDAUTH_BADAPPLVERS -1765328180L Bad application version
was sent by sendauth

KRB5_SENDAUTH_BADRESPONSE -1765328179L Bad response during
sendauth exchange

KRB5_SENDAUTH_REJECTED -1765328178L Server rejected
authentication during
sendauth exchange

Messages Returned in Kerberos v5 for Status Code
7
The following table lists the minor status messages that are returned in Kerberos v5
for status code 7.

TABLE B–11 Kerberos v5 Status Codes 7

Minor Status Value Meaning

KRB5_PREAUTH_BAD_TYPE -1765328177L Unsupported
preauthentication type

KRB5_PREAUTH_NO_KEY -1765328176L Required
preauthentication key
not supplied

KRB5_PREAUTH_FAILED -1765328175L Generic
preauthentication failure

KRB5_RCACHE_BADVNO -1765328174L Unsupported format
version number for
replay cache

KRB5_CCACHE_BADVNO -1765328173L Unsupported
credentials cache format
version number

Appendix B • GSS-API Reference 251

TABLE B–11 Kerberos v5 Status Codes 7 (Continued)
Minor Status Value Meaning

KRB5_KEYTAB_BADVNO -1765328172L Unsupported version
number for key table
format

KRB5_PROG_ATYPE_NOSUPP -1765328171L Program lacks support
for address type

KRB5_RC_REQUIRED -1765328170L Message replay
detection requires
rcache parameter

KRB5_ERR_BAD_HOSTNAME -1765328169L Host name cannot be
canonicalized

KRB5_ERR_HOST_REALM_UNKNOWN -1765328168L Cannot determine realm
for host

KRB5_SNAME_UNSUPP_NAMETYPE -1765328167L Conversion to service
principal is undefined
for name type

KRB5KRB_AP_ERR_V4_REPLY -1765328166L Initial Ticket response
appears to be Version 4
error

KRB5_REALM_CANT_RESOLVE -1765328165L Cannot resolve KDC for
requested realm

KRB5_TKT_NOT_FORWARDABLE -1765328164L The requesting ticket
cannot get forwardable
tickets

KRB5_FWD_BAD_PRINCIPAL -1765328163L Bad principal name
while trying to forward
credentials

KRB5_GET_IN_TKT_LOOP -1765328162L Looping detected inside
krb5_get_in_tkt

KRB5_CONFIG_NODEFREALM -1765328161L Configuration file
/etc/krb5/krb5.conf
does not specify default
realm

KRB5_SAM_UNSUPPORTED -1765328160L Bad SAM flags in
obtain_sam_padata

KRB5_KT_NAME_TOOLONG -1765328159L Keytab name too long

KRB5_KT_KVNONOTFOUND -1765328158L Key version number for
principal in key table is
incorrect

252 Solaris Security for Developers Guide • January 2005

TABLE B–11 Kerberos v5 Status Codes 7 (Continued)
Minor Status Value Meaning

KRB5_CONF_NOT_CONFIGURED -1765328157L Kerberos
/etc/krb5/krb5.conf
configuration file not
configured

ERROR_TABLE_BASE_krb5 -1765328384L default

Appendix B • GSS-API Reference 253

254 Solaris Security for Developers Guide • January 2005

APPENDIX C

Specifying an OID

You should use the default QOP and mechanism provided by the GSS-API if at all
possible. See “GSS-API OIDs” on page 71. However, you might have your own
reasons for specifying OIDs. This appendix describes how to specify OIDs. The
following topics are covered.

� “Files with OID Values” on page 255“Files with OID Values” on page 255
� “Constructing Mechanism OIDs” on page 257
� “Specifying a Non-Default Mechanism” on page 259

Files with OID Values
For convenience, the GSS-API does allow mechanisms and QOPs to be displayed in
human-readable form. On Solaris systems, two files, /etc/gss/mech and
/etc/gss/qop, contain information about available mechanisms and available
QOPs. If you do not have access to these files, then you must provide the string literals
from some other source. The published Internet standard for that mechanism or QOP
should serve that purpose.

/etc/gss/mech File
The /etc/gss/mech file lists the mechanisms that are available. /etc/gss/mech
contains the names in both the numerical format and the alphabetic form.
/etc/gss/mech presents the information in this format:

� Mechanism name, in ASCII

� Mechanism’s OID

� Shared library for implementing the services that are provided by this mechanism

255

� Optionally, the kernel module for implementing the service

A sample /etc/gss/mech might look like Example C–1.

EXAMPLE C–1 The /etc/gss/mech File

#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
#ident "@(#)mech 1.12 03/10/20 SMI"
#
This file contains the GSS-API based security mechanism names,
the associated object identifiers (OID) and a shared library that
implements the services for the mechanisms under GSS-API.
#
Mechanism Name Object Identifier Shared Library Kernel Module
[Options]
#
kerberos_v5 1.2.840.113554.1.2.2 mech_krb5.so kmech_krb5
spnego 1.3.6.1.5.5.2 mech_spnego.so.1 [msinterop]
diffie_hellman_640_0 1.3.6.4.1.42.2.26.2.4 dh640-0.so.1

diffie_hellman_1024_0 1.3.6.4.1.42.2.26.2.5 dh1024-0.so.1

/etc/gss/qop File
The /etc/gss/qop file stores, for all mechanisms installed, all the QOPs supported
by each mechanism, both as an ASCII string and as the corresponding 32–bit integer. A
sample /etc/gss/qop might look like the following example.

EXAMPLE C–2 The /etc/gss/qop File

#
Copyright (c) 2000, by Sun Microsystems, Inc.
All rights reserved.
#
#ident "@(#)qop 1.3 00/11/09 SMI"
#
This file contains information about the GSS-API based quality of
protection (QOP), its string name and its value (32-bit integer).
#
QOP string QOP Value Mechanism Name
#
GSS_KRB5_INTEG_C_QOP_DES_MD5 0 kerberos_v5

GSS_KRB5_CONF_C_QOP_DES 0 kerberos_v5

256 Solaris Security for Developers Guide • January 2005

gss_str_to_oid() Function
For backward compatibility with earlier versions of the GSS-API, this implementation
of the GSS-API supports the function gss_str_to_oid(). gss_str_to_oid()
converts a string that represents a mechanism or QOP to an OID. The string can be
either as a number or a word.

Caution – gss_str_to_oid(), gss_oid_to_str(), and gss_release_oid() are
not supported by some implementations of the GSS-API to discourage the use of
explicit, non-default mechanisms and QOPs.

The mechanism string can be hard-coded in the application or come from user input.
However, not all implementations of the GSS-API support gss_str_to_oid(), so
applications should not rely on this function.

The number that represents a mechanism can have two different formats. The first
format, { 1 2 3 4 }, is officially mandated by the GSS-API specifications. The second
format, 1.2.3.4, is more widely used but is not an official standard format.
gss_str_to_oid() expects the mechanism number in the first format, so you must
convert the string if the string is in the second format before calling
gss_str_to_oid(). An example of gss_str_to_oid() is shown in Example C–3.
If the mechanism is not a valid one, gss_str_to_oid() returns GSS_S_BAD_MECH.

Because gss_str_to_oid() allocates GSS-API data space, the gss_release_oid
() function exists is provided to remove the allocated OID when you are finished.
Like gss_str_to_oid(), gss_release_oid() is not a generally supported
function and should not be relied upon in programs that aspire to universal
portability.

Constructing Mechanism OIDs
Because gss_str_to_oid() cannot always be used, there are alternative techniques
for finding and selecting mechanisms. One way is to construct a mechanism OID
manually and then compare that mechanism to a set of available mechanisms.
Another way is to get the set of available mechanisms and choose one from the set.

The gss_OID type has the following form:

typedef struct gss_OID_desc struct {
OM_uint32 length;
void *elements;

Appendix C • Specifying an OID 257

} gss_OID_desc, *gss_OID;

where the elements field of this structure points to the first byte of an octet string
containing the ASN.1 BER encoding of the value portion of the normal BER TLV
encoding of the gss_OID. The length field contains the number of bytes in this value.
For example, the gss_OID value that corresponds to the DASS X.509 authentication
mechanism has a length field of 7 and an elements field that points to the following
octal values: 53,14,2,207,163,7,5.

One way to construct a mechanism OID is to declare a gss_OID and then initialize the
elements manually to represent a given mechanism. As above, the input for the
elements values can be hard-coded, obtained from a table, or entered by a user. This
method is somewhat more painstaking than using gss_str_to_oid() but achieves
the same effect.

This constructed gss_OID can then be compared against a set of available
mechanisms that have been returned by the functions gss_indicate_mechs() or
gss_inquire_mechs_for_name(). The application can check for the constructed
mechanism OID in this set of available mechanisms by using the
gss_test_oid_set_member() function. If gss_test_oid_set_member() does
not return an error, then the constructed OID can be used as the mechanism for
GSS-API transactions.

As an alternative to constructing a preset OID, the application can use
gss_indicate_mechs() or gss_inquire_mechs_for_name() to get the
gss_OID_set of available mechanisms. A gss_OID_set has the following form:

typedef struct gss_OID_set_desc_struct {
OM_uint32 length;
void *elements;

} gss_OID_set_desc, *gss_OID_set;

where each of the elements is a gss_OID that represents a mechanism. The
application can then parse each mechanism and display the numerical representation.
A user can use this display to choose the mechanism. The application then sets the
mechanism to the appropriate member of the gss_OID_set. The application can also
compare the desired mechanisms against a list of preferred mechanisms.

createMechOid() Function
This function is shown for the sake of completeness. Normally, you should use the
default mechanism, which is specified by GSS_C_NULL_OID.

EXAMPLE C–3 createMechOid() Function

gss_OID createMechOid(const char *mechStr)
{

gss_buffer_desc mechDesc;
gss_OID mechOid;

258 Solaris Security for Developers Guide • January 2005

EXAMPLE C–3 createMechOid() Function (Continued)

OM_uint32 minor;

if (mechStr == NULL)
return (GSS_C_NULL_OID);

mechDesc.length = strlen(mechStr);
mechDesc.value = (void *) mechStr;

if (gss_str_to_oid(&minor, &mechDesc, &mechOid) !
= GSS_S_COMPLETE) {

fprintf(stderr, "Invalid mechanism oid specified <%s>",
mechStr);

return (GSS_C_NULL_OID);
}

return (mechOid);

}

Specifying a Non-Default Mechanism
parse_oid() converts the name of a security mechanism on the command line to a
compatible OID.

EXAMPLE C–4 parse_oid() Function

static void parse_oid(char *mechanism, gss_OID *oid)
{

char *mechstr = 0, *cp;
gss_buffer_desc tok;
OM_uint32 maj_stat, min_stat;

if (isdigit(mechanism[0])) {
mechstr = malloc(strlen(mechanism)+5);
if (!mechstr) {

printf("Couldn’t allocate mechanism scratch!\n");
return;

}
sprintf(mechstr, "{ %s }", mechanism);
for (cp = mechstr; *cp; cp++)

if (*cp == ’.’)
*cp = ’ ’;

tok.value = mechstr;
} else

tok.value = mechanism;
tok.length = strlen(tok.value);
maj_stat = gss_str_to_oid(&min_stat, &tok, oid);
if (maj_stat != GSS_S_COMPLETE) {

Appendix C • Specifying an OID 259

EXAMPLE C–4 parse_oid() Function (Continued)

display_status("str_to_oid", maj_stat, min_stat);
return;

}
if (mechstr)

free(mechstr);

}

260 Solaris Security for Developers Guide • January 2005

APPENDIX D

Source Code for SASL Example

This appendix contains the source code for the example in “SASL Example” on page
148. The appendix includes the following topics:

� “SASL Client Example” on page 261
� “SASL Server Example” on page 270
� “Common Code” on page 279

SASL Client Example
The following code listing is for the sample client in “SASL Example” on page 148.

