
Writing Device Drivers

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–4854–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

041012@10082

Contents

Preface 25

Part I Designing Device Drivers for the Solaris Platform 31

1 Overview of Solaris Device Drivers 33

Device Driver Basics 33

What Is a Device Driver? 33

What Is a Device Driver Entry Point? 34

Device Driver Entry Points 35

Entry Points Common to All Drivers 35

Entry Points for Block Device Drivers 38

Entry Points for Character Device Drivers 39

Entry Points for STREAMS Device Drivers 40

Entry Points for Memory Mapped Devices 41

Entry Points for the Generic LAN Device (GLD) Driver 42

Entry Points for SCSI HBA Drivers 43

Entry Points for PC Card Drivers 45

Considerations in Device Driver Design 45

DDI/DKI Facilities 45

Driver Context 47

Returning Errors 48

Dynamic Memory Allocation 49

Hotplugging 49

3

2 Solaris Kernel and Device Tree 51

What Is the Kernel? 51
Multithreaded Execution Environment 53
Virtual Memory 53
Devices as Special Files 53
DDI/DKI Interfaces 54

Overview of the Device Tree 55
Device Tree Components 55
Displaying the Device Tree 56
Binding a Driver to a Device 59

3 Multithreading 63

Locking Primitives 63
Storage Classes of Driver Data 63
Mutual-Exclusion Locks 64
Readers/Writer Locks 65
Semaphores 65

Thread Synchronization 66
Condition Variables in Thread Synchronization 66
cv_wait() and cv_timedwait() Functions 68
cv_wait_sig() Function 69
cv_timedwait_sig() Function 70

Choosing a Locking Scheme 70
Potential Locking Pitfalls 71
Threads Unable to Receive Signals 71

4 Properties 73

Device Properties 73
Device Property Names 74
Creating and Updating Properties 74
Looking Up Properties 74
prop_op() Entry Point 76

5 Events 79

Introduction to Events 79
Using ddi_log_sysevent() to Log Events 80

ddi_log_sysevent() Syntax 81

4 Writing Device Drivers • January 2005

Sample Code for Logging Events 82
Defining Event Attributes 82

6 Driver Autoconfiguration 87

Driver Loading and Unloading 87
Data Structures Required for Drivers 88

modlinkage Structure 89
modldrv Structure 89
dev_ops Structure 89
cb_ops Structure 90

Loadable Driver Interfaces 91
_init() Example 93
_fini() Example 93
_info() Example 94

Device Configuration Concepts 94
Device Instances and Instance Numbers 95
Minor Nodes and Minor Numbers 96
probe() Entry Point 96
attach() Entry Point 99
detach() Entry Point 104
getinfo() Entry Point 106

Using Device IDs 107
Registering Device IDs 108
Unregistering Device IDs 109

7 Device Access: Programmed I/O 111

Device Memory 111
Managing Differences in Device and Host Endianness 112
Managing Data Ordering Requirements 112
ddi_device_acc_attr Structure 112
Mapping Device Memory 113
Mapping Setup Example 114

Device Access Functions 115
Alternate Device Access Interfaces 116

8 Interrupt Handlers 119

Interrupt Handler Overview 119

5

Interrupt Specification 119
Interrupt Number 120
Interrupt Block Cookies 120

Device Interrupts 120
High-Level Interrupts 121
Normal Interrupts 121
Software Interrupts 121

Registering Interrupts 122
Interrupt Handler Responsibilities 123
Handling High-Level Interrupts 125

High-level Mutexes 125
High-Level Interrupt Handling Example 126

9 Direct Memory Access (DMA) 129

DMA Model 129
Types of Device DMA 130

Bus-Master DMA 130
Third-Party DMA 131
First-Party DMA 131

Types of Host Platform DMA 131
DMA Software Components: Handles, Windows, and Cookies 132
DMA Operations 132

Performing Bus-Master DMA Transfers 133
Performing First-Party DMA Transfers 133
Performing Third-Party DMA Transfers 133
DMA Attributes 134

Managing DMA Resources 137
Object Locking 138
Allocating a DMA Handle 138
Allocating DMA Resources 139
Determining Maximum Burst Sizes 141
Allocating Private DMA Buffers 142
Handling Resource Allocation Failures 144
Programming the DMA Engine 144
Freeing the DMA Resources 145
Freeing the DMA Handle 146
Canceling DMA Callbacks 146
Synchronizing Memory Objects 148

6 Writing Device Drivers • January 2005

DMA Windows 150

10 Mapping Device and Kernel Memory 153

Memory Mapping Overview 153
Exporting the Mapping 153
Associating Device Memory With User Mappings 155
Associating Kernel Memory With User Mappings 157

Allocating Kernel Memory for User Access 157
Exporting Kernel Memory to Applications 159
Freeing Kernel Memory Exported for User Access 161

11 Device Context Management 163

Introduction to Device Context 163
What Is a Device Context? 163
Context Management Model 163

Context Management Operation 165
devmap_callback_ctl Structure 165
Entry Points for Device Context Management 166
Associating User Mappings With Driver Notifications 174
Managing Mapping Accesses 175

12 Power Management 177

Power Management Framework 177
Device Power Management 178
System Power Management 178

Device Power Management Model 179
Power Management Components 179
Power Management States 180
Power Levels 180
Power Management Dependencies 181
Automatic Power Management for Devices 182
Device Power Management Interfaces 183
power() Entry Point 185

System Power Management Model 187
Autoshutdown Threshold 187
Busy State 188
Hardware State 188

7

Automatic Power Management for Systems 188
Entry Points Used by System Power Management 188

Power Management Device Access Example 193
Power Management Flow of Control 194
Changes to Power Management Interfaces 196

13 Layered Driver Interface (LDI) 199

LDI Overview 199
Kernel Interfaces 200

Layered Identifiers – Kernel Device Consumers 200
Layered Driver Handles – Target Devices 201
LDI Kernel Interfaces Example 206

� How to Build and Load the Layered Driver 215
User Interfaces 217

Device Information Library Interfaces 218
Print System Configuration Command Interfaces 220
Device User Command Interfaces 222

Part II Designing Specific Kinds of Device Drivers 225

14 Drivers for Character Devices 227

Overview of the Character Driver Structure 227
Character Device Autoconfiguration 229
Device Access (Character Drivers) 230

open() Entry Point (Character Drivers) 230
close() Entry Point (Character Drivers) 232

I/O Request Handling 232
User Addresses 232
Vectored I/O 233
Differences Between Synchronous and Asynchronous I/O 235
Data Transfer Methods 236

Mapping Device Memory 242
segmap() Entry Point 242
devmap() Entry Point 243

Multiplexing I/O on File Descriptors 243
Miscellaneous I/O Control 246

ioctl() Entry Point (Character Drivers) 246

8 Writing Device Drivers • January 2005

I/O Control Support for 64-Bit Capable Device Drivers 248

Handling copyout() Overflow 250

32–bit and 64–bit Data Structure Macros 251

How Do the Structure Macros Work? 252

When to Use Structure Macros 252

Declaring and Initializing Structure Handles 253

Operations on Structure Handles 253

Other Operations 254

15 Drivers for Block Devices 255

Block Driver Structure Overview 255

File I/O 256

Block Device Autoconfiguration 257

Controlling Device Access 259

open() Entry Point (Block Drivers) 259

close() Entry Point (Block Drivers) 260

strategy() Entry Point 261

buf Structure 261

Synchronous Data Transfers (Block Drivers) 264

Asynchronous Data Transfers (Block Drivers) 267

Checking for Invalid buf Requests 268

Enqueuing the Request 268

Starting the First Transfer 269

Handling the Interrupting Device 270

dump() and print() Entry Points 271

dump() Entry Point (Block Drivers) 272

print() Entry Point (Block Drivers) 272

Disk Device Drivers 273

Disk ioctls 273

Disk Performance 273

16 SCSI Target Drivers 275

Introduction to Target Drivers 275

Sun Common SCSI Architecture Overview 276

General Flow of Control 277

SCSA Functions 278

Hardware Configuration File 279

9

Declarations and Data Structures 280
scsi_device Structure 280
scsi_pkt Structure (Target Drivers) 281

Autoconfiguration for SCSI Target Drivers 283
probe() Entry Point (SCSI Target Drivers) 283
attach() Entry Point (SCSI Target Drivers) 285
detach() Entry Point (SCSI Target Drivers) 288
getinfo() Entry Point (SCSI Target Drivers) 288

Resource Allocation 289
scsi_init_pkt() Function 289
scsi_sync_pkt() Function 290
scsi_destroy_pkt() Function 290
scsi_alloc_consistent_buf() Function 291
scsi_free_consistent_buf() Function 291

Building and Transporting a Command 291
Building a Command 291
Setting Target Capabilities 293
Transporting a Command 293
Command Completion 294
Reuse of Packets 295
Auto-Request Sense Mode 296
Dump Handling 297

SCSI Options 299

17 SCSI Host Bus Adapter Drivers 301

Introduction to Host Bus Adapter Drivers 301
SCSI Interface 302
SCSA HBA Interfaces 304

SCSA HBA Entry Point Summary 304
SCSA HBA Data Structures 305
Per-Target Instance Data 311
Transport Structure Cloning 312
SCSA HBA Functions 314

HBA Driver Dependency and Configuration Issues 315
Declarations and Structures 315
Entry Points for Module Initialization 316
Autoconfiguration Entry Points 318

Entry Points for SCSA HBA Drivers 322

10 Writing Device Drivers • January 2005

Target Driver Instance Initialization 323
Resource Allocation 325
Command Transport 335
Capability Management 341
Abort and Reset Management 347
Dynamic Reconfiguration 349

SCSI HBA Driver Specific Issues 350
Installing HBA Drivers 350
HBA Configuration Properties 350
x86 Target Driver Configuration Properties 352

Support for Queuing 353

18 Drivers for Network Devices 355

Generic LAN Driver Overview 355
Type DL_ETHER: Ethernet V2 and ISO 8802-3 (IEEE 802.3) 356
Types DL_TPR and DL_FDDI: SNAP Processing 357
Type DL_TPR: Source Routing 358
Style 1 and Style 2 DLPI Providers 358
Implemented DLPI Primitives 358
Implemented ioctl Functions 360
GLD Driver Requirements 361
Network Statistics 362

Declarations and Data Structures 366
gld_mac_info Structure 366
gld_stats Structure 369

GLD Arguments 370
GLD Entry Points 371

gldm_reset() Entry Point 372
gldm_start() Entry Point 372
gldm_stop() Entry Point 372
gldm_set_mac_addr() Entry Point 372
gldm_set_multicast() Entry Point 372
gldm_set_promiscuous() Entry Point 373
gldm_send() Entry Point 374
gldm_intr() Entry Point 374
gldm_get_stats() Entry Point 375
gldm_ioctl() Entry Point 375
GLD Return Values 376

11

GLD Service Routines 376
gld_mac_alloc() Function 376
gld_mac_free() Function 376
gld_register() Function 377
gld_unregister() Function 377
gld_recv() Function 378
gld_sched() Function 378
gld_intr() Function 378

19 USB Drivers 381

USB in the Solaris Environment 381
USBA 2.0 Framework 381
USB Client Drivers 382

Binding Client Drivers 384
How USB Devices Appear to the System 384
USB Devices and the Solaris Device Tree 384
Compatible Device Names 384
Devices With Multiple Interfaces 386
Checking Device Driver Bindings 387

Basic Device Access 387
Before the Client Driver Is Attached 387
The Descriptor Tree 388
Registering Drivers to Gain Device Access 390

Device Communication 391
USB Endpoints 391
The Default Pipe 392
Pipe States 393
Opening Pipes 393
Closing Pipes 393
Data Transfer 394
Flushing Pipes 401

Device State Management 401
Hotplugging USB Devices 402
Power Management 405
Serialization 408

Utility Functions 409
Device Configuration Facilities 409
Other Utility Functions 411

12 Writing Device Drivers • January 2005

Sample USB Device Driver 412

Part III Building a Device Driver 415

20 Compiling, Loading, Packaging, and Testing Drivers 417

Driver Development Summary 417
Driver Code Layout 418

Header Files 418
.c Files 419
driver.conf Files 419

Preparing for Driver Installation 420
Compiling and Linking the Driver 421
Module Dependencies 422
Writing a Hardware Configuration File 422

Installing, Updating, and Removing Drivers 422
Copying the Driver to a Module Directory 422
Installing Drivers with add_drv 424
Updating Driver Information 424
Removing the Driver 424

Loading and Unloading Drivers 425
Driver Packaging 425

Package Postinstall 425
Package Preremove 426

Criteria for Testing Drivers 427
Configuration Testing 427
Functionality Testing 428
Error Handling 428
Testing Loading and Unloading 429
Stress, Performance, and Interoperability Testing 429
DDI/DKI Compliance Testing 430
Installation and Packaging Testing 430
Testing Specific Types of Drivers 430

21 Debugging, Testing, and Tuning Device Drivers 433

Testing Drivers 433
Testing With a Serial Connection 434

� To Set Up the Host System for a tip Connection 434

13

Setting Up Test Modules 436
Avoiding Data Loss on a Test System 439

� To Boot With an Alternate Kernel 439
Recovering the Device Directory 442

Debugging Tools 443
Postmortem Debugging 443
Using the kmdb Kernel Debugger 444
Using the mdb Modular Debugger 447
Useful Debugging Tasks With kmdb and mdb 448

Tuning Drivers 456
Kernel Statistics 457
DTrace for Dynamic Instrumentation 459

22 Recommended Coding Practices 461

Debugging Preparation Techniques 461
Use cmn_err() to Log Driver Activity 461
Use ASSERT() to Catch Invalid Assumptions 462
Use mutex_owned() to Validate and Document Locking Requirements 462
Use Conditional Compilation to Toggle Costly Debugging Features 463

Defensive Programming 464
Using Separate Device Driver Instances 465
Exclusive Use of DDI Access Handles 465
Detecting Corrupted Data 465
DMA Isolation 466
Handling Stuck Interrupts 467
Additional Programming Considerations 468

Declaring a Variable Volatile 469
Serviceability 471

Periodic Health Checks 471

Part IV Appendixes 473

A Hardware Overview 475

SPARC Processor Issues 475
SPARC Data Alignment 476
Member Alignment in SPARC Structures 476
SPARC Byte Ordering 476

14 Writing Device Drivers • January 2005

SPARC Register Windows 477
SPARC Multiply and Divide Instructions 477

x86 Processor Issues 477
x86 Byte Ordering 478
x86 Architecture Manuals 478

Endianness 478
Store Buffers 479
System Memory Model 480

Total Store Ordering (TSO) 480
Partial Store Ordering (PSO) 480

Bus Architectures 481
Device Identification 481
Supported Interrupt Types 481

Bus Specifics 481
PCI Local Bus 482
PCI Address Domain 483
SBus 485

Device Issues 487
Timing-Critical Sections 487
Delays 487
Internal Sequencing Logic 487
Interrupt Issues 488

PROM on SPARC Machines 488
Open Boot PROM 3 489
Reading and Writing 492

B Summary of Solaris DDI/DKI Services 495

Module Functions 496
Device Information Tree Node (dev_info_t) Functions 496
Device (dev_t) Functions 496
Property Functions 497
Device Software State Functions 498
Memory Allocation and Deallocation Functions 498
Kernel Thread Control and Synchronization Functions 499
Interrupt Functions 501
Programmed I/O Functions 501
Direct Memory Access (DMA) Functions 507
User Space Access Functions 509

15

User Process Event Functions 511

User Process Information Functions 511

User Application Kernel and Device Access Functions 511

Time-Related Functions 513

Power Management Functions 513

Kernel Statistics Functions 514

Kernel Logging and Printing Functions 515

Buffered I/O Functions 515

Virtual Memory Functions 516

Device ID Functions 516

SCSI Functions 517

Resource Map Management Functions 519

System Global State 519

Utility Functions 520

C Making a Device Driver 64-Bit Ready 521

Introduction to 64–Bit Driver Design 521

General Conversion Steps 522

Use Fixed-Width Types for Hardware Registers 523

Use Fixed-Width Common Access Functions 524

Check and Extend Use of Derived Types 524

Check Changed Fields in DDI Data Structures 524

Check Changed Arguments of DDI Functions 525

Modify Routines That Handle Data Sharing 528

Check Structures with 64–bit Long Data Types on x86–Based Platforms 529

Well-known ioctl Interfaces 530

Device Sizes 531

Index 533

16 Writing Device Drivers • January 2005

Tables

TABLE 1–1 Entry Points for All Driver Types 37
TABLE 1–2 Additional Entry Points for Block Drivers 39
TABLE 1–3 Additional Entry Points for Character Drivers 40
TABLE 1–4 Entry Points for STREAMS Drivers 41
TABLE 1–5 Entry Points for Character Drivers That Use devmap for Memory

Mapping 41
TABLE 1–6 Additional Entry Points for the Generic LAN Driver 42
TABLE 1–7 Additional Entry Points for SCSI HBA Drivers 43
TABLE 1–8 Entry Points for PC Card Drivers Only 45
TABLE 4–1 Property Interface Uses 75
TABLE 5–1 Functions for Using Name-Value Pairs 84
TABLE 6–1 Possible Node Types 101
TABLE 9–1 Resource Allocation Handling 144
TABLE 12–1 Power Management Interfaces 197
TABLE 16–1 Standard SCSA Functions 278
TABLE 17–1 SCSA HBA Entry Point Summary 305
TABLE 17–2 SCSA HBA Functions 314
TABLE 17–3 SCSA Entry Points 322
TABLE 19–1 Request Initialization 396
TABLE 19–2 Request Transfer Setup 396
TABLE 21–1 kmdb Macros 446
TABLE A–1 Device Physical Space in the Ultra 2 485
TABLE A–2 Ultra 2 SBus Address Bits 486
TABLE B–1 Deprecated Property Functions 498
TABLE B–2 Deprecated Memory Allocation and Deallocation Functions 499
TABLE B–3 Deprecated Programmed I/O Functions 505
TABLE B–4 Deprecated Direct Memory Access (DMA) Functions 508

17

TABLE B–5 Deprecated User Space Access Functions 510

TABLE B–6 Deprecated User Process Information Functions 511

TABLE B–7 Deprecated User Application Kernel and Device Access Functions
512

TABLE B–8 Deprecated Time-Related Functions 513

TABLE B–9 Deprecated Power Management Functions 514

TABLE B–10 Deprecated Virtual Memory Functions 516

TABLE B–11 Deprecated SCSI Functions 518

TABLE C–1 Comparison of ILP32 and LP64 Data Types 522

18 Writing Device Drivers • January 2005

Figures

FIGURE 2–1 Solaris Kernel 52
FIGURE 2–2 Example Device Tree 56
FIGURE 2–3 Device Node Names 59
FIGURE 2–4 Specific Driver Node Binding 60
FIGURE 2–5 Generic Driver Node Binding 61
FIGURE 5–1 Event Plumbing 80
FIGURE 6–1 Module Loading and Autoconfiguration Entry Points 88
FIGURE 9–1 CPU and System I/O Caches 148
FIGURE 11–1 Device Context Management 164
FIGURE 11–2 Device Context Switched to User Process A 164
FIGURE 12–1 Power Management Conceptual State Diagram 194
FIGURE 14–1 Character Driver Roadmap 227
FIGURE 15–1 Block Driver Roadmap 255
FIGURE 16–1 SCSA Block Diagram 276
FIGURE 17–1 SCSA Interface 302
FIGURE 17–2 Transport Layer Flow 303
FIGURE 17–3 HBA Transport Structures 311
FIGURE 17–4 Cloning Transport Operation 313
FIGURE 17–5 scsi_pkt(9S) Structure Pointers 326
FIGURE 19–1 Solaris USB Architecture 382
FIGURE 19–2 Driver and Controller Interfaces 383
FIGURE 19–3 A Hierarchical USB Descriptor Tree 388
FIGURE 19–4 USB Device State Machine 401
FIGURE 19–5 USB Power Management 406
FIGURE A–1 Byte Ordering Required for Host Bus Dependency 478
FIGURE A–2 Data Ordering Host Bus Dependency 479
FIGURE A–3 Machine Block Diagram 482

19

FIGURE A–4 Base Address Registers for Memory and I/O 483

20 Writing Device Drivers • January 2005

Examples

EXAMPLE 3–1 Using Mutexes and Condition Variables 67
EXAMPLE 3–2 Using cv_timedwait() 68
EXAMPLE 3–3 Using cv_wait_sig() 69
EXAMPLE 4–1 prop_op() Routine 77
EXAMPLE 5–1 Calling ddi_log_sysevent() 82
EXAMPLE 5–2 Creating and Populating a Name-Value Pair List 83
EXAMPLE 6–1 Loadable Interface Section 91
EXAMPLE 6–2 _init() Function 93
EXAMPLE 6–3 probe(9E) Routine 96
EXAMPLE 6–4 probe(9E) Routine Using ddi_poke8(9F) 98
EXAMPLE 6–5 Typical attach() Entry Point 102
EXAMPLE 6–6 Typical detach() Entry Point 105
EXAMPLE 6–7 Typical getinfo() Entry Point 106
EXAMPLE 7–1 Mapping Setup 114
EXAMPLE 7–2 Mapping Setup: Buffer 115
EXAMPLE 8–1 Routine Installation of an Interrupt Handler With attach() 123
EXAMPLE 8–2 Interrupt Example 124
EXAMPLE 8–3 Handling High-Level Interrupts With attach() 126
EXAMPLE 8–4 High-level Interrupt Routine 126
EXAMPLE 8–5 Low-Level Interrupt Routine 127
EXAMPLE 9–1 DMA Callback Example 140
EXAMPLE 9–2 Determining Burst Size 141
EXAMPLE 9–3 Using ddi_dma_mem_alloc(9F) 143
EXAMPLE 9–4 ddi_dma_cookie(9S) Example 145
EXAMPLE 9–5 Freeing DMA Resources 145
EXAMPLE 9–6 Canceling DMA Callbacks 147
EXAMPLE 9–7 Setting Up DMA Windows 150

21

EXAMPLE 9–8 Interrupt Handler Using DMA Windows 152

EXAMPLE 10–1 Using the devmap_devmem_setup() Routine 156

EXAMPLE 10–2 Using the ddi_umem_alloc() Routine 158

EXAMPLE 10–3 devmap_umem_setup(9F) Routine 160

EXAMPLE 11–1 Using the devmap() Routine 167

EXAMPLE 11–2 Using the devmap_access() Routine 169

EXAMPLE 11–3 Using the devmap_contextmgt() Routine 170

EXAMPLE 11–4 Using the devmap_dup() Routine 171

EXAMPLE 11–5 Using the devmap_unmap() Routine 173

EXAMPLE 11–6 devmap(9E) Entry Point With Context Management Support 174

EXAMPLE 12–1 Sample pm-component Entry 180

EXAMPLE 12–2 attach(9E) Routine With pm-components Property 180

EXAMPLE 12–3 Multiple Component pm-components Entry 181

EXAMPLE 12–4 Using the power() Routine for a Single-Component Device 185

EXAMPLE 12–5 power(9E) Routine for Multiple-Component Device 186

EXAMPLE 12–6 detach(9E) Routine Implementing DDI_SUSPEND 189

EXAMPLE 12–7 attach(9E) Routine Implementing DDI_RESUME 191

EXAMPLE 12–8 Device Access 193

EXAMPLE 12–9 Device Operation Completion 193

EXAMPLE 13–1 Configuration File 206

EXAMPLE 13–2 Driver Source File 207

EXAMPLE 13–3 Write a Short Message to the Layered Device 216

EXAMPLE 13–4 Write a Longer Message to the Layered Device 216

EXAMPLE 13–5 Change the Target Device 217

EXAMPLE 13–6 Device Usage Information 220

EXAMPLE 13–7 Ancestor Node Usage Information 220

EXAMPLE 13–8 Child Node Usage Information 220

EXAMPLE 13–9 Layering and Device Minor Node Information – Keyboard 221

EXAMPLE 13–10 Layering and Device Minor Node Information – Network Device 222

EXAMPLE 13–11 Consumers of Underlying Device Nodes 223

EXAMPLE 13–12 Consumer of the Keyboard Device 223

EXAMPLE 14–1 Character Driver attach() Routine 229

EXAMPLE 14–2 Character Driver open(9E) Routine 231

EXAMPLE 14–3 Ramdisk read(9E) Routine Using uiomove(9F) 236

EXAMPLE 14–4 Programmed I/O write(9E) Routine Using uwritec(9F) 237

EXAMPLE 14–5 read(9E) and write(9E) Routines Using physio(9F) 238

EXAMPLE 14–6 aread(9E) and awrite(9E) Routines Using aphysio(9F) 239

EXAMPLE 14–7 minphys(9F) Routine 240

22 Writing Device Drivers • January 2005

EXAMPLE 14–8 strategy(9E) Routine 241

EXAMPLE 14–9 Interrupt Routine 241

EXAMPLE 14–10 segmap(9E) Routine 243

EXAMPLE 14–11 chpoll(9E) Routine 244

EXAMPLE 14–12 Interrupt Routine Supporting chpoll(9E) 245

EXAMPLE 14–13 ioctl(9E) Routine 247

EXAMPLE 14–14 Using ioctl(9E) 248

EXAMPLE 14–15 ioctl(9E) Routine to Support 32-bit Applications and 64-bit
Applications 249

EXAMPLE 14–16 Handling copyout(9F) Overflow 250

EXAMPLE 14–17 Using Data Structure Macros to Move Data 251

EXAMPLE 15–1 Block Driver attach() Routine 258

EXAMPLE 15–2 Block Driver open(9E) Routine 259

EXAMPLE 15–3 Block Device close(9E) Routine 260

EXAMPLE 15–4 Synchronous Interrupt Routine for Block Drivers 266

EXAMPLE 15–5 Enqueuing Data Transfer Requests for Block Drivers 268

EXAMPLE 15–6 Starting the First Data Request for a Block Driver 269

EXAMPLE 15–7 Block Driver Routine for Asynchronous Interrupts 270

EXAMPLE 16–1 SCSI Target Driver probe(9E) Routine 284

EXAMPLE 16–2 SCSI Target Driver attach(9E) Routine 286

EXAMPLE 16–3 SCSI Target Driver detach(9E) Routine 288

EXAMPLE 16–4 Alternative SCSI Target Driver getinfo() Code Fragment 288

EXAMPLE 16–5 Completion Routine for a SCSI Driver 294

EXAMPLE 16–6 Enabling Auto-Request Sense Mode 296

EXAMPLE 16–7 dump(9E) Routine 297

EXAMPLE 17–1 Module Initialization for SCSI HBA 317

EXAMPLE 17–2 HBA Driver Initialization of a SCSI Packet Structure 326

EXAMPLE 17–3 HBA Driver Allocation of DMA Resources 329

EXAMPLE 17–4 DMA Resource Reallocation for HBA Drivers 331

EXAMPLE 17–5 HBA Driver tran_destroy_pkt(9E) Entry Point 333

EXAMPLE 17–6 HBA Driver tran_sync_pkt(9E) Entry Point 333

EXAMPLE 17–7 HBA Driver tran_dmafree(9E) Entry Point 334

EXAMPLE 17–8 HBA Driver tran_start(9E) Entry Point 335

EXAMPLE 17–9 HBA Driver Interrupt Handler 338

EXAMPLE 17–10 HBA Driver tran_getcap(9E) Entry Point 342

EXAMPLE 17–11 HBA Driver tran_setcap(9E) Entry Point 344

EXAMPLE 17–12 HBA Driver tran_reset_notify(9E) Entry Point 348

EXAMPLE 19–1 USB Mouse Compatible Device Names 385

23

EXAMPLE 19–2 Compatible Device Names Shown by the Print Configuration Command
385

EXAMPLE 19–3 USB Audio Compatible Device Names 386

EXAMPLE 21–1 Setting input-device and output-device With Boot PROM
Commands 435

EXAMPLE 21–2 Setting input-device and output-device With the eeprom
Command 435

EXAMPLE 21–3 Using modinfo to Confirm a Loaded Driver 437

EXAMPLE 21–4 Booting an Alternate Kernel 440

EXAMPLE 21–5 Booting an Alternate Kernel With the -a Option 440

EXAMPLE 21–6 Recovering a Damaged Device Directory 442

EXAMPLE 21–7 Setting Standard Breakpoints in kmdb 445

EXAMPLE 21–8 Setting Deferred Breakpoints in kmdb 445

EXAMPLE 21–9 Invoking mdb on a Crash Dump 448

EXAMPLE 21–10 Invoking mdb on a Running Kernel 448

EXAMPLE 21–11 Reading All Registers on a SPARC Processor With kmdb 449

EXAMPLE 21–12 Reading and Writing Registers on an x86 Machine With kmdb 449

EXAMPLE 21–13 Inspecting the Registers of a Different Processor 450

EXAMPLE 21–14 Retrieving the Value of an Individual Register From a Specified
Processor 450

EXAMPLE 21–15 Displaying Kernel Data Structures With a Debugger 451

EXAMPLE 21–16 Displaying the Size of a Kernel Data Structure 452

EXAMPLE 21–17 Displaying the Offset to a Kernel Data Structure 452

EXAMPLE 21–18 Displaying the Relative Addresses of a Kernel Data Structure 452

EXAMPLE 21–19 Displaying the Absolute Addresses of a Kernel Data Structure 452

EXAMPLE 21–20 Using the ::prtconf Dcmd 453

EXAMPLE 21–21 Displaying Device Information for an Individual Node 453

EXAMPLE 21–22 Using the ::prtconf Dcmd in Verbose Mode 454

EXAMPLE 21–23 Using the ::devbindings Dcmd to Locate Driver Instances 455

EXAMPLE 21–24 Modifying a Kernel Variable With a Debugger 456

24 Writing Device Drivers • January 2005

Preface

Writing Device Drivers provides information on developing device drivers for
character-oriented devices, block-oriented devices, and small computer system
interface (SCSI) target devices. This book describes development of dynamically
loadable and unloadable, multithreaded re-entrant device drivers that conform to the
Solaris™ 10 Device Driver Interface and the Driver-Kernel Interface (DDI/DKI). A
common driver development approach is taken to avoid platform-specific issues, such
as endianness and data ordering.

Note – This Solaris release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation
differences between the platform types.

In this document the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
This book is written for UNIX® programmers who are familiar with UNIX device
drivers. Overview information is provided, but the book is not intended to serve as a
general tutorial on device drivers.

25

http://www.sun.com/bigadmin/hcl

Note – The Solaris Operating System (Solaris OS) runs on two types of hardware, or
platforms—SPARC and x86. The Solaris operating system also runs on both 64–bit and
32–bit address spaces. The information in this document pertains to both platforms
and address spaces unless specifically noted.

How This Book Is Organized
This book is organized into the following chapters.

� Chapter 1 provides an introduction to device drivers and associated entry points
on the Solaris platform. The entry points for each device driver type are presented
in tables.

� Chapter 2 provides an overview of the Solaris kernel with an explanation of how
devices are represented as nodes in a device tree.

� Chapter 3 describes the aspects of the Solaris multithreaded kernel that are relevant
for device driver developers.

� Chapter 4 describes the set of interfaces for using device properties.

� Chapter 5 describes how device drivers log events.

� Chapter 6 explains the support that a driver must provide for autoconfiguration.

� Chapter 7 describes the interfaces and methodologies for drivers to read or write to
device memory.

� Chapter 8 describes the mechanisms for handling interrupts. These mechanisms
include registering, servicing, and removing interrupts.

� Chapter 9 describes direct memory access (DMA) and the DMA interfaces.

� Chapter 10 describes interfaces for managing device and kernel memory.

� Chapter 11 describes the set of interfaces that enable device drivers to manage user
access to devices.

� Chapter 12 explains the interfaces for Power Management™, a framework for
managing power consumption.

� Chapter 13 describes the LDI, which enables kernel modules to access other
devices in the system.

� Chapter 14 describes drivers for character-oriented devices.

� Chapter 15 describes drivers for a block-oriented devices.

� Chapter 16 outlines the Sun Common SCSI Architecture (SCSA) and the
requirements for SCSI target drivers.

� Chapter 17 explains how to apply SCSA to SCSI Host Bus Adapter (HBA) drivers.

26 Writing Device Drivers • January 2005

� Chapter 18 describes the Generic LAN driver (GLD), a Solaris network driver that
uses STREAMS technology and the Data Link Provider Interface (DLPI).

� Chapter 19 describes how to write a client USB device driver using the USBA 2.0
framework.

� Chapter 20 provides information on compiling, linking, and installing a driver.

� Chapter 21 describes techniques for debugging, testing, and testing drivers.

� Chapter 22 describes the recommended coding practices for writing drivers.

� Appendix A discusses multi-platform hardware issues for device drivers.

� Appendix B provides tables of kernel functions for device drivers. Deprecated
functions are indicated as well.

� Appendix C provides guidelines for updating a device driver to run in a 64-bit
environment.

Related Books and Papers
For detailed reference information about the device driver interfaces, see the man page
sections 9, 9E, which handle entry points, 9F for functions, and 9S for structures.

For information on hardware and other driver-related issues, see these books from Sun
Microsystems:

� The Device Driver Tutorial provides detailed explanations of working device driver
examples.

� Application Packaging Developer’s Guide, Sun Microsystems, Inc., 2004.

� Open Boot PROM Toolkit User’s Guide, Sun Microsystems, Inc., 1996.

� STREAMS Programming Guide. Sun Microsystems, Inc., 2005.

� Multithreaded Programming Guide. Sun Microsystems, Inc., 2005.

� Solaris 64-bit Developer’s Guide. Sun Microsystems, Inc., 2005.

� Solaris Modular Debugger Guide, Sun Microsystems, Inc., 2005.

� Solaris Dynamic Tracing Guide, Sun Microsystems, Inc., 2005.

The following books from other sources may also be useful.

� The SPARC Architecture Manual, Version 9. Prentice Hall, 1998. ISBN 0–13–099227–5.

� The SPARC Architecture Manual, Version 8. Prentice Hall, 1994. ISBN 0-13-825001-4.

� Pentium Pro Family Developer’s Manual, Volumes 1-3. Intel Corporation, 1996. Volume
1, ISBN 1-55512-259-0; Volume 2, ISBN 1-55512-260-4; Volume 3, ISBN
1-55512-261-2.

27

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

28 Writing Device Drivers • January 2005

http://docs.sun.com
http://docs.sun.com

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -ato list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms or terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Do not save the file.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

29

30 Writing Device Drivers • January 2005

PART I
Designing Device Drivers for the
Solaris Platform

The first part of this manual provides general information for developing device
drivers on the Solaris platform. This part includes the following chapters:

� Chapter 1 provides an introduction to device drivers and associated entry points
on the Solaris platform. The entry points for each device driver type are presented
in tables.

� Chapter 2 provides an overview of the Solaris kernel with an explanation of how
devices are represented as nodes in a device tree.

� Chapter 3 describes the aspects of the Solaris multithreaded kernel that are relevant
for device driver developers.

� Chapter 4 describes the set of interfaces for using device properties.

� Chapter 5 describes how device drivers log events.

� Chapter 6 explains the support that a driver must provide for autoconfiguration.

� Chapter 7 describes the interfaces and methodologies for drivers to read or write to
device memory.

� Chapter 8 describes the mechanisms for handling interrupts. These mechanisms
include registering, servicing, and removing interrupts.

� Chapter 9 describes direct memory access (DMA) and the DMA interfaces.

� Chapter 10 describes interfaces for managing device and kernel memory.

� Chapter 11 describes the set of interfaces that enable device drivers to manage user
access to devices.

� Chapter 12 explains the interfaces for the Power Management™ feature, a
framework for managing power consumption.

� Chapter 13 describes the LDI, which enables kernel modules to access other
devices in the system.

31

32 Writing Device Drivers • January 2005

CHAPTER 1

Overview of Solaris Device Drivers

This chapter gives an overview of Solaris device drivers. The chapter provides
information on the following subjects:

� “Device Driver Basics” on page 33
� “Device Driver Entry Points” on page 35
� “Considerations in Device Driver Design” on page 45

Device Driver Basics
This section introduces you to device drivers and their entry points on the Solaris
platform.

What Is a Device Driver?
A device driver is a kernel module that is responsible for managing the low-level I/O
operations of a hardware device. Device drivers are written with standard interfaces
that the kernel can call to interface with a device. Device drivers can also be
software-only, emulating a device that exists only in software, such as RAM disks,
buses, and pseudo-terminals.

A device driver contains all the device-specific code necessary to communicate with a
device. This code includes a standard set of interfaces to the rest of the system. This
interface shields the kernel from device specifics just as the system call interface
protects application programs from platform specifics. Application programs and the
rest of the kernel need little, if any, device-specific code to address the device. In this
way, device drivers make the system more portable and easier to maintain.

33

When the Solaris operating system (OS) is initialized, devices identify themselves and
are organized into the device tree, a hierarchy of devices. In effect, the device tree is a
hardware model for the kernel. An individual device driver is represented as a node in
the tree with no children. This type of node is referred to as a leaf driver. A driver that
provides services to other drivers is called a bus nexus driver and is shown as a node
with children. As part of the boot process, physical devices are mapped to drivers in
the tree so that the drivers can be located when needed. For more information on how
the Solaris OS accommodates devices, see Chapter 2.

Device drivers are classified by how they handle I/O. Device drivers fall into three
broad categories:

� Block device drivers – For cases where handling I/O data as asynchronous chunks
is appropriate. Typically, block drivers are used to manage devices with physically
addressable storage media, such as disks.

� Character device drivers – For devices that perform I/O on a continuous flow of
bytes.

Note – A driver can be both block and character at the same time if you set up two
different interfaces to the file system. See “Devices as Special Files” on page 53.

Included in the character category are drivers that use the STREAMS model (see
below), programmed I/O, direct memory access, SCSI buses, USB, and other
network I/O.

� STREAMS device drivers – Subset of character drivers that uses the streamio(7I)
set of routines for character I/O within the kernel.

What Is a Device Driver Entry Point?
An entry point is a function within a device driver that can be called by an external
entity to get access to some driver functionality or to operate a device. Each device
driver provides a standard set of functions as entry points. For the complete list of
entry points for all driver types, see the Intro(9E) man page. The Solaris kernel uses
entry points for these general task areas:

� Loading and unloading the driver

� Autoconfiguring the device – Autoconfiguration is the process of loading a device
driver’s code and static data into memory so that the driver is registered with the
system.

� Providing I/O services for the driver

Drivers for different types of devices have different sets of entry points according to
the kinds of operations the devices perform. A driver for a memory-mapped
character-oriented device, for example, supports a devmap(9E) entry point, while a
block driver does not support this entry.

34 Writing Device Drivers • January 2005

By convention, all driver function and variable names have a prefix. Typically, this
prefix is the name of the driver, such as xxopen() for the open(9E) routine of driver
xx. In subsequent examples, xx is used as the driver prefix.

Device Driver Entry Points
This section provides lists of entry points for the following categories:

� “Entry Points Common to All Drivers” on page 35
� “Entry Points for Block Device Drivers” on page 38
� “Entry Points for Character Device Drivers” on page 39
� “Entry Points for STREAMS Device Drivers” on page 40
� “Entry Points for Memory Mapped Devices” on page 41
� “Entry Points for the Generic LAN Device (GLD) Driver” on page 42
� “Entry Points for SCSI HBA Drivers” on page 43
� “Entry Points for PC Card Drivers” on page 45

Entry Points Common to All Drivers
Some operations can be performed by any type of driver, such as the functions that are
required for module loading and for the required autoconfiguration entry points. This
section discusses types of entry points that are common to all drivers. The common
entry points are listed in “Summary of Common Entry Points” on page 36 with links
to man pages and other relevant discussions.

Device Access Entry Points
Drivers for character and block devices export the cb_ops(9S) structure, which
defines the driver entry points for block device access and character device access.
Both types of drivers are required to support the open(9E) and close(9E) entry
points. Block drivers are required to support strategy(9E), while character drivers
can choose to implement whatever mix of read(9E), write(9E), ioctl(9E), mmap(9E),
or devmap(9E) entry points is appropriate for the type of device. Character drivers can
also support a polling interface through chpoll(9E). Asynchronous I/O is supported
through aread(9E) and awrite(9E) for block drivers and those drivers that can use
both block and character file systems.

Loadable Module Entry Points
All drivers are required to implement the loadable module entry points _init(9E),
_fini(9E), and _info(9E) to load, unload, and report information about the driver
module.

Chapter 1 • Overview of Solaris Device Drivers 35

Drivers should allocate and initialize any global resources in _init(9E). Drivers
should release their resources in _fini(9E).

Note – In the Solaris 10 operating system, only the loadable module routines must be
visible outside the driver object module. Other routines can have the storage class
static.

Autoconfiguration Entry Points
Drivers are required to implement the attach(9E), detach(9E), and getinfo(9E)
entry points for device autoconfiguration. Drivers can also implement the optional
entry point probe(9E) in cases where devices do not identify themselves during
boot-up, such as SCSI target devices. See Chapter 6 for more information on these
routines.

Kernel Statistics Entry Points
The Solaris platform provides a rich set of interfaces to maintain and export
kernel-level statistics, also known as kstats. Drivers are free to use these interfaces to
export driver and device statistics that can be used by user applications to observe the
internal state of the driver. Two entry points are provided for working with kernel
statistics:

� ks_snapshot(9E) captures kstats at a specific time.

� ks_update(9E) can be used to update kstat data at will. ks_update() is useful
in situations where a device is set up to track kernel data but extracting that data is
time-consuming.

For further information, see the kstat_create(9F) and kstat(9S) man pages. See
also “Kernel Statistics” on page 457.

Power Management Entry Point
Drivers for hardware devices that provide Power Management functionality can
support the optional power(9E) entry point. See Chapter 12 for details about this entry
point.

Summary of Common Entry Points
The following table lists entry points that can be used by all types of drivers.

36 Writing Device Drivers • January 2005

TABLE 1–1 Entry Points for All Driver Types

Category / Entry Point Usage Description

cb_ops Entry Points

open(9E) Required Gets access to a device. Additional information:
� “open() Entry Point (Character Drivers)” on page 230
� “open() Entry Point (Block Drivers)” on page 259

close(9E) Required Gives up access to a device. The version of close() for STREAMS
drivers has a different signature than character and block drivers.
Additional information:
� “close() Entry Point (Character Drivers)” on page 232
� “close() Entry Point (Block Drivers)” on page 260

Loadable Module Entry
Points

_init(9E) Required Initializes a loadable module. Additional information:
� “Loadable Driver Interfaces” on page 91

_fini(9E) Required Prepares a loadable module for unloading. Required for all driver
types. Additional information:
� “Loadable Driver Interfaces” on page 91

_info(9E) Required Returns information about a loadable module. Additional
information:
� “Loadable Driver Interfaces” on page 91

Autoconfiguration Entry
Points

attach(9E) Required Adds a device to the system as part of initialization. Also used to
resume a system that has been suspended. Additional information:
� “attach() Entry Point” on page 99

detach(9E) Required Detaches a device from the system. Also, used to suspend a device
temporarily. Additional information:
� “detach() Entry Point” on page 104

getinfo(9E) Required Gets device information that is specific to the driver, such as the
mapping between a device number and the corresponding
instance. Additional information:
� “getinfo() Entry Point” on page 106
� “getinfo() Entry Point (SCSI Target Drivers)” on page 288.

probe(9E) See
Description

Determines if a non-self-identifying device is present. Required for
a device that cannot identify itself. Additional information:
� “probe() Entry Point” on page 96
� “probe() Entry Point (SCSI Target Drivers)” on page 283

Kernel StatisticsEntry Points

Chapter 1 • Overview of Solaris Device Drivers 37

TABLE 1–1 Entry Points for All Driver Types (Continued)
Category / Entry Point Usage Description

ks_snapshot(9E) Optional Takes a snapshot of kstat(9S) data. Additional information:
� “Kernel Statistics” on page 457

ks_update(9E) Optional Updates kstat(9S) data dynamically. Additional information:
� “Kernel Statistics” on page 457

Power Management Entry
Points

power(9E) Required Sets the power level of a device. If not used, set to NULL.
Additional information:
� “power() Entry Point” on page 185

Miscellaneous Entry Points

prop_op(9E) See
Description

Reports driver property information. Required unless
ddi_prop_op(9F) is substituted. Additional information:
� “Creating and Updating Properties” on page 74
� “prop_op() Entry Point” on page 76

dump(9E) See
Description

Dumps memory to a device during system failure. Required for
any device that is to be used as the dump device during a panic.
Additional information:
� “dump() Entry Point (Block Drivers)” on page 272
� “Dump Handling” on page 297

identify(9E) Deprecated Determines whether a driver is associated with a specific device.
This function should no longer be used. nulldev(9F) should be
assigned to this entry point in the dev_ops structure.

Entry Points for Block Device Drivers
Devices that support a file system are known as block devices. Drivers written for these
devices are known as block device drivers. Block device drivers take a file system
request, in the form of a buf(9S) structure, and issue the I/O operations to the disk to
transfer the specified block. The main interface to the file system is the strategy(9E)
routine. See Chapter 15 for more information.

A block device driver can also provide a character driver interface to allow utility
programs to bypass the file system and to access the device directly. This device access
is commonly referred to as the raw interface to a block device.

The following table lists additional entry points that can be used by block device
drivers. See also “Entry Points Common to All Drivers” on page 35.

38 Writing Device Drivers • January 2005

TABLE 1–2 Additional Entry Points for Block Drivers

Entry Point Usage Description

aread(9E) Optional Performs an asynchronous read. Drivers that do not support an
aread() entry point should use the nodev(9F) error return
function. Additional information:
� “Differences Between Synchronous and Asynchronous I/O”

on page 235
� “DMA Transfers (Asynchronous)” on page 238

awrite(9E) Optional Performs an asynchronous write. Drivers that do not support an
awrite() entry point should use the nodev(9F) error return
function. Additional information:
� “Differences Between Synchronous and Asynchronous I/O”

on page 235
� “DMA Transfers (Asynchronous)” on page 238

print(9E) Required Displays a driver message on the system console. Additional
information:
� “print() Entry Point (Block Drivers)” on page 272

strategy(9E) Required Perform block I/O. Additional information:
� “Canceling DMA Callbacks” on page 146
� “DMA Transfers (Synchronous)” on page 237
� “strategy() Entry Point” on page 240
� “DMA Transfers (Asynchronous)” on page 238
� “General Flow of Control” on page 277
� “x86 Target Driver Configuration Properties” on page 352

Entry Points for Character Device Drivers
Character device drivers normally perform I/O in a byte stream. Examples of devices
that use character drivers include tape drives and serial ports. Character device
drivers can also provide additional interfaces not present in block drivers, such as I/O
control (ioctl) commands, memory mapping, and device polling. See Chapter 14 for
more information.

The main task of any device driver is to perform I/O, and many character device
drivers do what is called byte-stream or character I/O. The driver transfers data to and
from the device without using a specific device address. This type of transfer is in
contrast to block device drivers, where part of the file system request identifies a
specific location on the device.

The read(9E) and write(9E) entry points handle byte-stream I/O for standard
character drivers. See “I/O Request Handling” on page 232 for more information.

The following table lists additional entry points that can be used by character device
drivers. For other entry points, see “Entry Points Common to All Drivers” on page 35.

Chapter 1 • Overview of Solaris Device Drivers 39

TABLE 1–3 Additional Entry Points for Character Drivers

Entry Point Usage Description

chpoll(9E) Optional Polls events for a non-STREAMS character driver. Additional
information:
� “Multiplexing I/O on File Descriptors” on page 243

ioctl(9E) Optional Performs a range of I/O commands for character drivers. ioctl()
routines must make sure that user data is copied into or out of the
kernel address space explicitly using copyin(9F), copyout(9F),
ddi_copyin(9F), and ddi_copyout(9F), as appropriate.
Additional information:
� “ioctl() Entry Point (Character Drivers)” on page 246
� “Implemented ioctl Functions” on page 360
� “Well-known ioctl Interfaces” on page 530

read(9E) Required Reads data from a device. Additional information:
� “Vectored I/O” on page 233
� “Differences Between Synchronous and Asynchronous I/O”

on page 235
� “Programmed I/O Transfers” on page 236
� “DMA Transfers (Synchronous)” on page 237
� “General Flow of Control” on page 277

segmap(9E) Optional Maps device memory into user space. Additional information:
� “segmap() Entry Point” on page 242
� “Allocating Kernel Memory for User Access” on page 157
� “Associating User Mappings With Driver Notifications”

on page 174

write(9E) Required Writes data to a device. Additional information:
� “Device Access Functions” on page 115
� “Vectored I/O” on page 233
� “Differences Between Synchronous and Asynchronous I/O”

on page 235
� “Programmed I/O Transfers” on page 236
� “DMA Transfers (Synchronous)” on page 237
� “General Flow of Control” on page 277

Entry Points for STREAMS Device Drivers
STREAMS is a separate programming model for writing a character driver. Devices
that receive data asynchronously, such as terminal and network devices, are suited to
a STREAMS implementation. STREAMS device drivers must provide the loading and
autoconfiguration support described in Chapter 6. See the STREAMS Programming
Guide for additional information on how to write STREAMS drivers.

40 Writing Device Drivers • January 2005

The following table lists additional entry points that can be used by STREAMS device
drivers. For other entry points, see “Entry Points Common to All Drivers” on page 35
and “Entry Points for Character Device Drivers” on page 39.

TABLE 1–4 Entry Points for STREAMS Drivers

Entry Point Usage Description

put(9E) See
Description

Coordinates the passing of messages from one queue to the next
queue in a stream. Required, except for the side of the driver that
reads data. Additional information:
� STREAMS Programming Guide

srv(9E) Required Manipulate messages in a queue. Additional information:
� STREAMS Programming Guide

Entry Points for Memory Mapped Devices
For certain devices, such as frame buffers, providing application programs with direct
access to device memory is more efficient than byte-stream I/O. Applications can map
device memory into their address spaces using the mmap(2) system call. To support
memory mapping, device drivers implement segmap(9E) and devmap(9E) entry
points. For information on devmap(9E), see Chapter 10. For information on
segmap(9E), see Chapter 14.

Drivers that define the devmap(9E) entry point usually do not define read(9E) and
write(9E) entry points, because application programs perform I/O directly to the
devices after calling mmap(2).

The following table lists additional entry points that can be used by character device
drivers that use the devmap framework to perform memory mapping. For other entry
points, see “Entry Points Common to All Drivers” on page 35 and “Entry Points for
Character Device Drivers” on page 39.

TABLE 1–5 Entry Points for Character Drivers That Use devmap for Memory Mapping

Entry Point Usage Description

devmap(9E) Required Validates and translates virtual mapping for a memory-mapped
device. Additional information:
� “Exporting the Mapping” on page 153

devmap_access(9E) Optional Notifies drivers when an access is made to a mapping with
validation or protection problems. Additional information:
� “devmap_access() Entry Point” on page 168

Chapter 1 • Overview of Solaris Device Drivers 41

TABLE 1–5 Entry Points for Character Drivers That Use devmap for Memory Mapping (Continued)
Entry Point Usage Description

devmap_contextmgt(9E) Required Performs device context switching on a mapping. Additional
information:
� “devmap_contextmgt() Entry Point” on page 169

devmap_dup(9E) Optional Duplicates a device mapping. Additional information:
� “devmap_dup() Entry Point” on page 171

devmap_map(9E) Optional Creates a device mapping. Additional information:
� “devmap_map() Entry Point” on page 166

devmap_unmap(9E) Optional Cancels a device mapping. Additional information:
� “devmap_unmap() Entry Point” on page 172

Entry Points for the Generic LAN Device (GLD)
Driver
The following table lists additional entry points that can be used by the general LAN
driver (GLD). For more information on GLD drivers, see the gld(9E), gld(7D), and
gld_mac_info(9S) man pages. For other entry points, see “Entry Points Common to
All Drivers” on page 35 and “Entry Points for Character Device Drivers” on page 39.

TABLE 1–6 Additional Entry Points for the Generic LAN Driver

Entry Point Usage Description

gldm_get_stats(9E) Optional Gathers statistics from private counters in a generic LAN driver.
Updates the gld_stats(9S) structure. Additional information:
� “gldm_get_stats() Entry Point” on page 375

gldm_intr(9E) See
Description

Receives calls for potential interrupts to a generic LAN driver
(GLD). Required if gld_intr(9F) is used as interrupt handler.
Additional information:
� “gldm_intr() Entry Point” on page 374

gldm_ioctl(9E) Optional Implements device-specific commands for a generic LAN driver
(GLD). Additional information:
� “gldm_ioctl() Entry Point” on page 375

gldm_reset(9E) Required Resets a generic LAN driver (GLD) to the initial state. Additional
information:
� “gldm_reset() Entry Point” on page 372

gldm_send(9E) Required Queues a packet to a generic LAN driver (GLD) for transmission.
Additional information:
� “gldm_send() Entry Point” on page 374

42 Writing Device Drivers • January 2005

TABLE 1–6 Additional Entry Points for the Generic LAN Driver (Continued)
Entry Point Usage Description

gldm_set_mac_addr(9E) Required Sets the physical address that the generic LAN driver (GLD) uses
to receive data. Additional information:
� “gldm_set_mac_addr() Entry Point” on page 372

gldm_set_multicast(9E) Optional Enables and disables device-level reception of specific multicast
addresses for generic LAN driver (GLD). Additional information:
� “gldm_set_multicast() Entry Point” on page 372

gldm_set_promiscuous(9E) Required Enables and disables promiscuous mode for a generic LAN driver
(GLD) to receive packets on the medium. Additional information:
� “gldm_set_promiscuous() Entry Point” on page 373

gldm_start(9E) Required Enables a generic LAN driver (GLD) to generate interrupts.
Prepares the driver to call gld_recv(9F) to deliver received data
packets. Additional information:
� “gldm_start() Entry Point” on page 372

gldm_stop(9E) Required Disables a generic LAN driver (GLD) from generating interrupts
and from calling gld_recv(9F). Additional information:
� “gldm_stop() Entry Point” on page 372

Entry Points for SCSI HBA Drivers
The following table lists additional entry points that can be used by SCSI HBA device
drivers. For information on the SCSI HBA transport structure, see
scsi_hba_tran(9S). For other entry points, see “Entry Points Common to All
Drivers” on page 35 and “Entry Points for Character Device Drivers” on page 39.

TABLE 1–7 Additional Entry Points for SCSI HBA Drivers

Entry Point Usage Description

tran_abort(9E) Required Aborts a specified SCSI command that has been transported to a
SCSI Host Bus Adapter (HBA) driver. Additional information:
� “tran_abort() Entry Point” on page 347

tran_bus_reset(9e) Optional Resets a SCSI bus. Additional information:
� “tran_bus_reset() Entry Point” on page 347

tran_destroy_pkt(9E) Required Frees resources that are allocated for a SCSI packet. Additional
information:
� “tran_destroy_pkt() Entry Point” on page 333

tran_dmafree(9E) Required Frees DMA resources that have been allocated for a SCSI packet.
Additional information:
� “tran_dmafree() Entry Point” on page 334

Chapter 1 • Overview of Solaris Device Drivers 43

TABLE 1–7 Additional Entry Points for SCSI HBA Drivers (Continued)
Entry Point Usage Description

tran_getcap(9E) Required Gets the current value of a specific capability that is provided by
the HBA driver. Additional information:
� “tran_getcap() Entry Point” on page 341

tran_init_pkt(9E) Required Allocate and initialize resources for a SCSI packet. Additional
information:
� “Resource Allocation” on page 325

tran_quiesce(9e) Optional Stop all activity on a SCSI bus, typically for dynamic
reconfiguration. Additional information:
� “Dynamic Reconfiguration” on page 349

tran_reset(9E) Required Resets a SCSI bus or target device. Additional information:
� “tran_reset() Entry Point” on page 347

tran_reset_notify(9E) Optional Requests notification of a SCSI target device for a bus reset.
Additional information:
� “tran_reset_notify() Entry Point” on page 348

tran_setcap(9E) Required Sets the value of a specific capability that is provided by the SCSI
HBA driver. Additional information:
� “tran_setcap() Entry Point” on page 344

tran_start(9E) Required Requests the transport of a SCSI command. Additional information:
� “tran_start() Entry Point” on page 335

tran_sync_pkt(9E) Required Synchronizes the view of data by an HBA driver or device.
Additional information:
� “tran_sync_pkt() Entry Point” on page 333

tran_tgt_free(9E) Optional Requests allocated SCSI HBA resources to be freed on behalf of a
target device. Additional information:
� “tran_tgt_free() Entry Point” on page 324
� “Transport Structure Cloning” on page 312

tran_tgt_init(9E) Optional Requests SCSI HBA resources to be initialized on behalf of a target
device. Additional information:
� “tran_tgt_init() Entry Point” on page 323
� “scsi_device Structure” on page 308

tran_tgt_probe(9E) Optional Probes a specified target on a SCSI bus. Additional information:
� “tran_tgt_probe() Entry Point” on page 324

tran_unquiesce(9e) Optional Resumes I/O activity on a SCSI bus after tran_quiesce(9e) has
been called, typically for dynamic reconfiguration. Additional
information:
� “Dynamic Reconfiguration” on page 349

44 Writing Device Drivers • January 2005

Entry Points for PC Card Drivers
The following table lists additional entry points that can be used by PC Card device
drivers. For other entry points, see “Entry Points Common to All Drivers” on page 35
and “Entry Points for Character Device Drivers” on page 39.

TABLE 1–8 Entry Points for PC Card Drivers Only

Entry Point Usage Description

csx_event_handler(9E) Required Handles events for a PC Card driver. The driver must call the
csx_RegisterClient(9F) function explicitly to set the entry
point instead of using a structure field like cb_ops.

Considerations in Device Driver Design
Device driver must be compatible with the Solaris Operating System, both as a
consumer and provider of services. This section discusses the following issues, which
should be considered in device driver design:

� “DDI/DKI Facilities” on page 45
� “Driver Context” on page 47
� “Returning Errors” on page 48
� “Dynamic Memory Allocation” on page 49
� “Hotplugging” on page 49

DDI/DKI Facilities
The DDI/DKI interfaces are provided for driver portability. With DDI/DKI,
developers can write driver code in a standard fashion without having to worry about
hardware or platform differences. This section describes aspects of the DDI/DKI
interfaces.

Device IDs
The Solaris DDI interfaces enable drivers to provide a persistent, unique identifier for
a device. The device ID can be used to identify or locate a device. The ID is
independent of the device’s name or number (dev_t). Applications can use the
functions defined in libdevid(3LIB) to read and manipulate the device IDs
registered by the drivers.

Chapter 1 • Overview of Solaris Device Drivers 45

Device Properties
The attributes of a device or device driver are specified by properties. A property is a
name-value pair. The name is a string that identifies the property with an associated
value. Properties can be defined by the FCode of a self-identifying device, by a
hardware configuration file (see the driver.conf(4) man page), or by the driver
itself using the ddi_prop_update(9F) family of routines.

Interrupt Handling
The Solaris 10 DDI/DKI addresses these aspects of device interrupt handling:

� Registering device interrupts with the system
� Removing device interrupts
� Dispatching interrupts to interrupt handlers

Device interrupt sources are contained in a property called interrupt, which is either
provided by the PROM of a self-identifying device, in a hardware configuration file, or
by the booting system on the x86 platform.

Callback Functions
Certain DDI mechanisms provide a callback mechanism. DDI functions provide a
mechanism for scheduling a callback when a condition is met. Callback functions can
be used for the following typical conditions:

� A transfer has completed
� A resource has become available
� A time-out period has expired

Callback functions are somewhat similar to entry points, for example, interrupt
handlers. DDI functions that allow callbacks expect the callback function to perform
certain tasks. In the case of DMA routines, a callback function must return a value
indicating whether the callback function needs to be rescheduled in case of a failure.

Callback functions execute as a separate interrupt thread. Callbacks must handle all
the usual multithreading issues.

Note – A driver must cancel all scheduled callback functions before detaching a device.

Software State Management
To assist device driver writers in allocating state structures, the Solaris 10 DDI/DKI
provides a set of memory management routines called the software state management
routines, also known as the soft-state routines. These routines dynamically allocate,

46 Writing Device Drivers • January 2005

retrieve, and destroy memory items of a specified size, and hide the details of list
management. An instance number is used to identify the desired memory item. This
number is typically the instance number assigned by the system.

Routines are provided for the following tasks:

� Initialize a driver’s soft-state list
� Allocate space for an instance of a driver’s soft state
� Retrieve a pointer to an instance of a driver’s soft state
� Free the memory for an instance of a driver’s soft state
� Finish using a driver’s soft-state list

See “Loadable Driver Interfaces” on page 91 for an example of how to use these
routines.

Programmed I/O Device Access
Programmed I/O device access is the act of reading and writing of device registers or
device memory by the host CPU. The Solaris DDI provides interfaces for mapping a
device’s registers or memory by the kernel as well as interfaces for reading and
writing to device memory from the driver. These interfaces enable drivers to be
developed that are platform and bus independent, by automatically managing any
difference in device and host endianness as well as by enforcing any memory-store
sequence requirements imposed by the device.

Direct Memory Access (DMA)
The Solaris platform defines a high-level, architecture-independent model for
supporting DMA-capable devices. The Solaris DDI shields drivers from
platform-specific details. This concept enables a common driver to run on multiple
platforms and architectures.

Layered Driver Interfaces
The DDI/DKI provides a group of interfaces referred to as layered device interfaces
(LDI). These interfaces enable a device to be accessed from within the Solaris kernel.
This capability enables developers to write applications that observe kernel device
usage. For example, both the prtconf(1M) and fuser(1M) commands use LDI to
enable system administrators to track aspects of device usage. The LDI is covered in
more detail in Chapter 13.

Driver Context
The driver context refers to the condition under which a driver is currently operating.
The context limits the operations that a driver can perform. The driver context
depends on the executing code that is invoked. Driver code executes in four contexts:

Chapter 1 • Overview of Solaris Device Drivers 47

� User context. A driver entry point has user context when invoked by a user thread
in a synchronous fashion. That is, the user thread waits for the system to return
from the entry point that was invoked. For example, the read(9E) entry point of
the driver has user context when invoked by a read(2) system call. In this case, the
driver has access to the user area for copying data into and out of the user thread.

� Kernel context. A driver function has kernel context when invoked by some part of
the kernel. In a block device driver, the strategy(9E) entry point can be called by
the pageout daemon to write pages to the device. Because the page daemon has
no relation to the current user thread, strategy(9E) has kernel context in this
case.

� Interrupt context.Interrupt context is a more restrictive form of kernel context.
Interrupt context is invoked as a result of the servicing of an interrupt. Driver
interrupt routines operate in interrupt context with an associated interrupt level.
Callback routines also operate in an interrupt context. See Chapter 8 for more
information.

� High—level interrupt context.High-level interrupt context is a more restricted form
of interrupt context. If ddi_intr_hilevel(9F) indicates that an interrupt is high
level, the driver interrupt handler runs in high-level interrupt context. See
Chapter 8 for more information.

The manual pages in section 9F document the allowable contexts for each function.
For example, in kernel context the driver must not call copyin(9F).

Returning Errors
Device drivers do not usually print message, except for unexpected errors such as data
corruption. Instead, the driver entry points should return error codes so that the
application can determine how to handle the error. The driver should use
cmn_err(9F) to print any messages. The cmn_err() function is similar to the C
function printf(3C), which prints to the console, to the message buffer, or both.

The format string specifier interpreted by cmn_err(9F) is similar to the printf(3C)
format string, with the addition of the format %b, which prints bit fields. The first
character of the format string can have a special meaning. Callers to cmn_err(9F) also
specify the level, which indicates the label to be printed. See the cmn_err(9F) man
page for more details.

The level CE_PANIC has the side effect of crashing the system. This level should be
used only if the system is in such an unstable state that to continue would cause more
problems. The level can also be used to get a system core dump when debugging.
CE_PANIC should not be used in production device drivers.

48 Writing Device Drivers • January 2005

Dynamic Memory Allocation
Device drivers must be prepared to simultaneously handle all attached devices that
the drivers claim to drive. The number of devices that the driver handles should not
be limited. All per-device information must be dynamically allocated.

void *kmem_alloc(size_t size, int flag);

The standard kernel memory allocation routine is kmem_alloc(9F). kmem_alloc()
is similar to the C library routine malloc(3C), with the addition of the flag
argument. The flag argument can be either KM_SLEEP or KM_NOSLEEP, indicating
whether the caller is willing to block if the requested size is not available. If
KM_NOSLEEP is set and memory is not available, kmem_alloc(9F) returns NULL.

kmem_zalloc(9F) is similar to kmem_alloc(9F), but also clears the contents of the
allocated memory.

Note – Kernel memory is a limited resource, not pageable, and competes with user
applications and the rest of the kernel for physical memory. Drivers that allocate a
large amount of kernel memory can cause system performance to degrade.

void kmem_free(void *cp, size_t size);

Memory allocated by kmem_alloc(9F) or by kmem_zalloc(9F) is returned to the
system with kmem_free(9F). kmem_free() is similar to the C library routine
free(3C), with the addition of the size argument. Drivers must keep track of the size
of each allocated object in order to call kmem_free(9F) later.

Hotplugging
This manual does not highlight hotplugging information. If you follow the rules and
suggestions for writing device drivers given in this book, your driver should be able
to handle hotplugging. In particular, make sure that both autoconfiguration (see
Chapter 6) and detach(9E) work correctly in your driver. In addition, if you are
designing a driver that uses power management, you should follow the information
given in Chapter 12. SCSI HBA drivers may need to add a cb_ops structure to their
dev_ops structure (see Chapter 17) to take advantage of hotplugging capabilities.

Previous versions of the Solaris Operating System required hotpluggable drivers to
include a DT_HOTPLUG property, but this property is no longer required. Driver
writers are free, however, to include and use the DT_HOTPLUG property as they see fit.

For more information, visit
http://developers.sun.com/prodtech/solaris/driverdev/reference/docs/index.htm
which contains links to hotplugging white papers.

Chapter 1 • Overview of Solaris Device Drivers 49

http://developers.sun.com/prodtech/solaris/driverdev/reference/docs/index.html

50 Writing Device Drivers • January 2005

CHAPTER 2

Solaris Kernel and Device Tree

A device driver needs to work transparently as an integral part of the operating
system. Understanding how the kernel works is a prerequisite for learning about
device drivers. This chapter provides an overview of the Solaris kernel and device
tree. For an overview of how device drivers work, see Chapter 1.

This chapter provides information on the following subjects:

� “What Is the Kernel?” on page 51
� “Multithreaded Execution Environment” on page 53
� “Virtual Memory” on page 53
� “Devices as Special Files” on page 53
� “DDI/DKI Interfaces” on page 54
� “Device Tree Components” on page 55
� “Displaying the Device Tree” on page 56
� “Binding a Driver to a Device” on page 59

What Is the Kernel?
The Solaris kernel is a program that manages system resources. The kernel insulates
applications from the system hardware and provides them with essential system
services such as input/output (I/O) management, virtual memory, and scheduling.
The kernel consists of object modules that are dynamically loaded into memory when
needed.

The Solaris kernel can be divided logically into two parts: the first part, referred to as
the kernel, manages file systems, scheduling, and virtual memory. The second part,
referred to as the I/O subsystem, manages the physical components.

The kernel provides a set of interfaces for applications to use that are accessible
through system calls. System calls are documented in the Solaris 9 Reference Manual
Collection (see Intro(2)). Some system calls are used to invoke device drivers to

51

perform I/O. Device drivers are loadable kernel modules that manage data transfers
while insulating the rest of the kernel from the device hardware. To be compatible
with the operating system, device drivers need to be able to accommodate such
features as multithreading, virtual memory addressing, and both 32–bit and 64–bit
operation.

The following figure illustrates the kernel. The kernel modules handle system calls
from application programs. The I/O modules communicate with hardware.

Process
management

Memory
management File systems Device

control Networking

Platform
dependent

code

Virtual
memory Block

drivers

File systems
Character

drivers

Network
subsystems

NIC
drivers

CPU RAM Disks
Network

interfaces

Serial ports,
special
boards

Application programs

User
level

Kernel
level

Hardware
level

FIGURE 2–1 Solaris Kernel

The kernel provides access to device drivers through the following features:

� Device-to-driver mapping. The kernel maintains the device tree. Each node in the
tree represents a virtual or a physical device. The kernel binds each node to a
driver by matching the device node name with the set of drivers installed in the
system. The device is made accessible to applications only if there is a driver
binding.

� DDI/DKI interfaces. DDI/DKI (Device Driver Interface/Driver-Kernel Interface)
interfaces standardize interactions between the driver and the kernel, the device
hardware, and the boot/configuration software. These interfaces keep the driver
independent from the kernel and improve the driver’s portability across successive

52 Writing Device Drivers • January 2005

releases of the operating system on a particular machine.
� LDI. The LDI (Layered Driver Interface) is an extension of the DDI/DKI. The LDI

enables a kernel module to access other devices in the system. The LDI also enables
you to determine which devices are currently being used by the kernel. See
Chapter 13.

Multithreaded Execution Environment
The Solaris kernel is multithreaded. On a multiprocessor machine, multiple kernel
threads can be running kernel code, and can do so concurrently. Kernel threads can
also be pre-empted by other kernel threads at any time.

The multithreading of the kernel imposes some additional restrictions on device
drivers. For more information on multithreading considerations, see Chapter 3. Device
drivers must be coded to run as needed at the request of many different threads. For
each thread, a driver must handle contention problems from overlapping I/O
requests.

Virtual Memory
A complete overview of the Solaris virtual memory system is beyond the scope of this
book, but two virtual memory terms of special importance are used when discussing
device drivers: virtual address and address space.

� Virtual address. A virtual address is an address that is mapped by the memory
management unit (MMU) to a physical hardware address. All addresses directly
accessible by the driver are kernel virtual addresses. Kernel virtual addresses refer
to the kernel address space.

� Address space. An address space is a set of virtual address segments. Each segment is
a contiguous range of virtual addresses. Each user process has an address space
called the user address space. The kernel has its own address space, called the kernel
address space.

Devices as Special Files
Devices are represented in the file system by special files. In the Solaris Operating
System (Solaris OS), these files reside in the /devices directory hierarchy.

Special files can be of type block or character. The type indicates which kind of device
driver operates the device. Drivers can be implemented to operate on both types. For
example, disk drivers export a character interface for use by the fsck(1) and
mkfs(1) utilities, and a block interface for use by the file system.

Associated with each special file is a device number (dev_t). A device number consists
of a major number and a minor number. The major number identifies the device driver
associated with the special file. The minor number is created and used by the device

Chapter 2 • Solaris Kernel and Device Tree 53

driver to further identify the special file. Usually, the minor number is an encoding
that is used to identify which device instance the driver should access and which type
of access should be performed. For example, the minor number can identify a tape
device used for backup and can specify that the tape needs to be rewound when the
backup operation is complete.

DDI/DKI Interfaces
In System V Release 4 (SVR4), the interface between device drivers and the rest of the
UNIX kernel was standardized as the DDI/DKI. The Solaris 10 DDI/DKI is
documented in Section 9 of the Solaris 9 Reference Manual Collection. This section
documents driver entry points, driver-callable functions, and kernel data structures
used by device drivers.

The Solaris 10 DDI/DKI, like its SVR4 counterpart, is intended to standardize and
document all interfaces between device drivers and the rest of the kernel. In addition,
the Solaris 10 DDI/DKI allows source compatibility for drivers on any machine that
runs the Solaris 10 Operating System, regardless of the processor architecture, whether
SPARC or x86. The Solaris 10 DDI/DKI provides binary compatibility for drivers used
on any Solaris 10 based processor regardless of the specific platform architecture.
Drivers using only kernel facilities that are part of the Solaris 10 DDI/DKI are known
as Solaris 10 DDI/DKI-compliant device drivers.

The Solaris 10 DDI/DKI enables platform-independent device drivers to be written for
Solaris 10 based machines. These shrink-wrapped, that is, binary-compatible, drivers
enable third-party hardware and software to be more easily integrated into Solaris 10
based machines. The Solaris 10 DDI/DKI is architecture independent, which enables
the same driver to work across a diverse set of machine architectures.

Platform independence is accomplished by the design of DDI in Solaris 10 DDI/DKI.
The following main areas are addressed:

� Dynamic loading and unloading of modules

� Power management

� Interrupt handling

� Accessing the device space from the kernel or a user process, that is, register
mapping and memory mapping

� Accessing kernel or user process space from the device using DMA services

� Managing device properties

54 Writing Device Drivers • January 2005

Overview of the Device Tree
Devices in the Solaris OS are represented as a tree of interconnected device
information nodes. The device tree describes the configuration of loaded devices for a
particular machine.

Device Tree Components
The system builds a tree structure that contains information about the devices
connected to the machine at boot time. The device tree can also be modified by
dynamic reconfiguration operations while the system is in normal operation. The tree
begins at the root device node, which represents the platform.

Below the root node are the branches of the device tree. A branch consists of one or
more bus nexus devices and a terminating leaf device.

A bus nexus device provides bus mapping and translation services to subordinate
devices in the device tree. PCI - PCI bridges, PCMCIA adapters, and SCSI HBAs are all
examples of nexus devices. The discussion of writing drivers for nexus devices is
limited to the development of SCSI HBA drivers (see Chapter 17).

Leaf devices are typically peripheral devices such as disks, tapes, network adapters,
frame buffers, and so forth. Leaf device drivers export the traditional character driver
interfaces and block driver interfaces. The interfaces enable user processes to read data
from and write data to either storage or communication devices.

The system goes through the following steps to build the tree:

1. The CPU is initialized and searches for firmware.

2. The main firmware (OpenBoot, Basic Input/Output System (BIOS), or Bootconf)
initializes and creates the device tree with known or self-identifying hardware.

3. When the main firmware finds compatible firmware on a device, the main
firmware initializes the device and retrieves the device’s properties.

4. The firmware locates and boots the operating system.

5. The kernel starts at the root node of the tree, searches for a matching device driver,
and binds that driver to the device.

6. If the device is a nexus, the kernel looks for child devices that have not been
detected by the firmware. The kernel adds any child devices to the tree below the
nexus node.

7. The kernel repeats the process from Step 5 until no further device nodes need to be
created.

Chapter 2 • Solaris Kernel and Device Tree 55

Each driver exports a device operations structure dev_ops(9S) to define the
operations that the device driver can perform. The device operations structure
contains function pointers for generic operations such as attach(9E), detach(9E),
and getinfo(9E). The structure also contains a pointer to a set of operations specific
to bus nexus drivers and a pointer to a set of operations specific to leaf drivers.

The tree structure creates a parent-child relationship between nodes. This parent-child
relationship is the key to architectural independence. When a leaf or bus nexus driver
requires a service that is architecturally dependent in nature, that driver requests its
parent to provide the service. This approach enables drivers to function regardless of
the architecture of the machine or the processor. A typical device tree is shown in the
following figure.

root node

PCI bus
nexus node

SUNW, ffb
leaf node

PCI bus
nexus node

PCI bus
nexus node

dad
leaf node

sd
leaf node

fdthree
leaf node

se
leaf node

pseudo
nexus node

network
leaf node

ide
nexus node

ebus
nexus node

.

.

.

.

.

.

. . .

FIGURE 2–2 Example Device Tree

The nexus nodes may have one or more children. The leaf nodes represent individual
devices.

Displaying the Device Tree
The device tree can be displayed in three ways:

� The libdevinfo library provides interfaces to access the contents of the device
tree programmatically.

� The prtconf(1M) command displays the complete contents of the device tree.

� The /devices hierarchy is a representation of the device tree. Use the ls(1)
command to view the hierarchy.

56 Writing Device Drivers • January 2005

Note – /devices displays only devices that have drivers configured into the system.
The prtconf(1M) command shows all device nodes regardless of whether a driver
for the device exists on the system.

libdevinfo Library
The libdevinfo library provides interfaces for accessing all public device
configuration data. See the libdevinfo(3LIB) man page for a list of interfaces.

prtconf Command
The following excerpted prtconf(1M) command example displays all the devices in
the system.

System Configuration: Sun Microsystems sun4u
Memory size: 128 Megabytes
System Peripherals (Software Nodes):

SUNW,Ultra-5_10
packages (driver not attached)

terminal-emulator (driver not attached)
deblocker (driver not attached)
obp-tftp (driver not attached)
disk-label (driver not attached)
SUNW,builtin-drivers (driver not attached)
sun-keyboard (driver not attached)
ufs-file-system (driver not attached)

chosen (driver not attached)
openprom (driver not attached)

client-services (driver not attached)
options, instance #0
aliases (driver not attached)
memory (driver not attached)
virtual-memory (driver not attached)
pci, instance #0

pci, instance #0
ebus, instance #0

auxio (driver not attached)
power, instance #0
SUNW,pll (driver not attached)
se, instance #0
su, instance #0
su, instance #1
ecpp (driver not attached)
fdthree, instance #0
eeprom (driver not attached)
flashprom (driver not attached)
SUNW,CS4231 (driver not attached)

Chapter 2 • Solaris Kernel and Device Tree 57

network, instance #0
SUNW,m64B (driver not attached)
ide, instance #0

disk (driver not attached)
cdrom (driver not attached)
dad, instance #0
sd, instance #15

pci, instance #1
pci, instance #0

pci108e,1000 (driver not attached)
SUNW,hme, instance #1
SUNW,isptwo, instance #0

sd (driver not attached)
st (driver not attached)
sd, instance #0 (driver not attached)
sd, instance #1 (driver not attached)
sd, instance #2 (driver not attached)
[...]

SUNW,UltraSPARC-IIi (driver not attached)
SUNW,ffb, instance #0

pseudo, instance #0

/devices Directory
The /devices hierarchy provides a namespace that represents the device tree.
Following is an abbreviated listing of the /devices namespace. The sample output
corresponds to the example device tree and prtconf(1M) output shown previously.

/devices
/devices/pseudo
/devices/pci@1f,0:devctl
/devices/SUNW,ffb@1e,0:ffb0
/devices/pci@1f,0
/devices/pci@1f,0/pci@1,1
/devices/pci@1f,0/pci@1,1/SUNW,m64B@2:m640
/devices/pci@1f,0/pci@1,1/ide@3:devctl
/devices/pci@1f,0/pci@1,1/ide@3:scsi
/devices/pci@1f,0/pci@1,1/ebus@1
/devices/pci@1f,0/pci@1,1/ebus@1/power@14,724000:power_button
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:a
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:b
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:0,hdlc
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:1,hdlc
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:a,cu
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:b,cu
/devices/pci@1f,0/pci@1,1/ebus@1/ecpp@14,3043bc:ecpp0
/devices/pci@1f,0/pci@1,1/ebus@1/fdthree@14,3023f0:a
/devices/pci@1f,0/pci@1,1/ebus@1/fdthree@14,3023f0:a,raw
/devices/pci@1f,0/pci@1,1/ebus@1/SUNW,CS4231@14,200000:sound,audio
/devices/pci@1f,0/pci@1,1/ebus@1/SUNW,CS4231@14,200000:sound,audioctl
/devices/pci@1f,0/pci@1,1/ide@3
/devices/pci@1f,0/pci@1,1/ide@3/sd@2,0:a
/devices/pci@1f,0/pci@1,1/ide@3/sd@2,0:a,raw

58 Writing Device Drivers • January 2005

/devices/pci@1f,0/pci@1,1/ide@3/dad@0,0:a
/devices/pci@1f,0/pci@1,1/ide@3/dad@0,0:a,raw
/devices/pci@1f,0/pci@1
/devices/pci@1f,0/pci@1/pci@2
/devices/pci@1f,0/pci@1/pci@2/SUNW,isptwo@4:devctl

/devices/pci@1f,0/pci@1/pci@2/SUNW,isptwo@4:scsi

Binding a Driver to a Device
In addition to constructing the device tree, the kernel determines the drivers that are
used to manage the devices.

Binding a driver to a device refers to the process by which the system selects a driver
to manage a particular device. The binding name is the name that links a driver to a
unique device node in the device information tree. For each device in the device tree,
the system attempts to choose a driver from a list of installed drivers.

Each device node has an associated name property. This property can be assigned
either from an external agent, such as the PROM, during system boot or from a
driver.conf configuration file. In any case, the name property represents the node
name assigned to a device in the device tree. The node name is the name visible in
/devices and listed in the prtconf(1M) output.

glm

st sd

SUNW, CS4231 hme
device node names

. . .

(name property)

FIGURE 2–3 Device Node Names

A device node may have an associated compatible property as well. The compatible
property contains an ordered list of one or more possible driver names or driver
aliases for the device.

Chapter 2 • Solaris Kernel and Device Tree 59

The system uses both the compatible and the name properties to select a driver for the
device. The system first attempts to match the contents of the compatible property, if the
compatible property exists, to a driver on the system. Beginning with the first driver
name on the compatible property list, the system attempts to match the driver name to
a known driver on the system. Each entry on the list is processed until the system
either finds a match or reaches the end of the list.

If the contents of either the name property or the compatible property match a driver on
the system, then that driver is bound to the device node. If no match is found, no
driver is bound to the device node.

Generic Device Names
Some devices specify a generic device name as the value for the name property. Generic
device names describe the function of a device without actually identifying a specific
driver for the device. For example, a SCSI host bus adapter might have a generic
device name of scsi. An Ethernet device might have a generic device name of
ethernet.

The compatible property enables the system to determine alternate driver names for
devices with a generic device name, for example, glm for scsi HBA device drivers or
hme for ethernet device drivers.

Devices with generic device names are required to supply a compatible property.

Note – For a complete description of generic device names, see the IEEE 1275 Open
Firmware Boot Standard.

The following figure shows a device node with a specific device name. The driver
binding name SUNW,ffb is the same name as the device node name.

binding name =

Device Node A

name = SUNW,ffb

/devices/SUNW,ffb@le,0:ffb0

SUNW,ffb

FIGURE 2–4 Specific Driver Node Binding

60 Writing Device Drivers • January 2005

The following figure shows a device node with the generic device name display. The
driver binding name SUNW,ffb is the first name on the compatible property driver list
that matches a driver on the system driver list. In this case, display is a generic
device name for frame buffers.

compatible =

Device Node B

name = display

/devices/display@le,0:ffb0

fast_fb
SUNW,ffb
slow_fb

binding name = SUNW,ffb

FIGURE 2–5 Generic Driver Node Binding

Chapter 2 • Solaris Kernel and Device Tree 61

62 Writing Device Drivers • January 2005

CHAPTER 3

Multithreading

This chapter describes the locking primitives and thread synchronization mechanisms
of the Solaris multithreaded kernel. You should design device drivers to take
advantage of multithreading. This chapter provides information on the following
subjects:

� “Locking Primitives” on page 63
� “Thread Synchronization” on page 66
� “Choosing a Locking Scheme” on page 70

Locking Primitives
In traditional UNIX systems, every section of kernel code terminates either through an
explicit call to sleep(1) to give up the processor or through a hardware interrupt. The
Solaris Operating System operates differently. A kernel thread can be preempted at
any time to run another thread. Because all kernel threads share kernel address space
and often need to read and modify the same data, the kernel provides a number of
locking primitives to prevent threads from corrupting shared data. These mechanisms
include mutual exclusion locks, which are also known as mutexes, readers/writer
locks, and semaphores.

Storage Classes of Driver Data
The storage class of data is a guide to whether the driver might need to take explicit
steps to control access to the data. The three data storage classes are:

� Automatic (stack) data. Every thread has a private stack, so drivers never need to
lock automatic variables.

� Global static data. Global static data can be shared by any number of threads in
the driver. The driver might need to lock this type of data at times.

63

� Kernel heap data. Any number of threads in the driver can share kernel heap data,
such as data allocated by kmem_alloc(9F). The driver needs to protect shared data
at all times.

Mutual-Exclusion Locks
A mutual-exclusion lock, or mutex, is usually associated with a set of data and
regulates access to that data. Mutexes provide a way to allow only one thread at a time
access to that data. The mutex functions are:

mutex_destroy(9F) Releases any associated storage.

mutex_enter(9F) Acquires a mutex.

mutex_exit(9F) Releases a mutex.

mutex_init(9F) Initializes a mutex.

mutex_owned(9F) Tests to determine whether the mutex is held by the current
thread. To be used in assert(9F) only.

mutex_tryenter(9F) Acquires a mutex if available, but does not block.

Setting Up Mutexes
Device drivers usually allocate a mutex for each driver data structure. The mutex is
typically a field in the structure of type kmutex_t. mutex_init(9F) is called to
prepare the mutex for use. This call is usually made at attach(9E) time for per-device
mutexes and _init(9E) time for global driver mutexes.

For example,

struct xxstate *xsp;
...
mutex_init(&xsp->mu, NULL, MUTEX_DRIVER, NULL);

...

For a more complete example of mutex initialization, see Chapter 6.

The driver must destroy the mutex with mutex_destroy(9F) before being unloaded.
Destroying the mutex is usually done at detach(9E) time for per-device mutexes and
_fini(9E) time for global driver mutexes.

Using Mutexes
Every section of the driver code that needs to read or write the shared data structure
must do the following tasks:

� Acquire the mutex

64 Writing Device Drivers • January 2005

� Access the data
� Release the mutex

The scope of a mutex, that is, the data the mutex protects, is entirely up to the
programmer. A mutex protects a data structure only if every code path that accesses
the data structure does so while holding the mutex.

Readers/Writer Locks
A readers/writer lock regulates access to a set of data. The readers/writer lock is so
called because many threads can hold the lock simultaneously for reading, but only
one thread can hold the lock for writing.

Most device drivers do not use readers/writer locks. These locks are slower than
mutexes. The locks provide a performance gain only when they protect commonly
read data that is not frequently written. In this case, contention for a mutex could
become a bottleneck, so using a readers/writer lock might be more efficient. The
readers/writer functions are summarized in the following table. See the rwlock(9F)
man page for detailed information. The readers/writer lock functions are:

rw_destroy(9F) Destroys a readers/writer lock

rw_downgrade(9F) Downgrades a readers/writer lock holder from writer to
reader

rw_enter(9F) Acquires a readers/writer lock

rw_exit(9F) Releases a readers/writer lock

rw_init(9F) Initializes a readers/writer lock

rw_read_locked(9F) Determines whether a readers/writer lock is held for read
or write

rw_tryenter(9F) Attempts to acquire a readers/writer lock without waiting

rw_tryupgrade(9F) Attempts to upgrade readers/writer lock holder from
reader to writer

Semaphores
Counting semaphores are available as an alternative primitive for managing threads
within device drivers. See the semaphore(9F) man page for more information. The
semaphore functions are:

sema_destroy(9F) Destroys a semaphore.

sema_init(9F) Initialize a semaphore.

Chapter 3 • Multithreading 65

sema_p(9F) Decrement semaphore and possibly block.

sema_p_sig(9F) Decrement semaphore but do not block if signal is pending.
See “Threads Unable to Receive Signals” on page 71.

sema_tryp(9F) Attempt to decrement semaphore, but do not block.

sema_v(9F) Increment semaphore and possibly unblock waiter.

Thread Synchronization
In addition to protecting shared data, drivers often need to synchronize execution
among multiple threads.

Condition Variables in Thread Synchronization
Condition variables are a standard form of thread synchronization. They are designed
to be used with mutexes. The associated mutex is used to ensure that a condition can
be checked atomically, and that the thread can block on the associated condition
variable without missing either a change to the condition or a signal that the condition
has changed.

The condvar(9F) functions are:

cv_broadcast(9F) Signals all threads waiting on the condition variable.

cv_destroy(9F) Destroys a condition variable.

cv_init(9F) Initializes a condition variable.

cv_signal(9F) Signals one thread waiting on the condition variable.

cv_timedwait(9F) Waits for condition, time-out, or signal. See “Threads
Unable to Receive Signals” on page 71.

cv_timedwait_sig(9F) Waits for condition or time-out.

cv_wait(9F) Waits for condition.

cv_wait_sig(9F) Waits for condition or return zero on receipt of a signal.
See “Threads Unable to Receive Signals” on page 71.

66 Writing Device Drivers • January 2005

Initializing Condition Variables
Declare a condition variable of type kcondvar_t for each condition. Usually, the
condition variables are declared in the driver’s soft-state structure. Use cv_init(9F)
to initialize each condition variable. Similar to mutexes, condition variables are
usually initialized at attach(9E) time. A typical example of initializing a condition
variable is:

cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);

For a more complete example of condition variable initialization, see Chapter 6.

Waiting for the Condition
To use condition variables, follow these steps in the code path waiting for the
condition:

1. Acquire the mutex guarding the condition.

2. Test the condition.

3. If the test results do not allow the thread to continue, use cv_wait(9F) to block the
current thread on the condition. cv_wait(9F) releases the mutex before blocking
the thread and reacquires the mutex before returning. On return from
cv_wait(9F), repeat the test.

4. After the test allows the thread to continue, set the condition to its new value. For
example, set a device flag to busy.

5. Release the mutex.

Signaling the Condition
Follow these steps in the code path to signal the condition:

1. Acquire the mutex guarding the condition.
2. Set the condition.
3. Signal the blocked thread with cv_broadcast(9F).
4. Release the mutex.

The following example uses a busy flag along with mutex and condition variables to
force the read(9E) routine to wait until the device is no longer busy before starting a
transfer.

EXAMPLE 3–1 Using Mutexes and Condition Variables

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;

Chapter 3 • Multithreading 67

EXAMPLE 3–1 Using Mutexes and Condition Variables (Continued)

[...]
mutex_enter(&xsp->mu);
while (xsp->busy)

cv_wait(&xsp->cv, &xsp->mu);
xsp->busy = 1;
mutex_exit(&xsp->mu);
/* perform the data access */

}

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
mutex_enter(&xsp->mu);
xsp->busy = 0;
cv_broadcast(&xsp->cv);
mutex_exit(&xsp->mu);

}

cv_wait() and cv_timedwait() Functions
If a thread is blocked on a condition with cv_wait(9F) and that condition does not
occur, the thread would wait forever. To avoid that situation, use cv_timedwait(9F),
which depends upon another thread to perform a wakeup. cv_timedwait() takes
an absolute wait time as an argument. cv_timedwait() returns -1 if the time is
reached and the event has not occurred. cv_timedwait() returns a positive value if
the condition is met.

cv_timedwait(9F) requires an absolute wait time expressed in clock ticks since the
system was last rebooted. The wait time can be determined by retrieving the current
value with ddi_get_lbolt(9F). The driver usually has a maximum number of
seconds or microseconds to wait, so this value is converted to clock ticks with
drv_usectohz(9F) and added to the value from ddi_get_lbolt(9F).

The following example shows how to use cv_timedwait(9F) to wait up to five
seconds to access the device before returning EIO to the caller.

EXAMPLE 3–2 Using cv_timedwait()

clock_t cur_ticks, to;
mutex_enter(&xsp->mu);
while (xsp->busy) {

cur_ticks = ddi_get_lbolt();
to = cur_ticks + drv_usectohz(5000000); /* 5 seconds from now */
if (cv_timedwait(&xsp->cv, &xsp->mu, to) == -1) {

/*
* The timeout time ’to’ was reached without the

68 Writing Device Drivers • January 2005

EXAMPLE 3–2 Using cv_timedwait() (Continued)

* condition being signalled.
*/
/* tidy up and exit */
mutex_exit(&xsp->mu);
return (EIO);

}
}
xsp->busy = 1;

mutex_exit(&xsp->mu);

Although device driver writers generally prefer to use cv_timedwait(9F) over
cv_wait(9F), sometimes cv_wait(9F) is a better choice. For example, cv_wait(9F) is
better if a driver is waiting on the following conditions:

� Internal driver state changes, where such a state change might require some
command to be executed, or a set amount of time to pass

� Something the driver needs to single-thread

� Some situation that is already managing a possible timeout, as when “A” depends
on “B,” and “B” is using cv_timedwait(9F)

cv_wait_sig() Function
A driver might be waiting for a condition that cannot occur or will not happen for a
long time. In such cases, the user can send a signal to abort the thread. Depending on
the driver design, the signal might not cause the driver to wake up.

cv_wait_sig(9F) allows a signal to unblock the thread. This capability enables the
user to break out of potentially long waits by sending a signal to the thread with
kill(1) or by typing the interrupt character. cv_wait_sig(9F) returns zero if it is
returning because of a signal, or nonzero if the condition occurred. However, see
“Threads Unable to Receive Signals” on page 71 for cases in which signals might not
be received.

The following example shows how to use cv_wait_sig(9F) to allow a signal to
unblock the thread.

EXAMPLE 3–3 Using cv_wait_sig()

mutex_enter(&xsp->mu);
while (xsp->busy) {

if (cv_wait_sig(&xsp->cv, &xsp->mu) == 0) {
/* Signalled while waiting for the condition */

/* tidy up and exit */
mutex_exit(&xsp->mu);
return (EINTR);

Chapter 3 • Multithreading 69

EXAMPLE 3–3 Using cv_wait_sig() (Continued)

}
}
xsp->busy = 1;

mutex_exit(&xsp->mu);

cv_timedwait_sig() Function
cv_timedwait_sig(9F) is similar to cv_timedwait(9F) and cv_wait_sig(9F),
except that cv_timedwait_sig() returns -1 without the condition being signaled
after a timeout has been reached, or 0 if a signal (for example, kill(2)) is sent to the
thread.

For both cv_timedwait(9F) and cv_timedwait_sig(9F), time is measured in
absolute clock ticks since the last system reboot.

Choosing a Locking Scheme
The locking scheme for most device drivers should be kept straightforward. Using
additional locks allows more concurrency but increases overhead. Using fewer locks is
less time consuming but allows less concurrency. Generally, use one mutex per data
structure, a condition variable for each event or condition the driver must wait for,
and a mutex for each major set of data global to the driver. Avoid holding mutexes for
long periods of time. Use the following guidelines when choosing a locking scheme:

� Use the multithreading semantics of the entry point to your advantage.

� Make all entry points re-entrant. You can reduce the amount of shared data by
changing a static variable to automatic.

� If your driver acquires multiple mutexes, acquire and release the mutexes in the
same order in all code paths.

� Hold and release locks within the same functional space.

� Avoid holding driver mutexes when calling DDI interfaces that can block, for
example, kmem_alloc(9F) with KM_SLEEP.

To look at lock usage, use lockstat(1M). lockstat(1M) monitors all kernel lock
events, gathers frequency and timing data about the events, and displays the data.

See the Multithreaded Programming Guide for more details on multithreaded operations.

70 Writing Device Drivers • January 2005

Potential Locking Pitfalls
Mutexes are not re-entrant by the same thread. If you already own the mutex,
attempting to claim this mutex a second time leads to the following panic:

panic: recursive mutex_enter. mutex %x caller %x

Releasing a mutex that the current thread does not hold causes this panic:

panic: mutex_adaptive_exit: mutex not held by thread

The following panic occurs only on uniprocessors:

panic: lock_set: lock held and only one CPU

The lock_set panic indicates that a spin mutex is held and will spin forever, because
no other CPU can release this mutex. This situation can happen if the driver forgets to
release the mutex on one code path or becomes blocked while holding the mutex.

A common cause of the lock_set panic occurs when a device with a high-level
interrupt calls a routine that blocks, such as cv_wait(9F). Another typical cause is a
high-level handler grabbing an adaptive mutex by calling mutex_enter(9F).

Threads Unable to Receive Signals
The sema_p_sig(), cv_wait_sig(), and cv_timedwait_sig() functions can be
awakened when the thread receives a signal. A problem can arise because some
threads are unable to receive signals. For example, when close(9E) is called as a
result of the application calling close(2), signals can be received. However, when
close(9E) is called from within the exit(2) processing that closes all open file
descriptors, the thread cannot receive signals. When the thread cannot receive signals,
sema_p_sig() behaves as sema_p(), cv_wait_sig() behaves as cv_wait(),
and cv_timedwait_sig() behaves as cv_timedwait().

Use caution to avoid sleeping forever on events that might never occur. Events that
never occur create unkillable (defunct) threads and make the device unusable until
the system is rebooted. Signals cannot be received by defunct processes.

To detect whether the current thread is able to receive a signal, use the
ddi_can_receive_sig(9F) function. If the ddi_can_receive_sig()function
returns B_TRUE, then the above functions can wake up on a received signal. If the
ddi_can_receive_sig()function returns B_FALSE, then the above functions
cannot wake up on a received signal. If the ddi_can_receive_sig()function
returns B_FALSE, then the driver should use an alternate means, such as the
timeout(9F) function, to reawaken.

Chapter 3 • Multithreading 71

One important case where this problem occurs is with serial ports. If the remote
system asserts flow control and the close(9E) function blocks while attempting to
drain the output data, a port can be stuck until the flow control condition is resolved
or the system is rebooted. Such drivers should detect this case and set up a timer to
abort the drain operation when the flow control condition persists for an excessive
period of time.

This issue also affects the qwait_sig(9F) function, which is described in Chapter 7,
“STREAMS Framework – Kernel Level,” in STREAMS Programming Guide.

72 Writing Device Drivers • January 2005

CHAPTER 4

Properties

Properties are user-defined, name-value pair structures that are managed using the
DDI/DKI interfaces. This chapter provides information on the following subjects:

� “Device Property Names” on page 74
� “Creating and Updating Properties” on page 74
� “Looking Up Properties” on page 74
� “prop_op() Entry Point” on page 76

Device Properties
Device attribute information can be represented by a name-value pair notation called a
property.

For example, device registers and onboard memory can be represented by the reg
property. The reg property is a software abstraction that describes device hardware
registers. The value of the reg property encodes the device register address location
and size. Drivers use the reg property to access device registers.

Another example is the interrupt property. An interrupt property represents the device
interrupt. The value of the interrupt property encodes the device-interrupt PIN.

Five types of values can be assigned to properties:

� Byte array – Series of bytes of an arbitrary length
� Integer property – An integer value
� Integer array property – An array of integers
� String property – A NULL-terminated string
� String array property – A list of NULL-terminated strings

A property that has no value is considered to be a Boolean property. A Boolean
property that exists is true. A Boolean value that does not exist is false.

73

Device Property Names
Strictly speaking, DDI/DKI software property names have no restrictions. Certain
uses are recommended, however. The IEEE 1275-1994 Standard for Boot Firmware
defines properties as follows:

A property is a human readable text string consisting of from 1 to 31 printable
characters. Property names shall not contain upper case characters or the characters
“/”, “\”, “:”, “[“, “]” and “@”. Property names beginning with the character “+” are
reserved for use by future revisions of IEEE 1275-1994.

By convention, underscores are not used in property names. Use a hyphen (-) instead.
By convention, property names ending with the question mark character (?) contain
values that are strings, typically TRUE or FALSE, for example auto-boot?.

Predefined property names are listed in publications of the IEEE 1275 Working Group.
See http://playground.sun.com/1275 for information about how to obtain
these publications. For a discussion of adding properties in driver configuration files,
see the driver.conf(4) man page. The pm(9P) and pm-components(9P) man pages
show how properties are used in power management. Read the sd(7D) man page as
an example of how properties should be documented in device driver man pages.

Creating and Updating Properties
To create a property for a driver, or to update an existing property, use an interface
from the DDI driver update interfaces such as ddi_prop_update_int(9F) or
ddi_prop_update_string(9F) with the appropriate property type. See Table 4–1
for a list of available property interfaces. These interfaces are typically called from the
driver’s attach(9E) entry point. In the following example,
ddi_prop_update_string()creates a string property called pm-hardware-state
with a value of needs-suspend-resume.

/* The following code is to tell cpr that this device
* needs to be suspended and resumed.
*/
(void) ddi_prop_update_string(device, dip,

"pm-hardware-state", "needs-suspend-resume");

In most cases, using a ddi_prop_update() routine is sufficient for updating a
property. Sometimes, however, the overhead of updating a property value that is
subject to frequent change can cause performance problems. See “prop_op() Entry
Point” on page 76 for a description of using a local instance of a property value to
avoid using ddi_prop_update().