The source code for this example is also available through the Sun download center.
See http://wwws.sun.com/software/solaris/get.html

#pragma ident "@(#)client.c 1.4 03/04/07 SMI"
/* $Id: client.c,v 1.3 2002/09/03 15:11:59 rjs3 Exp $ */
/*
* Copyright (c) 2001 Carnegie Mellon University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The name "Carnegie Mellon University" must not be used to

261

* endorse or promote products derived from this software without
* prior written permission. For permission or any other legal
* details, please contact
* Office of Technology Transfer
* Carnegie Mellon University
* 5000 Forbes Avenue
* Pittsburgh, PA 15213-3890
* (412) 268-4387, fax: (412) 268-7395
* tech-transfer@andrew.cmu.edu
*
* 4. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by Computing Services
* at Carnegie Mellon University (http://www.cmu.edu/computing/)."
*
* CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

#include <config.h>

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <string.h>

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#ifdef _SUN_SDK_
#include <sysexits.h>
#endif /* _SUN_SDK_ */

#include <assert.h>

#include <sasl.h>

#include "common.h"

/* remove \r\n at end of the line */
static void chop(char *s)
{

char *p;

262 Solaris Security for Developers Guide • January 2005

assert(s);
p = s + strlen(s) - 1;
if (p[0] == ’\n’) {
*p-- = ’\0’;
}
if (p >= s && p[0] == ’\r’) {
*p-- = ’\0’;
}

}

static int getrealm(void *context __attribute__((unused)),
int id,
const char **availrealms,
const char **result)

{
static char buf[1024];

/* Double-check the ID */
if (id != SASL_CB_GETREALM) return SASL_BADPARAM;
if (!result) return SASL_BADPARAM;

printf("please choose a realm (available:");
while (*availrealms) {
printf(" %s", *availrealms);
availrealms++;
}
printf("): ");

fgets(buf, sizeof buf, stdin);
chop(buf);
*result = buf;

return SASL_OK;
}

static int simple(void *context __attribute__((unused)),
int id,
const char **result,
unsigned *len)

{
static char buf[1024];

/* Double-check the connection */
if (! result)
return SASL_BADPARAM;

switch (id) {
case SASL_CB_USER:
printf("please enter an authorization id: ");
break;
case SASL_CB_AUTHNAME:
printf("please enter an authentication id: ");
break;
default:

Appendix D • Source Code for SASL Example 263

return SASL_BADPARAM;
}

fgets(buf, sizeof buf, stdin);
chop(buf);
*result = buf;
if (len) *len = strlen(buf);

return SASL_OK;
}

#ifndef HAVE_GETPASSPHRASE
static char *
getpassphrase(const char *prompt)
{
return getpass(prompt);

}
#endif /* ! HAVE_GETPASSPHRASE */

static int
getsecret(sasl_conn_t *conn,

void *context __attribute__((unused)),
int id,
sasl_secret_t **psecret)

{
char *password;
size_t len;
static sasl_secret_t *x;

/* paranoia check */
if (! conn || ! psecret || id != SASL_CB_PASS)
return SASL_BADPARAM;

password = getpassphrase("Password: ");
if (! password)
return SASL_FAIL;

len = strlen(password);

x = (sasl_secret_t *) realloc(x, sizeof(sasl_secret_t) + len);

if (!x) {
memset(password, 0, len);
return SASL_NOMEM;
}

x->len = len;
#ifdef _SUN_SDK_

strcpy((char *)x->data, password);
#else

strcpy(x->data, password);
#endif /* _SUN_SDK_ */

memset(password, 0, len);

*psecret = x;

264 Solaris Security for Developers Guide • January 2005

return SASL_OK;
}

static int getpath(void * context __attribute__((unused)),
const char **path)

{
*path = getenv("SASL_PATH");

if (*path == NULL)
*path = PLUGINDIR;

return SASL_OK;
}

/* callbacks we support */
static sasl_callback_t callbacks[] = {
{
SASL_CB_GETREALM, &getrealm, NULL

}, {
SASL_CB_USER, &simple, NULL

}, {
SASL_CB_AUTHNAME, &simple, NULL

}, {
SASL_CB_PASS, &getsecret, NULL

}, {
SASL_CB_GETPATH, &getpath, NULL

}, {
SASL_CB_LIST_END, NULL, NULL

}
};

int getconn(const char *host, const char *port)
{

struct addrinfo hints, *ai, *r;
int err, sock = -1;

memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;

if ((err = getaddrinfo(host, port, &hints, &ai)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(err));
exit(EX_UNAVAILABLE);
}

for (r = ai; r; r = r->ai_next) {
sock = socket(r->ai_family, r->ai_socktype, r->ai_protocol);
if (sock < 0)

continue;
if (connect(sock, r->ai_addr, r->ai_addrlen) >= 0)

break;
close(sock);
sock = -1;
}

Appendix D • Source Code for SASL Example 265

freeaddrinfo(ai);
if (sock < 0) {
perror("connect");
exit(EX_UNAVAILABLE);
}

return sock;
}

char *mech;

int mysasl_negotiate(FILE *in, FILE *out, sasl_conn_t *conn)
{

char buf[8192];
const char *data;
const char *chosenmech;

#ifdef _SUN_SDK_
unsigned len;

#else
int len;

#endif /* _SUN_SDK_ */
int r, c;

/* get the capability list */
dprintf(0, "receiving capability list... ");
len = recv_string(in, buf, sizeof buf);
dprintf(0, "%s\n", buf);

if (mech) {
/* make sure that ’mech’ appears in ’buf’ */
if (!strstr(buf, mech)) {

printf("server doesn’t offer mandatory mech ’%s’\n", mech);
return -1;

}
} else {
mech = buf;
}

r = sasl_client_start(conn, mech, NULL, &data, &len, &chosenmech);
if (r != SASL_OK && r != SASL_CONTINUE) {
saslerr(r, "starting SASL negotiation");
printf("\n%s\n", sasl_errdetail(conn));
return -1;
}

dprintf(1, "using mechanism %s\n", chosenmech);

/* we send up to 3 strings;
the mechanism chosen, the presence of initial response,
and optionally the initial response */

send_string(out, chosenmech, strlen(chosenmech));
if(data) {
send_string(out, "Y", 1);
send_string(out, data, len);
} else {

266 Solaris Security for Developers Guide • January 2005

send_string(out, "N", 1);
}

for (;;) {
dprintf(2, "waiting for server reply...\n");

c = fgetc(in);
switch (c) {
case ’O’:

goto done_ok;

case ’N’:
goto done_no;

case ’C’: /* continue authentication */
break;

default:
printf("bad protocol from server (%c %x)\n", c, c);
return -1;

}
len = recv_string(in, buf, sizeof buf);

r = sasl_client_step(conn, buf, len, NULL, &data, &len);
if (r != SASL_OK && r != SASL_CONTINUE) {

saslerr(r, "performing SASL negotiation");
printf("\n%s\n", sasl_errdetail(conn));
return -1;

}

if (data) {
dprintf(2, "sending response length %d...\n", len);
send_string(out, data, len);

} else {
dprintf(2, "sending null response...\n");
send_string(out, "", 0);

}
}

done_ok:
printf("successful authentication\n");
return 0;

done_no:
printf("authentication failed\n");
return -1;

}

#ifdef _SUN_SDK_
void usage(const char *s)
#else
void usage(void)
#endif /* _SUN_SDK_ */
{
#ifdef _SUN_SDK_

Appendix D • Source Code for SASL Example 267

fprintf(stderr, "usage: %s [-p port] [-s service] [-m mech] host\n", s);
#else

fprintf(stderr, "usage: client [-p port] [-s service] \
[-m mech] host\n");

#endif /* _SUN_SDK_ */
exit(EX_USAGE);

}

int main(int argc, char *argv[])
{

int c;
char *host = "localhost";
char *port = "12345";
char localaddr[NI_MAXHOST + NI_MAXSERV],
remoteaddr[NI_MAXHOST + NI_MAXSERV];
char *service = "rcmd";
char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];
int r;
sasl_conn_t *conn;
FILE *in, *out;
int fd;
int salen;
struct sockaddr_storage local_ip, remote_ip;

while ((c = getopt(argc, argv, "p:s:m:")) != EOF) {
switch(c) {
case ’p’:

port = optarg;
break;

case ’s’:
service = optarg;
break;

case ’m’:
mech = optarg;
break;

default:
#ifdef _SUN_SDK_

usage(argv[0]);
#else

usage();
#endif /* _SUN_SDK_ */

break;
}
}

if (optind > argc - 1) {
#ifdef _SUN_SDK_

usage(argv[0]);
#else

usage();
#endif /* _SUN_SDK_ */

}

268 Solaris Security for Developers Guide • January 2005

if (optind == argc - 1) {
host = argv[optind];
}

/* initialize the sasl library */
r = sasl_client_init(callbacks);
if (r != SASL_OK) saslfail(r, "initializing libsasl");

/* connect to remote server */
fd = getconn(host, port);

/* set ip addresses */
salen = sizeof(local_ip);
if (getsockname(fd, (struct sockaddr *)&local_ip, &salen) < 0) {
perror("getsockname");
}

getnameinfo((struct sockaddr *)&local_ip, salen,
hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

#ifdef _SUN_SDK_ /* SOLARIS doesn’t support NI_WITHSCOPEID */
NI_NUMERICHOST | NI_NUMERICSERV);

#else
NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);

#endif
snprintf(localaddr, sizeof(localaddr), "%s;%s", hbuf, pbuf);

salen = sizeof(remote_ip);
if (getpeername(fd, (struct sockaddr *)&remote_ip, &salen) < 0) {
perror("getpeername");
}

getnameinfo((struct sockaddr *)&remote_ip, salen,
hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

#ifdef _SUN_SDK_ /* SOLARIS doesn’t support NI_WITHSCOPEID */
NI_NUMERICHOST | NI_NUMERICSERV);

#else
NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);

#endif
snprintf(remoteaddr, sizeof(remoteaddr), "%s;%s", hbuf, pbuf);

/* client new connection */
r = sasl_client_new(service, host, localaddr, remoteaddr, NULL,

0, &conn);
if (r != SASL_OK) saslfail(r, "allocating connection state");

/* set external properties here
sasl_setprop(conn, SASL_SSF_EXTERNAL, &extprops); */

/* set required security properties here
sasl_setprop(conn, SASL_SEC_PROPS, &secprops); */

in = fdopen(fd, "r");
out = fdopen(fd, "w");

r = mysasl_negotiate(in, out, conn);

Appendix D • Source Code for SASL Example 269

if (r == SASL_OK) {
/* send/receive data */

}

printf("closing connection\n");
fclose(in);
fclose(out);
close(fd);
sasl_dispose(&conn);

sasl_done();

return 0;

}

SASL Server Example
The following code listing is for the sample server in “SASL Example” on page 148.

The source code for this example is also available through the Sun download center.
See http://wwws.sun.com/software/solaris/get.html

#pragma ident "@(#)server.c 1.3 03/04/07 SMI"
/* $Id: server.c,v 1.4 2002/10/07 05:04:05 rjs3 Exp $ */
/*
* Copyright (c) 2001 Carnegie Mellon University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The name "Carnegie Mellon University" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For permission or any other legal
* details, please contact
* Office of Technology Transfer
* Carnegie Mellon University
* 5000 Forbes Avenue
* Pittsburgh, PA 15213-3890

270 Solaris Security for Developers Guide • January 2005

* (412) 268-4387, fax: (412) 268-7395
* tech-transfer@andrew.cmu.edu
*
* 4. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by Computing Services
* at Carnegie Mellon University (http://www.cmu.edu/computing/)."
*
* CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

#include <config.h>

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <string.h>

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#ifdef _SUN_SDK_
#include <sysexits.h>
#endif /* _SUN_SDK_ */

#include <sasl.h>

#include "common.h"

#if !defined(IPV6_BINDV6ONLY) && defined(IN6P_IPV6_V6ONLY)
#define IPV6_BINDV6ONLY IN6P_BINDV6ONLY
#endif
#if !defined(IPV6_V6ONLY) && defined(IPV6_BINDV6ONLY)
#define IPV6_V6ONLY IPV6_BINDV6ONLY
#endif
#ifndef IPV6_BINDV6ONLY
#undef IPV6_V6ONLY
#endif

static int getpath(void * context __attribute__((unused)),
const char **path)

{

Appendix D • Source Code for SASL Example 271

*path = getenv("SASL_PATH");

if (*path == NULL)
*path = PLUGINDIR;

return SASL_OK;
}

/* callbacks we support */
static sasl_callback_t callbacks[] = {
{
SASL_CB_GETPATH, &getpath, NULL

}, {
SASL_CB_LIST_END, NULL, NULL

}
};

/* create a socket listening on port ’port’ */
/* if af is PF_UNSPEC more than one socket might be returned */
/* the returned list is dynamically allocated, so caller needs to free it */
int *listensock(const char *port, const int af)
{

struct addrinfo hints, *ai, *r;
int err, maxs, *sock, *socks;
const int on = 1;

memset(&hints, 0, sizeof(hints));
hints.ai_flags = AI_PASSIVE;
hints.ai_family = af;
hints.ai_socktype = SOCK_STREAM;
err = getaddrinfo(NULL, port, &hints, &ai);
if (err) {
fprintf(stderr, "%s\n", gai_strerror(err));
exit(EX_USAGE);
}

/* Count max number of sockets we can open */
for (maxs = 0, r = ai; r; r = r->ai_next, maxs++)
;
socks = malloc((maxs + 1) * sizeof(int));
if (!socks) {
fprintf(stderr, "couldn’t allocate memory for sockets\n");
freeaddrinfo(ai);
exit(EX_OSERR);
}

socks[0] = 0; /* num of sockets counter at start of array */
sock = socks + 1;
for (r = ai; r; r = r->ai_next) {
fprintf(stderr, "trying %d, %d, %d\n",r->ai_family, r->ai_socktype,
r->ai_protocol);
*sock = socket(r->ai_family, r->ai_socktype, r->ai_protocol);
if (*sock < 0) {

perror("socket");
continue;

272 Solaris Security for Developers Guide • January 2005

}
if (setsockopt(*sock, SOL_SOCKET, SO_REUSEADDR,

(void *) &on, sizeof(on)) < 0) {
perror("setsockopt(SO_REUSEADDR)");
close(*sock);
continue;

}
#if defined(IPV6_V6ONLY) && !(defined(__FreeBSD__) && __FreeBSD__ < 3)

if (r->ai_family == AF_INET6) {
if (setsockopt(*sock, IPPROTO_IPV6, IPV6_BINDV6ONLY,

(void *) &on, sizeof(on)) < 0) {
perror("setsockopt (IPV6_BINDV6ONLY)");
close(*sock);
continue;
}

}
#endif

if (bind(*sock, r->ai_addr, r->ai_addrlen) < 0) {
perror("bind");
close(*sock);
continue;

}

if (listen(*sock, 5) < 0) {
perror("listen");
close(*sock);
continue;

}

socks[0]++;
sock++;
}

freeaddrinfo(ai);

if (socks[0] == 0) {
fprintf(stderr, "Couldn’t bind to any socket\n");
free(socks);
exit(EX_OSERR);
}

return socks;
}

#ifdef _SUN_SDK_
void usage(const char *s)
#else
void usage(void)
#endif /* _SUN_SDK_ */
{
#ifdef _SUN_SDK_

fprintf(stderr, "usage: %s [-p port] [-s service] [-m mech]\n", s);
#else

fprintf(stderr, "usage: server [-p port] [-s service] [-m mech]\n");
#endif /* _SUN_SDK_ */

Appendix D • Source Code for SASL Example 273

exit(EX_USAGE);
}

/* Globals are used here, but local variables are preferred */
char *mech;

/* do the sasl negotiation; return -1 if it fails */
int mysasl_negotiate(FILE *in, FILE *out, sasl_conn_t *conn)
{

char buf[8192];
char chosenmech[128];
const char *data;

#ifdef _SUN_SDK_
unsigned len;

#else
int len;

#endif /* _SUN_SDK_ */
int r = SASL_FAIL;
const char *userid;

/* generate the capability list */
if (mech) {
dprintf(2, "forcing use of mechanism %s\n", mech);
data = strdup(mech);
} else {
int count;

dprintf(1, "generating client mechanism list... ");
r = sasl_listmech(conn, NULL, NULL, " ", NULL,

&data, &len, &count);
if (r != SASL_OK) saslfail(r, "generating mechanism list");
dprintf(1, "%d mechanisms\n", count);
}

/* send capability list to client */
send_string(out, data, len);

dprintf(1, "waiting for client mechanism...\n");
len = recv_string(in, chosenmech, sizeof chosenmech);
if (len <= 0) {
printf("client didn’t choose mechanism\n");
fputc(’N’, out); /* send NO to client */
fflush(out);
return -1;
}

if (mech && strcasecmp(mech, chosenmech)) {
printf("client didn’t choose mandatory mechanism\n");
fputc(’N’, out); /* send NO to client */
fflush(out);
return -1;
}

len = recv_string(in, buf, sizeof(buf));
if(len != 1) {

274 Solaris Security for Developers Guide • January 2005

saslerr(r, "didn’t receive first-send parameter correctly");
fputc(’N’, out);
fflush(out);
return -1;
}

if(buf[0] == ’Y’) {
/* receive initial response (if any) */
len = recv_string(in, buf, sizeof(buf));

/* start libsasl negotiation */
r = sasl_server_start(conn, chosenmech, buf, len,

&data, &len);
} else {
r = sasl_server_start(conn, chosenmech, NULL, 0,

&data, &len);
}

if (r != SASL_OK && r != SASL_CONTINUE) {
saslerr(r, "starting SASL negotiation");
fputc(’N’, out); /* send NO to client */
fflush(out);
return -1;
}

while (r == SASL_CONTINUE) {
if (data) {

dprintf(2, "sending response length %d...\n", len);
fputc(’C’, out); /* send CONTINUE to client */
send_string(out, data, len);

} else {
dprintf(2, "sending null response...\n");
fputc(’C’, out); /* send CONTINUE to client */
send_string(out, "", 0);

}

dprintf(1, "waiting for client reply...\n");
len = recv_string(in, buf, sizeof buf);
if (len < 0) {

printf("client disconnected\n");
return -1;

}

r = sasl_server_step(conn, buf, len, &data, &len);
if (r != SASL_OK && r != SASL_CONTINUE) {

saslerr(r, "performing SASL negotiation");
fputc(’N’, out); /* send NO to client */
fflush(out);
return -1;

}
}

if (r != SASL_OK) {
saslerr(r, "incorrect authentication");
fputc(’N’, out); /* send NO to client */

Appendix D • Source Code for SASL Example 275

fflush(out);
return -1;
}

fputc(’O’, out); /* send OK to client */
fflush(out);
dprintf(1, "negotiation complete\n");

r = sasl_getprop(conn, SASL_USERNAME, (const void **) &userid);
printf("successful authentication ’%s’\n", userid);

return 0;
}

int main(int argc, char *argv[])
{

int c;
char *port = "12345";
char *service = "rcmd";
int *l, maxfd=0;
int r, i;
sasl_conn_t *conn;

while ((c = getopt(argc, argv, "p:s:m:")) != EOF) {
switch(c) {
case ’p’:

port = optarg;
break;

case ’s’:
service = optarg;
break;

case ’m’:
mech = optarg;
break;

default:
#ifdef _SUN_SDK_

usage(argv[0]);
#else

usage();
#endif /* _SUN_SDK_ */

break;
}
}

/* initialize the sasl library */
r = sasl_server_init(callbacks, "sample");
if (r != SASL_OK) saslfail(r, "initializing libsasl");

/* get a listening socket */
if ((l = listensock(port, PF_UNSPEC)) == NULL) {
saslfail(SASL_FAIL, "allocating listensock");
}

276 Solaris Security for Developers Guide • January 2005

for (i = 1; i <= l[0]; i++) {
if (l[i] > maxfd)

maxfd = l[i];
}

for (;;) {
char localaddr[NI_MAXHOST | NI_MAXSERV],

remoteaddr[NI_MAXHOST | NI_MAXSERV];
char myhostname[1024+1];
char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];
struct sockaddr_storage local_ip, remote_ip;
int salen;
int nfds, fd = -1;
FILE *in, *out;
fd_set readfds;

FD_ZERO(&readfds);
for (i = 1; i <= l[0]; i++)

FD_SET(l[i], &readfds);

nfds = select(maxfd + 1, &readfds, 0, 0, 0);
if (nfds <= 0) {

if (nfds < 0 && errno != EINTR)
perror("select");
continue;

}

for (i = 1; i <= l[0]; i++)
if (FD_ISSET(l[i], &readfds)) {

fd = accept(l[i], NULL, NULL);
break;

}

if (fd < 0) {
if (errno != EINTR)
perror("accept");
continue;

}

printf("accepted new connection\n");

/* set ip addresses */
salen = sizeof(local_ip);
if (getsockname(fd, (struct sockaddr *)&local_ip, &salen) < 0) {

perror("getsockname");
}
getnameinfo((struct sockaddr *)&local_ip, salen,

hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),
#ifdef _SUN_SDK_ /* SOLARIS doesn’t support NI_WITHSCOPEID */

NI_NUMERICHOST | NI_NUMERICSERV);
#else

NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);
#endif

snprintf(localaddr, sizeof(localaddr), "%s;%s", hbuf, pbuf);

Appendix D • Source Code for SASL Example 277

salen = sizeof(remote_ip);
if (getpeername(fd, (struct sockaddr *)&remote_ip, &salen) < 0) {

perror("getpeername");
}

getnameinfo((struct sockaddr *)&remote_ip, salen,
hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

#ifdef _SUN_SDK_ /* SOLARIS doesn’t support NI_WITHSCOPEID */
NI_NUMERICHOST | NI_NUMERICSERV);

#else
NI_NUMERICHOST | NI_WITHSCOPEID | NI_NUMERICSERV);

#endif
snprintf(remoteaddr, sizeof(remoteaddr), "%s;%s", hbuf, pbuf);

r = gethostname(myhostname, sizeof(myhostname)-1);
if(r == -1) saslfail(r, "getting hostname");

r = sasl_server_new(service, myhostname, NULL, localaddr, remoteaddr,
NULL, 0, &conn);

if (r != SASL_OK) saslfail(r, "allocating connection state");

/* set external properties here
sasl_setprop(conn, SASL_SSF_EXTERNAL, &extprops); */

/* set required security properties here
sasl_setprop(conn, SASL_SEC_PROPS, &secprops); */

in = fdopen(fd, "r");
out = fdopen(fd, "w");

r = mysasl_negotiate(in, out, conn);
if (r == SASL_OK) {

/* send/receive data */

}

printf("closing connection\n");
fclose(in);
fclose(out);
close(fd);
sasl_dispose(&conn);
}

sasl_done();

}

278 Solaris Security for Developers Guide • January 2005

Common Code
The following code sample includes listings for miscellaneous SASL functions.