Looking Up Properties
A driver can request a property from its parent, which in turn can ask its parent. The
driver can control whether the request can go higher than its parent.

74 Writing Device Drivers • January 2005

http://playground.sun.com/1275

For example, the esp driver in the following example maintains an integer property
called targetx-sync-speed for each target. The x in targetx-sync-speed
represents the target number. The prtconf(1M) command displays driver properties
in verbose mode. The following example shows a partial listing for the esp driver.

% prtconf -v
[...]

esp, instance #0
Driver software properties:

name <target2-sync-speed> length <4>
value <0x00000fa0>.

[...]

The following table provides a summary of the property interfaces.

TABLE 4–1 Property Interface Uses

Family Property Interfaces Description

ddi_prop_lookup ddi_prop_exists(9F) Looks up a property and returns
successfully if the property exists. Fails
if the property does not exist

ddi_prop_get_int(9F) Looks up and returns an integer
property

ddi_prop_get_int64(9F) Looks up and returns a 64–bit integer
property

ddi_prop_lookup_int_array(9F) Looks up and returns an integer array
property

ddi_prop_lookup_int64_array(9F) Looks up and returns a 64–bit integer
array property

ddi_prop_lookup_string(9F) Looks up and returns a string property

ddi_prop_lookup_string_array(9F) Looks up and returns a string array
property

ddi_prop_lookup_byte_array(9F) Looks up and returns a byte array
property

ddi_prop_update ddi_prop_update_int(9F) Updates or creates an integer property

ddi_prop_update_int64(9F) Updates or creates a single 64–bit
integer property

ddi_prop_update_int_array(9F) Updates or creates an integer array
property

ddi_prop_update_string(9F) Updates or creates a string property

ddi_prop_update_string_array(9F) Updates or creates a string array
property

Chapter 4 • Properties 75

TABLE 4–1 Property Interface Uses (Continued)
Family Property Interfaces Description

ddi_prop_update_int64_array(9F) Updates or creates a 64–bit integer array
property

ddi_prop_update_byte_array(9F) Updates or creates a byte array property

ddi_prop_remove ddi_prop_remove(9F) Removes a property

ddi_prop_remove_all(9F) Removes all properties that are
associated with a device

Whenever possible, use 64–bit versions of int property interfaces such as
ddi_prop_update_int64(9F) instead of 32–bit versions such as
ddi_prop_update_int(9F)).

prop_op() Entry Point
The prop_op(9E) entry point is generally required for reporting device properties or
driver properties to the system. If the driver does not need to create or manage its own
properties, then the ddi_prop_op(9F) function can be used for this entry point.

ddi_prop_op(9F) can be used as the prop_op(9E) entry point for a device driver
when ddi_prop_op() is defined in the driver’s cb_ops(9S) structure.
ddi_prop_op() enables a leaf device to search for and obtain property values from
the device’s property list.

If the driver has to maintain a property whose value changes frequently, you should
define a driver-specific prop_op() routine within the cb_ops structure instead of
calling ddi_prop_op(). This technique avoids the inefficiency of using
ddi_prop_update() repeatedly. The driver should then maintain a copy of the
property value either within its soft-state structure or in a driver variable.

The prop_op(9E) entry point reports the values of specific driver properties and
device properties to the system. In many cases, the ddi_prop_op(9F) routine can be
used as the driver’s prop_op() entry point in the cb_ops(9S) structure.
ddi_prop_op() performs all of the required processing. ddi_prop_op() is
sufficient for drivers that do not require special processing when handling device
property requests.

However, sometimes the driver must provide a prop_op() entry point. For example,
if a driver maintains a property whose value changes frequently, updating the
property with ddi_prop_update(9F) for each change is not efficient. Instead, the
driver should maintain a shadow copy of the property in the instance’s soft state. The
driver would then update the shadow copy when the value changes without using
any of the ddi_prop_update() routines. The prop_op() entry point must
intercept requests for this property and use one of the ddi_prop_update() routines
to update the value of the property before passing the request to ddi_prop_op() to
process the property request.

76 Writing Device Drivers • January 2005

In the following example, prop_op() intercepts requests for the temperature
property. The driver updates a variable in the state structure whenever the property
changes. However, the property is updated only when a request is made. The driver
then uses ddi_prop_op() to process the property request. If the property request is
not specific to a device, the driver does not intercept the request. This situation is
indicated when the value of the dev parameter is equal to DDI_DEV_T_ANY, the
wildcard device number.

EXAMPLE 4–1 prop_op() Routine

static int
xx_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)
{

minor_t instance;
struct xxstate *xsp;
if (dev != DDI_DEV_T_ANY) {

return (ddi_prop_op(dev, dip, prop_op, flags, name,
valuep, lengthp));

}

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_PROP_NOTFOUND);
if (strcmp(name, "temperature") == 0) {

ddi_prop_update_int(dev, dip, name, temperature);
}

/* other cases */

}

Chapter 4 • Properties 77

78 Writing Device Drivers • January 2005

CHAPTER 5

Events

A system often needs to respond to a condition change such as a user action or system
request. For example, a device might issue a warning when a component begins to
overheat, or might start a movie player when a DVD is inserted into a drive. Device
drivers can use a special message called an event to inform the system that a change in
state has taken place. This chapter provides the following information on events:

� “Introduction to Events” on page 79
� “Using ddi_log_sysevent() to Log Events” on page 80
� “Defining Event Attributes” on page 82

Introduction to Events
An event is a message that a device driver sends to interested entities to indicate that a
change of state has taken place. Events are implemented in the Solaris OS as
user-defined, name-value pair structures that are managed using the nvlist*
functions. (See the nvlist_alloc(9F) man page. Events are organized by vendor,
class, and subclass. For example, you could define a class for monitoring
environmental conditions. An environmental class could have subclasses to indicate
changes in temperature, fan status, and power.

When a change in state occurs, the device notifies the driver. The driver then uses the
ddi_log_sysevent(9F) function to log this event in a queue called sysevent. The
sysevent queue passes events to the user level for handling by either the
syseventd daemon or syseventconfd daemon. These daemons send notifications
to any applications that have subscribed for notification of the specified event.

Two methods for designers of user–level applications deal with events:

� An application can use the routines in libsysevent(3LIB) to subscribe with the
syseventd daemon for notification when a specific event occurs.

79

� A developer can write a separate user-level application to respond to an event. This
type of application needs to be registered with syseventadm(1M). When
syseventconfd encounters the specified event, the application is run and deals
with the event accordingly.

This process is illustrated in the following figure.

syseventadm(1M)

libsysevent

Driver

syseventd

Application

syseventconfd

sysevent.conf
Registry

Kernel level

User level

Sysevent
Queue

ddi_log_sysevent(9F)

FIGURE 5–1 Event Plumbing

Using ddi_log_sysevent() to Log
Events
Device drivers use the ddi_log_sysevent(9F) interface to generate and log events
with the system.

80 Writing Device Drivers • January 2005

ddi_log_sysevent() Syntax
ddi_log_sysevent() uses the following syntax:

int ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class,

char *subclass, nvlist_t *attr-list, sysevent_id_t *eidp, int sleep-flag);

where:

dip A pointer to the dev_info node for this driver.

vendor A pointer to a string that defines the driver’s vendor. Third-party drivers
should use their company’s stock symbol or a similarly enduring
identifier. Sun-supplied drivers use DDI_VENDOR_SUNW.

class A pointer to a string defining the event’s class. class is a driver-specific
value. An example of a class might be a string that represents a set of
environmental conditions that affect a device. This value must be
understood by the event consumer.

subclass A driver-specific string that represents a subset of the class argument. For
example, within a class that represents environmental conditions, an
event subclass might refer to the device’s temperature. This value must be
intelligible to the event consumer.

attr-list A pointer to an nvlist_t structure that lists name-value attributes
associated with the event. Name-value attributes are driver-defined and
can refer to a specific attribute or condition of the device.

For example, consider a device that reads both CD-ROMs and DVDs.
That device could have an attribute with the name disc_type and the
value equal to either cd_rom or dvd.

As with class and subclass, an event consumer must be able to interpret
the name–value pairs.

For more information on name-value pairs and the nvlist_t structure,
see “Defining Event Attributes” on page 82, as well as the
nvlist_alloc(9F) man page.

If the event has no attributes, then this argument should be set to NULL.

eidp The address of a sysevent_id_t structure. The sysevent_id_t
structure is used to provide a unique identification for the event.
ddi_log_sysevent(9F) returns this structure with a system-provided
event sequence number and time stamp. See the
ddi_log_sysevent(9F) man page for more information on the
sysevent_id_t structure.

sleep-flag A flag that indicates how a caller responds when resources are not
available. If sleep-flag is set to DDI_SLEEP, the driver blocks until the
resources become available. With DDI_NOSLEEP, allocations may sleep

Chapter 5 • Events 81

but are guaranteed to succeed. DDI_NOSLEEP allocations are guaranteed
not to sleep but may return NULL if no memory is currently available.

Sample Code for Logging Events
A device driver performs the following tasks to log events:

� Allocate memory for the attribute list using nvlist_alloc(9F)
� Add name-value pairs to the attribute list
� Use the ddi_log_sysevent(9F) function to log the event in the sysevent queue
� Call nvlist_free(9F) when the attribute list is no longer needed

The following example demonstrates how to use ddi_log_sysevent().

EXAMPLE 5–1 Calling ddi_log_sysevent()

char *vendor_name = "DDI_VENDOR_JGJG"
char *my_class = "JGJG_event";
char *my_subclass = "JGJG_alert";
nvlist_t *nvl;
...
nvlist_alloc(&nvl, nvflag, kmflag);
...
(void) nvlist_add_byte_array(nvl, propname, (uchar_t *)propval, proplen + 1);
...
if (ddi_log_sysevent(dip, vendor_name, my_class,

my_subclass, nvl, NULL, DDI_SLEEP)!= DDI_SUCCESS)
cmn_err(CE_WARN, "error logging system event");

nvlist_free(nvl);

Defining Event Attributes
Event attributes are defined as a list of name-value pairs. The Solaris DDI provides
routines and structures for storing information in name-value pairs. Name-value pairs
are retained in an nvlist_t structure, which is opaque to the driver. The value for a
name-value pair may be a Boolean, an int, a byte, a string, an nvlist, or an array of
these data types. An int may be defined as 16 bits, 32 bits, or 64 bits and can be
signed or unsigned.

The steps in creating a list of name-value pairs are as follows.

1. Create an nvlist_t structure with nvlist_alloc(9F).

The nvlist_alloc() interface takes three arguments:

82 Writing Device Drivers • January 2005

� nvlp – Pointer to a pointer to an nvlist_t structure

� nvflag – Flag to indicate the uniqueness of the names of the pairs. If this flag is
set to NV_UNIQUE_NAME_TYPE, any existing pair that matches the name and
type of a new pair is removed from the list. If the flag is set to
NV_UNIQUE_NAME, then any existing pair with a duplicate name is removed,
regardless of its type. Specifying NV_UNIQUE_NAME_TYPE allows a list to
contain two or more pairs with the same name as long as their types are
different, whereas with NV_UNIQUE_NAME only one instance of a pair name can
be in the list. If the flag is not set, then no uniqueness checking is done and the
consumer of the list is responsible for dealing with duplicates.

� kmflag – Flag to indicate the allocation policy for kernel memory. If this
argument is set to KM_SLEEP, then the driver blocks until the requested
memory is available for allocation. KM_SLEEP allocations may sleep but are
guaranteed to succeed. KM_NOSLEEP allocations are guaranteed not to sleep but
may return NULL if no memory is currently available.

2. Populate the nvlist with name-value pairs. For example, to add a string, use
nvlist_add_string(9F). To add an array of 32-bit integers, use
nvlist_add_int32_array(9F). The nvlist_add_boolean(9F) man page
contains a complete list of interfaces for adding pairs.

To deallocate a list, use nvlist_free(9F).

The following code sample illustrates the creation of a name-value list.

EXAMPLE 5–2 Creating and Populating a Name-Value Pair List

nvlist_t*
create_nvlist()

{
int err;
char *str = "child";
int32_t ints[] = {0, 1, 2};
nvlist_t *nvl;

err = nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0); /* allocate list */
if (err)

return (NULL);
if ((nvlist_add_string(nvl, "name", str) != 0) ||

(nvlist_add_int32_array(nvl, "prop", ints, 3) != 0)) {
nvlist_free(nvl);
return (NULL);

}
return (nvl);

}

Drivers can retrieve the elements of an nvlist by using a lookup function for that
type, such as nvlist_lookup_int32_array(9F), which takes as an argument the
name of the pair to be searched for.

Chapter 5 • Events 83

Note – These interfaces work only if either NV_UNIQUE_NAME or
NV_UNIQUE_NAME_TYPE is specified when nvlist_alloc(9F) is called. Otherwise,
ENOTSUP is returned, because the list cannot contain multiple pairs with the same
name.

A list of name-value list pairs can be placed in contiguous memory. This approach is
useful for passing the list to an entity that has subscribed for notification. The first step
is to get the size of the memory block that is needed for the list with
nvlist_size(9F). The next step is to pack the list into the buffer with
nvlist_pack(9F). The consumer receiving the buffer’s content can unpack the buffer
with nvlist_unpack(9F).

The functions for manipulating name-value pairs are available to both user-level and
kernel-level developers. You can find identical man pages for these functions in both
man pages section 3: Library Interfaces and Headers and in man pages section 9: DDI and
DKI Kernel Functions. For a list of functions that operate on name-value pairs, see the
following table.

TABLE 5–1 Functions for Using Name-Value Pairs

Man Page Purpose / Functions

nvlist_add_boolean(9F) Add name-value pairs to the list. Functions include:

nvlist_add_boolean(), nvlist_add_boolean_value(),
nvlist_add_byte(), nvlist_add_int8(), nvlist_add_uint8(),
nvlist_add_int16(), nvlist_add_uint16(), nvlist_add_int32(),
nvlist_add_uint32(), nvlist_add_int64(), nvlist_add_uint64
(), nvlist_add_string(), nvlist_add_nvlist(),
nvlist_add_nvpair(), nvlist_add_boolean_array(),
nvlist_add_int8_array, nvlist_add_uint8_array(),
nvlist_add_nvlist_array(), nvlist_add_byte_array(),
nvlist_add_int16_array(), nvlist_add_uint16_array(),
nvlist_add_int32_array(), nvlist_add_uint32_array(),
nvlist_add_int64_array(), nvlist_add_uint64_array(),
nvlist_add_string_array()

nvlist_alloc(9F) Manipulate the name-value list buffer. Functions include:

nvlist_alloc(), nvlist_free(), nvlist_size(), nvlist_pack(),
nvlist_unpack(), nvlist_dup(), nvlist_merge()

84 Writing Device Drivers • January 2005

TABLE 5–1 Functions for Using Name-Value Pairs (Continued)
Man Page Purpose / Functions

nvlist_lookup_boolean(9F) Search for name-value pairs. Functions include:

nvlist_lookup_boolean(), nvlist_lookup_boolean_value(),
nvlist_lookup_byte(), nvlist_lookup_int8(),
nvlist_lookup_int16(), nvlist_lookup_int32(),
nvlist_lookup_int64(), nvlist_lookup_uint8(),
nvlist_lookup_uint16(), nvlist_lookup_uint32(),
nvlist_lookup_uint64(), nvlist_lookup_string(),
nvlist_lookup_nvlist(), nvlist_lookup_boolean_array,
nvlist_lookup_byte_array(), nvlist_lookup_int8_array(),
nvlist_lookup_int16_array(), nvlist_lookup_int32_array(),
nvlist_lookup_int64_array(), nvlist_lookup_uint8_array(),
nvlist_lookup_uint16_array(), nvlist_lookup_uint32_array(),
nvlist_lookup_uint64_array(), nvlist_lookup_string_array(),
nvlist_lookup_nvlist_array(), nvlist_lookup_pairs()

nvlist_next_nvpair(9F) Get name–value pair data. Functions include:

nvlist_next_nvpair(), nvpair_name(), nvpair_type()

nvlist_remove(9F) Remove name-value pairs. Functions include:

nv_remove(), nv_remove_all()

Chapter 5 • Events 85

86 Writing Device Drivers • January 2005

CHAPTER 6

Driver Autoconfiguration

In autoconfiguration, the driver loads code and static data into memory. This
information is then registered with the system. Autoconfiguration also involves
attaching individual device instances that are controlled by the driver.

This chapter provides information on the following subjects:

� “Driver Loading and Unloading” on page 87
� “Data Structures Required for Drivers” on page 88
� “Loadable Driver Interfaces” on page 91
� “Device Configuration Concepts” on page 94
� “Using Device IDs” on page 107

Driver Loading and Unloading
The system loads driver binary modules from the drv subdirectory of the kernel
module directory for autoconfiguration. See “Copying the Driver to a Module
Directory” on page 422.

After a module is read into memory with all symbols resolved, the system calls the
_init(9E) entry point for that module. The _init() function calls
mod_install(9F), which actually loads the module.

Note – During the call to mod_install(), other threads are able to call attach(9E)
as soon as mod_install() is called. From a programming standpoint, all _init()
initialization must occur before mod_install() is called. If mod_install() fails
(that is a nonzero value is returned), then the initialization must be backed out.

87

Upon successful completion of _init(), the driver is properly registered with the
system. At this point, the driver is not actively managing any device. Device
management happens as part of device configuration.

The system unloads driver binary modules either to conserve system memory or at
the explicit request of a user. Before deleting the driver code and data from memory,
the _fini(9E) entry point of the driver is invoked. The driver is unloaded, if and only
if _fini() returns success.

The following figure provides a structural overview of a device driver. The shaded
area highlights the driver data structures and entry points. The upper half of the
shaded area contains data structures and entry points that support driver loading and
unloading. The lower half is concerned with driver configuration.

modldrv(9S)

dev_ops(9S)

cb_ops(9S)

_info()
_fini()
_init()

attach(9E)
detach(9E)
getinfo(9E)
probe(9E)
power(9E)

modlinkage(9S)

FIGURE 6–1 Module Loading and Autoconfiguration Entry Points

Data Structures Required for Drivers
To support autoconfiguration, drivers are required to statically initialize the following
data structures:

� modlinkage(9S)
� modldrv(9S)
� dev_ops(9S)
� cb_ops(9S)

88 Writing Device Drivers • January 2005

The data structures in Figure 5-1 are relied on by the driver. These structures must be
provided and be initialized correctly. Without these data structures, the driver might
not load properly. As a result, the necessary routines might not be loaded. If an
operation is not supported by the driver, the address of the nodev(9F) routine can be
used as a placeholder. In some instances, the driver supports the entry point and only
needs to return success or failure. In such cases, the address of the routine
nulldev(9F) can be used.

Note – These structures should be initialized at compile-time. The driver should not
access or change the structures at any other time.

modlinkage Structure
static struct modlinkage xxmodlinkage = {

MODREV_1, /* ml_rev */
&xxmodldrv, /* ml_linkage[] */
NULL /* NULL termination */

};

The first field is the version number of the module that loads the subsystem. This field
should be MODREV_1. The second field points to driver’s modldrv structure defined
next. The last element of the structure should always be NULL.

modldrv Structure
static struct modldrv xxmodldrv = {

&mod_driverops, /* drv_modops */
"generic driver v1.1", /* drv_linkinfo */
&xx_dev_ops /* drv_dev_ops */

};

This structure describes the module in more detail. The first field provides information
regarding installation of the module. This field should be set to &mod_driverops for
driver modules. The second field is a string to be displayed by modinfo(1M). The
second field should contain sufficient information for identifying the version of source
code that generated the driver binary. The last field points to the driver’s dev_ops
structure defined in the following section.

dev_ops Structure
static struct dev_ops xx_dev_ops = {

DEVO_REV, /* devo_rev, */
0, /* devo_refcnt */

Chapter 6 • Driver Autoconfiguration 89

xxgetinfo, /* getinfo(9E) */
nulldev, /* identify(9E) */
xxprobe, /* probe(9E) */
xxattach, /* attach(9E) */
xxdetach, /* detach(9E) */
nodev, /* devo_reset */
&xx_cb_ops, /* devo_cb_ops */
NULL, /* devo_bus_ops */
&xxpower /* power(9E) */

};

The dev_ops(9S) structure enables the kernel to find the autoconfiguration entry
points of the device driver. The devo_rev field identifies the revision number of the
structure. This field must be set to DEVO_REV. The devo_refcnt field must be
initialized to zero. The function address fields should be filled in with the address of
the appropriate driver entry point, except in the following cases:

� Set the devo_probe field to nulldev(9F) if a probe(9E) routine is not needed.
� Set the identify(9E) field to nulldev(9F). The identify() function is obsolete

and no longer required.
� Set the devo_reset field to nodev(9F).
� Set the power(9E) field to NULL if a power() routine is not needed. Drivers for

devices that provide Power Management functionality must have a power() entry
point.

The devo_cb_ops member should include the address of the cb_ops(9S) structure.
The devo_bus_ops field must be set to NULL.

cb_ops Structure
static struct cb_ops xx_cb_ops = {

xxopen, /* open(9E) */
xxclose, /* close(9E) */
xxstrategy, /* strategy(9E) */
xxprint, /* print(9E) */
xxdump, /* dump(9E) */
xxread, /* read(9E) */
xxwrite, /* write(9E) */
xxioctl, /* ioctl(9E) */
xxdevmap, /* devmap(9E) */
nodev, /* mmap(9E) */
xxsegmap, /* segmap(9E) */
xxchpoll, /* chpoll(9E) */
xxprop_op, /* prop_op(9E) */
NULL, /* streamtab(9S) */
D_MP | D_64BIT, /* cb_flag */
CB_REV, /* cb_rev */
xxaread, /* aread(9E) */
xxawrite /* awrite(9E) */

};

90 Writing Device Drivers • January 2005

The cb_ops(9S) structure contains the entry points for the character operations and
block operations of the device driver. Any entry points that the driver does not
support should be initialized to nodev(9F). For example, character device drivers
should set all the block-only fields, such as cb_stategy, to nodev(9F). Note that the
mmap(9E) entry point is maintained for compatibility with previous releases. Drivers
should use the devmap(9E) entry point for device memory mapping. If devmap(9E) is
supported, set mmap(9E) to nodev(9F).

The streamtab field indicates whether the driver is STREAMS-based. Only the
network device drivers that are discussed in Chapter 18 are STREAMS-based. All
non-STREAMS-based drivers must set the streamtab field to NULL.

The cb_flag member contains the following flags:

� The D_MP flag indicates that the driver is safe for multithreading. The Solaris 10
Operating System supports only thread-safe drivers so D_MP must be set.

� The D_64BIT flag causes the driver to use the uio_loffset field of the uio(9S)
structure. The driver should set the D_64BIT flag in the cb_flag field to handle
64-bit offsets properly.

� The D_DEVMAP flag supports the devmap(9E) entry point. For information on
devmap(9E), see Chapter 10.

cb_rev is the cb_ops structure revision number. This field must be set to CB_REV.

Loadable Driver Interfaces
Device drivers must be dynamically loadable. Drivers should also be unloadable to
help conserve memory resources. Drivers that can be unloaded are also easier to test,
debug, and patch.

Each device driver is required to implement _init(9E), _fini(9E), and _info(9E)
entry points to support driver loading and unloading. The following example shows a
typical implementation of loadable driver interfaces.

EXAMPLE 6–1 Loadable Interface Section

static void *statep; /* for soft state routines */
static struct cb_ops xx_cb_ops; /* forward reference */
static struct dev_ops xx_ops = {

DEVO_REV,
0,
xxgetinfo,
nulldev,
xxprobe,
xxattach,
xxdetach,

Chapter 6 • Driver Autoconfiguration 91

EXAMPLE 6–1 Loadable Interface Section (Continued)

xxreset,
nodev,
&xx_cb_ops,
NULL,
xxpower

};

static struct modldrv modldrv = {
&mod_driverops,
"xx driver v1.0",
&xx_ops

};

static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL

};

int
_init(void)
{

int error;
ddi_soft_state_init(&statep, sizeof (struct xxstate),

estimated number of instances);
further per-module initialization if necessary

error = mod_install(&modlinkage);
if (error != 0) {

undo any per-module initialization done earlier
ddi_soft_state_fini(&statep);

}
return (error);

}

int
_fini(void)
{

int error;
error = mod_remove(&modlinkage);
if (error == 0) {

release per-module resources if any were allocated
ddi_soft_state_fini(&statep);

}
return (error);

}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));

}

92 Writing Device Drivers • January 2005

_init() Example
The following example shows a typical _init(9E) interface.

EXAMPLE 6–2 _init() Function

static void *xxstatep;
int
_init(void)
{

int error;
const int max_instance = 20; /* estimated max device instances */

ddi_soft_state_init(&xxstatep, sizeof (struct xxstate), max_instance);
error = mod_install(&xxmodlinkage);
if (error != 0) {

/*
* Cleanup after a failure
*/
ddi_soft_state_fini(&xxstatep);

}
return (error);

}

The driver should perform any one-time resource allocation or data initialization
during driver loading in _init(). For example, the driver should initialize any
mutexes global to the driver in this routine. The driver should not, however, use
_init(9E) to allocate or initialize anything that has to do with a particular instance
of the device. Per-instance initialization must be done in attach(9E). For example, if a
driver for a printer can handle more than one printer at the same time, that driver
should allocate resources specific to each printer instance in attach().

Note – Once _init(9E) has called mod_install(9F), the driver should not change
any of the data structures attached to the modlinkage(9S) structure because the
system might make copies or change the data structures.

_fini() Example
The following example demonstrates the _fini() routine.

int
_fini(void)
{

int error;
error = mod_remove(&modlinkage);
if (error != 0) {

return (error);
}

Chapter 6 • Driver Autoconfiguration 93

/*
* Cleanup resources allocated in _init()
*/
ddi_soft_state_fini(&xxstatep);
return (0);

}

Similarly, in _fini(), the driver should release any resources that were allocated in
_init(). The driver must remove itself from the system module list.

Note – _fini() might be called when the driver is attached to hardware instances. In
this case, mod_remove(9F) returns failure. Therefore, driver resources should not be
released until mod_remove() returns success.

_info() Example
The following example demonstrates the _info(9E) routine.

int
_info(struct modinfo *modinfop)
{

return (mod_info(&xxmodlinkage, modinfop));

}

The driver is called to return module information. The entry point should be
implemented as shown above.

Device Configuration Concepts
For each node in the kernel device tree, the system selects a driver for the node based
on the node name and the compatible property (see “Binding a Driver to a Device”
on page 59). The same driver may bind to multiple device nodes. The driver can
differentiate different nodes by instance numbers assigned by the system.

After a driver is selected for a device node, the driver’s probe(9E) entry point is called
to determine the presence of the device on the system. If probe() is successful, the
driver’s attach(9E) entry point is invoked to set up and manage the device. The
device can be opened if and only if attach() returns success (see “attach() Entry
Point” on page 99).

A device may be unconfigured to conserve system memory resources or to allow
device to be removed while the system is still running. To allow the device to be
unconfigured, the system first checks if the device instance is referenced. This check

94 Writing Device Drivers • January 2005

involves calling the driver’s getinfo(9E) entry point to obtain information known
only to the driver (see “getinfo() Entry Point” on page 106). If the device instance is
not referenced, the driver’s detach(9E) routine is invoked to unconfigure the device
(see “detach() Entry Point” on page 104).

To recap, each driver must define the following entry points that are used by the
kernel for device configuration:

� probe(9E)
� attach(9E)
� detach(9E)
� getinfo(9E)

Note that attach(), detach(), and getinfo() are required. probe() is only
required for devices that cannot identify themselves. For self-identifying devices, an
explicit probe() routine can be provided, or nulldev(9F) can be specified in the
dev_ops structure for the probe() entry point.

Device Instances and Instance Numbers
The system assigns an instance number to each device. The driver might not reliably
predict the value of the instance number assigned to a particular device. The driver
should retrieve the particular instance number that has been assigned by calling
ddi_get_instance(9F).

Instance numbers represent the system’s notion of devices. Each dev_info, that is,
each node in the device tree, for a particular driver is assigned an instance number by
the kernel. Furthermore, instance numbers provide a convenient mechanism for
indexing data specific to a particular physical device. The most common use of
instance numbers is ddi_get_soft_state(9F), which uses instance numbers to
retrieve soft state data for specific physical devices.

Caution – For pseudo devices, that is, the children of pseudo nexuses, the instance
numbers are defined in the driver.conf(4) file using the instance property. If the
driver.conf file does not contain the instance property, the behavior is
undefined. For hardware device nodes, the system assigns instance numbers when the
device is first seen by the OS. The instance numbers persist across system reboots and
OS upgrades.

Chapter 6 • Driver Autoconfiguration 95

Minor Nodes and Minor Numbers
Drivers are responsible for managing their minor number namespace. For example,
the sd driver needs to export eight character minor nodes and eight block minor
nodes to the file system for each disk. Each minor node represents either a block
interface or a character interface to a portion of the disk. The getinfo(9E) entry point
informs the system about the mapping from minor number to device instance (see
“getinfo() Entry Point” on page 106).

probe() Entry Point
For non-self-identifying devices, the probe(9E) entry point should determine whether
the hardware device is present on the system.

For probe() to determine whether the instance of the device is present, probe()
needs to perform many tasks that are also commonly done by attach(9E). In
particular, probe() might need to map the device registers.

Probing the device registers is device-specific. The driver often has to perform a series
of tests of the hardware to assure that the hardware is really present. The test criteria
must be rigorous enough to avoid misidentifying devices. For example, a device might
appear to be present when in fact that device is not available, because a different
device seems to behave like the expected device.

The test returns the following flags:

� DDI_PROBE_SUCCESS if the probe was successful
� DDI_PROBE_FAILURE if the probe failed
� DDI_PROBE_DONTCARE if the probe was unsuccessful yet attach(9E) still needs

to be called
� DDI_PROBE_PARTIAL if the instance is not present now, but might be present in

the future

For a given device instance, attach(9E) will not be called until probe(9E) has
succeeded at least once on that device.

probe(9E) must free all the resources that probe() has allocated, because probe()
may be called multiple times. However, attach(9E) is not necessarily called even if
probe(9E) has succeeded

ddi_dev_is_sid(9F) may be used in a driver’s probe(9E) routine to determine
whether the device is self-identifying. ddi_dev_is_sid() is useful in drivers
written for self-identifying and non-self-identifying versions of the same device.

The following example is a sample probe() routine.

EXAMPLE 6–3 probe(9E) Routine

static int
xxprobe(dev_info_t *dip)

96 Writing Device Drivers • January 2005

EXAMPLE 6–3 probe(9E) Routine (Continued)

{

ddi_acc_handle_t dev_hdl;
ddi_device_acc_attr_t dev_attr;
Pio_csr *csrp;
uint8_t csrval;

/*
* if the device is self identifying, no need to probe
*/
if (ddi_dev_is_sid(dip) == DDI_SUCCESS)
return (DDI_PROBE_DONTCARE);

/*
* Initalize the device access attributes and map in
* the devices CSR register (register 0)
*/
dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&csrp, 0, sizeof (Pio_csr),
&dev_attr, &dev_hdl) != DDI_SUCCESS)
return (DDI_PROBE_FAILURE);

/*
* Reset the device
* Once the reset completes the CSR should read back
* (PIO_DEV_READY | PIO_IDLE_INTR)
*/
ddi_put8(dev_hdl, csrp, PIO_RESET);
csrval = ddi_get8(dev_hdl, csrp);

/*
* tear down the mappings and return probe success/failure
*/
ddi_regs_map_free(&dev_hdl);
if ((csrval & 0xff) == (PIO_DEV_READY | PIO_IDLE_INTR))
return (DDI_PROBE_SUCCESS);
else
return (DDI_PROBE_FAILURE);

}

When the driver’s probe(9E) routine is called, the driver does not know whether the
device being probed exists on the bus. Therefore, the driver might attempt to access
device registers for a nonexistent device. A bus fault might be generated on some
buses as a result.

Chapter 6 • Driver Autoconfiguration 97

The following example shows a probe(9E) routine that uses ddi_poke8(9F) to check
for the existence of the device. ddi_poke8() cautiously attempts to write a value to a
specified virtual address, using the parent nexus driver to assist in the process where
necessary. If the address is not valid or the value cannot be written without an error
occurring, an error code is returned. See also ddi_peek(9F).

In this example, ddi_regs_map_setup(9F) is used to map the device registers.

EXAMPLE 6–4 probe(9E) Routine Using ddi_poke8(9F)

static int
xxprobe(dev_info_t *dip)
{

ddi_acc_handle_t dev_hdl;
ddi_device_acc_attr_t dev_attr;
Pio_csr *csrp;
uint8_t csrval;

/*
* if the device is self-identifying, no need to probe
*/
if (ddi_dev_is_sid(dip) == DDI_SUCCESS)
return (DDI_PROBE_DONTCARE);

/*
* Initialize the device access attrributes and map in
* the device’s CSR register (register 0)
*/
dev_attr.devacc_attr_version - DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&csrp, 0, sizeof (Pio_csr),
&dev_attr, &dev_hdl) != DDI_SUCCESS)
return (DDI_PROBE_FAILURE);

/*
* The bus can generate a fault when probing for devices which
* do not exist. Use ddi_poke8(9f) to handle any faults which
* may occur.
*
* Reset the device. Once the reset completes the CSR should read
* back (PIO_DEV_READY | PIO_IDLE_INTR)
*/
if (ddi_poke8(dip, csrp, PIO_RESET) != DDI_SUCCESS) {
ddi_regs_map_free(&dev_hdl);
return (DDI_FAILURE);

csrval = ddi_get8(dev_hdl, csrp);
/*
* tear down the mappings and return probe success/failure
*/

98 Writing Device Drivers • January 2005

EXAMPLE 6–4 probe(9E) Routine Using ddi_poke8(9F) (Continued)

ddi_regs_map_free(&dev_hdl);
if ((csrval & 0xff) == (PIO_DEV_READY | PIO_IDLE_INTR))
return (DDI_PROBE_SUCCESS);
else
return (DDI_PROBE_FAILURE);

}

attach() Entry Point
The kernel calls a driver’s attach(9E) entry point to attach an instance of a device or
to resume operation for an instance of a device that has been suspended or has been
shut down by the power management framework. This section discusses only the
operation of attaching device instances. Power management is discussed in
Chapter 12.

A driver’s attach(9E) entry point is called to attach each instance of a device that is
bound to the driver. The entry point is called with the instance of the device node to
attach, with DDI_ATTACH specified as the cmd argument to attach(9E). The attach
entry point typically includes the following types of processing:

� Allocating a soft-state structure for the device instance
� Initializing per-instance mutexes
� Initializing condition variables
� Registering the device’s interrupts
� Mapping the registers and memory of the device instance
� Creating minor device nodes for the device instance
� Reporting that the device instance has attached

Driver Soft–State Management
To assist device driver writers in allocating state structures, the Solaris 10 DDI/DKI
provides a set of memory management routines called software state management
routines, which are also known as the soft-state routines. These routines dynamically
allocate, retrieve, and destroy memory items of a specified size, and hide the details of
list management. An instance number identifies the desired memory item. This number
is typically the instance number assigned by the system.

Drivers typically allocate a soft-state structure for each device instance that attaches to
the driver by calling ddi_soft_state_zalloc(9F), passing the instance number of
the device. Because no two device nodes can have the same instance number,
ddi_soft_state_zalloc(9F) fails if an allocation already exists for a given instance
number.

A driver’s character or block entry point (cb_ops(9S)) references a particular soft state
structure by first decoding the device’s instance number from the dev_t argument
that is passed to the entry point function. The driver then calls

Chapter 6 • Driver Autoconfiguration 99

ddi_get_soft_state(9F), passing the per-driver soft-state list and the instance
number that was derived. A NULL return value indicates that effectively the device
does not exist and the appropriate code should be returned by the driver.

See “Creating Minor Device Nodes” on page 100 for additional information on how
instance numbers and device numbers, or dev_t’s, are related.

Lock Variable and Conditional Variable Initialization
Drivers should initialize any per-instance locks and condition variables during attach.
The initialization of any locks that are acquired by the driver’s interrupt handler must
be initialized prior to adding any interrupt handlers. See Chapter 3 for a description of
lock initialization and usage. See Chapter 8 for a discussion of interrupt handler and
lock issues.

Creating Minor Device Nodes
An important part of the attach process is the creation of minor nodes for the device
instance. A minor node contains the information exported by the device and the DDI
framework. The system uses this information to create a special file for the minor node
under /devices.

Minor nodes are created when the driver calls ddi_create_minor_node(9F). The
driver supplies a minor number, a minor name, a minor node type, and whether the minor
node represents a block or character device.

Drivers can create any number of minor nodes for a device. The Solaris DDI/DKI
expects certain classes of devices to have minor nodes created in a particular format.
For example, disk drivers are expected to create 16 minor nodes for each physical disk
instance attached. Eight minor nodes are created, representing the a - h block device
interfaces, with an additional eight minor nodes for the a,raw - h,raw character
device interfaces.

The minor number passed to ddi_create_minor_node(9F) is defined wholly by the
driver. The minor number is usually an encoding of the device’s instance number with
a minor node identifier. Taking the above example, the driver creates minor numbers
for each of the minor nodes by taking the device’s instance number, shifting that
number left by three bits, and OR’ing in the minor node index whose values range
from 0 to 7. Note that minor nodes a and a,raw share the same minor number. These
minor nodes are distinguished by the spec_type argument passed to
ddi_create_minor_node().

The minor node type passed to ddi_create_minor_node(9F) classifies the type of
device, such as disks, tapes, network interfaces, frame buffers, and so forth.

The following table lists the types of possible nodes that may be created.

100 Writing Device Drivers • January 2005

TABLE 6–1 Possible Node Types

Constant Description

DDI_NT_SERIAL Serial port

DDI_NT_SERIAL_DO Dialout ports

DDI_NT_BLOCK Hard disks

DDI_NT_BLOCK_CHAN Hard disks with channel or target numbers

DDI_NT_CD ROM drives (CD-ROM)

DDI_NT_CD_CHAN ROM drives with channel or target numbers

DDI_NT_FD Floppy disks

DDI_NT_TAPE Tape drives

DDI_NT_NET Network devices

DDI_NT_DISPLAY Display devices

DDI_NT_MOUSE Mouse

DDI_NT_KEYBOARD Keyboard

DDI_NT_AUDIO Audio Device

DDI_PSEUDO General pseudo devices

The node types DDI_NT_BLOCK, DDI_NT_BLOCK_CHAN, DDI_NT_CD, and
DDI_NT_CD_CHAN cause devfsadm(1M) to identify the device instance as a disk and
to create names in the /dev/dsk or /dev/rdsk directory.

The node type DDI_NT_TAPE causes devfsadm(1M) to identify the device instance as
a tape and to create names in the /dev/rmt directory.

The node types DDI_NT_SERIAL and DDI_NT_SERIAL_DO cause devfsadm(1M) to
perform these actions:

� Identify the device instance as a serial port
� Create names in the /dev/term directory
� Add entries to the /etc/inittab file

Vendor-supplied strings should include an identifying value such as a name or stock
symbol to make the strings unique. The string can be used in conjunction with
devfsadm(1M) and the devlinks.tab file (see the devlinks(1M) man page) to
create logical names in /dev.

Chapter 6 • Driver Autoconfiguration 101

Deferred Attach
open(9E) might be called on a minor device before attach(9E) has succeeded on the
corresponding instance. open() must then return ENXIO, which causes the system to
attempt to attach the device. If the attach() succeeds, the open() is retried
automatically.

EXAMPLE 6–5 Typical attach() Entry Point

/*
* Attach an instance of the driver. We take all the knowledge we
* have about our board and check it against what has been filled in for
* us from our FCode or from our driver.conf(4) file.
*/
static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int instance;
Pio *pio_p;
ddi_device_acc_attr_t da_attr;
static int pio_validate_device(dev_info_t *);

switch (cmd) {
case DDI_ATTACH:

/*
* first validate the device conforms to a configuration this driver
* supports
*/
if (pio_validate_device(dip) == 0)

return (DDI_FAILURE);

/*
* Allocate a soft state structure for this device instance
* Store a pointer to the device node in our soft state structure
* and a reference to the soft state structure in the device
* node.
*/
instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(pio_softstate, instance) != 0)

return (DDI_FAILURE);
pio_p = ddi_get_soft_state(pio_softstate, instance);
ddi_set_driver_private(dip, (caddr_t)pio_p);
pio_p->dip = dip;

/*
* Before adding the interrupt, get the interrupt block
* cookie associated with the interrupt specification to
* initialize the mutex used by the interrupt handler.
*/
if (ddi_get_iblock_cookie(dip, 0, &pio_p->iblock_cookie) !=
DDI_SUCCESS) {
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

102 Writing Device Drivers • January 2005

EXAMPLE 6–5 Typical attach() Entry Point (Continued)

}

mutex_init(&pio_p->mutex, NULL, MUTEX_DRIVER, pio_p->iblock_cookie);

/*
* Now that the mutex is initialized, add the interrupt itself.
*/
if (ddi_add_intr(dip, 0, NULL, NULL, pio_intr, (caddr_t)instance) !=
DDI_SUCCESS) {
mutex_destroy(&pio_p>mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* Initialize the device access attributes for the register
* mapping
*/
dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*
* Map in the csr register (register 0)
*/
if (ddi_regs_map_setup(dip, 0, (caddr_t *)&(pio_p->csr), 0,

sizeof (Pio_csr), &dev_acc_attr, &pio_p->csr_handle) !=
DDI_SUCCESS) {
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* Map in the data register (register 1)
*/
if (ddi_regs_map_setup(dip, 1, (caddr_t *)&(pio_p->data), 0,

sizeof (uchar_t), &dev_acc_attr, &pio_p->data_handle) !=
DDI_SUCCESS) {
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
ddi_regs_map_free(&pio_p->csr_handle);
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* Create an entry in /devices for user processes to open(2)
* This driver will create a minor node entry in /devices
* of the form: /devices/..../pio@X,Y:pio
*/

Chapter 6 • Driver Autoconfiguration 103

EXAMPLE 6–5 Typical attach() Entry Point (Continued)

if (ddi_create_minor_node(dip, ddi_get_name(dip), S_IFCHR,
instance, DDI_PSEUDO, 0) == DDI_FAILURE) {
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
ddi_regs_map_free(&pio_p->csr_handle);
ddi_regs_map_free(&pio_p->data_handle);
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* reset device (including disabling interrupts)
*/
ddi_put8(pio_p->csr_handle, pio_p->csr, PIO_RESET);

/*
* report the name of the device instance which has attached
*/
ddi_report_dev(dip);
return (DDI_SUCCESS);

case DDI_RESUME:
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);
}

}

Note – The attach() routine must not make any assumptions about the order of
invocations on different device instances. The system may invoke attach()
concurrently on different device instances. The system may also invoke attach()
and detach() concurrently on different device instances.

detach() Entry Point
The kernel calls a driver’s detach(9E) entry point to detach an instance of a device or
to suspend operation for an instance of a device by power management. This section
discusses the operation of detaching device instances. Refer to Chapter 12 for a
discussion of power management issues.

A driver’s detach() entry point is called to detach an instance of a device that is
bound to the driver. The entry point is called with the instance of the device node to
be detached and with DDI_DETACH, which is specified as the cmd argument to the
entry point.

104 Writing Device Drivers • January 2005

A driver is required to cancel or wait for any time outs or callbacks to complete, then
release any resources that are allocated to the device instance before returning. If for
some reason a driver cannot cancel outstanding callbacks for free resources, the driver
is required to return the device to its original state and return DDI_FAILURE from the
entry point, leaving the device instance in the attached state.

There are two types of callback routines: those callbacks that can be canceled and
those that cannot be canceled. timeout(9F) and bufcall(9F) callbacks can be
atomically cancelled by the driver during detach(9E). Other types of callbacks such
as scsi_init_pkt(9F) and ddi_dma_buf_bind_handle(9F) cannot be canceled.
The driver must either block in detach() until the callback completes or else fail the
request to detach.

EXAMPLE 6–6 Typical detach() Entry Point

/*
* detach(9e)
* free the resources that were allocated in attach(9e)
*/
static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

Pio *pio_p;
int instance;

switch (cmd) {
case DDI_DETACH:

instance = ddi_get_instance(dip);
pio_p = ddi_get_soft_state(pio_softstate, instance);

/*
* turn off the device
* free any resources allocated in attach
*/
ddi_put8(pio_p->csr_handle, pio_p->csr, PIO_RESET);
ddi_remove_minor_node(dip, NULL);
ddi_regs_map_free(&pio_p->csr_handle);
ddi_regs_map_free(&pio_p->data_handle);
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_SUCCESS);

case DDI_SUSPEND:
default:
return (DDI_FAILURE);
}

}

Chapter 6 • Driver Autoconfiguration 105

getinfo() Entry Point
The system calls getinfo(9E) to obtain configuration information that only the driver
knows. The mapping of minor numbers to device instances is entirely under the
control of the driver. The system sometimes needs to ask the driver which device a
particular dev_t represents.

getinfo() can take either DDI_INFO_DEVT2INSTANCE or
DDI_INFO_DEVT2DEVINFO as its infocmd argument. DDI_INFO_DEVT2INSTANCE
asks for a device’s instance number. DDI_INFO_DEVT2DEVINFO asks for a pointer to
the device’s dev_info structure.

In the DDI_INFO_DEVT2INSTANCE case, arg is a dev_t, and getinfo() must
translate the minor number in dev_t to an instance number. In the following
example, the minor number is the instance number, so getinfo() simply passes back
the minor number. In this case, the driver must not assume that a state structure is
available, since getinfo() may be called before attach(). The mapping defined by
the driver between the minor device number and the instance number does not
necessarily follow the mapping shown in the example. In all cases, however, the
mapping must be static.

In the DDI_INFO_DEVT2DEVINFO case, arg is again a dev_t, so getinfo() first
decodes the instance number for the device. getinfo() then passes back the
dev_info pointer saved in the driver’s soft state structure for the appropriate device,
as shown in the following example.

EXAMPLE 6–7 Typical getinfo() Entry Point

/*
* getinfo(9e)
* Return the instance number or device node given a dev_t
*/
static int
xxgetinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{

int error;
Pio *pio_p;
int instance = getminor((dev_t)arg);

switch (infocmd) {

/*
* return the device node if the driver has attached the
* device instance identified by the dev_t value which was passed
*/
case DDI_INFO_DEVT2DEVINFO:
pio_p = ddi_get_soft_state(pio_softstate, instance);
if (pio_p == NULL) {

*result = NULL;
error = DDI_FAILURE;

} else {
mutex_enter(&pio_p->mutex);

106 Writing Device Drivers • January 2005

EXAMPLE 6–7 Typical getinfo() Entry Point (Continued)

*result = pio_p->dip;
mutex_exit(&pio_p->mutex);
error = DDI_SUCCESS;

}
break;

/*
* the driver can always return the instance number given a dev_t
* value, even if the instance is not attached.
*/
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)instance;
error = DDI_SUCCESS;
break;
default:
*result = NULL;
error = DDI_FAILURE;
}

return (error);

}

Note – The getinfo() routine must be kept in sync with the minor nodes that the
driver creates. If the minor nodes get out of sync, any hotplug operations might fail
and cause a system panic.

Using Device IDs
The Solaris DDI interfaces enable drivers to provide the device ID, a persistent unique
identifier for a device. The device ID can be used to identify or locate a device. The
device ID is independent of the /devices name or device number (dev_t).
Applications can use the functions defined in libdevid(3LIB) to read and manipulate
the device IDs registered by the drivers.

Before a driver can export a device ID, the driver needs to verify the device is capable
of either providing a unique ID or of storing a host-generated unique ID in a not
normally accessible area. WWN (world-wide number) is an example of a unique ID
that is provided by the device. Device NVRAM and reserved sectors are examples of
non-accessible areas where host-generated unique IDs can be safely stored.

Chapter 6 • Driver Autoconfiguration 107

Registering Device IDs
Drivers typically initialize and register device IDs in the driver’s attach(9E) handler.
As mentioned above, the driver is responsible for registering a device ID that is
persistent. As such, the driver might be required to handle both devices that can
provide a unique ID directly (WWN) and devices where fabricated IDs are written to
and read from stable storage.

Registering a Device-Supplied ID
If the device can supply the driver with an identifier that is unique, the driver can
simply initialize the device ID with this identifier and register the ID with the Solaris
DDI.

/*
* The device provides a guaranteed unique identifier,
* in this case a SCSI3-WWN. The WWN for the device has been
* stored in the device’s soft state.
*/
if (ddi_devid_init(dip, DEVID_SCSI3_WWN, un->un_wwn_len, un->un_wwn,

&un->un_devid) != DDI_SUCCESS)
return (DDI_FAILURE);

(void) ddi_devid_register(dip, un->un_devid);

Registering a Fabricated ID
A driver may also register device IDs for devices that do not directly supply a unique
ID. Registering these IDs requires the device to be capable of storing and retrieving a
small amount of data in a reserved area. The driver can then create a fabricated device
ID and write it to the reserved area.

/*
* the device doesn’t supply a unique ID, attempt to read
* a fabricated ID from the device’s reserved data.
*/

if (xxx_read_deviceid(un, &devid_buf) == XXX_OK) {
if (ddi_devid_valid(devid_buf) == DDI_SUCCESS) {

devid_sz = ddi_devi_sizeof(devid_buf);
un->un_devid = kmem_alloc(devid_sz, KM_SLEEP);
bcopy(devid_buf, un->un_devid, devid_sz);
ddi_devid_register(dip, un->un_devid);
return (XXX_OK);

}
}

/*
* we failed to read a valid device ID from the device
* fabricate an ID, store it on the device, and register

108 Writing Device Drivers • January 2005

* it with the DDI
*/

if (ddi_devid_init(dip, DEVID_FAB, 0, NULL, &un->un_devid)
== DDI_FAILURE) {
return (XXX_FAILURE);

}

if (xxx_write_deviceid(un) != XXX_OK) {
ddi_devid_free(un->un_devid);
un->un_devid = NULL;
return (XXX_FAILURE);

}

ddi_devid_register(dip, un->un_devid);

return (XXX_OK);

Unregistering Device IDs
Drivers typically unregister and free any device IDs that are allocated as part of the
detach(9E) handling. The driver first calls ddi_devid_unregister(9F) to
unregister the device ID for the device instance. The driver must then free the device ID
handle itself by calling ddi_devid_free(9F), and then passing the handle that had
been returned by ddi_devid_init(9F). The driver is responsible for managing any
space allocated for WWN or Serial Number data.

Chapter 6 • Driver Autoconfiguration 109

110 Writing Device Drivers • January 2005

CHAPTER 7

Device Access: Programmed I/O

The Solaris Operating System provides driver developers with a comprehensive set of
interfaces for accessing device memory. These interfaces are designed to shield the
driver from platform-specific dependencies by handling mismatches between
processor and device endianness as well as enforcing any data order dependencies the
device might have. By using these interfaces, you can develop a single-source driver
that runs on both the SPARC and x86 processor architectures as well as the various
platforms from each respective processor family.

This chapter provides information on the following subjects:

� “Managing Differences in Device and Host Endianness” on page 112
� “Managing Data Ordering Requirements” on page 112
� “ddi_device_acc_attr Structure” on page 112
� “Mapping Device Memory” on page 113
� “Mapping Setup Example” on page 114
� “Alternate Device Access Interfaces” on page 116

Device Memory
Devices that support programmed I/O are assigned one or more regions of bus
address space that map to addressable regions of the device. These mappings are
described as pairs of values in the reg property associated with the device. Each value
pair describes a segment of a bus address.

Drivers identify a particular bus address mapping by specifying the register number,
or regspec, which is an index into the devices’ reg property. The reg property
identifies the busaddr and size for the device. Drivers pass the register number
when making calls to DDI functions such as ddi_regs_map_setup(9F). Drivers can
determine how many mappable regions have been assigned to the device by calling
ddi_dev_nregs(9F).

111

Managing Differences in Device and Host
Endianness
The data format of the host can have different endian characteristics than the data
format of the device. In such a case, data transferred between the host and device
would need to be byte-swapped to conform to the data format requirements of the
destination location. Devices with the same endian characteristics of the host require
no byte-swapping of the data.

Drivers specify the endian characteristics of the device by setting the appropriate flag
in the ddi_device_acc_attr(9S) structure that is passed to
ddi_regs_map_setup(9F). The DDI framework then performs any required
byte-swapping when the driver calls a ddi_getX routine like ddi_get8(9F) or a
ddi_putX routine like ddi_put16(9F) to read or write to device memory.

Managing Data Ordering Requirements
Platforms can reorder loads and stores of data to optimize performance of the
platform. Because reordering might not be allowed by certain devices, the driver is
required to specify the device’s ordering requirements when setting up mappings to
the device.

ddi_device_acc_attr Structure
This structure describes the endian and data order requirements of the device. The
driver is required to initialize and pass this structure as an argument to
ddi_regs_map_setup(9F).

typedef struct ddi_device_acc_attr {
ushort_t devacc_attr_version;
uchar_t devacc_attr_endian_flags;
uchar_t devacc_attr_dataorder;

} ddi_device_acc_attr_t;

devacc_attr_version Specifies DDI_DEVICE_ATTR_V0

devacc_attr_endian_flags Describes the endian characteristics of the
device. Specified as a bit value whose
possible values are:

� DDI_NEVERSWAP_ACC – Never swap
data

� DDI_STRUCTURE_BE_ACC – The device
data format is big-endian

� DDI_STRUCTURE_LE_ACC – The device
data format is little-endian

112 Writing Device Drivers • January 2005

devacc_attr_dataorder Describes the order in which the CPU must
reference data as required by the device.
Specified as an enumerated value, where
data access restrictions are ordered from
most strict to least strict.

� DDI_STRICTORDER_ACC – The host
must issue the references in order, as
specified by the programmer. This flag is
the default behavior.

� DDI_UNORDERED_OK_ACC – The host is
allowed to reorder loads and stores to
device memory.

� DDI_MERGING_OK_ACC – The host is
allowed to merge individual stores to
consecutive locations. This setting also
implies reordering.

� DDI_LOADCACHING_OK_ACC – The host
is allowed to read data from the device
until a store occurs.

� DDI_STORECACHING_OK_ACC – The
host is allowed to cache data written to
the device. The host can then defer
writing the data to the device until a
future time.

Note – The system can access data more strictly than the driver specifies in
devacc_attr_dataorder. The restriction to the host diminishes while moving from
strict data ordering to cache storing in terms of data accesses by the driver.

Mapping Device Memory
Drivers typically map all regions of a device during attach(9E). The driver maps a
region of device memory by calling ddi_regs_map_setup(9F), specifying the
register number of the region to map, the device access attributes for the region, an
offset, and size. The DDI framework sets up the mappings for the device region and
returns an opaque handle to the driver. This data access handle is passed as an
argument to the ddi_get8(9F) or ddi_put8(9F) family of routines when reading
data from or writing data to that region of the device.

The driver verifies that the shape of the device mappings match what the driver is
expecting by checking the number of mappings exported by the device. The driver
calls ddi_dev_nregs(9F) and then verifies the size of each mapping by calling
ddi_dev_regsize(9F).

Chapter 7 • Device Access: Programmed I/O 113

Mapping Setup Example
The following simple example demonstrates the DDI data access interfaces. This
driver is for a fictional little endian device that accepts one character at a time and
generates an interrupt when ready for another character. This device implements two
register sets: the first is an 8-bit CSR register, and the second is an 8-bit data register.

EXAMPLE 7–1 Mapping Setup

#define CSR_REG 0
#define DATA_REG 1

/*
* Initialize the device access attributes for the register
* mapping
*/
dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*
* Map in the csr register (register 0)
*/
if (ddi_regs_map_setup(dip, CSR_REG, (caddr_t *)&(pio_p->csr), 0,
sizeof (Pio_csr), &dev_acc_attr, &pio_p->csr_handle) != DDI_SUCCESS) {

mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);
}

/*
* Map in the data register (register 1)
*/
if (ddi_regs_map_setup(dip, DATA_REG, (caddr_t *)&(pio_p->data), 0,
sizeof (uchar_t), &dev_acc_attr, &pio_p->data_handle) \

!= DDI_SUCCESS) {
mutex_destroy(&pio_p->mutex);
ddi_regs_map_free(&pio_p->csr_handle);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

114 Writing Device Drivers • January 2005

Device Access Functions
Drivers use the ddi_get8(9F) and ddi_put8(9F) family of routines in conjunction
with the handle returned by ddi_regs_map_setup(9F) to transfer data to and from
a device. The DDI framework automatically handles any byte-swapping that is
required to meet the endian format for the host or device, and enforces any
store-ordering constraints the device might have.

The DDI provides interfaces for transferring data in 8-bit, 16-bit, 32–bit, and 64–bit
quantities, as well as interfaces for transferring multiple values repeatedly. See the
man pages for the ddi_get8(9F), ddi_put8(9F), ddi_rep_get8(9F) and
ddi_rep_put8(9F) families of routines for a complete listing and description of these
interfaces.

The following example builds on Example 7–1 where the driver mapped the device’s
CSR and data registers. Here, the driver’s write(9E) entry point, when called, writes
a buffer of data to the device one byte at a time.

EXAMPLE 7–2 Mapping Setup: Buffer

static int
pio_write(dev_t dev, struct uio *uiop, cred_t *credp)
{

int retval;
int error = OK;
Pio *pio_p = ddi_get_soft_state(pio_softstate, getminor(dev));

if (pio_p == NULL)
return (ENXIO);
mutex_enter(&pio_p->mutex);
/*
* enable interrupts from the device by setting the Interrupt
* Enable bit in the devices CSR register
*/
ddi_put8(pio_p->csr_handle, pio_p->csr,
(ddi_get8(pio_p->csr_handle, pio_p->csr) | PIO_INTR_ENABLE));

while (uiop->uio_resid > 0) {
/*
* This device issues an IDLE interrupt when it is ready
* to accept a character; the interrupt can be cleared
* by setting PIO_INTR_CLEAR. The interrupt is reasserted
* after the next character is written or the next time
* PIO_INTR_ENABLE is toggled on.
*
* wait for interrupt (see pio_intr)
*/
cv_wait(&pio_p->cv, &pio_p->mutex);

Chapter 7 • Device Access: Programmed I/O 115

EXAMPLE 7–2 Mapping Setup: Buffer (Continued)

/*
* get a character from the user’s write request
* fail the write request if any errors are encountered
*/
if ((retval = uwritec(uiop)) == -1) {

error = retval;
break;

}

/*
* pass the character to the device by writing it to
* the device’s data register
*/
ddi_put8(pio_p->data_handle, pio_p->data, (uchar_t)retval);
}

/*
* disable interrupts by clearing the Interrupt Enable bit
* in the CSR
*/
ddi_put8(pio_p->csr_handle, pio_p->csr,
(ddi_get8(pio_p->csr_handle, pio_p->csr) & ~PIO_INTR_ENABLE));

mutex_exit(&pio_p->mutex);
return (error);

}

Alternate Device Access Interfaces
In addition to implementing all device accesses through the ddi_get8(9F) and
ddi_put8(9F) families of interfaces, the Solaris OS provides interfaces that are specific
to particular bus implementations. While these functions can be more efficient on some
platforms, use of these routines can limit the ability of the driver to remain portable
across different bus versions of the device.

Memory Space Access
With memory mapped access, device registers appear in memory address space. The
ddi_getX family of routines and the ddi_putX family are available for use by
drivers as an alternative to the standard device access interfaces.

116 Writing Device Drivers • January 2005

I/O Space Access
With I/O space access, the device registers appear in I/O space, where each
addressable element is called an I/O port. The ddi_io_get8(9F) and
ddi_io_put8(9F) routines are available for use by drivers as an alternative to the
standard device access interfaces.

PCI Configuration Space Access
To access PCI configuration space without using the normal device access interfaces, a
driver is required to map PCI configuration space by calling pci_config_setup(9F)
in place of ddi_regs_map_setup(9F). The driver can then call the
pci_config_get8(9F) and pci_config_put8(9F) families of interfaces to access
PCI configuration space.

Chapter 7 • Device Access: Programmed I/O 117

118 Writing Device Drivers • January 2005

CHAPTER 8

Interrupt Handlers

This chapter describes mechanisms for handling interrupts, such as registering,
servicing, and removing interrupts. This chapter provides information on the
following subjects:

� “Interrupt Handler Overview” on page 119
� “Device Interrupts” on page 120
� “Registering Interrupts” on page 122
� “Interrupt Handler Responsibilities” on page 123
� “Handling High-Level Interrupts” on page 125

Interrupt Handler Overview
An interrupt is a hardware signal from a device to a CPU. An interrupt tells the CPU
that the device needs attention and that the CPU should stop any current activity and
respond to the device. If a CPU is available, that is, not performing a task with higher
priority, the CPU suspends the current thread. The CPU then invokes the interrupt
handler for that device. The job of the interrupt handler is to service the device and
stop the device from interrupting. Once the handler returns, the CPU resumes the
activity from before the interrupt occurred.

The DDI/DKI provides interfaces for registering and servicing interrupts.

Interrupt Specification
The interrupt specification is information the system uses to bind a device interrupt
source with a specific device interrupt handler. The specification describes the
information provided by the hardware to the system when making an interrupt
request. The information in an interrupt specification varies from bus to bus.

119

Interrupt specifications typically include a bus-interrupt level. For vectored interrupts,
the specifications include an interrupt vector. On x86 platforms, the interrupt
specification defines the relative interrupt priority of the device. Interrupt
specifications are bus specific. See the man pages for isa(4), sbus(4), and pci(4) for
information on interrupt specifications for these buses.

Interrupt Number
The driver must provide the system with an interrupt number to register an interrupt.
This interrupt number identifies the interrupt specification for which the driver is
registering a handler. Most devices have one interrupt: interrupt number 0. However,
some devices have different interrupts for different events. A communications
controller might have one interrupt for receive ready and another interrupt for
transmit ready. If a driver has to support several variations of a controller, the driver
can call ddi_dev_nintrs(9F) to find out the number of device interrupts. Normally,
the device driver knows how many interrupts the device has.

Interrupt Block Cookies
An iblock cookie is an opaque data structure that represents the information the
system needs to block interrupts. This cookie is returned from
ddi_get_iblock_cookie(9F) or ddi_get_soft_iblock_cookie(9F). This
interface uses an interrupt number to return the iblock cookie associated with a
specific interrupt source. The value of the iblock cookie must be passed to
mutex_init(9F) to initialize driver mutexes to be used in the interrupt routine. The
value of the iblock cookie is obtained by passing the address of the cookie to
ddi_get_iblock_cookie() or ddi_get_soft_iblock_cookie(), as shown in
the following example:

ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HI,
&xsp->low_iblock_cookie)

mutex_init(&xsp->low_mu, NULL, MUTEX_DRIVER,

(void *)xsp->low_iblock_cookie);

Device Interrupts
Buses implement interrupts in two common ways: vectored and polled. Both methods
commonly supply a bus-interrupt priority level. Vectored devices also supply an
interrupt vector. Polled devices do not supply interrupt vectors.

120 Writing Device Drivers • January 2005

High-Level Interrupts
A bus prioritizes a device interrupt at a bus-interrupt level. The bus interrupt level is
then mapped to a processor-interrupt level. A bus interrupt level that maps to a CPU
interrupt priority above the scheduler priority level is called a high-level interrupt.
High-level interrupt handlers are restricted to calling the following DDI interfaces:

� mutex_enter(9F) and mutex_exit(9F) on a mutex that is initialized with an
iblock cookie associated with the high-level interrupt

� ddi_trigger_softintr(9F)

� The ddi_getX/ddi_putX families of routines

A bus-interrupt level by itself does not determine whether a device interrupts at a
high level: a given bus-interrupt level can map to a high-level interrupt on one
platform, but map to an ordinary interrupt on another platform.

Although the driver can choose whether to support devices that have high-level
interrupts, the driver is always required to check the interrupt level. The function
ddi_intr_hilevel(9F) when given an interrupt number returns a value indicating
whether the interrupt is high level.

Normal Interrupts
The only information the system has about a device interrupt is either the priority
level for the bus interrupt, for example, the IPL on an SBus in a SPARC machine, or
the interrupt request number, for example, the IRQ on an ISA bus in an x86 machine.

When an interrupt handler is registered, the system adds the handler to a list of
potential interrupt handlers for each IPL or IRQ. When the interrupt occurs, the
system must determine which device, of all the devices associated with a given IPL or
IRQ, actually interrupted. The system calls all the interrupt handlers for the
designated IPL or IRQ until one handler claims the interrupt.

The following buses are capable of supporting polled interrupts:

� SBus
� ISA
� PCI

Software Interrupts
The Solaris 10 DDI/DKI supports software interrupts, also known as soft interrupts.
Soft interrupts are initiated by software rather than by a hardware device. Handlers
for these interrupts must also be added to and removed from the system. Soft
interrupt handlers run in interrupt context and therefore can be used to do many of
the tasks that belong to an interrupt handler.

Chapter 8 • Interrupt Handlers 121

Hardware interrupt handlers must perform their tasks quickly, because the handlers
may have to suspend other system activity while doing these tasks. This requirement
is particularly true for high-level interrupt handlers, which operate at priority levels
greater than the priority level of the system scheduler. High-level interrupt handlers
mask the operations of all lower-priority interrupts, including the interrupt operations
of the system clock. Consequently, the interrupt handler must avoid involvement in
activities that might cause it to sleep, such as acquiring a mutex.

If the handler sleeps, then the system might hang because the clock is masked and
incapable of scheduling the sleeping thread. For this reason, high-level interrupt
handlers normally perform a minimum amount of work at high-priority levels and
delegate other tasks to software interrupts, which run below the priority level of the
high-level interrupt handler. Because software interrupt handlers run below the
priority level of the system scheduler, software interrupt handlers can do the work
that the high-level interrupt handler was incapable of doing.

Registering Interrupts
Before a device driver can receive and service interrupts, the driver must register an
interrupt handler with the system by calling ddi_add_intr(9F). Registering
interrupts provides the system with a way to associate an interrupt handler with an
interrupt specification. The interrupt handler is called when the device might have
been responsible for the interrupt. The handler has the responsibility of determining
whether it should handle the interrupt and, if so, of claiming that interrupt.

Caution – A potential race condition exists between the time that an interrupt handler
is added and the time that the mutexes are initialized. The interrupt routine is eligible
to be called as soon as ddi_add_intr(9F) returns. Another device could potentially
interrupt and cause the handler to be invoked. Such a situation would result in the
interrupt routine being called before any mutexes have been initialized with the
returned interrupt block cookie. If the interrupt routine acquires a mutex before the
mutex has been initialized, undefined behavior can result. To ensure that this race
condition does not occur, always initialize mutexes and any other data used in the
interrupt handler before adding the interrupt.

To register a driver’s interrupt handler, the driver usually performs the following steps
in attach(9E).

1. Test for high-level interrupts by calling ddi_intr_hilevel(9F) to find out
whether the interrupt specification maps to a high-level interrupt. If the
specification maps accordingly, one possibility is to post a message to that effect
and return DDI_FAILURE. See Example 8–1.

122 Writing Device Drivers • January 2005

2. Get the iblock cookie by calling ddi_get_iblock_cookie(9F).

3. Initialize any associated mutexes with the iblock cookie by calling
mutex_init(9F).

4. Register the interrupt handler by calling ddi_add_intr(9F).

The following example shows how to install an interrupt handler.

EXAMPLE 8–1 Routine Installation of an Interrupt Handler With attach()

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
switch (cmd) {
case DDI_ATTACH:

[...]
if (ddi_intr_hilevel(dip, inumber) != 0){

cmn_err(CE_CONT,
"xx: high-level interrupts are not supported\n");
return (DDI_FAILURE);

}
ddi_get_iblock_cookie(dip, inumber, &xsp->iblock_cookie);
mutex_init(&xsp->mu, NULL, MUTEX_DRIVER,
(void *)xsp->iblock_cookie);
cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);
if (ddi_add_intr(dip, inumber, NULL, NULL, xxintr,

(caddr_t)xsp) != DDI_SUCCESS){
cmn_err(CE_WARN, "xx: cannot add interrupt handler.");
goto failed;

}
return (DDI_SUCCESS);

case DDI_RESUME:
For information, see Chapter 12, "Power Management."

default:
return (DDI_FAILURE);
}
failed:

remove interrupt handler if necessary, destroy mutex and condition variable
return (DDI_FAILURE);

}

Interrupt Handler Responsibilities
The interrupt handler has a set of responsibilities to perform. Some responsibilities are
required by the framework, and some responsibilities are required by the device. All
interrupt handlers are required to do the following tasks:

� Determine whether the device is interrupting and possibly reject the interrupt.

Chapter 8 • Interrupt Handlers 123

The interrupt handler must first examine the device to determine whether this
device has issued the interrupt. If the device has not issued the interrupt, the
handler must return DDI_INTR_UNCLAIMED. This step allows the implementation
of device polling. Device polling tells the system whether this device, among a
number of devices at the given interrupt priority level, has issued the interrupt.

� Inform the device that the device is being serviced.

Informing a device about servicing is a device-specific operation that is required
for the majority of devices. For example, SBus devices are required to interrupt
until the driver tells the SBus devices to stop. This approach guarantees that all
SBus devices that interrupt at the same priority level are serviced.

� Perform any I/O request-related processing.

Devices interrupt for different reasons, such as transfer done or transfer error. This
step can involve using data access functions to read the device’s data buffer,
examine the device’s error register, and set the status field in a data structure
accordingly. Interrupt dispatching and processing are relatively time consuming.

� Do any additional processing that could prevent another interrupt.

For example, read the next item of data from the device.

� Return DDI_INTR_CLAIMED.

The following example shows an interrupt routine.

EXAMPLE 8–2 Interrupt Example

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;
volatile uint8_t temp;

/*
* Claim or reject the interrupt.This example assumes
* that the device’s CSR includes this information.
*/
mutex_enter(&xsp->high_mu);
/* use data access routines to read status */
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->high_mu);
return (DDI_INTR_UNCLAIMED); /* dev not interrupting */

}
/*
* Inform the device that it is being serviced, and re-enable
* interrupts. The example assumes that writing to the
* CSR accomplishes this. The driver must ensure that this data
* access operation makes it to the device before the interrupt
* service routine returns. For example, using the data access
* functions to read the CSR, if it does not result in unwanted
* effects, can ensure this.
*/

124 Writing Device Drivers • January 2005

EXAMPLE 8–2 Interrupt Example (Continued)

ddi_put8(xsp->data_access_handle, &xsp->regp->csr,
CLEAR_INTERRUPT | ENABLE_INTERRUPTS);

/* flush store buffers */
temp = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

mutex_exit(&xsp->mu);
return (DDI_INTR_CLAIMED);

}

Most of the steps performed by the interrupt routine depend on the specifics of the
device itself. Consult the hardware manual for the device to determine the cause of the
interrupt, detect error conditions, and access the device data registers.

Handling High-Level Interrupts
High-level interrupts are those interrupts that interrupt at the level of the scheduler
and above. This level does not allow the scheduler to run. Therefore, high-level
interrupt handlers cannot be pre-empted by the scheduler. High-level interrupts
cannot rely on the scheduler, that is, they cannot block because of the scheduler.
High-level interrupts can only use mutual exclusion locks for locking.

Because of this situation, the driver must use ddi_intr_hilevel(9F) to determine
whether the driver is using high-level interrupts. If ddi_intr_hilevel(9F) returns
true, the driver can fail to attach, or the driver can use a two-level scheme to handle
interrupts.

The suggested method is to add a high-level interrupt handler, which simply triggers
a lower-priority software interrupt to handle the device. The driver should allow more
concurrency by using a separate mutex for protecting data from the high-level
handler.

High-level Mutexes
A mutex initialized with the interrupt block cookie that represents a high-level
interrupt is known as ahigh-level mutex. While holding a high-level mutex, the driver is
subject to the same restrictions as a high-level interrupt handler.

Chapter 8 • Interrupt Handlers 125

High-Level Interrupt Handling Example
In the following example, the high-level mutex (xsp->high_mu) is used only to
protect data shared between the high-level interrupt handler and the soft interrupt
handler. The protected data includes a queue used by both the high-level interrupt
handler and the low-level handler, and a flag that indicates that the low-level handler
is running. A separate low-level mutex (xsp->low_mu) protects the rest of the driver
from the soft interrupt handler.

EXAMPLE 8–3 Handling High-Level Interrupts With attach()

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
[...]
if (ddi_intr_hilevel(dip, inumber)) {

ddi_get_iblock_cookie(dip, inumber,
&xsp->high_iblock_cookie);
mutex_init(&xsp->high_mu, NULL, MUTEX_DRIVER,
(void *)xsp->high_iblock_cookie);
if (ddi_add_intr(dip, inumber, &xsp->high_iblock_cookie,
&xsp->high_idevice_cookie, xxhighintr, (caddr_t)xsp)
!= DDI_SUCCESS)
goto failed;
ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HI,
&xsp->low_iblock_cookie)
mutex_init(&xsp->low_mu, NULL, MUTEX_DRIVER,
(void *)xsp->low_iblock_cookie);
if (ddi_add_softintr(dip, DDI_SOFTINT_HI, &xsp->id,
&xsp->low_iblock_cookie, NULL,
xxlowintr, (caddr_t)xsp) != DDI_SUCCESS)
goto failed;

} else {
add normal interrupt handler

}
cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);
[...]
return (DDI_SUCCESS);
failed:

free allocated resources, remove interrupt handlers
return (DDI_FAILURE);

}

The high-level interrupt routine services the device and queues the data. The
high-level routine triggers a software interrupt if the low-level routine is not running,
as the following example demonstrates.

EXAMPLE 8–4 High-level Interrupt Routine

static uint_t
xxhighintr(caddr_t arg)
{

126 Writing Device Drivers • January 2005

EXAMPLE 8–4 High-level Interrupt Routine (Continued)

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;
volatile uint8_t temp;
int need_softint;

mutex_enter(&xsp->high_mu);
/* read status */
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->high_mu);
return (DDI_INTR_UNCLAIMED); /* dev not interrupting */
}

ddi_put8(xsp->data_access_handle,&xsp->regp->csr,
CLEAR_INTERRUPT | ENABLE_INTERRUPTS);
/* flush store buffers */
temp = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

read data from device and queue the data for the low-level interrupt handler;
if (xsp->softint_running)
need_softint = 0;
else {
xsp->softint_count++;
need_softint = 1;
}
mutex_exit(&xsp->high_mu);
/* read-only access to xsp->id, no mutex needed */
if (need_softint)
ddi_trigger_softintr(xsp->id);
return (DDI_INTR_CLAIMED);

}

The low-level interrupt routine is started by the high-level interrupt routine, which
triggers a software interrupt. The low-level interrupt routine runs until there is
nothing left to process, as the following example shows.

EXAMPLE 8–5 Low-Level Interrupt Routine

static uint_t
xxlowintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
[...]
mutex_enter(&xsp->low_mu);
mutex_enter(&xsp->high_mu);
if (xsp->softint_count > 1) {
xsp->softint_count--;
mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);
return (DDI_INTR_CLAIMED);
}
if (queue empty) {

Chapter 8 • Interrupt Handlers 127

EXAMPLE 8–5 Low-Level Interrupt Routine (Continued)

mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);
return (DDI_INTR_UNCLAIMED);
}
xsp->softint_running = 1;
while (data on queue) {
ASSERT(mutex_owned(&xsp->high_mu);

dequeue data from high-level queue;
mutex_exit(&xsp->high_mu);

normal interrupt processing
mutex_enter(&xsp->high_mu);
}
xsp->softint_running = 0;
xsp->softint_count = 0;
mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);
return (DDI_INTR_CLAIMED);

}

128 Writing Device Drivers • January 2005

CHAPTER 9

Direct Memory Access (DMA)

Many devices can temporarily take control of the bus. These devices can perform data
transfers that involve main memory and other devices. Because the device is doing the
work without the help of the CPU, this type of data transfer is known as direct memory
access (DMA). The following types of DMA transfers can be performed:

� Between two devices
� Between a device and memory
� Between memory and memory

This chapter explains transfers between a device and memory only. The chapter
provides information on the following subjects:

� “DMA Model” on page 129
� “Types of Device DMA” on page 130
� “Managing DMA Resources” on page 137
� “DMA Software Components: Handles, Windows, and Cookies” on page 132
� “DMA Operations” on page 132
� “Managing DMA Resources” on page 137
� “DMA Windows” on page 150

DMA Model
The Solaris Device Driver Interface/Driver-Kernel Interface (DDI/DKI) provides a
high-level, architecture-independent model for DMA. This model enables the
framework, that is, the DMA routines, to hide such architecture-specific details, for
instance:

� Setting up DMA mappings
� Building scatter-gather lists
� Ensuring that I/O and CPU caches are consistent

129

Several abstractions are used in the DDI/DKI to describe aspects of a DMA
transaction:

� DMA object – Memory that is the source or destination of a DMA transfer.

� DMA handle – An opaque object returned from a successful
ddi_dma_alloc_handle(9F) call. The DMA handle can be used in subsequent
DMA subroutine calls to refer to such DMA objects.

� DMA cookie – A ddi_dma_cookie(9S) structure (ddi_dma_cookie_t)
describes a contiguous portion of a DMA object that is entirely addressable by the
device. The cookie contains DMA addressing information that is required to
program the DMA engine.

Rather than map an object directly into memory, device drivers allocate DMA resources
for a memory object. The DMA routines then perform any platform-specific operations
that are needed to set up the object for DMA access. The driver receives a DMA handle
to identify the DMA resources that are allocated for the object. This handle is opaque
to the device driver. The driver must save the handle and pass the handle in
subsequent calls to DMA routines. The driver should not interpret the handle in any
way.

Operations are defined on a DMA handle that provide the following services:

� Manipulating DMA resources
� Synchronizing DMA objects
� Retrieving attributes of the allocated resources

Types of Device DMA
Devices perform one of the following three types of DMA:

� Bus-master DMA
� Third-party DMA
� First-party DMA

Bus-Master DMA
The driver should program the device’s DMA registers directly in cases where the
device acts like a true bus master. For example, a device acts like a bus master when the
DMA engine resides on the device board. The transfer address and count are obtained
from the DMA cookie to be passed on to the device.

130 Writing Device Drivers • January 2005

Third-Party DMA
Third-party DMA utilizes a system DMA engine resident on the main system board,
which has several DMA channels that are available for use by devices. The device
relies on the system’s DMA engine to perform the data transfers between the device
and memory. The driver uses DMA engine routines (see ddi_dmae(9F)) to initialize
and program the DMA engine. For each DMA data transfer, the driver programs the
DMA engine and then gives the device a command to initiate the transfer in
cooperation with that engine.

First-Party DMA
Under first-party DMA, the device uses a channel from the system’s DMA engine to
drive that device’s DMA bus cycles. The ddi_dmae_1stparty(9F) function is used to
configure this channel in a cascade mode so that the DMA engine does not interfere
with the transfer.

Types of Host Platform DMA
The platform on which the device operates provides either direct memory access
(DMA) or direct virtual memory access (DVMA).

On platforms that support DMA, the system provides the device with a physical
address in order to perform transfers. In this case, the transfer of a DMA object can
actually consist of a number of physically discontiguous transfers. An example is
when an application transfers a buffer that spans several contiguous virtual pages that
map to physically discontiguous pages. To deal with the discontiguous memory,
devices for these platforms usually have some kind of scatter-gather DMA capability.
Typically, x86 systems provide physical addresses for direct memory transfers.

On platforms that support DVMA, the system provides the device with a virtual
address to perform transfers. In this case, memory management units (MMU)
provided by the underlying platform translate device accesses to these virtual
addresses into the proper physical addresses. The device transfers to and from a
contiguous virtual image that can be mapped to discontiguous physical pages.
Devices that operate in these platforms do not need scatter-gather DMA capability.
Typically, SPARC platforms provide virtual addresses for direct memory transfers.

Chapter 9 • Direct Memory Access (DMA) 131

DMA Software Components: Handles,
Windows, and Cookies
A DMA handle is an opaque pointer that represents an object, usually a memory buffer
or address. A DMA handle enables a device to perform DMA transfers. Several
different calls to DMA routines use the handle to identify the DMA resources that are
allocated for the object.

An object represented by a DMA handle is completely covered by one or more DMA
cookies. A DMA cookie represents a contiguous piece of memory that is used in data
transfers by the DMA engine. The system divides objects into multiple cookies based
on the following information:

� The ddi_dma_attr(9S) attribute structure provided by the driver
� Memory location of the target object
� Alignment of the target object

If an object is too big to fit the request within system resource limitations, that object
has to be broken up into multiple DMA windows. You can only activate and allocate
resources to one window at a time. The ddi_dma_getwin(9F) function is used to
position between windows within an object. Each DMA window consists of one or
more DMA cookies. For more information, see “DMA Windows” on page 150.

Some DMA engines can accept more than one cookie. Such engines perform
scatter-gather I/O without the help of the system. In this case, the most efficient
approach is to use ddi_dma_nextcookie(9F) to get as many cookies as the DMA
engine can handle. These cookies must then be programmed into the engine. The
device can then be programmed to transfer the total number of bytes covered by the
aggregate of these DMA cookies.

DMA Operations
The steps in a DMA transfer are similar among the types of DMA. The following
sections present methods for performing DMA transfers.

Note – You do not have to ensure that the DMA object is locked in memory in block
drivers for buffers that come from the file system. The file system has already locked
the data in memory.

132 Writing Device Drivers • January 2005

Performing Bus-Master DMA Transfers
The driver should perform the following steps for bus-master DMA.

1. Describe the DMA attributes. This step enables the routines to ensure that the
device is able to access the buffer.

2. Allocate a DMA handle.

3. Ensure that the DMA object is locked in memory (see the physio(9F) or
ddi_umem_lock(9F) man page).

4. Allocate DMA resources for the object.

5. Program the DMA engine on the device. Next start the engine. When the transfer is
complete, continue the bus master operation.

6. Perform any required object synchronizations.

7. Release the DMA resources.

8. Free the DMA handle.

Performing First-Party DMA Transfers
The driver should perform the following steps for first-party DMA.

1. Allocate a DMA channel.

2. Configure the channel with ddi_dmae_1stparty(9F).

3. Ensure that the DMA object is locked in memory (see the physio(9F) or
ddi_umem_lock(9F) man page).

4. Allocate DMA resources for the object.

5. Program the DMA engine on the device.

6. Start the engine.

7. When the transfer is complete, continue the bus-master operation.

8. Perform any required object synchronizations.

9. Release the DMA resources.

10. Deallocate the DMA channel.

Performing Third-Party DMA Transfers
The driver should perform these steps for third-party DMA.

1. Allocate a DMA channel.
2. Retrieve the system’s DMA engine attributes with ddi_dmae_getattr(9F).
3. Lock the DMA object in memory (see the man pagephysio(9F) or

ddi_umem_lock(9F)).

Chapter 9 • Direct Memory Access (DMA) 133

4. Allocate DMA resources for the object.
5. Program the system DMA engine to perform the transfer with

ddi_dmae_prog(9F).
6. Perform any required object synchronizations.
7. Stop the DMA engine with ddi_dmae_stop(9F).
8. Release the DMA resources.
9. Deallocate the DMA channel.

Certain hardware platforms restrict DMA capabilities in a bus-specific way. Drivers
should use ddi_slaveonly(9F) to determine whether the device is in a slot in which
DMA is possible.

DMA Attributes
DMA attributes describe the attributes and limits of a DMA engine, which include:

� Limits on addresses that the device can access
� Maximum transfer count
� Address alignment restrictions

A device driver must inform the system about any DMA engine limitations through
the ddi_dma_attr(9S) structure. This action ensures that DMA resources that are
allocated by the system can be accessed by the device’s DMA engine. The system can
impose additional restrictions on the device attributes, but the system never removes
any of the driver-supplied restrictions.

ddi_dma_attr Structure
The DMA attribute structure has the following members:

typedef struct ddi_dma_attr {
uint_t dma_attr_version; /* version number */
uint64_t dma_attr_addr_lo; /* low DMA address range */
uint64_t dma_attr_addr_hi; /* high DMA address range */
uint64_t dma_attr_count_max; /* DMA counter register */
uint64_t dma_attr_align; /* DMA address alignment */
uint_t dma_attr_burstsizes; /* DMA burstsizes */
uint32_t dma_attr_minxfer; /* min effective DMA size */
uint64_t dma_attr_maxxfer; /* max DMA xfer size */
uint64_t dma_attr_seg; /* segment boundary */
int dma_attr_sgllen; /* s/g length */
uint32_t dma_attr_granular; /* granularity of device */
uint_t dma_attr_flags; /* Bus specific DMA flags */

} ddi_dma_attr_t;

where:

dma_attr_version Version number of the attribute structure.
dma_attr_version should be set to DMA_ATTR_V0.

134 Writing Device Drivers • January 2005

dma_attr_addr_lo Lowest bus address that the DMA engine can access.

dma_attr_addr_hi Highest bus address that the DMA engine can access.

dma_attr_count_max Specifies the maximum transfer count that the DMA
engine can handle in one cookie. The limit is expressed
as the maximum count minus one. This count is used as
a bit mask, so the count must also be one less than a
power of two.

dma_attr_align Specifies additional alignment requirements for any
allocated DMA resources. This field can be used to force
more restrictive alignment than implicitly specified by
other DMA attributes, such as alignment on a page
boundary.

dam_attr_burstsizes Specifies the burst sizes that the device supports. A burst
size is the amount of data the device can transfer before
relinquishing the bus. This member is a binary encoding
of burst sizes, which are assumed to be powers of two.
For example, if the device is capable of doing 1-byte,
2-byte, 4-byte, and 16-byte bursts, this field should be set
to 0 x 17. The system also uses this field to determine
alignment restrictions.

dma_attr_minxfer Minimum effective transfer size that the device can
perform. This size also influences restrictions on
alignment and on padding.

dma_attr_maxxfer Describes the maximum number of bytes that the DMA
engine can accommodate in one I/O command. This
limitation is only significant if dma_attr_maxxfer is
less than (dma_attr_count_max + 1) *
dma_attr_sgllen.

dma_attr_seg Upper bound of the DMA engine’s address register.
dma_attr_seg is often used where the upper 8 bits of
an address register are a latch that contains a segment
number. The lower 24 bits are used to address a
segment. In this case, dma_attr_seg would be set to
0xFFFFFF, which prevents the system from crossing a
24-bit segment boundary when allocating resources for
the object.

dma_attr_sgllen Specifies the maximum number of entries in the
scatter-gather list. dma_attr_sgllen is the number of
cookies that the DMA engine can consume in one I/O
request to the device. If the DMA engine has no
scatter-gather list, this field should be set to 1.

Chapter 9 • Direct Memory Access (DMA) 135

dma_attr_granular This field describes the granularity of the device’s DMA
transfer ability, in units of bytes. This value is used to
specify, for example, the sector size of a mass storage
device. DMA requests are broken into multiples of this
value. If the device has no scatter-gather capability, then
the size of each DMA transfer is a multiple of this value.
If the device has scatter-gather capability, then a single
segment cannot be smaller than the minimum transfer
value. A single segment can, however, be less than the
granularity. However the total transfer length of the
scatter-gather list must be a multiple of the granularity
value.

dma_attr_flags This field can be set to DDI_DMA_FORCE_PHYSICAL,
which indicates that the system should return physical
rather than virtual I/O addresses if the system supports
both. If the system does not support physical DMA, the
return value from ddi_dma_alloc_handle(9F) is
DDI_DMA_BADATTR. In this case, the driver has to clear
DDI_DMA_FORCE_PHYSICAL and retry the operation.

SBus Example
A DMA engine on an SBus in a SPARC machine has the following attributes:

� Access to addresses ranging from 0xFF000000 to 0xFFFFFFFF only
� 32-bit DMA counter register
� Ability to handle byte-aligned transfers
� Support for 1-byte, 2-byte, and 4-byte burst sizes
� Minimum effective transfer size of 1 byte
� 32-bit address register
� No scatter-gather list
� Operation on sectors only, for example, a disk

A DMA engine on an SBus in a SPARC machine has the following attribute structure:

static ddi_dma_attr_t attributes = {
DMA_ATTR_V0, /* Version number */
0xFF000000, /* low address */
0xFFFFFFFF, /* high address */
0xFFFFFFFF, /* counter register max */
1, /* byte alignment */
0x7, /* burst sizes: 0x1 | 0x2 | 0x4 */
0x1, /* minimum transfer size */
0xFFFFFFFF, /* max transfer size */
0xFFFFFFFF, /* address register max */
1, /* no scatter-gather */
512, /* device operates on sectors */
0, /* attr flag: set to 0 */

136 Writing Device Drivers • January 2005

};

ISA Bus Example
A DMA engine on an ISA bus in an x86 machine has the following attributes:

� Access to the first 16 megabytes of memory only
� Inability to cross a 1–megabyte boundary in a single DMA transfer
� 16-bit counter register
� Ability to handle byte-aligned transfers
� Support for 1-byte, 2-byte, and 4-byte burst sizes
� Minimum effective transfer size of 1 byte
� Ability to hold up to 17 scatter-gather transfers
� Operation on sectors only, for example, a disk

A DMA engine on an ISA bus in an x86 machine has the following attribute structure:

static ddi_dma_attr_t attributes = {
DMA_ATTR_V0, /* Version number */
0x00000000, /* low address */
0x00FFFFFF, /* high address */
0xFFFF, /* counter register max */
1, /* byte alignment */
0x7, /* burst sizes */
0x1, /* minimum transfer size */
0xFFFFFFFF, /* max transfer size */
0x000FFFFF, /* address register max */
17, /* scatter-gather */
512, /* device operates on sectors */
0, /* attr flag: set to 0 */

};

Managing DMA Resources
This section describes how to manage DMA resources.

Chapter 9 • Direct Memory Access (DMA) 137

Object Locking
Before allocating the DMA resources for a memory object, the object must be
prevented from moving. Otherwise, the system can remove the object from memory
while the device is trying to write to that object. A missing object would cause the data
transfer to fail and possibly corrupt the system. The process of preventing memory
objects from moving during a DMA transfer is known as locking down the object.

The following object types do not require explicit locking:

� Buffers coming from the file system through strategy(9E). These buffers are
already locked by the file system.

� Kernel memory allocated within the device driver, such as that allocated by
ddi_dma_mem_alloc(9F).

For other objects such as buffers from user space, physio(9F) or ddi_umem_lock(9F)
must be used to lock down the objects. Locking down objects with these functions is
usually performed in the read(9E) or write(9E) routines of a character device driver.
See “Data Transfer Methods” on page 236 for an example.

Allocating a DMA Handle
A DMA handle is an opaque object that is used as a reference to subsequently
allocated DMA resources. The DMA handle is usually allocated in the driver’s
attach() entry point that uses ddi_dma_alloc_handle(9F).
ddi_dma_alloc_handle() takes the device information that is referred to by dip
and the device’s DMA attributes described by a ddi_dma_attr(9S) structure as
parameters. ddi_dma_alloc_handle() has the following syntax:

int ddi_dma_alloc_handle(dev_info_t *dip,
ddi_dma_attr_t *attr, int (*callback)(caddr_t),

caddr_t arg, ddi_dma_handle_t *handlep);

where:

dip Pointer to the device’s dev_info structure.

attr Pointer to a ddi_dma_attr(9S) structure, as described in “DMA
Attributes” on page 134.

callback Address of the callback function for handling resource allocation failures.

arg Argument to be passed to the callback function.

handlep Pointer to a DMA handle to store the returned handle.

138 Writing Device Drivers • January 2005

Allocating DMA Resources
Two interfaces allocate DMA resources:

� ddi_dma_buf_bind_handle(9F) – Used with buf(9S) structures

� ddi_dma_addr_bind_handle(9F) – Used with virtual addresses

DMA resources are usually allocated in the driver’s xxstart() routine, if an
xxstart() routine exists. See “Asynchronous Data Transfers (Block Drivers)”
on page 267 for a discussion of xxstart. These two interfaces have the following syntax:

int ddi_dma_addr_bind_handle(ddi_dma_handle_t handle,
struct as *as, caddr_t addr,
size_t len, uint_t flags, int (*callback)(caddr_t),

caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp);

int ddi_dma_buf_bind_handle(ddi_dma_handle_t handle,
struct buf *bp, uint_t flags,
int (*callback)(caddr_t), caddr_t arg,

ddi_dma_cookie_t *cookiep, uint_t *ccountp);

The following arguments are common to both ddi_dma_addr_bind_handle(9F)
and ddi_dma_buf_bind_handle(9F):

handle DMA handle and the object for allocating resources.

flags Set of flags that indicate the transfer direction and other attributes.
DDI_DMA_READ indicates a data transfer from device to memory.
DDI_DMA_WRITE indicates a data transfer from memory to device. See the
ddi_dma_addr_bind_handle(9F) or ddi_dma_buf_bind_handle(9F)
man page for a complete discussion of the allowed flags.

callback Address of callback function for handling resource allocation failures. See
the ddi_dma_alloc_handle(9F) man page.

arg Argument to pass to the callback function.

cookiep Pointer to the first DMA cookie for this object.

ccountp Pointer to the number of DMA cookies for this object.

For ddi_dma_addr_bind_handle(9F), the object is described by an address range
with the following parameters:

as Pointer to an address space structure. as must be NULL.

addr Base kernel address of the object.

len Length of the object in bytes.

For ddi_dma_buf_bind_handle(9F), the object is described by a buf(9S) structure
pointed to by bp.

Chapter 9 • Direct Memory Access (DMA) 139

Device Register Structure
DMA-capable devices require more registers than were used in the previous examples.

The following fields are used in the device register structure to support DMA-capable
device with no scatter-gather support:

uint32_t dma_addr; /* starting address for DMA */

uint32_t dma_size; /* amount of data to transfer */

The following fields are used in the device register structure to support DMA-capable
devices with scatter-gather support:

struct sglentry {
uint32_t dma_addr;
uint32_t dma_size;

} sglist[SGLLEN];

caddr_t iopb_addr; /* When written informs device of the next */
/* command’s parameter block address. */
/* When read after an interrupt,contains */

/* the address of the completed command. */

DMA Callback Example
In Example 9–1, xxstart() is used as the callback function. The per-device state
structure is used as the argument to xxstart(). xxstart() attempts to start the
command. If the command cannot be started because resources are not available,
xxstart() is scheduled to be called later when resources are available.

Because xxstart() is used as a DMA callback, xxstart() must follow the
following rules, which are imposed on DMA callbacks:

� Resources cannot be assumed to be available. The callback must try to allocate
resources again.

� The callback must indicate to the system whether allocation succeeded.
DDI_DMA_CALLBACK_RUNOUT should be returned if the callback fails to allocate
resources, in which case xxstart() needs to be called again later.
DDI_DMA_CALLBACK_DONE indicates success, so that no further callback is
necessary.

EXAMPLE 9–1 DMA Callback Example

static int
xxstart(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct device_reg *regp;
int flags;
mutex_enter(&xsp->mu);
if (xsp->busy) {

140 Writing Device Drivers • January 2005

EXAMPLE 9–1 DMA Callback Example (Continued)

/* transfer in progress */
mutex_exit(&xsp->mu);
return (DDI_DMA_CALLBACK_RUNOUT);

}
xsp->busy = 1;
regp = xsp->regp;
if (transfer is a read) {

flags = DDI_DMA_READ;
} else {

flags = DDI_DMA_WRITE;
}
mutex_exit(&xsp->mu);
if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp,flags,

xxstart,
(caddr_t)xsp, &cookie, &ccount) != DDI_DMA_MAPPED) {
/* really should check all return values in a switch */
mutex_enter(&xsp->mu);
xsp->busy=0;
mutex_exit(&xsp->mu);
return (DDI_DMA_CALLBACK_RUNOUT);

}
[...]

program the DMA engine
[...]
return (DDI_DMA_CALLBACK_DONE);

}

Determining Maximum Burst Sizes
Drivers specify the DMA burst sizes that their device supports in the
dma_attr_burstsizesfield of the ddi_dma_attr(9S) structure. This field is a
bitmap of the supported burst sizes. However, when DMA resources are allocated, the
system might impose further restrictions on the burst sizes that might be actually used
by the device. The ddi_dma_burstsizes(9F) routine can be used to obtain the
allowed burst sizes. This routine returns the appropriate burst size bitmap for the
device. When DMA resources are allocated, a driver can ask the system for
appropriate burst sizes to use for its DMA engine.

EXAMPLE 9–2 Determining Burst Size

#define BEST_BURST_SIZE 0x20 /* 32 bytes */

if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr_t)xsp, &cookie, &ccount) != DDI_DMA_MAPPED) {

/* error handling */
}

burst = ddi_dma_burstsizes(xsp->handle);
/* check which bit is set and choose one burstsize to */

Chapter 9 • Direct Memory Access (DMA) 141

EXAMPLE 9–2 Determining Burst Size (Continued)

/* program the DMA engine */
if (burst & BEST_BURST_SIZE) {

program DMA engine to use this burst size } else {

other cases }

Allocating Private DMA Buffers
Some device drivers might need to allocate memory for DMA transfers in addition to
performing transfers requested by user threads and the kernel. Some examples of
allocating private DMA buffers are setting up shared memory for communication with
the device and allocating intermediate transfer buffers. Use ddi_dma_mem_alloc(9F)
to allocate memory for DMA transfers.

int ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
ddi_device_acc_attr_t *accattrp, uint_t flags,
int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,

size_t *real_length, ddi_acc_handle_t *handlep);

where:

handle DMA handle

length Length in bytes of the desired allocation

accattrp Pointer to a device access attribute structure

flags Data transfer mode flags. Possible values are DDI_DMA_CONSISTENT
and DDI_DMA_STREAMING.

waitfp Address of callback function for handling resource allocation failures.
See the ddi_dma_alloc_handle(9F) man page

arg Argument to pass to the callback function

kaddrp Pointer on a successful return that contains the address of the allocated
storage

real_length Length in bytes that was allocated

handlep Pointer to a data access handle

flags should be set to DDI_DMA_CONSISTENT if the device accesses in a nonsequential
fashion. Synchronization steps that use ddi_dma_sync(9F) should be as lightweight
as possible due to frequent application to small objects. This type of access is
commonly known as consistent access. Consistent access is particularly useful for I/O
parameter blocks that are used for communication between a device and the driver.

On the x86 platform, allocation of DMA memory that is physically contiguous has
these requirements:

142 Writing Device Drivers • January 2005

� The length of the scatter-gather list dma_attr_sgllen in the ddi_dma_attr(9S)
structure must be set to 1.

� Do not specify DDI_DMA_PARTIAL. DDI_DMA_PARTIAL permits partial resource
allocation.

The following example shows how to allocate IOPB memory and the necessary DMA
resources to access this memory. DMA resources must still be allocated, and the
DDI_DMA_CONSISTENT flag must be passed to the allocation function.

EXAMPLE 9–3 Using ddi_dma_mem_alloc(9F)

if (ddi_dma_mem_alloc(xsp->iopb_handle, size, &accattr,
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &xsp->iopb_array,
&real_length, &xsp->acchandle) != DDI_SUCCESS) {

error handling
goto failure;

}
if (ddi_dma_addr_bind_handle(xsp->iopb_handle, NULL,

xsp->iopb_array, real_length,
DDI_DMA_READ | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
NULL, &cookie, &count) != DDI_DMA_MAPPED) {

error handling
ddi_dma_mem_free(&xsp->acchandle);
goto failure;

}

flags should be set to DDI_DMA_STREAMING for memory transfers that are sequential,
unidirectional, block-sized, and block-aligned. This type of access is commonly known
as streaming access.

In some cases, an I/O transfer can be sped up by using an I/O cache. I/O cache
transfers one cache line at a minimum. ddi_dma_mem_alloc(9F) rounds size to a
multiple of the cache line to avoid data corruption.

ddi_dma_mem_alloc(9F) returns the actual size of the allocated memory object.
Because of padding and alignment requirements, the actual size might be larger than
the requested size. ddi_dma_addr_bind_handle(9F) requires the actual length.

ddi_dma_mem_free(9F) is used to free the memory allocated by
ddi_dma_mem_alloc(9F).