The source code for this example is also available through the Sun download center.
See http://wwws.sun.com/software/solaris/get.html

#pragma ident "@(#)common.c 1.1 03/03/28 SMI"
/* $Id: common.c,v 1.3 2002/09/03 15:11:59 rjs3 Exp $ */
/*
* Copyright (c) 2001 Carnegie Mellon University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The name "Carnegie Mellon University" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For permission or any other legal
* details, please contact
* Office of Technology Transfer
* Carnegie Mellon University
* 5000 Forbes Avenue
* Pittsburgh, PA 15213-3890
* (412) 268-4387, fax: (412) 268-7395
* tech-transfer@andrew.cmu.edu
*
* 4. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by Computing Services
* at Carnegie Mellon University (http://www.cmu.edu/computing/)."
*
* CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO
* THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

#include <config.h>

#include <stdio.h>

Appendix D • Source Code for SASL Example 279

#include <ctype.h>
#include <stdarg.h>
#ifdef _SUN_SDK_
#include <sysexits.h>
#endif /* _SUN_SDK_ */

#include <sasl.h>

/* send/recv library for IMAP4 style literals.

really not important; just one way of doing length coded strings */

int send_string(FILE *f, const char *s, int l)
{

int al;

al = fprintf(f, "{%d}\r\n", l);
fwrite(s, 1, l, f);
fflush(f);

printf("send: {%d}\n", l);
while (l--) {
if (isprint((unsigned char) *s)) {

printf("%c", *s);
} else {

printf("[%X]", (unsigned char) *s);
}
s++;
}
printf("\n");

return al;
}

int recv_string(FILE *f, char *buf, int buflen)
{

int c;
int len, l;
char *s;

c = fgetc(f);
if (c != ’{’) return -1;

/* read length */
len = 0;
c = fgetc(f);
while (isdigit(c)) {
len = len * 10 + (c - ’0’);
c = fgetc(f);
}
if (c != ’}’) return -1;
c = fgetc(f);
if (c != ’\r’) return -1;
c = fgetc(f);
if (c != ’\n’) return -1;

280 Solaris Security for Developers Guide • January 2005

/* read string */
if (buflen <= len) {
fread(buf, buflen - 1, 1, f);
buf[buflen - 1] = ’\0’;
/* discard oversized string */
len -= buflen - 1;
while (len--) (void)fgetc(f);

len = buflen - 1;
} else {
fread(buf, len, 1, f);
buf[len] = ’\0’;
}

l = len;
s = buf;
printf("recv: {%d}\n", len);
while (l--) {
if (isprint((unsigned char) *s)) {

printf("%c", *s);
} else {

printf("[%X]", (unsigned char) *s);
}
s++;
}
printf("\n");

return len;
}

int debuglevel = 0;

int dprintf(int lvl, const char *fmt, ...)
{

va_list ap;
int ret = 0;

if (debuglevel >= lvl) {
va_start(ap, fmt);
ret = vfprintf(stdout, fmt, ap);
va_end(ap);
}

return ret;
}

void saslerr(int why, const char *what)
{
fprintf(stderr, "%s: %s", what, sasl_errstring(why, NULL, NULL));

}

void saslfail(int why, const char *what)
{

saslerr(why, what);

Appendix D • Source Code for SASL Example 281

exit(EX_TEMPFAIL);

}

282 Solaris Security for Developers Guide • January 2005

APPENDIX E

SASL Reference Tables

This appendix provides reference information for SASL, which is an acronym for
simple authentication and security layer.

SASL Interface Summaries
The following tables provide brief descriptions of some SASL interfaces.

TABLE E–1 SASL Functions Common to Clients and Servers

Function Description

sasl_version Get version information for the SASL library.

sasl_done Release all SASL global state.

sasl_dispose Dispose of sasl_conn_t when connection is done.

sasl_getprop Get property, for example, user name, security layer info.

sasl_setprop Set a SASL property.

sasl_errdetail Generate string from last error on connection.

sasl_errstring Translate SASL error code to a string.

sasl_encode Encode data to send using security layer.

sasl_encodev Encode a block of data for transmission through the security
layer. Uses iovec * as the input parameter.

sasl_listmech Create list of available mechanisms.

283

TABLE E–1 SASL Functions Common to Clients and Servers (Continued)
Function Description

sasl_global_listmech Return an array of all possible mechanisms. Note that this
interface is obsolete.

sasl_seterror Set the error string to be returned by sasl_errdetail().

sasl_idle Configure saslib to perform calculations during an idle
period or during a network round trip.

sasl_decode Decode data received using security layer.

TABLE E–2 Basic SASL Client–only Functions

Function Description

sasl_client_init Called once initially to load and initialize client plug-ins.

sasl_client_new Initialize client connection. Sets up the sasl_conn_t context.

sasl_client_start Select mechanism for connection.

sasl_client_step Perform one authentication step.

TABLE E–3 Basic SASL Server Functions (Clients Optional)

Function Description

sasl_server_init Called once initially to load and initialize server plug-ins.

sasl_server_new Initialize server connection. Sets up the sasl_conn_t context.

sasl_server_start Begin an authentication exchange.

sasl_server_step Perform one authentication exchange step.

sasl_checkpass Check a plain text passphrase.

sasl_checkapop Check an APOP challenge/response. Uses a pseudo APOP
mechanism, which is similar to a CRAM-MD5 mechanism.
Optional. Note that this interface is obsolete.

sasl_user_exists Check whether user exists.

sasl_setpass Change a password. Optionally, add a user entry.

sasl_auxprop_request Request auxiliary properties.

sasl_auxprop_getctx Get auxiliary property context for connection.

284 Solaris Security for Developers Guide • January 2005

TABLE E–4 SASL Functions for Configuring Basic Services

Function Description

sasl_set_alloc Assign memory allocation functions. Note that this interface is
obsolete.

sasl_set_mutex Assign mutex functions. Note that this interface is obsolete.

sasl_client_add_plug-in Add a client plug-in.

sasl_server_add_plug-in Add a server plug-in.

sasl_canonuser_add_plug-in Add a user canonicalization plug-in.

sasl_auxprop_add_plug-in Add an auxiliary property plug-in.

TABLE E–5 SASL Utility Functions

Function Description

sasl_decode64 Use base64 to decode.

sasl_encode64 Use base64 to encode.

sasl_utf8verify Verify that a string is valid UTF-8.

sasl_erasebuffer Erase a security-sensitive buffer or password. Implementation
might use recovery-resistant erase logic.

TABLE E–6 SASL Property Functions

Function Description

prop_clear() Clear values and optionally requests from property context

prop_dispose() Dispose of a property context

prop_dup() Create new propctx which duplicates the contents of an existing
propctx

prop_erase() Erase the value of a property

prop_format() Format the requested property names into a string

prop_get() Return array of the propval structure from the context

prop_getnames() Fill in an array of struct propval, given a list of property names

prop_new() Create a property context

prop_request() Add property names to a request

prop_set() Add a property value to the context

prop_setvals() Set the values for a property

Appendix E • SASL Reference Tables 285

TABLE E–6 SASL Property Functions (Continued)
Function Description

sasl_auxprop_getctx
()

Get auxiliary property context for connection

sasl_auxprop_request()Request auxiliary properties

TABLE E–7 Callback Data Types

Callback Description

sasl_getopt_t Get an option value. Used by both clients and servers.

sasl_log_t Log message handler. Used by both clients and servers.

sasl_getpath_t Get path to search for mechanisms. Used by both clients and
servers.

sasl_verifyfile_t Verify files for use by SASL. Used by both clients and servers.

sasl_canon_user_t User name canonicalization function. Used by both clients and
servers.

sasl_getsimple_t Get user and language list. Used by clients only.

sasl_getsecret_t Get authentication secret. Used by clients only.

sasl_chalprompt_t Display challenge and prompt for response. Used by clients only.

sasl_getrealm_t Get the authentication realm. Used by clients only.

sasl_authorize_t Authorize policy callback. Used by servers only.

sasl_server_userdb_checkpass_tVerify plaintext password. Used by servers only.

sasl_server_userdb_setpass_tSet plaintext password. Used by servers only.

TABLE E–8 SASL Include Files

Include File Comments

sasl/saslplug.h

sasl/sasl.h Needed for developing plug-ins

sasl/saslutil.h

sasl/prop.h

286 Solaris Security for Developers Guide • January 2005

TABLE E–9 SASL Return Codes: General

Return Code Description

SASL_BADMAC Integrity check failed

SASL_BADVERS Mismatch between versions of a mechanism

SASL_BADPARAM Invalid parameter supplied

SASL_BADPROT Bad protocol, cancel operation

SASL_BUFOVER Overflowed buffer

SASL_CONTINUE Another step is needed in authentication

SASL_FAIL Generic failure

SASL_NOMECH Mechanism not supported

SASL_NOMEM Insufficient memory to complete operation

SASL_NOTDONE Cannot request information until later in exchange

SASL_NOTINIT SASL library not initialized

SASL_OK Successful result

SASL_TRYAGAIN Transient failure, for example, a weak key

TABLE E–10 SASL Return Codes: Client-Only

Function Description

SASL_BADSERV Server failed mutual authentication step

SASL_INTERACT Needs user interaction

SASL_WRONGMECH Mechanism does not support requested feature

TABLE E–11 SASL Return Codes: Server-Only

Function Description

SASL_BADAUTH Authentication failure

SASL_BADVERS Version mismatch with plug-in

SASL_DISABLED Account disabled

SASL_ENCRYPT Encryption needed to use mechanism

SASL_EXPIRED Passphrase expired and needs to be reset

SASL_NOAUTHZ Authorization failure

SASL_NOUSER User not found

Appendix E • SASL Reference Tables 287

TABLE E–11 SASL Return Codes: Server-Only (Continued)
Function Description

SASL_NOVERIFY User exists, but without verifier

SASL_TOOWEAK Mechanism too weak for this user

SASL_TRANS One-time use of a plain text password enables requested
mechanism for user

SASL_UNAVAIL Remote authentication server unavailable

TABLE E–12 SASL Return Codes – Password Operations

Function Description

SASL_NOCHANGE Requested change not needed

SASL_NOUSERPASS User-supplied passwords not permitted

SASL_PWLOCK Passphrase locked

SASL_WEAKPASS Passphrase too weak for security policy

288 Solaris Security for Developers Guide • January 2005

APPENDIX F

Packaging and Signing Cryptographic
Providers

This appendix describes how to package Solaris cryptographic provider applications
and modules. The following topics are covered:

� “Packaging Cryptographic Provider Applications and Modules” on page 289
� “Adding Signatures to Providers” on page 292

Packaging Cryptographic Provider
Applications and Modules
In the Solaris operating system, application software is delivered in units that are
called packages. A package is a collection of files that are required for the distribution
and installation of a software product. Packages are usually designed and built by the
application developer after the development of the application code is complete. For
general information on packaging software applications, see Application Packaging
Developer’s Guide.

Packaging a cryptographic provider has two additional requirements:

� The developer must supply input files that add the application to the configuration
files that manage the cryptographic framework.

� The developer must supply an X.509 certificate to indicate compliance with the
United States government’s export laws. For testing purposes, the certificate can be
generated prior to obtaining U.S. government approval. A package must have
approval and a signed provider to be shipped.

289

Complying with U.S. Government Export Laws
The United States government restricts the export of open cryptographic interfaces,
which are also referred to as crypto-with-a-hole. Due to this restriction, all vendors of
providers must obtain export approval from the U.S. government. The vendor needs
to request a certificate from Sun Microsystems, Inc. to indicate compliance with export
laws. The vendor then signs the provider electronically and ships the software with
the certificate.

In the export approval process, the strength of your encryption determines the
countries in which the software can be used. The U.S. government defines two export
categories for encryption products that are manufactured in the U.S.A.:

� Retail encryption products – Retail encryption products are permitted to be
shipped to all countries except for designated nations that are considered to be
security threats.

� Non-retail encryption products – Non-retail encryption products are permitted for
domestic use only and to countries that have been exempted by the U.S.
government.

If your provider has non-retail approval, you can make the provider eligible for retail
approval. Retail approval can be obtained by disabling the use of your provider by
certain callers such as IPsec. Sun provides two different certificates in this case, for
restricted and unrestricted use. You indicate this situation in the certificate request
process, “To Request a Certificate for Signing a Provider” on page 292. In addition, a
special activation file must be generated, signed, and shipped with the provider. See
“To Generate an Activation File for Retail Export” on page 295.

Packaging User-Level Provider Applications
A third-party developer of a user-level cryptographic provider application completes
the following process:

1. Acquire a certificate from Sun Microsystems, Inc. Then, sign the library. See
“Adding Signatures to Providers” on page 292.

2. Ship the certificate with the package. The certificate must be placed in the
/etc/crypto/certs directory.

3. Add the pkcs11conf class into the CLASSES string of the pkginfo file. The
following line should be added:

CLASS=none pkcs11conf

4. Create an input file pkcs11.conf in the etc/crypto directory.

The input file for user-level providers is named pkcs11.conf. This file specifies
the path to the provider. The pkcs11.conf uses the following syntax for the
entry:

filename

290 Solaris Security for Developers Guide • January 2005

The entry is an absolute path to a file such as
/opt/lib/$ISA/myProviderApp.so. This file is added to the configuration file
when pkgadd is run. Note the $ISA expression in the path name. $ISA points to
either a 32–bit version or a 64–bit version of the application, as needed.

5. Add the following line to the package’s prototype file:

e pkcs11conf etc/crypto/pkcs11conf 0644 root sys

Packaging Kernel-Level Provider Modules
A third-party developer of a kernel-level cryptographic provider module completes
the following process:

1. Acquire a certificate from Sun Microsystems, Inc. Then, sign the kernel software
module or device driver. See “Adding Signatures to Providers” on page 292.

2. Ship the certificate with the package. The certificate should be placed in the
/etc/crypto/certs directory.

3. Add the kcfconf class into the CLASSES string of the pkginfo file. The
following line should be added:

CLASS=none kcfconf

4. Create an input file kcf.conf in the /etc/crypto directory. This file is used to
add software and hardware plug-ins to the kernel configuration file.

� If the provider is a kernel software module with cryptographic mechanisms,
use the following syntax for the entry:

provider-name:supportedlist=mech1,mech2,...

provider-name Base name for the kernel software module

mech* Name of the cryptographic mechanism in the list

The following entry is an example of a kernel software module:

des:supportedlist=CKM_DES_CBC,CKM_DES_ECB,CKM_DES_CFB

� If the provider is a device driver for cryptographic mechanisms, such as an
accelerator card, then use the following syntax for the entry:

driver_names=devicedriver1,devicedriver2,...

devicedriver* Name of a device driver for a cryptographic device.

The following entry is an example of a device driver:

driver_names=dca

Appendix F • Packaging and Signing Cryptographic Providers 291

Adding Signatures to Providers
This section describes how to add a digital signature to a provider so that the provider
can work within the framework. The section also describes how to verify that a
provider has been properly signed. Providers can be one of the following objects: a
PKCS #11 library, a loadable kernel module that implements an algorithm, or a device
driver for a hardware accelerator.

� To Request a Certificate for Signing a Provider
Typically, the developer of a provider requests the certificate. However, the system
administrator might be called on to handle the request as part of a site’s security
policy.

1. Request a certificate from Sun by using the elfsign request command.

The command generates a private key along with the certificate request.

% elfsign request -k private-keyfile -r certificate-request

private-keyfile Path to the location of the private key. This key is needed later
when the system administrator signs providers for the Solaris
cryptographic framework. The directory should be secure. Use
a different directory from the directory that holds the Sun
certificate.

certificate-request Path to the certificate request.

The following example shows how a typical request is submitted to Sun:

% elfsign request \
-k /securecrypt/private/MyCompany.private.key \
-r /reqcrypt/MyCompany.certrequest

Enter Company Name / Stock Symbol or some other globally unique identifier.
This will be the prefix of the Certificate DN:MYCORP

The government of the United States of America restricts the export of
"open cryptographic interfaces", also known as "crypto-with-a-hole".
Due to this restriction, all providers for the Solaris cryptographic
framework must be signed, regardless of the country of origin.

The terms "retail" and "non-retail" refer to export classifications
for products manufactured in the USA. These terms define the portion of the
world where the product may be shipped. Roughly speaking, "retail" is
worldwide (minus certain excluded nations) and "non-retail" is domestic
only (plus some highly favored nations). If your provider is subject to

Steps

292 Solaris Security for Developers Guide • January 2005

USA export control, then you must obtain an export approval (classification)
from the government of the USA before exporting your provider. It is
critical that you specify the obtained (or expected, when used during
development) classification to the following questions so that your provider
will be appropriately signed.

Do you have retail export approval for use without restrictions based
on the caller (for example, IPsec)? [Yes/No] N

If you have non-retail export approval for unrestricted use of your
provider by callers, are you also planning to receive retail approval
restricting which export sensitive callers (for example, IPsec) may

use your provider? [Y/N] Y

The private key is placed in the file name that you specify, for example,
/etc/crypto/private/MyCompany.private.key file. The certificate request
is also placed in a file name that you specify, for example,
/reqcrypt/MyCompany.certrequest file.

2. Submit the certificate request to Sun.

Send the certificate request to the following email address:
solaris-crypto-req@sun.com

Sun generates a certificate from your certificate request file. A copy of the certificate
is sent back to you.

3. Store the certificate that you receive from Sun in the /etc/crypto/certs
directory.

For security, the private key and the certificate request should be stored in other
directories.

� To Sign a Provider
Typically, the developer of the provider signs the provider. However, the system
administrator might be called on to sign the developer’s binary as part of your site
security policy.

� Sign the provider. Use the elfsign sign command, the certificate from Sun,
and the private key for requesting certificates from Sun.

% elfsign sign -k private-keyfile -c Sun-certificate -e provider-object

-k File that contains that private key that was used to generate the certificate
request that was sent to Sun.

-c Path to the certificate from Sun that was issued from the certificate request.

-e Path to the provider, or binary, to be signed for use within the Solaris
cryptographic framework.

Step

Appendix F • Packaging and Signing Cryptographic Providers 293

The following example shows how to sign a provider.

% elfsign sign \
-k /securecrypt/private/MyCompany.private.key \
-c /etc/crypto/certs/MyCompany

-e /path/to/provider.object

Note that using elfsign sign changes the object in the location that was
specified. If an unsigned version of the object is needed, then the object should be
copied to a different location before elfsign sign is applied.

� To Verify That a Provider Is Signed

1. Collect the certificate that Sun issued and the path to the signed provider.

2. Verify that the provider is correctly signed by using the elfsign verify
command.

The following example demonstrates verification with the assumption that the
certificate is in the default directory, /etc/crypto/certs/MyCompany.

% elfsign verify \
-e /path/to/MyProvider.so.1

elfsign: verification of /path/to/MyProvider.so.1 passed

The following example demonstrates storage of the certificate in a non-default
directory.

% elfsign verify \
-c /path/to/MyCerts \
-e /path/to/MyProvider.so.1

elfsign: verification of /path/to/MyProvider.so.1 passed

The following example demonstrates verification of a provider that has been
signed with a restricted certificate.

% elfsign verify \
-e /path/to/MyRestrictedProvider.so.1
elfsign: verification of /path/to/MyRestrictedProvider.so.1 passed, \

but restricted.

Steps

294 Solaris Security for Developers Guide • January 2005

� To Generate an Activation File for Retail Export
This procedure is useful for when the same provider is to be shipped for both
domestic use and restricted international use. You sign the provider with a key for a
usage-restricted certificate for all customers. For those customers who use providers
without caller-based restrictions, you generate and include a special activation file that
permits use with IPsec. The activation file should reside in the same directory as the
provider. The convention for naming the activation file is to combine the name of the
driver with the extension .esa, for example, /kernel/drv/vca.esa.

� Sign the provider. Use the elfsign sign command, the certificate from Sun,
and the private key for requesting certificates from Sun.

% elfsign sign -a -k private-keyfile -c Sun-certificate -e provider-object

-a Generate a signed ELF Sign Activation (.esa) file. This option is used when a
cryptographic provider needs both non-retail export approval and retail
approval. The retail approval is accomplished by restricting export-sensitive
callers such as IPsec. This option assumes that the provider binary has
previously been signed with a restricted certificate.

-k File that contains that private key that was used to generate the certificate
request that was sent to Sun Microsystems, Inc.

-c Path to the certificate from Sun that was issued from the certificate request.

-e Path to the provider, or binary, to be signed for use within the Solaris
cryptographic framework.

The following example shows how to sign a provider.

% elfsign sign \
-a \
-k /securecrypt/private/MyCompany.private.key \
-c /etc/crypto/certs/MyCompany

-e /path/to/provider.object

Step

Appendix F • Packaging and Signing Cryptographic Providers 295

296 Solaris Security for Developers Guide • January 2005

Glossary

Access Control List
(ACL)

A file containing a list of principals with certain access permissions.
Typically, a server consults an access control list to verify that a client
has permission to use its services. Note that a principal authenticated
by GSS-API can still be denied services if an ACL does not permit
them.

authentication A security service that verifies the claimed identity of a principal.

authorization The process of determining whether a principal can use a service,
which objects the principal is allowed to access, and the type of access
allowed for each.

client Narrowly, a process that makes use of a network service on behalf of a
user, for example, an application that uses rlogin. In some cases, a
server can itself be a client of some other server or service. Informally,
a principal that makes use of a service.

consumer An application, library, or kernel module that uses system services.

confidentiality A security service that encrypts data. Confidentiality also includes
integrity and authentication services. See also authentication, integrity,
service.

context A state of trust between two applications. When a context has
successfully been established between two peers, the context acceptor
is aware that the context initiator is who it claims to be, and can verify
and decrypt messages sent to it. If the context includes mutual
authentication, then the initiator knows the acceptor’s identity is valid
and can also verify and decrypt messages from the acceptor.

context-level token See token.

credential An information package that identifies a principal and a principal’s
identification. A credential specifies who the principal is and, often,
what privileges the principal has. Credentials are produced by security
mechanisms.

297

credential cache A storage space (usually a file) containing credentials stored by a given
mechanism.

data replay When a single message in a message stream is received more than
once. Many security mechanisms support data replay detection.
Replay detection, if available, must be requested at
context-establishment time.

data type The form that a given piece of data takes , for example, an int, a
string, a gss_name_t structure, or a gss_OID_set structure.

delegation If permitted by the underlying security mechanism, a principal
(generally the context initiator) can designate a peer principal (usually
the context acceptor) as a proxy by delegating its credentials to it. The
delegated credentials can be used by the recipient to make requests on
behalf of the original principal, as might be the case when a principal
uses rlogin from machine to machine to machine.

exported name A mechanism name that has been converted from the GSS-API
internal-name format to the GSS-API Exported Name format by
gss_export_name(). An exported name can be compared with
names that are in non-GSS-API string format with memcmp(). See also
mechanism name (MN), name.

flavor Historically, security flavor and authentication flavor were equivalent
terms, as a flavor indicated a type of authentication, such as
AUTH_UNIX, AUTH_DES, AUTH_KERB. RPCSEC_GSS is also a
security flavor, even though it provides integrity and confidentiality
services in addition to authentication.

GSS-API The Generic Security Service Application Programming Interface. A
network layer providing support for various modular security
services. GSS-API provides for security authentication, integrity, and
confidentiality services, and allows maximum portability of
applications with regard to security. See also authentication,
confidentiality, integrity.

host A machine accessible over a network.

integrity A security service that, in addition to user authentication, provides
proof of the validity of transmitted data through cryptographic
tagging. See also authentication, confidentiality, message integrity code
(MIC).

mechanism A software package that specifies cryptographic techniques to achieve
data authentication or confidentiality. Examples include Kerberos v5
and Diffie-Hellman public key.

298 Solaris Security for Developers Guide • January 2005

mechanism name (MN) A special instance of a GSS-API internal-format name. A normal
internal-format GSS-API name can contain several instances of a name,
each in the format of an underlying mechanism. A mechanism name,
however, is unique to a particular mechanism. Mechanism names are
generated by gss_canonicalize_name().

message Data in the form of a gss_buffer_t object that is sent from one
GSS-API-based application to a peer. An example of a message is “ls”
sent to a remote ftp server.