Note – If the memory is not properly aligned, the transfer might succeed. However, the
system might choose a different and possibly less efficient transfer mode with fewer
restrictions. For this reason, ddi_dma_mem_alloc() is preferred over
kmem_alloc(9F) when allocating memory for the device to access.

Chapter 9 • Direct Memory Access (DMA) 143

Handling Resource Allocation Failures
The resource-allocation routines provide the driver with several options when
handling allocation failures. The waitfp argument indicates whether the allocation
routines block, return immediately, or schedule a callback, as shown in the following
table.

TABLE 9–1 Resource Allocation Handling

waitfp value Indicated Action

DDI_DMA_DONTWAIT Driver does not want to wait for resources to become
available

DDI_DMA_SLEEP Driver is willing to wait indefinitely for resources to become
available

Other values The address of a function to be called when resources are
likely to be available

Programming the DMA Engine
When the resources have been successfully allocated, the device must be programmed.
Although programming a DMA engine is device specific, all DMA engines require a
starting address and a transfer count. Device drivers retrieve these two values from
the DMA cookie returned by a successful call from
ddi_dma_addr_bind_handle(9F), ddi_dma_buf_bind_handle(9F), or
ddi_dma_getwin(9F). These functions all return the first DMA cookie and a cookie
count indicating whether the DMA object consists of more than one cookie. If the
cookie count N is greater than 1, ddi_dma_nextcookie(9F) has to be called N-1
times to retrieve all the remaining cookies.

A DMA cookie is of type ddi_dma_cookie(9S). This type of cookie has the following
fields:

uint64_t _dmac_ll; /* 64-bit DMA address */
uint32_t _dmac_la[2]; /* 2 x 32-bit address */
size_t dmac_size; /* DMA cookie size */

uint_t dmac_type; /* bus specific type bits */

The dmac_laddress specifies a 64-bit I/O address that is appropriate for
programming the device’s DMA engine. If a device has a 64-bit DMA address register,
a driver should use this field to program the DMA engine. The dmac_address field
specifies a 32-bit I/O address that should be used for devices that have a 32-bit DMA
address register. dmac_size contains the transfer count. Depending on the bus
architecture, the dmac_type field in the cookie might be required by the driver. The
driver should not perform any manipulations, such as logical or arithmetic, on the
cookie.

144 Writing Device Drivers • January 2005

EXAMPLE 9–4 ddi_dma_cookie(9S) Example

ddi_dma_cookie_t cookie;

if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr_t)xsp, &cookie, &xsp->ccount) != DDI_DMA_MAPPED) {

/* error handling */
}
sglp = regp->sglist;
for (cnt = 1; cnt <= SGLLEN; cnt++, sglp++) {
/* store the cookie parms into the S/G list */
ddi_put32(xsp->access_hdl, &sglp->dma_size,

(uint32_t)cookie.dmac_size);
ddi_put32(xsp->access_hdl, &sglp->dma_addr,

cookie.dmac_address);
/* Check for end of cookie list */
if (cnt == xsp->ccount)

break;
/* Get next DMA cookie */
(void) ddi_dma_nextcookie(xsp->handle, &cookie);
}
/* start DMA transfer */
ddi_put8(xsp->access_hdl, ®p->csr,

ENABLE_INTERRUPTS | START_TRANSFER);

Note – ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle() can
return more DMA cookies than fit into the scatter-gather list. In this case, the driver
must continue the transfer in the interrupt routine. The driver must also reprogram
the scatter-gather list with the remaining DMA cookies. sgllen cookies must be
handled one at a time.

Freeing the DMA Resources
After a DMA transfer is completed, usually in the interrupt routine, the driver can
release DMA resources by calling ddi_dma_unbind_handle(9F).

As described in “Synchronizing Memory Objects” on page 148,
ddi_dma_unbind_handle(9F) calls ddi_dma_sync(9F), eliminating the need for
any explicit synchronization. After calling ddi_dma_unbind_handle(9F), the DMA
resources become invalid, and further references to the resources have undefined
results. The following example shows how to use ddi_dma_unbind_handle(9F).

EXAMPLE 9–5 Freeing DMA Resources

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;

Chapter 9 • Direct Memory Access (DMA) 145

EXAMPLE 9–5 Freeing DMA Resources (Continued)

uint8_t status;
volatile uint8_t temp;
mutex_enter(&xsp->mu);
/* read status */
status = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
ddi_put8(xsp->access_hdl, &xsp->regp->csr, CLEAR_INTERRUPT);
/* for store buffers */
temp = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
ddi_dma_unbind_handle(xsp->handle);
[...]
/* check for errors */
[...]
xsp->busy = 0;
mutex_exit(&xsp->mu);
if (pending transfers) {

(void) xxstart((caddr_t)xsp);
}
return (DDI_INTR_CLAIMED);

}

The DMA resources should be released. The DMA resources should be reallocated if a
different object is to be used in the next transfer. However, if the same object is always
used, the resources can be allocated once. The resources can then be reused as long as
intervening calls to ddi_dma_sync(9F) remain.

Freeing the DMA Handle
When the driver is detached, the DMA handle must be freed.
ddi_dma_free_handle(9F) destroys the DMA handle and destroys any residual
resources that the system is caching on the handle. Any further references of the DMA
handle will have undefined results.

Canceling DMA Callbacks
DMA callbacks cannot be canceled. Cancelling a DMA callback requires some
additional code in the drivers detach(9E) routine. detach() must not return
DDI_SUCCESS if any outstanding callbacks exist. (See Example 9–6.) When DMA
callbacks occur, the detach() routine must wait for the callback to run. When the
callback has finished, detach() must prevent the callback from rescheduling itself.
Callbacks can be prevented from rescheduling through additional fields in the state
structure, as shown in the following example.

146 Writing Device Drivers • January 2005

EXAMPLE 9–6 Canceling DMA Callbacks

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

[...]
mutex_enter(&xsp->callback_mutex);
xsp->cancel_callbacks = 1;
while (xsp->callback_count > 0) {

cv_wait(&xsp->callback_cv, &xsp->callback_mutex);
}
mutex_exit(&xsp->callback_mutex);
[...]

}

static int
xxstrategy(struct buf *bp)
{

[...]
mutex_enter(&xsp->callback_mutex);
xsp->bp = bp;

error = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp, flags,
xxdmacallback, (caddr_t)xsp, &cookie, &ccount);

if (error == DDI_DMA_NORESOURCES)
xsp->callback_count++;

mutex_exit(&xsp->callback_mutex);
[...]

}

static int
xxdmacallback(caddr_t callbackarg)
{

struct xxstate *xsp = (struct xxstate *)callbackarg;
[...]
mutex_enter(&xsp->callback_mutex);
if (xsp->cancel_callbacks) {

/* do not reschedule, in process of detaching */
xsp->callback_count--;
if (xsp->callback_count == 0)

cv_signal(&xsp->callback_cv);
mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_DONE); /* don’t reschedule it */

}
/*
* Presumably at this point the device is still active
* and will not be detached until the DMA has completed.
* A return of 0 means try again later
*/
error = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp, flags,

DDI_DMA_DONTWAIT, NULL, &cookie, &ccount);
if (error == DDI_DMA_MAPPED) {

[...]
/* program the DMA engine */
[...]
xsp->callback_count--;

Chapter 9 • Direct Memory Access (DMA) 147

EXAMPLE 9–6 Canceling DMA Callbacks (Continued)

mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_DONE);

}
if (error != DDI_DMA_NORESOURCES) {

xsp->callback_count--;
mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_DONE);

}
mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_RUNOUT);

}

Synchronizing Memory Objects
In the process of accessing the memory object, the driver might need to synchronize
the memory object with respect to various caches. This section provides guidelines on
when and how to synchronize memory objects.

Cache
CPU cache is a very high-speed memory that sits between the CPU and the system’s
main memory. I/O cache sits between the device and the system’s main memory, as
shown in the following figure.

CPU cache

CPU

I/O device

System
I/O cache

Memory

Bus extender
I/O cache

FIGURE 9–1 CPU and System I/O Caches

When an attempt is made to read data from main memory, the associated cache checks
for the requested data. If so, the cache supplies the data quickly. If the cache does not
have the data, the cache retrieves the data from main memory. The cache then passes
the data on to the requestor and saves the data in case of a subsequent request.

148 Writing Device Drivers • January 2005

Similarly, on a write cycle, the data is stored in the cache quickly. The CPU or device is
allowed to continue executing, that is, transferring data. Storing data in a cache takes
much less time than waiting for the data to be written to memory.

With this model, after a device transfer is complete, the data can still be in the I/O
cache with no data in main memory. If the CPU accesses the memory, the CPU might
read the wrong data from the CPU cache. The driver must call a synchronization
routine to flush the data from the I/O cache and update the CPU cache with the new
data. This action ensures a consistent view of the memory for the CPU. Similarly, a
synchronization step is required if data modified by the CPU is to be accessed by a
device.

You can create additional caches and buffers between the device and memory, such as
bus extenders and bridges. Use ddi_dma_sync(9F) to synchronize all applicable
caches.

ddi_dma_sync() Function
A memory object might have multiple mappings, such as for the CPU and for a
device, by means of a DMA handle. A driver with multiple mappings needs to call
ddi_dma_sync(9F) if any mappings are used to modify the memory object. Calling
ddi_dma_sync() ensures that the modification of the memory object is complete
before the object is accessed through a different mapping. ddi_dma_sync() can also
inform other mappings of the object if any cached references to the object are now
stale. Additionally, ddi_dma_sync() flushes or invalidates stale cache references as
necessary.

Generally, the driver has to call ddi_dma_sync() when a DMA transfer completes.
The exception to this rule is if deallocating the DMA resources with
ddi_dma_unbind_handle(9F) does an implicit ddi_dma_sync() on behalf of the
driver. The syntax for ddi_dma_sync() is as follows:

int ddi_dma_sync(ddi_dma_handle_t handle, off_t off,

size_t length, uint_t type);

If the object is going to be read by the DMA engine of the device, the device’s view of
the object must be synchronized by setting type to DDI_DMA_SYNC_FORDEV. If the
DMA engine of the device has written to the memory object and the object is going to
be read by the CPU, the CPU’s view of the object must be synchronized by setting type
to DDI_DMA_SYNC_FORCPU.

The following example demonstrates synchronizing a DMA object for the CPU:

if (ddi_dma_sync(xsp->handle, 0, length, DDI_DMA_SYNC_FORCPU)
== DDI_SUCCESS) {
/* the CPU can now access the transferred data */
[...]

} else {
error handling

}

Chapter 9 • Direct Memory Access (DMA) 149

Use the flag DDI_DMA_SYNC_FORKERNEL if the only mapping is for the kernel, as in
the case of memory that is allocated by ddi_dma_mem_alloc(9F). The system tries to
synchronize the kernel’s view more quickly than the CPU’s view. If the system cannot
synchronize the kernel view faster, the system acts as if the DDI_DMA_SYNC_FORCPU
flag were set.

DMA Windows
If the system cannot allocate resources for a large object, the transfer must be broken
into a series of smaller transfers. The driver can break up the transfer itself.
Alternatively, the driver can let the system allocate resources for only part of the
object, thereby creating a series of DMA windows. Allowing the system to allocate
resources is the preferred solution, as the system can manage the resources more
effectively than the driver.

A DMA window has two attributes. The offset attribute is measured from the
beginning of the object. The length attribute is the number of bytes of memory to be
allocated. After a partial allocation, only a range of length bytes that starts at offset has
allocated resources.

A DMA window is requested by specifying the DDI_DMA_PARTIAL flag as a
parameter to ddi_dma_buf_bind_handle(9F) or
ddi_dma_addr_bind_handle(9F). Both functions return DDI_DMA_PARTIAL_MAP
if a window can be established. However, the system might allocate resources for the
entire object, in which case DDI_DMA_MAPPED is returned. The driver should check
the return value to determine whether DMA windows are in use. See the following
example.

EXAMPLE 9–7 Setting Up DMA Windows

static int
xxstart (caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct device_reg *regp = xsp->reg;
ddi_dma_cookie_t cookie;
int status;
mutex_enter(&xsp->mu);
if (xsp->busy) {

/* transfer in progress */
mutex_exit(&xsp->mu);
return (DDI_DMA_CALLBACK_RUNOUT);

}
xsp->busy = 1;
mutex_exit(&xsp->mu);
if (transfer is a read) {

flags = DDI_DMA_READ;

150 Writing Device Drivers • January 2005

EXAMPLE 9–7 Setting Up DMA Windows (Continued)

} else {
flags = DDI_DMA_WRITE;

}
flags |= DDI_DMA_PARTIAL;
status = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp,

flags, xxstart, (caddr_t)xsp, &cookie, &ccount);
if (status != DDI_DMA_MAPPED &&

status != DDI_DMA_PARTIAL_MAP)
return (DDI_DMA_CALLBACK_RUNOUT);

if (status == DDI_DMA_PARTIAL_MAP) {
ddi_dma_numwin(xsp->handle, &xsp->nwin);
xsp->partial = 1;
xsp->windex = 0;

} else {
xsp->partial = 0;

}
[...]

program the DMA engine
[...]
return (DDI_DMA_CALLBACK_DONE);

}

Two functions operate with DMA windows. The first, ddi_dma_numwin(9F), returns
the number of DMA windows for a particular DMA object. The other function,
ddi_dma_getwin(9F), allows repositioning within the object, that is, reallocation of
system resources. ddi_dma_getwin() shifts the current window to a new window
within the object. Because ddi_dma_getwin() reallocates system resources to the
new window, the previous window becomes invalid.

Caution – Do not move the DMA windows with a call to ddi_dma_getwin() before
transfers into the current window are complete. Wait until the transfer to the current
window is complete, which is when the interrupt arrives. Then call
ddi_dma_getwin() to avoid data corruption.

ddi_dma_getwin() is normally called from an interrupt routine, as shown in
Example 9–8. The first DMA transfer is initiated as a result of a call to the driver.
Subsequent transfers are started from the interrupt routine.

The interrupt routine examines the status of the device to determine whether the
device completes the transfer successfully. If not, normal error recovery occurs. If the
transfer is successful, the routine must determine whether the logical transfer is
complete. A complete transfer includes the entire object as specified by the buf(9S)
structure. In a partial transfer, only one DMA window is moved. In a partial transfer,
the interrupt routine moves the window with ddi_dma_getwin(9F), retrieves a new
cookie, and starts another DMA transfer.

Chapter 9 • Direct Memory Access (DMA) 151

If the logical request has been completed, the interrupt routine checks for pending
requests. If necessary, the interrupt routine starts a transfer. Otherwise, the routine
returns without invoking another DMA transfer. The following example illustrates the
usual flow control.

EXAMPLE 9–8 Interrupt Handler Using DMA Windows

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;
volatile uint8_t temp;
mutex_enter(&xsp->mu);
/* read status */
status = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
ddi_put8(xsp->access_hdl,&xsp->regp->csr, CLEAR_INTERRUPT);
/* for store buffers */
temp = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
if (an error occurred during transfer) {

bioerror(xsp->bp, EIO);
xsp->partial = 0;

} else {
xsp->bp->b_resid -= amount transferred;

}

if (xsp->partial && (++xsp->windex < xsp->nwin)) {
/* device still marked busy to protect state */
mutex_exit(&xsp->mu);
(void) ddi_dma_getwin(xsp->handle, xsp->windex,

&offset, &len, &cookie, &ccount);
program the DMA engine with the new cookie(s)
[...]
return (DDI_INTR_CLAIMED);

}
ddi_dma_unbind_handle(xsp->handle);
biodone(xsp->bp);
xsp->busy = 0;
xsp->partial = 0;
mutex_exit(&xsp->mu);
if (pending transfers) {

(void) xxstart((caddr_t)xsp);
}
return (DDI_INTR_CLAIMED);

}

152 Writing Device Drivers • January 2005

CHAPTER 10

Mapping Device and Kernel Memory

Some device drivers allow applications to access device or kernel memory through
mmap(2). Frame buffer drivers, for example, allow the frame buffer to be mapped into
a user thread. Another example would be a pseudo driver that uses a shared kernel
memory pool to communicate with an application. This chapter provides information
on the following subjects:

� “Memory Mapping Overview” on page 153
� “Exporting the Mapping” on page 153
� “Associating Device Memory With User Mappings” on page 155
� “Associating Kernel Memory With User Mappings” on page 157

Memory Mapping Overview
The steps that a driver must take to export device or kernel memory are as follows:

1. Set the D_DEVMAP flag in the cb_flag flag of the cb_ops(9S) structure.

2. Define a devmap(9E) driver entry point to export the mapping.

3. Use devmap_devmem_setup(9F) to set up user mappings to a device. To set up
user mappings to kernel memory, use devmap_umem_setup(9F).

Exporting the Mapping
The devmap(9E) entry point is called as a result of the mmap(2) system call.
devmap(9E) is used for the following operations:

� Validate the user mapping to the device or kernel memory

153

� Translate the logical offset within the application mapping to the corresponding
offset within the device or kernel memory

� Pass the mapping information to the system for setting up the mapping

devmap() has the following syntax:

int devmap(dev_t dev, devmap_cookie_t handle, offset_t off,
size_t len, size_t *maplen, uint_t model);

where:

dev Device whose memory is to be mapped.

handle Device-mapping handle that the system creates and uses to describe a
mapping to contiguous memory in the device or kernel.

off Logical offset within the application mapping that has to be translated by
the driver to the corresponding offset within the device or kernel memory.

len Length (in bytes) of the memory being mapped.

maplen Enables driver to associate different kernel memory regions or multiple
physically discontiguous memory regions with one contiguous user
application mapping.

model Data model type of the current thread.

The system creates multiple mapping handles in one mmap(2) system call. For
example, the mapping might contain multiple physically discontiguous memory
regions.

Initially, devmap(9E) is called with the parameters off and len. These parameters are
passed by the application to mmap(2). devmap(9E) sets *maplen to the length from off to
the end of a contiguous memory region. *maplen must be rounded up to a multiple of
a page size. *maplen can be set to less than the original mapping length len. If so, the
system uses a new mapping handle with adjusted off and len parameters to call
devmap(9E) repeatedly until the initial mapping length is satisfied.

If a driver supports multiple application data models, model has to be passed to
ddi_model_convert_from(9F). The ddi_model_convert_from() function
determines whether a data model mismatch exists between the current thread and the
device driver. The device driver might have to adjust the shape of data structures
before exporting the structures to a user thread that supports a different data model.
See Appendix C page for more details.

devmap(9E) must return -1 if the logical offset, off, is out of the range of memory
exported by the driver.

154 Writing Device Drivers • January 2005

Associating Device Memory With User
Mappings
Use devmap_devmem_setup(9F) to export device memory to user applications.

Note – devmap_devmem_setup() has to be called from the driver’s devmap(9E)
entry point.

devmap_devmem_setup() has the following syntax:

int devmap_devmem_setup(devmap_cookie_t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, uint_t rnumber,
offset_t roff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

where:

handle Opaque device-mapping handle that the system uses to identify the
mapping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure that enables the
driver to be notified of user events on the mapping.

rnumber Index number to the register address space set.

roff Offset into the device memory.

len Length in bytes that is exported.

maxprot Allows the driver to specify different protections for different regions
within the exported device memory.

flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to a ddi_device_acc_attr(9S) structure.

roff and len describe a range within the device memory specified by the register set
rnumber. The register specifications that are referred to by rnumber are described by the
reg property. For devices with only one register set, pass zero for rnumber. The range
is defined by roff and len. The range is made accessible to the user’s application
mapping at the offset that is passed in by the devmap(9E) entry point. Usually the
driver passes the devmap(9E) offset directly to devmap_devmem_setup(9F). The
return address of mmap(2) then maps to the beginning address of the register set.

Chapter 10 • Mapping Device and Kernel Memory 155

maxprot enables the driver to specify different protections for different regions within
the exported device memory. For example, one region might not allow write access by
setting only PROT_READ and PROT_USER.

The following example shows how to export device memory to an application. The
driver first determines whether the requested mapping falls within the device memory
region. The size of the device memory is determined using ddi_dev_regsize(9F).
The length of the mapping is rounded up to a multiple of a page size using ptob(9F)
and btopr(9F). devmap_devmem_setup(9F) is called to export the device memory to
the application.

EXAMPLE 10–1 Using the devmap_devmem_setup() Routine

static int
xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off, size_t len,

size_t *maplen, uint_t model)
{

struct xxstate *xsp;
int error, rnumber;
off_t regsize;

/* Set up data access attribute structure */
struct ddi_device_acc_attr xx_acc_attr = {

DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC

};
xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (-1);
/* use register set 0 */
rnumber = 0;
/* get size of register set */
if (ddi_dev_regsize(xsp->dip, rnumber, ®size) != DDI_SUCCESS)

return (-1);
/* round up len to a multiple of a page size */

len = ptob(btopr(len));
if (off + len > regsize)

return (-1);
/* Set up the device mapping */
error = devmap_devmem_setup(handle, xsp->dip, NULL, rnumber,
off, len, PROT_ALL, DEVMAP_DEFAULTS, &xx_acc_attr);
/* acknowledge the entire range */
*maplen = len;
return (error);

}

156 Writing Device Drivers • January 2005

Associating Kernel Memory With User
Mappings
Some device drivers might need to allocate kernel memory that is made accessible to
user programs through mmap(2). One example is setting up shared memory for
communication between two applications. Another example is sharing memory
between a driver and an application.

When exporting kernel memory to user applications, follow these steps:

1. Use ddi_umem_alloc(9F) to allocate kernel memory.
2. Use devmap_umem_setup(9F) to export the memory.
3. Use ddi_umem_free(9F) to free the memory when the memory is no longer

needed.

Allocating Kernel Memory for User Access
Use ddi_umem_alloc(9F) to allocate kernel memory that is exported to applications.
ddi_umem_alloc() uses the following syntax:

void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t

*cookiep);

where:

size Number of bytes to allocate.

flag Used to determine the sleep conditions and the memory type.

cookiep Pointer to a kernel memory cookie.

ddi_umem_alloc(9F) allocates page-aligned kernel memory. ddi_umem_alloc()
returns a pointer to the allocated memory. Initially, the memory is filled with zeroes.
The number of bytes that are allocated is a multiple of the system page size, which is
rounded up from the size parameter. The allocated memory can be used in the kernel.
This memory can be exported to applications as well. cookiep is a pointer to the kernel
memory cookie that describes the kernel memory being allocated. cookiep is used in
devmap_umem_setup(9F) when the driver exports the kernel memory to a user
application.

The flag argument indicates whether ddi_umem_alloc(9F) blocks or returns
immediately, and whether the allocated kernel memory is pageable. The values for the
flag argument as follows:

Chapter 10 • Mapping Device and Kernel Memory 157

DDI_UMEM_NOSLEEP Driver does not need to wait for memory to become
available. Return NULL if memory unavailable.

DDI_UMEM_SLEEP Driver can wait indefinitely for memory to become
available.

DDI_UMEM_PAGEABLE Driver allows memory to be paged out. If not set, the
memory is locked down.

The ddi_umem_lock() can perform device-locked-memory checks. The function
checks against the limit value that is specified in the
project.max-device-locked-memory. If the current project locked-memory
usage is below the limit, the project’s locked-memory byte count is increased. After the
limit check, the memory is locked. ddi_umem_unlock() unlocks the memory and
the project’s locked-memory byte count is decremented.

The account method that is used is an imprecise full price model. For example, two
callers of umem_lockmemory() within the same project with overlapping memory
regions are charged twice. For details of project.max-device-locked-memory
adjustment, see prctl(1).

The following example shows how to allocate kernel memory for application access.
The driver exports one page of kernel memory, which is used by multiple applications
as a shared memory area. The memory is allocated in segmap(9E) when an
application maps the shared page the first time. An additional page is allocated if the
driver has to support multiple application data models. For example, a 64-bit driver
might export memory both to 64-bit applications and to 32-bit applications. 64-bit
applications share the first page, and 32-bit applications share the second page.

EXAMPLE 10–2 Using the ddi_umem_alloc() Routine

static int
xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp, off_t len,

unsigned int prot, unsigned int maxprot, unsigned int flags,
cred_t *credp)

{
int error;
minor_t instance = getminor(dev);
struct xxstate *xsp = ddi_get_soft_state(statep, instance);

size_t mem_size;
/* 64-bit driver supports 64-bit and 32-bit applications */

switch (ddi_mmap_get_model()) {
case DDI_MODEL_LP64:

mem_size = ptob(2);
break;

case DDI_MODEL_ILP32:
mem_size = ptob(1);
break;

}

mutex_enter(&xsp->mu);

158 Writing Device Drivers • January 2005

EXAMPLE 10–2 Using the ddi_umem_alloc() Routine (Continued)

if (xsp->umem == NULL) {

/* allocate the shared area as kernel pageable memory */
xsp->umem = ddi_umem_alloc(mem_size,

DDI_UMEM_SLEEP | DDI_UMEM_PAGEABLE, &xsp->ucookie);
}
mutex_exit(&xsp->mu);
/* Set up the user mapping */
error = devmap_setup(dev, (offset_t)off, asp, addrp, len,

prot, maxprot, flags, credp);

return (error);

}

Exporting Kernel Memory to Applications
Use devmap_umem_setup(9F) to export kernel memory to user applications.
devmap_umem_setup() must be called from the driver’s devmap(9E) entry point.
The syntax for devmap_umem_setup() is as follows:

int devmap_umem_setup(devmap_cookie_t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, ddi_umem_cookie_t cookie,
offset_t koff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

where:

handle Opaque structure used to describe the mapping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure.

cookie Kernel memory cookie returned by ddi_umem_alloc(9F).

koff Offset into the kernel memory specified by cookie.

len Length in bytes that is exported.

maxprot Specifies the maximum protection possible for the exported mapping.

flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to a ddi_device_acc_attr(9S) structure.

handle is a device-mapping handle that the system uses to identify the mapping. handle
is passed in by the devmap(9E) entry point. dip is a pointer to the device’s dev_info
structure. callbackops allows the driver to be notified of user events on the mapping.
Most drivers set callbackops to NULL when kernel memory is exported.

Chapter 10 • Mapping Device and Kernel Memory 159

koff and len specify a range within the kernel memory allocated by
ddi_umem_alloc(9F). This range is made accessible to the user’s application
mapping at the offset that is passed in by the devmap(9E) entry point. Usually, the
driver passes the devmap(9E) offset directly to devmap_umem_setup(9F). The return
address of mmap(2) then maps to the kernel address returned by
ddi_umem_alloc(9F). koff and len must be page-aligned.

maxprot enables the driver to specify different protections for different regions within
the exported kernel memory. For example, one region might not allow write access by
only setting PROT_READ and PROT_USER.

The following example shows how to export kernel memory to an application. The
driver first checks whether the requested mapping falls within the allocated kernel
memory region. If a 64-bit driver receives a mapping request from a 32-bit application,
the request is redirected to the second page of the kernel memory area. This
redirection ensures that only applications compiled to the same data model share the
same page.

EXAMPLE 10–3 devmap_umem_setup(9F) Routine

static int
xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off, size_t len,

size_t *maplen, uint_t model)
{

struct xxstate *xsp;
int error;

/* round up len to a multiple of a page size */
len = ptob(btopr(len));
/* check if the requested range is ok */
if (off + len > ptob(1))

return (ENXIO);
xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);

if (ddi_model_convert_from(model) == DDI_MODEL_ILP32)
/* request from 32-bit application. Skip first page */
off += ptob(1);

/* export the memory to the application */
error = devmap_umem_setup(handle, xsp->dip, NULL, xsp->ucookie,

off, len, PROT_ALL, DEVMAP_DEFAULTS, NULL);
*maplen = len;
return (error);

}

160 Writing Device Drivers • January 2005

Freeing Kernel Memory Exported for User Access
When the driver is unloaded, the memory that was allocated by
ddi_umem_alloc(9F) must be freed by calling ddi_umem_free(9F).

void ddi_umem_free(ddi_umem_cookie_t cookie);

cookie is the kernel memory cookie returned by ddi_umem_alloc(9F).

Chapter 10 • Mapping Device and Kernel Memory 161

162 Writing Device Drivers • January 2005

CHAPTER 11

Device Context Management

Some device drivers, such as drivers for graphics hardware, provide user processes
with direct access to the device. These devices often require that only one process at a
time accesses the device.

This chapter describes the set of interfaces that enable device drivers to manage access
to such devices. The chapter provides information on the following subjects:

� “Introduction to Device Context” on page 163
� “Context Management Model” on page 163
� “Context Management Operation” on page 165

Introduction to Device Context
This section introduces device context and the context management model.

What Is a Device Context?
The context of a device is the current state of the device hardware. The device driver
manages the device context for a process on behalf of the process. The driver must
maintain a separate device context for each process that accesses the device. The
device driver has the responsibility to restore the correct device context when a
process accesses the device.

Context Management Model
Frame buffers provide a good example of device context management. An accelerated
frame buffer enables user processes to directly manipulate the control registers of the
device through memory-mapped access. Because these processes do not use

163

traditional system calls, a process that accesses the device need not call the device
driver. However, the device driver must be notified when a process is about to access a
device. The driver needs to restore the correct device context and needs to provide any
necessary synchronization.

To resolve this problem, the device context management interfaces enable a device
driver to be notified when a user process accesses memory-mapped regions of the
device, and to control accesses to the device’s hardware. Synchronization and
management of the various device contexts are the responsibility of the device driver.
When a user process accesses a mapping, the device driver must restore the correct
device context for that process.

A device driver is notified whenever a user process performs any of the following
actions:

� Accesses a mapping
� Duplicates a mapping
� Frees a mapping
� Creates a mapping

The following figure shows multiple user processes that have memory-mapped a
device. The driver has granted process B access to the device, and process B no longer
notifies the driver of accesses. However, the driver is still notified if either process A or
process C accesses the device.

Process A

Current context

User processes Device memory

Process B Device

Process C

FIGURE 11–1 Device Context Management

At some point in the future, process A accesses the device. The device driver is
notified and blocks future access to the device by process B. The driver then saves the
device context for process B. The driver restores the device context of process A. The
driver then grants access to process A, as illustrated in the following figure. At this
point, the device driver is notified if either process B or process C accesses the device.

164 Writing Device Drivers • January 2005

Process ACurrent context

User processes Device memory

Process B Device

Process C

FIGURE 11–2 Device Context Switched to User Process A

On a multiprocessor machine, multiple processes could attempt to access the device at
the same time. This situation can cause thrashing. Some devices require a longer time
to restore a device context. To prevent more CPU time from being used to restore a
device context than to actually use that device context, the minimum time that a
process needs to have access to the device can be set using
devmap_set_ctx_timeout(9F).

The kernel guarantees that once a device driver has granted access to a process, no
other process is allowed to request access to the same device for the time interval
specified by devmap_set_ctx_timeout(9F).

Context Management Operation
The general steps for performing device context management are as follows:

1. Define a devmap_callback_ctl(9S) structure.

2. Allocate space to save device context if necessary.

3. Set up user mappings to the device and driver notifications with
devmap_devmem_setup(9F).

4. Manage user access to the device with devmap_load(9F) and
devmap_unload(9F).

5. Free the device context structure, if needed.

devmap_callback_ctl Structure
The device driver must allocate and initialize a devmap_callback_ctl(9S) structure
to inform the system about the entry point routines for device context management.

This structure uses the following syntax:

Chapter 11 • Device Context Management 165

struct devmap_callback_ctl {
int devmap_rev;
int (*devmap_map)(devmap_cookie_t dhp, dev_t dev,
uint_t flags, offset_t off, size_t len, void **pvtp);
int (*devmap_access)(devmap_cookie_t dhp, void *pvtp,
offset_t off, size_t len, uint_t type, uint_t rw);
int (*devmap_dup)(devmap_cookie_t dhp, void *pvtp,
devmap_cookie_t new_dhp, void **new_pvtp);
void (*devmap_unmap)(devmap_cookie_t dhp, void *pvtp,
offset_t off, size_t len, devmap_cookie_t new_dhp1,
void **new_pvtp1, devmap_cookie_t new_dhp2,
void **new_pvtp2);

};

devmap_rev The version number of the devmap_callback_ctl structure.
The version number must be set to DEVMAP_OPS_REV.

devmap_map Must be set to the address of the driver’s devmap_map(9E) entry
point.

devmap_access Must be set to the address of the driver’s devmap_access(9E)
entry point.

devmap_dup Must be set to the address of the driver’s devmap_dup(9E) entry
point.

devmap_unmap Must be set to the address of the driver’s devmap_unmap(9E)
entry point.

Entry Points for Device Context Management
The following entry points are used to manage device context:

� devmap(9E)
� devmap_access(9E)
� devmap_contextmgt(9E)
� devmap_dup(9E)
� devmap_unmap(9E)

devmap_map() Entry Point
The syntax for devmap(9E) is as follows:

int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,
offset_t offset, size_t len, void **new-devprivate);

166 Writing Device Drivers • January 2005

The devmap_map() entry point is called after the driver returns from its devmap()
entry point and the system has established the user mapping to the device memory.
The devmap() entry point enables a driver to perform additional processing or to
allocate mapping specific private data. For example, in order to support context
switching, the driver has to allocate a context structure. The driver must then associate
the context structure with the mapping.

The system expects the driver to return a pointer to the allocated private data in
*new-devprivate. The driver must store offset and len, which define the range of the
mapping, in its private data. Later, when the system calls devmap_unmap(9E), the
driver uses this information to determine how much of the mapping is being
unmapped.

flags indicates whether the driver should allocate a private context for the mapping.
For example, a driver can allocate a memory region to store the device context if flags
is set to MAP_PRIVATE. If MAP_SHARED is set, the driver returns a pointer to a shared
region.

The following example shows a devmap() entry point. The driver allocates a new
context structure. The driver then saves relevant parameters passed in by the entry
point. Next, the mapping is assigned a new context either through allocation or by
attaching the mapping to an already existing shared context. The minimum time
interval that the mapping should have access to the device is set to one millisecond.

EXAMPLE 11–1 Using the devmap() Routine

static int
int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,

offset_t offset, size_t len, void **new_devprivate)
{

struct xxstate *xsp = ddi_get_soft_state(statep,
getminor(dev));

struct xxctx *newctx;

/* create a new context structure */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;
newctx->handle = handle;
newctx->offset = offset;
newctx->flags = flags;
newctx->len = len;
mutex_enter(&xsp->ctx_lock);
if (flags & MAP_PRIVATE) {

/* allocate a private context and initialize it */
newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
xxctxinit(newctx);

} else {
/* set a pointer to the shared context */
newctx->context = xsp->ctx_shared;

}
mutex_exit(&xsp->ctx_lock);
/* give at least 1 ms access before context switching */

Chapter 11 • Device Context Management 167

EXAMPLE 11–1 Using the devmap() Routine (Continued)

devmap_set_ctx_timeout(handle, drv_usectohz(1000));
/* return the context structure */
*new_devprivate = newctx;
return(0);

}

devmap_access() Entry Point
The devmap_access(9E) entry point is called when an access is made to a mapping
whose translations are invalid. Mapping translations are invalidated when the
mapping is created with devmap_devmem_setup(9F) in response to mmap(2),
duplicated by fork(2), or explicitly invalidated by a call to devmap_unload(9F).

The syntax for devmap_access() is as follows:

int xxdevmap_access(devmap_cookie_t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

where:

handle Mapping handle of the mapping that was accessed by a user process.

devprivate Pointer to the driver private data associated with the mapping.

offset Offset within the mapping that was accessed.

len Length in bytes of the memory being accessed.

type Type of access operation.

rw Specifies the direction of access.

The system expects devmap_access(9E) to call either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) to load the memory address translations before
devmap_access() returns. For mappings that support context switching, the device
driver should call devmap_do_ctxmgt(). This routine is passed all parameters from
devmap_access(9E), as well as a pointer to the driver entry point
devmap_contextmgt(9E), which handles the context switching. For mappings that
do not support context switching, the driver should call
devmap_default_access(9F). The purpose of devmap_default_access() is to
call devmap_load(9F) to load the user translation.

The following example shows a devmap_access(9E) entry point. The mapping is
divided into two regions. The region that starts at offset OFF_CTXMG with a length of
CTXMGT_SIZE bytes supports context management. The rest of the mapping supports
default access.

168 Writing Device Drivers • January 2005

EXAMPLE 11–2 Using the devmap_access() Routine

#define OFF_CTXMG 0
#define CTXMGT_SIZE 0x20000
static int
xxdevmap_access(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, uint_t type, uint_t rw)
{

offset_t diff;
int error;

if ((diff = off - OFF_CTXMG) >= 0 && diff < CTXMGT_SIZE) {
error = devmap_do_ctxmgt(handle, devprivate, off,

len, type, rw, xxdevmap_contextmgt);
} else {

error = devmap_default_access(handle, devprivate,
off, len, type, rw);

}
return (error);

}

devmap_contextmgt() Entry Point
The syntax for devmap_contextmgt(9E) is as follows:

int xxdevmap_contextmgt(devmap_cookie_t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

devmap_contextmgt() should call devmap_unload(9F) with the handle of the
mapping that currently has access to the device. This approach invalidates the
translations for that mapping. The approach ensures that a call to
devmap_access(9E) occurs for the current mapping the next time the mapping is
accessed. The mapping translations for the mapping that caused the access event to
occur need to be validated. Accordingly, the driver must restore the device context for
the process requesting access. Furthermore, the driver must call devmap_load(9F) on
the handle of the mapping that generated the call to this entry point.

Accesses to portions of mappings that have had their mapping translations validated
by a call to devmap_load() do not generate a call to devmap_access(). A
subsequent call to devmap_unload() invalidates the mapping translations. This call
allows devmap_access() to be called again.

If either devmap_load() or devmap_unload() returns an error,
devmap_contextmgt() should immediately return that error. If the device driver
encounters a hardware failure while restoring a device context, a -1 should be
returned. Otherwise, after successfully handling the access request,
devmap_contextmgt() should return zero. A return of other than zero from
devmap_contextmgt() causes a SIGBUS or SIGSEGV to be sent to the process.

The following example shows how to manage a one-page device context.

Chapter 11 • Device Context Management 169

Note – xxctxsave() and xxctxrestore() are device-dependent context save and
restore functions. xxctxsave() reads data from the registers and saves the data in
the soft state structure. xxctxrestore() takes data that is saved in the soft state
structure and writes the data to device registers. Note that the read, write, and save
are all performed with the DDI/DKI data access routines.

EXAMPLE 11–3 Using the devmap_contextmgt() Routine

static int
xxdevmap_contextmgt(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, uint_t type, uint_t rw)
{

int error;
struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
mutex_enter(&xsp->ctx_lock);
/* unload mapping for current context */
if (xsp->current_ctx != NULL) {

if ((error = devmap_unload(xsp->current_ctx->handle,
off, len)) != 0) {
xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (error);

}
}
/* Switch device context - device dependent */
if (xxctxsave(xsp->current_ctx, off, len) < 0) {

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);

}
if (xxctxrestore(ctxp, off, len) < 0){

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);

}
xsp->current_ctx = ctxp;
/* establish mapping for new context and return */
error = devmap_load(handle, off, len, type, rw);
if (error)

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (error);

}

170 Writing Device Drivers • January 2005

devmap_dup() Entry Point
The devmap_dup(9E) entry point is called when a device mapping is duplicated, for
example, by a user process that calls fork(2). The driver is expected to generate new
driver private data for the new mapping.

The syntax fordevmap_dup() is as follows:

int xxdevmap_dup(devmap_cookie_t handle, void *devprivate,
devmap_cookie_t new-handle, void **new-devprivate);

where:

handle Mapping handle of the mapping being duplicated.

new-handle Mapping handle of the mapping that was duplicated.

devprivate Pointer to the driver private data associated with the mapping
being duplicated.

*new-devprivate Should be set to point to the new driver private data for the new
mapping.

Mappings that have been created with devmap_dup() by default have their mapping
translations invalidated. Invalid mapping translations force a call to the
devmap_access(9E) entry point the first time the mapping is accessed.

The following example shows a typical devmap_dup() routine.

EXAMPLE 11–4 Using the devmap_dup() Routine

static int
xxdevmap_dup(devmap_cookie_t handle, void *devprivate,

devmap_cookie_t new_handle, void **new_devprivate)
{

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
struct xxctx *newctx;
/* Create a new context for the duplicated mapping */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;
newctx->handle = new_handle;
newctx->offset = ctxp->offset;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len;
mutex_enter(&xsp->ctx_lock);
if (ctxp->flags & MAP_PRIVATE) {

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {
newctx->context = xsp->ctx_shared;

}
mutex_exit(&xsp->ctx_lock);
*new_devprivate = newctx;

Chapter 11 • Device Context Management 171

EXAMPLE 11–4 Using the devmap_dup() Routine (Continued)

return(0);

}

devmap_unmap() Entry Point
The devmap_unmap(9E) entry point is called when a mapping is unmapped.
Unmapping can be caused by a user process exiting or by calling the munmap(2)
system call.

The syntax for devmap_unmap() is as follows:

void xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,
offset_t off, size_t len, devmap_cookie_t new-handle1,
void **new-devprivate1, devmap_cookie_t new-handle2,
void **new-devprivate2);

where:

handle Mapping handle of the mapping being freed.

devprivate Pointer to the driver private data associated with the mapping.

off Offset within the logical device memory at which the unmapping
begins.

len Length in bytes of the memory being unmapped.

new-handle1 Handle that the system uses to describe the new region that ends
at off - 1. new-handle1 can be NULL.

new-devprivate1 Pointer to be filled in by the driver with the private driver
mapping data for the new region that ends at off -1. new-devprivate1
is ignored if new-handle1 is NULL.

new-handle2 Handle that the system uses to describe the new region that begins
at off + len. new-handle2 can be NULL.

new-devprivate2 Pointer to be filled in by the driver with the driver private
mapping data for the new region that begins at off + len.
new-devprivate2 is ignored if new-handle2 is NULL.

The devmap_unmap() routine is expected to free any driver private resources that
were allocated when this mapping was created, either by devmap_map(9E) or by
devmap_dup(9E). If the mapping is only partially unmapped, the driver must allocate
new private data for the remaining mapping before freeing the old private data.
Calling devmap_unload(9F) on the handle of the freed mapping is not necessary,
even if this handle points to the mapping with the valid translations. However, to
prevent future devmap_access(9E) problems, the device driver should make sure the
current mapping representation is set to “no current mapping”.

172 Writing Device Drivers • January 2005

The following example shows a typical devmap_unmap() routine.

EXAMPLE 11–5 Using the devmap_unmap() Routine

static void
xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, devmap_cookie_t new_handle1,
void **new_devprivate1, devmap_cookie_t new_handle2,
void **new_devprivate2)

{
struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
mutex_enter(&xsp->ctx_lock);

/*
* If new_handle1 is not NULL, we are unmapping
* at the end of the mapping.
*/
if (new_handle1 != NULL) {

/* Create a new context structure for the mapping */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;

if (ctxp->flags & MAP_PRIVATE) {
/* allocate memory for the private context
/* and copy it */

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {
/* point to the shared context */
newctx->context = xsp->ctx_shared;

}
newctx->handle = new_handle1;
newctx->offset = ctxp->offset;
newctx->len = off - ctxp->offset;
*new_devprivate1 = newctx;

}
/*
* If new_handle2 is not NULL, we are unmapping
* at the beginning of the mapping.
*/
if (new_handle2 != NULL) {

/* Create a new context for the mapping */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;
if (ctxp->flags & MAP_PRIVATE) {

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {
newctx->context = xsp->ctx_shared;

}
newctx->handle = new_handle2;
newctx->offset = off + len;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len - (off + len - ctxp->off);

Chapter 11 • Device Context Management 173

EXAMPLE 11–5 Using the devmap_unmap() Routine (Continued)

*new_devprivate2 = newctx;
}
if (xsp->current_ctx == ctxp)

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
if (ctxp->flags & MAP_PRIVATE)

kmem_free(ctxp->context, XXCTX_SIZE);
kmem_free(ctxp, sizeof (struct xxctx));

}

Associating User Mappings With Driver
Notifications
When a user process requests a mapping to a device with mmap(2), the driver‘s
segmap(9E) entry point is called. The driver must use ddi_devmap_segmap(9F) or
devmap_setup(9F) when setting up the memory mapping if the driver needs to
manage device contexts. Both functions call the driver’s devmap(9E) entry point,
which uses devmap_devmem_setup(9F) to associate the device memory with the
user mapping. See Chapter 10 for details on how to map device memory.

The driver must inform the system of the devmap_callback_ctl(9S) entry points to
get notifications of accesses to the user mapping. The driver informs the system by
providing a pointer to a devmap_callback_ctl(9S) structure to
devmap_devmem_setup(9F). A devmap_callback_ctl(9S) structure describes a
set of entry points for context management. These entry points are called by the
system to notify a device driver to manage events on the device mappings.

The system associates each mapping with a mapping handle. This handle is passed to
each of the entry points for context management. The mapping handle can be used to
invalidate and validate the mapping translations. If the driver invalidates the mapping
translations, the driver will be notified of any future access to the mapping. If the
driver validates the mapping translations, the driver will no longer be notified of
accesses to the mapping. Mappings are always created with the mapping translations
invalidated so that the driver will be notified on first access to the mapping.

The following example shows how to set up a mapping using the device context
management interfaces.

EXAMPLE 11–6 devmap(9E) Entry Point With Context Management Support

static struct devmap_callback_ctl xx_callback_ctl = {
DEVMAP_OPS_REV, xxdevmap_map, xxdevmap_access,
xxdevmap_dup, xxdevmap_unmap

};

174 Writing Device Drivers • January 2005

EXAMPLE 11–6 devmap(9E) Entry Point With Context Management Support (Continued)

static int
xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off,

size_t len, size_t *maplen, uint_t model)
{

struct xxstate *xsp;
uint_t rnumber;
int error;

/* Setup data access attribute structure */
struct ddi_device_acc_attr xx_acc_attr = {

DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC

};
xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
len = ptob(btopr(len));
rnumber = 0;
/* Set up the device mapping */
error = devmap_devmem_setup(handle, xsp->dip, &xx_callback_ctl,

rnumber, off, len, PROT_ALL, 0, &xx_acc_attr);
*maplen = len;
return (error);

}

Managing Mapping Accesses
The device driver is notified when a user process accesses an address in the
memory-mapped region that does not have valid mapping translations. When the
access event occurs, the mapping translations of the process that currently has access
to the device must be invalidated. The device context of the process that requested
access to the device must be restored. Furthermore, the translations of the mapping of
the process requesting access must be validated.

The functions devmap_load(9F) and devmap_unload(9F) are used to validate and
invalidate mapping translations.

devmap_load() Entry Point
The syntax for devmap_load(9F) is as follows:

int devmap_load(devmap_cookie_t handle, offset_t offset,
size_t len, uint_t type, uint_t rw);

Chapter 11 • Device Context Management 175

devmap_load() validates the mapping translations for the pages of the mapping
specified by handle,offset, and len. By validating the mapping translations for
these pages, the driver is telling the system not to intercept accesses to these pages of
the mapping. Furthermore, the system must not allow accesses to proceed without
notifying the device driver.

devmap_load() must be called with the offset and the handle of the mapping that
generated the access event for the access to complete. If devmap_load(9F) is not
called on this handle, the mapping translations are not validated, and the process
receives a SIGBUS.

devmap_unload() Entry Point
The syntax for devmap_unload(9F) is as follows:

int devmap_unload(devmap_cookie_t handle, offset_t offset,
size_t len);

devmap_unload() invalidates the mapping translations for the pages of the
mapping specified by handle, offset, and len. By invalidating the mapping translations
for these pages, the device driver is telling the system to intercept accesses to these
pages of the mapping. Furthermore, the system must notify the device driver the next
time that these mapping pages are accessed by calling the devmap_access(9E) entry
point.

For both functions, requests affect the entire page that contains the offset and all pages
up to and including the entire page that contains the last byte, as indicated by offset +
len. The device driver must ensure that for each page of device memory being
mapped, only one process has valid translations at any one time.

Both functions return zero if successful. If, however, an error occurred in validating or
invalidating the mapping translations, that error is returned to the device driver. The
device driver must return this error to the system.

176 Writing Device Drivers • January 2005

CHAPTER 12

Power Management

Power management provides the ability to control and manage the electrical power
usage of a computer system or device. Power management enables systems to
conserve energy by using less power when idle and by shutting down completely
when not in use. For example, desktop computer systems can use a significant amount
of power and often are left idle, particularly at night. Power management software can
detect that the system is not being used. Accordingly, power management can power
down the system or some of its components.

This chapter provides information on the following subjects:

� “Power Management Framework” on page 177
� “Device Power Management Model” on page 179
� “System Power Management Model” on page 187
� “Power Management Device Access Example” on page 193
� “Power Management Flow of Control” on page 194

Power Management Framework
The Solaris Power Management™ framework depends on device drivers to implement
device-specific power management functions. The framework is implemented in two
parts:

� Device power management – Automatically turns off unused devices to reduce
power consumption

� System power management – Automatically turns off the computer when the
entire system is idle

177

Device Power Management
The framework enables devices to reduce their energy consumption after a specified
idle time interval. As part of power management, system software checks for idle
devices. The Power Management framework exports interfaces that enable
communication between the system software and the device driver.

The Solaris Power Management framework provides the following features for device
power management:

� A device-independent model for power-manageable devices.

� dtpower(1M), a tool for configuring workstation power management. Power
management can also be implemented through the power.conf(4) and
/etc/default/power files.

� A set of DDI interfaces for notifying the framework about power management
compatibility and idleness state.

System Power Management
System power management involves saving the state of the system prior to powering
the system down. Thus, the system can be returned to the same state immediately
when the system is turned back on.

To shut down an entire system with return to the state prior to the shutdown, take the
following steps:

� Stop kernel threads and user processes. Restart these threads and processes later.

� Save the hardware state of all devices on the system to disk. Restore the state later.

SPARC only – System power management is currently implemented only on some
SPARC systems supported by the Solaris 10 Operating System. See the
power.conf(4) man page for more information.

The System Power Management framework in the Solaris Operating System provides
the following features for system power management:

� A platform-independent model of system idleness.

� pmconfig(1M), a tool for configuring workstation power management. Power
management can also be implemented through the power.conf(4) and
/etc/default/power files.

� A set of interfaces for the device driver to override the method for determining
which drivers have hardware state.

� A set of interfaces to enable the framework to call into the driver to save and
restore the device state.

178 Writing Device Drivers • January 2005

� A mechanism for notifying processes that a resume operation has occurred.

Device Power Management Model
The following sections describe the details of the device power management model.
This model includes the following elements:

� Components
� Idleness
� Power levels
� Dependency
� Policy
� Device power management interfaces
� Power management entry points

Power Management Components
A device is power manageable if the power consumption of the device can be reduced
when the device is idle. Conceptually, a power-manageable device consists of a
number of power-manageable hardware units that are called components.

The device driver notifies the system about device components and their associated
power levels. Accordingly, the driver creates a pm-components(9P) property in the
driver’s attach(9E) entry point as part of driver initialization.

Most devices that are power manageable implement only a single component. An
example of a single-component, power-manageable device is a disk whose spindle
motor can be stopped to save power when the disk is idle.

If a device has multiple power-manageable units that are separately controllable, the
device should implement multiple components.

An example of a two-component, power-manageable device is a frame buffer card
with a monitor. Frame buffer electronics is the first component [component 0]. The
frame buffer’s power consumption can be reduced when not in use. The monitor is the
second component [component 1]. The monitor can also enter a lower power mode
when the monitor is not in use. The frame buffer electronics and monitor are
considered by the system as one device with two components.

Multiple Power Management Components
To the power management framework, all components are considered equal and
completely independent of each other. If the component states are not completely
compatible, the device driver must ensure that undesirable state combinations do not

Chapter 12 • Power Management 179

occur. For example, a frame buffer/monitor card has the following possible states: D0,
D1, D2, and D3. The monitor attached to the card has the following potential states: On,
Standby, Suspend, and Off. These states are not necessarily compatible with each
other. For example, if the monitor is On, then the frame buffer must be at D0, that is,
full on. If the frame buffer driver gets a request to power up the monitor to On while
the frame buffer is at D3, the driver must call pm_raise_power(9F) to bring the
frame buffer up before setting the monitor On. System requests to lower the power of
the frame buffer while the monitor is On must be refused by the driver.

Power Management States
Each component of a device can be in one of two states: busy or idle. The device driver
notifies the framework of changes in the device state by calling
pm_busy_component(9F) and pm_idle_component(9F). When components are
initially created, the components are considered idle.

Power Levels
From the pm-components property exported by the device, the Device Power
Management framework knows what power levels the device supports. Power-level
values must be positive integers. The interpretation of power levels is determined by
the device driver writer. Power levels must be listed in monotonically increasing order
in the pm-components property. A power level of 0 is interpreted by the framework
to mean off. When the framework must power up a device due to a dependency, the
framework sets each component at its highest power level.

The following example shows a pm-components entry from the .conf file of a
driver that implements a single power-managed component consisting of a disk
spindle motor. The disk spindle motor is component 0. The spindle motor supports
two power levels. These levels represent “stopped” and “spinning at full speed.”

EXAMPLE 12–1 Sample pm-component Entry

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed";

The following example shows how Example 12–1 could be implemented in the
attach() routine of the driver.

EXAMPLE 12–2 attach(9E) Routine With pm-components Property

static char *pmcomps[] = {
"NAME=Spindle Motor",
"0=Stopped",
"1=Full Speed"

};

180 Writing Device Drivers • January 2005

EXAMPLE 12–2 attach(9E) Routine With pm-components Property (Continued)

...

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
...

if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
"pm-components", &pmcomp[0],
sizeof (pmcomps) / sizeof (char *)) != DDI_PROP_SUCCESS)
goto failed;

...

The following example shows a frame buffer that implements two components.
Component 0 is the frame buffer electronics that support four different power levels.
Component 1 represents the state of power management of the attached monitor.

EXAMPLE 12–3 Multiple Component pm-components Entry

pm-components="NAME=Frame Buffer", "0=Off", "1=Suspend", \
"2=Standby", "3=On",

"NAME=Monitor", "0=Off", "1=Suspend", "2=Standby", "3=On";

When a device driver is first attached, the framework does not know the power level
of the device. A power transition can occur when:

� The driver calls pm_raise_power(9F) or pm_lower_power(9F).

� The framework has lowered the power level of a component because a time
threshold has been exceeded.

� Another device has changed power and a dependency exists between the two
devices. See “Power Management Dependencies” on page 181.

After a power transition, the framework begins tracking the power level of each
component of the device. Tracking also occurs if the driver has informed the
framework of the power level. The driver informs the framework of a power level
change by calling pm_power_has_changed(9F).

The system calculates a default threshold for each potential power transition. These
thresholds are based on the system idleness threshold. The default thresholds can be
overridden using pmconfig or power.conf(4). Another default threshold based on
the system idleness threshold is used when the component power level is unknown.

Power Management Dependencies
Some devices should be powered down only when other devices are also powered
down. For example, if a CD-ROM drive is allowed to power down, necessary
functions, such as the ability to eject a CD, might be lost.

Chapter 12 • Power Management 181

To prevent a device from powering down independently, you can make that device
dependent on another device that is likely to remain powered on. Typically, a device is
made dependent upon a frame buffer, because a monitor is generally on whenever a
user is utilizing a system.

The power.conf(4)file specifies the dependencies among devices. (A parent node in
the device tree implicitly depends upon its children. This dependency is handled
automatically by the power management framework.) You can specify a particular
dependency with a power.conf(4) entry of this form:

device-dependency dependent-phys-path phys-path

Where dependent-phys-path is the device that is kept powered up, such as the CD-ROM
drive. phys-path represents the device whose power state is to be depended on, such as
the frame buffer.

Adding an entry to power.conf for every new device that is plugged into the system
would be burdensome. The following syntax enables you to indicate dependency in a
more general fashion:

device-dependency-property property phys-path

Such an entry mandates that any device that exports the property property must be
dependent upon the device named by phys-path. Because this dependency applies
especially to removable-media devices, /etc/power.conf includes the following
line by default:

device_dependent-property removable-media /dev/fb

With this syntax, no device that exports the removable-media property can be
powered down unless the console frame buffer is also powered down.

For more information, see the power.conf(4) and removable-media(9P) man
pages.

Automatic Power Management for Devices
If automatic power management is enabled by pmconfig or power.conf(4), then all
devices with a pm-components(9P) property automatically will use power
management. After a component has been idle for a default period, the component is
automatically lowered to the next lowest power level. The default period is calculated
by the power management framework to set the entire device to its lowest power state
within the system idleness threshold.

182 Writing Device Drivers • January 2005

Note – By default, automatic power management is enabled on all SPARC desktop
systems first shipped after July 1, 1999. This feature is disabled by default for all other
systems. To determine whether automatic power management is enabled on your
machine, refer to the power.conf(4) man page for instructions.

power.conf(4) can be used to override the defaults calculated by the framework.

Device Power Management Interfaces
A device driver that supports a device with power-manageable components must
create a pm-components(9P) property. This property indicates to the system that the
device has power-manageable components. pm-components also tells the system
which power levels are available. The driver typically informs the system by calling
ddi_prop_update_string_array(9F) from the driver’s attach(9E) entry point.
An alternative means of informing the system is from a driver.conf(4) file. See the
pm-components(9P) man page for details.

Busy-Idle State Transitions
The driver must keep the framework informed of device state transitions from idle to
busy or busy to idle. Where these transitions happen is entirely device-specific. The
transitions between the busy and idle states depend on the nature of the device and
the abstraction represented by the specific component. For example, SCSI disk target
drivers typically export a single component, which represents whether the SCSI target
disk drive is spun up or not. The component is marked busy whenever an outstanding
request to the drive exists. The component is marked idle when the last queued
request finishes. Some components are created and never marked busy. For example,
components created by pm-components(9P) are created in an idle state.

The pm_busy_component(9F) and pm_idle_component(9F) interfaces notify the
power management framework of busy-idle state transitions. The
pm_busy_component(9F) call has the following syntax:

int pm_busy_component(dev_info_t *dip, int component);

pm_busy_component(9F) marks component as busy. While the component is busy,
that component should not be powered off. If the component is already powered off,
then marking that component busy does not change the power level. The driver needs
to call ddi_dev_is_needed(9F) for this purpose. Calls to pm_busy_component(9F)
are cumulative and require a corresponding number of calls to pm_idle_component
(9F) to idle the component.

Chapter 12 • Power Management 183

The pm_idle_component(9F) routine has the following syntax:

int pm_idle_component(dev_info_t *dip, int component);

pm_idle_component(9F) marks component as idle. An idle component is subject to
being powered off. pm_idle_component(9F) must be called once for each call to
pm_busy_component(9F) in order to idle the component.

Device Power State Transitions
A device driver can call ddi_dev_is_needed(9F) to request that a component be set
to at least a given power level. Setting the power level in this manner is necessary
before using a component that has been powered off. For example, a SCSI disk target
driver’s read(9E) routine might need to spin up the disk, if the disk has been powered
off. ddi_dev_is_needed(9F) requests the power management framework to initiate
a device power state transition to a higher power level. Normally, reductions in
component power levels are initiated by the framework. However, a device driver
should call pm_lower_power(9F) when detaching, in order to reduce the power
consumption of unused devices as much as possible.

Powering down can pose risks for some devices. For example, some tape drives
damage tapes when power is removed. Similarly, some disk drives have a limited
tolerance for power cycles, because each cycle results in a head landing. The
no-involuntary-power-cycles(9P) property should be used to notify the system
that the device driver should control all power cycles for the device. This approach
prevents power from being removed from a device while the device driver is detached
unless the device was powered off by a driver’s call to pm_raise_power(9F).

ddi_dev_is_needed(9F) is called when the driver discovers that a component
needed for some operation is at an insufficient power level. This interface causes the
driver to raise the current power level of the component to the needed level. All the
devices that depend on this device are also brought back to full power by this call.

pm_raise_power(9F) is called when the device is detaching once access to the device
is no longer needed. Call pm_lower_power() to set each component at the lowest
power so that the device uses as little power as possible while not in use. The syntax
for pm_raise_power(9F) is the same as the syntax for ddi_dev_is_needed(9F).

pm_power_has_changed(9F) is called to notify the framework about a power
transition. The transition might be due to the device changing its own power level.
The transition might also be due to an operation such as suspend-resume. The syntax
for pm_power_has_changed(9F) is the same as the syntax for
ddi_dev_is_needed(9F).

184 Writing Device Drivers • January 2005

power() Entry Point
The power management framework uses the power(9E) entry point.

power() uses the following syntax:

int power(dev_info_t *dip, int component, int level);

When a component’s power level needs to be changed, the system calls the power(9E)
entry point. The action taken by this entry point is device driver-specific. In the
example of the SCSI target disk driver mentioned previously, setting the power level
to 0 results in sending a SCSI command to spin down the disk, while setting the
power level to the full power level results in sending a SCSI command to spin up the
disk.

If a power transition can cause the device to lose state, the driver must save any
necessary state in memory for later restoration. If a power transition requires that the
saved state be restored before the device can be used again, then the driver must
restore that state. The framework makes no assumptions about what power
transactions cause the loss of or require the restoration of state for automatically
power-manage devices. The following example shows a sample power() routine.

EXAMPLE 12–4 Using the power() Routine for a Single-Component Device

int
xxpower(dev_info_t *dip, int component, int level)
{

struct xxstate *xsp;
int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);
/*
* Make sure the request is valid
*/
if (!xx_valid_power_level(component, level))

return (DDI_FAILURE);
mutex_enter(&xsp->mu);
/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&

xsp->xx_power_level[component] > level) {
mutex_exit(&xsp->mu);
return (DDI_FAILURE);

}

if (xsp->xx_power_level[component] != level) {
/*
* device- and component-specific setting of power level
* goes here
*/
[...]

Chapter 12 • Power Management 185

EXAMPLE 12–4 Using the power() Routine for a Single-Component Device (Continued)

xsp->xx_power_level[component] = level;
}
mutex_exit(&xsp->mu);
return (DDI_SUCCESS);

}

The following example is a power() routine for a device with two components,
where component 0 must be on when component 1 is on.

EXAMPLE 12–5 power(9E) Routine for Multiple-Component Device

int
xxpower(dev_info_t *dip, int component, int level)
{

struct xxstate *xsp;
int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);
/*
* Make sure the request is valid
*/
if (!xx_valid_power_level(component, level))

return (DDI_FAILURE);
mutex_enter(&xsp->mu);
/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&

xsp->xx_power_level[component] > level) {
mutex_exit(&xsp->mu);
return (DDI_FAILURE);

}

/*
* This code implements inter-component dependencies:
* If we are bringing up component 1 and component 0
* is off, we must bring component 0 up first, and if
* we are asked to shut down component 0 while component
* 1 is up we must refuse
*/
if (component == 1 && level > 0 && xsp->xx_power_level[0] == 0) {

xsp->xx_busy[0]++;
if (pm_busy_component(dip, 0) != DDI_SUCCESS) {

/*
* This can only happen if the args to
* pm_busy_component()
* are wrong, or pm-components property was not
* exported by the driver.
*/
xsp->xx_busy[0]--;
mutex_exit(&xsp->mu);

186 Writing Device Drivers • January 2005

EXAMPLE 12–5 power(9E) Routine for Multiple-Component Device (Continued)

cmn_err(CE_WARN, "xxpower pm_busy_component()
failed");

return (DDI_FAILURE);
}
mutex_exit(&xsp->mu);
if (pm_raise_power(dip, 0, XX_FULL_POWER_0) != DDI_SUCCESS)

return (DDI_FAILURE);
mutex_enter(&xsp->mu);

}
if (component == 0 && level == 0 && xsp->xx_power_level[1] != 0) {

mutex_exit(&xsp->mu);
return (DDI_FAILURE);

}
if (xsp->xx_power_level[component] != level) {

/*
* device- and component-specific setting of power level
* goes here
*/
[...]
xsp->xx_power_level[component] = level;

}
mutex_exit(&xsp->mu);
return (DDI_SUCCESS);

}

System Power Management Model
This section describes the details of the System Power Management model. The model
includes the following components:

� Autoshutdown threshold
� Busy state
� Hardware state
� Policy
� Power management entry points

Autoshutdown Threshold
The system can be shut down, that is, powered off, automatically after a configurable
period of idleness. This period is known as the autoshutdown threshold. This behavior is
enabled by default for SPARC desktop systems first shipped after October 1, 1995 and
before July 1, 1999. See the power.conf(4)man page for more information.
Autoshutdown can be overridden using dtpower(1M) or power.conf(4).

Chapter 12 • Power Management 187

Busy State
The busy state of the system can be measured in several ways. The currently
supported built-in metric items are keyboard characters, mouse activity, tty
characters, load average, disk reads, and NFS requests. Any one of these items can
make the system busy. In addition to the built-in metrics, an interface is defined for
running a user-specified process that can indicate that the system is busy.

Hardware State
Devices that export a reg property are considered to have hardware state that must be
saved prior to shutting down the system. A device without the reg property is
considered to be stateless. However, this consideration can be overridden by the
device driver.

A device with hardware state but no reg property, such as a SCSI driver, must be
called to save and restore the state if the driver exports a pm-hardware-state
property with the value needs-suspend-resume. Otherwise, the lack of a reg
property is taken to mean that the device has no hardware state. For information on
device properties, see Chapter 4.

A device with a reg property and no hardware state can export a
pm-hardware-state property with the value no-suspend-resume. Using
no-suspend-resume with the pm-hardware-state property keeps the framework
from calling the driver to save and restore that state. For more information on power
management properties, see the pm-components(9P) man page.

Automatic Power Management for Systems
The system is shut down if the following conditions apply:

� Autoshutdown is enabled by dtpower(1M) or power.conf(4).
� The system has been idle for autoshutdown threshold minutes.
� All of the metrics that are specified in power.conf have been satisfied.

Entry Points Used by System Power Management
System power management passes the command DDI_SUSPEND to the detach(9E)
driver entry point to request the driver to save the device hardware state. System
power management passes the command DDI_RESUME to the attach(9E) driver
entry point to request the driver to restore the device hardware state.

detach() Entry Point
The syntax for detach(9E) is as follows:

int detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

188 Writing Device Drivers • January 2005

A device with a reg property or a pm-hardware-state property set to
needs-suspend-resume must be able to save the hardware state of the device. The
framework calls into the driver’s detach(9E) entry point to enable the driver to save
the state for restoration after the system power returns. To process the DDI_SUSPEND
command, detach(9E) must perform the following tasks:

� Block further operations from being initiated until the device is resumed, except for
dump(9E) requests.

� Wait until outstanding operations have completed. If an outstanding operation can
be restarted, you can abort that operation.

� Cancel any timeouts and callbacks that are pending.

� Save any volatile hardware state to memory. The state includes the contents of
device registers, and can also include downloaded firmware.

If the driver is unable to suspend the device and save its state to memory, then the
driver must return DDI_FAILURE. The framework then aborts the system power
management operation.

In some cases, powering down a device involves certain risks. For example, if a tape
drive is powered off with a tape inside, the tape can be damaged. In such a case,
attach(9E) should do the following:

� Call ddi_removing_power(9F) to determine whether a DDI_SUSPEND command
can cause power to be removed from the device.

� Determine whether power removal can cause problems.

If both cases are true, the DDI_SUSPEND request should be rejected. Example 12–6
shows an attach(9E) routine using ddi_removing_power(9F) to check whether the
DDI_SUSPEND command causes problems.

Dump requests must be honored. The framework uses the dump(9E) entry point to
write out the state file that contains the contents of memory. See the dump(9E) man
page for the restrictions that are imposed on the device driver when using this entry
point.

Calling the detach(9E) entry point of a power-manageable component with the
DDI_SUSPEND command should save the state when the device is powered off. The
driver should cancel pending timeouts. The driver should also suppress any calls to
ddi_dev_is_needed(9F) except for dump(9E) requests. When the device is resumed
by a call to attach(9E) with a command of DDI_RESUME, timeouts and calls to
pm_raise_power() can be resumed. The driver must keep sufficient track of its state
to be able to deal appropriately with this possibility. The following example shows a
detach(9E) routine with the DDI_SUSPEND command implemented.

EXAMPLE 12–6 detach(9E) Routine Implementing DDI_SUSPEND

int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

struct xxstate *xsp;

Chapter 12 • Power Management 189

EXAMPLE 12–6 detach(9E) Routine Implementing DDI_SUSPEND (Continued)

int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);

switch (cmd) {
case DDI_DETACH:
[...]

case DDI_SUSPEND:
/*

* We do not allow DDI_SUSPEND if power will be removed and
* we have a device that damages tape when power is removed
* We do support DDI_SUSPEND for Device Reconfiguration.

.
*/
if (ddi_removing_power(dip) && xxdamages_tape(dip))

return (DDI_FAILURE);

mutex_enter(&xsp->mu);
xsp->xx_suspended = 1; /* stop new operations */

/*
* Sleep waiting for all the commands to be completed
*/
[...]

/*
* If a callback is outstanding which cannot be cancelled
* then either wait for the callback to complete or fail the
* suspend request
*/
[...]

/*
* This section is only needed if the driver maintains a
* running timeout
*/
if (xsp->xx_timeout_id) {

timeout_id_t temp_timeout_id = xsp->xx_timeout_id;

xsp->xx_timeout_id = 0;
mutex_exit(&xsp->mu);
untimeout(temp_timeout_id);
mutex_enter(&xsp->mu);

}

if (!xsp->xx_state_saved) {
/*
* Save device register contents into
* xsp->xx_device_state
*/
[...]

190 Writing Device Drivers • January 2005

EXAMPLE 12–6 detach(9E) Routine Implementing DDI_SUSPEND (Continued)

}
mutex_exit(&xsp->mu);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}

attach() Entry Point
The syntax for attach(9E) is as follows:

int attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

When power is restored to the system, each device with a reg property or with a
pm-hardware-state property of value needs-suspend-resume has its
attach(9E) entry point called with a command value of DDI_RESUME. If the system
shutdown is aborted, each suspended driver is called to resume even though the
power has not been shut off. Consequently, the resume code in attach(9E) must
make no assumptions about whether the system actually lost power.

The power management framework considers the power level of the components to
be unknown at DDI_RESUME time. Depending on the nature of the device, the driver
writer has two choices:

� If the driver can determine the actual power level of the components of the device
without powering the components up, such as by reading a register, then the
driver should notify the framework of the power level of each component by
calling pm_power_has_changed(9F).

� If the driver cannot determine the power levels of the components, then the driver
should mark each component internally as unknown and call
pm_raise_power(9F) before the first access to each component.

The following example shows an attach(9E) routine with the DDI_RESUME
command.

EXAMPLE 12–7 attach(9E) Routine Implementing DDI_RESUME

int
xxattach(devinfo_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);

switch (cmd) {
case DDI_ATTACH:

Chapter 12 • Power Management 191

EXAMPLE 12–7 attach(9E) Routine Implementing DDI_RESUME (Continued)

[...]

case DDI_RESUME:
mutex_enter(&xsp->mu);
if (xsp->xx_pm_state_saved) {

/*
* Restore device register contents from
* xsp->xx_device_state
*/
[...]

}
/*
* This section is optional and only needed if the
* driver maintains a running timeout
*/
xsp->xx_timeout_id = timeout(...);

xsp->xx_suspended = 0; /* allow new operations */
cv_broadcast(&xsp->xx_suspend_cv);

/* If it is possible to determine in a device-specific
* way what the power levels of components are without
* powering the components up,
* then the following code is recommended
*/
for (i = 0; i < num_components; i++) {

xsp->xx_power_level[i] = xx_get_power_level(dip, i);
if (xsp->xx_power_level[i] != XX_LEVEL_UNKNOWN)

(void) pm_power_has_changed(dip, i,
xsp->xx_power_level[i]);

}
mutex_exit(&xsp->mu);
return(DDI_SUCCESS);

default:
return(DDI_FAILURE);

}

}

Note – The detach(9E) and attach(9E) interfaces can also be used to resume a
system that has been quiesced.

192 Writing Device Drivers • January 2005

Power Management Device Access
Example
If power management is supported, and detach(9E) and attach(9E) are used as in
Example 12–6 and Example 12–7, then access to the device can be made from user
context, for example, from read(2), write(2), and ioctl(2).

The following example demonstrates this approach. The example assumes that the
operation about to be performed requires a component component that is operating
at power level level.

EXAMPLE 12–8 Device Access

...
mutex_enter(&xsp->mu);
/*
* Block command while device is suspended via DDI_SUSPEND
*/
while (xsp->xx_suspended)

cv_wait(&xsp->xx_suspend_cv, &xsp->mu);

/*
* Mark component busy so power() will reject attempt to lower power
*/
xsp->xx_busy[component]++;
if (pm_busy_component(dip, component) != DDI_SUCCESS) {

xsp->xx_busy[component]--;
/*
* Log error and abort
*/
[...]

}

if (xsp->xx_power_level[component] < level) {
mutex_exit(&xsp->mu);
if (pm_raise_power(dip, component, level) != DDI_SUCCESS) {

/*
* Log error and abort
*/
[...]

}
mutex_enter(&xsp->mu);

}
...

The code fragment in the following example can be used when device operation
completes, for example, in the device’s interrupt handler.

EXAMPLE 12–9 Device Operation Completion

...
/*

Chapter 12 • Power Management 193

EXAMPLE 12–9 Device Operation Completion (Continued)

* For each command completion, decrement the busy count and unstack
* the pm_busy_component() call by calling pm_idle_component(). This
* will allow device power to be lowered when all commands complete
* (all pm_busy_component() counts are unstacked)
*/
xsp->xx_busy[component]--;
if (pm_idle_component(dip, component) != DDI_SUCCESS) {

xsp->xx_busy[component]++;
/*
* Log error and abort
*/
[...]

}

/*
* If no more outstanding commands, wake up anyone (like DDI_SUSPEND)
* waiting for all commands to be completed
*/

...

Power Management Flow of Control
Figure 12–1 illustrates the flow of control in the power management framework.

When a component’s activity is complete, a driver can call pm_idle_component(9F)
to mark the component as idle. When the component has been idle for its threshold
time, the framework can lower the power of the component to its next lower level. The
framework calls the power(9E) function to set the component’s power to the next
lower supported power level, if a lower level exists. The driver’s power(9E) function
should reject any attempt to lower the power level of a component when that
component is busy. The power(9E) function should save any state that could be lost in
a transition to a lower level prior to making that transition.

When the component is needed at a higher level, the driver calls
pm_busy_component(9F). This call keeps the framework from lowering the power
still further and then calls ddi_dev_is_needed(9F) on the component. The
framework next calls power(9E) to raise the power of the component before the call to
pm_raise_power(9F) returns. The driver’s power(9E) code must restore any state
that was lost in the lower level but that is needed in the higher level.

When a driver is detaching, the driver should call pm_lower_power(9F) for each
component to lower its power to its lowest level. The framework can then call the
driver’s power(9E) routine to lower the power of the component before the call to
pm_lower_power(9F) returns.

194 Writing Device Drivers • January 2005

Busy Idle

Higher power level

Note:
9E routines are always called by the framework.
9F routines are always called by the driver.

pm_busy_component(9F)

pm_idle_component(9F)

Lower power level

pm_busy_component(9F)

pm_idle_component(9F)

A power(9E) can be called by the framework to raise the power level of a
 component as a result of a dependency or can be called by the framework
 as a result of the driver's call to pm_raise_power(9F).

B power(9E) can be called by the framework to lower the power level of a
 component as a result of a device idleness, or can be called by the framework
 as a result of the driver's call to pm_lower_power(9F) when the driver is detaching.

Busy Idle

A

pm_raise_power(9F)

power(9E)

A

pm_raise_power(9F)

power(9E) B

pm_lower_power(9F)

power(9E)

B

pm_lower_power(9F)

power(9E)

FIGURE 12–1 Power Management Conceptual State Diagram

Chapter 12 • Power Management 195

Changes to Power Management
Interfaces
Previous to the Solaris 8 release, power management of devices was not automatic.
Developers had to add an entry to /etc/power.conf for each device that was to be
power-managed. The framework assumed that all devices supported only two power
levels: 0 and standard power.

Power assumed an implied dependency of all other components on component 0.
When component 0 changed to level 0, a call was made into the driver’s detach(9E)
with the DDI_PM_SUSPEND command to save the hardware state. When component 0
changed from level 0, a call was made to the attach(9E) routine with the command
DDI_PM_RESUME to restore hardware state.

The following interfaces and commands are obsolete, although they are still supported
for binary purposes:

� ddi_dev_is_needed(9F)
� pm_create_components(9F)
� pm_destroy_components(9F)
� pm_get_normal_power(9F)
� pm_set_normal_power(9F)
� DDI_PM_SUSPEND
� DDI_PM_RESUME

As of the Solaris 8 release, devices that export the pm-components property
automatically use power management, if autopm is enabled.

The framework now knows from the pm-components property which power levels
are supported by each device.

The framework makes no assumptions about dependencies among the different
components of a device. The device driver is responsible for saving and restoring
hardware state as needed when changing power levels.

These changes enable the power management framework to deal with emerging
device technology. Power management now results in greater power savings. The
framework can detect automatically which devices can save power. The framework
can use intermediate power states of the devices. A system can now meet energy
consumption goals without powering down the entire system and without any
functions.

196 Writing Device Drivers • January 2005

TABLE 12–1 Power Management Interfaces

Removed Interfaces Equivalent Solaris 10 Interfaces

pm_create_components(9F) pm-components(9P)

pm_set_normal_power(9F) pm-components(9P)

pm_destroy_components(9F) None

pm_get_normal_power(9F) None

ddi_dev_is_needed(9F) pm_raise_power(9F)

None pm_lower_power(9F)

None pm_power_has_changed(9F)

DDI_PM_SUSPEND None

DDI_PM_RESUME None

Chapter 12 • Power Management 197

198 Writing Device Drivers • January 2005

CHAPTER 13

Layered Driver Interface (LDI)

The LDI is a set of DDI/DKI that enables a kernel module to access other devices in
the system. The LDI also enables you to determine which devices are currently being
used by kernel modules.

This chapter covers the following topics:

� “Kernel Interfaces” on page 200
� “User Interfaces” on page 217

LDI Overview
The LDI includes two categories of interfaces:

� Kernel interfaces. User applications use system calls to open, read, and write to
devices that are managed by a device driver within the kernel. Kernel modules can
use the LDI kernel interfaces to open, read, and write to devices that are managed
by another device driver within the kernel. For example, a user application might
use read(2) and a kernel module might use ldi_read(9F) to read the same
device. See “Kernel Interfaces” on page 200.

� User interfaces. The LDI user interfaces can provide information to user processes
regarding which devices are currently being used by other devices in the kernel.
See “User Interfaces” on page 217.

The following terms are commonly used in discussing the LDI:

� Target Device. A target device is a device within the kernel that is managed by a
device driver and is being accessed by a device consumer.

� Device Consumer. A device consumer is a user process or kernel module that
opens and accesses a target device. A device consumer normally performs
operations such as open, read, write, or ioctl on a target device.

199

� Kernel Device Consumer. A kernel device consumer is a particular kind of device
consumer. A kernel device consumer is a kernel module that accesses a target
device. The kernel device consumer usually is not the device driver that manages
the target device that is being accessed. Instead, the kernel device consumer
accesses the target device indirectly through the device driver that manages the
target device.

� Layered Driver. A layered driver is a particular kind of kernel device consumer. A
layered driver is a kernel driver that does not directly manage any piece of
hardware. Instead, a layered driver accesses one of more target devices indirectly
through the device drivers that manage those target devices. Volume managers and
STREAMS multiplexers are good examples of layered drivers.

Kernel Interfaces
Some LDI kernel interfaces enable the LDI to track and report kernel device usage
information. See “Layered Identifiers – Kernel Device Consumers” on page 200.

Other LDI kernel interfaces enable kernel modules to perform access operations such
as open, read, and write a target device. These LDI kernel interfaces also enable a
kernel device consumer to query property and event information about target devices.
See “Layered Driver Handles – Target Devices” on page 201.

“LDI Kernel Interfaces Example” on page 206 shows an example driver that uses
many of these LDI interfaces.

Layered Identifiers – Kernel Device Consumers
Layered identifiers enable the LDI to track and report kernel device usage information.
A layered identifier (ldi_ident_t) identifies a kernel device consumer. Kernel
device consumers must obtain a layered identifier prior to opening a target device
using the LDI.

Layered drivers are the only supported types of kernel device consumers. Therefore, a
layered driver must obtain a layered identifier that is associated with the device
number, the device information node, or the stream of the layered driver. The layered
identifier is associated with the layered driver. The layered identifier is not associated
with the target device.

You can retrieve the kernel device usage information that is collected by the LDI by
using the libdevinfo(3LIB) interfaces, the fuser(1M) command, or the
prtconf(1M) command. For example, the prtconf(1M) command can show which
target devices a layered driver is accessing or which layered drivers are accessing a
particular target device. See “User Interfaces” on page 217 to learn more about how to
retrieve device usage information.

200 Writing Device Drivers • January 2005

The following describes the LDI layered identifier interfaces:

ldi_ident_t Layered identifier. An opaque type.

ldi_ident_from_dev(9F) Allocate and retrieve a layered identifier that is
associated with a dev_t device number.

ldi_ident_from_dip(9F) Allocate and retrieve a layered identifier that is
associated with a dev_info_t device
information node.

ldi_ident_from_stream(9F) Allocate and retrieve a layered identifier that is
associated with a stream.

ldi_ident_release(9F) Release a layered identifier that was allocated
with ldi_ident_from_dev(9F),
ldi_ident_from_dip(9F), or
ldi_ident_from_stream(9F).

Layered Driver Handles – Target Devices
Kernel device consumers must use a layered driver handle (ldi_handle_t) to access
a target device through LDI interfaces. The ldi_handle_t type is valid only with
LDI interfaces. The LDI allocates and returns this handle when the LDI successfully
opens a device. A kernel device consumer can then use this handle to access the target
device through the LDI interfaces. The LDI deallocates the handle when the LDI closes
the device. See “LDI Kernel Interfaces Example” on page 206 for an example.

This section discusses how kernel device consumers can access target devices and
retrieve different types of information. See “Opening and Closing Target Devices”
on page 202 to learn how kernel device consumers can open and close target devices.
See “Accessing Target Devices” on page 202 to learn how kernel device consumers can
perform operations such as read, write, strategy, and ioctl on target devices.
“Retrieving Target Device Information” on page 203 describes interfaces that retrieve
target device information such as device open type and device minor name.
“Retrieving Target Device Property Values” on page 204 describes interfaces that
retrieve values and address of target device properties. See “Receiving Asynchronous
Device Event Notification” on page 205 to learn how kernel device consumers can
receive event notification from target devices.

Chapter 13 • Layered Driver Interface (LDI) 201

Opening and Closing Target Devices
This section describes the LDI kernel interfaces for opening and closing target devices.
The open interfaces take a pointer to a layered driver handle. The open interfaces
attempt to open the target device specified by the device number, device ID, or path
name. If the open operation is successful, the open interfaces allocate and return a
layered driver handle that can be used to access the target device. The close interface
closes the target device associated with the specified layered driver handle and then
frees the layered driver handle.

ldi_handle_t Layered driver handle for target device access. An
opaque data structure that is returned when a device is
successfully opened.

ldi_open_by_dev(9F) Open the device specified by the dev_t device number
parameter.

ldi_open_by_devid(9F) Open the device specified by the ddi_devid_t device
ID parameter. You also must specify the minor node
name to open.

ldi_open_by_name(9F) Open a device by path name. The path name is a
null-terminated string in the kernel address space. The
path name must be an absolute path, beginning with a
forward slash character (/).

ldi_close(9F) Close a device that was opened with
ldi_open_by_dev(9F), ldi_open_by_devid(9F), or
ldi_open_by_name(9F). After ldi_close(9F)
returns, the layered driver handle of the device that
was closed is no longer valid.

Accessing Target Devices
This section describes the LDI kernel interfaces for accessing target devices. These
interfaces enable a kernel device consumer to perform operations on the target device
specified by the layered driver handle. Kernel device consumers can perform
operations such as read, write, strategy, and ioctl on the target device.

ldi_handle_t Layered driver handle for target device access. An opaque
data structure.

ldi_read(9F) Pass a read request to the device entry point for the target
device. This operation is supported for block, character, and
STREAMS devices.

ldi_aread(9F) Pass an asynchronous read request to the device entry point
for the target device. This operation is supported for block
and character devices.

202 Writing Device Drivers • January 2005

ldi_write(9F) Pass a write request to the device entry point for the target
device. This operation is supported for block, character, and
STREAMS devices.

ldi_awrite(9F) Pass an asynchronous write request to the device entry point
for the target device. This operation is supported for block
and character devices.

ldi_strategy(9F) Pass a strategy request to the device entry point for the target
device. This operation is supported for block and character
devices.

ldi_dump(9F) Pass a dump request to the device entry point for the target
device. This operation is supported for block and character
devices.

ldi_poll(9F) Pass a poll request to the device entry point for the target
device. This operation is supported for block, character, and
STREAMS devices.

ldi_ioctl(9F) Pass an ioctl request to the device entry point for the target
device. This operation is supported for block, character, and
STREAMS devices. The LDI supports STREAMS linking and
STREAMS ioctl commands. See the “STREAM IOCTLS”
section of the ldi_ioctl(9F) man page. See also the ioctl
commands in the streamio(7I) man page.

ldi_devmap(9F) Pass a devmap request to the device entry point for the target
device. This operation is supported for block and character
devices.

ldi_getmsg(9F) Get a message block from a stream.

ldi_putmsg(9F) Put a message block on a stream.

Retrieving Target Device Information
This section describes LDI interfaces that kernel device consumers can use to retrieve
device information about a specified target device. A target device is specified by a
layered driver handle. A kernel device consumer can receive information such as
device number, device open type, device ID, device minor name, and device size.

ldi_get_dev(9F) Get the dev_t device number for the target device
specified by the layered driver handle.

ldi_get_otyp(9F) Get the open flag that was used to open the target
device specified by the layered driver handle. This
flag tells you whether the target device is a character
device or a block device.

Chapter 13 • Layered Driver Interface (LDI) 203

ldi_get_devid(9F) Get the ddi_devid_t device ID for the target device
specified by the layered driver handle. Use
ddi_devid_free(9F) to free the ddi_devid_t
when you are finished using the device ID.

ldi_get_minor_name(9F) Retrieve a buffer that contains the name of the minor
node that was opened for the target device. Use
kmem_free(9F) to release the buffer when you are
finished using the minor node name.

ldi_get_size(9F) Retrieve the partition size of the target device
specified by the layered driver handle.

Retrieving Target Device Property Values
This section describes LDI interfaces that kernel device consumers can use to retrieve
property information about a specified target device. A target device is specified by a
layered driver handle. A kernel device consumer can receive values and addresses of
properties and determine whether a property exists.

ldi_prop_exists(9F) Return 1 if the property exists for the
target device specified by the layered
driver handle. Return 0 if the property
does not exist for the specified target
device.

ldi_prop_get_int(9F) Search for an int integer property that
is associated with the target device
specified by the layered driver handle. If
the integer property is found, return the
property value.

ldi_prop_get_int64(9F) Search for an int64_t integer property
that is associated with the target device
specified by the layered driver handle. If
the integer property is found, return the
property value.

ldi_prop_lookup_int_array(9F) Retrieve the address of an int integer
array property value for the target
device specified by the layered driver
handle.

ldi_prop_lookup_int64_array(9F) Retrieve the address of an int64_t
integer array property value for the
target device specified by the layered
driver handle.

204 Writing Device Drivers • January 2005

ldi_prop_lookup_string(9F) Retrieve the address of a
NULL-terminated string property value
for the target device specified by the
layered driver handle.

ldi_prop_lookup_string_array(9F) Retrieve the address of an array of
strings. The string array is an array of
pointers to NULL-terminated strings of
property values for the target device
specified by the layered driver handle.

ldi_prop_lookup_byte_array(9F) Retrieve the address of an array of
bytes. The byte array is a property value
of the target device specified by the
layered driver handle.

Receiving Asynchronous Device Event Notification
The LDI enables kernel device consumers to register for event notification and to
receive event notification from target devices. A kernel device consumer can register
an event handler that will be called when the event occurs. The kernel device
consumer must open a device and receive a layered driver handle before the kernel
device consumer can register for event notification with the LDI event notification
interfaces.

The LDI event notification interfaces enable a kernel device consumer to specify an
event name and to retrieve an associated kernel event cookie. The kernel device
consumer can then pass the layered driver handle (ldi_handle_t), the cookie
(ddi_eventcookie_t), and the event handler to ldi_add_event_handler(9F) to
register for event notification. When registration completes successfully, the kernel
device consumer receives a unique LDI event handler identifier
(ldi_callback_id_t). The LDI event handler identifier is an opaque type that can
be used only with the LDI event notification interfaces.

The LDI provides a framework to register for events generated by other devices. The
LDI itself does not define any event types or provide interfaces for generating events.

The following describes the LDI asynchronous event notification interfaces:

ldi_callback_id_t Event handler identifier. An opaque type.

ldi_get_eventcookie(9F) Retrieve an event service cookie for the target
device specified by the layered driver handle.

ldi_add_event_handler(9F) Add the callback handler specified by the
ldi_callback_id_t registration identifier.
The callback handler is invoked when the
event specified by the ddi_eventcookie_t
cookie occurs.

Chapter 13 • Layered Driver Interface (LDI) 205

ldi_remove_event_handler(9F) Remove the callback handler specified by the
ldi_callback_id_t registration identifier.

LDI Kernel Interfaces Example
This section shows an example kernel device consumer that uses some of the LDI calls
discussed in the preceding sections in this chapter. This section discusses the following
aspects of this example module:

� “Device Configuration File” on page 206
� “Driver Source File” on page 206
� “Test the Layered Driver” on page 216

This example kernel device consumer is named lyr. The lyr module is a layered
driver that uses LDI calls to send data to a target device. In its open(9E) entry point,
the lyr driver opens the device that is specified by the lyr_targ property in the
lyr.conf configuration file. In its write(9E) entry point, the lyr driver writes all of
its incoming data to the device specified by the lyr_targ property.

Device Configuration File
In the configuration file shown below, the target device that the lyr driver is writing
to is the console.

EXAMPLE 13–1 Configuration File

#
Copyright 2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
#pragma ident "%Z%%M% %I% %E% SMI"

name="lyr" parent="pseudo" instance=1;

lyr_targ="/dev/console";

Driver Source File
In the driver source file shown below, the lyr_state_t structure holds the soft state
for the lyr driver. The soft state includes the layered driver handle (lh) for the
lyr_targ device and the layered identifier (li) for the lyr device. For more
information on soft state, see “Retrieving Driver Soft State Information” on page 455.

206 Writing Device Drivers • January 2005

In the lyr_open() entry point, ddi_prop_lookup_string(9F) retrieves from the
lyr_targ property the name of the target device for the lyr device to open. The
ldi_ident_from_dev(9F) function gets an LDI layered identifier for the lyr device.
The ldi_open_by_name(9F) function opens the lyr_targ device and gets a layered
driver handle for the lyr_targ device.

Note that if any failure occurs in lyr_open(), the ldi_close(9F),
ldi_ident_release(9F), and ddi_prop_free(9F) calls undo everything that was
done. The ldi_close(9F) function closes the lyr_targ device. The
ldi_ident_release(9F) function releases the lyr layered identifier. The
ddi_prop_free(9F) function frees resources allocated when the lyr_targ device
name was retrieved. If no failure occurs, the ldi_close(9F) and
ldi_ident_release(9F) functions are called in the lyr_close() entry point.

In the last line of the driver module, the ldi_write(9F) function is called. The
ldi_write(9F) function takes the data written to the lyr device in the
lyr_write() entry point and writes that data to the lyr_targ device. The
ldi_write(9F) function uses the layered driver handle for the lyr_targ device to
write the data to the lyr_targ device.

EXAMPLE 13–2 Driver Source File

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/cmn_err.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/stat.h>

#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunldi.h>

typedef struct lyr_state {
ldi_handle_t lh;
ldi_ident_t li;
dev_info_t *dip;
minor_t minor;
int flags;
kmutex_t lock;

} lyr_state_t;

#define LYR_OPENED 0x1 /* lh is valid */
#define LYR_IDENTED 0x2 /* li is valid */

static int lyr_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int lyr_attach(dev_info_t *, ddi_attach_cmd_t);
static int lyr_detach(dev_info_t *, ddi_detach_cmd_t);

Chapter 13 • Layered Driver Interface (LDI) 207

EXAMPLE 13–2 Driver Source File (Continued)

static int lyr_open(dev_t *, int, int, cred_t *);
static int lyr_close(dev_t, int, int, cred_t *);
static int lyr_write(dev_t, struct uio *, cred_t *);

static void *lyr_statep;

static struct cb_ops lyr_cb_ops = {
lyr_open, /* open */
lyr_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
lyr_write, /* write */
nodev, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* prop_op */
NULL, /* streamtab */
D_NEW | D_MP, /* cb_flag */
CB_REV, /* cb_rev */
nodev, /* aread */
nodev /* awrite */

};

static struct dev_ops lyr_dev_ops = {
DEVO_REV, /* devo_rev, */
0, /* refcnt */
lyr_info, /* getinfo */
nulldev, /* identify */
nulldev, /* probe */
lyr_attach, /* attach */
lyr_detach, /* detach */
nodev, /* reset */
&lyr_cb_ops, /* cb_ops */
NULL, /* bus_ops */
NULL /* power */

};

static struct modldrv modldrv = {
&mod_driverops,
"LDI example driver",
&lyr_dev_ops

};

static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL

208 Writing Device Drivers • January 2005

EXAMPLE 13–2 Driver Source File (Continued)

};

int
_init(void)
{

int rv;

if ((rv = ddi_soft_state_init(&lyr_statep, sizeof (lyr_state_t),
0)) != 0) {
cmn_err(CE_WARN, "lyr _init: soft state init failed\n");
return (rv);

}

if ((rv = mod_install(&modlinkage)) != 0) {
cmn_err(CE_WARN, "lyr _init: mod_install failed\n");
goto FAIL;

}

return (rv);
/*NOTEREACHED*/

FAIL:
ddi_soft_state_fini(&lyr_statep);
return (rv);

}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}

int
_fini(void)
{

int rv;

if ((rv = mod_remove(&modlinkage)) != 0) {
return(rv);

}

ddi_soft_state_fini(&lyr_statep);

return (rv);
}

/*
* 1:1 mapping between minor number and instance
*/
static int

Chapter 13 • Layered Driver Interface (LDI) 209

EXAMPLE 13–2 Driver Source File (Continued)

lyr_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{

int inst;
minor_t minor;
lyr_state_t *statep;
char *myname = "lyr_info";

minor = getminor((dev_t)arg);
inst = minor;
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:

statep = ddi_get_soft_state(lyr_statep, inst);
if (statep == NULL) {

cmn_err(CE_WARN, "%s: get soft state "
"failed on inst %d\n", myname, inst);

return (DDI_FAILURE);
}
*result = (void *)statep->dip;
break;

case DDI_INFO_DEVT2INSTANCE:
*result = (void *)inst;
break;

default:
break;

}

return (DDI_SUCCESS);
}

static int
lyr_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int inst;
lyr_state_t *statep;
char *myname = "lyr_attach";

switch (cmd) {
case DDI_ATTACH:

inst = ddi_get_instance(dip);

if (ddi_soft_state_zalloc(lyr_statep, inst) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s: ddi_soft_state_zallac failed "

"on inst %d\n", myname, inst);
goto FAIL;

}

statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);
if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

goto FAIL;

210 Writing Device Drivers • January 2005

EXAMPLE 13–2 Driver Source File (Continued)

}
statep->dip = dip;
statep->minor = inst;

if (ddi_create_minor_node(dip, "node", S_IFCHR, statep->minor,
DDI_PSEUDO, 0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s: ddi_create_minor_node failed on "

"inst %d\n", myname, inst);
goto FAIL;

}
mutex_init(&statep->lock, NULL, MUTEX_DRIVER, NULL);
return (DDI_SUCCESS);

case DDI_RESUME:
case DDI_PM_RESUME:
default:

break;
}
return (DDI_FAILURE);
/*NOTREACHED*/

FAIL:
ddi_soft_state_free(lyr_statep, inst);
ddi_remove_minor_node(dip, NULL);
return (DDI_FAILURE);

}

static int
lyr_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

int inst;
lyr_state_t *statep;
char *myname = "lyr_detach";

inst = ddi_get_instance(dip);
statep = ddi_get_soft_state(lyr_statep, inst);
if (statep == NULL) {

cmn_err(CE_WARN, "%s: get soft state failed on "
"inst %d\n", myname, inst);

return (DDI_FAILURE);
}
if (statep->dip != dip) {

cmn_err(CE_WARN, "%s: soft state does not match devinfo "
"on inst %d\n", myname, inst);

return (DDI_FAILURE);
}

switch (cmd) {
case DDI_DETACH:

mutex_destroy(&statep->lock);
ddi_soft_state_free(lyr_statep, inst);
ddi_remove_minor_node(dip, NULL);

Chapter 13 • Layered Driver Interface (LDI) 211

EXAMPLE 13–2 Driver Source File (Continued)

return (DDI_SUCCESS);
case DDI_SUSPEND:
case DDI_PM_SUSPEND:
default:

break;
}
return (DDI_FAILURE);

}

/*
* on this driver’s open, we open the target specified by a property and store
* the layered handle and ident in our soft state. a good target would be
* "/dev/console" or more interestingly, a pseudo terminal as specified by the
* tty command
*/
/*ARGSUSED*/
static int
lyr_open(dev_t *devtp, int oflag, int otyp, cred_t *credp)
{

int rv, inst = getminor(*devtp);
lyr_state_t *statep;
char *myname = "lyr_open";
dev_info_t *dip;
char *lyr_targ = NULL;

statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);
if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

return (EIO);
}
dip = statep->dip;

/*
* our target device to open should be specified by the "lyr_targ"
* string property, which should be set in this driver’s .conf file
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_NOTPROM,

"lyr_targ", &lyr_targ) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s: ddi_prop_lookup_string failed on "

"inst %d\n", myname, inst);
return (EIO);

}

/*
* since we only have one pair of lh’s and li’s available, we don’t
* allow multiple on the same instance
*/
mutex_enter(&statep->lock);
if (statep->flags & (LYR_OPENED | LYR_IDENTED)) {

cmn_err(CE_WARN, "%s: multiple layered opens or idents "
"from inst %d not allowed\n", myname, inst);

212 Writing Device Drivers • January 2005

EXAMPLE 13–2 Driver Source File (Continued)

mutex_exit(&statep->lock);
ddi_prop_free(lyr_targ);
return (EIO);

}

rv = ldi_ident_from_dev(*devtp, &statep->li);
if (rv != 0) {

cmn_err(CE_WARN, "%s: ldi_ident_from_dev failed on inst %d\n",
myname, inst);

goto FAIL;
}
statep->flags |= LYR_IDENTED;

rv = ldi_open_by_name(lyr_targ, FREAD | FWRITE, credp, &statep->lh,
statep->li);

if (rv != 0) {
cmn_err(CE_WARN, "%s: ldi_open_by_name failed on inst %d\n",

myname, inst);
goto FAIL;

}
statep->flags |= LYR_OPENED;

cmn_err(CE_CONT, "\n%s: opened target ’%s’ successfully on inst %d\n",
myname, lyr_targ, inst);

rv = 0;

FAIL:
/* cleanup on error */
if (rv != 0) {

if (statep->flags & LYR_OPENED)
(void)ldi_close(statep->lh, FREAD | FWRITE, credp);

if (statep->flags & LYR_IDENTED)
ldi_ident_release(statep->li);

statep->flags &= ~(LYR_OPENED | LYR_IDENTED);
}
mutex_exit(&statep->lock);

if (lyr_targ != NULL)
ddi_prop_free(lyr_targ);

return (rv);
}

/*
* on this driver’s close, we close the target indicated by the lh member
* in our soft state and release the ident, li as well. in fact, we MUST do
* both of these at all times even if close yields an error because the
* device framework effectively closes the device, releasing all data
* associated with it and simply returning whatever value the target’s
* close(9E) returned. therefore, we must as well.
*/
/*ARGSUSED*/

Chapter 13 • Layered Driver Interface (LDI) 213

EXAMPLE 13–2 Driver Source File (Continued)

static int
lyr_close(dev_t devt, int oflag, int otyp, cred_t *credp)
{

int rv, inst = getminor(devt);
lyr_state_t *statep;
char *myname = "lyr_close";

statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);
if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

return (EIO);
}

mutex_enter(&statep->lock);

rv = ldi_close(statep->lh, FREAD | FWRITE, credp);
if (rv != 0) {

cmn_err(CE_WARN, "%s: ldi_close failed on inst %d, but will ",
"continue to release ident\n", myname, inst);

}
ldi_ident_release(statep->li);
if (rv == 0) {

cmn_err(CE_CONT, "\n%s: closed target successfully on "
"inst %d\n", myname, inst);

}
statep->flags &= ~(LYR_OPENED | LYR_IDENTED);

mutex_exit(&statep->lock);
return (rv);

}

/*
* echo the data we receive to the target
*/
/*ARGSUSED*/
static int
lyr_write(dev_t devt, struct uio *uiop, cred_t *credp)
{

int rv, inst = getminor(devt);
lyr_state_t *statep;
char *myname = "lyr_write";

statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);
if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

return (EIO);
}

return (ldi_write(statep->lh, uiop, credp));

214 Writing Device Drivers • January 2005

EXAMPLE 13–2 Driver Source File (Continued)

}

� How to Build and Load the Layered Driver

1. Compile the driver.

Use the -D_KERNEL option to indicate that this is a kernel module.

� If you are compiling for a 64–bit SPARC architecture, use the -xarch=v9
option:

% cc -c -D_KERNEL -xarch=v9 lyr.c

� If you are compiling for a 32–bit SPARC or x86 architecture, use the following
command:

% cc -c -D_KERNEL lyr.c

2. Link the driver.

% ld -r -o lyr lyr.o

3. Install the configuration file.

As user root, copy the configuration file to the kernel driver area of the machine:

cp lyr.conf /usr/kernel/drv

4. Install the driver binary.

� As user root, copy the driver binary to the sparcv9 driver area on a 64–bit
SPARC architecture:

cp lyr /usr/kernel/drv/sparcv9

� As user root, copy the driver binary to the drv driver area on a 32–bit SPARC
or x86 architecture:

cp lyr /usr/kernel/drv

5. Load the driver.

As user root, use the add_drv(1M) command to load the driver.

add_drv lyr

List the pseudo devices to confirm that the lyr device now exists:

ls /devices/pseudo | grep lyr
lyr@1

lyr@1:node

Steps

Chapter 13 • Layered Driver Interface (LDI) 215

Test the Layered Driver
To test the lyr driver, write a message to the lyr device and verify that the message
displays on the lyr_targ device.

EXAMPLE 13–3 Write a Short Message to the Layered Device

In this example, the lyr_targ device is the console of the system where the lyr
device is installed.

If the display you are viewing is also the display for the console device of the system
where the lyr device is installed, note that writing to the console will corrupt your
display. The console messages will appear outside your window system. You will need
to redraw or refresh your display after testing the lyr driver.

If the display you are viewing is not the display for the console device of the system
where the lyr device is installed, log into or otherwise gain a view of the display of
the target console device.

The following command writes a very brief message to the lyr device:

echo "\n\n\t===> Hello World!! <===\n" > /devices/pseudo/lyr@1:node

You should see the following messages displayed on the target console:

console login:

===> Hello World!! <===

lyr:
lyr_open: opened target ’/dev/console’ successfully on inst 1
lyr:

lyr_close: closed target successfully on inst 1

The messages from lyr_open() and lyr_close() come from the cmn_err(9F)
calls in the lyr_open() and lyr_close() entry points.

EXAMPLE 13–4 Write a Longer Message to the Layered Device

The following command writes a longer message to the lyr device:

cat lyr.conf > /devices/pseudo/lyr@1:node

You should see the following messages displayed on the target console:

lyr:
lyr_open: opened target ’/dev/console’ successfully on inst 1
#
Copyright 2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
#pragma ident "%Z%%M% %I% %E% SMI"

216 Writing Device Drivers • January 2005

EXAMPLE 13–4 Write a Longer Message to the Layered Device (Continued)

name="lyr" parent="pseudo" instance=1;
lyr_targ="/dev/console";
lyr:

lyr_close: closed target successfully on inst 1

EXAMPLE 13–5 Change the Target Device

To change the target device, edit /usr/kernel/drv/lyr.conf and change the
value of the lyr_targ property to be a path to a different target device. For example,
the target device could be the output of a tty command in a local terminal. An
example of such a device path is /dev/pts/4.

Make sure the lyr device is not in use before you update the driver to use the new
target device.

modinfo -c | grep lyr

174 3 lyr UNLOADED/UNINSTALLED

Use the update_drv(1M) command to reload the lyr.conf configuration file:

update_drv lyr

Write a message to the lyr device again and verify that the message displays on the
new lyr_targ device.

User Interfaces
The LDI includes user-level library and command interfaces to report device layering
and usage information. “Device Information Library Interfaces” on page 218 discusses
the libdevinfo(3LIB) interfaces for reporting device layering information. “Print
System Configuration Command Interfaces” on page 220 discusses the prtconf(1M)
interfaces for reporting kernel device usage information. “Device User Command
Interfaces” on page 222 discusses the fuser(1M) interfaces for reporting device
consumer information.

Chapter 13 • Layered Driver Interface (LDI) 217

Device Information Library Interfaces
The LDI includes libdevinfo(3LIB) interfaces that report a snapshot of device
layering information. Device layering occurs when one device in the system is a
consumer of another device in the system. Device layering information is reported
only if both the consumer and the target are bound to a device node that is contained
within the snapshot.

Device layering information is reported by the libdevinfo(3LIB) interfaces as a
directed graph. An lnode is an abstraction that represents a vertex in the graph and is
bound to a device node. You can use libdevinfo(3LIB) interfaces to access
properties of an lnode, such as the name and device number of the node.

The edges in the graph are represented by a link. A link has a source lnode that
represents the device consumer. A link also has a target lnode that represents the
target device.

The following describes the libdevinfo(3LIB) device layering information
interfaces:

DINFOLYR Snapshot flag that enables you to
capture device layering information.

di_link_t A directed link between two endpoints.
Each endpoint is a di_lnode_t. An
opaque structure.

di_lnode_t The endpoint of a link. An opaque
structure. A di_lnode_t is bound to a
di_node_t.

di_node_t Represents a device node. An opaque
structure. A di_node_t is not
necessarily bound to a di_lnode_t.

di_walk_link(3DEVINFO) Walk all links in the snapshot.

di_walk_lnode(3DEVINFO) Walk all lnodes in the snapshot.

di_link_next_by_node(3DEVINFO) Get a handle to the next link where the
specified di_node_t node is either the
source or the target.

di_link_next_by_lnode(3DEVINFO) Get a handle to the next link where the
specified di_lnode_t lnode is either
the source or the target.

di_link_to_lnode(3DEVINFO) Get the lnode that corresponds to the
specified endpoint of a di_link_t link.

218 Writing Device Drivers • January 2005

di_link_spectype(3DEVINFO) Get the link spectype. The spectype
indicates how the target device is being
accessed. The target device is
represented by the target lnode.

di_lnode_next(3DEVINFO) Get a handle to the next occurrence of
the specified di_lnode_t lnode
associated with the specified
di_node_t device node.

di_lnode_name(3DEVINFO) Get the name that is associated with the
specified lnode.

di_lnode_devinfo(3DEVINFO) Get a handle to the device node that is
associated with the specified lnode.

di_lnode_devt(3DEVINFO) Get the device number of the device
node that is associated with the specified
lnode.

The device layering information returned by the LDI can be quite complex. Therefore,
the LDI provides interfaces to help you traverse the device tree and the device usage
graph. These interfaces enable the consumer of a device tree snapshot to associate
custom data pointers with different structures within the snapshot. For example, as an
application traverses lnodes, the application can update the custom pointer associated
with each lnode to mark which lnodes already have been seen.

The following describes the libdevinfo(3LIB) node and link marking interfaces:

di_lnode_private_set(3DEVINFO) Associate the specified data with the
specified lnode. This association enables
you to traverse lnodes in the snapshot.

di_lnode_private_get(3DEVINFO) Retrieve a pointer to data that was
associated with an lnode through a call to
di_lnode_private_set(3DEVINFO).

di_link_private_set(3DEVINFO) Associate the specified data with the
specified link. This association enables
you to traverse links in the snapshot.

di_link_private_get(3DEVINFO) Retrieve a pointer to data that was
associated with a link through a call to
di_link_private_set(3DEVINFO).

Chapter 13 • Layered Driver Interface (LDI) 219

Print System Configuration Command Interfaces
The prtconf(1M) command is enhanced to display kernel device usage information.
The default prtconf(1M) output is not changed. Device usage information is
displayed when you specify the verbose option (-v) with the prtconf(1M)
command. Usage information about a particular device is displayed when you specify
a path to that device on the prtconf(1M) command line.

prtconf -v Display device minor node and device usage information. Show
kernel consumers and the minor nodes each kernel consumer
currently has open.

prtconf path Display device usage information for the device specified by
path.

prtconf -a path Display device usage information for the device specified by
path and all device nodes that are ancestors of path.

prtconf -c path Display device usage information for the device specified by
path and all device nodes that are children of path.

EXAMPLE 13–6 Device Usage Information

When you want usage information about a particular device, the value of the path
parameter can be any valid device path.

% prtconf /dev/cfg/c0

SUNW,isptwo, instance #0

EXAMPLE 13–7 Ancestor Node Usage Information

To display usage information about a particular device and all device nodes that are
ancestors of that particular device, specify the -a flag with the prtconf(1M)
command. Ancestors include all nodes up to the root of the device tree. If you specify
the -a flag with the prtconf(1M) command, then you must also specify a device path
name.

% prtconf -a /dev/cfg/c0
SUNW,Sun-Fire

ssm, instance #0
pci, instance #0

pci, instance #0

SUNW,isptwo, instance #0

EXAMPLE 13–8 Child Node Usage Information

To display usage information about a particular device and all device nodes that are
children of that particular device, specify the -c flag with the prtconf(1M)
command. If you specify the -c flag with the prtconf(1M) command, then you must
also specify a device path name.

220 Writing Device Drivers • January 2005

EXAMPLE 13–8 Child Node Usage Information (Continued)

% prtconf -c /dev/cfg/c0
SUNW,isptwo, instance #0

sd (driver not attached)
st (driver not attached)
sd, instance #1
sd, instance #0
sd, instance #6
st, instance #1 (driver not attached)
st, instance #0 (driver not attached)
st, instance #2 (driver not attached)
st, instance #3 (driver not attached)
st, instance #4 (driver not attached)
st, instance #5 (driver not attached)
st, instance #6 (driver not attached)
ses, instance #0 (driver not attached)

...

EXAMPLE 13–9 Layering and Device Minor Node Information – Keyboard

To display device layering and device minor node information about a particular
device, specify the -v flag with the prtconf(1M) command.

% prtconf -v /dev/kbd
conskbd, instance #0

System properties:
...

Device Layered Over:
mod=kb8042 dev=(101,0)

dev_path=/isa/i8042@1,60/keyboard@0
Device Minor Nodes:

dev=(103,0)
dev_path=/pseudo/conskbd@0:kbd

spectype=chr type=minor
dev_link=/dev/kbd

dev=(103,1)
dev_path=/pseudo/conskbd@0:conskbd

spectype=chr type=internal
Device Minor Layered Under:

mod=wc accesstype=chr

dev_path=/pseudo/wc@0

This example shows that the /dev/kbd device is layered on top of the hardware
keyboard device (/isa/i8042@1,60/keyboard@0). This example also shows that
the /dev/kbd device has two device minor nodes. The first minor node has a /dev
link that can be used to access the node. The second minor node is an internal node
that is not accessible through the file system. The second minor node has been opened
by the wc driver, which is the workstation console. Compare the output from this
example to the output from Example 13–12.

Chapter 13 • Layered Driver Interface (LDI) 221

EXAMPLE 13–10 Layering and Device Minor Node Information – Network Device

This example shows which devices are using the currently plumbed network device.

% prtconf -v /dev/iprb0
pci1028,145, instance #0

Hardware properties:
...

Interrupt Specifications:
...

Device Minor Nodes:
dev=(27,1)

dev_path=/pci@0,0/pci8086,244e@1e/pci1028,145@c:iprb0
spectype=chr type=minor
alias=/dev/iprb0

dev=(27,4098)
dev_path=<clone>
Device Minor Layered Under:

mod=udp6 accesstype=chr
dev_path=/pseudo/udp6@0

dev=(27,4097)
dev_path=<clone>
Device Minor Layered Under:

mod=udp accesstype=chr
dev_path=/pseudo/udp@0

dev=(27,4096)
dev_path=<clone>
Device Minor Layered Under:

mod=udp accesstype=chr

dev_path=/pseudo/udp@0

This example shows that the iprb0 device has been linked under udp and udp6.
Notice that no paths are shown to the minor nodes that udp and udp6 are using. No
paths are shown in this case because the minor nodes were created through clone
opens of the iprb driver, and therefore there are no file system paths by which these
nodes can be accessed. Compare the output from this example to the output from
Example 13–11.

Device User Command Interfaces
The fuser(1M) command is enhanced to display device usage information. The
fuser(1M) command displays device usage information only if path represents a
device minor node. The -d flag is valid for the fuser(1M) command only if you
specify a path that represents a device minor node.

fuser path Display information about application device consumers and
kernel device consumers if path represents a device minor node.

fuser -d path Display all users of the underlying device that is associated with
the device minor node represented by path.

222 Writing Device Drivers • January 2005

Kernel device consumers are reported in one of the following four formats. Kernel
device consumers always are surrounded by square brackets ([]).

[kernel_module_name]
[kernel_module_name,dev_path=path]
[kernel_module_name,dev=(major,minor)]
[kernel_module_name,dev=(major,minor),dev_path=path]

When the fuser(1M) command displays file or device users, the output consists of a
process ID on stdout followed by a character on stderr. The character on stderr
describes how the file or device is being used. All kernel consumer information is
displayed to stderr. No kernel consumer information is displayed to stdout.

If you do not use the -d flag, then the fuser(1M) command reports consumers of
only the device minor node that is specified by path. If you use the -d flag, then the
fuser(1M) command reports consumers of the device node that underlies the minor
node specified by path. The following example illustrates the difference in report
output in these two cases.

EXAMPLE 13–11 Consumers of Underlying Device Nodes

Most network devices clone their minor node when the device is opened. If you
request device usage information for the clone minor node, the usage information
might show that no process is using the device. If instead you request device usage
information for the underlying device node, the usage information might show that a
process is using the device. In this example, no device consumers are reported when
only a device path is passed to the fuser(1M) command. When the -d flag is used, the
output shows that the device is being accessed by udp and udp6.

% fuser /dev/iprb0
/dev/iprb0:
% fuser -d /dev/iprb0

/dev/iprb0: [udp,dev_path=/pseudo/udp@0] [udp6,dev_path=/pseudo/udp6@0]

Compare the output from this example to the output from Example 13–10.

EXAMPLE 13–12 Consumer of the Keyboard Device

In this example, a kernel consumer is accessing /dev/kbd. The kernel consumer that
is accessing the /dev/kbd device is the workstation console driver.

% fuser -d /dev/kbd

/dev/kbd: [genunix] [wc,dev_path=/pseudo/wc@0]

Compare the output from this example to the output from Example 13–9.

Chapter 13 • Layered Driver Interface (LDI) 223

224 Writing Device Drivers • January 2005

PART II
Designing Specific Kinds of Device
Drivers

The second part of the book provides design information that is specific to the type of
driver:

� Chapter 14 describes drivers for character-oriented devices.

� Chapter 15 describes drivers for a block-oriented devices.

� Chapter 16 outlines the Sun Common SCSI Architecture (SCSA) and the
requirements for SCSI target drivers.

� Chapter 17 explains how to apply SCSA to SCSI Host Bus Adapter (HBA) drivers.

� Chapter 18 describes the Generic LAN driver (GLD), a Solaris network driver that
uses STREAMS technology and the Data Link Provider Interface (DLPI).

� Chapter 19 describes how to write a client USB device driver using the USBA 2.0
framework.

225

226 Writing Device Drivers • January 2005

CHAPTER 14

Drivers for Character Devices

A character device does not have physically addressable storage media, such as tape
drives or serial ports, where I/O is normally performed in a byte stream. This chapter
describes the structure of a character device driver, focusing in particular on entry
points for character drivers. In addition, this chapter describes the use of physio(9F)
and aphysio(9F) in the context of synchronous and asynchronous I/O transfers.

This chapter provides information on the following subjects:

� “Overview of the Character Driver Structure” on page 227
� “Character Device Autoconfiguration” on page 229
� “Device Access (Character Drivers)” on page 230
� “I/O Request Handling” on page 232
� “Mapping Device Memory” on page 242
� “Multiplexing I/O on File Descriptors” on page 243
� “Miscellaneous I/O Control” on page 246
� “32–bit and 64–bit Data Structure Macros” on page 251

Overview of the Character Driver
Structure
Figure 14–1 shows data structures and routines that define the structure of a character
device driver. Device drivers typically include the following elements:

� Device-loadable driver section
� Device configuration section
� Character driver entry points

The shaded device access section in the following figure illustrates character driver
entry points.

227

modlinkage(9S)

modldrv(9S)

dev_ops(9S)

cb_ops(9S) Character Device

open(9E)
close(9E)
read(9E)
write(9E)
ioctl(9E)
chpoll(9E)
aread(9E)
awrite(9E)
mmap(9E)
devmap(9E)
segmap(9E)
prop_op(9E)

FIGURE 14–1 Character Driver Roadmap

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to
a cb_ops(9S) structure. These structures contain pointers to the driver entry points:

� open(9E)
� close(9E)
� read(9E)
� write(9E)
� ioctl(9E)
� chpoll(9E)
� aread(9E)
� awrite(9E)
� mmap(9E)
� devmap(9E)
� segmap(9E)
� prop_op(9E)

Note – Some of these entry points can be replaced with nodev(9F) or nulldev(9F) as
appropriate.

228 Writing Device Drivers • January 2005

Character Device Autoconfiguration
The attach(9E) routine should perform the common initialization tasks that all
devices require, such as:

� Allocating per-instance state structures
� Registering device interrupts
� Mapping the device’s registers
� Initializing mutex variables and condition variables
� Creating power-manageable components
� Creating minor nodes

See “attach() Entry Point” on page 99 for code examples of these tasks.

Character device drivers create minor nodes of type S_IFCHR. A minor node of
S_IFCHR causes a character special file that represents the node to eventually appear
in the /devices hierarchy.

The following example shows a typical attach(9E) routine for character drivers.
Properties that are associated with the device are commonly declared in an attach()
routine. This example uses a predefined Size property. Size is the equivalent of the
Nblocks property for getting the size of partition in a block device. If, for example,
you are doing character I/O on a disk device, you might use Size to get the size of a
partition. Since Size is a 64–bit property, you must use a 64–bit property interface. In
this case, you use ddi_prop_update_int64(9F). See “Device Properties” on page 73
for more information about properties.

EXAMPLE 14–1 Character Driver attach() Routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance = ddi_get_instance(dip);
switch (cmd) {
case DDI_ATTACH:

allocate a state structure and initialize it.
map the device’s registers.
add the device driver’s interrupt handler(s).
initialize any mutexes and condition variables.
create power manageable components.

/*
* Create the device’s minor node. Note that the node_type
* argument is set to DDI_NT_TAPE.
*/
if (ddi_create_minor_node(dip, "minor_name", S_IFCHR,

instance, DDI_NT_TAPE, 0) == DDI_FAILURE) {
free resources allocated so far.

/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);
return (DDI_FAILURE);

Chapter 14 • Drivers for Character Devices 229

EXAMPLE 14–1 Character Driver attach() Routine (Continued)

}
/*
* Create driver properties like "Size." Use "Size"
* instead of "size" to ensure the property works
* for large bytecounts.
*/
xsp->Size = size of device in bytes;
maj_number = ddi_driver_major(dip);
if (ddi_prop_update_int64(makedevice(maj_number, instance),

dip, "Size", xsp->Size) != DDI_PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Size property\n",

ddi_get_name(dip));
free resources allocated so far

return (DDI_FAILURE);
}
[...]
return (DDI_SUCCESS);

case DDI_RESUME:
For information, see Chapter 12, "Power Managerment," in this book.

default:
return (DDI_FAILURE);
}

}

Device Access (Character Drivers)
Access to a device by one or more application programs is controlled through the
open(9E) and close(9E) entry points. An open(2) system call to a special file
representing a character device always causes a call to the open(9E) routine for the
driver. For a particular minor device, open(9E) can be called many times. The
close(9E) routine is called only when the final reference to a device is removed. If the
device is accessed through file descriptors, the final call to close(9E) can occur as a
result of a close(2) or exit(2) system call. If the device is accessed through memory
mapping, the final call to close(9E) can occur as a result of a munmap(2) system call.

open() Entry Point (Character Drivers)
The primary function of open() is to verify that the open request is allowed. The
syntax for open(9E) is as follows:

int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

where:

230 Writing Device Drivers • January 2005

devp Pointer to a device number. The open() routine is passed a pointer so that
the driver can change the minor number. With this pointer, drivers can
dynamically create minor instances of the device. An example would be a
pseudo terminal driver that creates a new pseudo-terminal whenever the
driver is opened. A driver that dynamically chooses the minor number
normally creates only one minor device node in attach(9E) with
ddi_create_minor_node(9F), then changes the minor number component
of *devp using makedevice(9F) and getmajor(9F):

*devp = makedevice(getmajor(*devp), new_minor);

You do not have to call ddi_create_minor_node(9F) for the new minor. A
driver may not change the major number of *devp. The driver must keep
track of available minor numbers internally.

flag Flag with bits to indicate whether the device is opened for reading (FREAD),
writing (FWRITE), or both. User threads issuing the open(2) system call can
also request exclusive access to the device (FEXCL) or specify that the open
should not block for any reason (FNDELAY), but the driver must enforce both
cases. A driver for a write-only device such as a printer might consider an
open(9E) for reading invalid.

otyp Integer that indicates how open() was called. The driver must check that
the value of otyp is appropriate for the device. For character drivers, otyp
should be OTYP_CHR (see the open(9E) man page).

credp Pointer to a credential structure containing information about the caller, such
as the user ID and group IDs. Drivers should not examine the structure
directly, but should instead use drv_priv(9F) to check for the common case
of root privileges. In this example, only root or a user with the
PRIV_SYS_DEVICES privilege is allowed to open the device for writing.

The following example shows a character driver open(9E) routine.

EXAMPLE 14–2 Character Driver open(9E) Routine

static int
xxopen(dev_t *devp, int flag, int otyp, cred_t *credp)
{

minor_t instance;

if (getminor(*devp) is invalid)
return (EINVAL);

instance = getminor(*devp); /* one-to-one example mapping */
/* Is the instance attached? */
if (ddi_get_soft_state(statep, instance) == NULL)

return (ENXIO);
/* verify that otyp is appropriate */
if (otyp != OTYP_CHR)

return (EINVAL);
if ((flag & FWRITE) && drv_priv(credp) == EPERM)

return (EPERM);

Chapter 14 • Drivers for Character Devices 231

EXAMPLE 14–2 Character Driver open(9E) Routine (Continued)

return (0);

}

close() Entry Point (Character Drivers)
The syntax for close(9E) is as follows:

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

close() should perform any cleanup necessary to finish using the minor device, and
prepare the device (and driver) to be opened again. For example, the open routine
might have been invoked with the exclusive access (FEXCL) flag. A call to close(9E)
would allow further open routines to continue. Other functions that close(9E) might
perform are:

� Waiting for I/O to drain from output buffers before returning
� Rewinding a tape (tape device)
� Hanging up the phone line (modem device)

A driver that waits for I/O to drain could wait forever if draining stalls due to external
conditions such as flow control. See “Threads Unable to Receive Signals” on page 71
for information about how to avoid this problem.

I/O Request Handling
This section discusses I/O request processing in detail.

User Addresses
When a user thread issues a write(2) system call, the thread passes the address of a
buffer in user space:

char buffer[] = "python";

count = write(fd, buffer, strlen(buffer) + 1);

232 Writing Device Drivers • January 2005

The system builds a uio(9S) structure to describe this transfer by allocating an
iovec(9S) structure and setting the iov_base field to the address passed to
write(2), in this case, buffer. The uio(9S) structure is passed to the driver
write(9E) routine. See “Vectored I/O” on page 233 for more information about the
uio(9S) structure.

The address in the iovec(9S) is in user space, not kernel space. Thus, the address is
neither guaranteed to be currently in memory nor to be a valid address. In either case,
accessing a user address directly from the device driver or from the kernel could crash
the system. Thus, device drivers should never access user addresses directly. Instead, a
data transfer routine in the Solaris 10 DDI/DKI should be used to transfer data into or
out of the kernel. These routines can handle page faults. The DDI/DKI routines can
bring in the proper user page to continue the copy transparently. Alternatively, the
routines can return an error on an invalid access.

copyout(9F) can be used to copy data from kernel space to user space. copyin(9F)
can copy data from user space to kernel space. ddi_copyout(9F) and
ddi_copyin(9F) operate similarly but are to be used in the ioctl(9E) routine.
copyin(9F) and copyout(9F) can be used on the buffer described by each iovec(9S)
structure, or uiomove(9F) can perform the entire transfer to or from a contiguous area
of driver or device memory.

Vectored I/O
In character drivers, transfers are described by a uio(9S) structure. The uio(9S)
structure contains information about the direction and size of the transfer, plus an
array of buffers for one end of the transfer. The other end is the device.

The uio(9S) structure contains the following members:

iovec_t *uio_iov; /* base address of the iovec */
/* buffer description array */

int uio_iovcnt; /* the number of iovec structures */
off_t uio_offset; /* 32-bit offset into file where */

/* data is transferred from or to */
offset_t uio_loffset; /* 64-bit offset into file where */

/* data is transferred from or to */
uio_seg_t uio_segflg; /* identifies the type of I/O */

/* transfer: */
/* UIO_SYSSPACE: kernel <-> kernel */
/* UIO_USERSPACE: kernel <-> user */

short uio_fmode; /* file mode flags (not driver setTable) */
daddr_t uio_limit; /* 32-bit ulimit for file (maximum */

/* block offset). not driver settable. */
diskaddr_t uio_llimit; /* 64-bit ulimit for file (maximum block */

/* block offset). not driver settable. */
int uio_resid; /* amount (in bytes) not */

/* transferred on completion */

Chapter 14 • Drivers for Character Devices 233

A uio(9S) structure is passed to the driver read(9E) and write(9E) entry points. This
structure is generalized to support what is called gather-write and scatter-read. When
writing to a device, the data buffers to be written do not have to be contiguous in
application memory. Similarly, data that is transferred from a device into memory
comes off in a contiguous stream but can go into noncontiguous areas of application
memory. See the readv(2), writev(2), pread(2), and pwrite(2) man pages for more
information on scatter-gather I/O.

Each buffer is described by an iovec(9S) structure. This structure contains a pointer to
the data area and the number of bytes to be transferred.

caddr_t iov_base; /* address of buffer */

int iov_len; /* amount to transfer */

The uio structure contains a pointer to an array of iovec(9S) structures. The base
address of this array is held in uio_iov, and the number of elements is stored in
uio_iovcnt.

The uio_offset field contains the 32-bit offset into the device at which the
application needs to begin the transfer. uio_loffset is used for 64-bit file offsets. If
the device does not support the notion of an offset, these fields can be safely ignored.
The driver should interpret either uio_offset or uio_loffset, but not both. If the
driver has set the D_64BIT flag in the cb_ops(9S) structure, that driver should use
uio_loffset.

The uio_resid field starts out as the number of bytes to be transferred, that is, the
sum of all the iov_len fields in uio_iov. This field must be set by the driver to the
number of bytes that were not transferred before returning. The read(2) and write(2)
system calls use the return value from the read(9E) and write(9E) entry points to
determine failed transfers. If a failure occurs, these routines return -1. If the return
value indicates success, the system calls return the number of bytes requested minus
uio_resid. If uio_resid is not changed by the driver, the read(2) and write(2)
calls return 0. A return value of 0 indicates end-of-file, even though all the data has
been transferred.

The support routines uiomove(9F), physio(9F), and aphysio(9F) update the
uio(9S) structure directly. These support routines update the device offset to account
for the data transfer. Neither the uio_offset or uio_loffset fields need to be
adjusted when the driver is used with a seekable device that uses the concept of
position. I/O performed to a device in this manner is constrained by the maximum
possible value of uio_offset or uio_loffset. An example of such a usage is raw
I/O on a disk.

If the device has no concept of position, the driver can take the following steps:

1. Save uio_offset or uio_loffset.
2. Perform the I/O operation.
3. Restore uio_offset or uio_loffset to the field’s initial value.

234 Writing Device Drivers • January 2005

I/O that is performed to a device in this manner is not constrained by the maximum
possible value of uio_offset or uio_loffset. An example of this type of usage is
I/O on a serial line.

The following example shows one way to preserve uio_loffset in the read(9E)
function.

static int
xxread(dev_t dev, struct uio *uio_p, cred_t *cred_p)
{

offset_t off;
[...]

off = uio_p->uio_loffset; /* save the offset */
/* do the transfer */
uio_p->uio_loffset = off; /* restore it */

}

Differences Between Synchronous and
Asynchronous I/O
Data transfers can be synchronous or asynchronous. The determining factor is whether
the entry point that schedules the transfer returns immediately or waits until the I/O
has been completed.

The read(9E) and write(9E) entry points are synchronous entry points. The transfer
must not return until the I/O is complete. Upon return from the routines, the process
knows whether the transfer has succeeded.

The aread(9E) and awrite(9E) entry points are asynchronous entry points.
Asynchronous entry points schedule the I/O and return immediately. Upon return,
the process that issues the request knows that the I/O is scheduled and that the status
of the I/O must be determined later. In the meantime, the process can perform other
operations.

With an asynchronous I/O request to the kernel, the process is not required to wait
while the I/O is in process. A process can perform multiple I/O requests and let the
kernel handle the data transfer details. Asynchronous I/O requests enable applications
such as transaction processing to use concurrent programming methods to increase
performance or response time. Any performance boost for applications that use
asynchronous I/O, however, comes at the expense of greater programming
complexity.

Chapter 14 • Drivers for Character Devices 235

Data Transfer Methods
Data can be transferred using either programmed I/O or DMA. These data transfer
methods can be used either by synchronous or by asynchronous entry points,
depending on the capabilities of the device.

Programmed I/O Transfers
Programmed I/O devices rely on the CPU to perform the data transfer. Programmed
I/O data transfers are identical to other read and write operations for device registers.
Various data access routines are used to read or store values to device memory.

uiomove(9F) can be used to transfer data to some programmed I/O devices.
uiomove(9F) transfers data between the user space, as defined by the uio(9S)
structure, and the kernel. uiomove() can handle page faults, so the memory to which
data is transferred need not be locked down. uiomove() also updates the
uio_resid field in the uio(9S) structure. The following example shows one way to
write a ramdisk read(9E) routine. It uses synchronous I/O and relies on the presence
of the following fields in the ramdisk state structure:

caddr_t ram; /* base address of ramdisk */

int ramsize; /* size of the ramdisk */

EXAMPLE 14–3 Ramdisk read(9E) Routine Using uiomove(9F)

static int
rd_read(dev_t dev, struct uio *uiop, cred_t *credp)
{

rd_devstate_t *rsp;

rsp = ddi_get_soft_state(rd_statep, getminor(dev));
if (rsp == NULL)
return (ENXIO);

if (uiop->uio_offset >= rsp->ramsize)
return (EINVAL);

/*
* uiomove takes the offset into the kernel buffer,
* the data transfer count (minimum of the requested and
* the remaining data), the UIO_READ flag, and a pointer
* to the uio structure.
*/
return (uiomove(rsp->ram + uiop->uio_offset,

min(uiop->uio_resid, rsp->ramsize - uiop->uio_offset),
UIO_READ, uiop));

}

236 Writing Device Drivers • January 2005

Another example of programmed I/O would be a driver that writes data one byte at a
time directly to the device’s memory. Each byte is retrieved from the uio(9S) structure
by using uwritec(9F). The byte is then sent to the device. read(9E) can use
ureadc(9F) to transfer a byte from the device to the area described by the uio(9S)
structure.

EXAMPLE 14–4 Programmed I/O write(9E) Routine Using uwritec(9F)

static int
xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)
{

int value;
struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
if the device implements a power manageable component, do this:

pm_busy_component(xsp->dip, 0);
if (xsp->pm_suspended)

ddi_dev_is_needed(xsp->dip, normal power);

while (uiop->uio_resid > 0) {
/*
* do the programmed I/O access
*/
value = uwritec(uiop);
if (value == -1)

return (EFAULT);
ddi_put8(xsp->data_access_handle, &xsp->regp->data,

(uint8_t)value);
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

START_TRANSFER);
/*
* this device requires a ten microsecond delay
* between writes
*/
drv_usecwait(10);

}
pm_idle_component(xsp->dip, 0);
return (0);

}

DMA Transfers (Synchronous)
Character drivers generally use physio(9F) to do the setup work for DMA transfers in
read(9E) and write(9E), as is shown in Example 14–5.

int physio(int (*strat)(struct buf *), struct buf *bp,
dev_t dev, int rw, void (*mincnt)(struct buf *),

struct uio *uio);

Chapter 14 • Drivers for Character Devices 237

physio(9F) requires the driver to provide the address of a strategy(9E) routine.
physio(9F) ensures that memory space is locked down, that is, memory cannot be
paged out, for the duration of the data transfer. This lock-down is necessary for DMA
transfers because DMA transfers cannot handle page faults. physio(9F) also provides
an automated way of breaking a larger transfer into a series of smaller, more
manageable ones. See “minphys() Entry Point” on page 240 for more information.

EXAMPLE 14–5 read(9E) and write(9E) Routines Using physio(9F)

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;
int ret;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B_READ, xxminphys, uiop);
return (ret);

}

static int
xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;
int ret;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B_WRITE, xxminphys, uiop);
return (ret);

}

In the call to physio(9F), xxstrategy() is a pointer to the driver strategy routine.
Passing NULL as the buf(9S) structure pointer tells physio(9F) to allocate a buf(9S)
structure. If the driver must provide physio(9F) with a buf(9S) structure,
getrbuf(9F) should be used to allocate the structure. physio(9F) returns zero if the
transfer completes successfully, or an error number on failure. After calling
strategy(9E), physio(9F) calls biowait(9F) to block until the transfer either
completes or fails. The return value of physio(9F) is determined by the error field in
the buf(9S) structure set by bioerror(9F).

DMA Transfers (Asynchronous)
Character drivers that support aread(9E) and awrite(9E) use aphysio(9F) instead
of physio(9F).

238 Writing Device Drivers • January 2005

int aphysio(int (*strat)(struct buf *), int (*cancel)(struct buf *),
dev_t dev, int rw, void (*mincnt)(struct buf *),

struct aio_req *aio_reqp);

Note – The address of anocancel(9F) is the only value that can currently be passed as
the second argument to aphysio(9F).

aphysio(9F) requires the driver to pass the address of a strategy(9E) routine.
aphysio(9F) ensures that memory space is locked down, that is, cannot be paged out,
for the duration of the data transfer. This lock-down is necessary for DMA transfers
because DMA transfers cannot handle page faults. aphysio(9F) also provides an
automated way of breaking a larger transfer into a series of smaller, more manageable
ones. See “minphys() Entry Point” on page 240 for more information.

Example 14–5 and Example 14–6 demonstrate that the aread(9E) and awrite(9E)
entry points differ only slightly from the read(9E) and write(9E) entry points. The
difference lies mainly in their use of aphysio(9F) instead of physio(9F).

EXAMPLE 14–6 aread(9E) and awrite(9E) Routines Using aphysio(9F)

static int
xxaread(dev_t dev, struct aio_req *aiop, cred_t *cred_p)
{

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
return (aphysio(xxstrategy, anocancel, dev, B_READ,
xxminphys, aiop));

}

static int
xxawrite(dev_t dev, struct aio_req *aiop, cred_t *cred_p)
{

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
return (aphysio(xxstrategy, anocancel, dev, B_WRITE,
xxminphys,aiop));

}

Chapter 14 • Drivers for Character Devices 239

In the call to aphysio(9F), xxstrategy() is a pointer to the driver strategy routine.
aiop is a pointer to the aio_req(9S) structure. aiop is passed to aread(9E) and
awrite(9E). aio_req(9S) describes where the data is to be stored in user space.
aphysio(9F) returns zero if the I/O request is scheduled successfully or an error
number on failure. After calling strategy(9E), aphysio(9F) returns without waiting
for the I/O to complete or fail.

minphys() Entry Point
The minphys() entry point is a pointer to a function to be called by physio(9F) or
aphysio(9F). The purpose of xxminphys is to ensure that the size of the requested
transfer does not exceed a driver-imposed limit. If the user requests a larger transfer,
strategy(9E) is called repeatedly, requesting no more than the imposed limit at a
time. This approach is important because DMA resources are limited. Drivers for slow
devices, such as printers, should be careful not to tie up resources for a long time.

Usually, a driver passes the address of the kernel function minphys(9F), but the driver
can define its own xxminphys() routine instead. The job of xxminphys() is to keep
the b_bcount field of the buf(9S) structure under a driver’s limit. The driver should
adhere to other system limits as well. For example, the driver’s xxminphys() routine
should call the system minphys(9F) routine after setting the b_bcount field and
before returning.

EXAMPLE 14–7 minphys(9F) Routine

#define XXMINVAL (512 << 10) /* 512 KB */
static void
xxminphys(struct buf *bp)
{

if (bp->b_bcount > XXMINVAL)
bp->b_bcount = XXMINVAL

minphys(bp);

}

strategy() Entry Point
The strategy(9E) routine originated in block drivers. The strategy function got its
name from implementing a strategy for efficient queuing of I/O requests to a block
device. A driver for a character-oriented device can also use a strategy(9E) routine.
In the character I/O model presented here, strategy(9E) does not maintain a queue
of requests, but rather services one request at a time.

In the following example, the strategy(9E) routine for a character-oriented DMA
device allocates DMA resources for synchronous data transfer. strategy() starts the
command by programming the device register. See Chapter 9 for a detailed
description.

240 Writing Device Drivers • January 2005

Note – strategy(9E) does not receive a device number (dev_t) as a parameter.
Instead, the device number is retrieved from the b_edev field of the buf(9S) structure
passed to strategy(9E).

EXAMPLE 14–8 strategy(9E) Routine

static int
xxstrategy(struct buf *bp)
{

minor_t instance;
struct xxstate *xsp;
ddi_dma_cookie_t cookie;

instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
[...]

if the device has power manageable components
mark the device busy with pm_busy_components(9F),
and then ensure that the device
is powered up by calling ddi_dev_is_needed(9F).

set up DMA resources with ddi_dma_alloc_handle(9F) and
ddi_dma_buf_bind_handle(9F).

xsp->bp = bp; /* remember bp */
program DMA engine and start command

return (0);

}

Note – Although strategy() is declared to return an int, strategy() must always
return zero.

On completion of the DMA transfer, the device generates an interrupt, causing the
interrupt routine to be called. In the following example, xxintr() receives a pointer
to the state structure for the device that might have generated the interrupt.

EXAMPLE 14–9 Interrupt Routine

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
if (device did not interrupt) {

return (DDI_INTR_UNCLAIMED);
}
if (error) {

error handling

Chapter 14 • Drivers for Character Devices 241

EXAMPLE 14–9 Interrupt Routine (Continued)

}
release any resources used in the transfer, such as DMA resources
ddi_dma_unbind_handle(9F) and ddi_dma_free_handle(9F)

/* notify threads that the transfer is complete */
biodone(xsp->bp);
return (DDI_INTR_CLAIMED);

}

The driver indicates an error by calling bioerror(9F). The driver must call
biodone(9F) when the transfer is complete or after indicating an error with
bioerror(9F).

Mapping Device Memory
Some devices, such as frame buffers, have memory that is directly accessible to user
threads by way of memory mapping. Drivers for these devices typically do not
support the read(9E) and write(9E) interfaces. Instead, these drivers support
memory mapping with the devmap(9E) entry point. For example, a frame buffer
driver might implement the devmap(9E) entry point to allow the frame buffer to be
mapped in a user thread.

segmap() Entry Point
int xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,

off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp);

The entry point segmap(9E) is responsible for setting up a memory mapping
requested by an mmap(2) system call. Drivers for many memory-mapped devices use
ddi_devmap_segmap(9F) as the entry point rather than defining their own
segmap(9E) routine.

By providing a segmap(9E) entry point, a driver can take care of general tasks before
creating the mapping. For example, the driver can check mapping permissions. The
driver can also allocate private mapping resources. segmap(9E) must call
devmap_setup(9F) before returning.

In the following example, the driver controls a frame buffer that allows write-only
mappings. The driver returns EINVAL if the application tries to gain read access and
then calls devmap_setup(9F) to set up the user mapping.

242 Writing Device Drivers • January 2005

EXAMPLE 14–10 segmap(9E) Routine

static int
xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,

off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp)

{
if (prot & PROT_READ)

return (EINVAL);
return (devmap_setup(dev, (offset_t)off, as, addrp,

(size_t)len, prot, maxprot, flags, cred));

}

devmap() Entry Point
int xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off,

size_t len, size_t *maplen, uint_t model);

The devmap() entry point is called to export device memory or kernel memory to
user applications. devmap(9E) is called from devmap_setup(9F) inside segmap(9E)
or on behalf of ddi_devmap_segmap(9F). See Chapter 10 and Chapter 11 for details.

Multiplexing I/O on File Descriptors
A thread sometimes needs to handle I/O on more than one file descriptor. One
example is an application program that needs to read the temperature from a
temperature-sensing device and then report the temperature to an interactive display.
A program that makes a read request with no data available should not block while
waiting for the temperature before interacting with the user again.

The poll(2) system call provides users with a mechanism for multiplexing I/O over a
set of file descriptors that reference open files. poll(2) identifies those file descriptors
on which a program can send or receive data without blocking, or on which certain
events have occurred.

To allow a program to poll a character driver, the driver must implement the
chpoll(9E) entry point. chpoll() uses the following syntax:

int xxchpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

The system calls chpoll(9E) when a user process issues a poll(2) system call on a
file descriptor associated with the device. The chpoll(9E) entry point routine is used
by non-STREAMS character device drivers that need to support polling.

Chapter 14 • Drivers for Character Devices 243

In chpoll(9E), the driver must follow these rules:

� Implement the following algorithm when the chpoll(9E) entry point is called:

if (events are satisfied now) {
*reventsp = mask of satisfied events;

} else {
*reventsp = 0;
if (!anyyet)

*phpp = & local pollhead structure;
}

return (0);

xxchpoll() should check to see whether certain events have occurred. See the
chpoll(9E) man page. chpoll() should then return the mask of satisfied events
by setting the return events in *reventsp.

If no events have occurred, the return field for the events is cleared. If the anyyet
field is not set, the driver must return an instance of the pollhead structure. The
pollhead structure is usually allocated in a state structure. pollhead should be
treated as opaque by the driver. None of the pollhead fields should be
referenced.

� Call pollwakeup(9F) whenever a device condition of type events, listed in
Example 14–11, occurs. This function should be called only with one event at a
time. pollwakeup(9F) might be called in the interrupt routine when the condition
has occurred.

Example 14–11 and Example 14–12 show how to implement the polling discipline and
how to use pollwakeup(9F).

EXAMPLE 14–11 chpoll(9E) Routine

static int
xxchpoll(dev_t dev, short events, int anyyet,

short *reventsp, struct pollhead **phpp)
{

uint8_t status;
short revent;
struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
revent = 0;
/*
* Valid events are:
* POLLIN | POLLOUT | POLLPRI | POLLHUP | POLLERR
* This example checks only for POLLIN and POLLERR.
*/
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if ((events & POLLIN) && data available to read) {

revent |= POLLIN;

244 Writing Device Drivers • January 2005

EXAMPLE 14–11 chpoll(9E) Routine (Continued)

}
if ((events & POLLERR) && (status & DEVICE_ERROR)) {

revent |= POLLERR;
}
/* if nothing has occurred */
if (revent == 0) {

if (!anyyet) {
*phpp = &xsp->pollhead;
}

}
*reventsp = revent;

return (0);

}

In the following example, the driver can handle the POLLIN and POLLERR events. The
driver first reads the status register to determine the current state of the device. The
parameter events specifies which conditions the driver should check. If the
appropriate conditions have occurred, the driver sets that bit in *reventsp. If none of
the conditions have occurred and if anyyet is not set, the address of the pollhead
structure is returned in *phpp.

EXAMPLE 14–12 Interrupt Routine Supporting chpoll(9E)

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;

normal interrupt processing
[...]
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (status & DEVICE_ERROR) {

pollwakeup(&xsp->pollhead, POLLERR);
}
if (just completed a read) {

pollwakeup(&xsp->pollhead, POLLIN);
}
[...]
return (DDI_INTR_CLAIMED);

}

pollwakeup(9F) is usually called in the interrupt routine when a supported condition
has occurred. The interrupt routine reads the status from the status register and checks
for the conditions. The routine then calls pollwakeup(9F) for each event to possibly
notify polling threads that they should check again. Note that pollwakeup(9F)
should not be called with any locks held, as deadlock could result if another routine
tried to enter chpoll(9E) and grab the same lock.

Chapter 14 • Drivers for Character Devices 245

Miscellaneous I/O Control
The ioctl(9E) routine is called when a user thread issues an ioctl(2) system call on
a file descriptor associated with the device. The I/O control mechanism is a catchall
for getting and setting device-specific parameters. This mechanism is frequently used
to set a device-specific mode, either by setting internal driver software flags or by
writing commands to the device. The control mechanism can also be used to return
information to the user about the current device state. In short, the control mechanism
can do whatever the application and driver need to have done.

ioctl() Entry Point (Character Drivers)
int xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp);

The cmd parameter indicates which command ioctl(9E) should perform. By
convention, the driver with which an I/O control command is associated is indicated
in bits 8-15 of the command. Typically, the ASCII code of a character represents the
driver. The driver-specific command in bits 0-7. The creation of some I/O commands
is illustrated in the following example:

#define XXIOC (‘x’ << 8) /* ‘x’ is a character representing */

/* device xx */

#define XX_GET_STATUS (XXIOC | 1) /* get status register */

#define XX_SET_CMD (XXIOC | 2) /* send command */

The interpretation of arg depends on the command. I/O control commands should be
documented in the driver documentation or a man page. The command should also be
defined in a public header file, so that applications can determine the name of the
command, what the command does, and what the command accepts or returns as arg.
Any data transfer of arg into or out of the driver must be performed by the driver.

Certain classes of devices such as frame buffers or disks must support standard sets of
I/O control requests. These standard I/O control interfaces are documented in the
Solaris 8 Reference Manual Collection. For example, fbio(7I) documents the I/O controls
that frame buffers must support, and dkio(7I) documents standard disk I/O controls.
See “Miscellaneous I/O Control” on page 246 for more information on I/O controls.

Drivers must use ddi_copyin(9F) to transfer arg data from the user–level application
to the kernel level. Drivers must use ddi_copyout(9F) to transfer data from the
kernel to the user level. Failure to use ddi_copyin(9F) or ddi_copyout(9F) can
result in panics under two conditions. A panic occurs if the architecture separates the
kernel and user address spaces, or if the user address has been swapped out.

246 Writing Device Drivers • January 2005

ioctl(9E) is usually a switch statement with a case for each supported ioctl(9E)
request.

EXAMPLE 14–13 ioctl(9E) Routine

static int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp)
{

uint8_t csr;
struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL) {

return (ENXIO);
}
switch (cmd) {
case XX_GET_STATUS:
csr = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (ddi_copyout(&csr, (void *)arg,

sizeof (uint8_t), mode) != 0) {
return (EFAULT);

}
break;

case XX_SET_CMD:
if (ddi_copyin((void *)arg, &csr,
sizeof (uint8_t), mode) != 0) {
return (EFAULT);

}
ddi_put8(xsp->data_access_handle, &xsp->regp->csr, csr);
break;

default:
/* generic "ioctl unknown" error */
return (ENOTTY);

}
return (0);

}

The cmd variable identifies a specific device control operation. A problem can occur if
arg contains a user virtual address. ioctl(9E) must call ddi_copyin(9F) or
ddi_copyout(9F) to transfer data between the data structure in the application
program pointed to by arg and the driver. In Example 14–13, for the case of an
XX_GET_STATUS request, the contents of xsp->regp->csr are copied to the address in
arg. ioctl(9E) can store in *rvalp any integer value as the return value to the ioctl(2)
system call that makes a successful request. Negative return values, such as -1, should
be avoided. Many application programs assume that negative values indicate failure.

The following example demonstrates an application that uses the I/O controls
discussed in the previous paragraph.

Chapter 14 • Drivers for Character Devices 247

EXAMPLE 14–14 Using ioctl(9E)

#include <sys/types.h>
#include "xxio.h" /* contains device’s ioctl cmds and args */
int
main(void)
{

uint8_t status;
[...]

/*
* read the device status
*/
if (ioctl(fd, XX_GET_STATUS, &status) == -1) {

error handling
}
printf("device status %x\n", status);
exit(0);

}

I/O Control Support for 64-Bit Capable Device
Drivers
The Solaris kernel runs in 64-bit mode on suitable hardware, supporting both 32-bit
applications and 64-bit applications. A 64-bit device driver is required to support I/O
control commands from programs of both sizes. The difference between a 32-bit
program and a 64-bit program is the C language type model. A 32-bit program is
ILP32, and a 64-bit program is LP64. See Appendix C for information on C data type
models.

If data that flows between programs and the kernel is not identical in format, the
driver must be able to handle the model mismatch. Handling a model mismatch
requires making appropriate adjustments to the data.

To determine whether a model mismatch exists, the ioctl(9E) mode parameter
passes the data model bits to the driver. As Example 14–15 shows, the mode
parameter is then passed to ddi_model_convert_from(9F) to determine whether
any model conversion is necessary.

A flag subfield of the mode argument is used to pass the data model to the ioctl(9E)
routine. The flag is set to one of the following:

� DATAMODEL_ILP32
� DATAMODEL_LP64

FNATIVE is conditionally defined to match the data model of the kernel
implementation. The FMODELS mask should be used to extract the flag from the mode
argument. The driver can then examine the data model explicitly to determine how to
copy the application data structure.

248 Writing Device Drivers • January 2005

The DDI function ddi_model_convert_from(9F) is a convenience routine that can
assist some drivers with their ioctl() calls. The function takes the data type model
of the user application as an argument and returns one of the following values:

� DDI_MODEL_ILP32 – Convert from ILP32 application
� DDI_MODEL_NONE – No conversion needed

DDI_MODEL_NONE is returned if no data conversion is necessary, as occurs when the
application and driver have the same data model. DDI_MODEL_ILP32 is returned to a
driver that is compiled to the LP64 model and that communicates with a 32-bit
application.

In the following example, the driver copies a data structure that contains a user
address. The data structure changes size from ILP32 to LP64. Accordingly, the 64-bit
driver uses a 32-bit version of the structure when communicating with a 32-bit
application.

EXAMPLE 14–15 ioctl(9E) Routine to Support 32-bit Applications and 64-bit Applications

struct args32 {
uint32_t addr; /* 32-bit address in LP64 */
int len;

}
struct args {

caddr_t addr; /* 64-bit address in LP64 */
int len;

}

static int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp)
{

struct xxstate *xsp;
struct args a;
xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL) {

return (ENXIO);
}
switch (cmd) {
case XX_COPYIN_DATA:

switch(ddi_model_convert_from(mode)) {
case DDI_MODEL_ILP32:
{

struct args32 a32;

/* copy 32-bit args data shape */
if (ddi_copyin((void *)arg, &a32,

sizeof (struct args32), mode) != 0) {
return (EFAULT);

}
/* convert 32-bit to 64-bit args data shape */
a.addr = a32.addr;
a.len = a32.len;

Chapter 14 • Drivers for Character Devices 249

EXAMPLE 14–15 ioctl(9E) Routine to Support 32-bit Applications and 64-bit
Applications (Continued)

break;
}
case DDI_MODEL_NONE:

/* application and driver have same data model. */
if (ddi_copyin((void *)arg, &a, sizeof (struct args),

mode) != 0) {
return (EFAULT);

}
}
/* continue using data shape in native driver data model. */
break;

case XX_COPYOUT_DATA:
/* copyout handling */
break;

default:
/* generic "ioctl unknown" error */
return (ENOTTY);

}
return (0);

}

Handling copyout() Overflow
Sometimes a driver needs to copy out a native quantity that no longer fits in the 32-bit
sized structure. In this case, the driver should return EOVERFLOW to the caller.
EOVERFLOW serves as an indication that the data type in the interface is too small to
hold the value to be returned, as shown in the following example.

EXAMPLE 14–16 Handling copyout(9F) Overflow

int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *cr, int *rval_p)
{

struct resdata res;

[...] body of driver code [...]

switch (ddi_model_convert_from(mode & FMODELS)) {
case DDI_MODEL_ILP32: {

struct resdata32 res32;

if (res.size > UINT_MAX)
return (EOVERFLOW);

res32.size = (size32_t)res.size;
res32.flag = res.flag;
if (ddi_copyout(&res32,

250 Writing Device Drivers • January 2005

EXAMPLE 14–16 Handling copyout(9F) Overflow (Continued)

(void *)arg, sizeof (res32), mode))
return (EFAULT);

}
break;

case DDI_MODEL_NONE:
if (ddi_copyout(&res, (void *)arg, sizeof (res), mode))

return (EFAULT);
break;

}
return (0);

}

32–bit and 64–bit Data Structure Macros
The method in Example 14–16 works well for many drivers. An alternate scheme is to
use the data structure macros that are provided in <sys/model.h>to move data
between the application and the kernel. These macros make the code less cluttered
and behave identically, from a functional perspective.

EXAMPLE 14–17 Using Data Structure Macros to Move Data

int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *cr, int *rval_p)
{

STRUCT_DECL(opdata, op);

if (cmd != OPONE)
return (ENOTTY);

STRUCT_INIT(op, mode);

if (copyin((void *)arg,
STRUCT_BUF(op), STRUCT_SIZE(op)))

return (EFAULT);

if (STRUCT_FGET(op, flag) != XXACTIVE ||
STRUCT_FGET(op, size) > XXSIZE)

return (EINVAL);
xxdowork(device_state, STRUCT_FGET(op, size));
return (0);

}

Chapter 14 • Drivers for Character Devices 251

How Do the Structure Macros Work?
In a 64-bit device driver, structure macros enable the use of the same piece of kernel
memory by data structures of both sizes. The memory buffer holds the contents of the
native form of the data structure, that is, the LP64 form, and the ILP32 form. Each
structure access is implemented by a conditional expression. When compiled as a
32-bit driver, only one data model, the native form, is supported. No conditional
expression is used.

The 64-bit versions of the macros depend on the definition of a shadow version of the
data structure. The shadow version describes the 32-bit interface with fixed-width
types. The name of the shadow data structure is formed by appending “32” to the
name of the native data structure. For convenience, place the definition of the shadow
structure in the same file as the native structure to ease future maintenance costs.

The macros can take the following arguments:

structname The structure name of the native form of the data structure as entered
after the struct keyword.

umodel A flag word that contains the user data model, such as FILP32 or
FLP64, extracted from the mode parameter of ioctl(9E).

handle The name used to refer to a particular instance of a structure that is
manipulated by these macros.

fieldname The name of the field within the structure.

When to Use Structure Macros
Macros enable you to make in-place references only to the fields of a data item. Macros
do not provide a way to take separate code paths that are based on the data model.
Macros should be avoided if the number of fields in the data structure is large. Macros
should also be avoided if the frequency of references to these fields is high.

Macros hide many of the differences between data models in the implementation of
the macros. As a result, code written with this interface is generally easier to read.
When compiled as a 32-bit driver, the resulting code is compact without needing
clumsy #ifdefs, but still preserves type checking.

252 Writing Device Drivers • January 2005

Declaring and Initializing Structure Handles
STRUCT_DECL(9F) and STRUCT_INIT(9F) can be used to declare and initialize a
handle and space for decoding an ioctl on the stack. STRUCT_HANDLE(9F) and
STRUCT_SET_HANDLE(9F) declare and initialize a handle without allocating space on
the stack. The latter macros can be useful if the structure is very large, or is contained
in some other data structure.

Note – Because the STRUCT_DECL(9F) and STRUCT_HANDLE(9F) macros expand to
data structure declarations, these macros should be grouped with such declarations in
C code.

The macros for declaring and initializing structures are as follows:

STRUCT_DECL(structname, handle)
Declares a structure handlethat is called handle for a struct structname data
structure. STRUCT_DECL allocates space for its native form on the stack. The native
form is assumed to be larger than or equal to the ILP32 form of the structure.

STRUCT_INIT(handle, umodel)
Initializes the data model for handle to umodel. This macro must be invoked before
any access is made to a structure handle declared with STRUCT_DECL(9F).

STRUCT_HANDLE(structname, handle)
Declares a structure handle that is called handle. Contrast with STRUCT_DECL(9F).

STRUCT_SET_HANDLE(handle, umodel, addr)
Initializes the data model for handle to umodel, and sets addr as the buffer used for
subsequent manipulation. Invoke this macro before accessing a structure handle
declared with STRUCT_DECL(9F).

Operations on Structure Handles
The macros for performing operations on structures are as follows:

size_t STRUCT_SIZE(handle)
Returns the size of the structure referred to by handle, according to its embedded
data model.

typeof fieldname STRUCT_FGET(handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a
non-pointer type.

typeof fieldname STRUCT_FGETP(handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a
pointer type.

Chapter 14 • Drivers for Character Devices 253

STRUCT_FSET(handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The
type of val should match the type of fieldname. The field is a non-pointer type.

STRUCT_FSETP(handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The
field is a pointer type.

typeof fieldname *STRUCT_FADDR(handle, fieldname)
Returns the address of the indicated field in the data structure referred to by handle.

struct structname *STRUCT_BUF(handle)
Returns a pointer to the native structure described by handle.

Other Operations
Some miscellaneous structure macros follow:

size_t SIZEOF_STRUCT(struct_name, datamodel)
Returns the size of struct_name, which is based on the given data model.

size_t SIZEOF_PTR(datamodel)
Returns the size of a pointer based on the given data model.

254 Writing Device Drivers • January 2005

CHAPTER 15

Drivers for Block Devices

This chapter describes the structure of block device drivers. The kernel views a block
device as a set of randomly accessible logical blocks. The file system uses a list of
buf(9S) structures to buffer the data blocks between a block device and the user space.
Only block devices can support a file system.

This chapter provides information on the following subjects:

� “Block Driver Structure Overview” on page 255
� “File I/O” on page 256
� “Block Device Autoconfiguration” on page 257
� “Controlling Device Access” on page 259
� “Synchronous Data Transfers (Block Drivers)” on page 264
� “Asynchronous Data Transfers (Block Drivers)” on page 267
� “dump() and print() Entry Points” on page 271
� “Disk Device Drivers” on page 273

Block Driver Structure Overview
Figure 15–1 shows data structures and routines that define the structure of a block
device driver. Device drivers typically include the following elements:

� Device-loadable driver section
� Device configuration section
� Device access section

The shaded device access section in the following figure illustrates entry points for
block drivers.

255

modlinkage(9S)

modldrv(9S)

dev_ops(9S)

cb_ops(9S) Block Device

open(9E)
close(9E)
strategy(9E)
print(9E)

FIGURE 15–1 Block Driver Roadmap

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to
a cb_ops(9S) structure. See Chapter 6 for details on driver data structures.

Block device drivers provide these entry points:

� open(9E)
� close(9E)
� strategy(9E)
� print(9E)

Note – Some of the entry points can be replaced by nodev(9F) or nulldev(9F) as
appropriate.

File I/O
A file system is a tree-structured hierarchy of directories and files. Some file systems,
such as the UNIX File System (UFS), reside on block-oriented devices. File systems are
created by format(1M) and newfs(1M).

When an application issues a read(2) or write(2) system call to an ordinary file on
the UFS file system, the file system can call the device driver strategy(9E) entry
point for the block device on which the file system resides. The file system code can
call strategy(9E) several times for a single read(2) or write(2) system call.

256 Writing Device Drivers • January 2005

The file system code determines the logical device address, or logical block number, for
each ordinary file block. A block I/O request is then built in the form of a buf(9S)
structure directed at the block device. The driver strategy(9E) entry point then
interprets the buf(9S) structure and completes the request.

Block Device Autoconfiguration
attach(9E) should perform the common initialization tasks for each instance of a
device:

� Allocating per-instance state structures
� Mapping the device’s registers
� Registering device interrupts
� Initializing mutex and condition variables
� Creating power manageable components
� Creating minor nodes

Block device drivers create minor nodes of type S_IFBLK. As a result, a block special
file that represents the node appears in the /devices hierarchy.

Logical device names for block devices appear in the /dev/dsk directory, and consist
of a controller number, bus-address number, disk number, and slice number. These
names are created by the devfsadm(1M) program if the node type is set to
DDI_NT_BLOCK or DDI_NT_BLOCK_CHAN. DDI_NT_BLOCK_CHAN should be specified
if the device communicates on a channel, that is, a bus with an additional level of
addressability. SCSI disks are a good example. DDI_NT_BLOCK_CHAN causes a
bus-address field (tN) to appear in the logical name. DDI_NT_BLOCK should be used
for most other devices.

A minor device refers to a partition on the disk. For each minor device, the driver
must create an nblocks or Nblocks property. This integer property gives the
number of blocks supported by the minor device expressed in units of DEV_BSIZE,
that is, 512 bytes. The file system uses the nblocks and Nblocks properties to
determine device limits. Nblocks is the 64–bit version of nblocks. Nblocks should
be used with storage devices that can hold over 1 Tbyte of storage per disk. See
“Device Properties” on page 73 for more information.

Example 15–1 shows a typical attach(9E) entry point with emphasis on creating the
device’s minor node and the Nblocks property. Note that because this example uses
Nblocks and not nblocks, ddi_prop_update_int64(9F) is called instead of
ddi_prop_update_int(9F).

As a side note, this example shows the use of makedevice(9F) to create a device
number for ddi_prop_update_int64(). The makedevice function makes use of
ddi_driver_major(9F), which generates a major number from a pointer to a
dev_info_t structure. Using ddi_driver_major() is similar to using
getmajor(9F), which gets a dev_t structure pointer.

Chapter 15 • Drivers for Block Devices 257

EXAMPLE 15–1 Block Driver attach() Routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int instance = ddi_get_instance(dip);
switch (cmd) {
case DDI_ATTACH:

allocate a state structure and initialize it
map the devices registers
add the device driver’s interrupt handler(s)
initialize any mutexes and condition variables
read label information if the device is a disk
create power manageable components

/*
* Create the device minor node. Note that the node_type
* argument is set to DDI_NT_BLOCK.
*/
if (ddi_create_minor_node(dip, "minor_name", S_IFBLK,

instance, DDI_NT_BLOCK, 0) == DDI_FAILURE) {
free resources allocated so far

/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);
return (DDI_FAILURE);

}
/*
* Create driver properties like "Nblocks". If the device
* is a disk, the Nblocks property is usually calculated from
* information in the disk label. Use "Nblocks" instead of
* "nblocks" to ensure the property works for large disks.
*/
xsp->Nblocks = size of device in 512 byte blocks;
maj_number = ddi_driver_major(dip);
if (ddi_prop_update_int64(makedevice(maj_number, instance), dip,

"Nblocks", xsp->Nblocks) != DDI_PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Nblocks property\n",

ddi_get_name(dip));
free resources allocated so far

return (DDI_FAILURE);
}
xsp->open = 0;
xsp->nlayered = 0;
[...]
return (DDI_SUCCESS);

case DDI_RESUME:
For information, see Chapter 12, "Power Management," in this book.

default:
return (DDI_FAILURE);

}

}

258 Writing Device Drivers • January 2005

Controlling Device Access
This section describes the entry points for open() and close() functions in block
device drivers. See Chapter 14 for more information on open(9E) and close(9E).

open() Entry Point (Block Drivers)
The open(9E) entry point is used to gain access to a given device. The open(9E)
routine of a block driver is called when a user thread issues an open(2) or mount(2)
system call on a block special file associated with the minor device, or when a layered
driver calls open(9E). See “File I/O” on page 256 for more information.

The open() entry point should check for the following conditions:

� The device can be opened, that is, the device is online and ready.

� The device can be opened as requested. The device supports the operation. The
device’s current state does not conflict with the request.

� The caller has permission to open the device.

The following example demonstrates a block driver open(9E) entry point.

EXAMPLE 15–2 Block Driver open(9E) Routine

static int
xxopen(dev_t *devp, int flags, int otyp, cred_t *credp)
{

minor_t instance;
struct xxstate *xsp;

instance = getminor(*devp);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);
mutex_enter(&xsp->mu);
/*
* only honor FEXCL. If a regular open or a layered open
* is still outstanding on the device, the exclusive open
* must fail.
*/
if ((flags & FEXCL) && (xsp->open || xsp->nlayered)) {
mutex_exit(&xsp->mu);
return (EAGAIN);

}
switch (otyp) {
case OTYP_LYR:
xsp->nlayered++;
break;

Chapter 15 • Drivers for Block Devices 259

EXAMPLE 15–2 Block Driver open(9E) Routine (Continued)

case OTYP_BLK:
xsp->open = 1;
break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);

}
mutex_exit(&xsp->mu);

return (0);

}

The otyp argument is used to specify the type of open on the device. OTYP_BLK is the
typical open type for a block device. A device can be opened several times with otyp
set to OTYP_BLK. close(9E) is called only once when the final close of type
OTYP_BLK has occurred for the device. otyp is set to OTYP_LYR if the device is being
used as a layered device. For every open of type OTYP_LYR, the layering driver issues
a corresponding close of type OTYP_LYR. The example keeps track of each type of
open so the driver can determine when the device is not being used in close(9E).

close() Entry Point (Block Drivers)
The close(9E) entry point uses the same arguments as open(9E) with one exception.
dev is the device number rather than a pointer to the device number.

The close() routine should verify otyp in the same way as was described for the
open(9E) entry point. In the following example, close() must determine when the
device can really be closed. Closing is affected by the number of block opens and
layered opens.

EXAMPLE 15–3 Block Device close(9E) Routine

static int
xxclose(dev_t dev, int flag, int otyp, cred_t *credp)
{

minor_t instance;
struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);
mutex_enter(&xsp->mu);
switch (otyp) {
case OTYP_LYR:
xsp->nlayered--;
break;
case OTYP_BLK:

260 Writing Device Drivers • January 2005

EXAMPLE 15–3 Block Device close(9E) Routine (Continued)

xsp->open = 0;
break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);
}

if (xsp->open || xsp->nlayered) {
/* not done yet */
mutex_exit(&xsp->mu);
return (0);

}
/* cleanup (rewind tape, free memory, etc.) */

/* wait for I/O to drain */
mutex_exit(&xsp->mu);

return (0);

}

strategy() Entry Point
The strategy(9E) entry point is used to read and write data buffers to and from a
block device. The name strategy refers to the fact that this entry point might implement
some optimal strategy for ordering requests to the device.

strategy(9E) can be written to process one request at a time, that is, a synchronous
transfer. strategy() can also be written to queue multiple requests to the device, as
in an asynchronous transfer. When choosing a method, the abilities and limitations of
the device should be taken into account.

The strategy(9E) routine is passed a pointer to a buf(9S) structure. This structure
describes the transfer request, and contains status information on return. buf(9S) and
strategy(9E) are the focus of block device operations.

buf Structure
The following buf structure members are important to block drivers:

int b_flags; /* Buffer Status */
struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work list link */
size_t b_bcount; /* # of bytes to transfer */
union {
caddr_t b_addr; /* Buffer’s virtual address */
} b_un;
daddr_t b_blkno; /* Block number on device */

Chapter 15 • Drivers for Block Devices 261

diskaddr_t b_lblkno; /* Expanded block number on device */
size_t b_resid; /* # of bytes not transferred */

/* after error */
int b_error; /* Expanded error field */
void *b_private; /* “opaque” driver private area */

dev_t b_edev; /* expanded dev field */

where:

av_forw and av_back Pointers that the driver can use to manage a list of buffers
by the driver. See “Asynchronous Data Transfers (Block
Drivers)” on page 267 for a discussion of the av_forw
and av_back pointers.

b_bcount Specifies the number of bytes to be transferred by the
device.

b_un.b_addr The kernel virtual address of the data buffer. Only valid
after bp_mapin(9F) call.

b_blkno The starting 32-bit logical block number on the device for
the data transfer, which is expressed in 512-byte
DEV_BSIZE units. The driver should use either b_blkno
or b_lblkno but not both.

b_lblkno The starting 64-bit logical block number on the device for
the data transfer, which is expressed in 512-byte
DEV_BSIZE units. The driver should use either b_blkno
or b_lblkno but not both.

b_resid Set by the driver to indicate the number of bytes that were
not transferred because of an error. See Example 15–7 for
an example of setting b_resid. The b_resid member is
overloaded. b_resid is also used by disksort(9F).

b_error Set to an error number by the driver when a transfer error
occurs. b_error is set in conjunction with the b_flags
B_ERROR bit. See the Intro(9E) man page for details
about error values. Drivers should use bioerror(9F)
rather than setting b_error directly.

b_flags Flags with status and transfer attributes of the buf
structure. If B_READ is set, the buf structure indicates a
transfer from the device to memory. Otherwise, this
structure indicates a transfer from memory to the device.
If the driver encounters an error during data transfer, the
driver should set the B_ERROR field in the b_flags
member. In addition, the driver should provide a more
specific error value in b_error. Drivers should use
bioerror(9F) rather than setting B_ERROR.

262 Writing Device Drivers • January 2005

Caution – Drivers should never clear b_flags.

b_private For exclusive use by the driver to store driver-private
data.

b_edev Contains the device number of the device that was used in
the transfer.

bp_mapin Structure
A buf structure pointer can be passed into the device driver’s strategy(9E) routine.
However, the data buffer referred to by b_un.b_addr is not necessarily mapped in
the kernel’s address space. Therefore, the driver cannot directly access the data. Most
block-oriented devices have DMA capability and therefore do not need to access the
data buffer directly. Instead, these devices use the DMA mapping routines to enable
the device’s DMA engine to do the data transfer. For details about using DMA, see
Chapter 9.

If a driver needs to access the data buffer directly, that driver must first map the buffer
into the kernel’s address space by using bp_mapin(9F). bp_mapout(9F) should be
used when the driver no longer needs to access the data directly.

Caution – bp_mapout(9F) should only be called on buffers that have been allocated
and are owned by the device driver. bp_mapout() must not be called on buffers that
are passed to the driver through the strategy(9E) entry point, such as a file system.
bp_mapin(9F) does not keep a reference count. bp_mapout(9F) removes any kernel
mapping on which a layer over the device driver might rely.

Chapter 15 • Drivers for Block Devices 263

Synchronous Data Transfers (Block
Drivers)
This section presents a simple method for performing synchronous I/O transfers. This
method assumes that the hardware is a simple disk device that can transfer only one
data buffer at a time by using DMA. Another assumption is that the disk can be spun
up and spun down by software command. The device driver’s strategy(9E) routine
waits for the current request to be completed before accepting a new request. The
device interrupts when the transfer is complete. The device also interrupts if an error
occurs.

The steps for performing a synchronous data transfer for a block driver are as follows:

1. Check for invalid buf(9S) requests.

Check the buf(9S) structure that is passed to strategy(9E) for validity. All
drivers should check the following conditions:

� The request begins at a valid block. The driver converts the b_blkno field to
the correct device offset and then determines whether the offset is valid for the
device.

� The request does not go beyond the last block on the device.

� Device-specific requirements are met.

If an error is encountered, the driver should indicate the appropriate error with
bioerror(9F). The driver should then complete the request by calling
biodone(9F). biodone() notifies the caller of strategy(9E) that the transfer is
complete. In this case, the transfer has stopped because of an error.

2. Check whether the device is busy.

Synchronous data transfers allow single-threaded access to the device. The device
driver enforces this access in two ways:

� The driver maintains a busy flag that is guarded by a mutex.

� The driver waits on a condition variable with cv_wait(9F), when the device is
busy.

If the device is busy, the thread waits until the interrupt handler indicates that the
device is not longer busy. The available status can be indicated by either the
cv_broadcast(9F) or the cv_signal(9F) function. See Chapter 3 for details on
condition variables.

When the device is no longer busy, the strategy(9E) routine marks the device as
available. strategy() then prepares the buffer and the device for the transfer.

3. Set up the buffer for DMA.

264 Writing Device Drivers • January 2005

Prepare the data buffer for a DMA transfer by using ddi_dma_alloc_handle(9F)
to allocate a DMA handle. Use ddi_dma_buf_bind_handle(9F) to bind the data
buffer to the handle. For information on setting up DMA resources and related data
structures, see Chapter 9.

4. Begin the transfer.

At this point, a pointer to the buf(9S) structure is saved in the state structure of the
device. The interrupt routine can then complete the transfer by calling
biodone(9F).

The device driver then accesses device registers to initiate a data transfer. In most
cases, the driver should protect the device registers from other threads by using
mutexes. In this case, because strategy(9E) is single-threaded, guarding the
device registers is not necessary. See Chapter 3 for details about data locks.

When the executing thread has started the device’s DMA engine, the driver can
return execution control to the calling routine, as follows:

static int
xxstrategy(struct buf *bp)
{

struct xxstate *xsp;
struct device_reg *regp;
minor_t instance;
ddi_dma_cookie_t cookie;
instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL) {

bioerror(bp, ENXIO);
biodone(bp);
return (0);

}
/* validate the transfer request */
if ((bp->b_blkno >= xsp->Nblocks) || (bp->b_blkno < 0)) {

bioerror(bp, EINVAL);
biodone(bp);
return (0);

}
/*
* Hold off all threads until the device is not busy.
*/
mutex_enter(&xsp->mu);
while (xsp->busy) {

cv_wait(&xsp->cv, &xsp->mu);
}
xsp->busy = 1;
mutex_exit(&xsp->mu);

if the device has power manageable components,
mark the device busy with pm_busy_components(9F),
and then ensure that the device
is powered up by calling ddi_dev_is_needed(9F).

Set up DMA resources with ddi_dma_alloc_handle(9F) and ddi_dma_buf_bind_handle(9F).

Chapter 15 • Drivers for Block Devices 265

xsp->bp = bp;
regp = xsp->regp;
ddi_put32(xsp->data_access_handle, ®p->dma_addr,

cookie.dmac_address);
ddi_put32(xsp->data_access_handle, ®p->dma_size,

(uint32_t)cookie.dmac_size);
ddi_put8(xsp->data_access_handle, ®p->csr,

ENABLE_INTERRUPTS | START_TRANSFER);
return (0);

}

5. Handle the interrupting device.

When the device finishes the data transfer, the driver generates an interrupt, which
eventually results in the driver’s interrupt routine being called. Most drivers
specify the state structure of the device as the argument to the interrupt routine
when registering interrupts. See the ddi_add_intr(9F) man page and
“Registering Interrupts” on page 122. The interrupt routine can then access the
buf(9S) structure being transferred, plus any other information that is available
from the state structure.

The interrupt handler should check the device’s status register to determine
whether the transfer completed without error. If an error occurred, the handler
should indicate the appropriate error with bioerror(9F). The handler should also
clear the pending interrupt for the device and then complete the transfer by calling
biodone(9F).

As the final task, the handler clears the busy flag. The handler then calls
cv_signal(9F) or cv_broadcast(9F) on the condition variable, signaling that
the device is no longer busy. This notification enables other threads waiting for the
device in strategy(9E) to proceed with the next data transfer.

The following example shows a synchronous interrupt routine.

EXAMPLE 15–4 Synchronous Interrupt Routine for Block Drivers

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8_t status;
mutex_enter(&xsp->mu);
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;
/*
* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the

266 Writing Device Drivers • January 2005

EXAMPLE 15–4 Synchronous Interrupt Routine for Block Drivers (Continued)

* command/status register.
*/
if (status & DEVICE_ERROR) {

/* failure */
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);

} else {
/* success */
bp->b_resid = 0;

}
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);

if the device has power manageable components that were marked busy in strategy(9F),
mark them idle now with pm_idle_component(9F)
release any resources used in the transfer, such as DMA resources (ddi_dma_unbind_handle(9F) and
ddi_dma_free_handle(9F)).

/* Let the next I/O thread have access to the device */
xsp->busy = 0;
cv_signal(&xsp->cv);
mutex_exit(&xsp->mu);
return (DDI_INTR_CLAIMED);

}

Asynchronous Data Transfers (Block
Drivers)
This section presents a method for performing asynchronous I/O transfers. The driver
queues the I/O requests and then returns control to the caller. Again, the assumption
is that the hardware is a simple disk device that allows one transfer at a time. The
device interrupts when a data transfer has completed. An interrupt also takes place if
an error occurs. The basic steps for performing asynchronous data transfers are:

1. Check for invalid buf(9S) requests.
2. Enqueue the request.
3. Start the first transfer.
4. Handle the interrupting device.

Chapter 15 • Drivers for Block Devices 267

Checking for Invalid buf Requests
As in the synchronous case, the device driver should check the buf(9S) structure
passed to strategy(9E) for validity. See “Synchronous Data Transfers (Block
Drivers)” on page 264 for more details.

Enqueuing the Request
Unlike synchronous data transfers, a driver does not wait for an asynchronous request
to complete. Instead, the driver adds the request to a queue. The head of the queue
can be the current transfer. The head of the queue can also be a separate field in the
state structure for holding the active request, as in Example 15–5.

If the queue is initially empty, then the hardware is not busy and strategy(9E) starts
the transfer before returning. Otherwise, if a transfer completes with a non-empty
queue, the interrupt routine begins a new transfer. Example 15–5 places the decision of
whether to start a new transfer into a separate routine for convenience.

The driver can use the av_forw and the av_back members of the buf(9S) structure
to manage a list of transfer requests. A single pointer can be used to manage a singly
linked list, or both pointers can be used together to build a doubly linked list. The
device hardware specification specifies which type of list management, such as
insertion policies, is used to optimize the performance of the device. The transfer list is
a per-device list, so the head and tail of the list are stored in the state structure.

The following example provides multiple threads with access to the driver shared
data, such as the transfer list. You must identify the shared data and must protect the
data with a mutex. See Chapter 3 for more details about mutex locks.

EXAMPLE 15–5 Enqueuing Data Transfer Requests for Block Drivers

static int
xxstrategy(struct buf *bp)
{

struct xxstate *xsp;
minor_t instance;
instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
[...]

validate transfer request
[...]

Add the request to the end of the queue. Depending on the device, a sorting algorithm, such as
disksort(9F)

may be used if it improves the performance of the device.
mutex_enter(&xsp->mu);
bp->av_forw = NULL;
if (xsp->list_head) {

/* Non-empty transfer list */
xsp->list_tail->av_forw = bp;

268 Writing Device Drivers • January 2005

EXAMPLE 15–5 Enqueuing Data Transfer Requests for Block Drivers (Continued)

xsp->list_tail = bp;
} else {

/* Empty Transfer list */
xsp->list_head = bp;
xsp->list_tail = bp;

}
mutex_exit(&xsp->mu);
/* Start the transfer if possible */
(void) xxstart((caddr_t)xsp);
return (0);

}

Starting the First Transfer
Device drivers that implement queuing usually have a start() routine. start()
dequeues the next request and starts the data transfer to or from the device. In this
example, start() processes all requests regardless of the state of the device, whether
busy or free.

Note – start() must be written to be called from any context. start() can be called
by both the strategy routine in kernel context and the interrupt routine in interrupt
context.

start() is called by strategy(9E) every time strategy() queues a request so that
an idle device can be started. If the device is busy, start() returns immediately.

start() is also called by the interrupt handler before the handler returns from a
claimed interrupt so that a nonempty queue can be serviced. If the queue is empty,
start() returns immediately.

Because start() is a private driver routine, start() can take any arguments and
can return any type. The following code sample is written to be used as a DMA
callback, although that portion is not shown. Accordingly, the example must take a
caddr_t as an argument and return an int. See “Handling Resource Allocation
Failures” on page 144 for more information about DMA callback routines.

EXAMPLE 15–6 Starting the First Data Request for a Block Driver

static int
xxstart(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;

Chapter 15 • Drivers for Block Devices 269

EXAMPLE 15–6 Starting the First Data Request for a Block Driver (Continued)

mutex_enter(&xsp->mu);
/*
* If there is nothing more to do, or the device is
* busy, return.
*/
if (xsp->list_head == NULL || xsp->busy) {

mutex_exit(&xsp->mu);
return (0);

}
xsp->busy = 1;
/* Get the first buffer off the transfer list */
bp = xsp->list_head;
/* Update the head and tail pointer */
xsp->list_head = xsp->list_head->av_forw;
if (xsp->list_head == NULL)

xsp->list_tail = NULL;
bp->av_forw = NULL;
mutex_exit(&xsp->mu);

if the device has power manageable components,
mark the device busy with pm_busy_components, and then ensure that the device
is powered up by calling ddi_dev_is_needed.
Set up DMA resources with ddi_dma_alloc_handle(9F) and
ddi_dma_buf_bind_handle(9F).
xsp->bp = bp;
ddi_put32(xsp->data_access_handle, &xsp->regp->dma_addr,

cookie.dmac_address);
ddi_put32(xsp->data_access_handle, &xsp->regp->dma_size,

(uint32_t)cookie.dmac_size);
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

ENABLE_INTERRUPTS | START_TRANSFER);
return (0);

}

Handling the Interrupting Device
The interrupt routine is similar to the asynchronous version, with the addition of the
call to start() and the removal of the call to cv_signal(9F).

EXAMPLE 15–7 Block Driver Routine for Asynchronous Interrupts

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8_t status;
mutex_enter(&xsp->mu);
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

270 Writing Device Drivers • January 2005

EXAMPLE 15–7 Block Driver Routine for Asynchronous Interrupts (Continued)

if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;
/*
* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the
* command/status register.
*/
if (status & DEVICE_ERROR) {

/* failure */
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);

} else {
/* success */
bp->b_resid = 0;

}
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);
if the device has power manageable components that were marked busy in strategy(9F)
(9E), mark them idle now with pm_idle_component(9F)
release any resources used in the transfer, such as DMA resources
ddi_dma_unbind_handle(9F) and
ddi_dma_free_handle(9F)
/* Let the next I/O thread have access to the device */
xsp->busy = 0;
mutex_exit(&xsp->mu);
(void) xxstart((caddr_t)xsp);
return (DDI_INTR_CLAIMED);

}

dump() and print() Entry Points
This section discusses the dump(9E) and print(9E) entry points.

Chapter 15 • Drivers for Block Devices 271

dump() Entry Point (Block Drivers)
The dump(9E) entry point is used to copy a portion of virtual address space directly to
the specified device in the case of a system failure. dump() is also used to copy the
state of the kernel out to disk during a checkpoint operation. See the cpr(7) and
dump(9E) man pages for more information. The entry point must be capable of
performing this operation without the use of interrupts, because interrupts are
disabled during the checkpoint operation.

int dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)

where:

dev Device number of the device to receive the dump.

addr Base kernel virtual address at which to start the dump.

blkno Block at which the dump is to start.

nblk Number of blocks to dump.

The dump depends upon the existing driver working properly.

print() Entry Point (Block Drivers)
int print(dev_t dev, char *str)

The print(9E) entry point is called by the system to display a message about an
exception that has been detected. print(9E) should call cmn_err(9F) to post the
message to the console on behalf of the system. The following example demonstrates a
typical print() entry point.

static int
xxprint(dev_t dev, char *str)
{

cmn_err(CE_CONT, “xx: %s\n”, str);
return (0);

}

272 Writing Device Drivers • January 2005

Disk Device Drivers
Disk devices represent an important class of block device drivers.

Disk ioctls
Solaris disk drivers need to support a minimum set of ioctl commands specific to
Solaris disk drivers. These I/O controls are specified in the dkio(7I) manual page.
Disk I/O controls transfer disk information to or from the device driver. A Solaris disk
device is supported by disk utility commands such as format(1M) and newfs(1M).
The mandatory Sun disk I/O controls are as follows:

DKIOCINFO Returns information that describes the disk controller

DKIOCGAPART Returns a disk’s partition map

DKIOCSAPART Sets a disk’s partition map

DKIOCGGEOM Returns a disk’s geometry

DKIOCSGEOM Sets a disk’s geometry

DKIOCGVTOC Returns a disk’s Volume Table of Contents

DKIOCSVTOC Sets a disk’s Volume Table of Contents

Disk Performance
The Solaris DDI/DKI provides facilities to optimize I/O transfers for improved file
system performance. A mechanism manages the list of I/O requests so as to optimize
disk access for a file system. See “Asynchronous Data Transfers (Block Drivers)”
on page 267 for a description of enqueuing an I/O request.

The diskhd structure is used to manage a linked list of I/O requests.

struct diskhd {
long b_flags; /* not used, needed for consistency*/
struct buf *b_forw, *b_back; /* queue of unit queues */
struct buf *av_forw, *av_back; /* queue of bufs for this unit */
long b_bcount; /* active flag */

};

The diskhd data structure has two buf pointers that the driver can manipulate. The
av_forw pointer points to the first active I/O request. The second pointer, av_back,
points to the last active request on the list.

Chapter 15 • Drivers for Block Devices 273

A pointer to this structure is passed as an argument to disksort(9F), along with a
pointer to the current buf structure being processed. The disksort() routine sorts
the buf requests to optimize disk seek. The routine then inserts the buf pointer into
the diskhd list. The disksort() program uses the value that is in b_resid of the
buf structure as a sort key. The driver is responsible for setting this value. Most Sun
disk drivers use the cylinder group as the sort key. This approach optimizes the file
system read-ahead accesses.

When data has been added to the diskhd list, the device needs to transfer the data. If
the device is not busy processing a request, the xxstart() routine pulls the first buf
structure off the diskhd list and starts a transfer.

If the device is busy, the driver should return from the xxstrategy() entry point.
When the hardware is done with the data transfer, an interrupt is generated. The
driver’s interrupt routine is then called to service the device. After servicing the
interrupt, the driver can then call the start() routine to process the next buf
structure in the diskhd list.

274 Writing Device Drivers • January 2005

CHAPTER 16

SCSI Target Drivers

The Solaris DDI/DKI divides the software interface to SCSI devices into two major
parts: target drivers and host bus adapter (HBA) drivers. Target refers to a driver for a
device on a SCSI bus, such as a disk or a tape drive. Host bus adapter refers to the
driver for the SCSI controller on the host machine. SCSA defines the interface between
these two components. This chapter discusses target drivers only. See Chapter 17 for
information on host bus adapter drivers.

Note – The terms “host bus adapter” and “HBA” are equivalent to “host adapter,”
which is defined in SCSI specifications.

This chapter provides information on the following subjects:

� “Introduction to Target Drivers” on page 275
� “Sun Common SCSI Architecture Overview” on page 276
� “Hardware Configuration File” on page 279
� “Declarations and Data Structures” on page 280
� “Autoconfiguration for SCSI Target Drivers” on page 283
� “Resource Allocation” on page 289
� “Building and Transporting a Command” on page 291
� “SCSI Options” on page 299

Introduction to Target Drivers
Target drivers can be either character or block device drivers, depending on the
device. Drivers for tape drives are usually character device drivers, while disks are
handled by block device drivers. This chapter describes how to write a SCSI target
driver. The chapter discusses the additional requirements that SCSA places on block
and character drivers for SCSI target devices.

275

The following reference documents provide supplemental information needed by the
designers of target drivers and host bus adapter drivers.

Small Computer System Interface 2 (SCSI-2), ANSI/NCITS X3.131-1994, Global
Engineering Documents, 1998. ISBN 1199002488.

The Basics of SCSI, Fourth Edition, ANCOT Corporation, 1998. ISBN 0963743988.

Refer also to the SCSI command specification for the target device, provided by the
hardware vendor.

Sun Common SCSI Architecture
Overview
The Sun Common SCSI Architecture (SCSA) is the Solaris DDI/DKI programming
interface for the transmission of SCSI commands from a target driver to a host bus
adapter driver. This interface is independent of the type of host bus adapter hardware,
the platform, the processor architecture, and the SCSI command being transported
across the interface.

Conforming to the SCSA lets the target driver pass SCSI commands to target devices
without knowledge of the hardware implementation of the host bus adapter.

The SCSA conceptually separates building the SCSI command from transporting the
command with data across the SCSI bus. The architecture defines the software
interface between high-level and low-level software components. The higher level
software component consists of one or more SCSI target drivers, which translate I/O
requests into SCSI commands appropriate for the peripheral device. The following
example illustrates the SCSI architecture.

276 Writing Device Drivers • January 2005

Applications

Hardware

Kernel

SCSI hardware
interface

SCSI hardware
interface

Application
program 1

Application
program 2

Host bus adapter
driver 1

Target
driver 2

Target
driver 3

Target
driver 1

Sun Common SCSI Architecture (SCSA)

Host bus adapter
driver 2

System calls

FIGURE 16–1 SCSA Block Diagram

The lower-level software component consists of a SCSA interface layer and one or
more host bus adapter drivers. The target driver is responsible for the generation of
the proper SCSI commands required to execute the desired function and for
processing the results.

General Flow of Control
Assuming no transport errors occur, the following steps describe the general flow of
control for a read or write request.

1. The target driver’s read(9E) or write(9E) entry point is invoked. physio(9F) is
used to lock down memory, prepare a buf structure, and call the strategy routine.

2. The target driver’s strategy(9E) routine checks the request. strategy() then
allocates a scsi_pkt(9S) by using scsi_init_pkt(9F). The target driver
initializes the packet and sets the SCSI command descriptor block (CDB) using the
scsi_setup_cdb(9F) function. The target driver also specifies a timeout. Then,
the driver provides a pointer to a callback function. The callback function is called
by the host bus adapter driver on completion of the command. The buf(9S) pointer
should be saved in the SCSI packet’s target-private space.

3. The target driver submits the packet to the host bus adapter driver by using
scsi_transport(9F). The target driver is then free to accept other requests. The
target driver should not access the packet while the packet is in transport. If either
the host bus adapter driver or the target supports queueing, new requests can be
submitted while the packet is in transport.

Chapter 16 • SCSI Target Drivers 277

4. As soon as the SCSI bus is free and the target not busy, the host bus adapter driver
selects the target and passes the CDB. The target driver executes the command. The
target then performs the requested data transfers.

5. After the target sends completion status and the command completes, the host bus
adapter driver notifies the target driver. To perform the notification, the host calls
the completion function that was specified in the SCSI packet. At this time the host
bus adapter driver is no longer responsible for the packet, and the target driver has
regained ownership of the packet.

6. The SCSI packet’s completion routine analyzes the returned information. The
completion routine then determines whether the SCSI operation was successful. If
a failure has occurred, the target driver retries the command by calling
scsi_transport(9F) again. If the host bus adapter driver does not support auto
request sense, the target driver must submit a request sense packet to retrieve the
sense data in the event of a check condition.

7. After successful completion or if the command cannot be retried, the target driver
calls scsi_destroy_pkt(9F). scsi_destroy_pkt() synchronizes the data.
scsi_destroy_pkt() then frees the packet. If the target driver needs to access
the data before freeing the packet, scsi_sync_pkt(9F) is called.

8. Finally, the target driver notifies the requesting application that the read or write
transaction is complete. This notification is made by returning from the read(9E)
entry point in the driver for character devices. Otherwise, notification is made
indirectly through biodone(9F).

SCSA allows the execution of many of such operations, both overlapped and queued,
at various points in the process. The model places the management of system
resources on the host bus adapter driver. The software interface enables the execution
of target driver functions on host bus adapter drivers by using SCSI bus adapters of
varying degrees of sophistication.

SCSA Functions
SCSA defines functions to manage the allocation and freeing of resources, the sensing
and setting of control states, and the transport of SCSI commands. These functions are
listed in the following table.

TABLE 16–1 Standard SCSA Functions

Function Name Category

scsi_abort(9F) Error handling

scsi_alloc_consistent_buf(9F)

scsi_destroy_pkt(9F)

278 Writing Device Drivers • January 2005

TABLE 16–1 Standard SCSA Functions (Continued)
Function Name Category

scsi_dmafree(9F)

scsi_free_consistent_buf(9F)

scsi_ifgetcap(9F) Transport information and control

scsi_ifsetcap(9F)

scsi_init_pkt(9F) Resource management

scsi_poll(9F) Polled I/O

scsi_probe(9F) Probe functions

scsi_reset(9F)

scsi_setup_cdb(9F) CDB initialization function

scsi_sync_pkt(9F)

scsi_transport(9F) Command transport

scsi_unprobe(9F)

Note – If your driver needs to work with a SCSI-1 device, use the makecom(9F).

Hardware Configuration File
Because SCSI devices are not self-identifying, a hardware configuration file is required
for a target driver. See the driver.conf(4) and scsi_free_consistent_buf(9F)
man pages for details. The following is a typical configuration file:

name="xx" class="scsi" target=2 lun=0;

The system reads the file during autoconfiguration. The system uses the class property
to identify the driver’s possible parent. Then, the system attempts to attach the driver
to any parent driver that is of class scsi. All host bus adapter drivers are of this class.
Using the class property rather than the parent property is preferred. This approach
enables any host bus adapter driver that finds the expected device at the specified
target and lun IDs to attach to the target. The target driver is responsible for verifying
the class in its probe(9E) routine.

Chapter 16 • SCSI Target Drivers 279

Declarations and Data Structures
Target drivers must include the header file <sys/scsi/scsi.h>.

SCSI target drivers must use the following command to generate a binary module:

ld -r xx xx.o -N"misc/scsi"

scsi_device Structure
The host bus adapter driver allocates and initializes a scsi_device(9S) structure for
the target driver before either the probe(9E) or attach(9E) routine is called. This
structure stores information about each SCSI logical unit, including pointers to
information areas that contain both generic and device-specific information. One
scsi_device(9S) structure exists for each logical unit that is attached to the system.
The target driver can retrieve a pointer to this structure by calling
ddi_get_driver_private(9F).

Caution – Because the host bus adapter driver uses the private field in the target
device’s dev_info structure, target drivers must not use
ddi_set_driver_private(9F).

The scsi_device(9S) structure contains the following fields:

struct scsi_device {
struct scsi_address sd_address; /* opaque address */
dev_info_t *sd_dev; /* device node */
kmutex_t sd_mutex;
void *sd_reserved;
struct scsi_inquiry *sd_inq;
struct scsi_extended_sense *sd_sense;
caddr_t sd_private;

};

where:

sd_address Data structure that is passed to the routines for SCSI resource
allocation.

sd_dev Pointer to the target’s dev_info structure.

sd_mutex Mutex for use by the target driver. This mutex is initialized by the
host bus adapter driver and can be used by the target driver as a
per-device mutex. Do not hold this mutex across a call to
scsi_transport(9F) or scsi_poll(9F). See Chapter 3 for more
information on mutexes.

280 Writing Device Drivers • January 2005

sd_inq Pointer for the target device’s SCSI inquiry data. The
scsi_probe(9F) routine allocates a buffer, fills the buffer in with
inquiry data, and attaches the buffer to this field.

sd_sense Pointer to a buffer to contain SCSI request sense data from the
device. The target driver must allocate and manage this buffer. See
“attach() Entry Point (SCSI Target Drivers)” on page 285.

sd_private Pointer field for use by the target driver. This field is commonly used
to store a pointer to a private target driver state structure.

scsi_pkt Structure (Target Drivers)
The scsi_pkt structure contains the following fields:

struct scsi_pkt {
opaque_t pkt_ha_private; /* private data for host adapter */
struct scsi_address pkt_address; /* destination packet is for */
opaque_t pkt_private; /* private data for target driver */
void (*pkt_comp)(struct scsi_pkt *); /* completion routine */
uint_t pkt_flags; /* flags */
int pkt_time; /* time allotted to complete command */
uchar_t *pkt_scbp; /* pointer to status block */
uchar_t *pkt_cdbp; /* pointer to command block */
ssize_t pkt_resid; /* data bytes not transferred */
uint_t pkt_state; /* state of command */
uint_t pkt_statistics; /* statistics */
uchar_t pkt_reason; /* reason completion called */

};

where:

pkt_address Target device’s address set by scsi_init_pkt(9F).

pkt_private Place to store private data for the target driver. pkt_private is
commonly used to save the buf(9S) pointer for the command.

pkt_comp Address of the completion routine. The host bus adapter driver
calls this routine when the driver has transported the command.
Transporting the command does not mean that the command
succeeded. The target might have been busy. Another possibility is
that the target might not have responded before the time out
period elapsed. See the description for pkt_time field. The target
driver must supply a valid value in this field. This value can be
NULL if the driver does not want to be notified.

Chapter 16 • SCSI Target Drivers 281

Note – Two different SCSI callback routines are provided. The pkt_comp field
identifies a completion callback routine, which is called when the host bus adapter
completes its processing. A resource callback routine is also available, which is called
when currently unavailable resources are likely to be available. See the
scsi_init_pkt(9F) man page.

pkt_flags Provides additional control information, for example, to
transport the command without disconnect privileges
(FLAG_NODISCON) or to disable callbacks (FLAG_NOINTR). See
the scsi_pkt(9S) man page for details.

pkt_time Time out value in seconds. If the command is not completed
within this time, the host bus adapter calls the completion
routine with pkt_reason set to CMD_TIMEOUT. The target
driver should set this field to longer than the maximum time
the command might take. If the timeout is zero, no timeout is
requested. Timeout starts when the command is transmitted on
the SCSI bus.

pkt_scbp Pointer to the block for SCSI status completion. This field is
filled in by the host bus adapter driver.

pkt_cdbp Pointer to the SCSI command descriptor block, the actual
command to be sent to the target device. The host bus adapter
driver does not interpret this field. The target driver must fill
the field in with a command that the target device can process.

pkt_resid Residual of the operation. The pkt_resid field has two
different uses depending on how pkt_resid is used. When
pkt_resid is used to allocate DMA resources for a command
scsi_init_pkt(9F), pkt_resid indicates the number of
unallocable bytes. DMA resources might not be allocated due to
DMA hardware scatter-gather or other device limitations. After
command transport, pkt_resid indicates the number of
non-transferable data bytes. The field is filled in by the host bus
adapter driver before the completion routine is called.

pkt_state Indicates the state of the command. The host bus adapter
driver fills in this field as the command progresses. One bit is
set in this field for each of the five following command states:

� STATE_GOT_BUS – Acquired the bus
� STATE_GOT_TARGET – Selected the target
� STATE_SENT_CMD – Sent the command
� STATE_XFERRED_DATA – Transferred data, if appropriate
� STATE_GOT_STATUS – Received status from the device

282 Writing Device Drivers • January 2005

pkt_statistics Contains transport-related statistics set by the host bus adapter
driver.

pkt_reason Gives the reason the completion routine was called. The
completion routine decodes this field. The routine then takes
the appropriate action. If the command completes, that is, no
transport errors occur, this field is set to CMD_CMPLT. Other
values in this field indicate an error. After a command is
completed, the target driver should examine the pkt_scbp
field for a check condition status. See the scsi_pkt(9S) man
page for more information.