A message can contain more than just the user-provided data. For
example, gss_wrap() takes an unwrapped message and produces a
wrapped one to be sent. The wrapped message includes both the
original message and an accompanying MIC. GSS-API-generated
information that does not include a message is a token. See token.

message integrity code
(MIC)

A cryptographic tag that is attached to transmitted data to ensure the
data’s validity. The recipient of the data generates another MIC and
compares this MIC to the one that was sen. If the MICs are equal, the
message is valid. Some MICs, such as those generated by
gss_get_mic(), are visible to the application, while others, such as
those generated by gss_wrap() or gss_init_sec_context(), are
not.

message–level token See token.

MIC See message integrity code (MIC).

MN See mechanism name (MN).

mutual authentication When a context is established, a context initiator must authenticate
itself to the context acceptor. In some cases the initiator might request
that the acceptor authenticate itself back. If the acceptor does so, the
two are said to be mutually authenticated.

name The name of a principal, such as “joe@machine.” Names in the
GSS-API are handled through the gss_name_t structure, which is
opaque to applications. See also exported name, mechanism name
(MN), name type, principal.

name type The particular form in which a name is given. Name types are stored
as gss_OID types and are used to indicate the format used for a name.
For example, the name “joe@machine” would have a name type of
GSS_C_NT_HOSTBASED_SERVICE. See also exported name,
mechanism name (MN), name.

299

opaque Applies to a piece of data whose value or format is not normally
visible to functions that use it. For example, the input_token parameter
to gss_init_sec_context() is opaque to the application, but
significant to the GSS-API. Similarly, the input_message parameter to
gss_wrap() is opaque to the GSS-API but important to the
application doing the wrapping.

out-of-sequence
detection

Many security mechanisms can detect whether messages in a message
stream are received out of their proper order. Message detection, if
available, must be requested at context-establishment time.

per-message token See token.

principal A uniquely named client/user or server/service instance that
participates in a network communication; GSS–API–based transactions
involve interactions between principals. Examples of principal names
include:

� joe
� joe@machine
� nfs@machine
� 123.45.678.9
� ftp://ftp.company.com

See also name, name type.

privacy See confidentiality.

provider An application, library, or kernel module that provides services to
consumers.

Quality of Protection
(QOP)

A parameter used to select the cryptographic algorithms to be used in
conjunction with the integrity or confidentiality service. With integrity,
the QOP specifies the algorithm for producing a message integrity
code (MIC). With confidentiality, the QOP specifies the algorithm for
both the MIC and message encryption.

replay detection Many security mechanisms can detect whether a message in a message
stream has been incorrectly repeated. Message replay detection, if
available, must be requested at context-establishment time.

security flavor See flavor.

security mechanism See mechanism.

security service See service.

server A principal that provides a resource to network clients. For example, if
you use rlogin to log in to the machine boston.eng.acme.com,
then that machine is the server providing the rlogin service.

300 Solaris Security for Developers Guide • January 2005

service 1. (Also, network service) A resource provided to network clients; often
provided by more than one server. For example, if you use rlogin to
log in to the machine boston.eng.acme.com, then that machine is
the server providing the rlogin service.

2. A security service can be either integrity or confidentiality, providing
a level of protection beyond authentication. See also authentication,
integrity, and confidentiality.

token A data packet in the form of a GSS-API gss_buffer_t structure.
Tokens are produced by GSS-API functions for transfer to peer
applications.

Tokens come in two types. Context-level tokens contain information
used to establish or manage a security context. For example,
gss_init_sec_context() bundles a context initiator’s credential
handle, the target machine’s name, flags for various requested services,
and possibly other items into a token to be sent to the context acceptor.

Message tokens (also known as per-message tokens or message-level tokens)
contain information generated by a GSS-API function from messages
to be sent to a peer application. For example, gss_get_mic()
produces an identifying cryptographic tag for a given message and
stores it in a token to be sent to a peer with the message. Technically, a
token is considered to be separate from a message, which is why
gss_wrap() is said to produce an output_message and not an
output_token.

See also message.

301

302 Solaris Security for Developers Guide • January 2005

Index

A
access control lists, use in GSS-API, 67
account management, PAM service module, 38
ACL, See access control list
acquiring context information, 88
anonymous authentication, 83-84
APDU, SCF, 196
authentication

flavor, 298
GSS-API, 61

anonymous, 83-84
mutual, 83

PAM process for, 39
PAM service module, 38
SASL, 142

authid
auxprop plug-ins, 156
SASL, 134

authorizations
code example, 34
defined, 23
use in application development, 34

authzid, auxprop plug-ins, 156
auxiliary properties, See auxprop plug-ins
auxprop plug-ins, 156

B
binding control flag, PAM, 42

C
C_CloseSession() function

digest message example, 175
message signing example, 183
random byte generation example, 190

C_Decrypt() function, 179
C_DecryptInit() function, 179
C_EncryptFinal() function, 178
C_EncryptInit() function, 178
C_EncryptUpdate() function, 178
C_Finalize() function

digest message example, 175
message signing example, 183

C_GenerateKeyPair() function, 183
C_GenerateRandom() function, 190
C_GetAttributeValue() function, 183
C_GetInfo() function, 169, 175
C_GetMechanismList() function, 172
C_GetSlotList() function, 170

message signing example, 183
random byte generation example, 190

C_Initialize() function, 169
C_OpenSession() function, 171

random byte generation example, 190
C_SignInit() function, 183
C_Verify() function, 183
C_VerifyInit() function, 183
callbacks

SASL, 135
SASL_CB_AUTHNAME, 137
SASL_CB_CANON_USER, 137
SASL_CB_ECHOPROMPT, 137
SASL_CB_GETCONF, 136

303

callbacks, SASL (Continued)
SASL_CB_GETOPT, 136
SASL_CB_GETPATH, 136
SASL_CB_GETREALM, 137
SASL_CB_LANGUAGE, 136
SASL_CB_LOG, 136
SASL_CB_NOECHOPROMPT, 137
SASL_CB_PASS, 137
SASL_CB_PROXY_POLICY, 137
SASL_CB_SERVER_USERDB_CHECKPASS, 137
SASL_CB_SERVER_USERDB_SETPASS, 137
SASL_CB_USER, 137
SASL_CB_VERIFYFILE, 136

canonicalization, SASL, 156
card objects, SCF, 196
certificates

cryptographic applications, 289
requesting from Sun, 292

channel bindings
GSS-API, 84-85, 238

client_establish_context() function,
GSS-API client example, 104

client plug-ins
SASL, 154, 157

confidentiality
GSS-API, 61, 88

connect_to_server() function
GSS-API client example, 103, 107

connection contexts, SASL, 137
consumers

defined, 20
Solaris cryptographic framework, 159

context-level tokens, GSS-API, 73
contexts

GSS-API
acceptance, 80-82
acceptance example, 124-128
deletion, 96-97
establishing, 78-88
establishing example, 105
exporting, 86
getting acquisition information, 88
gss-client example, 114
import and export, 85-88, 129-130
introduction, 60
other context services, 82
releasing, 131

initiation in GSS-API, 78-80

createMechOid() function, 258
credentials

cache, 298
delegation, 82-83
GSS-API, 76-78, 241

acquisition, 119
GSS-API default, 77

crypto pseudo device driver, 162
cryptoadm pseudo device driver, 163
cryptoadm utility, 163
cryptographic checksum (MIC), 89-90
cryptographic framework, See Solaris

cryptographic framework
cryptographic providers, Solaris cryptographic

framework, 163
cryptoki library, overview, 167

D
data encryption, GSS-API, 90
data protection, GSS-API, 88
data replay, 298
data types

GSS-API, 63-72, 235-239
integers, 63
names, 64-67
strings, 63-64

privileges, 27
default credentials, GSS-API, 77
delegation, credentials, 82-83
design requirements

Solaris cryptographic framework
kernel-level consumers, 165
kernel-level providers, 165
user-level consumers, 164
user-level providers, 164

digesting messages, Solaris cryptographic
framework, 175

E
effective privilege set, defined, 25
elfsign command

request subcommand, 292
sign subcommand, 293, 295
Solaris cryptographic framework, 163

304 Solaris Security for Developers Guide • January 2005

elfsign command (Continued)
verify subcommand, 294

encryption
GSS-API, 88
wrapping messages with gss_wrap(), 90

encryption products, export laws, 290
error codes, GSS-API, 232
examples

checking for authorizations, 34
GSS-API client application

description, 99
source code, 201

GSS-API miscellaneous functions
source code, 222

GSS-API server application
description, 115
source code, 212

miscellaneous SASL functions, 279
PAM consumer application, 46
PAM conversation function, 50
PAM service provider, 56
privilege bracketing, 30
SASL client application, 261
SASL server application, 270
Solaris cryptographic framework

message digest, 175
random byte generation, 189
signing and verifying messages, 182
symmetric encryption, 178

export laws, encryption products, 290
exporting GSS-API contexts, 85-88

F
_fini() function, Solaris cryptographic

framework, 165
flavor, See security flavor
functions

See specific function name
GSS-API, 229-231

G
General Security Standard Application

Programming Interface, See GSS-API
GetMechanismInfo() function, 183

GetRandSlot() function, 189
GetTokenInfo() function, 190
gss_accept_sec_context() function, 80,

230
GSS-API server example, 128

gss_acquire_cred() function, 77, 229
GSS-API server example, 119

gss_add_cred() function, 78, 229
gss_add_oid_set_member() function, 231
GSS-API

acquiring credentials, 119
anonymous authentication, 83-84
anonymous name format, 240
channel bindings, 84-85, 238
communication layers, 59
comparing names in, 67-70
confidentiality, 88
constructing OIDs, 257-259
context establishment example, 105
contexts

acceptance example, 124-128
deallocation, 96-97
expiration, 241

createMechOid() function, 258
credentials, 76-78

expiration, 241
data types, 63-72, 235-239
detecting out-of-sequence problems, 92
developing applications, 75-97
displaying status codes, 234-235
encryption, 88, 90
exporting contexts, 86, 241
files containing OID values, 255-256
functions, 229-231
generalized steps, 76
gss-client example

context deletion, 114
contexts, 109
sending messages, 110
signature blocks, 113

gss-server example
signing messages, 129
unwrapping messages, 128

gss_str_to_oid() function, 257
include files, 76
integrity, 88
interprocess tokens, 241
introduction, 59-63

305

GSS-API (Continued)
Kerberos v5 status codes, 242
language bindings, 63
limitations, 62
mech file, 255-256
message transmission, 94
MICs, 88
minor-status codes, 241
miscellaneous sample functions

source code, 222
mutual authentication, 83
name types, 72, 237-238
OIDs, 71-72
other context services, 82
outside references, 63
portability, 60-61
protecting channel-binding

information, 240-241
QOP, 61, 256
readable name syntax, 240
releasing contexts, 131
releasing stored data, 240
remote procedure calls, 61-62
replaced functions, 231
role in Solaris OS, 21
sample client application

description, 99
source code, 201

sample server application
description, 115
source code, 212

specifying non-default mechanisms, 259-260
specifying OIDs, 255
status code macros, 235
status codes, 72-73, 232-235
supported credentials, 241
tokens, 73-75

context-level, 73
interprocess, 75
per-message, 74

translation into GSS-API format, 104
wrap-size limits, 241

gss_buffer_desc structure, 63
gss_buffer_desc structure, 236
gss_buffer_t pointer, 64
GSS_C_ACCEPT credential, 77
GSS_C_BOTH credential, 77
GSS_C_INITIATE credential, 77

GSS_CALLING_ERROR macro, 73, 235
gss_canonicalize_name() function, 65,

230
gss_channel_bindings_structure

structure, 237
gss_channel_bindings_t data type, 84
gss-client example

context deletion, 114
obtaining context status, 109
restoring contexts, 109
saving contexts, 109
sending messages, 110
signature blocks, 113

gss-client sample application, 99
gss_compare_name() function, 67, 69, 230
gss_context_time() function, 230
gss_create_empty_oid_set()

function, 231
gss_delete_oid() function, 231
gss_delete_sec_context()

function, 96-97, 230
releasing contexts, 240

gss_display_name() function, 65, 230
gss_display_status() function, 231,

234-235
gss_duplicate_name() function, 231
gss_export_context() function, 75
gss_export_name() function, 230
gss_export_sec_context() function, 85,