Autoconfiguration for SCSI Target
Drivers
SCSI target drivers must implement the standard autoconfiguration routines
_init(9E), _fini(9E), and _info(9E). See “Loadable Driver Interfaces” on page 91
for more information.

The following routines are also required, but these routines must perform specific
SCSI and SCSA processing:

� probe(9E)
� attach(9E)
� detach(9E)
� getinfo(9E)

probe() Entry Point (SCSI Target Drivers)
SCSI target devices are not self-identifying, so target drivers must have a probe(9E)
routine. This routine must determine whether the expected type of device is present
and responding.

The general structure and the return codes of the probe(9E) routine are the same as
the structure and return codes for other device drivers. SCSI target drivers must use
the scsi_probe(9F) routine in their probe(9E) entry point. scsi_probe(9F) sends a
SCSI inquiry command to the device and returns a code that indicates the result. If the
SCSI inquiry command is successful, scsi_probe(9F) allocates a scsi_inquiry(9S)
structure and fills the structure in with the device’s inquiry data. Upon return from
scsi_probe(9F), the sd_inq field of the scsi_device(9S) structure points to this
scsi_inquiry(9S) structure.

Chapter 16 • SCSI Target Drivers 283

Because probe(9E) must be stateless, the target driver must call scsi_unprobe(9F)
before probe(9E) returns, even if scsi_probe(9F) fails.

Example 16–1 shows a typical probe(9E) routine. The routine in the example retrieves
the scsi_device(9S) structure from the private field of its dev_info structure. The
routine also retrieves the device’s SCSI target and logical unit numbers for printing in
messages. The probe(9E) routine then calls scsi_probe(9F) to verify that the
expected device, a printer in this case, is present.

If successful, scsi_probe(9F) attaches the device’s SCSI inquiry data in a
scsi_inquiry(9S) structure to the sd_inq field of the scsi_device(9S) structure.
The driver can then determine whether the device type is a printer, which is reported
in the inq_dtype field. If the device is a printer, the type is reported with
scsi_log(9F), using scsi_dname(9F) to convert the device type into a string.

EXAMPLE 16–1 SCSI Target Driver probe(9E) Routine

static int
xxprobe(dev_info_t *dip)
{

struct scsi_device *sdp;
int rval, target, lun;
/*
* Get a pointer to the scsi_device(9S) structure
*/
sdp = (struct scsi_device *)ddi_get_driver_private(dip);

target = sdp->sd_address.a_target;
lun = sdp->sd_address.a_lun;
/*
* Call scsi_probe(9F) to send the Inquiry command. It will
* fill in the sd_inq field of the scsi_device structure.
*/
switch (scsi_probe(sdp, NULL_FUNC)) {
case SCSIPROBE_FAILURE:
case SCSIPROBE_NORESP:
case SCSIPROBE_NOMEM:

/*
* In these cases, device may be powered off,
* in which case we may be able to successfully
* probe it at some future time - referred to
* as ‘deferred attach’.
*/
rval = DDI_PROBE_PARTIAL;
break;

case SCSIPROBE_NONCCS:
default:

/*
* Device isn’t of the type we can deal with,
* and/or it will never be usable.
*/
rval = DDI_PROBE_FAILURE;
break;

284 Writing Device Drivers • January 2005

EXAMPLE 16–1 SCSI Target Driver probe(9E) Routine (Continued)

case SCSIPROBE_EXISTS:
/*
* There is a device at the target/lun address. Check
* inq_dtype to make sure that it is the right device
* type. See scsi_inquiry(9S)for possible device types.
*/
switch (sdp->sd_inq->inq_dtype) {
case DTYPE_PRINTER:
scsi_log(sdp, "xx", SCSI_DEBUG,

"found %s device at target%d, lun%d\n",
scsi_dname((int)sdp->sd_inq->inq_dtype),
target, lun);

rval = DDI_PROBE_SUCCESS;
break;
case DTYPE_NOTPRESENT:
default:
rval = DDI_PROBE_FAILURE;
break;
}

}
scsi_unprobe(sdp);
return (rval);

}

A more thorough probe(9E) routine could check scsi_inquiry(9S) to make sure
that the device is of the type expected by a particular driver.

attach() Entry Point (SCSI Target Drivers)
After the probe(9E) routine has verified that the expected device is present,
attach(9E) is called. attach() performs these tasks:

� Allocates and initializes any per-instance data.

� Creates minor device node information.

� Restores the hardware state of a device after a suspension of the device or the
system. See “attach() Entry Point” on page 99 for details.

A SCSI target driver needs to call scsi_probe(9F) again to retrieve the device’s
inquiry data. The driver must also create a SCSI request sense packet. If the attach is
successful, the attach() function should not call scsi_unprobe(9F).

Three routines are used to create the request sense packet:
scsi_alloc_consistent_buf(9F), scsi_init_pkt(9F), and
scsi_setup_cdb(9F). scsi_alloc_consistent_buf(9F) allocates a buffer that is
suitable for consistent DMA. scsi_alloc_consistent_buf() then returns a

Chapter 16 • SCSI Target Drivers 285

pointer to a buf(9S) structure. The advantage of a consistent buffer is that no explicit
synchronization of the data is required. In other words, the target driver can access the
data after the callback. The sd_sense element of the device’s scsi_device(9S)
structure must be initialized with the address of the sense buffer. scsi_init_pkt(9F)
creates and partially initializes a scsi_pkt(9S) structure. scsi_setup_cdb(9F)
creates a SCSI command descriptor block, in this case by creating a SCSI request sense
command.

Note that a SCSI device is not self-identifying and does not have a reg property. As a
result, the driver must set the pm-hardware-state property. Setting
pm-hardware-state informs the framework that this device needs to be suspended
and then resumed.

The following example shows the SCSI target driver’s attach() routine.

EXAMPLE 16–2 SCSI Target Driver attach(9E) Routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
struct scsi_pkt *rqpkt = NULL;
struct scsi_device *sdp;
struct buf *bp = NULL;
int instance;
instance = ddi_get_instance(dip);
switch (cmd) {

case DDI_ATTACH:
break;
case DDI_RESUME:

For information, see Chapter 9, Directory Memory Access(DMA)".
default:
return (DDI_FAILURE);

}
allocate a state structure and initialize it

[...]
xsp = ddi_get_soft_state(statep, instance);
sdp = (struct scsi_device *)ddi_get_driver_private(dip);
/*
* Cross-link the state and scsi_device(9S) structures.
*/
sdp->sd_private = (caddr_t)xsp;
xsp->sdp = sdp;

call scsi_probe(9F) again to get and validate inquiry data
/*
* Allocate a request sense buffer. The buf(9S) structure
* is set to NULL to tell the routine to allocate a new
* one. The callback function is set to NULL_FUNC to tell
* the routine to return failure immediately if no
* resources are available.
*/
bp = scsi_alloc_consistent_buf(&sdp->sd_address, NULL,
SENSE_LENGTH, B_READ, NULL_FUNC, NULL);

286 Writing Device Drivers • January 2005

EXAMPLE 16–2 SCSI Target Driver attach(9E) Routine (Continued)

if (bp == NULL)
goto failed;

/*
* Create a Request Sense scsi_pkt(9S) structure.
*/
rqpkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,
CDB_GROUP0, 1, 0, PKT_CONSISTENT, NULL_FUNC, NULL);
if (rqpkt == NULL)

goto failed;
/*
* scsi_alloc_consistent_buf(9F) returned a buf(9S) structure.
* The actual buffer address is in b_un.b_addr.
*/
sdp->sd_sense = (struct scsi_extended_sense *)bp->b_un.b_addr;
/*
* Create a Group0 CDB for the Request Sense command
*/
if (scsi_setup_cdb((union scsi_cdb *)rqpkt->pkt_cdbp,

SCMD_REQUEST_SENSE, 0, SENSE__LENGTH, 0) == 0)
goto failed;;

/*
* Fill in the rest of the scsi_pkt structure.
* xxcallback() is the private command completion routine.
*/
rqpkt->pkt_comp = xxcallback;
rqpkt->pkt_time = 30; /* 30 second command timeout */
rqpkt->pkt_flags |= FLAG_SENSING;
xsp->rqs = rqpkt;
xsp->rqsbuf = bp;

create minor nodes, report device, and do any other initialization
/*
* Since the device does not have the ’reg’ property,
* cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
* The following code is to tell cpr that this device
* needs to be suspended and resumed.
*/
(void) ddi_prop_update_string(device, dip,
"pm-hardware-state", "needs-suspend-resume");
xsp->open = 0;
return (DDI_SUCCESS);

failed:
if (bp)

scsi_free_consistent_buf(bp);
if (rqpkt)

scsi_destroy_pkt(rqpkt);
sdp->sd_private = (caddr_t)NULL;
sdp->sd_sense = NULL;
scsi_unprobe(sdp);

free any other resources, such as the state structure
return (DDI_FAILURE);

}

Chapter 16 • SCSI Target Drivers 287

detach() Entry Point (SCSI Target Drivers)
The detach(9E) entry point is the inverse of attach(9E). detach() must free all
resources that were allocated in attach(). If successful, the detach should call
scsi_unprobe(9F). The following example shows a target driver detach() routine.

EXAMPLE 16–3 SCSI Target Driver detach(9E) Routine

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

struct xxstate *xsp;
switch (cmd) {
case DDI_DETACH:

normal detach(9E) operations, such as getting a
pointer to the state structure

[...]
scsi_free_consistent_buf(xsp->rqsbuf);
scsi_destroy_pkt(xsp->rqs);
xsp->sdp->sd_private = (caddr_t)NULL;
xsp->sdp->sd_sense = NULL;
scsi_unprobe(xsp->sdp);

remove minor nodes
free resources, such as the state structure and properties
return (DDI_SUCCESS);

case DDI_SUSPEND:
For information, see Chapter 9, "Direct Memory Access (DMA)."

default:
return (DDI_FAILURE);

}

}

getinfo() Entry Point (SCSI Target Drivers)
The getinfo(9E) routine for SCSI target drivers is much the same as for other drivers
(see “getinfo() Entry Point” on page 106 for more information on
DDI_INFO_DEVT2INSTANCE case). However, in the DDI_INFO_DEVT2DEVINFO case
of the getinfo() routine, the target driver must return a pointer to its dev_info
node. This pointer can be saved in the driver state structure or can be retrieved from
the sd_dev field of the scsi_device(9S) structure. The following example shows an
alternative SCSI target driver getinfo() code fragment.

EXAMPLE 16–4 Alternative SCSI Target Driver getinfo() Code Fragment

[...]
case DDI_INFO_DEVT2DEVINFO:

dev = (dev_t)arg;
instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

288 Writing Device Drivers • January 2005

EXAMPLE 16–4 Alternative SCSI Target Driver getinfo() Code Fragment (Continued)

return (DDI_FAILURE);
*result = (void *)xsp->sdp->sd_dev;
return (DDI_SUCCESS);

[...]

Resource Allocation
To send a SCSI command to the device, the target driver must create and initialize a
scsi_pkt(9S) structure. This structure must then be passed to the host bus adapter
driver.

scsi_init_pkt() Function
The scsi_init_pkt(9F) routine allocates and zeroes a scsi_pkt(9S) structure.
scsi_init_pkt() also sets pointers to pkt_private, *pkt_scbp, and
*pkt_cdbp. Additionally, scsi_init_pkt() provides a callback mechanism to
handle the case where resources are not available. This function has the following
syntax:

struct scsi_pkt *scsi_init_pkt(struct scsi_address *ap,
struct scsi_pkt *pktp, struct buf *bp, int cmdlen,
int statuslen, int privatelen, int flags,
int (*callback)(caddr_t), caddr_t arg)

where:

ap Pointer to a scsi_address structure. ap is the sd_address field of the
device’s scsi_device(9S) structure.

pktp Pointer to the scsi_pkt(9S) structure to be initialized. If this pointer is
set to NULL, a new packet is allocated.

bp Pointer to a buf(9S) structure. If this pointer is non-NULL with a valid
byte count, DMA resources are allocated.

cmdlen Length of the SCSI command descriptor block in bytes.

statuslen Required length of the SCSI status completion block in bytes.

privatelen Number of bytes to allocate for the pkt_private field.

flags Set of flags:

Chapter 16 • SCSI Target Drivers 289

� PKT_CONSISTENT – This bit must be set if the DMA buffer was
allocated using scsi_alloc_consistent_buf(9F). In this case, the
host bus adapter driver guarantees that the data transfer is properly
synchronized before performing the target driver’s command
completion callback.

� PKT_DMA_PARTIAL – This bit can be set if the driver accepts a partial
DMA mapping. If set, scsi_init_pkt(9F) allocates DMA resources
with the DDI_DMA_PARTIAL flag set. The pkt_resid field of the
scsi_pkt(9S) structure can be returned with a nonzero residual. A
nonzero value indicates the number of bytes for which
scsi_init_pkt(9F) was unable to allocate DMA resources.

callback Specifies the action to take if resources are not available. If set to
NULL_FUNC, scsi_init_pkt(9F) returns the value NULL immediately.
If set to SLEEP_FUNC, scsi_init_pkt() does not return until
resources are available. Any other valid kernel address is interpreted as
the address of a function to be called when resources are likely to be
available.

arg Parameter to pass to the callback function.

The scsi_init_pkt() routine synchronizes the data prior to transport. If the driver
needs to access the data after transport, the driver should call scsi_sync_pkt(9F) to
flush any intermediate caches. The scsi_sync_pkt() routine can be used to
synchronize any cached data.

scsi_sync_pkt() Function
If the target driver needs to resubmit the packet after changing the data,
scsi_sync_pkt(9F) must be called before calling scsi_transport(9F). However,
if the target driver does not need to access the data, scsi_sync_pkt() does not need
to be called after the transport.

scsi_destroy_pkt() Function
The scsi_destroy_pkt(9F) routine synchronizes any remaining cached data that is
associated with the packet, if necessary. The routine then frees the packet and
associated command, status, and target driver-private data areas. This routine should
be called in the command completion routine.

290 Writing Device Drivers • January 2005

scsi_alloc_consistent_buf() Function
For most I/O requests, the data buffer passed to the driver entry points is not accessed
directly by the driver. The buffer is just passed on to scsi_init_pkt(9F). If a driver
sends SCSI commands that operate on buffers that the driver itself examines, the
buffers should be DMA consistent. The SCSI request sense command is a good
example. The scsi_alloc_consistent_buf(9F) routine allocates a buf(9S)
structure and a data buffer that is suitable for DMA-consistent operations. The HBA
performs any necessary synchronization of the buffer before performing the command
completion callback.

Note – scsi_alloc_consistent_buf(9F) uses scarce system resources. Thus, you
should use scsi_alloc_consistent_buf() sparingly.

scsi_free_consistent_buf() Function
scsi_free_consistent_buf(9F) releases a buf(9S) structure and the associated
data buffer allocated with scsi_alloc_consistent_buf(9F). See “attach()
Entry Point (SCSI Target Drivers)” on page 285 and “detach() Entry Point (SCSI
Target Drivers)” on page 288 for examples.

Building and Transporting a Command
The host bus adapter driver is responsible for transmitting the command to the device.
Furthermore, the driver is responsible for handling the low-level SCSI protocol. The
scsi_transport(9F) routine hands a packet to the host bus adapter driver for
transmission. The target driver has the responsibility to create a valid scsi_pkt(9S)
structure.

Building a Command
The routine scsi_init_pkt(9F) allocates space for a SCSI CDB, allocates DMA
resources if necessary, and sets the pkt_flags field, as shown in this example:

pkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,

CDB_GROUP0, 1, 0, 0, SLEEP_FUNC, NULL);

Chapter 16 • SCSI Target Drivers 291

This example creates a new packet along with allocating DMA resources as specified
in the passed buf(9S) structure pointer. A SCSI CDB is allocated for a Group 0 (6-byte)
command. The pkt_flags field is set to zero, but no space is allocated for the
pkt_private field. This call to scsi_init_pkt(9F), because of the SLEEP_FUNC
parameter, waits indefinitely for resources if no resources are currently available.

The next step is to initialize the SCSI CDB, using the scsi_setup_cdb(9F) function:

if (scsi_setup_cdb((union scsi_cdb *)pkt->pkt_cdbp,
SCMD_READ, bp->b_blkno, bp->b_bcount >> DEV_BSHIFT, 0) == 0)

goto failed;

This example builds a Group 0 command descriptor block. The example fills in the
pkt_cdbp field as follows:

� The command itself is in byte 0. The command is set from the parameter
SCMD_READ.

� The address field is in bits 0-4 of byte 1 and bytes 2 and 3. The address is set from
bp->b_blkno.

� The count field is in byte 4. The count is set from the last parameter. In this case,
count is set to bp->b_bcount >> DEV_BSHIFT, where DEV_BSHIFT is the byte
count of the transfer converted to the number of blocks.

Note – scsi_setup_cdb(9F) does not support setting a target device’s logical unit
number (LUN) in bits 5-7 of byte 1 of the SCSI command block. This requirement is
defined by SCSI-1. For SCSI-1 devices that require the LUN bits set in the command
block, use makecom_g0(9F) or some equivalent rather than scsi_setup_cdb(9F).

After initializing the SCSI CDB, initialize three other fields in the packet and store as a
pointer to the packet in the state structure.

pkt->pkt_private = (opaque_t)bp;
pkt->pkt_comp = xxcallback;
pkt->pkt_time = 30;

xsp->pkt = pkt;

The buf(9S) pointer is saved in the pkt_private field for later use in the completion
routine.

292 Writing Device Drivers • January 2005

Setting Target Capabilities
The target drivers use scsi_ifsetcap(9F) to set the capabilities of the host adapter
driver. A cap is a name-value pair, consisting of a null-terminated character string and
an integer value. The current value of a capability can be retrieved using
scsi_ifgetcap(9F). scsi_ifsetcap(9F) allows capabilities to be set for all targets
on the bus.

In general, however, setting capabilities of targets that are not owned by the target
driver is not recommended. This practice is not universally supported by HBA drivers.
Some capabilities, such as disconnect and synchronous, can be set by default by the
HBA driver. Other capabilities might need to be set explicitly by the target driver.
Wide-xfer and tagged-queueing must be set by the target drive, for example.

Transporting a Command
After the scsi_pkt(9S) structure is filled in, use scsi_transport(9F) to hand the
structure to the bus adapter driver:

if (scsi_transport(pkt) != TRAN_ACCEPT) {
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);
biodone(bp);

}

The other return values from scsi_transport(9F) are as follows:

� TRAN_BUSY – A command for the specified target is already in progress.

� TRAN_BADPKT – The DMA count in the packet was too large, or the host adapter
driver rejected this packet for other reasons.

� TRAN_FATAL_ERROR – The host adapter driver is unable to accept this packet.

Note – The mutex sd_mutex in the scsi_device(9S) structure must not be held
across a call to scsi_transport(9F).

If scsi_transport(9F) returns TRAN_ACCEPT, the packet becomes the responsibility
of the host bus adapter driver. The packet should not be accessed by the target driver
until the command completion routine is called.

Synchronous scsi_transport() Function
If FLAG_NOINTR is set in the packet, then scsi_transport(9F) does not return until
the command is complete. No callback is performed.

Chapter 16 • SCSI Target Drivers 293

Note – Do not use FLAG_NOINTR in interrupt context.

Command Completion
When the host bus adapter driver is through with the command, the driver invokes
the packet’s completion callback routine. The driver then passes a pointer to the
scsi_pkt(9S) structure as a parameter. After decoding the packet, the completion
routine takes the appropriate action.

Example 16–5 presents a simple completion callback routine. This code checks for
transport failures. In case of failure, the routine gives up rather than retrying the
command. If the target is busy, extra code is required to resubmit the command at a
later time.

If the command results in a check condition, the target driver needs to send a request
sense command unless auto request sense has been enabled.

Otherwise, the command succeeded. At the end of processing for the command, the
command destroys the packet and calls biodone(9F).

In the event of a transport error, such as a bus reset or parity problem, the target driver
can resubmit the packet by using scsi_transport(9F). No values in the packet need
to be changed prior to resubmitting.

The following example does not attempt to retry incomplete commands.

Note – Normally, the target driver’s callback function is called in interrupt context.
Consequently, the callback function should never sleep.

EXAMPLE 16–5 Completion Routine for a SCSI Driver

static void
xxcallback(struct scsi_pkt *pkt)
{

struct buf *bp;
struct xxstate *xsp;
minor_t instance;
struct scsi_status *ssp;
/*
* Get a pointer to the buf(9S) structure for the command
* and to the per-instance data structure.
*/
bp = (struct buf *)pkt->pkt_private;
instance = getminor(bp->b_edev);

294 Writing Device Drivers • January 2005

EXAMPLE 16–5 Completion Routine for a SCSI Driver (Continued)

xsp = ddi_get_soft_state(statep, instance);
/*
* Figure out why this callback routine was called
*/
if (pkt->pkt_reason != CMP_CMPLT) {

bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);
scsi_destroy_pkt(pkt); /* release resources */
biodone(bp); /* notify waiting threads */ ;

} else {
/*
* Command completed, check status.
* See scsi_status(9S)
*/
ssp = (struct scsi_status *)pkt->pkt_scbp;
if (ssp->sts_busy) {

error, target busy or reserved
} else if (ssp->sts_chk) {

send a request sense command
} else {
bp->b_resid = pkt->pkt_resid; /*packet completed OK */
scsi_destroy_pkt(pkt);
biodone(bp);
}

}

}

Reuse of Packets
A target driver can reuse packets in the following ways:

� Resubmit the packet unchanged.

� Use scsi_sync_pkt(9F) to synchronize the data. Then, process the data in the
driver. Finally, resubmit the packet.

� Free DMA resources, using scsi_dmafree(9F), and pass the pkt pointer to
scsi_init_pkt(9F) for binding to a new bp. The target driver is responsible for
reinitializing the packet. The CDB has to have the same length as the previous
CDB.

� If only partial DMA is allocated during the first call to scsi_init_pkt(9F),
subsequent calls to scsi_init_pkt(9F) can be made for the same packet. Calls
can be made to bp as well to adjust the DMA resources to the next portion of the
transfer.

Chapter 16 • SCSI Target Drivers 295

Auto-Request Sense Mode
Auto-request sense mode is most desirable if queuing is used, whether the queuing is
tagged or untagged. A contingent allegiance condition is cleared by any subsequent
command and, consequently, the sense data is lost. Most HBA drivers start the next
command before performing the target driver callback. Other HBA drivers can use a
separate, lower-priority thread to perform the callbacks. This approach might increase
the time needed to notify the target driver that the packet completed with a check
condition. In this case, the target driver might not be able to submit a request sense
command in time to retrieve the sense data.

To avoid this loss of sense data, the HBA driver, or controller, should issue a request
sense command if a check condition has been detected. This mode is known as
auto-request sense mode. Note that not all HBA drivers are capable of auto-request
sense mode, and some drivers can only operate with auto-request sense mode
enabled.

A target driver enables auto-request-sense mode by using scsi_ifsetcap(9F). The
following example shows auto-request sense enabling.

EXAMPLE 16–6 Enabling Auto-Request Sense Mode

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
struct scsi_device *sdp = (struct scsi_device *)
ddi_get_driver_private(dip);
[...]
/*
* enable auto-request-sense; an auto-request-sense cmd may
* fail due to a BUSY condition or transport error. Therefore,
* it is recommended to allocate a separate request sense
* packet as well.
* Note that scsi_ifsetcap(9F) may return -1, 0, or 1
*/
xsp->sdp_arq_enabled =
((scsi_ifsetcap(ROUTE, “auto-rqsense”, 1, 1) == 1) ? 1 :

0);
/*
* if the HBA driver supports auto request sense then the
* status blocks should be sizeof (struct scsi_arq_status);

else
* one byte is sufficient
*/
xsp->sdp_cmd_stat_size = (xsp->sdp_arq_enabled ?
sizeof (struct scsi_arq_status) : 1);
[...]

}

296 Writing Device Drivers • January 2005

If a packet is allocated using scsi_init_pkt(9F) and auto-request sense is desired
on this packet, additional space is needed. The target driver must request this space
for the status block to hold the auto-request sense structure. The sense length used in
the request sense command is sizeof, from struct scsi_extended_sense.
Auto-request sense can be disabled per individual packet by allocating sizeof, from
struct scsi_status, for the status block.

The packet is submitted using scsi_transport(9F) as usual. When a check
condition occurs on this packet, the host adapter driver takes the following steps:

� Issues a request sense command if the controller does not have auto-request sense
capability

� Obtains the sense data

� Fills in the scsi_arq_status information in the packet’s status block

� Sets STATE_ARQ_DONE in the packet’s pkt_state field

� Calls the packet’s callback handler (pkt_comp())

The target driver’s callback routine should verify that sense data is available by
checking the STATE_ARQ_DONE bit in pkt_state. STATE_ARQ_DONE implies that a
check condition has occurred and that a request sense has been performed. If
auto-request sense has been temporarily disabled in a packet, subsequent retrieval of
the sense data cannot be guaranteed.

The target driver should then verify whether the auto-request sense command
completed successfully and decode the sense data.

Dump Handling
The dump(9E) entry point copies a portion of virtual address space directly to the
specified device in the case of system failure or checkpoint operation. See the cpr(7)
and dump(9E) man pages. The dump(9E) entry point must be capable of performing
this operation without the use of interrupts.

The arguments for dump() are as follows:

dev Device number of the dump device

addr Kernel virtual address at which to start the dump

blkno First destination block on the device

nblk Number of blocks to dump

EXAMPLE 16–7 dump(9E) Routine

static int
xxdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
{

Chapter 16 • SCSI Target Drivers 297

EXAMPLE 16–7 dump(9E) Routine (Continued)

struct xxstate *xsp;
struct buf *bp;
struct scsi_pkt *pkt;
int rval;
int instance;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);

if (tgt->suspended) {
(void) ddi_dev_is_needed(DEVINFO(tgt), 0, 1);
}

bp = getrbuf(KM_NOSLEEP);
if (bp == NULL) {
return (EIO);
}

Calculate block number relative to partition

bp->b_un.b_addr = addr;
bp->b_edev = dev;
bp->b_bcount = nblk * DEV_BSIZE;
bp->b_flags = B_WRITE | B_BUSY;
bp->b_blkno = blkno;

pkt = scsi_init_pkt(ROUTE(tgt), NULL, bp, CDB_GROUP1,
sizeof (struct scsi_arq_status),
sizeof (struct bst_pkt_private), 0, NULL_FUNC, NULL);
if (pkt == NULL) {
freerbuf(bp);
return (EIO);
}
(void) scsi_setup_cdb((union scsi_cdb *)pkt->pkt_cdbp,

SCMD_WRITE_G1, blkno, nblk, 0);

/*
* while dumping in polled mode, other cmds might complete
* and these should not be resubmitted. we set the
* dumping flag here which prevents requeueing cmds.
*/
tgt->dumping = 1;
rval = scsi_poll(pkt);
tgt->dumping = 0;

scsi_destroy_pkt(pkt);
freerbuf(bp);

if (rval != DDI_SUCCESS) {
rval = EIO;
}

298 Writing Device Drivers • January 2005

EXAMPLE 16–7 dump(9E) Routine (Continued)

return (rval);
}

SCSI Options
SCSA defines a global variable, scsi_options, for control and debugging. The defined
bits in scsi_options can be found in the file <sys/scsi/conf/autoconf.h>. The
scsi_options uses the bits as follows:

SCSI_OPTIONS_DR Enables global disconnect or reconnect.

SCSI_OPTIONS_FAST Enables global FAST SCSI support: 10 Mbytes/sec
transfers. The HBA should not operate in FAST SCSI
mode unless the SCSI_OPTIONS_FAST (0x100) bit is
set.

SCSI_OPTIONS_FAST20 Enables global FAST20 SCSI support: 20 Mbytes/sec
transfers. The HBA should not operate in FAST20 SCSI
mode unless the SCSI_OPTIONS_FAST20 (0x400) bit is
set.

SCSI_OPTIONS_FAST40 Enables global FAST40 SCSI support: 40 Mbytes/sec
transfers. The HBA should not operate in FAST40 SCSI
mode unless the SCSI_OPTIONS_FAST40 (0x800) bit is
set.

SCSI_OPTIONS_FAST80 Enables global FAST80 SCSI support: 80 Mbytes/sec
transfers. The HBA should not operate in FAST80 SCSI
mode unless the SCSI_OPTIONS_FAST80 (0x1000) bit
is set.

SCSI_OPTIONS_FAST160 Enables global FAST160 SCSI support: 160 Mbytes/sec
transfers. The HBA should not operate in FAST160
SCSI mode unless the SCSI_OPTIONS_FAST160
(0x2000) bit is set.

SCSI_OPTIONS_FAST320 Enables global FAST320 SCSI support: 320 Mbytes/sec
transfers. The HBA should not operate in FAST320
SCSI mode unless the SCSI_OPTIONS_FAST320
(0x4000) bit is set.

SCSI_OPTIONS_LINK Enables global link support.

SCSI_OPTIONS_PARITY Enables global parity support.

Chapter 16 • SCSI Target Drivers 299

SCSI_OPTIONS_QAS Enables the Quick Arbitration Select feature. QAS is
used to decrease protocol overhead when devices
arbitrate for and access the bus. QAS is only supported
on Ultra4 (FAST160) SCSI devices, although not all
such devices support QAS. The HBA should not
operate in QAS SCSI mode unless the
SCSI_OPTIONS_QAS (0x100000) bit is set. Consult the
appropriate Sun hardware documentation to determine
whether your machine supports QAS.

SCSI_OPTIONS_SYNC Enables global synchronous transfer capability.

SCSI_OPTIONS_TAG Enables global tagged queuing support.

SCSI_OPTIONS_WIDE Enables global WIDE SCSI.

Note – The setting of scsi_options affects all host bus adapter drivers and all target
drivers that are present on the system. Refer to the scsi_hba_attach(9F) man page
for information on controlling these options for a particular host adapter.

300 Writing Device Drivers • January 2005

CHAPTER 17

SCSI Host Bus Adapter Drivers

This chapter contains information on creating SCSI host bus adapter (HBA) drivers.
The chapter provides sample code illustrating the structure of a typical HBA driver.
The sample code shows the use of the HBA driver interfaces that are provided by the
Sun Common SCSI Architecture (SCSA). This chapter provides information on the
following subjects:

� “Introduction to Host Bus Adapter Drivers” on page 301
� “SCSI Interface” on page 302
� “SCSA HBA Interfaces” on page 304
� “HBA Driver Dependency and Configuration Issues” on page 315
� “Entry Points for SCSA HBA Drivers” on page 322
� “SCSI HBA Driver Specific Issues” on page 350
� “Support for Queuing” on page 353

Introduction to Host Bus Adapter
Drivers
As described in Chapter 16, the Solaris 10 DDI/DKI divides the software interface to
SCSI devices into two major parts:

� Target devices and drivers
� Host bus adapter devices and drivers

Target device refers to a device on a SCSI bus, such as a disk or a tape drive. Target
driver refers to a software component installed as a device driver. Each target device on
a SCSI bus is controlled by one instance of the target driver.

301

Host bus adapter device refers to HBA hardware, such as an SBus or PCI SCSI adapter
card. Host bus adapter driver refers to a software component that is installed as a device
driver. Some examples are the esp driver on a SPARC machine, the ncrs driver on an
x86 machine, and the isp driver, which works on both architectures. An instance of
the HBA driver controls each of its host bus adapter devices that are configured in the
system.

The Sun Common SCSI Architecture (SCSA) defines the interface between the target
and HBA components.

Note – Understanding SCSI target drivers is an essential prerequisite to writing
effective SCSI HBA drivers. For information on SCSI target drivers, see Chapter 16.
Target driver developers can also benefit from reading this chapter.

The host bus adapter driver is responsible for performing the following tasks:

� Managing host bus adapter hardware
� Accepting SCSI commands from the SCSI target driver
� Transporting the commands to the specified SCSI target device
� Performing any data transfers that the command requires
� Collecting status
� Handling auto-request sense (optional)
� Informing the target driver of command completion or failure

SCSI Interface
SCSA is the Solaris 10 DDI/DKI programming interface for the transmission of SCSI
commands from a target driver to a host adapter driver. By conforming to the SCSA,
the target driver can easily pass any combination of SCSI commands and sequences to
a target device. Knowledge of the hardware implementation of the host adapter is not
necessary. Conceptually, SCSA separates the building of a SCSI command from the
transporting of the command with data to the SCSI bus. SCSA manages the
connections between the target and HBA drivers through an HBA transportlayer, as
shown in the following figure.

302 Writing Device Drivers • January 2005

Target
Driver

SCSA
Interface

HBA
Driver

HBA
Device

TapeDisk

HBA transport layer

SCSI Bus

Target devices

TapeDisk

Target devices

FIGURE 17–1 SCSA Interface

The HBA transport layer is a software and hardware layer that is responsible for
transporting a SCSI command to a SCSI target device. The HBA driver provides
resource allocation, DMA management, and transport services in response to requests
made by SCSI target drivers through SCSA. The host adapter driver also manages the
host adapter hardware and the SCSI protocols necessary to perform the commands.
When a command has been completed, the HBA driver calls the target driver’s SCSI
pkt command completion routine.

The following example illustrates this flow, with emphasis on the transfer of
information from target drivers to SCSA to HBA drivers. The figure also shows typical
transport entry points and function calls.

Chapter 17 • SCSI Host Bus Adapter Drivers 303

Target driver request

Allocate scsi_pkt(9S) scsi_init_pkt(9F) tran_init_pkt(9E)

Target Driver

SCSA Interface HBA Driver

Transport command scsi_transport(9F) tran_start(9E)

Command completion

Build SCSI command

Callback handling

Free scsi_pkt(9S) scsi_destroy_pkt(9F) tran_destroy_pkt(9E)

Request completion

FIGURE 17–2 Transport Layer Flow

SCSA HBA Interfaces
SCSA HBA interfaces include HBA entry points, HBA data structures, and an HBA
framework.

SCSA HBA Entry Point Summary
SCSA defines a number of HBA driver entry points. These entry points are listed in the
following table. The entry points are called by the system when a target driver
instance connected to the HBA driver is configured. The entry points are also called
when the target driver makes a SCSA request. See “Entry Points for SCSA HBA
Drivers” on page 322 for more information.

304 Writing Device Drivers • January 2005

TABLE 17–1 SCSA HBA Entry Point Summary

Function Name Called as a Result of

tran_abort(9E) Target driver calling scsi_abort(9F)

tran_bus_reset(9e) System resetting bus

tran_destroy_pkt(9E) Target driver calling scsi_destroy_pkt(9F)

tran_dmafree(9E) Target driver calling scsi_dmafree(9F)

tran_getcap(9E) Target driver calling scsi_ifgetcap(9F)

tran_init_pkt(9E) Target driver calling scsi_init_pkt(9F)

tran_quiesce(9e) System quiescing bus

tran_reset(9E) Target driver calling scsi_reset(9F)

tran_reset_notify(9E) Target driver calling scsi_reset_notify(9F)

tran_setcap(9E) Target driver calling scsi_ifsetcap(9F)

tran_start(9E) Target driver calling scsi_transport(9F)

tran_sync_pkt(9E) Target driver calling scsi_sync_pkt(9F)

tran_tgt_free(9E) System detaching target device instance

tran_tgt_init(9E) System attaching target device instance

tran_tgt_probe(9E) Target driver calling scsi_probe(9F)

tran_unquiesce(9e) System resuming activity on bus

SCSA HBA Data Structures
SCSA defines data structures to enable the exchange of information between the target
and HBA drivers. The following data structures are included:

� scsi_hba_tran(9S)
� scsi_address(9S)
� scsi_device(9S)
� scsi_pkt(9S)

scsi_hba_tran() Structure
Each instance of an HBA driver must allocate a scsi_hba_tran(9S) structure using
scsi_hba_tran_alloc(9F) in the attach(9E) entry point.
scsi_hba_tran_alloc(9F) initializes the scsi_hba_tran(9S) structure before
returning. The HBA driver must initialize specific vectors in the transport structure to
point to entry points within the HBA driver. Once initialized, the HBA driver exports
the transport structure to SCSA by calling scsi_hba_attach_setup(9F).

Chapter 17 • SCSI Host Bus Adapter Drivers 305

Caution – Because SCSA keeps a pointer to the transport structure in the driver-private
field on the devinfo node, HBA drivers must not use
ddi_set_driver_private(9F). HBA drivers can, however, use
ddi_get_driver_private(9F) to retrieve the pointer to the transport structure.

The scsi_hba_tran(9S) structure contains the following fields:

struct scsi_hba_tran {
dev_info_t *tran_hba_dip;
void *tran_hba_private; /* HBA soft state */
void *tran_tgt_private; /* target-specific info */
struct scsi_device *tran_sd;
int (*tran_tgt_init)();
int (*tran_tgt_probe)();
void (*tran_tgt_free)();
int (*tran_start)();
int (*tran_reset)();
int (*tran_abort)();
int (*tran_getcap)();
int (*tran_setcap)();
struct scsi_pkt *(*tran_init_pkt)();
void (*tran_destroy_pkt)();
void (*tran_dmafree)();
void (*tran_sync_pkt)();
int (*tran_reset_notify)();
int (*tran_quiesce)();
int (*tran_unquiesce)();
int (*tran_bus_reset)();

};

Note – Code fragments presented subsequently in this chapter use these fields to
describe practical HBA driver operations. See “Entry Points for SCSA HBA Drivers”
on page 322 for more information.

where:

tran_hba_dip Pointer to the HBA device instance dev_info structure.
The function scsi_hba_attach_setup(9F) sets this
field.

tran_hba_private Pointer to private data maintained by the HBA driver.
Usually, tran_hba_private contains a pointer to the
state structure of the HBA driver.

tran_tgt_private Pointer to private data maintained by the HBA driver
when using cloning. By specifying
SCSI_HBA_TRAN_CLONE when calling
scsi_hba_attach_setup(9F), the scsi_hba_tran(9S)

306 Writing Device Drivers • January 2005

structure is cloned once per target. This approach permits
the HBA to initialize this field to point to a per-target
instance data structure in the tran_tgt_init(9E) entry
point. If SCSI_HBA_TRAN_CLONE is not specified,
tran_tgt_private is NULL, and tran_tgt_private
must not be referenced. See “Transport Structure Cloning”
on page 312 for more information.

tran_sd Pointer to a per-target instance scsi_device(9S) structure
used when cloning. If SCSI_HBA_TRAN_CLONE is passed
to scsi_hba_attach_setup(9F), tran_sd is initialized
to point to the per-target scsi_device structure. This
initialization takes place before any HBA functions are
called on behalf of that target. If SCSI_HBA_TRAN_CLONE
is not specified, tran_sd is NULL, and tran_sd must not
be referenced. See “Transport Structure Cloning” on page
312 for more information.

tran_tgt_init Pointer to the HBA driver entry point that is called when
initializing a target device instance. If no per-target
initialization is required, the HBA can leave
tran_tgt_init set to NULL.

tran_tgt_probe Pointer to the HBA driver entry point that is called when a
target driver instance calls scsi_probe(9F). This routine
is called to probe for the existence of a target device. If no
target probing customization is required for this HBA, the
HBA should set tran_tgt_probe to
scsi_hba_probe(9F).

tran_tgt_free Pointer to the HBA driver entry point that is called when a
target device instance is destroyed. If no per-target
deallocation is necessary, the HBA can leave
tran_tgt_free set to NULL.

tran_start Pointer to the HBA driver entry point that is called when a
target driver calls scsi_transport(9F).

tran_reset Pointer to the HBA driver entry point that is called when a
target driver calls scsi_reset(9F).

tran_abort Pointer to the HBA driver entry point that is called when a
target driver calls scsi_abort(9F).

tran_getcap Pointer to the HBA driver entry point that is called when a
target driver calls scsi_ifgetcap(9F).

tran_setcap Pointer to the HBA driver entry point that is called when a
target driver calls scsi_ifsetcap(9F).

tran_init_pkt Pointer to the HBA driver entry point that is called when a
target driver calls scsi_init_pkt(9F).

Chapter 17 • SCSI Host Bus Adapter Drivers 307

tran_destroy_pkt Pointer to the HBA driver entry point that is called when a
target driver calls scsi_destroy_pkt(9F).

tran_dmafree Pointer to the HBA driver entry point that is called when a
target driver calls scsi_dmafree(9F).

tran_sync_pkt Pointer to the HBA driver entry point that is called when a
target driver calls scsi_sync_pkt(9F).

tran_reset_notify Pointer to the HBA driver entry point that is called when a
target driver calls tran_reset_notify(9E).

scsi_address Structure
The scsi_address(9S) structure provides transport and addressing information for
each SCSI command that is allocated and transported by a target driver instance.

The scsi_address structure contains the following fields:

struct scsi_address {
struct scsi_hba_tran *a_hba_tran; /* Transport vectors */
ushort_t a_target; /* Target identifier */
uchar_t a_lun; /* LUN on that target */
uchar_t a_sublun; /* Sub LUN on that LUN */

/* Not used */

};

a_hba_tran Pointer to the scsi_hba_tran(9S) structure, as allocated and
initialized by the HBA driver. If SCSI_HBA_TRAN_CLONE was
specified as the flag to scsi_hba_attach_setup(9F),
a_hba_tran points to a copy of that structure.

a_target Identifies the SCSI target on the SCSI bus.

a_lun Identifies the SCSI logical unit on the SCSI target.

scsi_device Structure
The HBA framework allocates and initializes a scsi_device(9S) structure for each
instance of a target device. The allocation and initialization occur before the
framework calls the HBA driver’s tran_tgt_init(9E) entry point. This structure
stores information about each SCSI logical unit, including pointers to information
areas that contain both generic and device-specific information. One
scsi_device(9S) structure exists for each target device instance that is attached to
the system.

308 Writing Device Drivers • January 2005

If the per-target initialization is successful, the HBA framework sets the target driver’s
per-instance private data to point to the scsi_device(9S) structure, using
ddi_set_driver_private(9F). Note that an initialization is successful if
tran_tgt_init() returns success or if the vector is NULL.

The scsi_device(9S) structure contains the following fields:

struct scsi_device {
struct scsi_address sd_address; /* routing information */
dev_info_t *sd_dev; /* device dev_info node */
kmutex_t sd_mutex; /* mutex used by device */
void *sd_reserved;
struct scsi_inquiry *sd_inq;
struct scsi_extended_sense *sd_sense;
caddr_t sd_private; /* for driver’s use */

};

where:

sd_address Data structure that is passed to the routines for SCSI resource
allocation.

sd_dev Pointer to the target’s dev_info structure.

sd_mutex Mutex for use by the target driver. This mutex is initialized by the
HBA framework. The mutex can be used by the target driver as a
per-device mutex. This mutex should not be held across a call to
scsi_transport(9F) or scsi_poll(9F). See Chapter 3 for more
information on mutexes.

sd_inq Pointer for the target device’s SCSI inquiry data. The
scsi_probe(9F) routine allocates a buffer, fills the buffer in, and
attaches the buffer to this field.

sd_sense Pointer to a buffer to contain request sense data from the device. The
target driver must allocate and manage this buffer itself. See the
target driver’s attach(9E) routine in “attach() Entry Point”
on page 99 for more information.

sd_private Pointer field for use by the target driver. This field is commonly used
to store a pointer to a private target driver state structure.

Chapter 17 • SCSI Host Bus Adapter Drivers 309

scsi_pkt Structure (HBA)
To execute SCSI commands, a target driver must first allocate a scsi_pkt(9S)
structure for the command. The target driver must then specify its own private data
area length, the command status, and the command length. The HBA driver is
responsible for implementing the packet allocation in the tran_init_pkt(9E) entry
point. The HBA driver is also responsible for freeing the packet in its
tran_destroy_pkt(9E) entry point. See “scsi_pkt Structure (Target Drivers)”
on page 281 for more information.

The scsi_pkt(9S) structure contains these fields:

struct scsi_pkt {
opaque_t pkt_ha_private; /* private data for host adapter */
struct scsi_address pkt_address; /* destination address */
opaque_t pkt_private; /* private data for target driver */
void (*pkt_comp)(struct scsi_pkt *); /* completion routine */
uint_t pkt_flags; /* flags */
int pkt_time; /* time allotted to complete command */
uchar_t *pkt_scbp; /* pointer to status block */
uchar_t *pkt_cdbp; /* pointer to command block */
ssize_t pkt_resid; /* data bytes not transferred */
uint_t pkt_state; /* state of command */
uint_t pkt_statistics; /* statistics */
uchar_t pkt_reason; /* reason completion called */

};

where:

pkt_ha_private Pointer to per-command HBA-driver private data.

pkt_address Pointer to the scsi_address(9S) structure providing address
information for this command.

pkt_private Pointer to per-packet target-driver private data.

pkt_comp Pointer to the target-driver completion routine called by the
HBA driver when the transport layer has completed this
command.

pkt_flags Flags for the command.

pkt_time Specifies the completion timeout in seconds for the command.

pkt_scbp Pointer to the status completion block for the command.

pkt_cdbp Pointer to the command descriptor block (CDB) for the
command.

pkt_resid Count of the data bytes that were not transferred when the
command completed. This field may also be used to specify the
amount of data for which resources have not been allocated.
The HBA must modify this field during transport.

310 Writing Device Drivers • January 2005

pkt_state State of the command. The HBA must modify this field during
transport.

pkt_statistics Provides a history of the events that the command experienced
while in the transport layer. The HBA must modify this field
during transport.

pkt_reason Reason for command completion. The HBA must modify this
field during transport.

Per-Target Instance Data
An HBA driver must allocate a scsi_hba_tran(9S) structure during attach(9E).
The HBA driver must then initialize the vectors in this transport structure to point to
the required entry points for the HBA driver. This scsi_hba_tran(9S) structure is
then passed into scsi_hba_attach_setup(9F).

The scsi_hba_tran(9S) structure contains a tran_hba_private field, which can
be used to refer to the HBA driver’s per-instance state.

Each scsi_address(9S) structure contains a pointer to the scsi_hba_tran(9S)
structure. In addition, the scsi_address structure provides the target, that is,
a_target, and logical unit (a_lun) addresses for the particular target device. Each
entry point for the HBA driver is passed a pointer to the scsi_address(9S)
structure, either directly or indirectly through the scsi_device(9S) structure. As a
result, the HBA driver can reference its own state. The HBA driver can also identify
the target device that is addressed.

The following figure illustrates the HBA data structures for transport operations.

Chapter 17 • SCSI Host Bus Adapter Drivers 311

HBA private
data pointer

Transport
vectors

scsi_hba_tran
structure

2

scsi_address
structure

scsi_device
structure

1
HBA driver
entry points

HBA driver module

HBA soft state
structure

2

1

SCSI Bus

Target devices

Per HBA
device instance

Per target
device instance

Per HBA
device instance

One SCSI device structure per target device instance

FIGURE 17–3 HBA Transport Structures

Transport Structure Cloning
Cloning can be useful if an HBA driver needs to maintain per-target private data in
the scsi_hba_tran(9S) structure. Cloning can also be used to maintain a more
complex address than is provided in the scsi_address(9S) structure.

In the cloning process, the HBA driver must still allocate a scsi_hba_tran structure
at attach(9E) time. The HBA driver must also initialize the tran_hba_private soft
state pointer and the entry point vectors for the HBA driver. The difference occurs
when the framework begins to connect an instance of a target driver to the HBA
driver. Before calling the HBA driver’s tran_tgt_init(9E) entry point, the
framework clones the scsi_hba_tran structure that is associated with that instance
of the HBA. Accordingly, each scsi_address(9S) structure that is allocated and
initialized for a particular target device instance points to a per-target instance copy of
the scsi_hba_tran structure. The scsi_address structures do not point to the
scsi_hba_tran structure that is allocated by the HBA driver at attach(9E) time.

312 Writing Device Drivers • January 2005

An HBA driver can use two important pointers when cloning is specified. These
pointers are contained in the scsi_hba_tran structure. The first pointer is the
tran_tgt_private field, which the driver can use to point to per-target HBA
private data. The tran_tgt_private pointer is useful, for example, if an HBA
driver needs to maintain a more complex address than a_target and a_lun provide.
The second pointer is the tran_sd field, which is a pointer to the scsi_device(9S)
structure referring to the particular target device.

When specifying cloning, the HBA driver must allocate and initialize the per-target
data. The HBA driver must then initialize the tran_tgt_private field to point to
this data during its tran_tgt_init(9E) entry point. The HBA driver must free this
per-target data during its tran_tgt_free(9E) entry point.

When cloning, the framework initializes the tran_sd field to point to the
scsi_device(9S) structure before the HBA driver tran_tgt_init(9E) entry point
is called. The driver requests cloning by passing the SCSI_HBA_TRAN_CLONE flag to
scsi_hba_attach_setup(9F). The following figure illustrates the HBA data
structures for cloning transport operations.

Chapter 17 • SCSI Host Bus Adapter Drivers 313

original
scsi_hba_tran

structure
2

scsi_address
structure

scsi_device
structures

1

HBA driver
entry points

HBA driver
module

2

1

SCSI
Bus

Target
devices

Allocated by
HBA driver

HBA soft state
structure

One soft state
structure per HBA

One SCSI device structure per target device instance

2
1

Back pointers to SCSI
device structures

Cloned
scsi_hba_tran
structures
1 and 2

HBA
per-target data

HBA Transport Structures
(cloning example)

FIGURE 17–4 Cloning Transport Operation

SCSA HBA Functions
SCSA also provides a number of functions. The functions are listed in the following
table, for use by HBA drivers.

TABLE 17–2 SCSA HBA Functions

Function Name Called by Driver Entry Point

scsi_hba_init(9F) _init(9E)

scsi_hba_fini(9F) _fini(9E)

scsi_hba_attach_setup(9F) attach(9E)

314 Writing Device Drivers • January 2005

TABLE 17–2 SCSA HBA Functions (Continued)
Function Name Called by Driver Entry Point

scsi_hba_detach(9F) detach(9E)

scsi_hba_tran_alloc(9F) attach(9E)

scsi_hba_tran_free(9F) detach(9E)

scsi_hba_probe(9F) tran_tgt_probe(9E)

scsi_hba_pkt_alloc(9F) tran_init_pkt(9E)

scsi_hba_pkt_free(9F) tran_destroy_pkt(9E)

scsi_hba_lookup_capstr(9F) tran_getcap(9E) and tran_setcap(9E)

HBA Driver Dependency and
Configuration Issues
In addition to incorporating SCSA HBA entry points, structures, and functions into a
driver, a developer must deal with driver dependency and configuration issues. These
issues involve configuration properties, dependency declarations, state structure and
per-command structure, entry points for module initialization, and autoconfiguration
entry points.

Declarations and Structures
HBA drivers must include the following header files:

#include <sys/scsi/scsi.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

To inform the system that the module depends on SCSA routines, the driver binary
must be generated with the following command. See “SCSA HBA Interfaces” on page
304 for more information on SCSA routines.

% ld -r xx.o -o xx -N "misc/scsi"

The code samples are derived from a simplified isp driver for the QLogic Intelligent
SCSI Peripheral device. The isp driver supports WIDE SCSI, with up to 15 target
devices and 8 logical units (LUNs) per target.

Chapter 17 • SCSI Host Bus Adapter Drivers 315

Per-Command Structure
An HBA driver usually needs to define a structure to maintain state for each
command submitted by a target driver. The layout of this per-command structure is
entirely up to the device driver writer. The layout needs to reflect the capabilities and
features of the hardware and the software algorithms that are used in the driver.

The following structure is an example of a per-command structure. The remaining
code fragments of this chapter use this structure to illustrate the HBA interfaces.

struct isp_cmd {
struct isp_request cmd_isp_request;
struct isp_response cmd_isp_response;
struct scsi_pkt *cmd_pkt;
struct isp_cmd *cmd_forw;
uint32_t cmd_dmacount;
ddi_dma_handle_t cmd_dmahandle;
uint_t cmd_cookie;
uint_t cmd_ncookies;
uint_t cmd_cookiecnt;
uint_t cmd_nwin;
uint_t cmd_curwin;
off_t cmd_dma_offset;
uint_t cmd_dma_len;
ddi_dma_cookie_t cmd_dmacookies[ISP_NDATASEGS];
u_int cmd_flags;
u_short cmd_slot;
u_int cmd_cdblen;
u_int cmd_scblen;

};

Entry Points for Module Initialization
This section describes the entry points for operations that are performed by SCSI HBA
drivers.

The following code for a SCSI HBA driver illustrates a representative dev_ops(9S)
structure. The driver must initialize the devo_bus_ops field in this structure to
NULL. A SCSI HBA driver can provide leaf driver interfaces for special purposes, in
which case the devo_cb_ops field might point to a cb_ops(9S) structure. In this
example, no leaf driver interfaces are exported, so the devo_cb_ops field is
initialized to NULL.

_init() Entry Point (SCSI HBA Drivers)
The _init(9E) function initializes a loadable module. _init() is called before any
other routine in the loadable module.

316 Writing Device Drivers • January 2005

In a SCSI HBA, the _init() function must call scsi_hba_init(9F) to inform the
framework of the existence of the HBA driver before calling mod_install(9F). If
scsi_hba__init() returns a nonzero value,_init() should return this value.
Otherwise, _init() must return the value returned by mod_install(9F).

The driver should initialize any required global state before calling mod_install(9F).

If mod_install() fails, the _init() function must free any global resources
allocated. _init() must call scsi_hba_fini(9F) before returning.

The following example uses a global mutex to show how to allocate data that is global
to all instances of a driver. The code declares global mutex and soft-state structure
information. The global mutex and soft state are initialized during _init().

_fini() Entry Point (SCSI HBA Drivers)
The _fini(9E) function is called when the system is about to try to unload the SCSI
HBA driver. The _fini() function must call mod_remove(9F) to determine whether
the driver can be unloaded. If mod_remove() returns 0, the module can be unloaded.
The HBA driver must deallocate any global resources allocated in _init(9E). The
HBA driver must also call scsi_hba_fini(9F).

_fini() must return the value returned by mod_remove().

Note – The HBA driver must not free any resources or call scsi_hba_fini(9F) unless
mod_remove(9F) returns 0.

Example 17–1 shows module initialization for SCSI HBA.

EXAMPLE 17–1 Module Initialization for SCSI HBA

static struct dev_ops isp_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* refcnt */
isp_getinfo, /* getinfo */
nulldev, /* probe */
isp_attach, /* attach */
isp_detach, /* detach */
nodev, /* reset */
NULL, /* driver operations */
NULL, /* bus operations */
isp_power, /* power management */

};

/*
* Local static data
*/
static kmutex_t isp_global_mutex;

Chapter 17 • SCSI Host Bus Adapter Drivers 317

EXAMPLE 17–1 Module Initialization for SCSI HBA (Continued)

static void *isp_state;

int
_init(void)
{

int err;

if ((err = ddi_soft_state_init(&isp_state,
sizeof (struct isp), 0)) != 0) {
return (err);

}
if ((err = scsi_hba_init(&modlinkage)) == 0) {

mutex_init(&isp_global_mutex, "isp global mutex",
MUTEX_DRIVER, NULL);
if ((err = mod_install(&modlinkage)) != 0) {

mutex_destroy(&isp_global_mutex);
scsi_hba_fini(&modlinkage);
ddi_soft_state_fini(&isp_state);

}
}
return (err);

}

int
_fini(void)
{

int err;

if ((err = mod_remove(&modlinkage)) == 0) {
mutex_destroy(&isp_global_mutex);
scsi_hba_fini(&modlinkage);
ddi_soft_state_fini(&isp_state);

}
return (err);

}

Autoconfiguration Entry Points
Associated with each device driver is a dev_ops(9S) structure, which enables the
kernel to locate the autoconfiguration entry points of the driver. A complete
description of these autoconfiguration routines is given in Chapter 6. This section
describes only those entry points associated with operations performed by SCSI HBA
drivers. These entry points include attach(9E) and detach(9E).

attach() Entry Point (SCSI HBA Drivers)
The attach(9E) entry point for a SCSI HBA driver performs several tasks when
configuring and attaching an instance of the driver for the device. For a typical driver
of real devices, the following operating system and hardware concerns must be
addressed:

318 Writing Device Drivers • January 2005

� Soft-state structure
� DMA
� Transport structure
� Attaching an HBA driver
� Register mapping
� Interrupt specification
� Interrupt handling
� Create power manageable components
� Report attachment status

Soft-State Structure

When allocating the per-device-instance soft-state structure, a driver must clean up
carefully if an error occurs.

DMA

The HBA driver must describe the attributes of its DMA engine by properly
initializing the ddi_dma_attr_t structure.

static ddi_dma_attr_t isp_dma_attr = {
DMA_ATTR_V0, /* ddi_dma_attr version */
0, /* low address */
0xffffffff, /* high address */
0x00ffffff, /* counter upper bound */
1, /* alignment requirements */
0x3f, /* burst sizes */
1, /* minimum DMA access */
0xffffffff, /* maximum DMA access */
(1<<24)-1, /* segment boundary restrictions */
1, /* scatter-gather list length */
512, /* device granularity */
0 /* DMA flags */

};

The driver, if providing DMA, should also check that its hardware is installed in a
DMA-capable slot:

if (ddi_slaveonly(dip) == DDI_SUCCESS) {
return (DDI_FAILURE);

}

Transport Structure

The driver should further allocate and initialize a transport structure for this instance.
The tran_hba_privatefield is set to point to this instance’s soft-state structure.
tran_tgt_probe can be set to NULL to achieve the default behavior, if no special
probe customization is needed.

Chapter 17 • SCSI Host Bus Adapter Drivers 319

tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);

isp->isp_tran = tran;
isp->isp_dip = dip;

tran->tran_hba_private = isp;
tran->tran_tgt_private = NULL;
tran->tran_tgt_init = isp_tran_tgt_init;
tran->tran_tgt_probe = scsi_hba_probe;
tran->tran_tgt_free = (void (*)())NULL;

tran->tran_start = isp_scsi_start;
tran->tran_abort = isp_scsi_abort;
tran->tran_reset = isp_scsi_reset;
tran->tran_getcap = isp_scsi_getcap;
tran->tran_setcap = isp_scsi_setcap;
tran->tran_init_pkt = isp_scsi_init_pkt;
tran->tran_destroy_pkt = isp_scsi_destroy_pkt;
tran->tran_dmafree = isp_scsi_dmafree;
tran->tran_sync_pkt = isp_scsi_sync_pkt;
tran->tran_reset_notify = isp_scsi_reset_notify;
tran->tran_bus_quiesce = isp_tran_bus_quiesce
tran->tran_bus_unquiesce = isp_tran_bus_unquiesce

tran->tran_bus_reset = isp_tran_bus_reset

Attaching an HBA Driver

The driver should attach this instance of the device, and perform error cleanup if
necessary.

i = scsi_hba_attach_setup(dip, &isp_dma_attr, tran, 0);
if (i != DDI_SUCCESS) {

do error recovery
return (DDI_FAILURE);

}

Register Mapping

The driver should map in its device’s registers. The driver need to specify the
following items:

� Register set index
� Data access characteristics of the device
� Size of the register to be mapped

ddi_device_acc_attr_t dev_attributes;

dev_attributes.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attributes.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
dev_attributes.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&isp->isp_reg,

320 Writing Device Drivers • January 2005

0, sizeof (struct ispregs), &dev_attributes,
&isp->isp_acc_handle) != DDI_SUCCESS) {

do error recovery
return (DDI_FAILURE);

}

Adding an Interrupt Handler

The driver must first obtain the iblock cookie to initialize any mutexes that are used in
the driver handler. Only after those mutexes have been initialized can the interrupt
handler be added.

i = ddi_get_iblock_cookie(dip, 0, &isp->iblock_cookie};
if (i != DDI_SUCCESS) {

do error recovery
return (DDI_FAILURE);

}

mutex_init(&isp->mutex, "isp_mutex", MUTEX_DRIVER,
(void *)isp->iblock_cookie);
i = ddi_add_intr(dip, 0, &isp->iblock_cookie,
0, isp_intr, (caddr_t)isp);
if (i != DDI_SUCCESS) {

do error recovery
return (DDI_FAILURE);

}

If a high-level handler is required, the driver should be coded to provide such a
handler. Otherwise, the driver must be able to fail the attach. See “Handling
High-Level Interrupts” on page 125 for a description of high-level interrupt handling.

Create Power Manageable Components

With power management, if the host bus adapter only needs to power down when all
target adapters are at power level 0, the HBA driver only needs to provide a
power(9E) entry point. Refer to Chapter 12. The HBA driver also needs to create a
pm-components(9P) property that describes the components that the device
implements.

Nothing more is necessary, since the components will default to idle, and the power
management framework’s default dependency processing will ensure that the host
bus adapter will be powered up whenever an target adapter is powered up. Provided
that automatic power management is enabled automatically, the processing will also
power down the host bus adapter when all target adapters are powered down ().

Report Attachment Status

Finally, the driver should report that this instance of the device is attached and return
success.

Chapter 17 • SCSI Host Bus Adapter Drivers 321

ddi_report_dev(dip);

return (DDI_SUCCESS);

detach() Entry Point (SCSI HBA Drivers)
The driver should perform standard detach operations, including calling
scsi_hba_detach(9F).

Entry Points for SCSA HBA Drivers
An HBA driver can work with target drivers through the SCSA interface. The SCSA
interfaces require the HBA driver to supply a number of entry points that are callable
through the scsi_hba_tran(9S) structure.

These entry points fall into five functional groups:

� Target driver instance initialization
� Resource allocation and deallocation
� Command transport
� Capability management
� Abort and reset handling
� Dynamic reconfiguration

The following table lists the entry points for SCSA HBA by function groups.

TABLE 17–3 SCSA Entry Points

Function Groups Entry Points Within Group Description

Target Driver Instance
Initialization

tran_tgt_init(9E) Performs per-target initialization
(optional)

tran_tgt_probe(9E) Probes SCSI bus for existence of a
target (optional)

tran_tgt_free(9E) Performs per-target deallocation
(optional)

Resource Allocation tran_init_pkt(9E) Allocates SCSI packet and DMA
resources

tran_destroy_pkt(9E) Frees SCSI packet and DMA
resources

322 Writing Device Drivers • January 2005

TABLE 17–3 SCSA Entry Points (Continued)
Function Groups Entry Points Within Group Description

tran_sync_pkt(9E) Synchronizes memory before and
after DMA

tran_dmafree(9E) Frees DMA resources

Command Transport tran_start(9E) Transports a SCSI command

Capability Management tran_getcap(9E) Inquires about a capability’s value

tran_setcap(9E) Sets a capability’s value

Abort and Reset tran_abort(9E) Aborts outstanding SCSI commands

tran_reset(9E) Resets a target device or the SCSI
bus

tran_bus_reset(9e) Resets the SCSI bus

tran_reset_notify(9E) Request to notify target of bus reset
(optional)

Dynamic Reconfiguration tran_quiesce(9e) Stops activity on the bus

tran_unquiesce(9e) Resumes activity on the bus

Target Driver Instance Initialization
The following sections describe target entry points.

tran_tgt_init() Entry Point
The tran_tgt_init(9E) entry point enables the HBA to allocate and initialize any
per-target resources. tran_tgt_init() also enables the HBA to qualify the device’s
address as valid and supportable for that particular HBA. By returning
DDI_FAILURE, the instance of the target driver for that device is not probed or
attached.

tran_tgt_init() is not required. If tran_tgt_init() is not supplied, the
framework attempts to probe and attach all possible instances of the appropriate
target drivers.

static int
isp_tran_tgt_init(

dev_info_t *hba_dip,
dev_info_t *tgt_dip,
scsi_hba_tran_t *tran,
struct scsi_device *sd)

{
return ((sd->sd_address.a_target < N_ISP_TARGETS_WIDE &&

Chapter 17 • SCSI Host Bus Adapter Drivers 323

sd->sd_address.a_lun < 8) ? DDI_SUCCESS : DDI_FAILURE);

}

tran_tgt_probe() Entry Point
The tran_tgt_probe(9E) entry point enables the HBA to customize the operation of
scsi_probe(9F), if necessary. This entry point is called only when the target driver
calls scsi_probe().

The HBA driver can retain the normal operation of scsi_probe() by calling
scsi_hba_probe(9F) and returning its return value.

This entry point is not required, and if not needed, the HBA driver should set the
tran_tgt_probe vector in the scsi_hba_tran(9S) structure to point to
scsi_hba_probe().

scsi_probe() allocates a scsi_inquiry(9S) structure and sets the sd_inq field of
the scsi_device(9S) structure to point to the data in scsi_inquiry.
scsi_hba_probe() handles this task automatically. scsi_unprobe(9F) then frees
the scsi_inquiry data.

Except for the allocation of scsi_inquiry data, tran_tgt_probe() must be
stateless, because the same SCSI device might call tran_tgt_probe() several times.
Normally, allocation of scsi_inquiry data is handled by scsi_hba_probe().

Note – The allocation of the scsi_inquiry(9S) structure is handled automatically by
scsi_hba_probe(). This information is only of concern if you want custom
scsi_probe() handling.

static int
isp_tran_tgt_probe(

struct scsi_device *sd,
int (*callback)())

{
Perform any special probe customization needed. /*

* Normal probe handling
*/
return (scsi_hba_probe(sd, callback));

}

tran_tgt_free() Entry Point
The tran_tgt_free(9E) entry point enables the HBA to perform any deallocation or
clean-up procedures for an instance of a target. This entry point is optional.

static void
isp_tran_tgt_free(

dev_info_t *hba_dip,

324 Writing Device Drivers • January 2005

dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran,
struct scsi_device *sd)

{
Undo any special per-target initialization done
earlier in tran_tgt_init(9F) and tran_tgt_probe(9F)

}

Resource Allocation
The following sections discuss resource allocation.

tran_init_pkt() Entry Point
The tran_init_pkt(9E) entry point allocates and initializes a scsi_pkt(9S)
structure and DMA resources for a target driver request.

The tran_init_pkt(9E) entry point is called when the target driver calls the SCSA
function scsi_init_pkt(9F).

Each call of the tran_init_pkt(9E) entry point is a request to perform one or more
of three possible services:

� Allocation and initialization of a scsi_pkt(9S) structure
� Allocation of DMA resources for data transfer
� Reallocation of DMA resources for the next portion of the data transfer

Allocation and Initialization of a scsi_pkt(9S) Structure
The tran_init_pkt(9E) entry point must allocate a scsi_pkt(9S) structure if pkt
is NULL through scsi_hba_pkt_alloc(9F).

scsi_hba_pkt_alloc(9F) allocates space for the following items:

� scsi_pkt(9S)
� SCSI CDB of length cmdlen
� Completion area for SCSI status of length statuslen
� Per-packet target driver private data area of length tgtlen
� Per-packet HBA driver private data area of length hbalen

The scsi_pkt(9S) structure members, including pkt, must be initialized to zero
except for the following members:

� pkt_scbp – Status completion
� pkt_cdbp – CDB
� pkt_ha_private – HBA driver private data
� pkt_private – Target driver private data

Chapter 17 • SCSI Host Bus Adapter Drivers 325

These members are pointers to memory space where the values of the fields are stored,
as shown in the following figure. For more information, refer to “scsi_pkt Structure
(HBA)” on page 310.

scsi_address

HBA driver
per pkt data

TGT driver
per pkt data

...

...

pkt_cdbp

pkt_scbp

pkt_private

pkt_ha_private

scsi_pkt structure

Status

CDB

FIGURE 17–5 scsi_pkt(9S) Structure Pointers

The following example shows allocation and initialization of a scsi_pkt structure.

EXAMPLE 17–2 HBA Driver Initialization of a SCSI Packet Structure

static struct scsi_pkt *
isp_scsi_init_pkt(

struct scsi_address *ap,
struct scsi_pkt *pkt,
struct buf *bp,
int cmdlen,
int statuslen,
int tgtlen,
int flags,
int (*callback)(),
caddr_t arg)

{
struct isp_cmd *sp;
struct isp *isp;
struct scsi_pkt *new_pkt;

ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC);

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

/*
* First step of isp_scsi_init_pkt: pkt allocation
*/
if (pkt == NULL) {

326 Writing Device Drivers • January 2005

EXAMPLE 17–2 HBA Driver Initialization of a SCSI Packet Structure (Continued)

pkt = scsi_hba_pkt_alloc(isp->isp_dip, ap, cmdlen,
statuslen, tgtlen, sizeof (struct isp_cmd),
callback, arg);
if (pkt == NULL) {
return (NULL);
}

sp = (struct isp_cmd *)pkt->pkt_ha_private;

/*
* Initialize the new pkt
*/
sp->cmd_pkt = pkt;
sp->cmd_flags = 0;
sp->cmd_scblen = statuslen;
sp->cmd_cdblen = cmdlen;
sp->cmd_dmahandle = NULL;
sp->cmd_ncookies = 0;
sp->cmd_cookie = 0;
sp->cmd_cookiecnt = 0;
sp->cmd_nwin = 0;
pkt->pkt_address = *ap;
pkt->pkt_comp = (void (*)())NULL;
pkt->pkt_flags = 0;
pkt->pkt_time = 0;
pkt->pkt_resid = 0;
pkt->pkt_statistics = 0;
pkt->pkt_reason = 0;

new_pkt = pkt;
} else {

sp = (struct isp_cmd *)pkt->pkt_ha_private;
new_pkt = NULL;

}

/*
* Second step of isp_scsi_init_pkt: dma allocation/move
*/
if (bp && bp->b_bcount != 0) {

if (sp->cmd_dmahandle == NULL) {
if (isp_i_dma_alloc(isp, pkt, bp,
flags, callback) == 0) {
if (new_pkt) {

scsi_hba_pkt_free(ap, new_pkt);
}
return ((struct scsi_pkt *)NULL);

}
} else {

ASSERT(new_pkt == NULL);
if (isp_i_dma_move(isp, pkt, bp) == 0) {
return ((struct scsi_pkt *)NULL);
}

}

Chapter 17 • SCSI Host Bus Adapter Drivers 327

EXAMPLE 17–2 HBA Driver Initialization of a SCSI Packet Structure (Continued)

}

return (pkt);

}

Allocation of DMA Resources
The tran_init_pkt(9E) entry point must allocate DMA resources for a data transfer
if the following conditions are true:

� bp is not NULL.
� bp->b_bcount is not zero.
� DMA resources have not yet been allocated for this scsi_pkt(9S).

The HBA driver needs to track how DMA resources are allocated for a particular
command. This allocation may take place with a flag bit or a DMA handle in the
per-packet HBA driver private data.

The PKT_DMA_PARTIAL flag in the pkt enables the target driver to break up a data
transfer into multiple SCSI commands to accommodate the complete request. This
approach is useful when the HBA hardware scatter-gather capabilities or system DMA
resources cannot complete a request in a single SCSI command.

The PKT_DMA_PARTIAL flag enables the HBA driver to set the DDI_DMA_PARTIAL
flag. The DDI_DMA_PARTIAL flag is useful when the DMA resources for this SCSI
command are allocated. For example the ddi_dma_buf_bind_handle(9F))
command can be used to allocate DMA resources. The DMA attributes used when
allocating the DMA resources should accurately describe any constraints placed on the
ability of the HBA hardware to perform DMA. If the system can only allocate DMA
resources for part of the request, ddi_dma_buf_bind_handle(9F) returns
DDI_DMA_PARTIAL_MAP.

The tran_init_pkt(9E) entry point must return the amount of DMA resources not
allocated for this transfer in the field pkt_resid.

A target driver can make one request to tran_init_pkt(9E) to simultaneously
allocate both a scsi_pkt(9S) structure and DMA resources for that pkt. In this case,
if the HBA driver is unable to allocate DMA resources, that driver must free the
allocated scsi_pkt(9S) before returning. The scsi_pkt(9S) must be freed by calling
scsi_hba_pkt_free(9F).

The target driver might first allocate the scsi_pkt(9S) and allocate DMA resources
for this pkt at a later time. In this case, if the HBA driver is unable to allocate DMA
resources, the driver must not free pkt. The target driver in this case is responsible for
freeing the pkt.

328 Writing Device Drivers • January 2005

EXAMPLE 17–3 HBA Driver Allocation of DMA Resources

static int
isp_i_dma_alloc(

struct isp *isp,
struct scsi_pkt *pkt,
struct buf *bp,
int flags,
int (*callback)())

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;
int dma_flags;
ddi_dma_attr_t tmp_dma_attr;
int (*cb)(caddr_t);
int i;

ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC);

if (bp->b_flags & B_READ) {
sp->cmd_flags &= ~CFLAG_DMASEND;
dma_flags = DDI_DMA_READ;

} else {
sp->cmd_flags |= CFLAG_DMASEND;
dma_flags = DDI_DMA_WRITE;

}
if (flags & PKT_CONSISTENT) {

sp->cmd_flags |= CFLAG_CMDIOPB;
dma_flags |= DDI_DMA_CONSISTENT;

}
if (flags & PKT_DMA_PARTIAL) {

dma_flags |= DDI_DMA_PARTIAL;
}

tmp_dma_attr = isp_dma_attr;
tmp_dma_attr.dma_attr_burstsizes = isp->isp_burst_size;

cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT :
DDI_DMA_SLEEP;

if ((i = ddi_dma_alloc_handle(isp->isp_dip, &tmp_dma_attr,
cb, 0, &sp->cmd_dmahandle)) != DDI_SUCCESS) {

switch (i) {
case DDI_DMA_BADATTR:

bioerror(bp, EFAULT);
return (0);

case DDI_DMA_NORESOURCES:
bioerror(bp, 0);
return (0);

}
}

i = ddi_dma_buf_bind_handle(sp->cmd_dmahandle, bp, dma_flags,
cb, 0, &sp->cmd_dmacookies[0], &sp->cmd_ncookies);

Chapter 17 • SCSI Host Bus Adapter Drivers 329

EXAMPLE 17–3 HBA Driver Allocation of DMA Resources (Continued)

switch (i) {
case DDI_DMA_PARTIAL_MAP:
if (ddi_dma_numwin(sp->cmd_dmahandle, &sp->cmd_nwin) ==

DDI_FAILURE) {
cmn_err(CE_PANIC, "ddi_dma_numwin() failed\n");

}

if (ddi_dma_getwin(sp->cmd_dmahandle, sp->cmd_curwin,
&sp->cmd_dma_offset, &sp->cmd_dma_len,
&sp->cmd_dmacookies[0], &sp->cmd_ncookies) ==

DDI_FAILURE) {
cmn_err(CE_PANIC, "ddi_dma_getwin() failed\n");

}
goto get_dma_cookies;

case DDI_DMA_MAPPED:
sp->cmd_nwin = 1;
sp->cmd_dma_len = 0;
sp->cmd_dma_offset = 0;

get_dma_cookies:
i = 0;
sp->cmd_dmacount = 0;
for (;;) {

sp->cmd_dmacount += sp->cmd_dmacookies[i++].dmac_size;

if (i == ISP_NDATASEGS || i == sp->cmd_ncookies)
break;
ddi_dma_nextcookie(sp->cmd_dmahandle,
&sp->cmd_dmacookies[i]);

}
sp->cmd_cookie = i;
sp->cmd_cookiecnt = i;

sp->cmd_flags |= CFLAG_DMAVALID;
pkt->pkt_resid = bp->b_bcount - sp->cmd_dmacount;
return (1);

case DDI_DMA_NORESOURCES:
bioerror(bp, 0);
break;

case DDI_DMA_NOMAPPING:
bioerror(bp, EFAULT);
break;

case DDI_DMA_TOOBIG:
bioerror(bp, EINVAL);
break;

case DDI_DMA_INUSE:
cmn_err(CE_PANIC, "ddi_dma_buf_bind_handle:"

330 Writing Device Drivers • January 2005

EXAMPLE 17–3 HBA Driver Allocation of DMA Resources (Continued)

" DDI_DMA_INUSE impossible\n");

default:
cmn_err(CE_PANIC, "ddi_dma_buf_bind_handle:"

" 0x%x impossible\n", i);
}

ddi_dma_free_handle(&sp->cmd_dmahandle);
sp->cmd_dmahandle = NULL;
sp->cmd_flags &= ~CFLAG_DMAVALID;
return (0);

}

Reallocation of DMA Resources for Data Transfer
For a previously allocated packet with data remaining to be transferred, the
tran_init_pkt(9E) entry point must reallocate DMA resources when the following
conditions apply:

� Partial DMA resources have already been allocated.
� A non-zero pkt_resid was returned in the previous call to tran_init_pkt(9E).
� bp is not NULL.
� bp->b_bcount is not zero.

When reallocating DMA resources to the next portion of the transfer,
tran_init_pkt(9E) must return the amount of DMA resources not allocated for this
transfer in the field pkt_resid.

If an error occurs while attempting to move DMA resources, tran_init_pkt(9E)
must not free the scsi_pkt(9S). The target driver in this case is responsible for
freeing the packet.

If the callback parameter is NULL_FUNC, the tran_init_pkt(9E) entry point must
not sleep or call any function that might sleep. If the callback parameter is
SLEEP_FUNC and resources are not immediately available, the tran_init_pkt(9E)
entry point should sleep. Unless the request is impossible to satisfy,
tran_init_pkt() should sleep until resources become available.

EXAMPLE 17–4 DMA Resource Reallocation for HBA Drivers

static int
isp_i_dma_move(

struct isp *isp,
struct scsi_pkt *pkt,
struct buf *bp)

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;
int i;

Chapter 17 • SCSI Host Bus Adapter Drivers 331

EXAMPLE 17–4 DMA Resource Reallocation for HBA Drivers (Continued)

ASSERT(sp->cmd_flags & CFLAG_COMPLETED);
sp->cmd_flags &= ~CFLAG_COMPLETED;

/*
* If there are no more cookies remaining in this window,
* must move to the next window first.
*/
if (sp->cmd_cookie == sp->cmd_ncookies) {
/*
* For small pkts, leave things where they are
*/
if (sp->cmd_curwin == sp->cmd_nwin && sp->cmd_nwin == 1)

return (1);

/*
* At last window, cannot move
*/
if (++sp->cmd_curwin >= sp->cmd_nwin)

return (0);

if (ddi_dma_getwin(sp->cmd_dmahandle, sp->cmd_curwin,
&sp->cmd_dma_offset, &sp->cmd_dma_len,
&sp->cmd_dmacookies[0], &sp->cmd_ncookies) ==
DDI_FAILURE)
return (0);

sp->cmd_cookie = 0;
} else {
/*
* Still more cookies in this window - get the next one
*/
ddi_dma_nextcookie(sp->cmd_dmahandle,

&sp->cmd_dmacookies[0]);
}

/*
* Get remaining cookies in this window, up to our maximum
*/
i = 0;
for (;;) {
sp->cmd_dmacount += sp->cmd_dmacookies[i++].dmac_size;
sp->cmd_cookie++;
if (i == ISP_NDATASEGS ||

sp->cmd_cookie == sp->cmd_ncookies)
break;

ddi_dma_nextcookie(sp->cmd_dmahandle,
&sp->cmd_dmacookies[i]);

}
sp->cmd_cookiecnt = i;

pkt->pkt_resid = bp->b_bcount - sp->cmd_dmacount;
return (1);

}

332 Writing Device Drivers • January 2005

tran_destroy_pkt() Entry Point
The tran_destroy_pkt(9E) entry point is the HBA driver function that deallocates
scsi_pkt(9S) structures. The tran_destroy_pkt() entry point is called when the
target driver calls scsi_destroy_pkt(9F).

The tran_destroy_pkt() entry point must free any DMA resources that have been
allocated for the packet. An implicit DMA synchronization occurs if the DMA
resources are freed and any cached data remains after the completion of the transfer.
The tran_destroy_pkt() entry point frees the SCSI packet by calling
scsi_hba_pkt_free(9F).

EXAMPLE 17–5 HBA Driver tran_destroy_pkt(9E) Entry Point

static void
isp_scsi_destroy_pkt(

struct scsi_address *ap,
struct scsi_pkt *pkt)

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

/*
* Free the DMA, if any
*/
if (sp->cmd_flags & CFLAG_DMAVALID) {
sp->cmd_flags &= ~CFLAG_DMAVALID;
(void) ddi_dma_unbind_handle(sp->cmd_dmahandle);
ddi_dma_free_handle(&sp->cmd_dmahandle);
sp->cmd_dmahandle = NULL;
}
/*
* Free the pkt
*/
scsi_hba_pkt_free(ap, pkt);

}

tran_sync_pkt() Entry Point
The tran_sync_pkt(9E) entry point synchronizes the DMA object allocated for the
scsi_pkt(9S) structure before or after a DMA transfer. The tran_sync_pkt() entry
point is called when the target driver calls scsi_sync_pkt(9F).

If the data transfer direction is a DMA read from device to memory,
tran_sync_pkt() must synchronize the CPU’s view of the data. If the data transfer
direction is a DMA write from memory to device, tran_sync_pkt() must
synchronize the device’s view of the data.

EXAMPLE 17–6 HBA Driver tran_sync_pkt(9E) Entry Point

static void
isp_scsi_sync_pkt(

struct scsi_address *ap,

Chapter 17 • SCSI Host Bus Adapter Drivers 333

EXAMPLE 17–6 HBA Driver tran_sync_pkt(9E) Entry Point (Continued)

struct scsi_pkt *pkt)
{

struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

if (sp->cmd_flags & CFLAG_DMAVALID) {
(void)ddi_dma_sync(sp->cmd_dmahandle, sp->cmd_dma_offset,
sp->cmd_dma_len,
(sp->cmd_flags & CFLAG_DMASEND) ?
DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);

}
}

}

tran_dmafree() Entry Point
The tran_dmafree(9E) entry point deallocates DMA resources that have been
allocated for a scsi_pkt(9S) structure. The tran_dmafree() entry point is called
when the target driver calls scsi_dmafree(9F).

tran_dmafree() must free only DMA resources allocated for a scsi_pkt(9S)
structure, not the scsi_pkt(9S) itself. When DMA resources are freed, a DMA
synchronization is implicitly performed.

Note – The scsi_pkt(9S) is freed in a separate request to tran_destroy_pkt(9E).
Because tran_destroy_pkt() must also free DMA resources, the HBA driver must
keep accurate note of whether scsi_pkt() structures have DMA resources allocated.

EXAMPLE 17–7 HBA Driver tran_dmafree(9E) Entry Point

static void
isp_scsi_dmafree(

struct scsi_address *ap,
struct scsi_pkt *pkt)

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

if (sp->cmd_flags & CFLAG_DMAVALID) {
sp->cmd_flags &= ~CFLAG_DMAVALID;
(void)ddi_dma_unbind_handle(sp->cmd_dmahandle);
ddi_dma_free_handle(&sp->cmd_dmahandle);
sp->cmd_dmahandle = NULL;

}

}

334 Writing Device Drivers • January 2005

Command Transport
An HBA driver goes through the following steps as part of command transport:

1. Accept a command from the target driver.
2. Issue the command to the device hardware.
3. Service any interrupts that occur.
4. Manage time outs.

tran_start() Entry Point
The tran_start(9E) entry point for a SCSI HBA driver is called to transport a SCSI
command to the addressed target. The SCSI command is described entirely within the
scsi_pkt(9S) structure, which the target driver allocated through the HBA driver’s
tran_init_pkt(9E) entry point. If the command involves a data transfer, DMA
resources must also have been allocated for the scsi_pkt(9S) structure.

The tran_start() entry point is called when a target driver calls
scsi_transport(9F).

tran_start() should perform basic error checking along with any initialization that
is required by the command. The FLAG_NOINTR flag in the pkt_flags field of the
scsi_pkt(9S) structure can affect the behavior of tran_start(). If FLAG_NOINTR
is not set, tran_start() must queue the command for execution on the hardware
and return immediately. Upon completion of the command, the HBA driver should
call the pkt() completion routine.

If the FLAG_NOINTR is set, then the HBA driver should not call the pkt() completion
routine.

The following example demonstrates how to handle the tran_start(9E) entry point.
The ISP hardware provides a queue per-target device. For devices that can manage
only one active outstanding command, the driver is typically required to manage a
per-target queue. The driver then starts up a new command upon completion of the
current command in a round-robin fashion.

EXAMPLE 17–8 HBA Driver tran_start(9E) Entry Point

static int
isp_scsi_start(

struct scsi_address *ap,
struct scsi_pkt *pkt)

{
struct isp_cmd *sp;
struct isp *isp;
struct isp_request *req;
u_long cur_lbolt;
int xfercount;
int rval = TRAN_ACCEPT;
int i;

Chapter 17 • SCSI Host Bus Adapter Drivers 335

EXAMPLE 17–8 HBA Driver tran_start(9E) Entry Point (Continued)

sp = (struct isp_cmd *)pkt->pkt_ha_private;
isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

sp->cmd_flags = (sp->cmd_flags & ~CFLAG_TRANFLAG) |
CFLAG_IN_TRANSPORT;

pkt->pkt_reason = CMD_CMPLT;

/*
* set up request in cmd_isp_request area so it is ready to
* go once we have the request mutex
*/
req = &sp->cmd_isp_request;

req->req_header.cq_entry_type = CQ_TYPE_REQUEST;
req->req_header.cq_entry_count = 1;
req->req_header.cq_flags = 0;
req->req_header.cq_seqno = 0;
req->req_reserved = 0;
req->req_token = (opaque_t)sp;
req->req_target = TGT(sp);
req->req_lun_trn = LUN(sp);
req->req_time = pkt->pkt_time;
ISP_SET_PKT_FLAGS(pkt->pkt_flags, req->req_flags);

/*
* Set up data segments for dma transfers.
*/
if (sp->cmd_flags & CFLAG_DMAVALID) {

if (sp->cmd_flags & CFLAG_CMDIOPB) {
(void) ddi_dma_sync(sp->cmd_dmahandle,
sp->cmd_dma_offset, sp->cmd_dma_len,
DDI_DMA_SYNC_FORDEV);

}

ASSERT(sp->cmd_cookiecnt > 0 &&
sp->cmd_cookiecnt <= ISP_NDATASEGS);

xfercount = 0;
req->req_seg_count = sp->cmd_cookiecnt;
for (i = 0; i < sp->cmd_cookiecnt; i++) {

req->req_dataseg[i].d_count =
sp->cmd_dmacookies[i].dmac_size;
req->req_dataseg[i].d_base =
sp->cmd_dmacookies[i].dmac_address;
xfercount +=
sp->cmd_dmacookies[i].dmac_size;

}

for (; i < ISP_NDATASEGS; i++) {
req->req_dataseg[i].d_count = 0;
req->req_dataseg[i].d_base = 0;

336 Writing Device Drivers • January 2005

EXAMPLE 17–8 HBA Driver tran_start(9E) Entry Point (Continued)

}

pkt->pkt_resid = xfercount;

if (sp->cmd_flags & CFLAG_DMASEND) {
req->req_flags |= ISP_REQ_FLAG_DATA_WRITE;

} else {
req->req_flags |= ISP_REQ_FLAG_DATA_READ;

}
} else {
req->req_seg_count = 0;
req->req_dataseg[0].d_count = 0;
}

/*
* Set up cdb in the request
*/
req->req_cdblen = sp->cmd_cdblen;
bcopy((caddr_t)pkt->pkt_cdbp, (caddr_t)req->req_cdb,
sp->cmd_cdblen);

/*
* Start the cmd. If NO_INTR, must poll for cmd completion.
*/
if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
mutex_enter(ISP_REQ_MUTEX(isp));
rval = isp_i_start_cmd(isp, sp);
mutex_exit(ISP_REQ_MUTEX(isp));
} else {
rval = isp_i_polled_cmd_start(isp, sp);
}

return (rval);

}

Interrupt Handler and Command Completion
The interrupt handler must check the status of the device to be sure the device is
generating the interrupt in question. The interrupt handler must also check for any
errors that have occurred and service any interrupts generated by the device.

If data is transferred, the hardware should be checked to determine how much data
was actually transferred. The pkt_resid field in the scsi_pkt(9S) structure should
be set to the residual of the transfer.

Commands that are marked with the PKT_CONSISTENT flag when DMA resources are
allocated through tran_init_pkt(9E) take special handling. The HBA driver must
ensure that the data transfer for the command is correctly synchronized before the
target driver’s command completion callback is performed.

Chapter 17 • SCSI Host Bus Adapter Drivers 337

Once a command has completed, you need to act on two requirements:

� If a new command is queued up, start the command on the hardware as quickly as
possible.

� Call the command completion callback. The callback has been set up in the
scsi_pkt(9S) structure by the target driver to notify the target driver when the
command is complete.

Start a new command on the hardware, if possible, before calling the PKT_COMP
command completion callback. The command completion handling can take
considerable time. Typically, the target driver calls functions such as biodone(9F) and
possibly scsi_transport(9F) to begin a new command.

The interrupt handler must return DDI_INTR_CLAIMED if this interrupt is claimed by
this driver. Otherwise, the handler returns DDI_INTR_UNCLAIMED.

The following example shows an interrupt handler for the SCSI HBA isp driver. The
caddr_t parameter is set up when the interrupt handler is added in attach(9E).
This parameter is typically a pointer to the state structure, which is allocated on a per
instance basis.

EXAMPLE 17–9 HBA Driver Interrupt Handler

static u_int
isp_intr(caddr_t arg)
{

struct isp_cmd *sp;
struct isp_cmd *head, *tail;
u_short response_in;
struct isp_response *resp;
struct isp *isp = (struct isp *)arg;
struct isp_slot *isp_slot;
int n;

if (ISP_INT_PENDING(isp) == 0) {
return (DDI_INTR_UNCLAIMED);
}

do {
again:

/*
* head list collects completed packets for callback later
*/
head = tail = NULL;

/*
* Assume no mailbox events (e.g., mailbox cmds, asynch
* events, and isp dma errors) as common case.
*/
if (ISP_CHECK_SEMAPHORE_LOCK(isp) == 0) {

mutex_enter(ISP_RESP_MUTEX(isp));

/*

338 Writing Device Drivers • January 2005

EXAMPLE 17–9 HBA Driver Interrupt Handler (Continued)

* Loop through completion response queue and post
* completed pkts. Check response queue again
* afterwards in case there are more.
*/
isp->isp_response_in =
response_in = ISP_GET_RESPONSE_IN(isp);

/*
* Calculate the number of requests in the queue
*/
n = response_in - isp->isp_response_out;
if (n < 0) {
n = ISP_MAX_REQUESTS -

isp->isp_response_out + response_in;
}

while (n-- > 0) {
ISP_GET_NEXT_RESPONSE_OUT(isp, resp);
sp = (struct isp_cmd *)resp->resp_token;

/*
* copy over response packet in sp
*/
isp_i_get_response(isp, resp, sp);
}

if (head) {
tail->cmd_forw = sp;
tail = sp;
tail->cmd_forw = NULL;

} else {
tail = head = sp;
sp->cmd_forw = NULL;

}
}

ISP_SET_RESPONSE_OUT(isp);
ISP_CLEAR_RISC_INT(isp);
mutex_exit(ISP_RESP_MUTEX(isp));

if (head) {
isp_i_call_pkt_comp(isp, head);
}

} else {
if (isp_i_handle_mbox_cmd(isp) != ISP_AEN_SUCCESS) {
return (DDI_INTR_CLAIMED);
}
/*
* if there was a reset then check the response
* queue again
*/
goto again;

}

Chapter 17 • SCSI Host Bus Adapter Drivers 339

EXAMPLE 17–9 HBA Driver Interrupt Handler (Continued)

} while (ISP_INT_PENDING(isp));

return (DDI_INTR_CLAIMED);
}

static void
isp_i_call_pkt_comp(

struct isp *isp,
struct isp_cmd *head)

{
struct isp *isp;
struct isp_cmd *sp;
struct scsi_pkt *pkt;
struct isp_response *resp;
u_char status;

while (head) {
sp = head;
pkt = sp->cmd_pkt;
head = sp->cmd_forw;

ASSERT(sp->cmd_flags & CFLAG_FINISHED);

resp = &sp->cmd_isp_response;

pkt->pkt_scbp[0] = (u_char)resp->resp_scb;
pkt->pkt_state = ISP_GET_PKT_STATE(resp->resp_state);
pkt->pkt_statistics = (u_long)

ISP_GET_PKT_STATS(resp->resp_status_flags);
pkt->pkt_resid = (long)resp->resp_resid;

/*
* if data was xferred and this is a consistent pkt,
* we need to do a dma sync
*/
if ((sp->cmd_flags & CFLAG_CMDIOPB) &&

(pkt->pkt_state & STATE_XFERRED_DATA)) {

(void) ddi_dma_sync(sp->cmd_dmahandle,
sp->cmd_dma_offset, sp->cmd_dma_len,
DDI_DMA_SYNC_FORCPU);

}

sp->cmd_flags = (sp->cmd_flags & ~CFLAG_IN_TRANSPORT) |
CFLAG_COMPLETED;

/*
* Call packet completion routine if FLAG_NOINTR is not set.
*/
if (((pkt->pkt_flags & FLAG_NOINTR) == 0) &&

pkt->pkt_comp) {
(*pkt->pkt_comp)(pkt);

340 Writing Device Drivers • January 2005

EXAMPLE 17–9 HBA Driver Interrupt Handler (Continued)

}
}

}

Timeout Handler
The HBA driver is responsible for enforcing time outs. A command must be complete
within a specified time unless a zero time out has been specified in the scsi_pkt(9S)
structure.

When a command times out, the HBA driver should mark the scsi_pkt(9S) with
pkt_reason set to CMD_TIMEOUT and pkt_statistics OR’d with
STAT_TIMEOUT. The HBA driver should also attempt to recover the target and bus. If
this recovery can be performed successfully, the driver should mark the scsi_pkt(9S)
using pkt_statistics OR’d with either STAT_BUS_RESET or STAT_DEV_RESET.

After the recovery attempt has completed, the HBA driver should call the command
completion callback.

Note – If recovery was unsuccessful or not attempted, the target driver might attempt
to recover from the timeout by calling scsi_reset(9F).

The ISP hardware manages command timeout directly and returns timed-out
commands with the necessary status. The timeout handler for the isp sample driver
checks active commands for the time out state only once every 60 seconds.

The isp sample driver uses the timeout(9F) facility to arrange for the kernel to call
the timeout handler every 60 seconds. The caddr_t argument is the parameter set up
when the timeout is initialized at attach(9E) time. In this case, the caddr_t
argument is a pointer to the state structure allocated per driver instance.

If timed-out commands have not been returned as timed-out by the ISP hardware, a
problem has occurred. The hardware is not functioning correctly and needs to be reset.

Capability Management
The following sections discuss capability management.

tran_getcap() Entry Point
The tran_getcap(9E) entry point for a SCSI HBA driver is called by
scsi_ifgetcap(9F). The target driver calls scsi_ifgetcap() to determine the
current value of one of a set of SCSA-defined capabilities.

Chapter 17 • SCSI Host Bus Adapter Drivers 341

The target driver can request the current setting of the capability for a particular target
by setting the whom parameter to nonzero. A whom value of zero indicates a request for
the current setting of the general capability for the SCSI bus or for adapter hardware.

tran_getcap() should return -1 for undefined capabilities or the current value of
the requested capability.

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the
capability string against the canonical set of defined capabilities.

EXAMPLE 17–10 HBA Driver tran_getcap(9E) Entry Point

static int
isp_scsi_getcap(

struct scsi_address *ap,
char *cap,
int whom)

{
struct isp *isp;
int rval = 0;
u_char tgt = ap->a_target;

/*
* We don’t allow getting capabilities for other targets
*/
if (cap == NULL || whom == 0) {
return (-1);
}

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

ISP_MUTEX_ENTER(isp);

switch (scsi_hba_lookup_capstr(cap)) {

case SCSI_CAP_DMA_MAX:
rval = 1 << 24; /* Limit to 16MB max transfer */
break;
case SCSI_CAP_MSG_OUT:
rval = 1;
break;
case SCSI_CAP_DISCONNECT:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0) {
break;

} else if (
(isp->isp_cap[tgt] & ISP_CAP_DISCONNECT) == 0) {
break;

}
rval = 1;
break;
case SCSI_CAP_SYNCHRONOUS:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_SYNC) == 0) {

342 Writing Device Drivers • January 2005

EXAMPLE 17–10 HBA Driver tran_getcap(9E) Entry Point (Continued)

break;
} else if (

(isp->isp_cap[tgt] & ISP_CAP_SYNC) == 0) {
break;

}
rval = 1;
break;
case SCSI_CAP_WIDE_XFER:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_WIDE) == 0) {
break;

} else if (
(isp->isp_cap[tgt] & ISP_CAP_WIDE) == 0) {
break;

}
rval = 1;
break;
case SCSI_CAP_TAGGED_QING:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0 ||
(isp->isp_target_scsi_options[tgt] &
SCSI_OPTIONS_TAG) == 0) {
break;

} else if (
(isp->isp_cap[tgt] & ISP_CAP_TAG) == 0) {
break;

}
rval = 1;
break;
case SCSI_CAP_UNTAGGED_QING:
rval = 1;
break;
case SCSI_CAP_PARITY:
if (isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_PARITY) {
rval = 1;

}
break;
case SCSI_CAP_INITIATOR_ID:
rval = isp->isp_initiator_id;
break;
case SCSI_CAP_ARQ:
if (isp->isp_cap[tgt] & ISP_CAP_AUTOSENSE) {

rval = 1;
}
break;
case SCSI_CAP_LINKED_CMDS:
break;
case SCSI_CAP_RESET_NOTIFICATION:
rval = 1;
break;
case SCSI_CAP_GEOMETRY:
rval = (64 << 16) | 32;

Chapter 17 • SCSI Host Bus Adapter Drivers 343

EXAMPLE 17–10 HBA Driver tran_getcap(9E) Entry Point (Continued)

break;

default:
rval = -1;
break;
}

ISP_MUTEX_EXIT(isp);

return (rval);

}

tran_setcap() Entry Point
The tran_setcap(9E) entry point for a SCSI HBA driver is called by
scsi_ifsetcap(9F). A target driver calls scsi_ifsetcap() to change the current
one of a set of SCSA-defined capabilities.

The target driver might request that the new value be set for a particular target by
setting the whom parameter to nonzero. A whom value of zero means the request is to
set the new value for the SCSI bus or for adapter hardware in general.

tran_setcap() should return the following values as appropriate:

� -1 for undefined capabilities
� 0 if the HBA driver cannot set the capability to the requested value
� 1 if the HBA driver is able to set the capability to the requested value

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the
capability string against the canonical set of defined capabilities.

EXAMPLE 17–11 HBA Driver tran_setcap(9E) Entry Point

static int
isp_scsi_setcap(

struct scsi_address *ap,
char *cap,
int value,
int whom)

{
struct isp *isp;
int rval = 0;
u_char tgt = ap->a_target;
int update_isp = 0;

/*
* We don’t allow setting capabilities for other targets
*/
if (cap == NULL || whom == 0) {
return (-1);

344 Writing Device Drivers • January 2005

EXAMPLE 17–11 HBA Driver tran_setcap(9E) Entry Point (Continued)

}

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

ISP_MUTEX_ENTER(isp);

switch (scsi_hba_lookup_capstr(cap)) {

case SCSI_CAP_DMA_MAX:
case SCSI_CAP_MSG_OUT:
case SCSI_CAP_PARITY:
case SCSI_CAP_UNTAGGED_QING:
case SCSI_CAP_LINKED_CMDS:
case SCSI_CAP_RESET_NOTIFICATION:
/*
* None of these are settable via
* the capability interface.
*/
break;
case SCSI_CAP_DISCONNECT:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0) {
break;

} else {
if (value) {
isp->isp_cap[tgt] |= ISP_CAP_DISCONNECT;
} else {
isp->isp_cap[tgt] &= ~ISP_CAP_DISCONNECT;
}

}
rval = 1;
break;
case SCSI_CAP_SYNCHRONOUS:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_SYNC) == 0) {
break;

} else {
if (value) {
isp->isp_cap[tgt] |= ISP_CAP_SYNC;
} else {
isp->isp_cap[tgt] &= ~ISP_CAP_SYNC;
}

}
rval = 1;
break;
case SCSI_CAP_TAGGED_QING:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0 ||
(isp->isp_target_scsi_options[tgt] &
SCSI_OPTIONS_TAG) == 0) {
break;

} else {
if (value) {

Chapter 17 • SCSI Host Bus Adapter Drivers 345

EXAMPLE 17–11 HBA Driver tran_setcap(9E) Entry Point (Continued)

isp->isp_cap[tgt] |= ISP_CAP_TAG;
} else {
isp->isp_cap[tgt] &= ~ISP_CAP_TAG;
}

}
rval = 1;
break;
case SCSI_CAP_WIDE_XFER:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_WIDE) == 0) {
break;

} else {
if (value) {
isp->isp_cap[tgt] |= ISP_CAP_WIDE;
} else {
isp->isp_cap[tgt] &= ~ISP_CAP_WIDE;
}

}
rval = 1;
break;
case SCSI_CAP_INITIATOR_ID:
if (value < N_ISP_TARGETS_WIDE) {

struct isp_mbox_cmd mbox_cmd;

isp->isp_initiator_id = (u_short) value;

/*
* set Initiator SCSI ID
*/
isp_i_mbox_cmd_init(isp, &mbox_cmd, 2, 2,
ISP_MBOX_CMD_SET_SCSI_ID,
isp->isp_initiator_id,
0, 0, 0, 0);
if (isp_i_mbox_cmd_start(isp, &mbox_cmd) == 0) {
rval = 1;
}

}
break;
case SCSI_CAP_ARQ:
if (value) {

isp->isp_cap[tgt] |= ISP_CAP_AUTOSENSE;
} else {

isp->isp_cap[tgt] &= ~ISP_CAP_AUTOSENSE;
}
rval = 1;
break;

default:
rval = -1;
break;
}
ISP_MUTEX_EXIT(isp);

346 Writing Device Drivers • January 2005

EXAMPLE 17–11 HBA Driver tran_setcap(9E) Entry Point (Continued)

return (rval);

}

Abort and Reset Management
The following sections discuss the abort and reset entry points for SCSI HBA.

tran_abort() Entry Point
The tran_abort(9E) entry point for a SCSI HBA driver is called to abort any
commands that are currently in transport for a particular target. This entry point is
called when a target driver calls scsi_abort(9F).

The tran_abort() entry point should attempt to abort the command denoted by the
pkt parameter. If the pkt parameter is NULL, tran_abort() should attempt to abort
all outstanding commands in the transport layer for the particular target or logical
unit.

Each command successfully aborted must be marked with pkt_reason
CMD_ABORTED and pkt_statistics OR’d with STAT_ABORTED.

tran_reset() Entry Point
The tran_reset(9E) entry point for a SCSI HBA driver is called to reset either the
SCSI bus or a particular SCSI target device. This entry point is called when a target
driver calls scsi_reset(9F).

The tran_reset() entry point must reset the SCSI bus if level is RESET_ALL. If
level is RESET_TARGET, just the particular target or logical unit must be reset.

Active commands affected by the reset must be marked with pkt_reason
CMD_RESET. The type of reset determines whether STAT_BUS_RESET or
STAT_DEV_RESET should be used to OR pkt_statistics.

Commands in the transport layer, but not yet active on the target, must be marked
with pkt_reason CMD_RESET, and pkt_statistics OR’d with STAT_ABORTED.

tran_bus_reset() Entry Point
tran_bus_reset(9e) must reset the SCSI bus without resetting targets.

#include <sys/scsi/scsi.h>

int tran_bus_reset(dev_info_t *hba-dip, int level);

Chapter 17 • SCSI Host Bus Adapter Drivers 347

where:

*hba-dip Pointer associated with the SCSI HBA

level Must be set to RESET_BUS so that only the SCSI bus is reset, not the
targets

The tran_bus_reset() vector in the scsi_hba_tran(9S) structure should be
initialized during the HBA driver’s attach(9E). The vector should point to an HBA
entry point that is to be called when a user initiates a bus reset.

Implementation is hardware specific. If the HBA driver cannot reset the SCSI bus
without affecting the targets, the driver should fail RESET_BUS or not initialize this
vector.

tran_reset_notify() Entry Point
Use the tran_reset_notify(9E) entry point when a SCSI bus reset occurs. This
function requests the SCSI HBA driver to notify the target driver by callback.

EXAMPLE 17–12 HBA Driver tran_reset_notify(9E) Entry Point

isp_scsi_reset_notify(
struct scsi_address *ap,
int flag,
void (*callback)(caddr_t),
caddr_t arg)

{
struct isp *isp;
struct isp_reset_notify_entry *p, *beforep;
int rval = DDI_FAILURE;

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

mutex_enter(ISP_REQ_MUTEX(isp));

/*
* Try to find an existing entry for this target
*/
p = isp->isp_reset_notify_listf;
beforep = NULL;

while (p) {
if (p->ap == ap)

break;
beforep = p;
p = p->next;
}

if ((flag & SCSI_RESET_CANCEL) && (p != NULL)) {
if (beforep == NULL) {

isp->isp_reset_notify_listf = p->next;

348 Writing Device Drivers • January 2005

EXAMPLE 17–12 HBA Driver tran_reset_notify(9E) Entry Point (Continued)

} else {
beforep->next = p->next;

}
kmem_free((caddr_t)p, sizeof (struct

isp_reset_notify_entry));
rval = DDI_SUCCESS;

} else if ((flag & SCSI_RESET_NOTIFY) && (p == NULL)) {
p = kmem_zalloc(sizeof (struct isp_reset_notify_entry),

KM_SLEEP);
p->ap = ap;
p->callback = callback;
p->arg = arg;
p->next = isp->isp_reset_notify_listf;
isp->isp_reset_notify_listf = p;
rval = DDI_SUCCESS;
}

mutex_exit(ISP_REQ_MUTEX(isp));

return (rval);

}

Dynamic Reconfiguration
To support the minimal set of hot-plugging operations, drivers might need to
implement support for bus quiesce, bus unquiesce, and bus reset. The
scsi_hba_tran(9S) structure supports these operations. If quiesce, unquiesce, or
reset are not required by hardware, no driver changes are needed.

The scsi_hba_tran structure includes the following fields:

int (*tran_quiesce)(dev_info_t *hba-dip);
int (*tran_unquiesce)(dev_info_t *hba-dip);
int (*tran_bus_reset)(dev_info_t *hba-dip, int level);

These interfaces quiesce and unquiesce a SCSI bus.

#include <sys/scsi/scsi.h>

int prefixtran_quiesce(dev_info_t *hba-dip);

int prefixtran_unquiesce(dev_info_t *hba-dip);

tran_quiesce(9e) and tran_unquiesce(9e) are used for SCSI devices that are not
designed for hot-plugging. These functions must be implemented by an HBA driver to
support dynamic reconfiguration (DR).

Chapter 17 • SCSI Host Bus Adapter Drivers 349

The tran_quiesce(9e) and tran_unquiesce(9e) vectors in the
scsi_hba_tran(9S) structure should be initialized to point to HBA entry points
during attach(9E). These functions are called when a user initiates quiesce and
unquiesce operations.

tran_quiesce(9e) stops all activity on a SCSI bus prior to and during the
reconfiguration of devices that are attached to the SCSI bus. tran_unquiesce(9e) is
called by the SCSA framework to resume activity on the SCSI bus after the
reconfiguration operation has been completed.

HBA drivers are required to handle tran_quiesce(9e) by waiting for all outstanding
commands to complete before returning success. After the driver has quiesced the bus,
any new I/O requests must be queued until the SCSA framework calls the
corresponding tran_unquiesce(9e) entry point.

HBA drivers handle calls to tran_unquiesce(9e) by starting any target driver I/O
requests in the queue.

SCSI HBA Driver Specific Issues
The section covers issues specific to SCSI HBA drivers.

Installing HBA Drivers
A SCSI HBA driver is installed in similar fashion to a leaf driver. See Chapter 20. The
difference is that the add_drv(1M) command must specify the driver class as SCSI,
such as:

add_drv -m" * 0666 root root" -i’"pci1077,1020"’ -c scsi isp

HBA Configuration Properties
When attaching an instance of an HBA device, scsi_hba_attach_setup(9F) creates
a number of SCSI configuration properties for that HBA instance. A particular
property is created only if no existing property of the same name is already attached
to the HBA instance. This restriction avoids overriding any default property values in
an HBA configuration file.

350 Writing Device Drivers • January 2005

An HBA driver must use ddi_prop_get_int(9F) to retrieve each property. The HBA
driver then modifies or accepts the default value of the properties to configure its
specific operation.

scsi-reset-delay Property
The scsi-reset-delay property is an integer specifying the recovery time in
milliseconds for a reset delay by either a SCSI bus or SCSI device.

scsi-options Property
The scsi-options property is an integer specifying a number of options through
individually defined bits:

� SCSI_OPTIONS_DR (0x008) – If not set, the HBA should not grant disconnect
privileges to a target device.

� SCSI_OPTIONS_LINK (0x010) – If not set, the HBA should not enable linked
commands.

� SCSI_OPTIONS_SYNC (0x020) – If not set, the HBA driver must not negotiate
synchronous data transfer. The driver should reject any attempt to negotiate
synchronous data transfer initiated by a target.

� SCSI_OPTIONS_PARITY (0x040) – If not set, the HBA should run the SCSI bus
without parity.

� SCSI_OPTIONS_TAG (0x080) – If not set, the HBA should not operate in
Command Tagged Queuing mode.

� SCSI_OPTIONS_FAST (0x100) – If not set, the HBA should not operate the bus
in FAST SCSI mode.

� SCSI_OPTIONS_WIDE (0x200) – If not set, the HBA should not operate the bus
in WIDE SCSI mode.

Per-Target scsi-options
An HBA driver might support a per-target scsi-options feature in the following
format:

target<n>-scsi-options=<hex value>

Chapter 17 • SCSI Host Bus Adapter Drivers 351

In this example, < n> is the target ID. If the per-target scsi-options property is
defined, the HBA driver uses that value rather than the per-HBA driver instance
scsi-options property. This approach can provide more precise control if, for
example, synchronous data transfer needs to be disabled for just one particular target
device. The per-target scsi-options property can be defined in the
driver.conf(4) file.

The following example shows a per-target scsi-options property definition to
disable synchronous data transfer for target device 3:

target3-scsi-options=0x2d8

x86 Target Driver Configuration Properties
Some x86 SCSI target drivers, such as the driver for cmdk disk, use the following
configuration properties:

� disk
� queue
� flow_control

If you use the cmdk sample driver to write an HBA driver for an x86 platform, any
appropriate properties must be defined in the driver.conf(4) file.

Note – These property definitions should appear only in an HBA driver’s
driver.conf(4) file. The HBA driver itself should not inspect or attempt to interpret
these properties in any way. These properties are advisory only and serve as an
adjunct to the cmdk driver. The properties should not be relied upon in any way. The
property definitions might not be used in future releases.

The disk property can be used to define the type of disk supported by cmdk. For a
SCSI HBA, the only possible value for the disk property is:

� disk="scdk" – Disk type is a SCSI disk

The queue property defines how the disk driver sorts the queue of incoming requests
during strategy(9E). Two values are possible:

� queue="qsort" – One-way elevator queuing model, provided by disksort(9F)

� queue="qfifo" – FIFO, that is, first in, first out queuing model

The flow_control property defines how commands are transported to the HBA
driver. Three values are possible:

� flow_control="dsngl" – Single command per HBA driver

352 Writing Device Drivers • January 2005

� flow_control="dmult" – Multiple commands per HBA driver—when the HBA
queue is full, the driver returns TRAN_BUSY

� flow_control="duplx" – The HBA can support separate read and write
queues, with multiple commands per queue. FIFO ordering is used for the write
queue. The queuing model that is used for the read queue is described by the queue
property. When an HBA queue is full, the driver returns TRAN_BUSY

The following example is a driver.conf(4) file for use with an x86 HBA PCI device
that has been designed for use with the cmdk sample driver:

#
config file for ISP 1020 SCSI HBA driver
#

flow_control="dsngl" queue="qsort" disk="scdk"
scsi-initiator-id=7;

Support for Queuing
For a definition of tagged queuing, refer to the SCSI-2 specification. To support tagged
queuing, first check the scsi_options flag SCSI_OPTIONS_TAG to see whether tagged
queuing is enabled globally. Next, check to see whether the target is a SCSI-2 device
and whether the target has tagged queuing enabled. If these conditions are all true,
attempt to enable tagged queuing by using scsi_ifsetcap(9F).

If tagged queuing fails, you can attempt to set untagged queuing. In this mode, you
submit as many commands as you think necessary or optimal to the host adapter
driver. Then the host adapter queues the commands to the target one command at a
time, in contrast to tagged queuing. In tagged queuing, the host adapter submits as
many commands as possible until the target indicates that the queue is full.

Chapter 17 • SCSI Host Bus Adapter Drivers 353

354 Writing Device Drivers • January 2005

CHAPTER 18

Drivers for Network Devices

Solaris network drivers are STREAMS-based. These types of drivers are covered in
depth in the STREAMS Programming Guide. This chapter discusses the Generic LAN
driver (GLD), which is a kernel module encapsulating features common to most
network drivers. The GLD implements much of the STREAMS and Data Link Provider
Interface (DLPI) functionality for a Solaris network driver.

The GLD module is available for network drivers for the Solaris SPARC platform and
the Solaris x86 platform.

This chapter provides information on the following subjects:

� “Generic LAN Driver Overview” on page 355
� “Declarations and Data Structures” on page 366
� “GLD Arguments” on page 370
� “GLD Entry Points” on page 371
� “GLD Service Routines” on page 376

For more information on GLDs, see the gld(7D), dlpi(7P), gld(9E), gld(9F),
gld_mac_info(9S), and gld_stats(9S) man pages.

Generic LAN Driver Overview
GLD is a multi-threaded, clonable, loadable kernel module providing support to
device drivers for local area networks. Local area network (LAN) device drivers in the
Solaris OS are STREAMS-based drivers that use DLPI to communicate with network
protocol stacks. These protocol stacks use the network drivers to send and receive
packets on a local area network.

355

A network device driver must implement and conform to these requirements:

� DDI/DKI specification
� STREAMS specification
� DLPI specification
� programmatic interface for the device

GLD implements most STREAMS and DLPI functionality required of a Solaris LAN
driver. Several Solaris network drivers are implemented using GLD.

A Solaris network driver that is implemented using GLD is made up of two distinct
parts: a generic component that deals with STREAMS and DLPI interfaces, and a
device-specific component that deals with the particular hardware device. The
device-specific module indicates its dependency on the GLD module, which is found
at /kernel/misc/gld. The device-specific module then registers with GLD from
within the driver’s attach(9E) function. After the device-specific module is
successfully loaded, the driver is DLPI-compliant. The device-specific part of the
driver calls gld(9F) functions when that part receives data or needs some service from
GLD. When the device-specific driver registers with the GLD, the driver provides
pointers to the entry points for later use by GLD. GLD makes calls into the gld(9E)
using these pointers. The gld_mac_info(9S) structure is the main data interface
between GLD and the device-specific driver.

The GLD facility currently supports the following types of devices:

� DL_ETHER, that is, ISO 8802–3, IEEE 802.3 protocol
� DL_TPR, that is, IEEE 802.5, Token Passing Ring
� DL_FDDI, that is, ISO 9314–2, Fibre Distributed Data Interface

GLD drivers are expected to process fully formed MAC-layer packets and should not
perform logical link control (LLC) handling.

In some cases, a full DLPI-compliant driver can be implemented without using the
GLD facility. One case would be devices that are not ISO 8802-style, that is, IEEE 802,
LAN devices. Another case would be devices or services that are not supported by
GLD.

Type DL_ETHER: Ethernet V2 and ISO 8802-3 (IEEE
802.3)
For devices designated type DL_ETHER, GLD provides support for both Ethernet V2
and ISO 8802-3 (IEEE 802.3) packet processing. Ethernet V2 enables a user to access a
conforming provider of data link services without special knowledge of the provider’s
protocol. A service access point (SAP) is the point through which the user
communicates with the service provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and denote
that the user wants to use 8802-3 mode. If the SAP value of the DL_BIND_REQ is
within this range, GLD computes the length of each subsequent DL_UNITDATA_REQ

356 Writing Device Drivers • January 2005

message on that stream. The length does not include the 14-byte media access control
(MAC) header. GLD then transmits 8802-3 frames that have those lengths in the MAC
frame header type fields. Such lengths never exceed 1500.

All frames that are received from the media that have a type field in the range
[0-1500] are assumed to be 8802-3 frames. These frames are routed up all open streams
in 8802-3 mode. Those streams with SAP values in the [0-255] range are considered to
be in 8802-3 mode. If more than one stream is in 8802-3 mode, the incoming frame is
duplicated and routed up these streams.

Those streams that are bound to SAP values that are greater than 1500 are assumed to
be in Ethernet V2 mode. These streams receive incoming packets whose Ethernet
MAC header type value exactly matches the value of the SAP to which the stream is
bound.

Types DL_TPR and DL_FDDI: SNAP Processing
For media types DL_TPR and DL_FDDI, GLD implements minimal SNAP (Sub-Net
Access Protocol) processing. This processing is for any stream that is bound to a SAP
value that is greater than 255. SAP values in the range [0-255] are LLC SAP values.
Such values are carried naturally by the media packet format. SAP values that are
greater than 255 require a SNAP header, subordinate to the LLC header, to carry the
16-bit Ethernet V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP 0xAA.Outbound
packets with SAP values that are greater than 255 require an LLC+SNAP header take
the following form:

AA AA 03 00 00 00 XX XX

‘‘XX XX’’ represents the 16-bit SAP, corresponding to the Ethernet V2 style ‘‘type.’’
This header is unique in supporting non-zero organizational unique identifier fields.
LLC control fields other than 03 are considered to be LLC packets with SAP 0xAA.
Clients wanting to use SNAP formats other than this format must use LLC and bind to
SAP 0xAA.

Incoming packets are checked for conformance with the above format. Packets that
conform are matched to any streams that have been bound to the packet’s 16-bit SNAP
type. In addition, these packets are considered to match the LLC SNAP SAP 0xAA.

Packets received for any LLC SAP are passed up all streams that are bound to an LLC
SAP, as described for media type DL_ETHER.

Chapter 18 • Drivers for Network Devices 357

Type DL_TPR: Source Routing
For type DL_TPR devices, GLD implements minimal support for source routing.
Source routing support includes the following items:

� Specify routing information for a packet to be sent across a bridged medium. The
routing information is stored in the MAC header. This information is used to
determine the route.

� Learn routes.

� Solicit and respond to requests for information about possible multiple routes

� Select among available routes.

Source routing adds routing information fields to the MAC headers of outgoing
packets. In addition, this support recognizes such fields in incoming packets.

GLD’s source routing support does not implement the full route determination entity
(RDE) specified in Section 9 of ISO 8802-2 (IEEE 802.2). However, this support can
interoperate with any RDE implementations that might exist in the same or a bridged
network.

Style 1 and Style 2 DLPI Providers
GLD implements both Style 1 and Style 2 DLPI providers. A physical point of
attachment (PPA) is the point at which a system attaches itself to a physical
communication medium. All communication on that physical medium funnels
through the PPA. The Style 1 provider attaches the streams to a particular PPA based
on the major or minor device that has been opened. The Style 2 provider requires the
DLS, that is, the data link service, user to explicitly identify the desired PPA using
DL_ATTACH_REQ. In this case, open(9E) creates a streams between the user and GLD,
and DL_ATTACH_REQ subsequently associates a particular PPA with that streams.
Style 2 is denoted by a minor number of zero. If a device node whose minor number is
not zero is opened, Style 1 is indicated and the associated PPA is the minor number
minus 1. In both Style 1 and Style 2 opens, the device is cloned.

Implemented DLPI Primitives
GLD implements several DLPI primitives. The DL_INFO_REQ primitive requests
information about the DLPI streams. The message consists of one M_PROTO message
block. GLD returns device-dependent values in the DL_INFO_ACK response to this
request. These values are based on information that the GLD-based driver specified in
the gldm_mac_info(9S) structure that was passed to gld_register().

358 Writing Device Drivers • January 2005

GLD returns the following values on behalf of all GLD-based drivers:

� Version is DL_VERSION_2

� Service mode is DL_CLDLS, GLD implements connectionless-mode service.

� Provider style is DL_STYLE1 or DL_STYLE2, depending on how the streams was
opened.

� No optional Quality of Service (QOS) support is present. The QOS fields are zero.

Note – Contrary to the DLPI specification, GLD returns the device’s correct address
length and broadcast address in DL_INFO_ACK even before the streams has been
attached to a PPA.

The DL_ATTACH_REQ primitive is used to associate a PPA with a streams. This request
is needed for Style 2 DLS providers to identify the physical medium over which the
communication is sent. Upon completion, the state changes from DL_UNATTACHED to
DL_UNBOUND. The message consists of one M_PROTO message block. This request is
not permitted when Style 1 mode is used. Streams that are opened using Style 1 are
already attached to a PPA by the time the open completes.

The DL_DETACH_REQ primitive requests to detach the PPA from the streams. This
detachment is allowed only if the streams was opened using Style 2.

The DL_BIND_REQ and DL_UNBIND_REQ primitives bind and unbind a DLSAP, that
is, a data link service access point, to the streams. The PPA that is associated with a
streams completes initialization before the completion of the processing of the
DL_BIND_REQ on that streams. You can bind multiple streams to the same SAP. Each
streams in this case receives a copy of any packets that were received for that SAP.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable and disable
reception of individual multicast group addresses. Through iterative use of these
primitives, an application or other DLS user can create or modify a set of multicast
addresses. The streams must be attached to a PPA for these primitives to be accepted.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives turn promiscuous
mode on or off on a per-streams basis. These controls operate at either at a physical
level or at the SAP level. The DL Provider routes all received messages on the media to
the DLS user. Routing continues until a DL_DETACH_REQ is received, a
DL_PROMISCOFF_REQ is received, or the streams is closed. You can specify physical
level promiscuous reception of all packets on the medium or of multicast packets only.

Note – The streams must be attached to a PPA for these promiscuous mode primitives
to be accepted.

Chapter 18 • Drivers for Network Devices 359

The DL_UNITDATA_REQ primitive is used to send data in a connectionless transfer.
Because this service is not acknowledged, delivery is not guaranteed. The message
consists of one M_PROTO message block followed by one or more M_DATA blocks
containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is to be passed on upstream. The
packet is put into an M_PROTO message with the primitive set to DL_UNITDATA_IND.

The DL_PHYS_ADDR_REQ primitive requests the MAC address currently associated
with the PPA attached to the streams. The address is returned by the
DL_PHYS_ADDR_ACK primitive. When using Style 2, this primitive is only valid
following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the MAC address currently
associated with the PPA attached to the streams. This primitive affects all other current
and future streams attached to this device. Once changed, all streams currently or
subsequently opened and attached to this device obtain this new physical address.
The new physical address remains in effect until this primitive changes the physical
address again or the driver is reloaded.

Note – The superuser is allowed to change the physical address of a PPA while other
streams are bound to the same PPA.

The DL_GET_STATISTICS_REQ primitive requests a DL_GET_STATISTICS_ACK
response containing statistics information associated with the PPA attached to the
stream. Style 2 Streams must be attached to a particular PPA using DL_ATTACH_REQ
before this primitive can succeed.

Implemented ioctl Functions
GLD implements the ioctl ioc_cmd function described below. If GLD receives an
unrecognizable ioctl command, GLD passes the command to the device-specific
driver’s gldm_ioctl() routine, as described in gld(9E).

The DLIOCRAW ioctl function is used by some DLPI applications, most notably the
snoop(1M) command. The DLIOCRAW command puts the stream into a raw mode. In
raw mode, the driver passes full MAC-level incoming packets upstream in M_DATA
messages instead of transforming the packets into the DL_UNITDATA_IND form. The
DL_UNITDATA_IND form is normally used for reporting incoming packets. Packet
SAP filtering is still performed on streams that are in raw mode. If a stream user wants
to receive all incoming packets, the user must also select the appropriate promiscuous
modes. After successfully selecting raw mode, the application is also allowed to send
fully formatted packets to the driver as M_DATA messages for transmission. DLIOCRAW
takes no arguments. Once enabled, the stream remains in this mode until closed.

360 Writing Device Drivers • January 2005

GLD Driver Requirements
GLD-based drivers must include the header file <sys/gld.h>.

GLD-based drivers must be linked with the -N“misc/gld” option:

%ld -r -N"misc/gld" xx.o -o xx

GLD implements the following functions on behalf of the device-specific driver:

� open(9E)
� close(9E)
� put(9E), required for STREAMS
� srv(9E), required for STREAMS
� getinfo(9E)

The mi_idname element of the module_info(9S) structure is a string that specifies
the name of the driver. This string must exactly match the name of the driver module
as defined in the file system.

The read-side qinit(9S) structure should specify the following elements:

qi_putp NULL

qi_srvp gld_rsrv

qi_qopen gld_open

qi_qclose gld_close

The write-side qinit(9S) structure should specify these elements:

qi_putp gld_wput

qi_srvp gld_wsrv

qi_qopen NULL

qi_qclose NULL

The devo_getinfo element of the dev_ops(9S) structure should specify
gld_getinfo as the getinfo(9E) routine.

The driver’s attach(9E) function associates the hardware-specific device driver with
the GLD facility. attach() then prepares the device and driver for use.

The attach(9E) function allocates a gld_mac_info(9S) structure using
gld_mac_alloc(). The driver usually needs to save more information per device
than is defined in the macinfo structure. The driver should allocate the additional
required data structure and save a pointer to the structure in the gldm_private
member of the gld_mac_info(9S) structure.

Chapter 18 • Drivers for Network Devices 361

The attach(9E) routine must initialize the macinfo structure as described in the
gld_mac_info(9S) man page. The attach() routine should then call
gld_register() to link the driver with the GLD module. The driver should map
registers if necessary and be fully initialized and prepared to accept interrupts before
calling gld_register(). The attach(9E) function should add interrupts but should
not enable the device to generate these interrupts. The driver should reset the
hardware before calling gld_register() to ensure the hardware is quiescent. A
device must not be put into a state where the device might generate an interrupt
before gld_register() is called. The device is started later when GLD calls the
driver’s gldm_start() entry point, which is described in the gld(9E) man page.
After gld_register() succeeds, the gld(9E) entry points might be called by GLD at
any time.

The attach(9E) routine should return DDI_SUCCESS if gld_register() succeeds.
If gld_register() fails, DDI_FAILURE is returned. If a failure occurs, the
attach(9E) routine should deallocate any resources that were allocated before
gld_register() was called. The attach routine should then also return
DDI_FAILURE. A failed macinfo structure should never be reused. Such a structure
should be deallocated using gld_mac_free().

The detach(9E)function should attempt to unregister the driver from GLD by calling
gld_unregister(). For more information about gld_unregister(), see the
gld(9F) man page. The detach(9E) routine can get a pointer to the needed
gld_mac_info(9S) structure from the device’s private data using
ddi_get_driver_private(9F). gld_unregister() checks certain conditions that
could require that the driver not be detached. If the checks fail, gld_unregister()
returns DDI_FAILURE, in which case the driver’s detach(9E) routine must leave the
device operational and return DDI_FAILURE.

If the checks succeed, gld_unregister() ensures that the device interrupts are
stopped. The driver’s gldm_stop() routine is called if necessary. The driver is
unlinked from the GLD framework. gld_unregister() then returns
DDI_SUCCESS. In this case, the detach(9E) routine should remove interrupts and use
gld_mac_free() to deallocate any macinfo data structures that were allocated in
the attach(9E) routine. The detach() routine should then return DDI_SUCCESS.
The routine must remove the interrupt before calling gld_mac_free().

Network Statistics
Solaris network drivers must implement statistics variables. GLD tallies some network
statistics, but other statistics must be counted by each GLD-based driver. GLD
provides support for GLD-based drivers to report a standard set of network driver
statistics. Statistics are reported by GLD using the kstat(7D) and kstat(9S)
mechanisms. The DL_GET_STATISTICS_REQ DLPI command can also be used to
retrieve the current statistics counters. All statistics are maintained as unsigned. The
statistics are 32 bits unless otherwise noted.

362 Writing Device Drivers • January 2005

GLD maintains and reports the following statistics.

rbytes64 Total bytes successfully received on the interface. Stores 64-bit
statistics.

rbytes Total bytes successfully received on the interface

obytes64 Total bytes that have requested transmission on the interface. Stores
64-bit statistics.

obytes Total bytes that have requested transmission on the interface.

ipackets64 Total packets successfully received on the interface. Stores 64-bit
statistics.

ipackets Total packets successfully received on the interface.

opackets64 Total packets that have requested transmission on the interface.
Stores 64-bit statistics.

opackets Total packets that have requested transmission on the interface.

multircv Multicast packets successfully received, including group and
functional addresses (long).

multixmt Multicast packets requested to be transmitted, including group and
functional addresses (long).

brdcstrcv Broadcast packets successfully received (long).

brdcstxmt Broadcast packets that have requested transmission (long).

unknowns Valid received packets not accepted by any stream (long).

noxmtbuf Packets discarded on output because transmit buffer was busy, or no
buffer could be allocated for transmit (long).

blocked Number of times a received packet could not be put up a stream
because the queue was flow-controlled (long).

xmtretry Times transmit was retried after having been delayed due to lack of
resources (long).

promisc Current “promiscuous” state of the interface (string).

The device-dependent driver tracks the following statistics in a private per-instance
structure. To report statistics, GLD calls the driver’s gldm_get_stats() entry point.
gldm_get_stats() then updates device–specific statistics in the gld_stats(9S)
structure. See the gldm_get_stats(9E) man page for more information. GLD then
reports the updated statistics using the named statistics variables that are shown
below.

ifspeed Current estimated bandwidth of the interface in bits per second. Stores
64-bit statistics.

media Current media type in use by the device (string).

Chapter 18 • Drivers for Network Devices 363

intr Number of times that the interrupt handler was called, causing an
interrupt (long).

norcvbuf Number of times a valid incoming packet was known to have been
discarded because no buffer could be allocated for receive (long).

ierrors Total number of packets that were received but could not be processed
due to errors (long).

oerrors Total packets that were not successfully transmitted because of errors
(long).

missed Packets known to have been dropped by the hardware on receive
(long).

uflo Times FIFO underflowed on transmit (long).

oflo Times receiver overflowed during receive (long).

The following group of statistics applies to networks of type DL_ETHER. These
statistics are maintained by device-specific drivers of that type, as shown previously.

align_errors Packets that were received with framing errors, that is,
the packets did not contain an integral number of octets
(long).

fcs_errors Packets received with CRC errors (long).

duplex Current duplex mode of the interface (string).

carrier_errors Number of times carrier was lost or never detected on a
transmission attempt (long).

collisions Ethernet collisions during transmit (long).

ex_collisions Frames where excess collisions occurred on transmit,
causing transmit failure (long).

tx_late_collisions Number of times a transmit collision occurred late, that is,
after 512 bit times (long).

defer_xmts Packets without collisions where first transmit attempt
was delayed because the medium was busy (long).

first_collisions Packets successfully transmitted with exactly one
collision.

multi_collisions Packets successfully transmitted with multiple collisions.

sqe_errors Number of times that SQE test error was reported.

macxmt_errors Packets encountering transmit MAC failures, except
carrier and collision failures.

macrcv_errors Packets received with MAC errors, except
align_errors, fcs_errors, and toolong_errors.

364 Writing Device Drivers • January 2005

toolong_errors Packets received larger than the maximum permitted
length.

runt_errors Packets received smaller than the minimum permitted
length (long).

The following group of statistics applies to networks of type DL_TPR. These statistics
are maintained by device-specific drivers of that type, as shown above.

line_errors Packets received with non-data bits or FCS errors.

burst_errors Number of times an absence of transitions for five
half-bit timers was detected.

signal_losses Number of times loss of signal condition on the ring was
detected.

ace_errors Number of times that an AMP or SMP frame, in which A
is equal to C is equal to 0, is followed by another SMP
frame without an intervening AMP frame.

internal_errors Number of times the station recognized an internal
error.

lost_frame_errors Number of times the TRR timer expired during transmit.

frame_copied_errors Number of times a frame addressed to this station was
received with the FS field ‘A’ bit set to 1.

token_errors Number of times the station acting as the active monitor
recognized an error condition that needed a token
transmitted.

freq_errors Number of times the frequency of the incoming signal
differed from the expected frequency.

The following group of statistics applies to networks of type DL_FDDI. These statistics
are maintained by device-specific drivers of that type, as shown above.

mac_errors Frames detected in error by this MAC that had not been
detected in error by another MAC.

mac_lost_errors Frames received with format errors such that the frame was
stripped.

mac_tokens Number of tokens that were received, that is, the total of
non-restricted and restricted tokens.

mac_tvx_expired Number of times that TVX has expired.

mac_late Number of TRT expirations since either this MAC was reset
or a token was received.

mac_ring_ops Number of times the ring has entered the “Ring Operational”
state from the “Ring Not Operational” state.

Chapter 18 • Drivers for Network Devices 365

Declarations and Data Structures
This section describes the gld_mac_info(9S) and gld_stats structures.

gld_mac_info Structure
The GLD MAC information (gld_mac_info) structure is the main data interface that
links the device-specific driver with GLD. This structure contains data required by
GLD and a pointer to an optional additional driver-specific information structure.

Allocate the gld_mac_info structure using gld_mac_alloc(). Deallocate the
structure using gld_mac_free(). Drivers must not make any assumptions about the
length of this structure, which might vary in different releases of the Solaris OS, GLD,
or both. Structure members private to GLD, not documented here, should neither be
set nor be read by the device-specific driver.

The gld_mac_info(9S) structure contains the following fields.

caddr_t gldm_private; /* Driver private data */
int (*gldm_reset)(); /* Reset device */
int (*gldm_start)(); /* Start device */
int (*gldm_stop)(); /* Stop device */
int (*gldm_set_mac_addr)(); /* Set device phys addr */
int (*gldm_set_multicast)(); /* Set/delete multicast addr */
int (*gldm_set_promiscuous)(); /* Set/reset promiscuous mode */
int (*gldm_send)(); /* Transmit routine */
uint_t (*gldm_intr)(); /* Interrupt handler */
int (*gldm_get_stats)(); /* Get device statistics */
int (*gldm_ioctl)(); /* Driver-specific ioctls */
char *gldm_ident; /* Driver identity string */
uint32_t gldm_type; /* Device type */
uint32_t gldm_minpkt; /* Minimum packet size */

/* accepted by driver */
uint32_t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */
uint32_t gldm_addrlen; /* Physical address length */
int32_t gldm_saplen; /* SAP length for DL_INFO_ACK */
unsigned char *gldm_broadcast_addr; /* Physical broadcast addr */
unsigned char *gldm_vendor_addr; /* Factory MAC address */
t_uscalar_t gldm_ppa; /* Physical Point of */

/* Attachment (PPA) number */
dev_info_t *gldm_devinfo; /* Pointer to device’s */

/* dev_info node */
ddi_iblock_cookie_t gldm_cookie; /* Device’s interrupt */

/* block cookie */

366 Writing Device Drivers • January 2005

The gldm_private structure member is visible to the device driver. gldm_private
is also private to the device-specific driver. gldm_private is not used or modified by
GLD. Conventionally, gldm_private is used as a pointer to private data, pointing to
a per-instance data structure that is both defined and allocated by the driver.

The following group of structure members must be set by the driver before calling
gld_register(), and should not thereafter be modified by the driver. Because
gld_register() might use or cache the values of structure members, changes made
by the driver after calling gld_register() might cause unpredictable results. For
more information on these structures, see the gld(9E) man page.

gldm_reset Pointer to driver entry point.

gldm_start Pointer to driver entry point.

gldm_stop Pointer to driver entry point.

gldm_set_mac_addr Pointer to driver entry point.

gldm_set_multicast Pointer to driver entry point.

gldm_set_promiscuous Pointer to driver entry point.

gldm_send Pointer to driver entry point.

gldm_intr Pointer to driver entry point.

gldm_get_stats Pointer to driver entry point.

gldm_ioctl Pointer to driver entry point. This pointer is allowed to
be NULL.

gldm_ident Pointer to a string that contains a short description of
the device. This pointer is used to identify the device in
system messages.

gldm_type Type of device the driver handles. GLD currently
supports the following values:

� DL_ETHER (ISO 8802-3 (IEEE 802.3) and Ethernet
Bus)

� DL_TPR (IEEE 802.5 Token Passing Ring)
� DL_FDDI (ISO 9314-2 Fibre Distributed Data

Interface)

This structure member must be correctly set for GLD to
function properly.

gldm_minpkt Minimum Service Data Unit size: the minimum packet
size, not including the MAC header, that the device can
transmit. This size is allowed to be zero if the
device-specific driver handles any required padding.

Chapter 18 • Drivers for Network Devices 367

gldm_maxpkt Maximum Service Data Unit size: the maximum size of
packet, not including the MAC header, that can be
transmitted by the device. For Ethernet, this number is
1500.

gldm_addrlen The length in bytes of physical addresses handled by
the device. For Ethernet, Token Ring, and FDDI, the
value of this structure member should be 6.

gldm_saplen The length in bytes of the SAP address used by the
driver. For GLD-based drivers, the length should
always be set to -2. A length of -2 indicates that 2-byte
SAP values are supported and that the SAP appears
after the physical address in a DLSAP address. See
Appendix A.2, “Message DL_INFO_ACK,” in the DLPI
specification for more details.

gldm_broadcast_addr Pointer to an array of bytes of length gldm_addrlen
containing the broadcast address to be used for
transmit. The driver must provide space to hold the
broadcast address, fill the space with the appropriate
value, and set gldm_broadcast_addr to point to the
address. For Ethernet, Token Ring, and FDDI, the
broadcast address is normally
0xFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length gldm_addrlen
that contains the vendor-provided network physical
address of the device. The driver must provide space
to hold the address, fill the space with information
from the device, and set gldm_vendor_addr to point
to the address.

gldm_ppa PPA number for this instance of the device. The PPA
number should always be set to the instance number
that is returned from ddi_get_instance(9F).

gldm_devinfo Pointer to the dev_info node for this device.

gldm_cookie Interrupt block cookie returned by one of the following
routines:

� ddi_get_iblock_cookie(9F)
� ddi_add_intr(9F)
� ddi_get_soft_iblock_cookie(9F)
� ddi_add_softintr(9F)

This cookie must correspond to the device’s
receive-interrupt, from which gld_recv() is called.

368 Writing Device Drivers • January 2005

gld_stats Structure
After calling gldm_get_stats(), a GLD-based driver uses the (gld_stats)
structure to communicate statistics and state information to GLD. See the gld(9E) and
gld(7D) man pages. The members of this structure, having been filled in by the
GLD-based driver, are used when GLD reports the statistics. In the tables below, the
name of the statistics variable reported by GLD is noted in the comments. See the
gld(7D) man page for a more detailed description of the meaning of each statistic.

Drivers must not make any assumptions about the length of this structure. The
structure length might vary in different releases of the Solaris Operating System, GLD,
or both. Structure members private to GLD, which are not documented here, should
not be set or be read by the device-specific driver.

The following structure members are defined for all media types:

uint64_t glds_speed; /* ifspeed */
uint32_t glds_media; /* media */
uint32_t glds_intr; /* intr */
uint32_t glds_norcvbuf; /* norcvbuf */
uint32_t glds_errrcv; /* ierrors */
uint32_t glds_errxmt; /* oerrors */
uint32_t glds_missed; /* missed */
uint32_t glds_underflow; /* uflo */

uint32_t glds_overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32_t glds_frame; /* align_errors */
uint32_t glds_crc; /* fcs_errors */
uint32_t glds_duplex; /* duplex */
uint32_t glds_nocarrier; /* carrier_errors */
uint32_t glds_collisions; /* collisions */
uint32_t glds_excoll; /* ex_collisions */
uint32_t glds_xmtlatecoll; /* tx_late_collisions */
uint32_t glds_defer; /* defer_xmts */
uint32_t glds_dot3_first_coll; /* first_collisions */
uint32_t glds_dot3_multi_coll; /* multi_collisions */
uint32_t glds_dot3_sqe_error; /* sqe_errors */
uint32_t glds_dot3_mac_xmt_error; /* macxmt_errors */
uint32_t glds_dot3_mac_rcv_error; /* macrcv_errors */
uint32_t glds_dot3_frame_too_long; /* toolong_errors */

uint32_t glds_short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

uint32_t glds_dot5_line_error /* line_errors */
uint32_t glds_dot5_burst_error /* burst_errors */
uint32_t glds_dot5_signal_loss /* signal_losses */
uint32_t glds_dot5_ace_error /* ace_errors */
uint32_t glds_dot5_internal_error /* internal_errors */
uint32_t glds_dot5_lost_frame_error /* lost_frame_errors */
uint32_t glds_dot5_frame_copied_error /* frame_copied_errors */

Chapter 18 • Drivers for Network Devices 369

uint32_t glds_dot5_token_error /* token_errors */

uint32_t glds_dot5_freq_error /* freq_errors */

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi_mac_error; /* mac_errors */
uint32_t glds_fddi_mac_lost; /* mac_lost_errors */
uint32_t glds_fddi_mac_token; /* mac_tokens */
uint32_t glds_fddi_mac_tvx_expired; /* mac_tvx_expired */
uint32_t glds_fddi_mac_late; /* mac_late */

uint32_t glds_fddi_mac_ring_op; /* mac_ring_ops */

Most of the above statistics variables are counters that denote the number of times that
the particular event was observed. The following statistics do not represent the
number of times:

glds_speed Estimate of the interface’s current bandwidth in bits per second.
This object should contain the nominal bandwidth for those
interfaces that do not vary in bandwidth or where an accurate
estimate cannot be made.

glds_media Type of media (wiring) or connector used by the hardware. The
following media names are supported:

� GLDM_AUI
� GLDM_BNC
� GLDM_TP
� GLDM_10BT
� GLDM_100BT
� GLDM_100BTX
� GLDM_100BT4
� GLDM_RING4
� GLDM_RING16
� GLDM_FIBER
� GLDM_PHYMII
� GLDM_UNKNOWN

glds_duplex Current duplex state of the interface. Supported values are
GLD_DUPLEX_HALF and GLD_DUPLEX_FULL.
GLD_DUPLEX_UNKNOWN is also permitted.

GLD Arguments
The following arguments are used by the GLD routines.

macinfo Pointer to a gld_mac_info(9S) structure.

370 Writing Device Drivers • January 2005

macaddr Pointer to the beginning of a character array that contains a valid
MAC address. The array is of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info(9S) structure.

multicastaddr Pointer to the beginning of a character array that contains a multicast,
group, or functional address. The array is of the length specified by
the driver in the gldm_addrlen element of the gld_mac_info(9S)
structure.

multiflag Flag indicating whether to enable or disable reception of the
multicast address. This argument is specified as
GLD_MULTI_ENABLE or GLD_MULTI_DISABLE.

promiscflag Flag indicating what type of promiscuous mode, if any, is to be
enabled. This argument is specified as GLD_MAC_PROMISC_PHYS,
GLD_MAC_PROMISC_MULTI, or GLD_MAC_PROMISC_NONE.

mp gld_ioctl() uses mp as a pointer to a STREAMS message block
containing the ioctl to be executed. gldm_send() uses mp as a
pointer to a STREAMS message block containing the packet to be
transmitted. gld_recv() uses mp as a pointer to a message block
containing a received packet.

stats Pointer to a gld_stats(9S) structure to be filled in with the current
values of statistics counters.

q Pointer to the queue(9S) structure to be used in the reply to the
ioctl.

dip Pointer to the device’s dev_info structure.

name Device interface name.

GLD Entry Points
Entry points must be implemented by a device-specific network driver that has been
designed to interface with GLD.

The gld_mac_info(9S) structure is the main structure for communication between
the device-specific driver and the GLD module. See the gld(7D) man page. Some
elements in that structure are function pointers to the entry points that are described
here. The device-specific driver must, in its attach(9E) routine, initialize these
function pointers before calling gld_register().

Chapter 18 • Drivers for Network Devices 371

gldm_reset() Entry Point
int prefix_reset(gld_mac_info_t *macinfo);

gldm_reset() resets the hardware to its initial state.

gldm_start() Entry Point
int prefix_start(gld_mac_info_t *macinfo);

gldm_start() enables the device to generate interrupts. gldm_start() also
prepares the driver to call gld_recv() to deliver received data packets to GLD.

gldm_stop() Entry Point
int prefix_stop(gld_mac_info_t *macinfo);

gldm_stop() disables the device from generating any interrupts and stops the driver
from calling gld_recv() for delivering data packets to GLD. GLD depends on the
gldm_stop() routine to ensure that the device will no longer interrupt.
gldm_stop() must do so without fail. This function should always return
GLD_SUCCESS.

gldm_set_mac_addr() Entry Point
int prefix_set_mac_addr(gld_mac_info_t *macinfo, unsigned char *macaddr);

gldm_set_mac_addr() sets the physical address that the hardware is to use for
receiving data. This function enables the device to be programmed via the passed
MAC address macaddr. If sufficient resources are currently not available to carry out
the request, gldm_set_mac_add() should return GLD_NORESOURCES. If the
requested function is not supported, gldm_set_mac_add() should return
GLD_NOTSUPPORTED.

gldm_set_multicast() Entry Point
int prefix_set_multicast(gld_mac_info_t *macinfo,

unsigned char *multicastaddr, int multiflag);

372 Writing Device Drivers • January 2005

gldm_set_multicast() enables and disables device-level reception of specific
multicast addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE, then
gldm_set_multicast() sets the interface to receive packets with the multicast
address. gldm_set_multicast() uses the multicast address that is pointed to by
the second argument. If multiflag is set to GLD_MULTI_DISABLE, the driver is allowed
to disable reception of the specified multicast address.

This function is called whenever GLD wants to enable or disable reception of a
multicast, group, or functional address. GLD makes no assumptions about how the
device does multicast support and calls this function to enable or disable a specific
multicast address. Some devices might use a hash algorithm and a bitmask to enable
collections of multicast addresses. This procedure is allowed, and GLD filters out any
superfluous packets. If disabling an address could result in disabling more than one
address at the device level, the device driver should keep any necessary information.
This approach avoids disabling an address that GLD has enabled but not disabled.

gldm_set_multicast() is not called to enable a particular multicast address that is
already enabled. Similarly, gldm_set_multicast() is not called to disable an
address that is not currently enabled. GLD keeps track of multiple requests for the
same multicast address. GLD only calls the driver’s entry point when the first request
to enable, or the last request to disable, a particular multicast address is made. If
sufficient resources are currently not available to carry out the request, the function
should return GLD_NORESOURCES. The function should return GLD_NOTSUPPORTED
if the requested function is not supported.

gldm_set_promiscuous() Entry Point
int prefix_set_promiscuous(gld_mac_info_t *macinfo, int promiscflag);

gldm_set_promiscuous() enables and disables promiscuous mode. This function
is called whenever GLD wants to enable or disable the reception of all packets on the
medium. The function can also be limited to multicast packets on the medium. If the
second argument promiscflag is set to the value of GLD_MAC_PROMISC_PHYS, then the
function enables physical-level promiscuous mode. Physical-level promiscuous mode
causes the reception of all packets on the medium. If promiscflag is set to
GLD_MAC_PROMISC_MULTI, then reception of all multicast packets are enabled. If
promiscflag is set to GLD_MAC_PROMISC_NONE, then promiscuous mode is disabled.

In promiscuous multicast mode, drivers for devices without multicast-only
promiscuous mode must set the device to physical promiscuous mode. This approach
ensures that all multicast packets are received. In this case, the routine should return
GLD_SUCCESS. The GLD software filters out any superfluous packets. If sufficient
resources are currently not available to carry out the request, the function should
return GLD_NORESOURCES. gld_set_promiscuous() should return
GLD_NOTSUPPORTED if the requested function is not supported.

Chapter 18 • Drivers for Network Devices 373

For forward compatibility, gldm_set_promiscuous() routines should treat any
unrecognized values for promiscflag as though these values were
GLD_MAC_PROMISC_PHYS.

gldm_send() Entry Point
int prefix_send(gld_mac_info_t *macinfo, mblk_t *mp);

gldm_send() queues a packet to the device for transmission. This routine is passed a
STREAMS message containing the packet to be sent. The message might include
multiple message blocks.The send() routine must traverse all the message blocks in
the message to access the entire packet to be sent. The driver should be prepared to
handle and skip over any zero-length message continuation blocks in the chain. The
driver should also check that the packet does not exceed the maximum allowable
packet size. The driver must pad the packet, if necessary, to the minimum allowable
packet size. If the send routine successfully transmits or queues the packet,
GLD_SUCCESS should be returned.

The send routine should return GLD_NORESOURCES if the packet for transmission
cannot be immediately accepted. In this case, GLD retries later. If gldm_send() ever
returns GLD_NORESOURCES, the driver must call gld_sched() at a later time when
resources have become available. This call to gld_sched() informs GLD to retry
packets that the driver previously failed to queue for transmission. (If the driver’s
gldm_stop() routine is called, the driver is absolved from this obligation until the
driver returns GLD_NORESOURCES from the gldm_send() routine. However, extra
calls to gld_sched() do not cause incorrect operation.)

If the driver’s send routine returns GLD_SUCCESS, then the driver is responsible for
freeing the message when the message is no longer needed. If the hardware uses DMA
to read the data directly, the driver must not free the message until the hardware has
completely read the data. In this case, the driver can free the message in the interrupt
routine. Alternatively, the driver can reclaim the buffer at the start of a future send
operation. If the send routine returns anything other than GLD_SUCCESS, then the
driver must not free the message. Return GLD_NOLINK if gldm_send() is called
when there is no physical connection to the network or link partner.

gldm_intr() Entry Point
int prefix_intr(gld_mac_info_t *macinfo);

374 Writing Device Drivers • January 2005

gldm_intr() is called when the device might have interrupted. Because interrupts
can be shared with other devices, the driver must check the device status to determine
whether that device actually caused the interrupt. If the device that the driver controls
did not cause the interrupt, then this routine must return DDI_INTR_UNCLAIMED.
Otherwise, the driver must service the interrupt and return DDI_INTR_CLAIMED. If
the interrupt was caused by successful receipt of a packet, this routine should put the
received packet into a STREAMS message of type M_DATA and pass that message to
gld_recv().

gld_recv() passes the inbound packet upstream to the appropriate next layer of the
network protocol stack. The routine must correctly set the b_rptr and b_wptr
members of the STREAMS message before calling gld_recv().

The driver should avoid holding mutex or other locks during the call to gld_recv().
In particular, locks that could be taken by a transmit thread must not be held during a
call to gld_recv(). In some cases, the interrupt thread that calls gld_recv() sends
an outgoing packet, which results in a call to the driver’s gldm_send() routine. If
gldm_send() tries to acquire a mutex that is held by gldm_intr() when
gld_recv() is called, a panic occurs due to recursive mutex entry. If other driver
entry points attempt to acquire a mutex that the driver holds across a call to
gld_recv(), deadlock can result.

The interrupt code should increment statistics counters for any errors. Errors include
the failure to allocate a buffer that is needed for the received data and any
hardware-specific errors, such as CRC errors or framing errors.

gldm_get_stats() Entry Point
int prefix_get_stats(gld_mac_info_t *macinfo, struct gld_stats *stats);

gldm_get_stats() gathers statistics from the hardware, driver private counters, or
both, and updates the gld_stats(9S) structure pointed to by stats. This routine is
called by GLD for statistics requests. GLD uses the gldm_get_stats() mechanism
to acquire device-dependent statistics from the driver before GLD composes the reply
to the statistics request. See the gld_stats(9S), gld(7D), and qreply(9F) man pages
for more information about defined statistics counters.

gldm_ioctl() Entry Point
int prefix_ioctl(gld_mac_info_t *macinfo, queue_t *q, mblk_t *mp);

Chapter 18 • Drivers for Network Devices 375

gldm_ioctl() implements any device-specific ioctl commands. This element is
allowed to be NULL if the driver does not implement any ioctl functions. The driver
is responsible for converting the message block into an ioctl reply message and
calling the qreply(9F) function before returning GLD_SUCCESS. This function should
always return GLD_SUCCESS. The driver should report any errors as needed in a
message to be passed to qreply(9F). If the gldm_ioctl element is specified as NULL,
GLD returns a message of type M_IOCNAK with an error of EINVAL.

GLD Return Values
Some entry point functions in GLD can return the following values, subject to the
restrictions above:

GLD_BADARG If the function detected an unsuitable argument, for example, a bad
multicast address, a bad MAC address, or a bad packet

GLD_FAILURE On hardware failure

GLD_SUCCESS On success

GLD Service Routines
This section provides the syntax and description for the GLD service routines.

gld_mac_alloc() Function
gld_mac_info_t *gld_mac_alloc(dev_info_t *dip);

gld_mac_alloc() allocates a new gld_mac_info(9S) structure and returns a
pointer to the structure. Some of the GLD-private elements of the structure might be
initialized before gld_mac_alloc() returns. All other elements are initialized to
zero. The device driver must initialize some structure members, as described in the
gld_mac_info(9S) man page, before passing the pointer to the gld_mac_info
structure to gld_register().

gld_mac_free() Function
void gld_mac_free(gld_mac_info_t *macinfo);

376 Writing Device Drivers • January 2005

gld_mac_free() frees a gld_mac_info(9S) structure previously allocated by
gld_mac_alloc().

gld_register() Function
int gld_register(dev_info_t *dip, char *name, gld_mac_info_t *macinfo);

gld_register() is called from the device driver’s attach(9E) routine.
gld_register() links the GLD-based device driver with the GLD framework.
Before calling gld_register(), the device driver’s attach(9E) routine uses
gld_mac_alloc() to allocate a gld_mac_info(9S) structure, and then initializes
several structure elements. See gld_mac_info(9S) for more information. A successful
call to gld_register() performs the following actions:

� Links the device-specific driver with the GLD system

� Sets the device-specific driver’s private data pointer, using
ddi_set_driver_private(9F) to point to the macinfo structure

� Creates the minor device node

� Returns DDI_SUCCESS

The device interface name passed to gld_register() must exactly match the name
of the driver module as that name exists in the file system.

The driver’s attach(9E) routine should return DDI_SUCCESS if gld_register()
succeeds. If gld_register() does not return DDI_SUCCESS, the attach(9E)
routine should deallocate any allocated resources before calling gld_register(),
and then return DDI_FAILURE.

gld_unregister() Function
int gld_unregister(gld_mac_info_t *macinfo);

gld_unregister() is called by the device driver’s detach(9E) function, and if
successful, performs the following tasks:

� Ensures that the device’s interrupts are stopped, calling the driver’s gldm_stop()
routine if necessary

� Removes the minor device node

� Unlinks the device-specific driver from the GLD system

� Returns DDI_SUCCESS

Chapter 18 • Drivers for Network Devices 377

If gld_unregister() returns DDI_SUCCESS, the detach(9E) routine should
deallocate any data structures allocated in the attach(9E) routine, using
gld_mac_free() to deallocate the macinfo structure, and return DDI_SUCCESS. If
gld_unregister() does not return DDI_SUCCESS, the driver’s detach(9E) routine
must leave the device operational and return DDI_FAILURE.

gld_recv() Function
void gld_recv(gld_mac_info_t *macinfo, mblk_t *mp);

gld_recv() is called by the driver’s interrupt handler to pass a received packet
upstream. The driver must construct and pass a STREAMS M_DATA message
containing the raw packet. gld_recv() determines which STREAMS queues should
receive a copy of the packet, duplicating the packet if necessary. gld_recv() then
formats a DL_UNITDATA_IND message, if required, and passes the data up all
appropriate streams.

The driver should avoid holding mutex or other locks during the call to gld_recv().
In particular, locks that could be taken by a transmit thread must not be held during a
call to gld_recv(). The interrupt thread that calls gld_recv() in some cases carries
out processing that includes sending an outgoing packet. Transmission of the packet
results in a call to the driver’s gldm_send() routine. If gldm_send() tries to acquire
a mutex that is held by gldm_intr() when gld_recv() is called, a panic occurs
due to a recursive mutex entry. If other driver entry points attempt to acquire a mutex
that the driver holds across a call to gld_recv(), deadlock can result.

gld_sched() Function
void gld_sched(gld_mac_info_t *macinfo);

gld_sched() is called by the device driver to reschedule stalled outbound packets.
Whenever the driver’s gldm_send() routine returns GLD_NORESOURCES, the driver
must call gld_sched() to inform the GLD framework to retry previously unsendable
packets. gld_sched() should be called as soon as possible after resources become
available so that GLD resumes passing outbound packets to the driver’s
gldm_send() routine. (If the driver’s gldm_stop() routine is called, the driver need
not retry until GLD_NORESOURCES is returned from gldm_send(). However, extra
calls to gld_sched() do not cause incorrect operation.)

gld_intr() Function
uint_t gld_intr(caddr_t);

378 Writing Device Drivers • January 2005

gld_intr() is GLD’s main interrupt handler. Normally, gld_intr() is specified as
the interrupt routine in the device driver’s call to ddi_add_intr(9F). The argument
to the interrupt handler is specified as int_handler_arg in the call to
ddi_add_intr(9F). This argument must be a pointer to the gld_mac_info(9S)
structure. gld_intr(), when appropriate, calls the device driver’s gldm_intr()
function, passing that pointer to the gld_mac_info(9S) structure. However, to use a
high-level interrupt, the driver must provide its own high-level interrupt handler and
trigger a soft interrupt from within the handler. In this case, gld_intr() would
normally be specified as the soft interrupt handler in the call to ddi_add_softintr
(). gld_intr() returns a value that is appropriate for an interrupt handler.

Chapter 18 • Drivers for Network Devices 379

380 Writing Device Drivers • January 2005

CHAPTER 19

USB Drivers

This chapter describes how to write a client USB device driver using the USBA 2.0
framework for the Solaris environment. This chapter discusses the following topics:

� “USB in the Solaris Environment” on page 381
� “Binding Client Drivers” on page 384
� “Basic Device Access” on page 387
� “Device Communication” on page 391
� “Device State Management” on page 401
� “Utility Functions” on page 409
� “Sample USB Device Driver” on page 412

USB in the Solaris Environment
The Solaris USB architecture includes the USBA 2.0 framework and USB client drivers.

USBA 2.0 Framework
The USBA 2.0 framework is a service layer that presents an abstract view of USB
devices to USBA-compliant client drivers. The framework enables USBA-compliant
client drivers to manage their USB devices. The USBA 2.0 framework supports the
USB 2.0 specification except for high speed isochronous pipes. For information on the
USB 2.0 specification, see http://www.usb.org/.

The USBA 2.0 framework is platform-independent. The Solaris USB architecture is
shown in the following figure. The USBA 2.0 framework is the USBA layer in the
figure. This layer interfaces through a hardware-independent host controller driver
interface to hardware-specific host controller drivers. The host controller drivers access
the physical devices through the host controllers they manage.

381

http://www.usb.org/

Host Controller

Peripheral PeripheralPeripheral

USBAI HUBDI

HCDI

Host Controller Driver
(HCD)

Client Driver Hub Driver (HUBD)

USBA

USBAI: Solaris USB Architecture Interfaces,
 Interfaces between USBA and client drivers

HUBDI: Hub Driver Interfaces

HCDI: Host Controller Driver Interfaces

Transport Layer

FIGURE 19–1 Solaris USB Architecture

USB Client Drivers
The USBA 2.0 framework is not a device driver itself. This chapter describes the client
drivers shown in Figure 19–1 and Figure 19–2.

The USBA 2.0 framework supplements the standard Solaris DDI routines. USB drivers
have the same structure as any other Solaris driver. USB drivers can be block drivers,
character drivers, or STREAMS drivers. USB drivers follow the calling conventions
and use the data structures and routines described in the Solaris 9F, 9S, and 9E man
page sections.

The difference between USB drivers and other Solaris drivers is that USB drivers call
USBA 2.0 framework functions to access the device instead of directly accessing the
device. See the following figure.

382 Writing Device Drivers • January 2005

Client Driver Client Driver

Standard Solaris
DDI functions such as

ddi_get_soft_state(9F)

OHCI
Host Controller

Hardware

EHCI
Host Controller

Hardware

UHCI
Host Controller

Hardware

USB 1.1 USB 2.0 USB 1.1

USB Device USB Device USB Device

OHCI EHCI UHCI

USBAI
USBA functions such as
usb_pipe_open(9F)

Solaris OS Kernel

FIGURE 19–2 Driver and Controller Interfaces

Figure 19–2 shows interfaces in more detail than Figure 19–1 does. Figure 19–2 shows
that the USBA is a kernel subsystem into which a client driver can call, just as a client
driver can call DDI functions.

Not all systems have all of the host controller interfaces shown in the USB portion of
Figure 19–2. OHCI (Open Host Controller Interface) hardware is most prevalent on
SPARC systems and third-party USB PCI cards. UHCI (Universal Host Controller
Interface) hardware is most prevalent on x86 systems. However, both OHCI and UHCI
hardware can be used on any system. When EHCI (Enhanced Host Controller
Interface) hardware is present, the EHCI hardware is on the same card and shares the
same ports with either OHCI or UHCI.

The host controllers, host controller drivers, and HCDI make up a transport layer that
is commanded by the USBA. You cannot directly call into the OHCI, EHCI, or UHCI.
You call into them indirectly through the platform-independent USBA interface.

Chapter 19 • USB Drivers 383

Binding Client Drivers
This section discusses binding a driver to a device. This section discusses compatible
device names for devices with single interfaces and devices with multiple interfaces.

How USB Devices Appear to the System
A USB device can support multiple configurations. Only one configuration is active at
any given time. The active configuration is called the current configuration.

A configuration can have more than one interface. All interfaces of a configuration are
active simultaneously. Different interfaces might be operated by different device
drivers.

An interface can represent itself to the host system in different ways by using alternate
settings. Only one alternate setting is active for any given interface.

Each alternate setting provides device access through endpoints. Each endpoint has a
specific purpose. The host system communicates with the device by establishing a
communication channel to an endpoint. This communication channel is called a pipe.

USB Devices and the Solaris Device Tree
If a USB device has one configuration, one interface, and device class zero, the device
is represented as a single device node. If a USB device has multiple interfaces, the
device is represented as a hierarchical device structure. In a hierarchical device
structure, the device node for each interface is a child of the top-level device node. An
example of a device with multiple interfaces is an audio device that presents
simultaneously to the host computer both an audio control interface and an audio
streaming interface. The audio control interface and the audio streaming interface each
could be controlled by its own driver.

Compatible Device Names
The Solaris software builds an ordered list of compatible device names for USB
binding based on identification information kept within each device. This information
includes device class, subclass, vendor ID, product ID, revision, and protocol. See
http://www.usb.org/ for a list of USB classes and subclasses.

This name hierarchy enables binding to a general driver if a more device-specific
driver is not available. An example of a general driver is a class-specific driver. Device
names that begin with usbif designate single interface devices. See Example 19–1 for
examples. The USBA 2.0 framework defines all compatible names for a device. Use the
prtconf command to display these device names, as shown in Example 19–2.

384 Writing Device Drivers • January 2005

http://www.usb.org/

The following example shows an example of compatible device names for a USB
mouse device. This mouse device represents a combined node entirely operated by a
single driver. The USBA 2.0 framework gives this device node the names shown in the
example, in the order shown.

EXAMPLE 19–1 USB Mouse Compatible Device Names

1. ’usb430,100.102’ Vendor 430, product 100, revision 102
2. ’usb430,100’ Vendor 430, product 100
3. ’usbif430,class3.1.2’ Vendor 430, class 3, subclass 1, protocol 2
4. ’usbif430,class3.1’ Vendor 430, class 3, subclass 1
5. ’usbif430,class3’ Vendor 430, class 3
6. ’usbif,class3.1.2’ Class 3, subclass 1, protocol 2
7. ’usbif,class3.1’ Class 3, subclass 1
8. ’usbif,class3’ Class 3

Note that the names in the above example progress from the most specific to the most
general. Entry 1 binds only to a particular revision of a specific product from a
particular vendor. Entries 3, 4, and 5 are for class 3 devices manufactured by vendor
430. Entries 6, 7, and 8 are for class 3 devices from any vendor. The binding process
looks for a match on the name from the top name down. To bind, drivers must be
added to the system with an alias that matches one of these names. To get a list of
compatible device names to which to bind when you add your driver, check the
compatible property of the device in the output from the prtconf -vp command.

The following example shows compatible property lists for a keyboard and a mouse.
Use the prtconf -D command to display the bound driver.

EXAMPLE 19–2 Compatible Device Names Shown by the Print Configuration Command

prtconf -vp | grep compatible
compatible: ’usb430,5.200’ + ’usb430,5’ + ’usbif430,class3.1.1’

+ ’usbif430,class3.1’ + ’usbif430,class3’ + ’usbif,class3.1.1’ +
’usbif,class3.1’ + ’usbif,class3’

compatible: ’usb2222,2071.200’ + ’usb2222,2071’ +
’usbif2222,class3.1.2’ + ’usbif2222,class3.1’ + ’usbif2222,class3’ +
’usbif,class3.1.2’ + ’usbif,class3.1’ + ’usbif,class3’

Use the most specific name you can to more accurately identify a driver for a device or
group of devices. To bind drivers written for a specific revision of a specific product,
use the most specific name match possible. For example, if you have a USB mouse
driver written by vendor 430 for revision 102 of their product 100, use the following
command to add that driver to the system:

add_drv -n -i ’"usb430,100.102"’ specific_mouse_driver

To add a driver written for any USB mouse (class 3, subclass 1, protocol 2) from
vendor 430, use the following command:

add_drv -n -i ’"usbif430,class3.1.2"’ more_generic_mouse_driver

If you install both of these drivers and then connect a compatible device, the system
binds the correct driver to the connected device. For example, if you install both of
these drivers and then connect a vendor 430, model 100, revision 102 device, this

Chapter 19 • USB Drivers 385

device is bound to specific_mouse_driver. If you connect a vendor 430, model 98
device, this device is bound to more_generic_mouse_driver. If you connect a
mouse from another vendor, this device also is bound to
more_generic_mouse_driver. Even if multiple devices are connected
simultaneously, the system binds the correct driver to each device. The system looks
through the entire list of compatible device names until it finds a matching driver.

Devices With Multiple Interfaces
Composite devices are devices that support multiple interfaces. Composite devices have
compatible device name entries similar to the names shown in the previous section.
The most general multiple interface entry is usb,device.

For a USB audio composite device, the compatible names are as follows:

1. ’usb471,101.100’ Vendor 471, product 101, revision 100
2. ’usb471,101’ Vendor 471, product 101

3. ’usb,device’ Generic USB device

The name usb,device is a compatible name that represents any whole USB device.
The usb_mid(7D) driver (USB multiple-interface driver) binds to the usb,device
device node if no other drivers have claimed the whole device. The usb_mid driver
creates a child device node for each interface of the physical device. The usb_mid
driver also generates a set of compatible names for each interface. Each of these
generated compatible names begins with usbif. The system then uses these
generated compatible names to find the best driver for each interface. In this way,
different interfaces of one physical device can be bound to different drivers.

For example, the usb_mid driver binds to a multiple-interface audio device through
the usb,device node name of that audio device. The usb_mid driver then creates
interface-specific device nodes. Each of these interface-specific device nodes has its
own compatible name list. For an audio control interface node, the compatible name
list might look like the list shown in the following example.

EXAMPLE 19–3 USB Audio Compatible Device Names

1. ’usbif471,101.100.config1.0’ Vend 471, prod 101, rev 100, cnfg 1, iface 0
2. ’usbif471,101.config1.0’ Vend 471, product 101, config 1, interface 0
3. ’usbif471,class1.1.0’ Vend 471, class 1, subclass 1, protocol 0
4. ’usbif471,class1.1’ Vend 471, class 1, subclass 1
5. ’usbif471,class1’ Vend 471, class 1
6. ’usbif,class1.1.0’ Class 1, subclass 1, protocol 0
7. ’usbif,class1.1’ Class 1, subclass 1

8. ’usbif,class1’ Class 1

Use the following command to bind a vendor-specific, device-specific client driver
named vendor_model_audio_usb to the vendor-specific, device-specific
configuration 1, interface 0 interface compatible name shown in Example 19–3.

386 Writing Device Drivers • January 2005

add_drv -n -i ’"usbif471,101.config1.0"’ vendor_model_audio_usb

Use the following command to bind a class driver named
audio_class_usb_if_driver to the more general class 1, subclass 1 interface
compatible name shown in Example 19–3:

add_drv -n -i ’"usbif,class1.1"’ audio_class_usb_if_driver

Use the prtconf -D command to show a list of devices and their drivers. In the
following example, the prtconf -D command shows that the usb_mid driver
manages the audio device. The usb_mid driver is splitting the audio device into
interfaces. Each interface is indented under the audio device name. For each interface
shown in the indented list, the prtconf -D command shows which driver manages
the interface.

audio, instance #0 (driver name: usb_mid)
sound-control, instance #2 (driver name: usb_ac)
sound, instance #2 (driver name: usb_as)

input, instance #8 (driver name: hid)

Checking Device Driver Bindings
The file /etc/driver_aliases contains entries for the bindings that already exist
on a system. Each line of the /etc/driver_aliases file shows a driver name,
followed by a space, followed by a device name. Use this file to check existing device
driver bindings.

Note – Do not edit the /etc/driver_aliases file manually. Use the add_drv(1M)
command to establish a binding. Use the update_drv(1M) command to change a
binding.

Basic Device Access
This section describes how to access a USB client driver and how to register a driver.
This section also discusses the descriptor tree.

Before the Client Driver Is Attached
The following events take place before the client driver is attached:

1. The PROM (OBP/BIOS) and USBA framework gain access to the device before any
client driver is attached.

Chapter 19 • USB Drivers 387

2. The hub driver probes devices on each of its hub’s ports for identity and
configuration.

3. The default control pipe to each device is opened, and each device is probed for its
device descriptor.

4. Compatible names properties are constructed for each device, using the device and
interface descriptors.

The compatible names properties define different parts of the device that can be
individually bound to client drivers. These different parts of the device might overlap.
Client drivers can bind either to the entire device or to just one interface. See “Binding
Client Drivers” on page 384.

The Descriptor Tree
Parsing descriptors involves aligning structure members at natural boundaries and
converting the structure members to the endianness of the host CPU. Parsed standard
USB configuration descriptors, interface descriptors, and endpoint descriptors are
available to the client driver in the form of a hierarchical tree for each configuration.
Any raw class-specific or vendor-specific descriptor information also is available to the
client driver in the same hierarchical tree.

Call the usb_get_dev_data(9F) function to retrieve the hierarchical descriptor tree.
The “SEE ALSO” section of the usb_get_dev_data(9F) man page lists the man
pages for each standard USB descriptor. Use the usb_parse_data(9F) function to
parse raw descriptor information.

A descriptor tree for a device with two configurations might look like the tree shown
in the following figure.

388 Writing Device Drivers • January 2005

cfg_if[0]
cfg_if[1]

if_alt[0]
if_alt[1]

if_alt[0]
if_alt[1]

cfg_if[0]
cfg_if[1]

dev_cfg[0]
dev_cfg[1]

altif_ep[0]
altif_ep[1]
altif_cvs[0]

altif_ep[0]
altif_cvs[0]

if_alt[0]

ep_cvs[0]

altif_ep[0]

if_alt[0]

altif_ep[0]
altif_cvs[0]

FIGURE 19–3 A Hierarchical USB Descriptor Tree

The dev_cfg array shown in the above figure contains nodes that correspond to
configurations. Each node contains the following information:

� A parsed configuration descriptor

� A pointer to an array of descriptors that correspond to the interfaces of that
configuration

� A pointer to an array of class-specific or vendor-specific raw data, if any exists

The node that represents the second interface of the second indexed configuration is at
dev_cfg[1].cfg_if[1] in the diagram. That node contains an array of nodes that
represent the alternate settings for that interface. The hierarchy of USB descriptors
propagates through the tree. ASCII strings from string descriptor data are attached
where the USB specification says these strings exist.

The array of configurations is non-sparse and is indexed by the configuration index.
The first valid configuration (configuration 1) is dev_cfg[0]. Interfaces and alternate
settings have indices that align with their numbers. Endpoints of each alternate setting
are indexed consecutively. The first endpoint of each alternate setting is at index 0.

This numbering scheme makes the tree easy to traverse. For example, the raw
descriptor data of endpoint index 0, alternate 0, interface 1, configuration index 1 is at
the node defined by the following path:

dev_cfg[1].cfg_if[1].if_alt[0].altif_ep[0].ep_descr

Chapter 19 • USB Drivers 389

An alternative to using the descriptor tree directly is using the
usb_lookup_ep_data(9F) function. The usb_lookup_ep_data(9F) function takes
as arguments the interface, alternate, which endpoint, endpoint type, and direction.
You can use the usb_lookup_ep_data(9F) function to traverse the descriptor tree to
get a particular endpoint. See the usb_get_dev_data(9F) man page for more
information.

Registering Drivers to Gain Device Access
Two of the first calls into the USBA 2.0 framework by a client driver are calls to the
usb_client_attach(9F) function and the usb_get_dev_data(9F) function. These
two calls come from the client driver’s attach(9E) entry point. You must call the
usb_client_attach(9F) function before you call the usb_get_dev_data(9F)
function.

The usb_client_attach(9F) function registers a client driver with the USBA 2.0
framework. The usb_client_attach(9F) function enforces versioning. All client
driver source files must start with the following lines:

#define USBDRV_MAJOR_VER 2
#define USBDRV_MINOR_VER minor-version
#include <sys/usb/usba.h>

The value of minor-version must be less than or equal to USBA_MINOR_VER. The
symbol USBA_MINOR_VER is defined in the <sys/usb/usbai.h> header file. The
<sys/usb/usbai.h> header file is included by the <sys/usb/usba.h> header file.

USBDRV_VERSION is a macro that generates the version number from
USBDRV_MAJOR_VERSION and USBDRV_MINOR_VERSION. The second argument to
usb_client_attach() must be USBDRV_VERSION. The usb_client_attach()
function fails if the second argument is not USBDRV_VERSION or if USBDRV_VERSION
reflects an invalid version. This restriction ensures programming interface
compatibility.

The usb_get_dev_data() function returns information that is required for proper
USB device management. For example, the usb_get_dev_data() function returns
the following information:

� The default control pipe
� The iblock_cookie to use in mutex initializations (see mutex_init(9F))
� The parsed device descriptor
� ID strings
� The tree hierarchy as described in “The Descriptor Tree” on page 388

The call to the usb_get_dev_data() function is mandatory. Calling
usb_get_dev_data() is the only way to retrieve the default control pipe and
retrieve the iblock_cookie required for mutex initialization.

390 Writing Device Drivers • January 2005

After calling usb_get_dev_data(), the client driver’s attach(9E) routine typically
copies the desired descriptors and data from the descriptor tree to the driver’s soft
state. Endpoint descriptors copied to the soft state are used later to open pipes to those
endpoints. The attach(9E) routine usually calls usb_free_descr_tree(9F) to free
the descriptor tree after copying descriptors. Alternatively, you might choose to keep
the descriptor tree and not copy the descriptors.

Specify one of the following three parse levels to the usb_get_dev_data(9F)
function to request the breadth of the descriptor tree you want returned. You need
greater tree breadth if your driver needs to bind to more of the device.

� USB_PARSE_LVL_IF. If your client driver binds to a specific interface, the driver
needs the descriptors for only that interface. Specify USB_PARSE_LVL_IF for the
parse level in the usb_get_dev_data() call to retrieve only those descriptors.

� USB_PARSE_LVL_CFG. If your client driver binds to the whole device, specify
USB_PARSE_LVL_CFG to retrieve all descriptors of the current configuration.

� USB_PARSE_LVL_ALL. Specify USB_PARSE_LVL_ALL to retrieve all descriptors of
all configurations. For example, you need this greatest tree breadth to use
usb_print_descr_tree(9F) to print a descriptor dump of all configurations of a
device.

The client driver’s detach(9E) routine must call the usb_free_dev_data(9F)
function to release all resources allocated by theusb_get_dev_data() function. The
usb_free_dev_data() function accepts handles where the descriptor tree has
already been freed with the usb_free_descr_tree() function. The client driver’s
detach() routine also must call the usb_client_detach(9F) function to release all
resources allocated by the usb_client_attach(9F) function.

Device Communication
USB devices operate by passing requests through communication channels called
pipes. Pipes must be open before you can submit requests. Pipes also can be flushed,
queried, and closed. This section discusses pipes, data transfers and callbacks, and
data requests.

USB Endpoints
The four kinds of pipes that communicate with the four kinds of USB endpoints are:

� Control. Control pipes are used primarily to send commands and retrieve status.
Control pipes are intended for non-periodic, host-initiated request and response
communication of small-sized structured data. Control pipes are bidirectional. The
default pipe is a control pipe. See “The Default Pipe” on page 392.

Chapter 19 • USB Drivers 391

� Bulk. Bulk pipes are used primarily for data transfer. Bulk pipes offer reliable
transportation of large amounts of data. Bulk pipes do not necessarily deliver the
data in a timely manner. Bulk pipes are unidirectional.

� Interrupt. Interrupt pipes offer timely, reliable communication of small amounts of
unstructured data. Periodic polling often is started on interrupt-IN pipes.
Interrupt-IN pipes return data to the host when the data becomes present on the
device. Some devices have interrupt-OUT pipes. Interrupt-OUT pipes transfer data
to the device with the same timely, reliable “interrupt pipe” characteristics of
interrupt-IN pipes. Interrupt pipes are unidirectional.

� Isochronous. Isochronous pipes offer a channel for transferring constant-rate,
time-relevant data, such as for audio devices. Data is not retried on error.
Isochronous pipes are unidirectional.

See Chapter 5 of the USB 2.0 specification or see “Requests” on page 395 for more
information on the transfer types that correspond to these endpoints.

The Default Pipe
Each USB device has a special control endpoint called the default endpoint. Its
communication channel is called the default pipe. Most, if not all, device setup is done
through this pipe. Many USB devices have this pipe as their only control pipe.

The usb_get_dev_data(9F) function provides the default control pipe to the client
driver. This pipe is pre-opened to accommodate any special setup needed before
opening other pipes. This default control pipe is special in the following ways:

� This pipe is shared. Drivers that are operating other interfaces of the same device
use the same default control pipe. The USBA 2.0 framework arbitrates this pipe
among the different drivers.

� This pipe cannot be opened, closed, or reset by the client driver. This restriction
exists because the pipe is shared.

� The pipe is autocleared on an exception.

Other pipes, including other control pipes, must be opened explicitly and are
exclusive-open only.

392 Writing Device Drivers • January 2005

Pipe States
Pipes are in one of the following states:

� USB_PIPE_STATE_IDLE

� All control and bulk pipes, interrupt-OUT pipes, and isochronous-OUT pipes:
No request is in progress.

� Interrupt-IN and isochronous-IN pipes: No polling is in progress.

� USB_PIPE_STATE_ACTIVE

� All control and bulk pipes, interrupt-OUT pipes, and isochronous-OUT pipes:
The pipe is transferring data or an I/O request is active.

� Interrupt-IN and isochronous-IN pipes: Polling is active.

� USB_PIPE_STATE_ERROR. An error occurred. If this pipe is not the default pipe
and if autoclearing is not enabled, then the client driver must call the
usb_pipe_reset(9F) function.

� USB_PIPE_STATE_CLOSING. The pipe is being closed.

� USB_PIPE_STATE_CLOSED. The pipe is closed.

Call the usb_pipe_get_state(9F) function to retrieve the state of a pipe.

Opening Pipes
To open a pipe, pass to the usb_pipe_open(9F) function the endpoint descriptor that
corresponds to the pipe you want to open. Use the usb_get_dev_data(9F) and
usb_lookup_ep_data(9F) functions to retrieve the endpoint descriptor from the
descriptor tree. The usb_pipe_open(9F) function returns a handle to the pipe.

You must specify a pipe policy when you open a pipe. The pipe policy contains an
estimate of the number of concurrent asynchronous operations that require separate
threads that will be needed for this pipe. An estimate of the number of threads is the
number of parallel operations that could occur during a callback. The value of this
estimate must be at least 2. See the usb_pipe_open(9F) man page for more
information on pipe policy.

Closing Pipes
The driver must use the usb_pipe_close(9F) function to close pipes other than the
default pipe. The usb_pipe_close(9F) function enables all remaining requests in the
pipe to complete. The function then allows one second for all callbacks of those
requests to complete.

Chapter 19 • USB Drivers 393

Data Transfer
For all pipe types, the programming model is as follows:

1. Allocate a request.

2. Submit the request using one of the pipe transfer functions. See the
usb_pipe_bulk_xfer(9F), usb_pipe_ctrl_xfer(9F),
usb_pipe_intr_xfer(9F), and usb_pipe_isoc_xfer(9F) man pages.

3. Wait for completion notification.

4. Free the request.

See “Requests” on page 395 for more information on requests. The following sections
describe the features of different request types.

Synchronous and Asynchronous Transfers and Callbacks
Transfers are either synchronous or asynchronous. Synchronous transfers block until
they complete. Asynchronous transfers callback into the client driver when they
complete. Most transfer functions called with the USB_FLAGS_SLEEP flag set in the
flags argument are synchronous.

Continuous transfers such as polling and isochronous transfers cannot be
synchronous. Calls to transfer functions for continuous transfers made with the
USB_FLAGS_SLEEP flag set block only to wait for resources before the transfer begins.

Synchronous transfers are the most simple transfers to set up because synchronous
transfers do not require any callback functions. Synchronous transfers also are the
most limited. Synchronous transfer functions return a transfer start status, even
though synchronous transfer functions block until the transfer is completed. Upon
completion, you can find additional information about the transfer status in the
completion reason field and callback flags field of the request. Completion reasons and
callback flags fields are discussed below.

When you call a transfer function with the USB_FLAGS_SLEEP flag clear in the flags
argument, that transfer operation is asynchronous. Asynchronous transfer operations
set up and start the transfer, and then return before the transfer is complete.
Asynchronous transfer operations return a transfer start status. The client driver
receives transfer completion status through callback handlers.

Callback handlers are functions that are called when asynchronous transfers complete.
Do not set up an asynchronous transfer without callbacks. The two types of callback
handlers are:

� Normal completion. A normal completion callback handler is called to notify of a
normally completed transfer.

� Exception. An exception callback handler is called to notify of an abnormally
completed transfer and to process its errors.

394 Writing Device Drivers • January 2005

Both completion handlers and exception handlers receive the transfer’s request as an
argument. Exception handlers use the completion reason and callback status in the
request to find out what happened. The completion reason (usb_cr_t) indicates how
the original transaction completed. For example, a completion reason of
USB_CR_TIMEOUT indicates that the transfer timed out. As another example, if a USB
device is removed while in use, client drivers might receive USB_CR_DEV_NOT_RESP
as the completion reason on their outstanding requests. The callback status
(usb_cb_flags_t) indicates what the USBA framework did to remedy the situation.
For example, a callback status of USB_CB_STALL_CLEARED indicates that the USBA
framework cleared a functional stall condition. See the
usb_completion_reason(9S) man page for more information on completion
reasons. See the usb_callback_flags(9S) man page for more information on
callback status flags.

The context of the callback and the policy of the pipe on which the requests are run
limit what you can do in the callback.

� Callback context. Most callbacks execute in kernel context and usually can block.
Some callbacks execute in interrupt context and cannot block. The
USB_CB_INTR_CONTEXT flag is set in the callback flags to denote interrupt
context. See the usb_callback_flags(9S) man page for more information on
callback context and details on blocking.

� Pipe policy. The pipe policy’s hint on concurrent asynchronous operations limits
the number of operations that can be run in parallel, including those executed from
a callback handler. Blocking on a synchronous operation counts as one operation.
See the usb_pipe_open(9F) man page for more information on pipe policy.

Requests
This section discusses request structures and allocating and deallocating different
types of requests.

Request Allocation and Deallocation

Requests are implemented as initialized request structures. Each different endpoint
type takes a different type of request. Each type of request has a different request
structure type. The following table shows the structure type for each type of request.
This table also lists the functions to use to allocate and free each type of structure.

Chapter 19 • USB Drivers 395

TABLE 19–1 Request Initialization

Pipe or Endpoint
Type Request Structure

Request Structure Allocation
Function Request Structure Free Function

Control usb_ctrl_req_t (see the
usb_ctrl_request(9S)
man page)

usb_alloc_ctrl_req(9F) usb_free_ctrl_req(9F)

Bulk usb_bulk_req_t (see the
usb_bulk_request(9S)
man page)

usb_alloc_bulk_req(9F) usb_free_bulk_req(9F)

Interrupt usb_intr_req_t (see the
usb_intr_request(9S)
man page)

usb_alloc_intr_req(9F) usb_free_intr_req(9F)

Isochronous usb_isoc_req_t (see the
usb_isoc_request(9S)
man page)

usb_alloc_isoc_req(9F) usb_free_isoc_req(9F)

The following table lists the transfer functions that you can use for each type of
request.

TABLE 19–2 Request Transfer Setup

Pipe or Endpoint Type Transfer Functions

Control usb_pipe_ctrl_xfer(9F), usb_pipe_ctrl_xfer_wait(9F)

Bulk usb_pipe_bulk_xfer(9F)

Interrupt usb_pipe_intr_xfer(9F), usb_pipe_stop_intr_polling(9F)

Isochronous usb_pipe_isoc_xfer(9F), usb_pipe_stop_isoc_polling(9F)

Use the following procedure to allocate and deallocate a request:

1. Use the appropriate allocation function to allocate a request structure for the type
of request you need. The man pages for the request structure allocation functions
are listed in Table 19–1.

2. Initialize any fields you need in the structure. See “Request Features and Fields”
on page 397 or the appropriate request structure man page for more information.
The man pages for the request structures are listed in Table 19–1.

3. When the data transfer is complete, use the appropriate free function to free the
request structure. The man pages for the request structure free functions are listed
in Table 19–1.

396 Writing Device Drivers • January 2005

Request Features and Fields

Data for all requests is passed in message blocks so that the data is handled uniformly
whether the driver is a STREAMS, character, or block driver. The message block type,
mblk_t, is described in the mblk(9S) man page. The Solaris software offers several
routines for manipulating message blocks. Examples include allocb(9F) and
freemsg(9F). To learn about other routines for manipulating message blocks, see the
“SEE ALSO” sections of the allocb(9F) and freemsg(9F) man pages. Also see the
STREAMS Programming Guide.

The following request fields are included in all transfer types. In each field name, the
possible values for xxxx are: ctrl, bulk, intr, or isoc.

xxxx_client_private This field value is a pointer that is intended for internal data
to be passed around the client driver along with the request.
This pointer is not used to transfer data to the device.

xxxx_attributes This field value is a set of transfer attributes. While this field
is common to all request structures, the initialization of this
field is somewhat different for each transfer type. See the
appropriate request structure man page for more
information. These man pages are listed in Table 19–1. See
also the usb_request_attributes(9S) man page.

xxxx_cb This field value is a callback function for normal transfer
completion. This function is called when an asynchronous
transfer completes without error.

xxxx_exc_cb This field value is a callback function for error handling.
This function is called only when asynchronous transfers
complete with errors.

xxxx_completion_reason This field holds the completion status of the transfer itself. If
an error occurred, this field shows what went wrong. See
the usb_completion_reason(9S) man page for more
information. This field is updated by the USBA 2.0
framework.

xxxx_cb_flags This field lists the recovery actions that were taken by the
USBA 2.0 framework before calling the callback handler. The
USB_CB_INTR_CONTEXT flag indicates whether a callback
is running in interrupt context. See the
usb_callback_flags(9S) man page for more
information. This field is updated by the USBA 2.0
framework.

The following sections describe the request fields that are different for the four
different transfer types. These sections describe how to initialize these structure fields.
These sections also describe the restrictions on various combinations of attributes and
parameters.

Chapter 19 • USB Drivers 397

Control Requests

Use control requests to initiate message transfers down a control pipe. You can set up
transfers manually, as described below. You can also set up and send synchronous
transfers using the usb_pipe_ctrl_xfer_wait(9F) wrapper function.

The client driver must initialize the ctrl_bmRequestType, ctrl_bRequest, ctrl_wValue,
ctrl_wIndex, and ctrl_wLength fields as described in the USB 2.0 specification.

The ctrl_data field of the request must be initialized to point to a data buffer. The
usb_alloc_ctrl_req(9F) function initializes this field when you pass a positive
value as the buffer len. The buffer must, of course, be initialized for any outbound
transfers. In all cases, the client driver must free the request when the transfer is
complete.

Multiple control requests can be queued. Queued requests can be a combination of
synchronous and asynchronous requests.

The ctrl_timeout field defines the maximum wait time for the request to be processed,
excluding wait time on the queue. This field applies to both synchronous and
asynchronous requests. The ctrl_timeout field is specified in seconds.

The ctrl_exc_cb field accepts the address of a function to call if an exception occurs. The
arguments of this exception handler are specified in the usb_ctrl_request(9S) man
page. The second argument of the exception handler is the usb_ctrl_req_t
structure. Passing the request structure as an argument allows the exception handler
to check the ctrl_completion_reason and ctrl_cb_flags fields of the request to determine
the best recovery action.

The USB_ATTRS_ONE_XFER and USB_ATTRS_ISOC_* flags are invalid attributes for
all control requests. The USB_ATTRS_SHORT_XFER_OK flag is valid only for
host-bound requests.

Bulk Requests

Use bulk requests to send data that is not time-critical. Bulk requests can take several
USB frames to complete, depending on overall bus load.

All requests must receive an initialized message block. See the mblk(9S) man page for
a description of the mblk_t message block type. This message block either supplies
the data or stores the data, depending on the transfer direction. Refer to the
usb_bulk_request(9S) man page for more details.

The USB_ATTRS_ONE_XFER and USB_ATTRS_ISOC_* flags are invalid attributes for
all bulk requests. The USB_ATTRS_SHORT_XFER_OK flag is valid only for host-bound
requests.

The usb_pipe_get_max_bulk_transfer_size(9F) function specifies the
maximum number of bytes per request. The value retrieved can be the maximum
value used in the client driver’s minphys(9F) routine.

398 Writing Device Drivers • January 2005

Multiple bulk requests can be queued.

Interrupt Requests

Interrupt requests typically are for periodic inbound data. Interrupt requests are used
to field device requests for service. However, the USBA 2.0 framework supports
one-time inbound interrupt data requests, as well as outbound interrupt data requests.
All interrupt requests can take advantage of the USB interrupt transfer features of
timeliness and retry.

The USB_ATTRS_ISOC_* flags are invalid attributes for all interrupt requests. The
USB_ATTRS_SHORT_XFER_OK and USB_ATTRS_ONE_XFER flags are valid only for
host-bound requests.

Only one-time polls can be done as synchronous interrupt transfers. Specifying the
USB_ATTRS_ONE_XFER attribute in the request results in a one-time poll.

Periodic polling is started as an asynchronous interrupt transfer. An original interrupt
request is passed to usb_pipe_intr_xfer(9F). When polling finds new data to
return, a new usb_intr_req_t structure is cloned from the original and is
populated with an initialized data block. When allocating the request, specify zero for
the len argument to the usb_alloc_intr_req(9F) function. The len argument is zero
because the USBA 2.0 framework allocates and fills in a new request with each
callback. After you allocate the request structure, fill in the intr_len field to specify the
number of bytes you want the framework to allocate with each poll. Data beyond
intr_len bytes is not returned.

The client driver must free each request it receives. If the message block is sent
upstream, decouple the message block from the request before you send the message
block upstream. To decouple the message block from the request, set the data pointer
of the request to NULL. Setting the data pointer of the request to NULL prevents the
message block from being freed when the request is deallocated.

Call the usb_pipe_stop_intr_polling(9F) function to cancel periodic polling.
When polling is stopped or the pipe is closed, the original request structure is returned
through an exception callback. This returned request structure has its completion
reason set to USB_CR_STOPPED_POLLING.

Do not start polling while polling is already in progress. Do not start polling while a
call to usb_pipe_stop_intr_polling(9F) is in progress.

Chapter 19 • USB Drivers 399

Isochronous Requests

Isochronous requests are for streaming, constant-rate, time-relevant data. Retries are
not made on errors. Isochronous requests have the following request-specific fields:

isoc_frame_no Specify this field when the overall transfer must start from a specific
frame number. The value of this field must be greater than the
current frame number. Use
usb_get_current_frame_number(9F) to find the current frame
number. Note that the current frame number is a moving target. For
low-speed and full-speed buses, the current frame is new each
millisecond. For high-speed buses, the current frame is new each
0.125 millisecond. Set the USB_ATTR_ISOC_START_FRAME attribute
so that the isoc_frame_no field is recognized.

To ignore this frame number field and start as soon as possible, set
the USB_ATTR_ISOC_XFER_ASAP flag.

isoc_pkts_count This field is the number of packets in the request. This value is
bounded by the value returned by the
usb_get_max_pkts_per_isoc_request(9F) function and by the
size of the isoc_pkt_descr array (see below). The number of bytes
transferable with this request is equal to the product of this
isoc_pkts_count value and the wMaxPacketSize value of the endpoint.

isoc_pkts_length This field is the sum of the lengths of all packets of the request. This
value is set by the initiator.

isoc_error_count This field is the number of packets that completed with errors. This
value is set by the USBA 2.0 framework.

isoc_pkt_descr This field points to an array of packet descriptors that define how
much data to transfer per packet. For an outgoing request, this value
defines a private queue of sub-requests to process. For an incoming
request, this value describes how the data arrived in pieces. The
client driver allocates these descriptors for outgoing requests. The
framework allocates and initializes these descriptors for incoming
requests. Descriptors in this array contain framework-initialized
fields that hold the number of bytes actually transferred and the
status of the transfer. See the usb_isoc_request(9S) man page for
more details.

All requests must receive an initialized message block. This message block either
supplies the data or stores the data. See the mblk(9S) man page for a description of the
mblk_t message block type.

The USB_ATTR_ONE_XFER flag is an illegal attribute because the system decides how
to vary the amounts of data through available packets. The
USB_ATTR_SHORT_XFER_OK flag is valid only on host-bound data.

400 Writing Device Drivers • January 2005

The usb_pipe_isoc_xfer(9F) function makes all isochronous transfers
asynchronous, regardless of whether the USB_FLAGS_SLEEP flag is set. All
isochronous input requests start polling.

Call the usb_pipe_stop_isoc_polling(9F) function to cancel periodic polling.
When polling is stopped or the pipe is closed, the original request structure is returned
through an exception callback. This returned request structure has its completion
reason set to USB_CR_STOPPED_POLLING.

Do not make a new isochronous input request while polling is already in progress. Do
not make a new isochronous input request while a call to
usb_pipe_stop_isoc_polling(9F) is in progress.

Flushing Pipes
You might need to clean up a pipe after errors, or you might want to wait for a pipe to
clear. Use one of the following methods to flush or clear pipes:

� The usb_pipe_reset(9F) function resets the pipe and flushes all of its requests.
Do this for pipes that are in an error state if autoclearing is not enabled on those
pipes. Use usb_pipe_get_state(9F) to determine the state of a pipe.

� The usb_pipe_drain_reqs(9F) function blocks waiting for all pending requests
to complete before continuing. This function can wait indefinitely, or it can timeout
after a specified period of time. The usb_pipe_drain_reqs(9F) function neither
closes nor flushes the pipe.

Device State Management
Managing a USB device includes accounting for hotplugging, system power
management (checkpoint and resume), and device power management. All client
drivers should implement the basic state machine shown in the following figure. For
more information, see /usr/include/sys/usb/usbai.h.

Chapter 19 • USB Drivers 401

PWRED_DWN ONLINE

SUSPENDED

DISCONNECTED

1 Device unplugged.

2 Original device reconnected.

3 Device idles for time T and transitions to low power state.

4 Remote wakeup by the device or by an application sending
 I/O to the device.

5 Notification to save state via DDI_SUSPEND.

6 Notification to restore state via DDI_RESUME with correct device.

7 Notification to restore state via DDI_RESUME with device
 disconnected or a wrong device.

3 4 2 1

6

5

5 5

7

FIGURE 19–4 USB Device State Machine

This state machine and its four states can be augmented with driver-specific states.
Device states 0x80 to 0xff can be defined and used only by client drivers.

Hotplugging USB Devices
USB devices support hotplugging. A USB device can be inserted or removed at any
time. The client driver must handle removal and reinsertion of an open device. Use
hotplug callbacks to handle open devices. Insertion and removal of closed devices is
handled by the attach(9E) and detach(9E) entry points.

Hotplug Callbacks
The USBA 2.0 framework supports the following event notifications:

� The client driver receives a callback when the device is hot removed.

� The client driver receives a callback when the device is returned after hot removal.
This event callback can occur when the user returns the device to its original port if
the driver instance of the device is not offlined. If the driver instance is held open,
then the driver instance cannot be offlined.

402 Writing Device Drivers • January 2005

Client drivers must call usb_register_hotplug_cbs(9F) in their attach(9E)
routine to register for event callbacks. Drivers must call
usb_unregister_hotplug_cbs(9F) in their detach(9E) routine before
dismantling.

Hot Insertion
The sequence of events for hot insertion of a USB device is as follows:

1. The hub driver, hubd(7D), waits for a port connect status change.

2. The hubd driver detects a port connect.

3. The hubd driver enumerates the device, creates child device nodes, and attaches
client drivers. Refer to “Binding Client Drivers” on page 384 for compatible names
definitions.

4. The client driver manages the device. The driver is in the ONLINE state.

Hot Removal
The sequence of events for hot removal of a USB device is as follows:

1. The hub driver, hubd(7D), waits for a port connect status change.

2. The hubd driver detects a port disconnect.

3. The hubd driver sends a disconnect event to the child client driver. If the child
client driver is the hubd driver or the usb_mid(7D) multi-interface driver, then the
child client driver propagates the event to its children.

4. The client driver receives the disconnect event notification in kernel thread context.
Kernel thread context enables the driver’s disconnect handler to block.

5. The client driver moves to the DISCONNECTED state. Outstanding I/O transfers fail
with the completion reason of device not responding. All new I/O transfers
and attempts to open the device node also fail. The client driver is not required to
close pipes. The driver is required to save the device and driver context that needs
to be restored if the device is reconnected.

6. The hubd driver attempts to offline the OS device node and its children in
bottom-up order.

The following events take place if the device node is not open when the hubd driver
attempts to offline the device node:

1. The client driver’s detach(9E) entry point is called.

2. The device node is destroyed.

3. The port becomes available for a new device.

4. The hotplug sequence of events starts over. The hubd driver waits for a port
connect status change.

Chapter 19 • USB Drivers 403

The following events take place if the device node is open when the hubd driver
attempts to offline the device node:

1. The hubd driver puts the offline request in the periodic offline retry queue.
2. The port remains unavailable for a new device.

If the device node was open when the hubd driver attempted to offline the device
node and the user later closes the device node, the hubd driver periodic offlining of
that device node succeeds and the following events take place:

1. The client driver’s detach(9E) entry point is called.

2. The device node is destroyed.

3. The port becomes available for a new device.

4. The hotplug sequence of events starts over. The hubd driver waits for a port
connect status change.

If the user closes all applications that use the device, the port becomes available again.
If the application does not terminate or does not close the device, the port remains
unavailable.

Hot Reinsertion
The following events take place if a previously-removed device is reinserted into the
same port while the device node of the device is still open:

1. The hub driver, hubd(7D), detects a port connect.

2. The hubd driver restores the bus address and the device configuration.

3. The hubd driver cancels the offline retry request.

4. The hubd driver sends a connect event to the client driver.

5. The client driver receives the connect event.

6. The client driver determines whether the new device is the same as the device that
was previously connected. The client driver makes this determination first by
comparing device descriptors. The client driver might also compare serial numbers
and configuration descriptor clouds.