230
gss_get_mic() function, 88, 89-90, 230

GSS-API server example, 129
gss_get_mic() funxtion, comparison with

gss_wrap()function, 88
gss_import_name() function, 64, 230

GSS-API client example, 104
GSS-API server example, 119

gss_import_sec_context() function, 85,
230

gss_indicate_mechs() function, 231
gss_init_sec_context() function, 78, 82,

230
GSS-API client example, 105
use in anonymous authentication, 83-84
use in mutual authentication, 83

gss_inquire_context() function, 230
gss_inquire_context function, 88

306 Solaris Security for Developers Guide • January 2005

gss_inquire_cred_by_mech()
function, 229

gss_inquire_cred() function, 229
gss_inquire_mechs_for_name()

function, 230
gss_inquire_names_for_mech()

function, 230
gss_OID_desc structure, 236
gss_OID pointer, 71
gss_OID_set_desc structure, 71
gss_OID_set_desc structure, 236-237
gss_OID_set pointer, 71
gss_oid_to_str() function, 231
gss_process_context_token()

function, 230
gss_release_buffer() function, 96-97, 231
gss_release_cred() function, 96-97, 230

GSS-API server example, 131
gss_release_name() function, 96-97, 230

releasing stored data, 240
gss_release_oid() function

GSS-API client example, 101
GSS-API server example, 119

gss_release_oid_set() function, 96-97,
231

GSS_ROUTINE_ERROR macro, 73, 235
gss_seal() function, 231
gss-server example

signing messages, 129
unwrapping messages, 128

gss-server sample application, 115
gss_sign() function, 231
gss_str_to_oid() function, 231, 257
GSS_SUPPLEMENTARY_INFO macro, 73, 235
gss_test_oid_set_member() function, 231
gss_unseal() function, 231
gss_unwrap() function, 230

GSS-API server example, 128
gss_verify() function, 231
gss_verify_mic() function, 230
gss_wrap() function, 88, 90, 230

comparison with gss_get_mic()
function, 88

wrapping messages, 90
gss_wrap_size_limit() function, 90, 230
gssapi.h file, 76
guidelines for privileged applications, 33

H
header files, GSS-API, 76

I
IFD handlers

developing for smart card terminals, 199
SCF archtitecture, 195

IFDHCloseChannel() function, 199
IFDHCreateChannelByName() function, 199
IFDHGetCapabilities() function, 199
IFDHICCPresence() function, 199
IFDHPowerICC() function, 199
IFDHSetProtocolParameters()

function, 199
IFDHTransmitToICC() function, 199
importing GSS-API contexts, 85-88
inetd, checking for in gss-client()

example, 122
inheritable privilege set, defined, 25
integers, GSS-API, 63
integrity

GSS-API, 61, 88
interprocess tokens, GSS-API, 75
IPC privileges, 26

J
Java JCE, See

http://www.java.sun.com/products/jce/

K
Kerberos v5, GSS-API, 61

L
language bindings, GSS-API, 63
libpam, 39
libpkcs11.so library, Solaris cryptographic

framework, 162
libsasl

initialization, 139
use of API, 135

307

http://www.java.sun.com/products/jce

libsasl library, 133
limit privilege set, defined, 25
listener objects, SCF, 197

M
macros

GSS-API
GSS_CALLING_ERROR, 73
GSS_ROUTINE_ERROR, 73
GSS_SUPPLEMENTARY_INFO, 73

major status codes
GSS-API, 72

descriptions, 232
major-status codes

GSS-API
encoding, 232

mech file, 255-256
Mechanism Name (MN), 66
mechanisms

defined, 20
GSS-API, 61
printable formats, 257
SASL, 135
Solaris cryptographic framework, 159
specifying GSS-API, 72

memcmp function, 69
message digesting, Solaris cryptographic

framework, 175
Message Integrity Code, See MICs
messages

See also data
encrypting with gss_wrap(), 90
GSS-API, 74

out-of-sequence problems, 92
sending, 110
signing, 129
transmission confirmation, 94
unwrapping, 128

tagging with MICs, 89-90
wrapping in GSS-API, 90

MICs
defined, 88
GSS-API

tagging messages, 89-90
message transmission confirmation, 94

minor status codes, GSS-API, 73

MN, See Mechanism Name
mutual authentication, GSS-API, 83

N
name types, GSS-API, 237-238
names

comparing in GSS-API, 67-70
GSS-API, 64-67
types in GSS-API, 72

network security, overview, 20
non-retail encryption products, export

laws, 290

O
Object Identifiers, See OIDs
OIDs

constructing, 257-259
deallocation of, 71
GSS-API, 71-72
sets, 71
specifying, 71, 255
types of data stored as, 71

optional control flag, PAM, 42
out-of-sequence problems, GSS-API, 92

P
packaging cryptographic applications, 289
PAM, 37

authentication process, 39
configuration file

control flags, 42
introduction, 40
stacking diagrams, 43
stacking example, 45
stacking explained, 41
syntax, 41

consumer application example, 46
framework, 37
items, 40
library, 39
requirements for PAM applications, 40
role in Solaris OS, 20

308 Solaris Security for Developers Guide • January 2005

PAM (Continued)
service modules, 38
service provider example, 56
service provider requirements, 55
writing conversation functions, 50

pam.conf file, See PAM configuration file
pam_end() function, 40
pam_getenvlist() function, 50
pam_open_session() function, 50
pam_set_item() function, 40
pam_setcred() function, 50
pam_start() function, 40
parse_oid() function, 259-260

GSS-API client example, 101
per-message tokens, GSS-API, 74
permitted privilege set, defined, 24
PKCS #11

C_GetInfo() function, 169
C_GetMechanismList() function, 172
C_GetSlotList() function, 170
C_GetTokenInfo() function, 170
C_Initialize() function, 169
C_OpenSession() function, 171
function list, 168
pkcs11_softtoken.so module, 167
SUNW_C_GetMechSession() function, 174

pkcs11_kernel.so library, Solaris
cryptographic framework, 162

pkcs11_softtoken.so library, Solaris
cryptographic framework, 162

plug-ins
SASL, 151
Solaris cryptographic framework, 159

pluggable authentication module, See PAM
pluggable interface, Solaris cryptographic

framework, 162
principals, GSS-API, 64
PRIV_FILE_LINK_ANY, 26
PRIV_OFF flag, 27
PRIV_ON flag, 27
PRIV_PROC_EXEC, 26
PRIV_PROC_FORK, 26
PRIV_PROC_SESSION, 26
PRIV_SET flag, 27
priv_set_t structure, 27
priv_str_to_set() function, synopsis, 29
priv_t type, 27
privilege sets, defined, 24

privileged applications, defined, 23
privileges

assignment, 24
bracketing in the least privilege model, 30
bracketing in the superuser model, 30
categories, 26

IPC, 26
process, 26
system, 26
System V IPC, 26

code example, 30
compatibility with superuser, 26
data types, 27
defined, 23
interfaces, 27
introduction, 20
operation flags, 27
overview, 24
priv_str_to_set() function, 29
privilege ID data type, 27
required header file, 27
setppriv() function, 28
use in application development, 33

process privileges, 26
See privileges

protecting data, GSS-API, 88
providers

defined, 20
packaging kernel-level applications, 291
packaging user-level applications, 290
Solaris cryptographic framework, 159, 163

Q
qop file, 256
QOPs, 61

role in wrap size, 90
specifying, 72, 255-256
storage in OIDs, 71

Quality of Protection, See QOP

R
random byte generation

Solaris cryptographic framework
example, 189

309

remote procedure calls, GSS-API, 61-62
required control flag, PAM, 42
requisite control flag, PAM, 42
retail encryption products, export laws, 290
return codes, GSS-API, 72-73
RPCSEC_GSS, 61-62

S
SASL

architecture, 134
authentication, 142
authid, 134
auxprop plug-ins, 156
callbacks

SASL_CB_AUTHNAME, 137
SASL_CB_CANON_USER, 137
SASL_CB_ECHOPROMPT, 137
SASL_CB_GETCONF, 136
SASL_CB_GETOPT, 136
SASL_CB_GETPATH, 136
SASL_CB_GETREALM, 137
SASL_CB_LANGUAGE, 136
SASL_CB_LOG, 136
SASL_CB_NOECHOPROMPT, 137
SASL_CB_PASS, 137
SASL_CB_PROXY_POLICY, 137
SASL_CB_SERVER_USERDB_CHECKPASS, 137
SASL_CB_SERVER_USERDB_SETPASS, 137
SASL_CB_USER, 137
SASL_CB_VERIFYFILE, 136

canonicalization, 156
client sample application, 261
confidentiality, 147
connection contexts, 137
functions, 283
integrity, 147
library, 133
libsasl API, 135
libsasl initialization, 139
life cycle, 138
mechanisms, 135
overview, 133
plug-in design, 157

client plug-ins, 154
overview, 151
server plug-ins, 154

SASL, plug-in design (Continued)
structures, 153

reference tables, 283
releasing resources, 147
releasing sessions, 147
role in Solaris OS, 21
sample functions, 279
sample output, 148
server sample application, 270
session initialization, 140
setting SSF, 140
SPI, 151
SSF, 135
userid, 134

sasl_canonuser_plug_nit() function, 156
SASL_CB_AUTHNAME callback, 137
SASL_CB_CANON_USER callback, 137
SASL_CB_ECHOPROMPT callback, 137
SASL_CB_GETCONF callback, 136
SASL_CB_GETOPT callback, 136
SASL_CB_GETPATH callback, 136
SASL_CB_GETREALM callback, 137
SASL_CB_LANGUAGE callback, 136
SASL_CB_LOG callback, 136
SASL_CB_NOECHOPROMPT callback, 137
SASL_CB_PASS callback, 137
SASL_CB_PROXY_POLICY callback, 137
SASL_CB_SERVER_USERDB_CHECKPASS

callback, 137
SASL_CB_SERVER_USERDB_SETPASS

callback, 137
SASL_CB_USER callback, 137
SASL_CB_VERIFYFILE callback, 136
sasl_client_add_plugin() function, 151
sasl_client_init() function, 139, 152
sasl_client_new() function, SASL life

cycle, 140
sasl_client_start() function, SASL life

cycle, 142
SASL_CONTINUE flag, 142
sasl_decode() function, 147
sasl_dispose() function, 147
sasl_done() function, 147
sasl_encode() function, 147
sasl_getprop() function, checking SSF, 147
SASL_INTERACT flag, 142
SASL_OK flag, 142
sasl_server_add_plugin() function, 151

310 Solaris Security for Developers Guide • January 2005

sasl_server_init() function, 139, 152
sasl_server_new() function, SASL life

cycle, 140
sasl_server_start() function, SASL life

cycle, 142
SCF

card objects, 196
interfaces, 196
listener objects, 197
miscellaneous functions, 198
overview, 195
session functions, 197
session objects, 196
terminal functions, 197
terminal objects, 196

SCF_Card_close() function, 198
SCF_Card_exchangeAPDU() function, 198
SCF_Card_getInfo() function, 198
SCF_Card_lock() function, 198
SCF_Card_reset() function, 198
SCF_Card_unlock() function, 198
SCF_Card_waitForCardRemoved()

function, 198
SCF_Session_close() function, 197
SCF_Session_freeInfo() function, 197
SCF_Session_getInfo() function, 197
SCF_Session_getSession() function, 197
SCF_Session_getTerminal() function, 197
SCF_strerror() function, 199
SCF_Terminal_addEventListener()

function, 198
SCF_Terminal_close() function, 197
SCF_Terminal_freeInfo() function, 197
SCF_Terminal_getCard() function, 198
SCF_Terminal_getInfo() function, 197
SCF_Terminal_removeEventListener()

function, 198
SCF_Terminal_updateEventListener()

function, 198
SCF_Terminal_waitForCardAbsent()

function, 198
SCF_Terminal_waitForCardPresent()

function, 198
SEAM, GSS-API, 61
security context, See contexts
security flavor, 298
security mechanisms, See GSS-API

security policy, privileged application
guidelines, 33

security strength factor, See SSF
send_token() function, GSS-API client

example, 107
sequence problems, GSS-API, 92
server_acquire_creds() function,

GSS-API server example, 119
server_establish_context() function,

GSS-API server example, 124
server plug-ins, SASL, 154
service provider interface, See SPI
session management, PAM service module, 38
session objects