The following events might take place if the client driver determines that the current
device is not the same as the device that was previously connected:

1. The client driver might issue a warning message to the console.

2. The user might remove the device again. If the user removes the device again, the
hot remove sequence of events starts over. The hubd driver detects a port
disconnect. If the user does not remove the device again, the following events take
place:

a. The client driver remains in the DISCONNECTED state, failing all requests and
opens.

b. The port remains unavailable. The user must close and disconnect the device to
free the port.

404 Writing Device Drivers • January 2005

c. The hotplug sequence of events starts over when the port is freed. The hubd
driver waits for a port connect status change.

The following events might take place if the client driver determines that the current
device is the same as the device that was previously connected:

1. The client driver might restore its state and continue normal operation. This policy
is up to the client driver. Audio speakers are a good example where the client
driver should continue.

2. If it is safe to continue using the reconnected device, the hotplug sequence of
events starts over. The hubd driver waits for a port connect status change. The
device is in service once again.

Power Management
This section discusses device power management and system power management.

Device power management manages individual USB devices depending on their I/O
activity or idleness.

System power management uses checkpoint and resume to checkpoint the state of the
system into a file and shut down the system completely. (Checkpoint is sometimes
called “system suspend.”) The system is resumed to its pre-suspend state when the
system is powered up again.

Device Power Management
The following summary lists what your driver needs to do to power manage a USB
device. A more detailed description of power management follows this summary.

1. Create power management components during attach(9E). See the
usb_create_pm_components(9F) man page.

2. Implement the power(9E) entry point.

3. Call pm_busy_component(9F) and pm_raise_power(9F) before accessing the
device.

4. Call pm_idle_component(9F) when finished accessing the device.

The USBA 2.0 framework supports four power levels as specified by the USB interface
power management specification. See /usr/include/sys/usb/usbai.h for
information on mapping USB power levels to operating system power levels.

The hubd driver suspends the port when the device goes to the
USB_DEV_OS_PWR_OFF state. The hubd driver resumes the port when the device goes
to the USB_DEV_OS_PWR_1 state and above. Note that port suspend is different from
system suspend. In port suspend, only the USB port is shut off. System suspend is
defined in “System Power Management” on page 408.

Chapter 19 • USB Drivers 405

The client driver might choose to enable remote wakeup on the device. See the
usb_handle_remote_wakeup(9F) man page. When the hubd driver sees a remote
wakeup on a port, the hubd driver completes the wakeup operation and calls
pm_raise_power(9F) to notify the child.

The following figure shows the relationship between the different pieces of power
management.

USB Power
Management

Remote
Wakeup

Bad
Device

No PM
Components PM

Components

Good
Device

No Remote
Wakeup

Driver
Policy

Driver
Policy

No PM
Components

The driver sets the PM state
to busy and raises power when
starting I/O activity. The driver
sets the PM state to idle
when I/O completes.

Examples: hid, hub, usb_mid,
scsa2usb

Active Scheme
The driver sets the PM state
to busy and raises power
in open(9E). The driver sets
the PM state to idle in
close(9E).

Examples: usb_audio,
usbprn (printer)

Passive Scheme

FIGURE 19–5 USB Power Management

The driver can implement one of the two power management schemes described at
the bottom of Figure 19–5. The passive scheme is simpler than the active scheme
because the passive scheme does not do power management during device transfers.

Active Power Management
This section describes the functions you need to use to implement the active power
management scheme.

Do the following work in the attach(9E) entry point for your driver:

1. Call usb_create_pm_components(9F).

406 Writing Device Drivers • January 2005

2. Optionally call usb_handle_remote_wakeup(9F) with
USB_REMOTE_WAKEUP_ENABLE as the second argument to enable a remote
wakeup on the device.

3. Call pm_busy_component(9F).

4. Call pm_raise_power(9F) to take power to the USB_DEV_OS_FULL_PWR level.

5. Communicate with the device to initialize the device.

6. Call pm_idle_component(9F).

Do the following work in the detach(9E) entry point for your driver:

1. Call pm_busy_component(9F).

2. Call pm_raise_power(9F) to take power to the USB_DEV_OS_FULL_PWR level.

3. If you called the usb_handle_remote_wakeup(9F) function in your attach(9E)
entry point, call usb_handle_remote_wakeup(9F) here with
USB_REMOTE_WAKEUP_DISABLE as the second argument.

4. Communicate with the device to cleanly shut down the device.

5. Call pm_lower_power(9F) to take power to the USB_DEV_OS_PWR_OFF level.

This is the only time a client driver calls pm_lower_power(9F).

6. Call pm_idle_component(9F).

When a driver thread wants to start I/O to the device, that thread does the following
tasks:

1. Call pm_busy_component(9F).
2. Call pm_raise_power(9F) to take power to the USB_DEV_OS_FULL_PWR level.
3. Begin the I/O transfer.

The driver calls pm_idle_component(9F) when the driver receives notice that an
I/O transfer has completed.

In the power(9E) entry point for your driver, check whether the power level to which
you are transitioning is valid. You might also need to account for different threads
calling into power(9E) at the same time.

The power(9E) routine might be called to take the device to the
USB_DEV_OS_PWR_OFF state if the device has been idle for some time or the system is
shutting down. This state corresponds to the PWRED_DWN state shown in Figure 19–4.
If the device is going to the USB_DEV_OS_PWR_OFF state, do the following work in
your power(9E) routine:

1. Put all open pipes into the idle state. For example, stop polling on the interrupt
pipe.

2. Save any device or driver context that needs to be saved.

The port to which the device is connected is suspended after the call to power(9E)
completes.

Chapter 19 • USB Drivers 407

The power(9E) routine might be called to power on the device when either a
device-initiated remote wakeup or a system-initiated wakeup is received. Wakeup
notices occur after the device has been powered down due to extended idle time or
system suspend. If the device is going to the USB_DEV_OS_PWR_1 state or above, do
the following work in your power(9E) routine:

1. Restore any needed device and driver context.

2. Restart activity on the pipe that is appropriate to the specified power level. For
example, start polling on the interrupt pipe.

If the port to which the device is connected was previously suspended, that port is
resumed before power(9E) is called.

Passive Power Management

The passive power management scheme is simpler than the active power management
scheme described above. In this passive scheme, no power management is done
during transfers. To implement this passive scheme, call pm_busy_component(9F)
and pm_raise_power(9F) when you open the device. Then call
pm_idle_component(9F) when you close the device.

System Power Management
System power management consists of turning off the entire system after saving its
state, and restoring the state after the system is turned back on. This process is called
CPR (checkpoint and resume). USB client drivers operate the same way that other
client drivers operate with respect to CPR. To suspend a device, the driver’s
detach(9E) entry point is called with a cmd argument of DDI_SUSPEND. To resume a
device, the driver’s attach(9E) entry point is called with a cmd argument of
DDI_RESUME. When you handle the DDI_SUSPEND command in your detach(9E)
routine, clean up device state and clean up driver state as much as necessary for a
clean resume later. (Note that this corresponds to the SUSPENDED state in Figure 19–4.)
When you handle the DDI_RESUME command in your attach(9E) routine, always
take the device to full power to put the system in sync with the device.

For USB devices, suspend and resume are handled similarly to a hotplug disconnect
and reconnect (see “Hotplugging USB Devices” on page 402). An important difference
between CPR and hotplugging is that with CPR the driver can fail the checkpoint
process if the device is not in a state from which it can be suspended. For example, the
device cannot be suspended if the device has an error recovery in progress. The device
also cannot be suspended if the device is busy and cannot be stopped safely.

Serialization
In general, a driver should not call USBA functions while the driver is holding a
mutex. Therefore, race conditions in a client driver can be difficult to prevent.

408 Writing Device Drivers • January 2005

Do not allow normal operational code to run simultaneously with the processing of
asynchronous events such as a disconnect or CPR. These types of asynchronous events
normally clean up and dismantle pipes and could disrupt the normal operational
code.

One way to manage race conditions and protect normal operational code is to write a
serialization facility that can acquire and release an exclusive-access synchronization
object. You can write the serialization facility in such a way that the synchronization
object is safe to hold through calls to USBA functions. The usbskel sample driver
demonstrates this technique. See “Sample USB Device Driver” on page 412 for
information on the usbskel driver.

Utility Functions
This section describes several functions that are of general use.

Device Configuration Facilities
This section describes functions related to device configuration.

Getting Interface Numbers
If you are using a multiple-interface device where the usb_mid(7D) driver is making
only one of its interfaces available to the calling driver, you might need to know the
number of the interface to which the calling driver is bound. Use the
usb_get_if_number(9F) function to do any of the following tasks:

� Return the number of the interface to which the calling driver is bound. The
usb_get_if_number(9F) function returns an interface number greater than zero
in this case.

� Discover that the calling driver manages an entire multi-interface device. The
driver is bound at the device level so that usb_mid has not split it. The
usb_get_if_number(9F) function returns USB_DEVICE_NODE in this case.

� Discover that the calling driver manages an entire device by managing the only
interface that device offers in its current configuration. The
usb_get_if_number(9F) function returns USB_COMBINED_NODE in this case.

Chapter 19 • USB Drivers 409

Managing Entire Devices
If a driver manages an entire composite device, that driver can bind to the entire
device by using a compatible name that contains vendor ID, product ID, and revision
ID. A driver that is bound to an entire composite device must manage all the interfaces
of that device as a nexus driver would. In general, you should not bind your driver to
an entire composite device. Instead, you should use the generic multiple-interface
driver usb_mid(7D).

Use the usb_owns_device(9F) function to determine whether a driver owns an
entire device. The device might be a composite device. The usb_owns_device(9F)
function returns TRUE if the driver owns the entire device.

Multiple-Configuration Devices
USB devices make only a single configuration available to the host at any particular
time. Most devices support only a single configuration. However, a few USB devices
support multiple configurations.

Any device that has multiple configurations is placed into the first configuration for
which a driver is available. When seeking a match, device configurations are
considered in numeric order. If no matching driver is found, the device is set to the
first configuration. In this case, the usb_mid driver takes over the device and splits
the device into interface nodes. Use the usb_get_cfg(9F) function to return the
current configuration of a device.

You can use either of the following two methods to request a different configuration.
Using either of these two methods to modify the device configuration ensures that the
USBA module remains in sync with the device.

� Use the cfgadm_usb(1M) command.

� Call the usb_set_cfg(9F) function from the driver.

Because changing device configuration affects an entire device, the client driver
must meet all of the following criteria to call the usb_set_cfg(9F) function
successfully:

� The client driver must own the entire device.

� The device must have no child nodes, because other drivers could drive the
device through them.

� All pipes except the default pipe must be closed.

� The device must have multiple configurations.

410 Writing Device Drivers • January 2005

Caution – Do not change the device configuration by doing a SET_CONFIGURATION
USB request manually. Using a SET_CONFIGURATION request to change the
configuration is not supported.

Modifying or Getting the Alternate Setting
A client driver can call the usb_set_alt_if(9F) function to change the selected
alternate setting of the currently selected interface. Be sure to close all pipes that were
opened explicitly. When switching alternate settings, the usb_set_alt_if(9F)
function verifies that only the default pipe is open. Be sure the device is settled before
you call usb_set_alt_if(9F).

Changing the alternate setting can affect which endpoints and which class-specific and
vendor-specific descriptors are available to the driver. See “The Descriptor Tree”
on page 388 for more information about endpoints and descriptors.

Call the usb_get_alt_if(9F) function to retrieve the number of the current alternate
setting.

Note – When you request a new alternate setting, a new configuration, or a new
interface, all pipes except the default pipe to the device must be closed. This is because
changing an alternate setting, a configuration, or an interface changes the mode of
operation of the device. Also, changing an alternate setting, a configuration, or an
interface changes the device’s presentation to the system.

Other Utility Functions
This section describes other functions that are useful in USB device drivers.

Retrieving a String Descriptor
Call the usb_get_string_descr(9F) function to retrieve a string descriptor given
its index. Some configuration, interface, or device descriptors have string IDs
associated with them. Such descriptors contain string index fields with nonzero
values. Pass a string index field value to the usb_get_string_descr(9F) to retrieve
the corresponding string.

Chapter 19 • USB Drivers 411

Pipe Private Data Facility
Each pipe has one pointer of space set aside for the client driver’s private use. Use the
usb_pipe_set_private(9F) function to install a value. Use the
usb_pipe_get_private(9F) function to retrieve the value. This facility is useful in
callbacks, when pipes might need to bring their own client-defined state to the
callback for specific processing.

Clearing a USB Condition
Use the usb_clr_feature(9F) function to do the following tasks:

� Issue a USB CLEAR_FEATURE request to clear a halt condition on an endpoint.
� Clear a remote wakeup condition on a device.
� Clear a device-specific condition at a device, interface, or endpoint level.

Getting Device, Interface, or Endpoint Status
Use the usb_get_status(9F) function to issue a USB GET_STATUS request to
retrieve the status of a device, interface, or endpoint.

� Device status. Self-powered and remote-wakeup-enabled.

� Interface status. Returns zero, per USB 2.0 specification.

� Endpoint status. Endpoint halted. This status indicates a functional stall. A halt
must be cleared before the device can operate again.

A protocol stall indicates that an unsupported control pipe request has been made.
A protocol stall is cleared automatically at the beginning of the next control
transfer.

Getting the Bus Address of a Device
Use the usb_get_addr(9F) function to get the USB bus address of a device for
debugging purposes. This address maps to a particular USB port.

Sample USB Device Driver
This section describes a template USB device driver that uses the USBA 2.0 framework
for the Solaris environment. This driver demonstrates many of the features discussed
in this chapter. This template or skeleton driver is named usbskel.

The usbskel driver is a template that you can use to start your own USB device
driver. The usbskel driver demonstrates the following features:

412 Writing Device Drivers • January 2005

� Reading the raw configuration data of a device. Every USB device needs to be able
to report device raw configuration data.

� Managing pipes. The usbskel driver opens an interrupt pipe to show how to
manage pipes.

� Polling. Comments in the usbskel driver discuss how to do polling.

� USB version management and registration.

� USB logging.

� Accommodations for USB hotplugging.

� Accommodations for Solaris suspend and resume.

� Accommodations for power management.

� USB serialization.

� Use of USB callbacks.

This usbskel driver is available on Sun’s web site at
http://www.sun.com/bigadmin/software/usbskel/.

This usbskel driver is also available on Sun’s web site as part of the USB DDK
(Driver Development Kit). The USB DDK includes many example USB drivers in
addition to the usbskel template driver. To download the USB DDK and to read
about the latest updates to the USBA 2.0 framework for the Solaris environment, go to
USB early access site, which is at:
http://developers.sun.com/solaris/developer/support/driver/usb.html.

Chapter 19 • USB Drivers 413

http://www.sun.com/bigadmin/software/usbskel/
http://developers.sun.com/solaris/developer/support/driver/usb.html

414 Writing Device Drivers • January 2005

PART III Building a Device Driver

The third part of this book provides advice on building device drivers for the Solaris
Operating Solaris:

� Chapter 20 provides information on compiling, linking, and installing a driver.
� Chapter 21 describes techniques for debugging, testing, and testing drivers.
� Chapter 22 describes the recommended coding practices for writing drivers.

415

416 Writing Device Drivers • January 2005

CHAPTER 20

Compiling, Loading, Packaging, and
Testing Drivers

This chapter describes the procedure for driver development, including code layout,
compilation, packaging, and testing. The chapter provides information on the
following subjects:

� “Driver Code Layout” on page 418
� “Preparing for Driver Installation” on page 420
� “Installing, Updating, and Removing Drivers” on page 422
� “Loading and Unloading Drivers” on page 425
� “Driver Packaging” on page 425
� “Criteria for Testing Drivers” on page 427

Driver Development Summary
This chapter and the following two chapters, Chapter 21 and Chapter 22, provide
detailed information on developing a device driver. A driver developer takes the
following steps to build a device driver:

1. Write, compile, and link the new code.

See “Driver Code Layout” on page 418 for the conventions on naming files. Use a
C compiler to compile the driver. Link the driver using ld(1). See “Compiling and
Linking the Driver” on page 421 and “Module Dependencies” on page 422.

2. Create the necessary hardware configuration files.

You need to create a hardware configuration file unique to the device called
xx.conf where xx is the prefix for the device. This file is used to update the
driver.conf(4) file. See “Writing a Hardware Configuration File” on page 422.
For a pseudo device driver, you need to create a pseudo(4) file.

3. Copy the driver to the appropriate module directory.

See “Copying the Driver to a Module Directory” on page 422.

417

4. Install the device driver using add_drv(1M).

Installing the driver with add_drv is usually done as part of a postinstall script.
See “Installing Drivers with add_drv” on page 424. The update_drv(1M)
command is used to make any changes to the driver. See “Updating Driver
Information” on page 424.

5. Load the driver.

Loading the driver can be done programmatically by opening the special file for
the device. See “Loading and Unloading Drivers” on page 425 and “Package
Postinstall” on page 425. Drivers can also be loaded by using the modload(1M)
command. The modload command does not call any routines in the module and is
actually more suitable for testing. See “Loading and Unloading Test Modules”
on page 437.

6. Test the driver.

Drivers should be rigorously tested in the following areas:

� “Configuration Testing” on page 427
� “Functionality Testing” on page 428
� “Error Handling” on page 428
� “Testing Loading and Unloading” on page 429
� “Stress, Performance, and Interoperability Testing” on page 429
� “DDI/DKI Compliance Testing” on page 430
� “Installation and Packaging Testing” on page 430

For additional driver-specific testing, see “Testing Specific Types of Drivers”
on page 430.

7. Remove the driver if necessary.

Removal of a device driver is done using the rem_drv(1M) command. See
“Removing the Driver” on page 424 and “Package Preremove” on page 426.

Driver Code Layout
The code for a device driver is usually divided into the following files:

� Header files (.h files)
� Source files (.c files)
� Optional configuration file (driver.conf file)

Header Files
Header files provide the following definitions:

418 Writing Device Drivers • January 2005

� Data structures specific to the device, such as a structure representing the device
registers

� Data structures defined by the driver for maintaining state information
� Defined constants, such as those representing the bits of the device registers
� Macros, such as those defining the static mapping between the minor device

number and the instance number

Some of the header file definitions, such as the state structure, might be needed only
by the device driver. This information should go in private header files that are only
included by the device driver itself.

Any information that an application might require, such as the I/O control
commands, should be in public header files. These files are included by the driver and
by any applications that need information about the device.

While there is no standard for naming private and public files, one convention is to
name the private header file xximpl.h and the public header file xxio.h.

.c Files
A .c file for a device driver has the following responsibilities:

� Contains the data declarations and the code for the entry points of the driver
� Contains the #include statements that are needed by the driver
� Declares extern references
� Declares local data
� Sets up the cb_ops and dev_ops structures
� Declares and initializes the module configuration section, that is, the

modlinkage(9S) and modldrv(9S) structures
� Makes any other necessary declarations
� Defines the driver entry points

driver.conf Files
driver.conf files are required for devices that are not self-identifying. Entries in the
driver.conf file specify possible device instances that the driver can probe for
existence. For more information, see the driver.conf(4) man page.

Driver global properties can also be set by entries in the driver.conf file.
driver.conf files are optional for self-identifying devices (SID), where the entries
can be used to add properties into SID nodes. The driver.conf file generally defines
all of the properties that drivers need, but exceptions do exist.

Chapter 20 • Compiling, Loading, Packaging, and Testing Drivers 419

Drivers that use the SBus peripheral bus generally get property information from the
SBus card. In cases where additional properties are needed, the driver.conf file can
contain properties that are defined by sbus(4).

The properties of a PCI bus can generally be derived from the PCI configuration space.
In cases where private driver properties are needed, the driver.conf file can
contain properties that are defined by pci(4).

Drivers on the ISA bus can use additional properties that are defined by isa(4).

Preparing for Driver Installation
The following steps precede installation of a driver.

1. Compile the driver.

2. Create a configuration file if necessary.

3. Identify the driver module to the system through either of these alternatives:

� Match the driver’s name to the name of the device node.
� Use either add_drv(1M) or update_drv(1M) to inform the system of the

module names.

The system maintains a one-to-one association between the name of the driver module
and the name of the dev_info node. For example, consider a dev_info node for a
device that is named wombat. The device wombat is handled by a driver module that is
also named wombat. The wombat module resides in a subdirectory that is called drv,
which is in the module path. In this case, the module can be found in drv/wombat if
you are using a 32–bit kernel or in drv/sparcv9/wombat if you are using a 64–bit
kernel.

If the driver is a STREAMS network driver, then the driver name needs to meet the
following constraints:

� Only alphanumeric characters (a-z, A-Z, 0-9), plus the underscore (’_’), are
permitted.

� Neither the first nor the last character of the name may be a digit.

� The name cannot exceed 16 characters in length. Names in the range of 3-8
characters in length are preferable.

If the driver should manage dev_info nodes with different names, the add_drv(1M)
utility can create aliases. The -i flag specifies the names of other dev_info nodes
that the driver handles. The update_drv() function can also modify aliases for an
installed device driver.

420 Writing Device Drivers • January 2005

Compiling and Linking the Driver
You need to compile each driver source file and link the resulting object files into a
driver module.

The example below shows a driver that is called xx with two C-language source files.
A driver module that is called xx is generated. The driver that is created in this
example is intended for the 32–bit kernel:

% cc -D_KERNEL -c xx1.c
% cc -D_KERNEL -c xx2.c
% ld -r -o xx xx1.o xx2.o

The _KERNEL symbol must be defined while compiling kernel (driver) code. No other
symbols, such as sun4m, should be defined, aside from driver private symbols. DEBUG
can also be defined to enable any calls to assert(9F). You do not have to use the -I
flag for the standard headers.

Drivers that are intended for the 64-bit SPARC kernel should specify the -xarch=v9
option. Use the following line to compile:

% cc -D_KERNEL -xarch=v9 -c xx1.c

After the driver is stable, optimization flags can be used to build a production quality
driver. For the C compiler from the Sun Studio 10, C Compiler 5.7, the normal -O flag,
or its equivalent -xON, can be used. All global variables should all be treated as
volatile, which is a good practice for device drivers. The volatile tag is
discussed in greater detail in “Declaring a Variable Volatile” on page 469. Use of the
flag depends on the platform as follows:

� SPARC architecture: The -xO2 flag treats all global variables as volatile. For
optimization levels above-xO2, global variables need to be specifically marked as
volatile.

� x86 architecture: Global variables need to be specifically marked as volatile at
all optimization levels unless you use the -g option.

See the cc(1) man page for more specific information on optimization and other
compile issues.

The following compile line creates 64–bit SPARC drivers for the Solaris 10 Operating
System:

% cc -D_KERNEL -xarch=v9 -xcode=abs32 -xO3 -c xx1.c

The use of -xcode=abs32 leads to more compact code.

Note – ld -r must be run even if only one object module exists.

Drivers that are intended for the 64–bit kernel are compiled as follows:

Chapter 20 • Compiling, Loading, Packaging, and Testing Drivers 421

% cc -D_KERNEL -xarch=amd64 -xmodel=kernel -c xx1.c

Module Dependencies
If the driver module depends on symbols exported by another kernel module, the
dependency can be specified by the -dy and -N options of ld. If the driver depends
on a symbol exported by misc/mySymbol, the example below should be used to
create the driver binary. See the ld(1) man page.

% ld -dy -r -o xx xx1.o xx2.o -N misc/mySymbol

Writing a Hardware Configuration File
If a device is non-self-identifying, the kernel requires a hardware configuration file for
that device. If the driver is called xx, the hardware configuration file for the driver
should be called xx.conf. See the driver.conf(4), pseudo(4), sbus(4),
scsi_free_consistent_buf(9F), and update_drv(1M) man pages for more
information on hardware configuration files. On the x86 platform, device information
is now supplied by the booting system. Hardware configuration files should no longer
be needed, even for non-self-identifying devices.

Arbitrary properties can be defined in hardware configuration files. Entries in the
configuration file are in the form property=value, where property is the property name
and value is its initial value. The configuration file approach enables devices to be
configured by changing the property values.

Installing, Updating, and Removing
Drivers
Before a driver can be used, the system must be informed that the driver exists. The
add_drv(1M) utility must be used to correctly install the device driver. After a driver
is installed, that driver can be both loaded and unloaded from memory without using
add_drv(1M) again.

Copying the Driver to a Module Directory
Three conditions determine a device driver module’s path:

� The platform that the driver runs on
� The architecture for which the driver is compiled

422 Writing Device Drivers • January 2005

� Whether the path is needed at boot time

Device drivers reside in the following locations:

/platform/‘uname -i‘/kernel/drv
Contains 32–bit drivers that run only on a specific platform.

/platform/‘uname -i‘/kernel/drv/sparcv9
Contains 64–bit drivers that run only on a specific SPARC-based platform.

/platform/‘uname -i‘/kernel/drv/amd64
Contains 64–bit drivers that run only on a specific x86-based platform.

/platform/‘uname -m‘/kernel/drv
Contains 32–bit drivers that run only on a specific family of platforms.

/platform/‘uname -m‘/kernel/drv/sparcv9
Contains 64–bit drivers that run only on a specific family of SPARC-based
platforms.

/platform/‘uname -m‘/kernel/drv/amd64
Contains 64–bit drivers that run only on a specific family of x86-based platforms.

/usr/kernel/drv
Contains 32–bit drivers that are independent of platforms.

/usr/kernel/drv/sparcv9
Contains 64–bit drivers on SPARC-based systems that are independent of
platforms.

/usr/kernel/drv/amd64
Contains 64–bit drivers on x86-based systems that are independent of platforms.

To install a 32–bit driver, the driver and its configuration file must be copied to a drv
directory in the module path. For example, to copy a driver to /usr/kernel/drv,
type:

$ su
cp xx /usr/kernel/drv

cp xx.conf /usr/kernel/drv

To install a 64-bit SPARC driver, copy the driver to a drv/sparcv9 directory in the
module path. Copy the driver configuration file to the drv directory in the module
path. For example, to copy a driver to /usr/kernel/drv, you would type:

$ su

cp xx /usr/kernel/drv/sparcv9# cp xx.conf /usr/kernel/drv

Note – All driver configuration files (.conf files) must go in the drv directory in the
module path. Even on 64–bit systems, the .conf file goes in the drv directory, not the
drv/sparcv9 directory.

Chapter 20 • Compiling, Loading, Packaging, and Testing Drivers 423

Installing Drivers with add_drv
Run add_drv to install the driver in the system. If the driver installs
successfully,add_drv runs devfsadm(1M) to create the logical names in /dev.

add_drv xx

In this case, the device identifies itself as xx. The device special files have default
ownership and permissions (0600 root sys). add_drv(1M) also allows additional
names for the device (aliases) to be specified. See the add_drv(1M) man page for
information on adding aliases and setting file permissions explicitly.

Note – add_drv(1M) should not be run when installing a STREAMS module. See the
STREAMS Programming Guide for details.

If the driver creates minor nodes that do not represent terminal devices, that is, disks,
tapes, or ports, /etc/devlink.tab can be modified to cause devfsadm(1M) to
create logical device names in /dev.

Alternatively, logical names can be created by a program run at driver installation
time.

Updating Driver Information
Use the update_drv(1M) command to notify the system of any changes to an
installed device driver. By default, the system re-reads the driver.conf(4) file and
reloads the driver binary module.

Removing the Driver
To remove a driver from the system, use rem_drv(1M), then delete the driver module
and configuration file from the module path. A driver cannot be used again until that
driver is reinstalled with add_drv(1M). The removal of a SCSI HBA driver requires a
reboot to take effect.

424 Writing Device Drivers • January 2005

Loading and Unloading Drivers
Opening a special file that is associated with a device driver causes that driver to be
loaded. modload(1M) can also be used to load the driver into memory, but
modload() does not call any routines in the module. The preferred method is to open
the device.

Normally, the system automatically unloads device drivers that are no longer in use.
During development, use of modunload(1M) might be necessary to unload the driver
explicitly. In order for modunload(1M) to be successful, the device driver must be
inactive. No outstanding references to the device should exist, such as through
open(2) or mmap(2).

modunload takes a runtime-dependent module_id as an argument. To find the
module_id, use grep to search the output of modinfo for the driver name in
question. Check in the first column.

modunload -i module-id

To unload all currently unloadable modules, specify module ID zero:

modunload -i 0

In addition to being inactive, the driver must have working detach(9E) and
_fini(9E) routines for modunload(1M) to succeed.

Driver Packaging
The normal delivery vehicle for software is to create a package that contains all of the
software components. A package provides a controlled mechanism for installation and
removal of all the components of a software product. In addition to the files for using
the product, the package includes control files for installing and uninstalling the
application. The postinstall and preremove installation scripts are two such control
files.

Package Postinstall
After a package with a driver binary is installed onto a system, the add_drv(1M)
command must be run. add_drv() completes the installation of the driver. Typically,
add_drv is run as a postinstall script, as in the following example.

#!/bin/sh
#

Chapter 20 • Compiling, Loading, Packaging, and Testing Drivers 425

@(#)postinstall 1.1

PATH="/usr/bin:/usr/sbin:${PATH}"
export PATH

#
Driver info
#
DRV=<driver-name>
DRVALIAS="<company-name>,<driver-name>"
DRVPERM=’* 0666 root sys’

ADD_DRV=/usr/sbin/add_drv

#
Select the correct add_drv options to execute.
add_drv touches /reconfigure to cause the
next boot to be a reconfigure boot.
#
if ["${BASEDIR}" = "/"]; then

#
On a running system, modify the
system files and attach the driver
#
ADD_DRV_FLAGS=""

else
#
On a client, modify the system files
relative to BASEDIR
#
ADD_DRV_FLAGS="-b ${BASEDIR}"

fi

#
Make sure add_drv has not been previously executed
before attempting to add the driver.
#
grep "^${DRV} " $BASEDIR/etc/name_to_major > /dev/null 2>&1
if [$? -ne 0]; then

${ADD_DRV} ${ADD_DRV_FLAGS} -m "${DRVPERM}" -i "${DRVALIAS}" ${DRV}
if [$? -ne 0]; then

echo "postinstall: add_drv $DRV failed\n" >&2
exit 1

fi
fi

exit 0

Package Preremove
When removing a package that includes a driver, the rem_drv(1M) command must
be run prior to removing the driver binary and other components. The following
example demonstrates a preremove script that uses rem_drv(1M) for driver
removal.

426 Writing Device Drivers • January 2005

#!/bin/sh
#
@(#)preremove 1.1

PATH="/usr/bin:/usr/sbin:${PATH}"
export PATH

#
Driver info
#
DRV=<driver-name>
REM_DRV=/usr/sbin/rem_drv

#
Select the correct rem_drv options to execute.
rem_drv touches /reconfigure to cause the
next boot to be a reconfigure boot.
#
if ["${BASEDIR}" = "/"]; then

#
On a running system, modify the
system files and remove the driver
#
REM_DRV_FLAGS=""

else
#
On a client, modify the system files
relative to BASEDIR
#
REM_DRV_FLAGS="-b ${BASEDIR}"

fi

${REM_DRV} ${REM_DRV_FLAGS} ${DRV}

exit 0

Criteria for Testing Drivers
Once a device driver is functional, that driver should be thoroughly tested prior to
distribution. Besides testing the features in traditional UNIX device drivers, Solaris 10
drivers require testing power management features, such as dynamic loading and
unloading of drivers.

Configuration Testing
A driver’s ability to handle multiple device configurations is an important part of the
test process. Once the driver is working on a simple, or default, configuration,
additional configurations should be tested. Depending on the device, configuration

Chapter 20 • Compiling, Loading, Packaging, and Testing Drivers 427

testing can be accomplished by changing jumpers or DIP switches. If the number of
possible configurations is small, all configurations should be tried. If the number is
large, various classes of possible configurations should be defined, and a sampling of
configurations from each class should be tested. Defining these classes depends on the
potential interactions among the different configuration parameters. These interactions
are a function of the type of the device and the way in which the driver was written.

For each device configuration, the basic functions must be tested, which include
loading, opening, reading, writing, closing, and unloading the driver. Any function
that depends upon the configuration deserves special attention. For example,
changing the base memory address of device registers is not likely to affect the
behavior of most driver functions. If a driver works well with one address, that driver
is likely to work as well with a different address. On the other hand, a special I/O
control call might have different effects depending on the particular device
configuration.

Loading the driver with varying configurations ensures that the probe(9E) and
attach(9E) entry points can find the device at different addresses. For basic
functional testing, using regular UNIX commands such as cat(1) or dd(1M) is usually
sufficient for character devices. Mounting or booting might be required for block
devices.

Functionality Testing
After a driver has been completely tested for configuration, all of the driver’s
functionality should be thoroughly tested. These tests require exercising the operation
of all of the driver’s entry points.

Many drivers require custom applications to test functionality. However, basic drivers
for devices such as disks, tapes, or asynchronous boards can be tested using standard
system utilities. All entry points should be tested in this process, including
devmap(9E), chpoll(9E), and ioctl(9E), if applicable. The ioctl(9E) tests might be
quite different for each driver. For nonstandard devices, a custom testing application is
generally required.

Error Handling
A driver might perform correctly in an ideal environment but fail in cases of errors,
such as erroneous operations or bad data. Therefore, an important part of driver
testing is the testing of the driver’s error handling.

All possible error conditions of a driver should be exercised, including error
conditions for actual hardware malfunctions. Some hardware error conditions might
be difficult to induce, but an effort should be made to force or to simulate such errors if
possible. All of these conditions could be encountered in the field. Cables should be
removed or be loosened, boards should be removed, and erroneous user application
code should be written to test those error paths.

428 Writing Device Drivers • January 2005

Caution – Be sure to take proper electrical precautions when testing.

Testing Loading and Unloading
Because a driver that does not load or unload can force unscheduled downtime,
loading and unloading must be thoroughly tested.

A script like the following example should suffice:

#!/bin/sh
cd <location_of_driver>
while [1]
do

modunload -i ’modinfo | grep " <driver_name> " | cut -cl-3’ &
modload <driver_name> &

done

Stress, Performance, and Interoperability Testing
To help ensure that a driver performs well, that driver should be subjected to vigorous
stress testing. For example, running single threads through a driver does not test
locking logic or conditional variables that have to wait. Device operations should be
performed by multiple processes at once to cause several threads to execute the same
code simultaneously.

Techniques for performing simultaneous tests depends upon the driver. Some drivers
require special testing applications, while starting several UNIX commands in the
background is suitable for others. Appropriate testing depends upon where the
particular driver uses locks and condition variables. Testing a driver on a
multiprocessor machine is more likely to expose problems than testing on a
single-processor machine.

Interoperability between drivers must also be tested, particularly because different
devices can share interrupt levels. If possible, configure another device at the same
interrupt level as the one being tested. A stress-test can determine whether the driver
correctly claims its own interrupts and operates according to expectations. Stress tests
should be run on both devices at once. Even if the devices do not share an interrupt
level, this test can still be valuable. For example, consider a case in which serial
communication devices experience errors when a network driver is tested. The same
problem might be causing the rest of the system to encounter interrupt latency
problems as well.

Driver performance under these stress tests should be measured using UNIX
performance-measuring tools. This type of testing can be as simple as using the
time(1) command along with commands to be used in the stress tests.

Chapter 20 • Compiling, Loading, Packaging, and Testing Drivers 429

DDI/DKI Compliance Testing
To ensure compatibility with later releases and reliable support for the current release,
every driver should be Solaris 10 DDI/DKI compliant. One way to determine whether
the driver is compliant is by inspection. Check that only kernel routines in man pages
section 9: DDI and DKI Kernel Functions and data structures in man pages section 9: DDI
and DKI Properties and Data Structures are used.

The Solaris 10 Driver Developer Kit (DDK) includes a DDI compliance tool (DDICT).
This tool checks C source code in a device driver for non-DDI/DKI compliance. The
tool issues either error or warning messages when non-compliant code is found. For
best results, all drivers should be written to pass DDICT. For more information, check
out the Solaris Developer Connection, which is currently at
http://wwws.sun.com/software/solaris/ddk/.

Installation and Packaging Testing
Drivers are delivered to customers in packages. A package can be added or be removed
from the system using a standard mechanism (see the Application Packaging Developer’s
Guide).

The ability of a user to add or remove the package from a system should be tested. In
testing, the package should be both installed and removed from every type of media
to be used for the release. This testing should include several system configurations.
Packages must not make unwarranted assumptions about the directory environment
of the target system. Certain valid assumptions, however, can be made about where
standard kernel files are kept. Also test adding and removing of packages on newly
installed machines that have not been modified for a development environment. A
common packaging error is for a package to rely on a tool or file that is used in
development only. For example, no tools from the Source Compatibility package,
SUNWscpu, should be used in driver installation programs.

The driver installation must be tested on a minimal Solaris system without any
optional packages.

Testing Specific Types of Drivers
This section provides some information about how to test certain types of standard
devices. An all-inclusive list of tests for each different type of device would be
impossible.

Tape Drivers
Tape drivers should be tested by performing several archive and restore operations.
The cpio(1) and tar(1) commands can be used for this purpose. Use the dd(1M)
command to write an entire disk partition to tape. Next, read back the data, and write

430 Writing Device Drivers • January 2005

http://wwws.sun.com/software/solaris/ddk/

the data to another partition of the same size. Then compare the two copies. The mt(1)
command can exercise most of the I/O controls that are specific to tape drivers. See
the mtio(7I) man page. Try to use all the options. These three techniques can test the
error-handling capabilities of tape drivers:

� Remove the tape and try various operations
� Write-protect the tape and try a write
� Turn off power in the middle of different operations

Tape drivers typically implement exclusive-access open(9E) calls. These open() calls
can be tested by opening a device and then having a second process try to open the
same device.

Disk Drivers
Disk drivers should be tested in both the raw and block device modes. For block
device tests, create a new file system on the device. Then try to mount the new file
system. Then try to perform multiple file operations.

Note – The file system uses a page cache, so reading the same file over and over again
does not really exercise the driver. The page cache can be forced to retrieve data from
the device by memory-mapping the file with mmap(2). Then use msync(3C) to
invalidate the in-memory copies.

Copy another (unmounted) partition of the same size to the raw device. Then use a
command such as fsck(1M) to verify the correctness of the copy. The new partition
can also be mounted and later compared to the old partition on a file-by-file basis.

Asynchronous Communication Drivers
Asynchronous drivers can be tested at the basic level by setting up a login line to the
serial ports. A good test is see whether a user can log in on this line. To sufficiently test
an asynchronous driver, however, all the I/O control functions must be tested, with
many interrupts at high speed. A test involving a loopback serial cable and high data
transfer rates can help determine the reliability of the driver. You can run uucp(1C)
over the line to provide some exercise. However, because uucp(1C) performs its own
error handling, verify that the driver is not reporting excessive numbers of errors to
the uucp(1C) process.

These types of devices are usually STREAMS-based. See the STREAMS Programming
Guide for more information.

Chapter 20 • Compiling, Loading, Packaging, and Testing Drivers 431

Network Drivers
Network drivers can be tested using standard network utilities. ftp(1) and rcp(1) are
useful because the files can be compared on each end of the network. The driver
should be tested under heavy network loading, so that various commands can be run
by multiple processes. Heavy network loading includes the following conditions:

� Traffic to the test machine is heavy.
� Traffic among all machines on the network is heavy.

Network cables should be unplugged while the tests are executing to ensure that the
driver recovers gracefully from the resulting error conditions. Another important test
is for the driver to receive multiple packets in rapid succession, that is, back-to-back
packets. In this case, a relatively fast host on a lightly loaded network should send
multiple packets in quick succession to the test machine. Verify that the receiving
driver does not drop the second and subsequent packets.

These types of devices are usually STREAMS-based. See the STREAMS Programming
Guide for more information.

432 Writing Device Drivers • January 2005

CHAPTER 21

Debugging, Testing, and Tuning
Device Drivers

This chapter presents an overview of the various tools that are provided to assist with
the debugging, tuning, and testing of device drivers. This chapter provides
information on the following subjects:

� “Testing Drivers” on page 433 – Testing a driver can potentially impair a system’s
ability to function. Use of both serial connections and alternate kernels helps
facilitate recovery from crashes.

� “Debugging Tools” on page 443 – Integral debugging facilities enable you to
exercise and observe driver features conveniently without having to run a separate
debugger.

� “Tuning Drivers” on page 456 – The Solaris OS provides facilities for measuring
the performance of device drivers. Writing kernel statistics structures for your
device exports continuous statistics as the device is running. If an area for
performance improvement is determined, then the DTrace dynamic
instrumentation tool can help determine any problems more precisely.

Testing Drivers
To avoid data loss and other problems, you should take special care when testing a
new device driver. This section discusses various testing strategies. For example,
setting up a separate system that you control through a serial connection is the safest
way to test a new driver. You can load test modules with various kernel variable
settings to test performance under different kernel conditions. Should your system
crash, you should be prepared to restore back-up data, analyze any crash dumps, and
rebuild the device directory.

433

Testing With a Serial Connection
Using a serial connection is a good way to test drivers. Use the tip(1) command to
make a serial connection between a host system and a test system. With this approach,
the tip window on the host console is used as the console of the test machine. See the
tip(1) man page for additional information.

A tip window has the following advantages:

� Interactions with the test system and kernel debuggers can be monitored. For
example, the window can keep a log of the session for use if the driver crashes the
test system.

� The test machine can be accessed remotely by logging into a tip host machine and
using tip(1) to connect to the test machine.

Note – Although using a tip connection and a second machine are not required to
debug a Solaris 10 device driver, this technique is still recommended.

� To Set Up the Host System for a tip Connection

1. Connect the host system to the test machine using serial port A on both
machines.

This connection must be made with a null modem cable.

2. On the host system, make sure there is an entry in /etc/remote for the
connection. See the remote(4) man page for details.

The terminal entry must match the serial port that is used. The Solaris 10
Operating System comes with the correct entry for serial port B, but a terminal
entry must be added for serial port A:

debug:\

:dv=/dev/term/a:br#9600:el=^C^S^Q^U^D:ie=%$:oe=^D:

Note – The baud rate must be set to 9600.

3. In a shell window on the host, run tip(1) and specify the name of the entry:

% tip debug

connected

The shell window is now a tip window with a connection to the console of the test
machine.

Steps

434 Writing Device Drivers • January 2005

Caution – Do not use STOP-A for SPARC machines or F1-A for x86 architecture
machines on the host machine to stop the test machine. This action actually stops
the host machine. To send a break to the test machine, type ~# in the tip window.
Commands such as ~# are recognized only if these characters on first on the line. If
the command has no effect, press either the Return key or Control-U.

Setting Up a Target System on the SPARC Platform
A quick way to set up the test machine on the SPARC platform is to unplug the
keyboard before turning on the machine. The machine then automatically uses serial
port A as the console.

Another way to set up the test machine is to use boot PROM commands to make serial
port A the console. On the test machine, at the boot PROM ok prompt, direct console
I/O to the serial line. To make the test machine always come up with serial port A as
the console, set the environment variables: input-device and output-device.

EXAMPLE 21–1 Setting input-device and output-device With Boot PROM Commands

ok setenv input-device ttya

ok setenv output-device ttya

The eeprom command can also be used to make serial port A the console. As
superuser, execute the following commands to make the input-device and output-device
parameters point to serial port A. The following example demonstrates the eeprom
command.

EXAMPLE 21–2 Setting input-device and output-device With the eeprom Command

eeprom input-device=ttya

eeprom output-device=ttya

The eeprom commands cause the console to be redirected to serial port A at each
subsequent system boot.

Setting Up a Target System on the x86 Platform
On x86 platforms, use the eeprom command to make serial port A the console. This
procedure is the same as the SPARC platform procedure. See “Setting Up a Target
System on the SPARC Platform” on page 435. The eeprom command causes the
console to switch to serial port A (COM1) during reboot.

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 435

Note – x86 machines do not transfer console control to the tip connection until an early
stage in the boot process unless the BIOS supports console redirection to a serial port.
In SPARC machines, the tip connection maintains console control throughout the boot
process.

Setting Up Test Modules
The system(4) file in the /etc directory enables you to set the value of kernel
variables at boot time. With kernel variables, you can toggle different behaviors in a
driver and take advantage of debugging features that are provided by the kernel. The
kernel variables, moddebug and kmem_flags, which can be very useful in
debugging, are discussed later in this section.

Changes to kernel variables after boot are unreliable, because /etc/system is read
only once when the kernel boots. After this file is modified, the system must be
rebooted for the changes to take effect. If a change in the file causes the system not to
work, boot with the ask (-a) option. Then specify /dev/null as the system file.

Note – Kernel variables cannot be relied on to be present in subsequent releases.

Setting Kernel Variables
The set command changes the value of module or kernel variables. To set module
variables, specify the module name and the variable:

set module_name:variable=value

For example, to set the variable test_debug in a driver that is named myTest, use
set as follows:

% set myTest:test_debug=1

To set a variable that is exported by the kernel itself, omit the module name.

You can also use a bitwise OR operation to set a value, for example:

% set moddebug | 0x80000000

436 Writing Device Drivers • January 2005

Loading and Unloading Test Modules
The commands, modload(1M), modunload(1M), and modinfo(1M) can be quite
handy for adding test modules, which is a useful technique for debugging and
stress-testing drivers. These commands are generally not needed in normal operation,
because the kernel automatically loads needed modules and unloads unused modules.
The moddebug kernel variable works with these commands to provide information
and set controls.

Using the modload() Function

Use modload to force a module into memory. modload verifies that the driver has no
unresolved references when that driver is loaded. Loading a driver does not
necessarily mean that the driver can attach. When a driver loads successfully, the
driver’s _info(9E) entry point is called. The attach() entry point is not necessarily
called.

Using the modinfo() Function

Use modinfo to confirm that the driver is loaded.

EXAMPLE 21–3 Using modinfo to Confirm a Loaded Driver

$ modinfo
Id Loadaddr Size Info Rev Module Name
6 101b6000 732 - 1 obpsym (OBP symbol callbacks)
7 101b65bd 1acd0 226 1 rpcmod (RPC syscall)
7 101b65bd 1acd0 226 1 rpcmod (32-bit RPC syscall)
7 101b65bd 1acd0 1 1 rpcmod (rpc interface str mod)
8 101ce8dd 74600 0 1 ip (IP STREAMS module)
8 101ce8dd 74600 3 1 ip (IP STREAMS device)

[...]

$ modinfo | grep mydriver

169 781a8d78 13fb 0 1 mydriver (Test Driver 1.5)

The number in the info field is the major number that has been chosen for the driver.
modunload can be used to unload a module if the module ID can be provided. The
module ID is found in the left column of modinfo output.

Sometimes a driver does not unload as expected after a modunload is issued, because
the driver is assumed to be busy. This situation occurs when the driver fails
detach(9E), either because the driver really is busy, or because the detach entry
point is implemented incorrectly.

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 437

Using modunload()

To remove all of the currently unused modules from memory, run modunload with a
module ID of 0:

modunload -i 0

Setting the moddebug Kernel Variable

moddebug is a kernel variable that controls the module loading process. The possible
values of moddebug are:

0x80000000 Prints messages to the console when loading or unloading modules.

0x40000000 Gives more detailed error messages.

0x20000000 Prints more detail when loading or unloading, such as including the
address and size.

0x00001000 No auto-unloading drivers. The system does not attempt to unload
the device driver when the system resources become low.

0x00000080 No auto-unloading streams. The system does not attempt to unload
the STREAMS module when the system resources become low.

0x00000010 No auto-unloading of kernel modules of any type.

0x00000001 If running with kmdb, moddebug causes a breakpoint to be executed
and a return to kmdb immediately before each module’s _init(9E)
routine is called. This setting also generates additional debug
messages when the module’s _info and _fini routines are
executed.

Setting kmem_flags Debugging Flags
kmem_flags is a kernel variable used to enable debugging features in the kernel’s
memory allocator. Set kmem_flags to 0xf to enable the allocator’s debugging
features. These features include runtime checks to find the following code conditions:

� Writing to a buffer after the buffer is freed
� Using memory before the memory is initialized
� Writing past the end of a buffer

The Solaris Modular Debugger Guide describes how to use the kernel memory allocator
to analyze such problems.

438 Writing Device Drivers • January 2005

Note – Testing and developing with kmem_flags set to 0xf can help detect latent
memory corruption bugs. Because setting kmem_flags to 0xf changes the internal
behavior of the kernel memory allocator, you should thoroughly test without
kmem_flags as well.

Avoiding Data Loss on a Test System
A driver bug can sometimes render a system incapable of booting. By taking
precautions, you can avoid system reinstallation in this event, as described in this
section.

Back Up Critical System Files
A number of driver-related system files are difficult, if not impossible, to reconstruct.
Files such as /etc/name_to_major,/etc/driver_aliases,
/etc/driver_classes, and /etc/minor_permcan be corrupted if the driver
crashes the system during installation. See the add_drv(1M) man page.

To be safe, make a backup copy of the root file system after the test machine is in the
proper configuration. If you plan to modify the /etc/system file, make a backup
copy of the file before making modifications.

� To Boot With an Alternate Kernel
To avoid rendering a system inoperable, you should boot from a copy of the kernel
and associated binaries rather than from the default kernel.

1. Make a copy of the drivers in /platform/*.

cp -r /platform/‘uname -i‘/kernel /platform/‘uname -i‘/kernel.test

2. Place the driver module in /platform/‘uname -i‘/kernel.test/drv.

3. Boot the alternate kernel instead of the default kernel.

After you have created and stored the alternate kernel, you can boot this kernel in
a number of ways.

� You can boot the alternate kernel by rebooting:

reboot -- kernel.test/unix

� On a SPARC-based system, you can also boot from the PROM:

Steps

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 439

ok boot kernel.test/unix

Note – To boot with the kmdb debugger, use the -k option as described in
“Getting Started With the Modular Debugger” on page 447.

� On an x86–based system, when the Select (b)oot or (i)nterpreter:
message is displayed in the boot process, type the following:

boot kernel.test/unix

Booting an Alternate Kernel

The following example demonstrates booting with an alternate kernel.

ok boot kernel.test/unix
Rebooting with command: boot kernel.test/unix
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a File and \

args:
kernel.test/unix
SunOS Release 5.10 Version Generic 32-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.

[...]

Booting an Alternate Kernel With the -a Option

Alternatively, the module path can be changed by booting with the ask (-a) option.
This option results in a series of prompts for configuring the boot method.

ok boot -a
Rebooting with command: boot -a
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a File and \
args: -a
Enter filename [kernel/sparcv9/unix]: kernel.test/sparcv9/unix
Enter default directory for modules
[/platform/sun4u/kernel.test /kernel /usr/kernel]: <CR>
Name of system file [etc/system]: <CR>
SunOS Release 5.10 Version Generic 64-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.
root filesystem type [ufs]: <CR>
Enter physical name of root device

[/sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a]: <CR>

Example 21–4

Example 21–5

440 Writing Device Drivers • January 2005

Consider Alternative Back–Up Plans
If the system is attached to a network, the test machine can be added as a client of a
server. If a problem occurs, the system can be booted from the network. The local
disks can then be mounted, and any fixes can be made. Alternatively, the system can
be booted directly from the Solaris 10 CD-ROM.

Another way to recover from disaster is to have another bootable root file system. Use
format(1M) to make a partition that is the exact size of the original. Then use dd(1M)
to copy the bootable root file system. After making a copy, run fsck(1M) on the new
file system to ensure its integrity.

Subsequently, if the system cannot boot from the original root partition, boot the
backup partition. Use dd(1M) to copy the backup partition onto the original partition.
You might have a situation where the system cannot boot even though the root file
system is undamaged. For example, the damage might be limited to the boot block or
the boot program. In such a case, you can boot from the backup partition with the ask
(-a) option. You can then specify the original file system as the root file system.

Capture System Crash Dumps
When a system panics, the system writes an image of kernel memory to the dump
device. The dump device is by default the most suitable swap device. The dump is a
system crash dump, similar to core dumps generated by applications. On rebooting
after a panic, savecore(1M) checks the dump device for a crash dump. If a dump is
found, savecore() makes a copy of the kernel’s symbol table, which is called
unix.n. savecore() then dumps a core file that is called vmcore.n in the core
image directory. By default, the core image directory is /var/crash/machine_name. If
/var/crash has insufficient space for a core dump, the system displays the needed
space but does not actually save the dump. mdb(1) can then be used on the core dump
and the saved kernel.

In the Solaris 10 Operating System, crash dump is enabled by default. The
dumpadm(1M) command is used to configure system crash dumps. Use the
dumpadm(1M) command to verify that crash dumps are enabled and to determine the
location of core files that have been saved. See the dumpadm(1M) man page for more
information.

Note – savecore(1M) can be prevented from filling the file system. Add a file that is
named minfree to the directory in which the dumps are to be saved. In this file,
specify the number of kilobytes to remain free after savecore(1M) has run. If
insufficient space is available, the core file is not saved.

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 441

Recovering the Device Directory
Damage to the /devices and /dev directories can occur if the driver crashes during
attach(9E). If either directory is damaged, you can rebuild the directory by booting
the system and running fsck(1M) to repair the damaged root file system. The root file
system can then be mounted. Re-create /dev and /devices by running
devfsadm(1M) and specifying the /devices directory on the mounted disk.

The following example shows how to repair a damaged root file system on a SPARC
system. In this example, the damaged disk is /dev/dsk/c0t3d0s0, and an alternate
boot disk is /dev/dsk/c0t1d0s0.

EXAMPLE 21–6 Recovering a Damaged Device Directory

ok boot disk1
[...]

Rebooting with command: boot kernel.test/unix
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@31,0:a File and \

args:
kernel/unix
SunOS Release 5.10 Version Generic 32-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.
...
fsck /dev/dsk/c0t3d0s0** /dev/dsk/c0t3d0s0
** Last Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
1478 files, 9922 used, 29261 free

(141 frags, 3640 blocks, 0.4% fragmentation)
mount /dev/dsk/c0t3d0s0 /mnt

devfsadm -r /mnt

Note – A fix to /devices and /dev can allow the system to boot while other parts of
the system are still corrupted. Such repairs are only a temporary fix to save
information, such as system crash dumps, before reinstalling the system.

442 Writing Device Drivers • January 2005

Debugging Tools
This section describes two debuggers that can be applied to device drivers:

� kmdb(1) kernel debugger – kmdb provides typical runtime debugger facilities,
such as breakpoints, watch points, and single-stepping. kmdb supersedes kadb,
which was available in previous releases. The commands that were previously
available from kadb are used in kmdb, in addition to new functionality. Where
kadb could only be loaded at boot time, kmdb can be loaded at any time. kmdb is
preferred for live, interactive debugging due to its execution controls.

� mdb(1) modular debugger – In contrast to kmdb, mdb has limited usefulness as a
real-time debugger but has rich facilities for postmortem debugging.

kmdb and mdb share the same user interface, for the most part. Many debugging
techniques can therefore be applied with the same commands in both tools. Both
debuggers support macros, dcmds, and dmods. A dcmd (pronounced dee-command) is
a routine in the debugger that can access any of the properties of the current target
program. A dcmd can be dynamically loaded at runtime. A dmod, which is short for
debugger module, is a package of dcmds that can be loaded to provide non-standard
behavior.

Both mdb and kmdb are backwards-compatible with legacy debuggers like adb and
kadb. mdb can execute all of the macros that are available to kmdb as well as any
legacy user-defined macros for adb. The standard 32–bit macro set can be found in
/usr/lib/adb and in /usr/platform/‘uname -i‘/lib/adb. 64-bit versions are
in /usr/lib/adb/sparcv9 and /usr/platform/‘uname
-i‘/lib/adb/sparcv9.

Postmortem Debugging
Postmortem analysis offers numerous advantages to driver developers. More than one
developer can examine a problem in parallel. Multiple instances of the debugger can
be used simultaneously on a single crash dump. The analysis can be performed offline
so that the crashed system can be returned to service, if possible. Postmortem analysis
enables the use of user-developed debugger functionality in the form of dmods.
Dmods can bundle functionality that would be too memory-intensive for real-time
debuggers, such as kmdb.

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 443

When a system panics while kmdb is loaded, control is passed to the debugger for
immediate investigation. If kmdb does not seem appropriate for analyzing the current
problem, a good strategy is to use ’:c’ to continue execution and save the crash dump.
When the system reboots, you can perform postmortem analysis with mdb on the
saved crash dump. This process is analogous to debugging an application crash from a
process core file.

Note – In earlier versions of the Solaris Operating System, adb(1) was the
recommended tool for postmortem analysis. In the Solaris 10 operating system, mdb(1)
is the recommended tool for postmortem analysis. The mdb() feature set surpasses
the set of commands from the legacy crash(1M) utility, which has been removed from
theSolaris 10 release.

Using the kmdb Kernel Debugger
kmdb is an interactive kernel debugger that provides the following capabilities:

� Control of kernel execution
� Inspection of the kernel state
� Live modifications to the code

This section assumes that you are already familiar with the kmdb debugger. The focus
in this section is on kmdb capabilities that are useful in device driver design. To learn
how to use kmdb in detail, refer to the kmdb(1) man page and to the Solaris Modular
Debugger Guide, Sun Microsystems, Inc., 2005. If you are familiar with kadb, refer to
the kadb(1M) man page for the major differences between kadb and kmdb.

The kmdb debugger can be loaded and unloaded at will. The complete instructions for
loading and unloading kmdb is in Solaris Modular Debugger Guide. For safety and
convenience, booting with an alternate kernel is highly encouraged. The boot process
is slightly different between the SPARC platform and the x86 platform, as described in
this section.

Note – By default, kmdb uses the CPU ID as the prompt when kmdb is running. In the
examples in this chapter [0] is used as the prompt unless otherwise noted.

Booting kmdb With an Alternate Kernel on the SPARC
Platform
Use either of the following commands to boot a SPARC system with both kmdb and an
alternate kernel:

444 Writing Device Drivers • January 2005

boot kmdb -D kernel.test/unix

boot kernel.test/unix -k

Booting kmdb With an Alternate Kernel on the x86
Platform
Use either of the following commands to boot an x86 system with both kmdb and an
alternate kernel:

b kmdb -D kernel.test/unix

b kernel.test/unix -k

Setting Breakpoints in kmdb

Breakpoints are set with the command bp and the location, as shown in the following
example.

EXAMPLE 21–7 Setting Standard Breakpoints in kmdb

[0]> myModule‘myBreakpointLocation::bp

If the target module has not been loaded, then an error message that indicates this
condition is displayed, and the breakpoint is not created. One solution to this situation
is to use a deferred breakpoint. A deferred breakpoint activates automatically when the
specified module is loaded.You set a deferred breakpoint by specifying the target
location after the bp command. The following example demonstrates a deferred
breakpoint.

EXAMPLE 21–8 Setting Deferred Breakpoints in kmdb

[0]>::bp myModule‘myBreakpointLocation

For more information on using breakpoints, see Solaris Modular Debugger Guide. You
can also get help by typing either of the following two lines:

> ::help bp

> ::bp dcmd

kmdb Macros for Driver Developers
kmdb(1M) supports macros that can be used to display kernel data structures. kmdb
macros can be displayed with $M. Macros are used in the form:

[address] $<macroname

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 445

Note – Neither the information displayed by these macros nor the format in which the
information is displayed, constitutes an interface. Therefore, the information and
format can change at any time.

The kmdb macros in the following table are particularly useful to developers of device
drivers. For convenience, legacy macro names are shown where applicable.

TABLE 21–1 kmdb Macros

Dcmd Legacy Macro Description

::devinfo devinfo

devinfo_brief

devinfo.prop

Print a summary of a device
node

::walk devinfo_parents devinfo.parent Walk the ancestors of a device
node

::walk devinfo_sibling devinfo.sibling Walk the siblings of a device
node

::minornodes devinfo.minor Print the minor nodes that
correspond to the given
device node

::major2name Print the name of a device that
is bound to a given device
node.

::devbindings Print the device nodes that are
bound to a given device node
or major number.

The ::devinfo dcmd displays a node state that can have one of the following values:

DS_ATTACHED The driver’s attach(9E) routine returned successfully.

DS_BOUND The node is bound to a driver, but the driver’s probe(9E)
routine has not yet been called.

DS_INITIALIZED The parent nexus has assigned a bus address for the driver. The
implementation-specific initializations have been completed.
The driver’s probe(9E) routine has not yet been called at this
point.

DS_LINKED The device node has been linked into the kernel’s device tree,
but the system has not yet found a driver for this node.

DS_PROBED The driver’s probe(9E) routine returned successfully.

446 Writing Device Drivers • January 2005

DS_READY The device is fully configured.

Using the mdb Modular Debugger
The mdb modular debugger can be applied to the following types of files:

� Live operating system components
� Operating system crash dumps
� User processes
� User process core dumps
� Object files

The modular debugger, mdb, provides sophisticated debugging support for analyzing
kernel problems. This section provides an overview of mdb features. For a more
complete discussion of mdb, refer to the Solaris Modular Debugger Guide.

Although mdb can be used to alter live kernel state, mdb lacks the kernel execution
control that is provided by kmdb. As a result kmdb is preferred for runtime debugging.
mdb is used more for static situations.

Note – The prompt for mdb is >.

Getting Started With the Modular Debugger
mdb provides an extensive programming API for implementing debugger modules so
that driver developers can implement custom debugging support. mdb also provides a
host of usability features, such as command-line editing, command history, an output
pager, and online help.

Note – The adb macros should no longer be used. That functionality has largely been
superseded by the dcmds in mdb.

mdb provides a rich set of modules and dcmds. With these tools, you can debug the
Solaris kernel, any associated modules, and device drivers. These facilities enable you
to do activities such as:

� Formulate complex debugging queries
� Locate all the memory allocated by a particular thread
� Print a visual picture of a kernel STREAM
� Determine what type of structure a particular address refers to
� Locate leaked memory blocks in the kernel

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 447

� Analyze memory to locate stack traces
� Assemble dcmds into modules called dmods for creating customized operations

To get started, you switch to the crash directory and type mdb and specify a system
crash dump, as illustrated in the following example.

EXAMPLE 21–9 Invoking mdb on a Crash Dump

% cd /var/crash/testsystem
% ls
bounds unix.0 vmcore.0
% mdb unix.0 vmcore.0
Loading modules: [unix krtld genunix ufs_log ip usba s1394 cpc nfs]
> ::status
debugging crash dump vmcore.0 (64-bit) from testsystem
operating system: 5.10 Generic (sun4u)
panic message: zero

dump content: kernel pages only

When mdb responds with the ’>’ prompt, you can run commands.

To examine the running kernel on a live system, you run mdb from the system prompt
as follows.

EXAMPLE 21–10 Invoking mdb on a Running Kernel

mdb -k
Loading modules: [unix krtld genunix ufs_log ip usba s1394 ptm cpc ipc nfs]
> ::status
debugging live kernel (64-bit) on testsystem

operating system: 5.10 Generic (sun4u)

Useful Debugging Tasks With kmdb and mdb
This section provides examples of useful debugging tasks. The tasks in this section can
be performed with either mdb or kmdb unless specifically noted. This section assumes
a basic knowledge of the use of kmdb and mdb. Note that the information presented
here is dependent on the type of system used. A Sun Blade™ 100 workstation running
the 64-bit kernel was used to produce these examples

Caution – Because irreversible destruction of data can result from modifying data in
kernel structures, you should exercise extreme caution. Never modify or rely on data
in structures that are not part of the Solaris DDI. See the Intro(9S) man page.

448 Writing Device Drivers • January 2005

Exploring System Registers With kmdb

kmdb can display machine registers as a group or individually. To display all registers
as a group, use $r as shown in the following example.

EXAMPLE 21–11 Reading All Registers on a SPARC Processor With kmdb

[0]: $r

g0 0 l0 0
g1 100130a4 debug_enter l1 edd00028
g2 10411c00 tsbmiss_area+0xe00 l2 10449c90
g3 10442000 ti_statetbl+0x1ba l3 1b
g4 3000061a004 l4 10474400 ecc_syndrome_tab+0x80
g5 0 l5 3b9aca00
g6 0 l6 0
g7 2a10001fd40 l7 0
o0 0 i0 0
o1 c i1 10449e50
o2 20 i2 0
o3 300006b2d08 i3 10
o4 0 i4 0
o5 0 i5 b0
sp 2a10001b451 fp 2a10001b521
o7 1001311c debug_enter+0x78 i7 1034bb24 zsa_xsint+0x2c4
y 0
tstate: 1604 (ccr=0x0, asi=0x0, pstate=0x16, cwp=0x4)
pstate: ag:0 ie:1 priv:1 am:0 pef:1 mm:0 tle:0 cle:0 mg:0 ig:0
winreg: cur:4 other:0 clean:7 cansave:1 canrest:5 wstate:14
tba 0x10000000
pc edd000d8 edd000d8: ta %icc,%g0 + 125

npc edd000dc edd000dc: nop

The debugger exports each register value to a variable with the same name as the
register. If you read the variable, the current value of the register is returned. If you
write to the variable, the value of the associated machine register is changed. The
following example changes the value of the %o0 register from 0 to 1 on an x86
machine.

EXAMPLE 21–12 Reading and Writing Registers on an x86 Machine With kmdb

[0]> <eax=K
c1e6e0f0

[0]> 0>eax
[0]> <eax=K

0

[0]> c1e6e0f0>eax

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 449

If you need to inspect the registers of a different processor, you can use the
::cpuregs dcmd. The ID of the processor to be examined can be supplied as either
the address to the dcmd or as the value of the -c option, as shown in the following
example.

EXAMPLE 21–13 Inspecting the Registers of a Different Processor

[0]> 0::cpuregs
%cs = 0x0158 %eax = 0xc1e6e0f0 kmdbmod‘kaif_dvec
%ds = 0x0160 %ebx = 0x00000000

[...]

The following example switches from processor 0 to processor 3 on a SPARC machine.
The %g3 register is inspected and then cleared. To confirm the new value, %g3 is read
again.

EXAMPLE 21–14 Retrieving the Value of an Individual Register From a Specified Processor

[0]> 3::switch
[3]> <g3=K

24
[3]> 0>g3
[3]> <g3

0

Detecting Kernel Memory Leaks
The ::findleaks dcmd provides powerful, efficient detection of memory leaks in
kernel crash dumps. The full set of kernel-memory debugging features need to be
enabled for ::findleaks to be effective. For more information, see “Setting
kmem_flags Debugging Flags” on page 438. Run ::findleaks during driver
development and testing to detect code that leaks memory, thus wasting kernel
resources. See “Debugging With the Kernel Memory Allocator” in the Solaris Modular
Debugger Guide for a complete discussion of ::findleaks.

Note – Code that leaks kernel memory can render the system vulnerable to
denial-of-service attacks.

Writing Debugger Commands With mdb

mdb provides a powerful API for implementing debugger facilities that you customize
to debug your driver. The Solaris Modular Debugger Guide explains the programming
API in detail.

450 Writing Device Drivers • January 2005

The SUNWmdbdm package installs sample mdb source code in the directory
/usr/demo/mdb. You can use mdb to automate lengthy debugging chores or help to
validate that your driver is behaving properly. You can also package your mdb
debugging modules with your driver product. With packaging, these facilities are
available to service personnel at a customer site.

Obtaining Kernel Data Structure Information
The Solaris kernel provides data type information in structures that can be inspected
with either kmdb or mdb.

Note – The kmdb and mdb dcmds can be used only with objects that contain
compressed symbolic debugging information that has been designed for use with mdb.
This information is currently available only for certain Solaris kernel modules. The
SUNWzlib package must be installed to process the symbolic debugging information.

The following example demonstrates how to display the data in the scsi_pkt
structure.

EXAMPLE 21–15 Displaying Kernel Data Structures With a Debugger

> 7079ceb0::print -t ’struct scsi_pkt’
{

opaque_t pkt_ha_private = 0x7079ce20
struct scsi_address pkt_address = {

struct scsi_hba_tran *a_hba_tran = 0x70175e68
ushort_t a_target = 0x6
uchar_t a_lun = 0
uchar_t a_sublun = 0

}
opaque_t pkt_private = 0x708db4d0
int (*)() *pkt_comp = sd_intr
uint_t pkt_flags = 0
int pkt_time = 0x78
uchar_t *pkt_scbp = 0x7079ce74
uchar_t *pkt_cdbp = 0x7079ce64
ssize_t pkt_resid = 0
uint_t pkt_state = 0x37
uint_t pkt_statistics = 0
uchar_t pkt_reason = 0

}

The size of a data structure can be useful in debugging. Structure size is obtained with
the ::sizeof dcmd, as shown in the following example.

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 451

EXAMPLE 21–16 Displaying the Size of a Kernel Data Structure

> ::sizeof struct scsi_pkt

sizeof (struct scsi_pkt) = 0x58

The address of a specific member within a structure is also useful in debugging.
Several methods are available for determining a member’s address.

Use the ::offsetof command to obtain the offset for a given member of a structure,
as in the following example.

EXAMPLE 21–17 Displaying the Offset to a Kernel Data Structure

> ::offsetof struct scsi_pkt pkt_state

offsetof (struct pkt_state) = 0x48

Use the ::print command can be used with the -a option to display the addresses
of all members of a structure, as in the following example.

EXAMPLE 21–18 Displaying the Relative Addresses of a Kernel Data Structure

> ::print -a struct scsi_pkt
{

0 pkt_ha_private
8 pkt_address {
[...]

}
18 pkt_private
[...]

}

If an address is specified with ::print in conjunction with the -a option, the
absolute address for each member is displayed.

EXAMPLE 21–19 Displaying the Absolute Addresses of a Kernel Data Structure

> 10000000::print -a struct scsi_pkt
{

10000000 pkt_ha_private
10000008 pkt_address {
[...]

}
10000018 pkt_private
[...]

}

452 Writing Device Drivers • January 2005

The ::print, ::sizeof and ::offsetof facilities enable you to debug problems
when your driver interacts with the Solaris kernel.

Caution – This facility provides access to raw kernel data structures. You can examine
any structure whether or not that structure appears as part of the DDI. Therefore, you
should refrain from relying on any data structure that is not explicitly part of the DDI.

Note – These dcmds should be used only with objects that contain compressed
symbolic debugging information that has been designed for use with mdb. Symbolic
debugging information is currently available for certain Solaris kernel modules only.
The SUNWzlib (32-bit) or SUNWzlibx (64-bit) decompression software must be
installed in order to process the symbolic debugging information. kmdb can process
symbolic type data with or without the SUNWzlib* packages.

Obtaining Device Tree Information
mdb provides the ::prtconf dcmd for displaying the kernel device tree. The output
of the ::prtconf dcmd is similar to the output of the prtconf(1M) command.

EXAMPLE 21–20 Using the ::prtconf Dcmd

> ::prtconf
300015d3e08 SUNW,Sun-Blade-100

300015d3c28 packages (driver not attached)
300015d3868 SUNW,builtin-drivers (driver not attached)
300015d3688 deblocker (driver not attached)
300015d34a8 disk-label (driver not attached)
300015d32c8 terminal-emulator (driver not attached)
300015d30e8 obp-tftp (driver not attached)
300015d2f08 dropins (driver not attached)
300015d2d28 kbd-translator (driver not attached)
300015d2b48 ufs-file-system (driver not attached)

300015d3a48 chosen (driver not attached)
300015d2968 openprom (driver not attached)

...

You can display the node by using a macro, such as the ::devinfo dcmd, as shown
in the following example.

EXAMPLE 21–21 Displaying Device Information for an Individual Node

> 300015d3e08::devinfo
300015d3e08 SUNW,Sun-Blade-100

System properties at 0x300015abdc0:

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 453

EXAMPLE 21–21 Displaying Device Information for an Individual Node (Continued)

name=’relative-addressing’ type=int items=1
value=00000001

name=’MMU_PAGEOFFSET’ type=int items=1
value=00001fff

name=’MMU_PAGESIZE’ type=int items=1
value=00002000

name=’PAGESIZE’ type=int items=1
value=00002000

Driver properties at 0x300015abe00:
name=’pm-hardware-state’ type=string items=1

value=’no-suspend-resume’

Use ::prtconf to see where your driver has attached in the device tree, and to
display device properties. You can also specify the verbose (-v) flag to ::prtconf to
display the properties for each device node, as follows.

EXAMPLE 21–22 Using the ::prtconf Dcmd in Verbose Mode

> ::prtconf -v
DEVINFO NAME
300015d3e08 SUNW,Sun-Blade-100

System properties at 0x300015abdc0:
name=’relative-addressing’ type=int items=1

value=00000001
name=’MMU_PAGEOFFSET’ type=int items=1

value=00001fff
name=’MMU_PAGESIZE’ type=int items=1

value=00002000
name=’PAGESIZE’ type=int items=1

value=00002000
Driver properties at 0x300015abe00:

name=’pm-hardware-state’ type=string items=1
value=’no-suspend-resume’

[...]

300015ce798 pci10b9,5229, instance #0
Driver properties at 0x300015ab980:

name=’target2-dcd-options’ type=any items=4
value=00.00.00.a4

name=’target1-dcd-options’ type=any items=4
value=00.00.00.a2

name=’target0-dcd-options’ type=any items=4
value=00.00.00.a4

[...]

Another way to locate instances of your driver is the ::devbindings dcmd. Given a
driver name, the command displays a list of all instances of the named driver as
demonstrated in the following example.

454 Writing Device Drivers • January 2005

EXAMPLE 21–23 Using the ::devbindings Dcmd to Locate Driver Instances

> ::devbindings dad
300015ce3d8 ide-disk (driver not attached)
300015c9a60 dad, instance #0

System properties at 0x300015ab400:
name=’lun’ type=int items=1

value=00000000
name=’target’ type=int items=1

value=00000000
name=’class_prop’ type=string items=1

value=’ata’
name=’type’ type=string items=1

value=’ata’
name=’class’ type=string items=1

value=’dada’
[...]

300015c9880 dad, instance #1
System properties at 0x300015ab080:

name=’lun’ type=int items=1
value=00000000

name=’target’ type=int items=1
value=00000002

name=’class_prop’ type=string items=1
value=’ata’

name=’type’ type=string items=1
value=’ata’

name=’class’ type=string items=1
value=’dada’

...

Retrieving Driver Soft State Information
A common problem when debugging a driver is retrieving the soft state for a particular
driver instance. The soft state is allocated with the ddi_soft_state_zalloc(9F)
routine. The driver can obtain the soft state through ddi_get_soft_state(9F). The
name of the soft state pointer is the first argument to ddi_soft_state_init(9F)).
With the name, you can use mdb to retrieve the soft state for a particular driver
instance through the ::softstate dcmd:

> *bst_state::softstate 0x3

702b7578

In this case, ::softstate is used to fetch the soft state for instance 3 of the bst
sample driver. This pointer references a bst_soft structure that is used by the driver
to track state for this instance.

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 455

Modifying Kernel Variables
You can use both kmdb and mdb to modify kernel variables or other kernel state.
Kernel state modification with mdb should be done with care, because mdb does not
stop the kernel before making modifications. Groups of modifications can be made
atomically by using kmdb, because kmdb stops the kernel before allowing access by
the user. mdb is capable of making single atomic modifications only.

Be sure to use the proper format specifier to perform the modification. The formats
are:

� w – Writes the lowest two bytes of the value of each expression to the target
beginning at the location specified by dot

� W – Writes the lowest 4 bytes of the value of each expression to the target beginning
at the location specified by dot

� Z – Write the complete 8 bytes of the value of each expression to the target
beginning at the location specified by dot

Use the ::sizeof dcmd to determine the size of the variable to be modified.

The following example overwrites the value of moddebug with the value 0x80000000.

EXAMPLE 21–24 Modifying a Kernel Variable With a Debugger

> moddebug/W 0x80000000

moddebug: 0 = 0x80000000

Tuning Drivers
The Solaris OS provides kernel statistics structures so that you can implement
counters for your driver. The DTrace facility lets you analyze performance and
experiment in real time. This section presents the following topics on device
performance:

� “Kernel Statistics” on page 457 – The Solaris OS provides a set of data structures
and functions for capturing performance statistics in the kernel. Kernel statistics
enable your driver to export continuous statistics while the system is running. The
structure for kernel statistics is referred to as a kstat. The kstat data is handled
programmatically by using the kstat functions.

� “DTrace for Dynamic Instrumentation” on page 459 – DTrace lets you add
instrumentation to your driver dynamically so that you can perform tasks like
analyzing the system and measuring performance. DTrace takes advantages of
predefined kstat structures.

456 Writing Device Drivers • January 2005

Kernel Statistics
To assist in performance tuning, the Solaris kernel provides the kstat(3KSTAT)
facility. The kstat facility provides a set of functions and data structures for device
drivers and other kernel modules to export module-specific kernel statistics.

A kstat is a data structure for recording quantifiable aspects of a device’s usage. A
kstat is stored as a NULL-terminated linked list. Each kstat has a common header
section and a type-specific data section. The header section is defined by the kstat_t
structure.

kstat Members
The members of the kstat structure are:

ks_class[KSTAT_STRLEN] Categorizes the kstat type as bus, controller,
device_error, disk, hat, kmem_cache, kstat,
misc, net, nfs, pages, partition, rps, ufs,
vm, or vmem.

ks_crtime Time at which the kstat was created. ks_crtime
is commonly used in calculating rates of various
counters.

ks_data Points to the data section for the kstat.

ks_data_size Total size of the data section in bytes.

ks_instance The instance of the kernel module that created this
kstat. ks_instance is combined with
ks_module and ks_name to give the kstat a
unique, meaningful name.

ks_kid Unique ID for kstat.

ks_module[KSTAT_STRLEN] Identifies the kernel module that created this
kstat. ks_module is combined with
ks_instance and ks_name to give the kstat a
unique, meaningful name. KSTAT_STRLEN sets the
maximum length of ks_module.

ks_name[KSTAT_STRLEN] A name assigned to the kstat in combination
with ks_module and ks_instance.
KSTAT_STRLEN sets the maximum length of
ks_module.

ks_ndata Indicates the number of data records for those
kstat types that support multiple records:
KSTAT_TYPE_RAW, KSTAT_TYPE_NAMED, and
KSTAT_TYPE_TIMER

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 457

ks_next Points to next kstat in chain.

ks_resv A reserved field.

ks_snaptime The timestamp for the last data snapshot, useful in
calculating rates.

ks_type The data type, which can be KSTAT_TYPE_RAW for
binary data, KSTAT_TYPE_NAMED for name/value
pairs, KSTAT_TYPE_INTR for interrupt statistics,
KSTAT_TYPE_IO for I/O statistics, and
KSTAT_TYPE_TIMER for event timers.

kstat Structures
The structures for the different kinds of kstat structures:

kstat(9S) Each kernel statistic (kstat) that is exported by device drivers
consists of a header section and a data section. The kstat
structure is the header portion of the statistic.

kstat_intr(9S) Structure for interrupt kstats. The types of interrupts are:

� Hard interrupt – Sourced from the hardware device itself
� Soft interrupt – Induced by the system through the use of

some system interrupt source
� Watchdog interrupt – Induced by a periodic timer call
� Spurious interrupt – An interrupt entry point was entered

but there was no interrupt to service
� Multiple service – An interrupt was detected and serviced

just prior to returning from any of the other types

Drivers generally report only claimed hard interrupts and soft
interrupts from their handlers, but measurement of the
spurious class of interrupts is useful for auto-vectored devices
to locate any interrupt latency problems in a particular system
configuration. Devices that have more than one interrupt of the
same type should use multiple structures.

kstat_io(9S) Structure for I/O kstats.

kstat_named(9S) Structure for named kstats. A named kstat is an array of
name-value pairs. These pairs are kept in the kstat_named
structure.

kstat Functions
The functions for using kstats are:

458 Writing Device Drivers • January 2005

kstat_create(9F)
Allocate and initialize a kstat(9S) structure.

kstat_delete(9F)
Remove a kstat from the system.

kstat_install(9F)
Add a fully initialized kstat to the system.

kstat_named_init(9F), kstat_named_setstr(9F)
Initialize a named kstat. kstat_named_setstr() associates str, a string, with
the named kstat pointer.

kstat_queue(9F)
A large number of I/O subsystems have at least two basic queues of transactions to
be managed. One queue is for transactions that have been accepted for processing
but for which processing has yet to begin. The other queue is for transactions that
are actively being processed but not yet done. For this reason, two cumulative time
statistics are kept: wait time and run time. Wait time is prior to service. Run time is
during the service. The kstat_queue() family of functions manages these times
based on the transitions between the driver wait queue and run queue:

� kstat_runq_back_to_waitq(9F)
� kstat_runq_enter(9F)
� kstat_runq_exit(9F)
� kstat_waitq_enter(9F)
� kstat_waitq_exit(9F)
� kstat_waitq_to_runq(9F)

DTrace for Dynamic Instrumentation
DTrace is a comprehensive dynamic tracing facility for examining the behavior of both
user programs and the operating system itself. With DTrace, you can collect data at
strategic locations in your environment, referred to as probes. DTrace lets you record
such data as stack traces, timestamps, the arguments to a function, or simply counts of
how often the probe fires. Because DTrace enables you to insert probes dynamically.
You do not need to recompile your code. For more information on DTrace, see Solaris
Dynamic Tracing Guide.

Chapter 21 • Debugging, Testing, and Tuning Device Drivers 459

460 Writing Device Drivers • January 2005

CHAPTER 22

Recommended Coding Practices

This chapter describes how to write drivers that are robust. Drivers that are written in
accordance with the guidelines that are discussed in this chapter are easier to debug.
The recommended practices also protect the system from hardware and software
faults.

This chapter provides information on the following subjects:

� “Debugging Preparation Techniques” on page 461
� “Defensive Programming” on page 464
� “Declaring a Variable Volatile” on page 469
� “Serviceability” on page 471

Debugging Preparation Techniques
Driver code is more difficult to debug than user programs because:

� The driver interacts directly with the hardware

� The driver operates without the protection of the operating system that is available
to user processes

Be sure to build debugging support into your driver. This support facilitates both
maintenance work and future development.

Use cmn_err() to Log Driver Activity
Use the cmn_err() function to print messages to the console from within the device
driver. cmn_err() is similar to printf(3C), but provides additional format
characters, such as %b, to print device register bits. See the cmn_err(9F) man page for
more information.

461

Note – To ensure that the driver is DDI-compliant, use cmn_err() instead of
printf() and uprintf().

Use ASSERT() to Catch Invalid Assumptions
Assertions are an extremely valuable form of active documentation. The syntax for
ASSERT(9F) is as follows:

void ASSERT(EXPRESSION)

ASSERT() is a macro that is used to halt the execution of the kernel if a condition
expected to be true is actually false. ASSERT provides a way for the programmer to
validate the assumptions made by a piece of code.

The ASSERT() macro is defined only when the DEBUG compilation symbol is defined.
However, when DEBUG is not defined, the ASSERT() macro has no effect.

For example, if a driver pointer should be non-NULL and is not, the following
assertion can be used to check the code:

ASSERT(ptr != NULL);

Assume that the driver has been compiled with DEBUG. If the assertion fails, a panic
message is printed to the console as follows:

panic: assertion failed: ptr != NULL, file: driver.c, line: 56

Note – Because ASSERT(9F) uses the DEBUG compilation symbol, any conditional
debugging code should also use DEBUG.

Use mutex_owned() to Validate and Document
Locking Requirements
The syntax for mutex_owned(9F) is as follows:

int mutex_owned(kmutex_t *mp);

A significant portion of driver development involves properly handling multiple
threads. Comments should always be used when a mutex is acquired. Comments can
be even more useful when an apparently necessary mutex is not acquired. To
determine whether a mutex is held by a thread, use mutex_owned() within
ASSERT(9F):

void helper(void)
{

462 Writing Device Drivers • January 2005

/* this routine should always be called with xsp’s mutex held */
ASSERT(mutex_owned(&xsp->mu));
[...]

}

Note – mutex_owned() is only valid within ASSERT() macros. You should use
mutex_owned() to control the behavior of a driver.

Use Conditional Compilation to Toggle Costly
Debugging Features
You can insert code for debugging into a driver through conditional compiles by using
a preprocessor symbol such as DEBUG or by using a global variable. With conditional
compilation, unnecessary code can be removed in the production driver. Use a
variable to set the amount of debugging output at runtime. The output can be
specified by setting a debugging level at runtime with an ioctl or through a
debugger. Commonly, these two methods are combined.

The following example relies on the compiler to remove unreachable code, in this case,
the code following the always-false test of zero.The example also provides a local
variable that can be set in /etc/system or patched by a debugger.

#ifdef DEBUG
comments on values of xxdebug and what they do
static int xxdebug;
#define dcmn_err if (xxdebug) cmn_err
#else
#define dcmn_err if (0) cmn_err
#endif
...

dcmn_err(CE_NOTE, "Error!\n");

This method handles the fact that cmn_err(9F) has a variable number of arguments.
Another method relies on the fact that the macro has one argument, a parenthesized
argument list for cmn_err(9F). The macro removes this argument. This macro also
removes the reliance on the optimizer by expanding the macro to nothing if DEBUG is
not defined.

#ifdef DEBUG
comments on values of xxdebug and what they do

static int xxdebug;
#define dcmn_err(X) if (xxdebug) cmn_err X
#else
#define dcmn_err(X) /* nothing */
#endif

[...]
/* Note:double parentheses are required when using dcmn_err. */

dcmn_err((CE_NOTE, "Error!"));

Chapter 22 • Recommended Coding Practices 463

You can extend this technique in many ways. One way is to specify different messages
from cmn_err(9F), depending on the value of xxdebug. However, in such a case, you
must be careful not to obscure the code with too much debugging information.

Another common scheme is to write an xxlog() function, which uses vsprintf(9F)
or vcmn_err(9F) to handle variable argument lists.

Defensive Programming
The following defensive programming techniques can help avoid the following
problems: system panics or hangs, waste of system resources, or the spread of
corrupted data.

All Solaris drivers should abide by these coding practices:

� Each piece of hardware should be controlled by a separate instance of the device
driver. (See “Device Configuration Concepts” on page 94.)

� Programmed I/O (PIO) must be performed only through the DDI access functions,
using the appropriate data access handle. (See Chapter 7.)

� The device driver must assume that data that is received from the device might be
corrupted. The driver must check the integrity of the data before the data is used.

� The driver must avoid releasing bad data to the rest of the system.

� Use only documented DDI functions and interfaces in your driver.

� The driver must ensure that the device writes only into pages of memory in the
DMA buffers (DDI_DMA_READ) that are controlled entirely by the driver. This
technique prevents a DMA fault from corrupting an arbitrary part of the system’s
main memory.

� The device driver must not be an unlimited drain on system resources if the device
locks up. The driver should time out if a device claims to be continuously busy.
The driver should also detect a pathological (stuck) interrupt request and take
appropriate action.

� The device driver must support hotplugging in the Solaris OS.

� The device driver must use callbacks instead of waiting on resources.

� The driver must free up resources after a fault. For example, the system must be
able to close all minor devices and detach driver instances even after the hardware
fails.

464 Writing Device Drivers • January 2005

Using Separate Device Driver Instances
The Solaris kernel allows multiple instances of a driver. Each instance has its own data
space but shares the text and some global data with other instances. The device is
managed on a per-instance basis. Drivers should use a separate instance for each piece
of hardware unless the driver is designed to handle any failover internally. Multiple
instances of a driver per slot can occur, for example, multifunction cards.

Exclusive Use of DDI Access Handles
All PIO access by a driver must use Solaris DDI access functions from the following
families of routines:

� ddi_getX
� ddi_putX
� ddi_rep_getX
� ddi_rep_putX

The driver should not directly access the mapped registers by the address that is
returned from ddi_regs_map_setup(9F). Avoid the ddi_peek(9F) and
ddi_poke(9F) routines because these routines do not use access handles.

The DDI access mechanism is important because DDI access provides an opportunity
to control how data is read into the kernel.

Detecting Corrupted Data
The following sections describe where data corruption can occur, with a focus on how
to detect corruption.

Corruption of Device Management and Control Data
The driver should assume that any data obtained from the device, whether by PIO or
DMA, could have been corrupted. In particular, extreme care should be taken with
pointers, memory offsets, and array indexes that are based on data from the device.
Such values can be malignant, in that these values can cause a kernel panic if
dereferenced. All such values should be checked for range and alignment (if required)
before use.

Even a pointer that is not malignant can still be misleading. For example, such a
pointer can to a valid but not correct instance of an object. Where possible, the driver
should cross-check the pointer with the object to which it is pointing, or otherwise
validate the data obtained through that pointer.

Chapter 22 • Recommended Coding Practices 465

Other types of data can also be misleading, such as packet lengths, status words, or
channel IDs. These data types should be checked to the extent possible. A packet
length can be range-checked to ensure that the length is neither negative nor larger
than the containing buffer. A status word can be checked for ”impossible” bits. A
channel ID can be matched against a list of valid IDs.

Where a value is used to identify a stream, the driver must ensure that the stream still
exists. The asynchronous nature of processing STREAMS means that a stream can be
dismantled while device interrupts are still outstanding.

The driver should not reread data from the device. The data should be read once,
validated, and stored in the driver’s local state. This technique avoids the hazard of
data that is correct when initially read, but is incorrect when reread later.

The driver should also ensure that all loops are bounded. For example, a device that
returns a continuous BUSY status should not be able to lock up the entire system.

Corruption of Received Data
Device errors can result in corrupted data being placed in receive buffers. Such
corruption is indistinguishable from corruption that occurs beyond the domain of the
device, for example, within a network. Typically, existing software is already in place
to handle such corruption. One example is the integrity checks at the transport layer of
a protocol stack. Another example is integrity checks within the application that uses
the device.

If the received data is not to be checked for integrity at a higher layer, the data can be
integrity-checked within the driver itself. Methods of detecting corruption in received
data are typically device-specific, that is, checksums, CRC, and so forth.

DMA Isolation
A defective device might initiate an improper DMA transfer over the bus. This data
transfer could corrupt good data that was previously delivered. A device that fails
might generate a corrupt address that can contaminate memory that does not even
belong to its own driver.

In systems with an IOMMU, a device can write only to pages mapped as writable for
DMA. Therefore, such pages should be owned solely by one driver instance. These
pages should not be shared with any other kernel structure. While the page in
question is mapped as writable for DMA, the driver should be suspicious of data in
that page. The page must be unmapped from the IOMMU before the page is passed
beyond the driver, and before any validation of the data.

You can use ddi_umem_alloc(9F) to guarantee that a whole aligned page is
allocated, or allocate multiple pages and ignore the memory below the first page
boundary. You can find the size of an IOMMU page by using ddi_ptob(9F).

466 Writing Device Drivers • January 2005

Alternatively, the driver can choose to copy the data into a safe part of memory before
processing it. If this is done, the data must first be synchronized using
ddi_dma_sync(9F).

Calls to ddi_dma_sync(9F) should specify SYNC_FOR_DEV before using DMA to
transfer data to a device, and SYNC_FOR_CPU after using DMA to transfer data from
the device to memory.

On some PCI-based systems with an IOMMU, devices can use PCI dual address cycles
(64-bit addresses) to bypass the IOMMU. This capability gives the device the potential
to corrupt any region of main memory. Device drivers must not attempt to use such a
mode and should disable it.

Handling Stuck Interrupts
The driver must identify stuck interrupts because a persistently asserted interrupt
severely affects system performance, almost certainly stalling a single-processor
machine.

Sometimes the driver might have difficulty in identifying a particular interrupt as
invalid. For network drivers, if a receive interrupt is indicated but no new buffers have
been made available, no work was needed. When this situation is an isolated
occurrence, it is not a problem, as the actual work might already have been completed
by another routine, for example, read service.

On the other hand, continuous interrupts with no work for the driver to process can
indicate a stuck interrupt line. For this reason, all platforms allow a number of
apparently invalid interrupts to occur before taking defensive action.

While appearing to have work to do, a hung device might be failing to update its
buffer descriptors. The driver should defend against such repetitive requests.

In some cases, platform–specific bus drivers might be capable of identifying a
persistently unclaimed interrupt and can disable the offending device. However, this
relies on the driver’s ability to identify the valid interrupts and return the appropriate
value. The driver should therefore return a DDI_INTR_UNCLAIMED result unless the
driver detects that the device legitimately asserted an interrupt, that is, the device
actually requires the driver to do some useful work.

The legitimacy of other, more incidental, interrupts is much harder to certify. An
interrupt-expected flag is a useful tool for evaluating whether an interrupt is valid.
Consider an interrupt such as descriptor free, which can be generated if all the device’s
descriptors had been previously allocated. If the driver detects that it has taken the last
descriptor from the card, it can set an interrupt-expected flag. If this flag is not set
when the associated interrupt is delivered, the interrupt is suspicious.

Chapter 22 • Recommended Coding Practices 467

Some informative interrupts might not be predictable, such as one indicating that a
medium has become disconnected or frame sync has been lost. The easiest method of
detecting whether such an interrupt is stuck is to mask this particular source on first
occurrence until the next polling cycle.

If the interrupt occurs again while disabled, the interrupt should be considered false.
Some devices have interrupt status bits that can be read even if the mask register has
disabled the associated source and might not be causing the interrupt. Driver
designers can devise more appropriate algorithms specific to their devices.

Avoid looping on interrupt status bits indefinitely. Break such loops if none of the
status bits set at the start of a pass requires any real work.

Additional Programming Considerations
In addition to the requirements discussed in the previous sections, the driver
developer must consider a few other issues, such as:

� Thread interaction
� Threats from top-down requests
� Adaptive strategies

Thread Interaction
Kernel panics in a device driver are often caused by unexpected interaction of kernel
threads after a device failure. When a device fails, threads can interact in ways that the
designer had not anticipated.

If processing routines terminate early, the condition variable waiters are blocked
because an expected signal is never given. Attempting to inform other modules of the
failure or handling unanticipated callbacks can result in undesirable thread
interactions. Consider the sequence of mutex acquisition and relinquishing that can
occur during device failures.

Threads that originate in an upstream STREAMS module can run into unfortunate
paradoxes if used to return to that module unexpectedly. You might use alternative
threads to handle exception messages. For instance, a wput procedure might use a
read-side service routine to communicate an M_ERROR, rather than handling the error
directly with a read-side putnext.

A failing STREAMS device that cannot be quiesced during close because of a fault can
generate an interrupt after the stream has been dismantled. The interrupt handler
must not attempt to use a stale stream pointer to try to process the message.

468 Writing Device Drivers • January 2005

Threats From Top-Down Requests
While protecting the system from defective hardware, the driver designer also needs
to protect against driver misuse. Although the driver can assume that the kernel
infrastructure is always correct (a trusted core), user requests passed to it can be
potentially destructive.

For example, a user can request an action to be performed upon a user-supplied data
block (M_IOCTL) that is smaller than the block size that is indicated in the control part
of the message. The driver should never trust a user application.

The design should consider the construction of each type of ioctl that it can receive
with a view to the potential harm that it could cause. The driver should make checks
to be sure that it does not process malformed ioctls.

Adaptive Strategies
A driver can continue to provide service with faulty hardware, attempting to work
around the identified problem by using an alternative strategy for accessing the
device. Given that broken hardware is unpredictable and given the risk associated
with additional design complexity, adaptive strategies are not always wise. At most,
these strategies should be limited to periodic interrupt polling and retry attempts.
Periodically retrying the device lets the driver know when a device has recovered.
Periodic polling can control the interrupt mechanism after a driver has been forced to
disable interrupts.

Ideally, a system always has an alternative device to provide a vital system service.
Service multiplexors in kernel or user space offer the best method of maintaining
system services when a device fails. Such practices are beyond the scope of this
chapter.

Declaring a Variable Volatile
volatile is a keyword that must be applied when declaring any variable that will
reference a device register. Without the use of volatile, the compile-time optimizer
can inadvertently delete important accesses. Neglecting to use volatile might result
in bugs that are difficult to track down.

The correct use of volatile is necessary to prevent elusive bugs. The volatile
keyword instructs the compiler to use exact semantics for the declared objects, in
particular, not to remove or reorder accesses to the object. Two instances where device
drivers must use the volatile qualifier are:

� When data refers to an external hardware device register, that is, memory that has
side effects other than just storage. Note, however, that if the DDI data access
functions are used to access device registers, you do not have to use volatile.

Chapter 22 • Recommended Coding Practices 469

� When data refers to global memory that is accessible by more than one thread, that
is not protected by locks, and that relies on the sequencing of memory accesses.
Using volatileconsumes fewer resources than using lock.

The following example uses volatile. A busy flag is used to prevent a thread from
continuing while the device is busy and the flag is not protected by a lock:

while (busy) {
/* do something else */

}

The testing thread will continue when another thread turns off the busy flag:

busy = 0;

Because busy is accessed frequently in the testing thread, the compiler can potentially
optimize the test by placing the value of busy in a register and test the contents of the
register without reading the value of busy in memory before every test. The testing
thread would never see busy change and the other thread would only change the
value of busy in memory, resulting in deadlock. Declaring the busy flag as volatile
forces its value to be read before each test.

Note – An alternative to the busy flag is to use a condition variable. See “Condition
Variables in Thread Synchronization” on page 66.

When using the volatile qualifier, avoid the risk of accidental omission. For
example, the following code

struct device_reg {
volatile uint8_t csr;
volatile uint8_t data;
};

struct device_reg *regp;

is preferable to the next example:

struct device_reg {
uint8_t csr;
uint8_t data;
};

volatile struct device_reg *regp;

Although the two examples are functionally equivalent, the second one requires the
writer to ensure that volatile is used in every declaration of type struct
device_reg. The first example results in the data being treated as volatile in all
declarations and is therefore preferred. As mentioned above, using the DDI data
access functions to access device registers makes qualifying variables as volatile
unnecessary.

470 Writing Device Drivers • January 2005

Serviceability
To ensure serviceability, the driver must be enabled to take the following actions:

� Detect faulty devices and report the fault
� Remove a device as supported by the Solaris hot-plug model
� Add a new device as supported by the Solaris hot-plug model
� Perform periodic health checks to enable the detection of latent faults

Periodic Health Checks
A latent fault is one that does not show itself until some other action occurs. For
example, a hardware failure occurring in a device that is a cold standby could remain
undetected until a fault occurs on the master device. At this point, the system now
contains two defective devices and might be unable to continue operation.

Latent faults that are allowed to remain undetected typically cause system failure
eventually. Without latent fault checking, the overall availability of a redundant
system is jeopardized. To avoid this situation, a device driver must detect latent faults
and report them in the same way as other faults.

You should provide the driver with a mechanism for making periodic health checks
on the device. In a fault-tolerant situation where the device can be the secondary or
failover device, early detection of a failed secondary device is essential to ensure that
the secondary device can be repaired or replaced before any failure in the primary
device occurs.

Periodic health checks can be used to perform the following activities:

� Check any register or memory location on the device whose value might have been
altered since the last poll.

Features of a device that typically exhibit deterministic behavior include heartbeat
semaphores, device timers (for example, local lbolt used by download), and
event counters. Reading an updated predictable value from the device gives a
degree of confidence that things are proceeding satisfactorily.

� Timestamp outgoing requests such as transmit blocks or commands that are issued
by the driver.

The periodic health check can look for any suspect requests that have not
completed.

� Initiate an action on the device that should be completed before the next scheduled
check.

If this action is an interrupt, this check is an ideal way to ensure that the device’s
circuitry can deliver an interrupt.

Chapter 22 • Recommended Coding Practices 471

472 Writing Device Drivers • January 2005

PART IV Appendixes

The appendixes provide the following background material:

� Appendix A discusses multiplatform hardware issues for device drivers.

� Appendix B provides tables of kernel functions for device drivers. Deprecated
functions are indicated as well.

� Appendix C provides guidelines for updating a device driver to run in a 64-bit
environment.