SCF, 196
Solaris cryptographic framework, 160

setppriv() function, synopsis, 28
shell escapes, and privileges, 34
sign_server() function

GSS-API client example, 116
GSS-API server example, 122

signature blocks
GSS-API

gss-client example, 113
signing messages, GSS-API, 129
signing messages example, Solaris

cryptographic framework, 182
signing packages, 292
Simple Authentication and Security Layer, See

SASL
slots, Solaris cryptographic framework, 159
Smart Card, role in Solaris OS, 21
smart card framework, See SCF
smart card terrminals, installation

guidelines, 200
soft tokens, Solaris cryptographic

framework, 159
Solaris cryptographic framework

architecture, 160
crypto pseudo device driver, 162
cryptoadm pseudo device driver, 163
cryptoadm utility, 163
cryptographic providers, 163
cryptoki library, 167
design requirements

kernel-level consumers, 165
kernel-level providers, 165

311

Solaris cryptographic framework, design
requirements (Continued)

special treatment of _fini()
function, 165
user-level consumers, 164
user-level providers, 164

elfsign utility, 163
examples

message digest, 175
random byte generation, 189
signing and verifying messages, 182
symmetric encryption, 178

introduction, 159
kernel programmer interface, 162
libpkcs11.so, 162
modules verification library, 163
packaging applications, 289
pkcs11_kernel.so, 162
pkcs11_softtoken.so, 162
pluggable interface, 162
role in Solaris OS, 21
scheduler / load balancer, 162, 163
SPI

kernel level, 162
Solaris Enterprise Authentication Mechanism,

See SEAM
Solaris smart card framework, See SCF
specifying a QOP, 255-256
specifying mechanisms in GSS-API, 255-256
specifying OIDs, 255
SPI

Solaris cryptographic framework
kernel level, 162
user level, 162

SSF
defined, 135
setting, 140, 142

status codes
GSS-API, 72-73, 232-235
major, 72
minor, 73

strings, GSS-API, 63-64
sufficient control flag, PAM, 42
SUNW_C_GetMechSession() function, 174

digest message example, 175
symmetric encryption example, 178

symmetric encryption
Solaris cryptographic framework

example, 178
system privileges, 26
System V IPC privileges, 26

T
terminal objects, SCF, 196
test_import_export_context() function,

GSS-API server example, 129-130
token objects, Solaris cryptographic

framework, 160
tokens

distinguishing GSS-API types, 74
GSS-API, 73-75

context-level, 73
interprocess, 75
per-message, 74

Solaris cryptographic framework, 159

U
userid, SASL, 134

V
verifying messages example

Solaris cryptographic framework
example, 182

W
wrapping messages, GSS-API, 90

X
X.509 certificates, 289

312 Solaris Security for Developers Guide • January 2005

	Solaris Security for Developers Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Documentation
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Solaris Security for Developers (Overview)
	Overview of Solaris Security Features for Developers
	System Security
	Network Security Architecture

	Developing Privileged Applications
	Privileged Applications
	About Privileges
	How Administrators Assign Privileges
	How Privileges Are Implemented
	Permitted Privilege Set
	Inheritable Privilege Set
	Limit Privilege Set
	Effective Privilege Set

	Compatibility Between the Superuser and Privilege Models
	Privilege Categories

	Programming with Privileges
	Privilege Data Types
	Privilege Interfaces
	setppriv(): for Setting Privileges
	priv_str_to_set() for Mapping Privileges

	Privilege Coding Example
	Privilege Bracketing in the Superuser Model
	Privilege Bracketing in the Least Privilege Model

	Guidelines for Developing Privileged Applications
	About Authorizations

	Writing PAM Applications and Services
	Introduction to the PAM Framework
	PAM Service Modules
	PAM Library
	PAM Authentication Process
	Requirements for PAM Applications

	PAM Configuration
	PAM Configuration File Syntax
	How PAM Stacking Works
	PAM Stacking Example

	Writing Applications That Use PAM Services
	A Simple PAM Consumer Example
	Other Useful PAM Functions

	Writing Conversation Functions
	Writing Modules That Provide PAM Services
	Requirements for PAM Service Providers
	Sample PAM Provider Application

	Writing Applications That Use GSS-API
	Introduction to GSS-API
	Application Portability With GSS-API
	Security Services in GSS-API
	Available Mechanisms in GSS-API
	Remote Procedure Calls With GSS-API
	Limitations of GSS-API
	Language Bindings for GSS-API
	Where to Get More Information on GSS-API

	Important Elements of GSS-API
	GSS-API Data Types
	GSS-API Integers
	Strings and Similar Data in GSS-API
	Names in GSS-API
	Comparing Names in GSS-API
	GSS-API OIDs
	Mechanisms and QOPs in GSS-API
	Name Types in GSS-API

	GSS-API Status Codes
	GSS-API Tokens
	Interprocess Tokens in GSS-API

	Developing Applications That Use GSS-API
	Generalized GSS-API Usage
	Working With Credentials in GSS-API
	Acquiring Credentials in GSS-API

	Working With Contexts in GSS-API
	Initiating a Context in GSS-API
	Accepting a Context in GSS-API
	Using Other Context Services in GSS-API
	Delegating a Credential in GSS-API
	Performing Mutual Authentication Between Peers in GSS-API
	Performing Anonymous Authentication in GSS-API
	Using Channel Bindings in GSS-API
	Exporting and Importing Contexts in GSS-API
	Obtaining Context Information in GSS-API

	Sending Protecting Data in GSS-API
	Tagging Messages With gss_get_mic()
	Wrapping Messages With gss_wrap()
	Handling Wrap Size Issues in GSS-API
	Detecting Sequence Problems in GSS-API
	Confirming Message Transmission in GSS-API

	Cleaning Up a GSS-API Session

	GSS-API Client Example
	GSSAPI Client Example Overview
	GSSAPI Client Example Structure
	Running the GSSAPI Client Example

	GSSAPI Client Example: main() Function
	Opening a Connection With the Server
	Establishing a Security Context With the Server
	Translating a Service Name into GSS-API Format
	Establishing a Security Context for GSS-API

	Miscellaneous GSSAPI Context Operations on the Client Side
	Wrapping and Sending a Message
	Reading and Verifying a Signature Block From a GSS-API Client
	Deleting the Security Context

	GSS-API Server Example
	GSSAPI Server Example Overview
	GSSAPI Server Example Structure
	Running the GSSAPI Server Example

	GSSAPI Server Example: main() Function
	Acquiring Credentials
	Checking for inetd
	Receiving Data From a Client
	Accepting a Context
	Unwrapping the Message
	Signing and Returning the Message
	Using the test_import_export_context() Function

	Cleanup in the GSSAPI Server Example

	Writing Applications That Use SASL
	Introduction to Simple Authentication Security Layer (SASL)
	SASL Library Basics
	SASL Architecture
	Security Mechanisms
	SASL Security Strength Factor
	Communication in SASL
	SASL Connection Contexts

	Steps in the SASL Cycle
	libsasl Initialization
	SASL Session Initialization
	SASL Authentication
	SASL Confidentiality and Integrity
	Releasing SASL Sessions
	libsasl Cleanup

	SASL Example
	SASL for Service Providers
	SASL Plug-in Overview
	Important Structures for SASL Plug-ins
	Client Plug-ins
	Server Plug-ins
	User Canonicalization Plug-ins
	Auxiliary Property (auxprop) Plug-ins

	SASL Plug-in Development Guidelines
	Error Reporting in SASL Plug-ins
	Memory Allocation in SASL Plug-ins
	Setting the SASL Negotiation Sequence

	Introduction to the Solaris Cryptographic Framework
	Solaris Cryptography Terminology
	Overview of the Cryptographic Framework
	Components of the Cryptographic Framework
	What Cryptography Developers Need to Know
	Requirements for Developers of User-Level Consumers
	Requirements for Developers of User-Level Providers
	Requirements for Developers of Kernel-Level Consumers
	Requirements for Developers of Kernel-Level Providers

	Avoiding Data Cleanup Collisions in User-Level Providers

	Adding Cryptography to User Applications
	Overview of the Cryptoki Library
	PKCS #11 Function List
	Functions for Using PKCS #11
	PKCS #11 Functions: C_Initialize()
	PKCS #11 Functions: C_GetInfo()
	PKCS #11 Functions: C_GetSlotList()
	PKCS #11 Functions: C_GetTokenInfo()
	PKCS #11 Functions: C_OpenSession()
	PKCS #11 Functions: C_GetMechanismList()

	Extended PKCS #11 Functions
	Extended PKCS #11 Functions: SUNW_C_GetMechSession()
	Extended PKCS #11 Functions: SUNW_C_KeyToObject

	User-Level Cryptographic Application Examples
	Message Digest Example
	Symmetric Encryption Example
	Sign and Verify Example
	Random Byte Generation Example

	Using the Smart Card Framework
	Solaris Smart Card Framework Overview
	Developing Smart Card Consumer Applications
	SCF Session Interfaces
	SCF Terminal Interfaces
	SCF Card and Miscellaneous Interfaces

	Developing an IFD Handler for Smart Card Terminals
	Installation of Smart Card Terminals

	Sample C–Based GSS-API Programs
	Client-Side Application
	Server-Side Application
	Miscellaneous GSS-API Sample Functions

	GSS-API Reference
	GSS-API Functions
	Functions From Previous Versions of GSS-API
	Functions for Manipulating OIDs
	Renamed Functions

	GSS-API Status Codes
	GSS-API Major Status Code Values
	Displaying Status Codes
	Status Code Macros

	GSS-API Data Types and Values
	Basic GSS-API Data Types
	OM_uint32
	gss_buffer_desc
	gss_OID_desc
	gss_OID_set_desc
	gss_channel_bindings_struct

	Name Types
	Address Types for Channel Bindings

	Implementation-Specific Features in GSS-API
	Sun-Specific Functions
	Human-Readable Name Syntax
	Format of Anonymous Names

	Implementations of Selected Data Types
	Deletion of Contexts and Stored Data
	Protection of Channel-Binding Information
	Context Exportation and Interprocess Tokens
	Types of Credentials Supported
	Credential Expiration
	Context Expiration
	Wrap Size Limits and QOP Values
	Use of minor_status Parameter

	Kerberos v5 Status Codes
	Messages Returned in Kerberos v5 for Status Code 1
	Messages Returned in Kerberos v5 for Status Code 2
	Messages Returned in Kerberos v5 for Status Code 3
	Messages Returned in Kerberos v5 for Status Code 4
	Messages Returned in Kerberos v5 for Status Code 5
	Messages Returned in Kerberos v5 for Status Code 6
	Messages Returned in Kerberos v5 for Status Code 7

	Specifying an OID
	Files with OID Values
	/etc/gss/mech File
	/etc/gss/qop File

	gss_str_to_oid() Function
	Constructing Mechanism OIDs
	createMechOid() Function

	Specifying a Non-Default Mechanism

	Source Code for SASL Example
	SASL Client Example
	SASL Server Example
	Common Code

	SASL Reference Tables
	SASL Interface Summaries

	Packaging and Signing Cryptographic Providers
	Packaging Cryptographic Provider Applications and Modules
	Complying with U.S. Government Export Laws
	Packaging User-Level Provider Applications
	Packaging Kernel-Level Provider Modules

	Adding Signatures to Providers
	To Request a Certificate for Signing a Provider
	To Sign a Provider
	To Verify That a Provider Is Signed
	To Generate an Activation File for Retail Export

	Glossary
	Index