473

474 Writing Device Drivers • January 2005

APPENDIX A

Hardware Overview

This appendix discusses general issues about hardware that is capable of supporting
the Solaris 10 Operating System. The discussion includes the processor, bus
architectures, and memory models that are supported by the Solaris 10 OS. Various
device issues and the PROM used in Sun platforms are also covered.

Note – The material in this appendix is for informational purposes only. This
information might be of use during driver debugging. However, many of these
implementation details are hidden from device drivers by the DDI/DKI interfaces.

This appendix provides information on the following subjects:

� “SPARC Processor Issues” on page 475
� “x86 Processor Issues” on page 477
� “Endianness” on page 478
� “Store Buffers” on page 479
� “System Memory Model” on page 480
� “Bus Architectures” on page 481
� “Bus Specifics” on page 481
� “Device Issues” on page 487
� “PROM on SPARC Machines” on page 488

SPARC Processor Issues
This section describes a number of SPARC processor-specific topics such as data
alignment, byte ordering, register windows, and availability of floating-point
instructions. For information on x86 processor-specific topics, see “x86 Processor
Issues” on page 477.

475

Note – Drivers should never perform floating-point operations, because these
operations are not supported in the kernel.

SPARC Data Alignment
All quantities must be aligned on their natural boundaries, using standard C data
types:

� short integers are aligned on 16-bit boundaries.

� int integers are aligned on 32-bit boundaries.

� long integers are aligned on either 32-bit boundaries or 64-bit boundaries,
depending on whether the data model of the kernel is 64-bit or 32-bit. For
information on data models, see Appendix C.

� long long integers are aligned on 64-bit boundaries.

Usually, the compiler handles any alignment issues. However, driver writers are more
likely to be concerned about alignment because the proper data types must be used to
access the devices. Because device registers are commonly accessed through a pointer
reference, drivers must ensure that pointers are properly aligned when accessing the
device.

Member Alignment in SPARC Structures
Because of the data alignment restrictions imposed by the SPARC processor, C
structures also have alignment requirements. Structure alignment requirements are
imposed by the most strictly aligned structure component. For example, a structure
containing only characters has no alignment restrictions, while a structure containing a
long long member must be constructed to guarantee that this member falls on a
64-bit boundary.

SPARC Byte Ordering
The SPARC processor uses big-endian byte ordering. The most significant byte (MSB) of
an integer is stored at the lowest address of the integer. The least significant byte is
stored at the highest address for words in this processor. For example, byte 63 is the
least significant byte for 64–bit processors.

476 Writing Device Drivers • January 2005

byte 0 byte 1 byte 2 byte 3

MSB LSB

SPARC Register Windows
SPARC processors use register windows. Each register window consists of eight in
registers, eight local registers, eight out registers, and eight global registers. Out
registers are the in registers for the next window. The number of register windows
ranges from 2 to 32, depending on the processor implementation.

Because drivers are normally written in C, the compiler usually hides the fact that
register windows are used. However, you might have to use register windows when
debugging the driver.

SPARC Multiply and Divide Instructions
The Version 7 SPARC processors do not have multiply or divide instructions. The
multiply and divide instructions are emulated in software. Because a driver might run
on a Version 7, Version 8, or Version 9 processor, avoid intensive integer multiplication
and division. Instead, use bitwise left and right shifts to multiply and divide by
powers of two.

The SPARC Architecture Manual, Version 9, contains more specific information on the
SPARC CPU. The SPARC Compliance Definition, Version 2.4, contains details of the
application binary interface (ABI) for SPARC V9. The manual describes the 32–bit
SPARC V8 ABI and the 64–bit SPARC V9 ABI. You can obtain this document from
SPARC International at http://www.sparc.com.

x86 Processor Issues
Data types have no alignment restrictions. However, extra memory cycles might be
required for the x86 processor to properly handle misaligned data transfers.

Note – Drivers should not perform floating-point operations, as these operations are
not supported in the kernel.

Appendix A • Hardware Overview 477

http://www.sparc.com

x86 Byte Ordering
The x86 processor uses little-endian byte ordering. The least significant byte (LSB) of an
integer is stored at the lowest address of the integer. The most significant byte is stored
at the highest address for data items in this processor. For example, byte 7 is the most
significant byte for 64–bit processors.

byte 3 byte 2 byte 1 byte 0

MSB LSB

x86 Architecture Manuals
Both Intel Corporation and AMD publish a number of books on the x86 family of
processors. See http://www.intel.com and http://www.amd.com.

Endianness
To achieve the goal of multiple-platform, multiple-instruction-set architecture
portability, host bus dependencies were removed from the drivers. The first
dependency issue to be addressed was the endianness, that is, byte ordering, of the
processor. For example, the x86 processor family is little-endian while the SPARC
architecture is big-endian.

Bus architectures display the same endianness types as processors. The PCI local bus,
for example, is little-endian, the SBus is big-endian, the ISA bus is little-endian, and so
on.

To maintain portability between processors and buses, DDI-compliant drivers must be
endian neutral. Although drivers can manage their endianness by runtime checks or
by preprocessor directives like #ifdef _LITTLE_ENDIAN in the source code,
long-term maintenance can be troublesome. In some cases, the DDI framework
performs the byte swapping using a software approach. In other cases, byte swapping
can be done by hardware page-level swapping as in memory management unit
(MMU) or by special machine instructions. The DDI framework can take advantage of
the hardware features to improve performance.

478 Writing Device Drivers • January 2005

http://www.intel.com
http://www.amd.com

b0 27 a9 fe

Byte ordering
Data = 0xfea927b0

Little endian host

fe a9 27 b0
Big endian host

SWAP
CPU fe a9 27 b0

Big endian device

FIGURE A–1 Byte Ordering Required for Host Bus Dependency

Along with being endian-neutral, portable drivers must also be independent from
data ordering of the processor. Under most circumstances, data must be transferred in
the sequence instructed by the driver. However, sometimes data can be merged,
batched, or reordered to streamline the data transfer, as illustrated in the following
figure. For example, data merging can be applied to accelerate graphics display on
frame buffers. Drivers have the option to advise the DDI framework to use other
optimal data transfer mechanisms during the transfer.

ff 00 aa ee ff 00 aa ee

ff 00 aa ee Strict order

Data merging

Data reordering00 aa ee ff

Data ordering

CPU

FIGURE A–2 Data Ordering Host Bus Dependency

Store Buffers
To improve performance, the CPU uses internal store buffers to temporarily store data.
Using internal buffers can affect the synchronization of device I/O operations.
Therefore, the driver needs to take explicit steps to make sure that writes to registers
are completed at the proper time.

For example, consider the case where access to device space, such as registers or a
frame buffer, is synchronized by a lock. The driver needs to check that the store to the
device space has actually completed before releasing the lock. The release of the lock
does not guarantee the flushing of I/O buffers.

Appendix A • Hardware Overview 479

To give another example, when acknowledging an interrupt, the driver usually sets or
clears a bit in a device control register. The driver must ensure that the write to the
control register has reached the device before the interrupt handler returns. Similarly,
a device may require a delay, that is, driver busy-waits, after writing a command to
the control register. In such a case, the driver must ensure that the write has reached
the device before delaying.

Where device registers can be read without undesirable side effects, verification of a
write can simply consist of reading the register immediately after the write. If that
particular register cannot be read without undesirable side effects, another device
register in the same register set can be used.

System Memory Model
The system memory model defines the semantics of memory operations such as load
and store and specifies how the order in which these operations are issued by a
processor is related to the order in which they reach memory. The memory model
applies to both uniprocessors and shared-memory multiprocessors. Two memory
models are supported: total store ordering (TSO) and partial store ordering (PSO).

Total Store Ordering (TSO)
TSO guarantees that the sequence in which store, FLUSH, and atomic load-store
instructions appear in memory for a given processor is identical to the sequence in
which they were issued by the processor.

Both x86 and SPARC processors support TSO.

Partial Store Ordering (PSO)
PSO does not guarantee that the sequence in which store, FLUSH, and atomic
load-store instructions appear in memory for a given processor is identical to the
sequence in which they were issued by the processor. The processor can reorder the
stores so that the sequence of stores to memory is not the same as the sequence of
stores issued by the CPU.

SPARC processors support PSO; x86 processors do not.

For SPARC processors, conformance between issuing order and memory order is
provided by the system framework using the STBAR instruction. If two of the above
instructions are separated by an STBAR instruction in the issuing order of a processor,

480 Writing Device Drivers • January 2005

or if the instructions reference the same location, the memory order of the two
instructions is the same as the issuing order. Enforcement of strong data-ordering in
DDI-compliant drivers is provided by the ddi_regs_map_setup(9F) interface.
Compliant drivers cannot use the STBAR instruction directly.

See the SPARC Architecture Manual, Version 9, for more details on the SPARC memory
model.

Bus Architectures
This section describes device identification, device addressing, and interrupts.

Device Identification
Device identification is the process of determining which devices are present in the
system. Some devices are self-identifying meaning that the device itself provides
information to the system so that the system can identify the device driver that needs
to be used. SBus and PCI local bus devices are examples of self-identifying devices. On
SBus, the information is usually derived from a small Forth program stored in the
FCode PROM on the device. Most PCI devices provide a configuration space
containing device configuration information. See the sbus(4) and pci(4) man pages
for more information.

All modern bus architectures require devices to be self-identifying.

Supported Interrupt Types
The Solaris platform supports both polling and vectored interrupts. The Solaris 10
DDI/DKI interrupt model is the same for both types of interrupts. See Chapter 8 for
more information about interrupt handling.

Bus Specifics
This section covers addressing and device configuration issues specific to the buses
that the Solaris platform supports.

Appendix A • Hardware Overview 481

PCI Local Bus
The PCI local bus is a high-performance bus designed for high-speed data transfer.
The PCI bus resides on the system board. This bus is normally used as an interconnect
mechanism between highly integrated peripheral components, peripheral add-on
boards, and host processor or memory systems. The host processor, main memory, and
the PCI bus itself are connected through a PCI host bridge, as shown in Figure A–3.

A tree structure of interconnected I/O buses is supported through a series of PCI bus
bridges. Subordinate PCI bus bridges can be extended underneath the PCI host bridge
to enable a single bus system to be expanded into a complex system with multiple
secondary buses. PCI devices can be connected to one or more of these secondary
buses. In addition, other bus bridges, such as SCSI or USB, can be connected.

Every PCI device has a unique vendor ID and device ID. Multiple devices of the same
kind are further identified by their unique device numbers on the bus where they
reside.

SCSI HBA

CPU RAM

PCI host
bridge

Graphics
adapter

PCI bus
bridge

LAN
adapter

Bus 0

Bus 1

Host
address
domain

PCI
address
domain

FIGURE A–3 Machine Block Diagram

The PCI host bridge provides an interconnect between the processor and peripheral
components. Through the PCI host bridge, the processor can directly access main
memory independent of other PCI bus masters. For example, while the CPU is
fetching data from the cache controller in the host bridge, other PCI devices can also
access the system memory through the host bridge. The advantage of this architecture
lies in its separation of the I/O bus from the processor’s host bus.

482 Writing Device Drivers • January 2005

The PCI host bridge also provides data access mappings between the CPU and
peripheral I/O devices. The bridge maps every peripheral device to the host address
domain so that the processor can access the device through programmed I/O. On the
local bus side, the PCI host bridge maps the system memory to the PCI address
domain so that the PCI device can access the host memory as a bus master. Figure A–3
shows the two address domains.

PCI Address Domain
The PCI address domain consists of three distinct address spaces: configuration,
memory, and I/O space.

PCI Configuration Address Space
Configuration space is defined geographically. The location of a peripheral device is
determined by its physical location within an interconnected tree of PCI bus bridges.
A device is located by its bus number and device (slot) number. Each peripheral device
contains a set of well-defined configuration registers in its PCI configuration space.
The registers are used not only to identify devices but also to supply device
configuration information to the configuration framework. For example, base address
registers in the device configuration space must be mapped before a device can
respond to data access.

The method for generating configuration cycles is host dependent. In x86 machines,
special I/O ports are used. On other platforms, the PCI configuration space can be
memory-mapped to certain address locations corresponding to the PCI host bridge in
the host address domain. When a device configuration register is accessed by the
processor, the request is routed to the PCI host bridge. The bridge then translates the
access into proper configuration cycles on the bus.

PCI Configuration Base Address Registers
The PCI configuration space consists of up to six 32-bit base address registers for each
device. These registers provide both size and data type information. System firmware
assigns base addresses in the PCI address domain to these registers.

Each addressable region can be either memory or I/O space. The value contained in
bit 0 of the base address register identifies the type. A value of 0 in bit 0 indicates a
memory space and a value of 1 indicates an I/O space. The following figure shows
two base address registers: one for memory and the other for I/O types.

Appendix A • Hardware Overview 483

Base address
31 4 3 2 01

Type 0

Base address register for memory

Base address
31 2 01

Resv 1

Base address register for I/O

Space
indicator

FIGURE A–4 Base Address Registers for Memory and I/O

PCI Memory Address Space
PCI supports both 32-bit and 64-bit addresses for memory space. System firmware
assigns regions of memory space in the PCI address domain to PCI peripherals. The
base address of a region is stored in the base address register of the device’s PCI
configuration space. The size of each region must be a power of two, and the assigned
base address must be aligned on a boundary equal to the size of the region. Device
addresses in memory space are memory-mapped into the host address domain so that
data access to any device can be performed by the processor’s native load or store
instructions.

PCI I/O Address Space
PCI supports 32-bit I/O space. I/O space can be accessed differently on different
platforms. Processors with special I/O instructions, like the Intel processor family,
access the I/O space with in and out instructions. Machines without special I/O
instructions will map to the address locations corresponding to the PCI host bridge in
the host address domain. When the processor accesses the memory-mapped
addresses, an I/O request will be sent to the PCI host bridge, which then translates the
addresses into I/O cycles and puts them on the PCI bus. Memory-mapped I/O is
performed by the native load/store instructions of the processor.

PCI Hardware Configuration Files
Hardware configuration files should be unnecessary for PCI local bus devices.
However, on some occasions drivers for PCI devices need to use hardware
configuration files to augment the driver private information. See the
driver.conf(4) and pci(4) man pages for further details.

484 Writing Device Drivers • January 2005

SBus
Typical SBus systems consist of a motherboard (containing the CPU and SBus interface
logic), a number of SBus devices on the motherboard itself, and a number of SBus
expansion slots. An SBus can also be connected to other types of buses through an
appropriate bus bridge.

The SBus is geographically addressed. Each SBus slot exists at a fixed physical address
in the system. An SBus card has a different address, depending on which slot it is
plugged into. Moving an SBus device to a new slot causes the system to treat this
device as a new device.

The SBus uses polling interrupts. When an SBus device interrupts, the system only
knows which of several devices might have issued the interrupt. The system interrupt
handler must ask the driver for each device whether that device is responsible for the
interrupt.

SBus Physical Address Space
The following table shows the physical address space layout of the Sun UltraSPARC 2
computer. A physical address on the UltraSPARC 2 model consists of 41 bits. The
41-bit physical address space is further broken down into multiple 33-bit address
spaces identified by PA(40:33).

TABLE A–1 Device Physical Space in the Ultra 2

PA(40:33) 33-bit Space Usage

0x0 0x000000000 - 0x07FFFFFFF 2 Gbytes main memory

0x80 – 0xDF Reserved on Ultra 2 Reserved on Ultra 2

0xE0 Processor 0 Processor 0

0xE1 Processor 1 Processor 1

0xE2 – 0xFD Reserved on Ultra 2 Reserved on Ultra 2

0xFE 0x000000000 - 0x1FFFFFFFF UPA Slave (FFB)

0xFF 0x000000000 - 0x0FFFFFFFF System I/O space

0x100000000 - 0x10FFFFFFF SBus Slot 0

0x110000000 - 0x11FFFFFFF SBus Slot 1

0x120000000 - 0x12FFFFFFF SBus Slot 2

0x130000000 - 0x13FFFFFFF SBus Slot 3

0x1D0000000 - 0x1DFFFFFFF SBus Slot D

Appendix A • Hardware Overview 485

TABLE A–1 Device Physical Space in the Ultra 2 (Continued)
PA(40:33) 33-bit Space Usage

0x1E0000000 - 0x1EFFFFFFF SBus Slot E

0x1F0000000 - 0x1FFFFFFFF SBus Slot F

Physical SBus Addresses
The SBus has 32 address bits, as described in the SBus Specification. The following table
describes how the Ultra 2 uses the address bits.

TABLE A–2 Ultra 2 SBus Address Bits

Bits Description

0 - 27 These bits are the SBus address lines used by an SBus card to address
the contents of the card.

28 - 31 Used by the CPU to select one of the SBus slots. These bits generate the
SlaveSelect lines.

This addressing scheme yields the Ultra 2 addresses shown in Table A–1. Other
implementations might use a different number of address bits.

The Ultra 2 has seven SBus slots, four of which are physical. Slots 0 through 3 are
available for SBus cards. Slots 4-12 are reserved. The slots are used as follows:

� Slots 0–3 are physical slots that have DMA-master capability.

� Slots D, E, and F are not actual physical slots, but refer to the onboard direct
memory access (DMA), SCSI, Ethernet, and audio controllers. For convenience,
these classes of devices are viewed as being plugged into slots D, E, and F.

Note – Some SBus slots are slave-only slots. Drivers that require DMA capability
should use ddi_slaveonly(9F) to determine whether their device is in a
DMA-capable slot. For an example of this function, see “attach() Entry Point”
on page 99.

SBus Hardware Configuration Files
Hardware configuration files are normally unnecessary for SBus devices. However, on
some occasions, drivers for SBus devices need to use hardware configuration files to
augment the information provided by the SBus card. See the driver.conf(4) and
sbus(4) man page for further details.

486 Writing Device Drivers • January 2005

Device Issues
This section describes issues with special devices.

Timing-Critical Sections
While most driver operations can be performed without mechanisms for
synchronization and protection beyond those provided by the locking primitives,
some devices require that a sequence of events occur in order without interruption. In
conjunction with the locking primitives, the function ddi_enter_critical(9F) asks
the system to guarantee, to the best of its ability, that the current thread will neither be
preempted nor interrupted. This guarantee stays in effect until a closing call to
ddi_exit_critical(9F) is made. See the ddi_enter_critical(9F) man page for
details.

Delays
Many chips specify that they can be accessed only at specified intervals. For example,
the Zilog Z8530 SCC has a “write recovery time” of 1.6 microseconds. This
specification means that a delay must be enforced with drv_usecwait(9F) when
writing characters with an 8530. In some instances, the specifications do not make
explicit what delays are needed, so the delays must be determined empirically.

Be careful not to compound delays for parts of devices that might exist in large
numbers, for example, thousands of SCSI disk drives.

Internal Sequencing Logic
Devices with internal sequencing logic map multiple internal registers to the same
external address. The various kinds of internal sequencing logic include the following
types:

� The Intel 8251A and the Signetics 2651 alternate the same external register between
two internal mode registers. Writing to the first internal register is accomplished by
writing to the external register. This write, however, has the side effect of setting up
the sequencing logic in the chip so that the next read/write operation refers to the
second internal register.

� The NEC PD7201 PCC has multiple internal data registers. To write a byte into a
particular register, two steps must be performed. The first step is to write into
register zero the number of the register into which the following byte of data will
go. The data is then written to the specified data register. The sequencing logic

Appendix A • Hardware Overview 487

automatically sets up the chip so that the next byte sent will go into data register
zero.

� The AMD 9513 timer has a data pointer register that points at the data register into
which a data byte will go. When sending a byte to the data register, the pointer is
incremented. The current value of the pointer register cannot be read.

Interrupt Issues
Note the following common interrupt-related issues:

� A controller interrupt does not necessarily indicate that both the controller and one
of its slave devices are ready. For some controllers, an interrupt can indicate that
either the controller is ready or one of its devices is ready but not both.

� Not all devices power up with interrupts disabled and can begin interrupting at
any time.

� Some devices do not provide a way to determine that the board has generated an
interrupt.

� Not all interrupting boards shut off interrupts when told to do so or after a bus
reset.

PROM on SPARC Machines
Some platforms have a PROM monitor that provides support for debugging a device
without an operating system. This section describes how to use the PROM on SPARC
machines to map device registers so that they can be accessed. Usually, the device can
be exercised enough with PROM commands to determine whether the device is
working correctly.

See the boot(1M) man page for a description of the x86 boot subsystem.

The PROM has several purposes, including:

� Bringing the machine up from power on, or from a hard reset PROM reset
command

� Providing an interactive tool for examining and setting memory, device registers,
and memory mappings

� Booting the Solaris system.

Simply powering up the computer and attempting to use its PROM to examine
device registers can fail. While the device might be correctly installed, those
mappings are specific to the Solaris Operating System and do not become active
until the Solaris kernel is booted. Upon power up, the PROM maps only essential

488 Writing Device Drivers • January 2005

system devices, such as the keyboard.

� Taking a system crash dump using the sync command

Open Boot PROM 3
For complete documentation on the Open Boot PROM, see the Open Boot PROM Toolkit
User’s Guide and the monitor(1M) man page. The examples in this section refer to a
Sun4U™ architecture. Other architectures might require different commands to
perform actions.

Note – The Open Boot PROM is currently used on Sun machines with an SBus or
UPA/PCI. The Open Boot PROM uses an “ok” prompt. On older machines, you might
have to type ‘n’ to get the “ok” prompt.

If the PROM is in secure mode (the security-mode parameter is not set to none), the
PROM password might be required (set in the security-password parameter).

The printenv command displays all parameters and their values.

Help is available with the help command.

EMACS-style command-line history is available. Use Control-N (next) and Control-P
(previous) to traverse the history list.

Forth Commands
The Open Boot PROM uses the Forth programming language. Forth is a stack-based
language. Arguments must be pushed on the stack before running the correct
command (called a word), and the result is left on the stack.

To place a number on the stack, type its value.

ok 57

ok 68

To add the two top values on the stack, use the + operator.

ok +

The result remains on the stack. The stack is shown with the .s word.

ok .s

bf

The default base is hexadecimal. The hex and decimal words can be used to switch
bases.

Appendix A • Hardware Overview 489

ok decimal
ok .s

191

See the Forth User’s Guide for more information.

Walking the PROMs Device Tree
The commands pwd, cd, and ls walk the PROM device tree to get to the device. The
cd command must be used to establish a position in the tree before pwd will work.
This example is from an Ultra 1 workstation with a cgsix frame buffer on an SBus.

ok cd /

To see the devices attached to the current node in the tree, use ls.

ok ls
f006a064 SUNW,UltraSPARC@0,0
f00598b0 sbus@1f,0
f00592dc counter-timer@1f,3c00
f004eec8 virtual-memory
f004e8e8 memory@0,0
f002ca28 aliases
f002c9b8 options
f002c880 openprom
f002c814 chosen

f002c7a4 packages

The full node name can be used:

ok cd sbus@1f,0
ok ls
f006a4e4 cgsix@2,0
f0068194 SUNW,bpp@e,c800000
f0065370 ledma@e,8400010
f006120c espdma@e,8400000
f005a448 SUNW,pll@f,1304000
f005a394 sc@f,1300000
f005a24c zs@f,1000000
f005a174 zs@f,1100000
f005a0c0 eeprom@f,1200000
f0059f8c SUNW,fdtwo@f,1400000
f0059ec4 flashprom@f,0
f0059e34 auxio@f,1900000

f0059d28 SUNW,CS4231@d,c000000

Rather than using the full node name in the previous example, you could also use an
abbreviation. The abbreviated command-line entry looks like the following example:

ok cd sbus

The name is actually device@slot,offset (for SBus devices). The cgsix device is
in slot 2 and starts at offset 0. If an SBus device is displayed in this tree, the device has
been recognized by the PROM.

490 Writing Device Drivers • January 2005

The .properties command displays the PROM properties of a device. These
properties can be examined to determine which properties the device exports. This
information is useful later to ensure that the driver is looking for the correct hardware
properties. These properties are the same properties that can be retrieved with
ddi_getprop(9F).

ok cd cgsix
ok .properties
character-set ISO8859-1
intr 00000005 00000000
interrupts 00000005
reg 00000002 00000000 01000000
dblbuf 00 00 00 00
vmsize 00 00 00 01

...

The reg property defines an array of register description structures containing the
following fields:

uint_t bustype; /* cookie for related bus type*/
uint_t addr; /* address of reg relative to bus */

uint_t size; /* size of this register set */

For the cgsix example, the address is 0.

Mapping the Device
A device must be mapped into memory to be tested. The PROM can then be used to
verify proper operation of the device by using data-transfer commands to transfer
bytes, words, and long words. If the device can be operated from the PROM, even in a
limited way, the driver should also be able to operate the device.

To set up the device for initial testing, perform the following steps:

1. Determine the SBus slot number the device is in.

In this example, the cgsix device is located in slot 2.

2. Determine the offset within the physical address space used by the device.

The offset used is specific to the device. In the cgsix example, the video memory
happens to start at an offset of 0x800000.

3. Use the select-dev word to select the Sbus device and the map-in word to map
the device in.

The select-dev word takes a string of the device path as its argument. The
map-in word takes an offset, a slot number, and a size as arguments to map. Like the
offset, the size of the byte transfer is specific to the device. In the cgsix example,
the size is set to 0x100000 bytes.

In the following code example, the Sbus path is displayed as an argument to the
select-dev word, and the offset, slot number, and size values for the frame
buffer are displayed as arguments to the map-in word. Notice the space between
the opening quote and / in the select-dev argument. The virtual address to use

Appendix A • Hardware Overview 491

remains on top of the stack. The stack is shown using the .s word. The stack can
be assigned a name with the constant operation.

ok " sbus@1f,0" select-dev
ok 800000 2 100000 map-in
ok .s
ffe98000

ok constant fb

Reading and Writing
The PROM provides a variety of 8-bit, 16-bit, and 32-bit operations. In general, a c
(character) prefix indicates an 8-bit (one-byte) operation; a w (word) prefix indicates a
16-bit (two-byte) operation; and an L (longword) prefix indicates a 32-bit (four-byte)
operation.

A suffix of ! indicates a write operation. The write operation takes the first two items
off the stack. The first item is the address, and the second item is the value.

ok 55 ffe98000 c!

A suffix of @ indicates a read operation. The read operation takes the address off the
stack.

ok ffe98000 c@
ok .s

55

A suffix of ? is used to display the value without affecting the stack.

ok ffe98000 c?

55

Be careful when trying to query the device. If the mappings are not set up correctly,
trying to read or write could cause errors. Special words are provided to handle these
cases. cprobe, wprobe, and lprobe, for example, read from the given address but
return zero if the location does not respond, or nonzero if it does.

ok fffa4000 c@
Data Access Error

ok fffa4000 cprobe
ok .s0

ok ffe98000 cprobe
ok .s

0 ffffffffffffffff

A region of memory can be shown with the dump word. This takes an address and a
length, and displays the contents of the memory region in bytes.

492 Writing Device Drivers • January 2005

In the following example, the fill word is used to fill video memory with a pattern.
fill takes the address, the number of bytes to fill, and the byte to use. Use wfill
and an Lfill for words and longwords. This fill example causes the cgsix to display
simple patterns based on the byte passed.

ok " /sbus" select-dev
ok 800000 2 100000 map-in
ok constant fb
ok fb 10000 ff fill
ok fb 20000 0 fill
ok fb 18000 55 fill
ok fb 15000 3 fill

ok fb 10000 5 fillok fb 5000 f9 fill

Appendix A • Hardware Overview 493

494 Writing Device Drivers • January 2005

APPENDIX B

Summary of Solaris DDI/DKI Services

This appendix discusses the interfaces provided by the Solaris DDI/DKI. These
descriptions should not be considered complete or definitive, nor do they provide a
thorough guide to usage. The descriptions are intended to describe what the functions
do in general terms. See physio(9F) for more detailed information. The categories are:

� “Module Functions” on page 496
� “Device Information Tree Node (dev_info_t) Functions” on page 496
� “Device (dev_t) Functions” on page 496
� “Property Functions” on page 497
� “Device Software State Functions” on page 498
� “Memory Allocation and Deallocation Functions” on page 498
� “Kernel Thread Control and Synchronization Functions” on page 499
� “Interrupt Functions” on page 501
� “Programmed I/O Functions” on page 501
� “Direct Memory Access (DMA) Functions” on page 507
� “User Space Access Functions” on page 509
� “User Process Event Functions” on page 511
� “User Process Information Functions” on page 511
� “User Application Kernel and Device Access Functions” on page 511
� “Time-Related Functions” on page 513
� “Power Management Functions” on page 513
� “Kernel Statistics Functions” on page 514
� “Kernel Logging and Printing Functions” on page 515
� “Buffered I/O Functions” on page 515
� “Virtual Memory Functions” on page 516
� “Device ID Functions” on page 516
� “SCSI Functions” on page 517
� “Resource Map Management Functions” on page 519
� “System Global State” on page 519
� “Utility Functions” on page 520

This appendix does not discuss STREAMS interfaces; to learn more about network
drivers, see the STREAMS Programming Guide.

495

Module Functions
The module functions are:

mod_info Query a loadable module

mod_install Add a loadable module

mod_remove Remove a loadable module

Device Information Tree Node
(dev_info_t) Functions
The device information tree node functions are:

ddi_binding_name() Return driver binding name

ddi_dev_is_sid() Tell whether a device is self-identifying

ddi_driver_major() Return driver major device number

ddi_driver_name() Return normalized driver name

ddi_node_name() Return the devinfo node name

ddi_get_devstate() Check device state

ddi_get_instance() Get device instance number

ddi_get_name() Return driver binding name

ddi_get_parent() Find the parent of a device information structure

ddi_root_node() Get the root of the dev_info tree

Device (dev_t) Functions
The device functions are:

ddi_create_minor_node() Create a minor node for a device

496 Writing Device Drivers • January 2005

ddi_getiminor() Get kernel internal minor number from an external
dev_t

ddi_remove_minor_node() Remove a minor mode for a device

getmajor() Get major device number

getminor() Get minor device number

makedevice() Make device number from major and minor
numbers

Property Functions
The property functions are:

ddi_prop_exists() Check for the existence of a property

ddi_prop_free() Free resources consumed by property
lookup

ddi_prop_get_int() Look up integer property

ddi_prop_get_int64() Look up 64–bit integer property

ddi_prop_lookup_byte_array() Look up byte array property

ddi_prop_lookup_int_array() Look up integer array property

ddi_prop_lookup_int64_array() Look up 64–bit integer array property

ddi_prop_lookup_string() Look up string property

ddi_prop_lookup_string_array() Look up string array property

ddi_prop_remove() Remove a property of a device

ddi_prop_remove_all() Remove all properties of a device

ddi_prop_undefine() Hide a property of a device

ddi_prop_update_byte_array() Create or update byte array property

ddi_prop_update_int() Create or update integer property

ddi_prop_update_int64() Create or update 64–bit integer property

ddi_prop_update_int_array() Create or update integer array property

ddi_prop_update_int64_array() Create or update 64–bit integer array
property

ddi_prop_update_string() Create or update string property

Appendix B • Summary of Solaris DDI/DKI Services 497

ddi_prop_update_string_array() Create or update string array property

TABLE B–1 Deprecated Property Functions

Deprecated Functions Replacements

ddi_getlongprop() see ddi_prop_lookup

ddi_getlongprop_buf() ddi_prop_lookup()

ddi_getprop() ddi_prop_get_int()

ddi_getproplen() ddi_prop_lookup()

ddi_prop_create() ddi_prop_lookup()

ddi_prop_modify() ddi_prop_lookup()

ddi_prop_op() ddi_prop_lookup()

Device Software State Functions
The device software state functions are:

ddi_get_driver_private() Get the address of the device’s private data area

ddi_get_soft_state() Get pointer to instance soft-state structure

ddi_set_driver_private() Set the address of the device’s private data area

ddi_soft_state_fini() Destroy driver soft-state structure

ddi_soft_state_free() Free instance soft-state structure

ddi_soft_state_init() Initialize driver soft-state structure

ddi_soft_state_zalloc() Allocate instance soft-state structure

Memory Allocation and Deallocation
Functions
The memory allocation and deallocation functions are:

kmem_alloc() Allocate kernel memory

kmem_free() Free kernel memory

498 Writing Device Drivers • January 2005

kmem_zalloc() Allocate zero-filled kernel memory

The following functions allocate and free memory intended to be used for DMA. See
“Direct Memory Access (DMA) Functions” on page 507.

ddi_dma_mem_alloc() Allocate memory for DMA transfer

ddi_dma_mem_free() Free previously allocated DMA memory

The following functions allocate and free memory intended to be exported to user
space. See “User Space Access Functions” on page 509.

ddi_umem_alloc() Allocate page-aligned kernel memory

ddi_umem_free() Free page-aligned kernel memory

TABLE B–2 Deprecated Memory Allocation and Deallocation Functions

Deprecated Function Replacement

ddi_iopb_alloc() ddi_dma_mem_alloc()

ddi_iopb_free() ddi_dma_mem_free()

ddi_mem_alloc() ddi_dma_mem_alloc()

ddi_mem_free() ddi_dma_mem_free()

Kernel Thread Control and
Synchronization Functions
The kernel thread control and synchronization functions are:

cv_broadcast() Wake up all waiting threads

cv_destroy() Free an allocated condition variable

cv_init() Allocate a condition variable

cv_signal() Wake up one waiting thread

cv_timedwait() Await an event with timeout

cv_timedwait_sig() Await an event or signal with timeout

cv_wait() Await an event

cv_wait_sig() Await an event or signal

ddi_can_receive_sig() Determine whether the current thread can receive a
signal

Appendix B • Summary of Solaris DDI/DKI Services 499

ddi_enter_critical() Enter a critical region of control

ddi_exit_critical() Exit a critical region of control

mutex_destroy() Destroy mutual exclusion lock

mutex_enter() Acquire mutual exclusion lock

mutex_exit() Release mutual exclusion lock

mutex_init() Initialize mutual exclusion lock

mutex_owned() Determine whether current thread is holding mutual
exclusion lock

mutex_tryenter() Attempt to acquire mutual exclusion lock without
waiting

rw_destroy() Destroy a readers/writer lock

rw_downgrade() Downgrade a readers/writer lock holding from
writer to reader

rw_enter() Acquire a readers/writer lock

rw_exit() Release a readers/writer lock

rw_init() Initialize a readers/writer lock

rw_read_locked() Determine whether readers/writer lock is held for
read or write

rw_tryenter() Attempt to acquire a readers/writer lock without
waiting

rw_tryupgrade() Attempt to upgrade readers/writer lock holding from
reader to writer

sema_destroy() Destroy a semaphore

sema_init() Initialize a semaphore

sema_p() Decrement semaphore and possibly block

sema_p_sig() Decrement semaphore but do not block if signal is
pending

sema_tryp() Attempt to decrement semaphore but do not block

sema_v() Increment semaphore and possibly unblock waiter

500 Writing Device Drivers • January 2005

Interrupt Functions
The interrupt functions are:

ddi_add_intr() Register a hardware interrupt handler

ddi_add_softintr() Register a software interrupt handler

ddi_dev_nintrs() Return the number of interrupt
specifications a device has

ddi_get_iblock_cookie() Get a hardware interrupt block cookie

ddi_get_soft_iblock_cookie() Get a software interrupt block cookie

ddi_intr_hilevel() Indicate interrupt type

ddi_remove_intr() Unregister a hardware interrupt handler

ddi_remove_softintr() Unregister a software interrupt handler

ddi_trigger_softintr() Trigger a software interrupt

Programmed I/O Functions
The programmed I/O functions are:

ddi_dev_nregs() Return the number of register sets a device has

ddi_dev_regsize() Return the size of a device’s register

ddi_regs_map_setup() Set up a mapping for a register address space

ddi_regs_map_free() Free a previously mapped register address space

ddi_device_copy() Copy data from one device register to another
device register

ddi_device_zero() Zero fill the device

ddi_check_acc_handle() Check data access handle

ddi_get8() Read 8–bit data from mapped memory, device
register, or DMA memory

ddi_get16() Read 16–bit data from mapped memory, device
register, or DMA memory

Appendix B • Summary of Solaris DDI/DKI Services 501

ddi_get32() Read 32–bit data from mapped memory, device
register, or DMA memory

ddi_get64() Read 64–bit data from mapped memory, device
register, or DMA memory

ddi_put8() Write 8–bit data to mapped memory, device register,
or DMA memory

ddi_put16() Write 16–bit data to mapped memory, device
register, or DMA memory

ddi_put32() Write 32–bit data to mapped memory, device
register, or DMA memory

ddi_put64() Write 64–bit data to mapped memory, device
register, or DMA memory

ddi_rep_get8() Read multiple 8–bit data from mapped memory,
device register, or DMA memory

ddi_rep_get16() Read multiple 16–bit data from mapped memory,
device register, or DMA memory

ddi_rep_get32() Read multiple 32–bit data from mapped memory,
device register, or DMA memory

ddi_rep_get64() Read multiple 64–bit data from mapped memory,
device register, or DMA memory

ddi_rep_put8() Write multiple 8–bit data to mapped memory,
device register, or DMA memory

ddi_rep_put16() Write multiple 16–bit data to mapped memory,
device register, or DMA memory

ddi_rep_put32() Write multiple 32–bit data to mapped memory,
device register, or DMA memory

ddi_rep_put64() Write multiple 64–bit data to mapped memory,
device register, or DMA memory

ddi_peek8() Cautiously read an 8–bit value from a location

ddi_peek16() Cautiously read a 16–bit value from a location

ddi_peek32() Cautiously read a 32–bit value from a location

ddi_peek64() Cautiously read a 64–bit value from a location

ddi_poke8() Cautiously write an 8–bit value to a location

ddi_poke16() Cautiously write a 16–bit value to a location

ddi_poke32() Cautiously write a 32–bit value to a location

ddi_poke64() Cautiously write a 64–bit value to a location

502 Writing Device Drivers • January 2005

The general programmed I/O functions listed above can always be used rather than
the mem, io, and pci_config functions that follow. However, the following functions
can be used as alternatives in cases where the type of access is known at compile time.

ddi_io_get8() Read 8-bit data from a mapped device register in I/O
space

ddi_io_get16() Read 16-bit data from a mapped device register in
I/O space

ddi_io_get32() Read 32-bit data from a mapped device register in
I/O space

ddi_io_put8() Write 8-bit data to a mapped device register in I/O
space

ddi_io_put16() Write 16-bit data to a mapped device register in I/O
space

ddi_io_put32() Write 32-bit data to a mapped device register in I/O
space

ddi_io_rep_get8() Read multiple 8-bit data from a mapped device
register in I/O space

ddi_io_rep_get16() Read multiple 16-bit data from a mapped device
register in I/O space

ddi_io_rep_get32() Read multiple 32-bit data from a mapped device
register in I/O space

ddi_io_rep_put8() Write multiple 8-bit data to a mapped device register
in I/O space

ddi_io_rep_put16() Write multiple 16-bit data to a mapped device register
in I/O space

ddi_io_rep_put32() Write multiple 32-bit data to a mapped device register
in I/O space

ddi_mem_get8() Read 8-bit data from a mapped device in memory
space or DMA memory

ddi_mem_get16() Read 16-bit data from a mapped device in memory
space or DMA memory

ddi_mem_get32() Read 32-bit data from a mapped device in memory
space or DMA memory

ddi_mem_get64() Read 64-bit data from a mapped device in memory
space or DMA memory

ddi_mem_put8() Write 8-bit data to a mapped device in memory space
or DMA memory

Appendix B • Summary of Solaris DDI/DKI Services 503

ddi_mem_put16() Write 16-bit data to a mapped device in memory
space or DMA memory

ddi_mem_put32() Write 32-bit data to a mapped device in memory
space or DMA memory

ddi_mem_put64() Write 64-bit data to a mapped device in memory
space or DMA memory

ddi_mem_rep_get8() Read multiple 8-bit data from a mapped device in
memory space or DMA memory

ddi_mem_rep_get16() Read multiple 16-bit data from a mapped device in
memory space or DMA memory

ddi_mem_rep_get32() Read multiple 32-bit data from a mapped device in
memory space or DMA memory

ddi_mem_rep_get64() Read multiple 64-bit data from a mapped device in
memory space or DMA memory

ddi_mem_rep_put8() Write multiple 8-bit data to a mapped device in
memory space or DMA memory

ddi_mem_rep_put16() Write multiple 16-bit data to a mapped device in
memory space or DMA memory

ddi_mem_rep_put32() Write multiple 32-bit data to a mapped device in
memory space or DMA memory

ddi_mem_rep_put64() Write multiple 64-bit data to a mapped device in
memory space or DMA memory

pci_config_setup() Set up access to PCI Local Bus Configuration space

pci_config_teardown() Tear down access to PCI Local Bus Configuration
space

pci_config_get8() Read 8-bit data from the PCI Local Bus Configuration
space

pci_config_get16() Read 16-bit data from the PCI Local Bus
Configuration space

pci_config_get32() Read 32-bit data from the PCI Local Bus
Configuration space

pci_config_get64() Read 64-bit data from the PCI Local Bus
Configuration space

pci_config_put8() Write 8-bit data to the PCI Local Bus Configuration
space

pci_config_put16() Write 16-bit data to the PCI Local Bus Configuration
space

504 Writing Device Drivers • January 2005

pci_config_put32() Write 32-bit data to the PCI Local Bus Configuration
space

pci_config_put64() Write 64-bit data to the PCI Local Bus Configuration
space

TABLE B–3 Deprecated Programmed I/O Functions

Deprecated Function Replacement

ddi_getb() ddi_get8()

ddi_getl() ddi_get32()

ddi_getll() ddi_get64()

ddi_getw() ddi_get16()

ddi_io_getb() ddi_io_get8()

ddi_io_getl() ddi_io_get32()

ddi_io_getw() ddi_io_get16()

ddi_io_putb() ddi_io_put8()

ddi_io_putl() ddi_io_put32()

ddi_io_putw() ddi_io_put16()

ddi_io_rep_getb() ddi_io_rep_get8()

ddi_io_rep_getl() ddi_io_rep_get32()

ddi_io_rep_getw() ddi_io_rep_get16()

ddi_io_rep_putb() ddi_io_rep_put8()

ddi_io_rep_putl() ddi_io_rep_put32()

ddi_io_rep_putw() ddi_io_rep_put16()

ddi_map_regs() ddi_regs_map_setup()

ddi_mem_getb() ddi_mem_get8()

ddi_mem_getl() ddi_mem_get32()

ddi_mem_getll() ddi_mem_get64()

ddi_mem_getw() ddi_mem_get16()

ddi_mem_putb() ddi_mem_put8()

ddi_mem_putl() ddi_mem_put32()

ddi_mem_putll() ddi_mem_put64()

ddi_mem_putw() ddi_mem_put16()

Appendix B • Summary of Solaris DDI/DKI Services 505

TABLE B–3 Deprecated Programmed I/O Functions (Continued)
Deprecated Function Replacement

ddi_mem_rep_getb() ddi_mem_rep_get8()

ddi_mem_rep_getl() ddi_mem_rep_get32()

ddi_mem_rep_getll() ddi_mem_rep_get64()

ddi_mem_rep_getw() ddi_mem_rep_get16()

ddi_mem_rep_putb() ddi_mem_rep_put8()

ddi_mem_rep_putl() ddi_mem_rep_put32()

ddi_mem_rep_putll() ddi_mem_rep_put64()

ddi_mem_rep_putw() ddi_mem_rep_put16()

ddi_peekc() ddi_peek8()

ddi_peekd() ddi_peek64()

ddi_peekl() ddi_peek32()

ddi_peeks() ddi_peek16()

ddi_pokec() ddi_poke8()

ddi_poked() ddi_poke64()

ddi_pokel() ddi_poke32()

ddi_pokes() ddi_poke16()

ddi_putb() ddi_put8()

ddi_putl() ddi_put32()

ddi_putll() ddi_put64()

ddi_putw() ddi_put16()

ddi_rep_getb() ddi_rep_get8()

ddi_rep_getl() ddi_rep_get32()

ddi_rep_getll() ddi_rep_get64()

ddi_rep_getw() ddi_rep_get16()

ddi_rep_putb() ddi_rep_put8()

ddi_rep_putl() ddi_rep_put32()

ddi_rep_putll() ddi_rep_put64()

ddi_rep_putw() ddi_rep_put16()

ddi_unmap_regs() ddi_regs_map_free()

506 Writing Device Drivers • January 2005

TABLE B–3 Deprecated Programmed I/O Functions (Continued)
Deprecated Function Replacement

inb() ddi_io_get8()

inl() ddi_io_get32()

inw() ddi_io_get16()

outb() ddi_io_put8()

outl() ddi_io_put32()

outw() ddi_io_put16()

pci_config_getb() pci_config_get8()

pci_config_getl() pci_config_get32()

pci_config_getll() pci_config_get64()

pci_config_getw() pci_config_get16()

pci_config_putb() pci_config_put8()

pci_config_putl() pci_config_put32()

pci_config_putll() pci_config_put64()

pci_config_putw() pci_config_put16()

repinsb() ddi_io_rep_get8()

repinsd() ddi_io_rep_get32()

repinsw() ddi_io_rep_get16()

repoutsb() ddi_io_rep_put8()

repoutsd() ddi_io_rep_put32()

repoutsw() ddi_io_rep_put16()

Direct Memory Access (DMA) Functions
The DMA functions are:

ddi_dma_alloc_handle() Allocate a DMA handle

ddi_dma_free_handle() Free a DMA handle

ddi_dma_mem_alloc() Allocate memory for a DMA transfer

ddi_dma_mem_free() Free previously allocated DMA memory

Appendix B • Summary of Solaris DDI/DKI Services 507

ddi_dma_addr_bind_handle() Bind an address to a DMA handle

ddi_dma_buf_bind_handle() Bind a system buffer to a DMA handle

ddi_dma_unbind_handle() Unbind the address in a DMA handle

ddi_dma_nextcookie() Retrieve the subsequent DMA cookie

ddi_dma_getwin() Activate a new DMA window

ddi_dma_numwin() Retrieve number of DMA windows

ddi_dma_sync() Synchronize CPU and I/O views of memory

ddi_check_dma_handle() Check a DMA handle

ddi_dma_set_sbus64() Allow 64-bit transfers on SBus

ddi_slaveonly() Report whether a device is installed in a slave
access-only location

ddi_iomin() Find the minimum alignment and transfer size
for DMA

ddi_dma_burstsizes() Find out the allowed burst sizes for a DMA
mapping

ddi_dma_devalign() Find DMA mapping alignment and minimum
transfer size

ddi_dmae_alloc() Acquire a DMA channel

ddi_dmae_release() Release a DMA channel

ddi_dmae_getattr() Get the DMA engine attributes

ddi_dmae_prog() Program a DMA channel

ddi_dmae_stop() Terminate a DMA engine operation

ddi_dmae_disable() Disable a DMA channel

ddi_dmae_enable() Enable a DMA channel

ddi_dmae_getcnt() Get the remaining DMA engine count

ddi_dmae_1stparty() Configure the DMA channel cascade mode

ddi_dma_coff() Convert a DMA cookie to an offset within a
DMA handle

TABLE B–4 Deprecated Direct Memory Access (DMA) Functions

Deprecated Function Replacement

ddi_dma_addr_setup() ddi_dma_alloc_handle(),
ddi_dma_addr_bind_handle()

508 Writing Device Drivers • January 2005

TABLE B–4 Deprecated Direct Memory Access (DMA) Functions (Continued)
Deprecated Function Replacement

ddi_dma_buf_setup() ddi_dma_alloc_handle(),
ddi_dma_buf_bind_handle()

ddi_dma_curwin() ddi_dma_getwin()

ddi_dma_free() ddi_dma_free_handle()

ddi_dma_htoc() ddi_dma_addr_bind_handle(),
ddi_dma_buf_bind_handle()

ddi_dma_movwin() ddi_dma_getwin()

ddi_dma_nextseg() ddi_dma_nextcookie()

ddi_dma_segtocookie() ddi_dma_nextcookie()

ddi_dma_setup() ddi_dma_alloc_handle(),
ddi_dma_addr_bind_handle(),
ddi_dma_buf_bind_handle()

ddi_dmae_getlim() ddi_dmae_getattr()

ddi_iopb_alloc() ddi_dma_mem_alloc()

ddi_iopb_free() ddi_dma_mem_free()

ddi_mem_alloc() ddi_dma_mem_alloc()

ddi_mem_free() ddi_dma_mem_free()

hat_getkpfnum() ddi_dma_addr_bind_handle(),
ddi_dma_buf_bind_handle(),
ddi_dma_nextcookie()

User Space Access Functions
The user space access functions are:

ddi_copyin() Copy data to a driver buffer

ddi_copyout() Copy data from a driver

uiomove() Copy kernel data using a uio structure

ureadc() Add character to a uio structure

uwritec() Remove a character from a uio structure

ddi_getminor() Get kernel internal minor number from an
external dev_t

Appendix B • Summary of Solaris DDI/DKI Services 509

ddi_model_convert_from() Determine a data model type mismatch

IOC_CONVERT_FROM() Determine whether there is a need to translate
M_IOCTL contents

STRUCT_DECL() Establish the handle to application data in a
possibly differing data model

STRUCT_HANDLE() Establish the handle to application data in a
possibly differing data model

STRUCT_INIT() Establish the handle to application data in a
possibly differing data model

STRUCT_SET_HANDLE() Establish the handle to application data in a
possibly differing data model

SIZEOF_PTR() Return the size of pointer in specified data model

SIZEOF_STRUCT() Return the size of a structure in the specified data
model

STRUCT_SIZE() Return the size of a structure in the application
data model

STRUCT_BUF() Return a pointer to the native mode instance of
the structure

STRUCT_FADDR() Return a pointer to the specified field of a
structure

STRUCT_FGET() Return the specified field of a structure in the
application data model

STRUCT_FGETP() Return the specified pointer field of a structure in
the application data model

STRUCT_FSET() Set a specified field of a structure in the
application data model

STRUCT_FSETP() Set a specified pointer field of a structure in the
application data model

TABLE B–5 Deprecated User Space Access Functions

Deprecated Function Replacement

copyin() ddi_copyin()

copyout() ddi_copyout()

510 Writing Device Drivers • January 2005

User Process Event Functions
The user process event functions are:

pollwakeup() Inform a process that an event has occurred

proc_ref() Get a handle on a process to signal

proc_unref() Release a handle on a process to signal

proc_signal() Send a signal to a process

User Process Information Functions
The user process information functions are:

ddi_get_cred() Return a pointer to the credential structure of the caller

drv_priv() Determine process credentials privilege

ddi_get_pid() Return the process ID

TABLE B–6 Deprecated User Process Information Functions

Deprecated Functions Replacement

drv_getparm() ddi_get_pid(), ddi_get_cred()

User Application Kernel and Device
Access Functions
The user application kernel and device access functions are:

ddi_dev_nregs()
Return the number of register sets a device has

ddi_dev_regsize()
Return the size of a device’s register

ddi_devmap_segmap(), devmap_setup()
Set up a user mapping to device memory using the devmap framework

Appendix B • Summary of Solaris DDI/DKI Services 511

devmap_devmem_setup()
Export device memory to user space

devmap_load()
Validate memory address translations

devmap_unload()
Invalidate memory address translations

devmap_do_ctxmgt()
Perform device context switching on a mapping

devmap_set_ctx_timeout()
Set the timeout value for the context management callback

devmap_default_access()
Default driver memory access function

ddi_umem_alloc()
Allocate page-aligned kernel memory

ddi_umem_free()
Free page-aligned kernel memory

ddi_umem_lock()
Lock memory pages

ddi_umem_unlock()
Unlock memory pages

ddi_umem_iosetup()
Setup I/O requests to application memory

devmap_umem_setup()
Export kernel memory to user space

ddi_model_convert_from()
Determine data model type mismatch

TABLE B–7 Deprecated User Application Kernel and Device Access Functions

Deprecated Function Replacement

ddi_mapdev() devmap_setup()

ddi_mapdev_intercept() devmap_load()

ddi_mapdev_nointercept() devmap_unload()

ddi_mapdev_set_device_acc_attr
()

devmap()

ddi_segmap() devmap()

ddi_segmap_setup() devmap_setup()

512 Writing Device Drivers • January 2005

TABLE B–7 Deprecated User Application Kernel and Device Access Functions (Continued)
Deprecated Function Replacement

hat_getkpfnum() devmap()

ddi_mmap_get_model() devmap()

Time-Related Functions
The time-related functions are:

ddi_get_lbolt() Return the number of clock ticks since reboot

ddi_get_time() Return the current time in seconds

delay() Delay execution for a specified number of clock ticks

drv_hztousec() Convert clock ticks to microseconds

drv_usectohz() Convert microseconds to clock ticks

drv_usecwait() Busy-wait for specified interval

gethrtime() Get high-resolution time

gethrvtime() Get high-resolution LWP virtual time

timeout() Execute a function after a specified length of time

untimeout() Cancel the previous time out function call

drv_getparm() ddi_get_lbolt(), ddi_get_time()

TABLE B–8 Deprecated Time-Related Functions

Deprecated Function Replacement

drv_getparm() ddi_get_lbolt(), ddi_get_time()

Power Management Functions
The functions are:

ddi_removing_power() Check if device loses power with DDI_SUSPEND

pci_report_pmcap() Report the power management capability of a PCI
device

Appendix B • Summary of Solaris DDI/DKI Services 513

pm_busy_component() Mark a component as busy

pm_idle_component() Mark a component as idle

pm_raise_power() Raise the power level of a component

pm_lower_power() Lower the power level of a component

pm_power_has_changed() Notify the power management framework of an
autonomous power level change

pm_trans_check() Device power cycle advisory check

TABLE B–9 Deprecated Power Management Functions

Function Name Description

ddi_dev_is_needed() Inform the system that a device’s component is
required

pm_create_components() Create power-manageable components

pm_destroy_components() Destroy power-manageable components

pm_get_normal_power() Get the normal power level of a device component

pm_set_normal_power() Set the normal power level of a device component

Kernel Statistics Functions
The kernel statistics functions are:

kstat_create() Create and initialize a new kstat

kstat_delete() Remove a kstat from the system

kstat_install() Add a fully initialized kstat to the system

kstat_named_init() Initialize a named kstat

kstat_runq_back_to_waitq() Record a transaction migration from run queue
to the wait queue

kstat_runq_enter() Record a transaction addition to the run queue

kstat_runq_exit() Record a transaction removal from the run
queue

kstat_waitq_enter() Record a transaction addition to the wait
queue

kstat_waitq_exit() Record a transaction removal from the wait
queue

514 Writing Device Drivers • January 2005

kstat_waitq_to_runq() Record a transaction migration from the wait
queue to the run queue

Kernel Logging and Printing Functions
The kernel logging and printing functions are:

cmn_err(), vcmn_err() Display an error message

ddi_report_dev() Announce a device

strlog() Submit messages to the log driver

ddi_dev_report_fault() Report a hardware failure

scsi_errmsg() Display a SCSI request sense message

scsi_log() Display a SCSI-device-related message

scsi_vu_errmsg() Display a SCSI request sense message

Buffered I/O Functions
The buffered I/O functions are:

physio() Perform physical I/O

aphysio() Perform asynchronous physical I/O

anocancel() Prevent cancellation of an asynchronous I/O request

minphys() Limit the physio() buffer size

biowait() Suspend processes pending completion of block I/O

biodone() Release the buffer after buffer I/O transfer and notify blocked
threads

bioerror() Indicate the error in a buffer header

geterror() Return an I/O error

bp_mapin() Allocate virtual address space

bp_mapout() Deallocate virtual address space

disksort() Use a single-direction elevator seek strategy to sort for buffers

Appendix B • Summary of Solaris DDI/DKI Services 515

getrbuf() Get a raw buffer header

freerbuf() Free a raw buffer header

biosize() Return the size of a buffer structure

bioinit() Initialize a buffer structure

biofini() Uninitialize a buffer structure

bioreset() Reuse a private buffer header after I/O is complete

bioclone() Clone another buffer

biomodified() Check whether a buffer is modified

clrbuf() Erase the contents of a buffer

Virtual Memory Functions
The virtual memory functions are:

ddi_btop() Convert device bytes to pages (round down)

ddi_btopr() Convert device bytes to pages (round up)

ddi_ptob() Convert device pages to bytes

btop() Convert size in bytes to size in pages (round down)

btopr() Convert size in bytes to size in pages (round up)

ptob() Convert size in pages to size in bytes

TABLE B–10 Deprecated Virtual Memory Functions

Deprecated Functions Replacement

hat_getkpfnum() devmap(), ddi_dma_*_bind_handle(),
ddi_dma_nextcookie()

Device ID Functions
The device ID functions are:

ddi_devid_init() Allocate a device ID structure

516 Writing Device Drivers • January 2005

ddi_devid_free() Free a device ID structure

ddi_devid_register() Register a device ID

ddi_devid_unregister() Unregister a device ID

ddi_devid_compare() Compare two device IDs

ddi_devid_sizeof() Return the size of a device ID

ddi_devid_valid() Validate a device ID

ddi_devid_str_encode() Encode a device ID and minor_name into a
null-terminated ASCII string; return a pointer to that
string

ddi_devid_str_decode() Decode the device ID and minor_name from a
previously encoded string; allocate and return
pointers to the extracted parts

ddi_devid_str_free() Free all strings returned by the ddi_devid_*
functions

SCSI Functions
The SCSI functions are:

scsi_probe() Probe a SCSI device

scsi_unprobe() Free resources allocated during initial
probing

scsi_alloc_consistent_buf() Allocate an I/O buffer for SCSI DMA

scsi_free_consistent_buf() Free a previously allocated SCSI DMA I/O
buffer

scsi_init_pkt() Prepare a complete SCSI packet

scsi_destroy_pkt() Free an allocated SCSI packet and its DMA
resource

scsi_setup_cdb() Set up SCSI command descriptor block (CDB)

scsi_transport() Start a SCSI command

scsi_poll() Run a polled SCSI command

scsi_ifgetcap() Get SCSI transport capability

scsi_ifsetcap() Set SCSI transport capability

Appendix B • Summary of Solaris DDI/DKI Services 517

scsi_sync_pkt() Synchronize CPU and I/O views of memory

scsi_abort() Abort a SCSI command

scsi_reset() Reset a SCSI bus or target

scsi_reset_notify() Notify the target driver of bus resets

scsi_cname() Decode a SCSI command

scsi_dname() Decode a SCSI peripheral device type

scsi_mname() Decode a SCSI message

scsi_rname() Decode a SCSI packet completion reason

scsi_sname() Decode a SCSI sense key

scsi_errmsg() Display a SCSI request sense message

scsi_log() Display a SCSI-device-related message

scsi_vu_errmsg() Display a SCSI request sense message

scsi_hba_init() SCSI HBA system initialization routine

scsi_hba_fini() SCSI HBA system completion routine

scsi_hba_attach_setup() SCSI HBA attach routine

scsi_hba_detach() SCSI HBA detach routine

scsi_hba_probe() Default SCSI HBA probe function

scsi_hba_tran_alloc() Allocate a transport structure

scsi_hba_tran_free() Free a transport structure

scsi_hba_pkt_alloc() Allocate a scsi_pkt structure

scsi_hba_pkt_free() Free a scsi_pkt structure

scsi_hba_lookup_capstr() Return an index matching capability string

TABLE B–11 Deprecated SCSI Functions

Deprecated Function Replacement

free_pktiopb() scsi_free_consistent_buf()

get_pktiopb() scsi_alloc_consistent_buf()

makecom_g0() scsi_setup_cdb()

makecom_g0_s() scsi_setup_cdb()

makecom_g1() scsi_setup_cdb()

makecom_g5() scsi_setup_cdb()

518 Writing Device Drivers • January 2005

TABLE B–11 Deprecated SCSI Functions (Continued)
Deprecated Function Replacement

scsi_dmafree() scsi_destroy_pkt()

scsi_dmaget() scsi_init_pkt()

scsi_hba_attach() scsi_hba_attach_setup()

scsi_pktalloc() scsi_init_pkt()

scsi_pktfree() scsi_destroy_pkt()

scsi_resalloc() scsi_init_pkt()

scsi_resfree() scsi_destroy_pkt()

scsi_slave() scsi_probe()

scsi_unslave() scsi_unprobe()

Resource Map Management Functions
The resource map management functions are:

rmallocmap() Allocate a resource map

rmallocmap_wait() Allocate a resource map, wait if necessary

rmfreemap() Free a resource map

rmalloc() Allocate space from a resource map

rmalloc_wait() Allocate space from a resource map, wait if necessary

rmfree() Free space back into a resource map

System Global State
ddi_in_panic() Determine whether the system is in panic state

Appendix B • Summary of Solaris DDI/DKI Services 519

Utility Functions
The utility functions are:

nulldev() Zero return function

nodev() Error return function

nochpoll() Error return function for non-pollable devices

ASSERT() Expression verification

bcopy() Copy data between address locations in the kernel

bzero() Clear memory for a given number of bytes

bcmp() Compare two byte arrays

ddi_ffs() Find the first bit set in a long integer

ddi_fls() Find the last bit set in a long integer

swab() Swap bytes in 16-bit halfwords

strcmp() Compare two null-terminated strings

strncmp() Compare two null-terminated strings, with length limit

strlen() Determine the number of non-null bytes in a string

strcpy() Copy a string from one location to another

strncpy() Copy a string from one location to another, with length
limit

strchr() Find a character in a string

sprintf(), vsprintf() Format characters in memory

numtos() Convert an integer to a decimal string

stoi() Convert a decimal string to an integer

max() Return the larger of two integers

min() Return the lesser of two integers

va_arg() Finds the next value in a variable argument list

va_copy() Copies the state of a variable argument list

va_end() Deletes pointer to a variable argument list

va_start() Finds the pointer to the start of a variable argument list

520 Writing Device Drivers • January 2005

APPENDIX C

Making a Device Driver 64-Bit Ready

This appendix provides information for device driver writers who are converting their
device drivers to support the 64-bit kernel. It presents the differences between 32-bit
and 64-bit device drivers and describes the steps to convert 32-bit device drivers to
64-bit. This information is specific to regular character and block device drivers only.

This appendix provides information on the following subjects:

� “Introduction to 64–Bit Driver Design” on page 521
� “General Conversion Steps” on page 522
� “Well-known ioctl Interfaces” on page 530

Introduction to 64–Bit Driver Design
For drivers that need support for the 32-bit kernel only, existing 32-bit device drivers
will continue to work without recompilation. However, most device drivers require
some changes to run correctly in the 64-bit kernel, and all device drivers require
recompilation to create a 64-bit driver module. The information in this appendix will
help you to enable drivers for 32-bit and 64-bit environments to be generated from
common source code, thus increasing code portability and reducing the maintenance
effort.

Before starting to clean up a device driver for the 64-bit environment, you should
understand how the 32-bit environment differs from the 64-bit environment. In
particular, you must be familiar with the C language data type models ILP32 and
LP64. See the following table.

521

TABLE C–1 Comparison of ILP32 and LP64 Data Types

C Type ILP32 LP64

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

float 32 32

double 64 64

long double 96 128

pointer 32 64

The driver-specific issues due to the differences between ILP32 and LP64 are the
subject of this appendix. More general topics are covered in the Solaris 64-bit
Developer’s Guide.

In addition to general code cleanup to support the data model changes for LP64,
driver writers have to provide support for both 32-bit and 64-bit applications.

The ioctl(9E), devmap(9E), and mmap(9E) entry points enable data structures to be
shared directly between applications and device drivers. If those data structures
change size between the 32-bit and 64-bit environments, then the entry points must be
modified so that the driver can determine whether the data model of the application is
the same as that of the kernel. When the data models differ, data structures can be
adjusted. See “I/O Control Support for 64-Bit Capable Device Drivers” on page 248,
“32–bit and 64–bit Data Structure Macros” on page 251, and “Associating Kernel
Memory With User Mappings” on page 157.

In many drivers, only a few ioctls need this kind of handling. The other ioctls
should work without change as long as these ioctls pass data structures that do not
change in size.

General Conversion Steps
The sections below provide information on converting drivers to run in a 64-bit
environment. Driver writers might need to perform one or more of the following
tasks:

1. Use fixed-width types for hardware registers.

522 Writing Device Drivers • January 2005

2. Use fixed-width common access functions.
3. Check and extend use of derived types.
4. Check changed fields within DDI data structures.
5. Check changed arguments of DDI functions.
6. Modify the driver entry points that handle user data, where needed.
7. Check structures that use 64–bit long types on x86 platforms.

These steps are explained in detail below.

After each step is complete, fix all compiler warnings, and use lint to look for other
problems. The SC5.0 (or newer) version of lint should be used with -Xarch=v9 and
-errchk=longptr64 specified to find 64–bit problems. See the notes on using and
interpreting the output of lint in the Solaris 64-bit Developer’s Guide.

Note – Do not ignore compilation warnings during conversion for LP64. Warnings that
were safe to ignore previously in the ILP32 environment might now indicate a more
serious problem.

After all the steps are complete, compile and test the driver as both a 32-bit and 64-bit
module.

Use Fixed-Width Types for Hardware Registers
Many device drivers that manipulate hardware devices use C data structures to
describe the layout of the hardware. In the LP64 data model, data structures that use
long or unsigned long to define hardware registers are almost certainly incorrect,
because long is now a 64-bit quantity. Start by including <sys/inttypes.h>, and
update this class of data structure to use int32_t or uint32_t instead of long for
32-bit device data. This approach preserves the binary layout of 32-bit data structures.
For example, change:

struct device_regs {
ulong_t addr;
uint_t count;

}; /* Only works for ILP32 compilation */

to:

struct device_regs {
uint32_t addr;
uint32_t count;

}; /* Works for any data model */

Appendix C • Making a Device Driver 64-Bit Ready 523

Use Fixed-Width Common Access Functions
The Solaris DDI permits device registers to be accessed by access functions for
portability to multiple platforms. Previously, the DDI common access functions
specified the size of data in terms of bytes, words, and so on. For example,
ddi_getl(9F) is used to access 32-bit quantities. This function is not available in the
64-bit DDI environment, and has been replaced by versions of the function that specify
the number of bits to be acted on.

These routines were added to the 32-bit kernel in the Solaris 2.6 operating
environment, to permit their early adoption by driver writers. For example, to be
portable to both 32-bit and 64-bit kernels, the driver must use ddi_get32(9F) to
access 32-bit data rather than ddi_getl(9F).

All common access routines are replaced by their fixed-width equivalents. See the
ddi_get8(9F), ddi_put8(9F), ddi_rep_get8(9F), and ddi_rep_put8(9F) man
pages for details.

Check and Extend Use of Derived Types
System-derived types, such as size_t, should be used where possible so that the
resulting variables make sense when passed between functions. The new derived
types uintptr_t or intptr_t should be used as the integral type for pointers.

Fixed-width integer types are useful for representing explicit sizes of binary data
structures or hardware registers, while fundamental C language data types, such as
int, can still be used for loop counters or file descriptors.

Some system-derived types represent 32-bit quantities on a 32-bit system but represent
64-bit quantities on a 64-bit system. Derived types that change size in this way
include: clock_t, daddr_t, dev_t, ino_t, intptr_t, off_t, size_t, ssize_t,
time_t, uintptr_t, and timeout_id_t.

When designing drivers that use these derived types, pay particular attention to the
use of these types, particularly if the drivers are assigning these values to variables of
another derived type, such as a fixed-width type.

Check Changed Fields in DDI Data Structures
The data types of some of the fields within DDI data structures, such as buf(9S), have
been changed. Drivers that use these data structures should make sure that these fields
are being used appropriately. The data structures and the fields that were changed in a
significant way are listed below.

524 Writing Device Drivers • January 2005

buf Structure Changes
The fields listed below pertain to transfer size, which can now exceed more than 4
Gbytes.

size_t b_bcount; /* was type unsigned int */
size_t b_resid; /* was type unsigned int */

size_t b_bufsize; /* was type long */

ddi_dma_attr

The ddi_dma_attr(9S) structure defines attributes of the DMA engine and the
device. Because these attributes specify register sizes, fixed-width data types have
been used instead of fundamental types.

ddi_dma_cookie Structure Changes
uint32_t dmac_address; /* was type unsigned long */

size_t dmac_size; /* was type u_int */

The ddi_dma_cookie(9S) structure contains a 32-bit DMA address, so a fixed-width
data type has been used to define the address. The size has been redefined as size_t.

csi_arq_status Structure Changes
uint_t sts_rqpkt_state; /* was type u_long */

uint_t sts_rqpkt_statistics; /* was type u_long */

These fields in the structure do not need to grow and have been redefined as 32-bit
quantities.

scsi_pkt Structure Changes
uint_t pkt_flags; /* was type u_long */
int pkt_time; /* was type long */
ssize_t pkt_resid; /* was type long */
uint_t pkt_state; /* was type u_long */

uint_t pkt_statistics; /* was type u_long */

Because the pkt_flags, pkt_state, and pkt_statistics fields in the
scsi_pkt(9S) structure do not need to grow, these fields have been redefined as
32-bit integers. The data transfer size pkt_resid field does grow and has been
redefined as ssize_t.

Check Changed Arguments of DDI Functions
This section describes the DDI function argument data types that have been changed.

Appendix C • Making a Device Driver 64-Bit Ready 525

getrbuf() Argument Changes
struct buf *getrbuf(int sleepflag);

In previous releases, sleepflag was defined as a type long.

drv_getparm() Argument Changes
int drv_getparm(unsigned int parm, void *value_p);

In previous releases, value_p was defined as type unsigned long. In the 64-bit
kernel, drv_getparm(9F) can fetch both 32-bit and 64-bit quantities. The interface
does not define data types of these quantities, and simple programming errors can
occur.

The following new routines offer a safer alternative:

clock_t ddi_get_lbolt(void);
time_t ddi_get_time(void);
cred_t *ddi_get_cred(void);

pid_t ddi_get_pid(void);

Driver writers are strongly urged to use these routines instead of drv_getparm(9F).

delay() and timeout() Argument Changes
void delay(clock_t ticks);

timeout_id_t timeout(void (*func)(void *), void *arg, clock_t ticks);

The ticks argument to the delay(9F) and timeout(9F) routines has been changed
from long to clock_t.

rmallocmap() and rmallocmap_wait() Argument
Changes
struct map *rmallocmap(size_t mapsize);

struct map *rmallocmap_wait(size_t mapsize);

The mapsize argument to the rmallocmap(9F) and rmallocmap_wait(9F) routines
has been changed from ulong_t to size_t.

scsi_alloc_consistent_buf() Argument Changes
struct buf *scsi_alloc_consistent_buf(struct scsi_address *ap,

struct buf *bp, size_t datalen, uint_t bflags,

int (*callback)(caddr_t), caddr_t arg);

526 Writing Device Drivers • January 2005

In previous releases, datalen was defined as an int and bflags was defined as a
ulong.

uiomove() Argument Changes
int uiomove(caddr_t address, size_t nbytes,

enum uio_rw rwflag, uio_t *uio_p);

The nbytes argument was defined as a type long, but because nbytes represents a
size in bytes, size_t is more appropriate.

cv_timedwait() and cv_timedwait_sig()
Argument Changes
int cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

int cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

In previous releases, the timeout argument to the cv_timedwait(9F) and
cv_timedwait_sig(9F) routines was defined to be of type long. Because these
routines represent time in ticks, clock_t is more appropriate.

ddi_device_copy() Argument Changes
int ddi_device_copy(ddi_acc_handle_t src_handle,

caddr_t src_addr, ssize_t src_advcnt,
ddi_acc_handle_t dest_handle, caddr_t dest_addr,

ssize_t dest_advcnt, size_t bytecount, uint_t dev_datasz);

The src_advcnt, dest_advcnt, dev_datasz arguments have changed type. These arguments
were previously defined as long, long, and ulong_t respectively.

ddi_device_zero() Argument Changes
int ddi_device_zero(ddi_acc_handle_t handle,

caddr_t dev_addr, size_t bytecount, ssize_t dev_advcnt,

uint_t dev_datasz):

In previous releases, dev_advcnt was defined as a type long and dev_datasz as a
ulong_t.

ddi_dma_mem_alloc() Argument Changes
int ddi_dma_mem_alloc(ddi_dma_handle_t handle,

size_t length, ddi_device_acc_attr_t *accattrp,
uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,

Appendix C • Making a Device Driver 64-Bit Ready 527

caddr_t *kaddrp, size_t *real_length,
ddi_acc_handle_t *handlep);

In previous releases, length, flags, and real_length were defined with types uint_t,
ulong_t, and uint_t *.

Modify Routines That Handle Data Sharing
If a device driver shares data structures that contain longs or pointers with a 32-bit
application using ioctl(9E), devmap(9E), or mmap(9E), and the driver is recompiled
for a 64-bit kernel, the binary layout of data structures will be incompatible. If a field is
currently defined in terms of type long and 64-bit data items are not used, change the
data structure to use data types that remain as 32–bit quantities (int and unsigned
int). Otherwise, the driver needs to be aware of the different structure shapes for
ILP32 and LP64 and determine whether a model mismatch between the application
and the kernel has occurred.

To handle potential data model differences, the ioctl(), devmap(), and mmap()
driver entry points, which interact directly with user applications, need to be written
to determine whether the argument came from an application using the same data
model as the kernel.

Data Sharing in ioctl()
To determine whether a model mismatch exists between the application and the
driver, the driver uses the FMODELS mask to determine the model type from the
ioctl() mode argument. The following values are OR-ed into mode to identify the
application data model:

� FLP64 – Application uses the LP64 data model
� FILP32 – Application uses the ILP32 data model

The code examples in “I/O Control Support for 64-Bit Capable Device Drivers”
on page 248 show how this situation can be handled using
ddi_model_convert_from(9F).

Data Sharing in devmap()
To enable a 64-bit driver and a 32-bit application to share memory, the binary layout
generated by the 64-bit driver must be the same as the layout consumed by the 32-bit
application. The mapped memory being exported to the application might need to
contain data-model-dependent data structures.

Few memory-mapped devices face this problem because the device registers do not
change size when the kernel data model changes. However, some pseudo-devices that
export mappings to the user address space might want to export different data

528 Writing Device Drivers • January 2005

structures to ILP32 or LP64 applications. To determine whether a data model
mismatch has occurred, devmap(9E) uses the model parameter to describe the data
model expected by the application. The model parameter is set to one of the following
values:

� DDI_MODEL_ILP32 – The application uses the ILP32 data model
� DDI_MODEL_LP64 – The application uses the LP64 data model

The model parameter can be passed untranslated to the
ddi_model_convert_from(9F) routine or to STRUCT_INIT(). See “32–bit and
64–bit Data Structure Macros” on page 251.

Data Sharing in mmap()

Because mmap(9E) does not have a parameter that can be used to pass data model
information, the driver’s mmap(9E) entry point can be written to use the new DDI
function ddi_model_convert_from(9F). This function returns one of the following
values to indicate the application’s data type model:

� DDI_MODEL_ILP32 – Application expects the ILP32 data model
� DDI_MODEL_ILP64 – Application expects the LP64 data model
� DDI_FAILURE – Function was not called from mmap(9E)

As with ioctl() and devmap(), the model bits can be passed to
ddi_model_convert_from(9F) to determine whether data conversion is necessary,
or the model can be handed to STRUCT_INIT().

Alternatively, migrate the device driver to support the devmap(9E) entry point.

Check Structures with 64–bit Long Data Types on
x86–Based Platforms
You should carefully check structures that use 64–bit long types, such as uint64_t,
on the x86 platforms. The alignment and size can differ between compilation in 32–bit
mode versus a 64–bit mode. Consider the following example.

Appendix C • Making a Device Driver 64-Bit Ready 529

#include <studio>
#include <sys>

struct myTestStructure {
uint32_t my1stInteger;
uint64_t my2ndInteger;

};

main()
{

struct myTestStructure a;

printf("sizeof myTestStructure is: %d\n", sizeof(a));
printf("offset to my2ndInteger is: %d\n", (uintptr_t)&a.bar - (uintptr_t)&a);

}

On a 32–bit system, this example displays the following results:

sizeof myTestStructure is: 12

offset to my2ndInteger is: 4

Conversely, on a 64–bit system, this example displays the following results:

sizeof myTestStructure is: 16

offset to my2ndInteger is: 8

Thus, the 32–bit application and the 64–bit application view the structure differently.
As a result, trying to make the same structure work in both a 32–bit and 64–bit
environment can cause problems. This situation occurs often, particularly in situations
where structures are passed into and out of the kernel through ioctl() calls.

Well-known ioctl Interfaces
Many ioctl(9E) operations are common to a class of device drivers. For example,
most disk drivers implement many of the dkio(7I) family of ioctls. Many of these
interfaces copy in or copy out data structures from the kernel, and some of these data
structures have changed size in the LP64 data model. The following section lists the
ioctlsthat now require explicit conversion in 64-bit driver ioctl routines for the
dkio, fdio(7I), fbio(7I), cdio(7I), and mtio(7I) families of ioctls.

ioctl command Affected data structure Reference

DKIOCGAPART

DKIOCSAPART

dk_map

dk_allmap

dkio(7I)

530 Writing Device Drivers • January 2005

ioctl command Affected data structure Reference

DKIOGVTOC

DKIOSVTOC

partition

vtoc

dkio(7I)

FBIOPUTCMAP

FBIOGETCMAP

fbcmap fbio(7I)

FBIOPUTCMAPI

FBIOGETCMAPI

fbcmap_i fbio(7I)

FBIOCCURSOR

FBIOSCURSOR

fbcursor fbio(7I)

CDROMREADMODE1

CDROMREADMODE2

cdrom_read cdio(7I)

CDROMCDDA cdrom_cdda cdio(7I)

CDROMCDXA cdrom_cdxa cdio(7I)

CDROMSUBCODE cdrom_subcode cdio(7I)

FDIOCMD fd_cmd fdio(7I)

FDRAW fd_raw fdio(7I)

MTIOCTOP mtop mtio(7I)

MTIOCGET mtget mtio(7I)

MTIOCGETDRIVETYPE mtdrivetype_request mtio(7I)

USCSICMD uscsi_cmd scsi_free_consistent_buf
Function

Device Sizes
The nblocks property is exported by each slice of a block device driver. This property
contains the number of 512–byte blocks that each slice of the device can support. The
nblocks property is defined as signed 32-bit quantity, which limits the maximum size
of a slice to 1 Tbyte.

Disk devices that provide more than 1 Tbyte of storage per disk must define the
Nblocks property, which should still contain the number of 512 byte blocks that the
device can support. However, Nblocks is a signed 64-bit quantity, which removes any
practical limit on disk space.

The nblocks property is now deprecated. All disk devices should provide the
Nblocks property.

Appendix C • Making a Device Driver 64-Bit Ready 531

532 Writing Device Drivers • January 2005

Index

Numbers and Symbols
64–bit device drivers, 248, 521

A
add_drv command, 215, 387

description of, 424
device name, 385

address spaces, description of, 53
allocb()function, 397
alternate access mechanisms, 503
aphysio() function, 238
aread() entry point, asynchronous data

transfers, 235
ASSERT(9F) macro, 462
associating kernel memory with user

applications, 157
asynchronous communication drivers,

testing, 431
asynchronous data transfers

block drivers, 267
character drivers, 235
USB, 394-395

attach() entry point, 390-391, 405-408
active power management, 406
description of, 99-104
network drivers, 356
system power management, 408

auto-request sense mode, 296
autoconfiguration

of block devices, 257-258
of character devices, 229

autoconfiguration (Continued)
overview, 87
routines, 36
of SCSI HBA drivers, 318
of SCSI target drivers, 283

autoshutdown threshold, 187
autovectored interrupts, 120
avoiding data loss while testing, 439-442
awrite() entry point, asynchronous data

transfers, 235

B
binary compatibility

description of, 54
potential problems, 528

binding a driver to a device, 59
binding a driver to a USB device, 384-386
biodone() function, 264
block driver

autoconfiguration of, 257
buf structure, 261
cb_ops structure, 91
overview, 38
slice number, 257

block driver entry points, 256
close() function, 260
open() function, 259
strategy() function, 261

booting an alternate kernel, 439-440
booting the kmdb debugger

on SPARC systems, 444-445

533

booting the kmdb debugger (Continued)
on x86 systems, 445

buf structure
changes to, 525
description of, 261

buffer allocation, DMA, 142
buffered I/O functions, 515-516
burst sizes, DMA, 141
bus

architectures, 481
PCI architectures, 482
SBus architecture, 485
SCSI, 275

bus-master DMA, 130, 133
bus nexus device drivers, description of, 55
byte ordering, 478

C
cache, description of, 148
callback functions

description of, 46
example of, 140

cb_ops structure, description of, 91
cfgadm_usb command, 410-411
character device driver

aphysio() function, 238
autoconfiguration, 229
cb_ops structure, 91
close() entry point, 232
data transfers, 232
device polling, 243
entry points for, 228
I/O control mechanism, 246
memory mapping, 242
minphys() function, 240
open() entry point, 230-232
overview, 39-40
physio() function, 237
strategy() entry point, 240

cloning SCSI HBA driver, 312
close() entry point

block drivers, 260
description of, 232

cmn_err() function, 216
debugging, 461
description of, 48

cmn_err() function (Continued)
example of, 272

compatible property, description of, 59
compiling and linking a driver, 421
condition variable functions, 499-500

cv_broadcast(), 67
cv_destroy(), 67
cv_init(), 67
cv_timedwait(), 68
cv_timedwait_sig(), 70
cv_wait(), 67
cv_wait_sig(), 69

condition variables
and mutex locks, 66
routines, 67

.conf files, See hardware configuration files
configuration, testing device drivers, 433-442
configuration descriptor clouds, 404-405
configuration entry points

attach() function, 99
detach() function, 104
getinfo() function, 106

configuration files, hardware, See hardware
configuration files

context management, See device context
management

context of device driver, 47
cookies

DMA, 130
iblock, 120

copying data
copyin() function, 233
copyout() function, 233

CPR (CheckPoint and Resume), 408
crash dumps, saving, 441
crash(1M) command, 444
csi_arq_status structure, changes to, 525
cv_timedwait() function, changes to, 527
cv_timedwait_sig() function, changes

to, 527

D
data alignment for SPARC, 476
data corruption

control data, 465-466
detecting, 465-466

534 Writing Device Drivers • January 2005

data corruption (Continued)
device management data, 465-466
malignant, definition of, 465
misleading, definition of, 465
of received data, 466

data sharing
using devmap(), 528
using ioctl(), 528
using mmap(), 529

data storage classes, 63
data structures

dev_ops structure, 89-90
GLD, 366, 369-370
modldrv structure, 89

data transfers, character drivers, 232
DDI-compliant drivers

byte ordering, 478
compliance testing, 430

DDI data structures
buf structure, 525
ddi_dma_attr structure, 525
ddi_dma_cookie structure, 525

DDI/DKI
See also LDI
design considerations, 45
and disk performance, 273
overview, 54
purpose in kernel, 52

ddi_dma_attr structure, 134
ddi_eventcookie_t, 205-206
DDI function tables, 495-520
DDI functions

ddi_add_intr() function, 122
ddi_create_minor_node() function, 100
ddi_device_copy() function, 527
ddi_device_zero() function, 527
ddi_devid_free() function, 203-204
ddi_dma_getwin() function, 132
ddi_dma_mem_alloc() function, 528
ddi_dma_nextseg() function, 132
ddi_driver_major() function, 257
ddi_enter_critical(), 487
ddi_get_cred() function, 526, 528
ddi_get_driver_private()

function, 280, 362
ddi_get_instance() function, 368
ddi_get_lbolt() function, 526
ddi_get_pid() function, 526

DDI functions (Continued)
ddi_get_time() function, 526
ddi_get()X, 465
ddi_log_sysevent() function, 80
ddi_model_convert_from()

function, 528
ddi_prop_free() function, 207
ddi_prop_get_int() function, 351
ddi_prop_lookup() function, 75
ddi_prop_lookup_string()

function, 207
ddi_prop_op(), 76
ddi_put()X, 465
ddi_regs_map_setup() function, 112
ddi_removing_power() function, 189
ddi_rep_get()X, 465
ddi_rep_put()X, 465
ddi_set_driver_private()

function, 280
ddi_umem_alloc(), 466
ddi_umem_alloc() function, 157
ddi_umem_free() function, 161
delay() function, 526
timeout() function, 526
uiomove() example, 236
uiomove() function, 527

DDI_INFO_DEVT2DEVINFO, 106
DDI_INFO_DEVT2INSTANCE, 106
DDI_RESUME, detach() function, 189
DDI_SUSPEND, detach() function, 189
debugging

ASSERT(9F) macro, 462
booting an alternate kernel, 439-440
coding hints, 461
common tasks, 448-456
conditional compilation, 463
detecting kernel memory leaks, 450
displaying kernel data structures, 451-453
system file, 436
kmdb debugger, 444-447
kmem_flags, 438-439
mdb debugger, 447-448
moddebug, 437-438
postmortem, 443-444
preparing for disasters, 439
setting up a serial connection, 434
setting up a SPARC test system, 435
setting up an x86 test system, 435-436

535

debugging (Continued)
system registers, 449-450
tools, 443
using kernel variables, 456
using the SPARC PROM for device

debugging, 488
writing mdb commands, 450-451

debugging device drivers, 433-459
delay() function, changes to, 526
dependency, 181-182
deprecated device access functions, 512-513
deprecated DMA functions, 508-509
deprecated memory allocation functions, 499
deprecated power management functions, 514
deprecated programmed I/O

functions, 505-507
deprecated property functions, 498
deprecated SCSI functions, 518-519
deprecated time-related functions, 513
deprecated user application kernel

functions, 512-513
deprecated user process information

functions, 511
deprecated user space access functions, 510
deprecated virtual memory functions, 516
descriptor tree, 388-390, 391
dest_adcent argument, ddi_device_copy(),

changes to, 527
detach() entry point

active power management, 406
description of, 104-105
hot removal, 403-404
system power management, 408

detecting kernel memory leaks with mdb, 450
dev_advcnt argument, ddi_device_zero(),

changes to, 527
dev_datasz argument, ddi_device_copy(),

changes to, 527
dev_datasz argument, ddi_device_zero(),

changes to, 527
dev_info_t functions, 496
dev_ops structure, description of, 89-90
dev_t functions, 496-497
devfsadm command, 424
device

alternate settings, 384
composite, 386-387, 410
configurations, 384

device (Continued)
endpoints, 384
interface number, 409
interfaces, 384
splitting interfaces, 387, 410

device access functions
block drivers, 259
character drivers, 230-232
deprecated, 512-513
table, 511-513

device configuration, entry points, 95
device context management, 163

entry points, 166
model, 164
operation, 165

device-dependency, power.conf entry, 182
device-dependency-property, power.conf

entry, 182
device directory, recovering, 442
device driver

See also loading drivers
64-bit drivers, 248, 521
access from within kernel, 199
aliases, 424
binding to device node, 59, 384-386
bindings, 387
block driver, 38
configuration descriptor clouds, 404-405
context, 47
debugging

coding hints, 461
using the PROM, 488

definition, 33
entry points, 34
error handling, 428
header files, 418
hubd USB hub driver, 403
loadable interface, 91
modifying information with

update_drv(), 424
modifying permissions, 424
module configuration, 419
network driver, 355-379
offlining, 402, 403-404
packaging, 425
printing messages, 48
purpose in kernel, 51
source files, 419

536 Writing Device Drivers • January 2005

device driver (Continued)
standard character driver, 39-40
testing, 427
USB driver, 381-413
usb_mid USB multi-interface driver, 386,

403-404, 409
device drivers

debugging, 433-459
setting up a serial connection, 434
tools, 443

testing, 433-442
tuning, 456-459
using kstat structures, 457-459

device ID functions, 516-517
device information

binding a driver to a device, 59
binding a driver to a USB device, 384-386
compatible device names, 384-386
di_link_next_by_lnode() function, 218
di_link_next_by_node() function, 218
di_link_private_get() function, 219
di_link_private_set() function, 219
di_link_spectype() function, 218
di_link_t, 218
di_link_to_lnode() function, 218
di_lnode_devinfo() function, 218
di_lnode_devt() function, 218
di_lnode_name() function, 218
di_lnode_next() function, 218
di_lnode_private_get() function, 219
di_lnode_private_set() function, 219
di_lnode_t, 218
di_node_t, 218
di_walk_link() function, 218
di_walk_lnode() function, 218
DINFOLYR, 218
LDI, 203-204
lnode, 218-219
nblocks property, 531
property values, 204-205
self-identifying, 481
tree structure, 55

device interrupts, See interrupts; interrupt
handling

device layering, See LDI
device memory

D_DEVMAP flag in cb_ops, 91
mapping, 41, 153-161

device node, 384
device number, description of, 53
device polling

in character drivers, 243
chpoll() function, 243
poll() function, 243

device power management
components, 179
definition of, 177-179
dependency, 181-182
entry points, 185
interfaces, 183
model, 179
pm_busy_component() function, 183,

405-408
pm_idle_component() function, 184,

405-408
pm_lower_power() function, 406
pm_raise_power() function, 405-408
power() entry point, 405-408
power() function, 185
power levels, 180-181
state transitions, 183
usb_create_pm_components()

function, 405-408
USB devices, 405-408

device registers, mapping, 99
device state in power management, 188
device tree

displaying, 56
navigating, in debugger, 453-455
overview, 55
purpose in kernel, 52

device usage, 200
See LDI

/devices directory
description of, 53
displaying the device tree, 58

devmap_ entry point, devmap_access()
function, 168-169

devmap_ entry points
devmap_access() function, 176
devmap_contextmgt()function, 169
devmap_dup() function, 171-172
devmap() function, 154
devmap_map() function, 167
devmap_unmap() function, 172-174

537

devmap_ functions
devmap_devmem_setup() function, 155
devmap_load() function, 176
devmap_umem_setup() function, 159
devmap_unload() function, 176

disaster recovery, 442
disk

I/O controls, 273
performance, 273

disk driver testing, 431
DKI, See DDI/DKI
DL_CLDLS, DLPI symbols, 359
DL_ETHER

Ethernet V2 packet processing, 356-357
GLD support, 356
ISO 8802-3 (IEEE 802.3) packet

processing, 356-357
network statistics, 364

DL_FDDI
GLD support, 356, 357
SNAP processing, 357

DL_STYLE1, DLPI symbols, 359
DL_STYLE2, DLPI symbols, 359
DL_TPR

GLD support, 356, 357, 358
SNAP processing, 357
source routing, 358

DL_VERSION_2, DLPI symbols, 359
DLIOCRAW, ioctl() function, 360
DLPI primitives, 358-360

DL_ATTACH_REQ, 358, 359
DL_BIND_REQ, 359
DL_DETACH_REQ, 359
DL_DISABMULTI_REQ, 359
DL_ENABMULTI_REQ, 359
DL_GET_STATISTICS_ACK, 360
DL_GET_STATISTICS_REQ, 360, 362
DL_INFO_ACK, 358
DL_INFO_REQ, 358
DL_PHYS_ADDR_ACK, 360
DL_PHYS_ADDR_REQ, 360
DL_PROMISCOFF_REQ, 359
DL_PROMISCON_REQ, 359
DL_SET_PHYS_ADDR_REQ, 360
DL_UNATTACHED_REQ, 359
DL_UNBIND_REQ, 359
DL_UNITDATA_IND, 360
DL_UNITDATA_REQ, 360

DLPI providers, 358
DLPI symbols

DL_CLDLS, 359
DL_STYLE1, 359
DL_STYLE2, 359
DL_VERSION_2, 359

DMA
buffer allocation, 142
burst sizes, 141
callbacks, 146
cookie, 130, 132
freeing handle, 146
freeing resources, 145-146
handle, 130, 132, 138
object, 130
object locking, 138
operations, 132-137
physical addresses, 131
private buffer allocation, 142-144
register structure, 140
resource allocation, 139-141
restrictions, 134
transfers, 132, 237-238
virtual addresses, 131
windows, 132, 150

DMA functions, 507-509
deprecated, 508-509

driver binding name, 59
driver.conf files, See hardware configuration

files
driver entry points, attach() function, 191
driver module entry points, See entry points
drv_getparm() function, changes to, 526
drv_usecwait(9F), 487
DTrace, 459
dump() entry point, block drivers, 272
DVMA

SBus slots supporting, 486
virtual addresses, 131

dynamic memory allocation, 49

E
EHCI (Enhanced Host Controller

Interface), 382
entry points

attach() function, 99-104, 390-391, 405-408

538 Writing Device Drivers • January 2005

entry points, attach() function (Continued)
active power management, 406
system power management, 408

for block drivers, 256
for character drivers, 228
definition, 34
detach() function, 104-105, 189, 406

hot removal, 403-404
system power management, 408

for device power management, 185
device context management, 166
for device configuration, 95
for network drivers, 371-376
ioctl() function, 246
power() function, 185, 405-408
probe() function, 96-99
SCSA HBA summary, 304
system power management, 188

error handling, 428
error messages, printing, 48, 272
system file, 436
/etc/driver_aliases file, 387
/etc/power.conf file, device

dependencies, 182
Ethernet V2, See DL_ETHER
events

asynchronous notification, 205-206
attributes, 82-85
description of, 79-80
hotplug notification, 402

exporting device memory to user
applications, 155

external registers, 487

F
faults, latent fault, definition of, 471
fibre distributed data interface, See DL_FDDI
file system I/O, 256-257
_fini() entry point

example of, 94
required implementation, 35

first-party DMA, 131, 133
flags argument, ddi_dma_mem_alloc(),

changes to, 528
flow of control for power management, 194
freemsg() function, 397

functions
See also condition variable functions
See also DDI functions
See also device power management
See individual functions
See also LDI functions
See specific function name

fuser command, display device usage
information, 222-223

G
generic device name, 60
getinfo() entry point, 106
getmajor() function, 257
getrbuf() function, changes to, 526
getting major numbers, example of, 257
GLD

device types supported by, 356
drivers, 355-379

GLD data structures
gld_mac_info, 366-368
gld_stats, 369-370

GLD entry points
gldm_get_stats(), 375
gldm_intr(), 374-375
gldm_ioctl(), 375-376
gldm_reset(), 372
gldm_send(), 374
gldm_set_mac_addr(), 372
gldm_set_multicast(), 372-373
gldm_set_promiscuous(), 373-374
gldm_start(), 372
gldm_stop(), 372

gld_intr() function, 378-379
GLD ioctl functions, 360
gld_mac_alloc() function, 376
gld_mac_free() function, 376-377
gld_mac_info structure

description of, 366-368
GLD arguments, 370
network drivers, 356, 361
used in gld_intr() function, 379

GLD network statistics, 362-365
gld_recv() function, 378
gld_register() function, 377
gld_sched() function, 378

539

GLD service routines
gld_intr() function, 378-379
gld_mac_alloc() function, 376
gld_mac_free() function, 376-377
gld_recv() function, 378
gld_register() function, 377
gld_sched() function, 378
gld_unregister() function, 377-378

gld_stats structure, network driver, 363
GLD symbols

GLD_BADARG, 376
GLD_FAILURE, 376
GLD_MAC_PROMISC_MULTI, 371
GLD_MAC_PROMISC_NONE, 371
GLD_MAC_PROMISC_PHYS, 371
GLD_MULTI_DISABLE, 373
GLD_MULTI_ENABLE, 373
GLD_NOLINK, 374
GLD_NORESOURCES, 378
GLD_NOTSUPPORTED, 372
GLD_SUCCESS, 376

gld_unregister() function, 377-378
gld(9E) entry point, network driver, 356
gld(9F) function, 356

network driver, 362
gldm_get_stats(), description of, 363
gldm_private structure, 367
graphics devices, device context management

of, 163

H
handle, DMA, 130, 138, 146
hardware configuration files, 419, 422

PCI devices, 484
SBus devices, 486
SCSI target devices, 279
where to place, 423

hardware context, 163
hardware state in power management, 188
HBA driver, See SCSI HBA driver
header files for device drivers, 418
host bus adapter transport layer, 303
hot-plug, See hotplugging
hotpluggable drivers, See hotplugging
hotplugging, 49

and SCSI HBA driver, 49, 349-350

hotplugging (Continued)
USB device, 402-405

hubd USB hub driver, 403

I
I/O

asynchronous data transfers, 235, 267
byte stream, 39
disk controls, 273
DMA transfers, 237
file system structure, 256-257
miscellaneous control of, 246-251
multiplexing, 243
programmed transfers, 236
scatter/gather structures, 234
synchronous data transfers, 235, 264

iblock cookie, 120
IEEE 802.3, See DL_ETHER
IEEE 802.5, See DL_TPR
ILP32

use in devmap(), 529
use in ioctl(), 528
use in mmap(), 529

ILP64, use in mmap(), 529
_info() entry point

example of, 94
required implementation, 35

_init() entry point
example of, 93
required implementation, 35

instance numbers, 95
internal mode registers, 487
internal sequencing logic, 487
interrupt functions, 501
interrupt handlers, responsibilities of, 123
interrupt handling

ddi_add_intr() function, 122
gld_intr() function, 378-379
high-level interrupts, 121, 122, 125
overview, 46
registering an interrupt handler, 122
software interrupts, 121, 125

interrupt property, definition, 46
interrupts

common problems with, 488
description of of, 119

540 Writing Device Drivers • January 2005

interrupts (Continued)
interrupt numbers, 120
network drivers, 361
priority levels, 121
specification, 119
stuck interrupt, 467-468
types of, 120

ioctl() function
character drivers, 246-248
commands, 530
DLIOCRAW, 360

iovec structure, 234
ISO 8802–3, See DL_ETHER
ISO 9314–2, See DL_TPR

K
kernel

debugger
See kmdb debugger

device tree, 52
memory

allocation, 49
associating with user applications, 157
detecting leaks with mdb, 450

module directory, 422-424
overview, 51

kernel data structures, 451-453
kernel logging functions, 515
kernel statistics, see kstat structures, 457-459
kernel statistics functions, 514-515
kernel thread functions, 499-500
kernel variables

setting, 436
use with debuggers, 456
using, 436

kmdb debugger, 444-447
booting on SPARC systems, 444-445
booting on x86 systems, 445
macros, 445-447
setting breakpoints, 445

kmem_alloc() function, 49
kmem_flags kernel variable, 438-439
kmem_free() function, 203-204
kstat, members, 457
kstat structure, network statistics, 362
kstat structures, 457-459

L
latent fault, definition of, 471
layered driver handle, See LDI
Layered Driver Interface, See LDI
layered identifier, See LDI
LDI, 199-223

definition, 52
device access, 200
device consumer, 199
device information, 200
device layering, 217-223
device usage, 200, 217-223, 222-223
event notification interfaces, 205-206
fuser command, 222-223
kernel device consumer, 199
layered driver, 199
layered driver handle, 201-206, 206-215
layered identifier, 200-201, 206-215
libdevinfo interfaces, 217-223
prtconf command, 220-222
target device, 199, 201-206

LDI functions
ldi_add_event_handler()

function, 205-206
ldi_aread() function, 202-203
ldi_awrite() function, 202-203
ldi_close() function, 202, 207
ldi_devmap() function, 202-203
ldi_dump() function, 202-203
ldi_get_dev() function, 203-204
ldi_get_devid() function, 203-204
ldi_get_eventcookie()

function, 205-206
ldi_get_minor_name() function, 203-204
ldi_get_otyp() function, 203-204
ldi_get_size() function, 203-204
ldi_getmsg() function, 202-203
ldi_ident_from_dev()

function, 200-201, 207
ldi_ident_from_dip() function, 200-201
ldi_ident_from_stream()

function, 200-201
ldi_ident_release() function, 200-201,

207
ldi_ioctl() function, 202-203
ldi_open_by_dev() function, 202
ldi_open_by_devid() function, 202
ldi_open_by_name() function, 202, 207

541

LDI functions (Continued)
ldi_poll() function, 202-203
ldi_prop_exists() function, 204-205
ldi_prop_get_int() function, 204-205
ldi_prop_get_int64() function, 204-205
ldi_prop_lookup_byte_array()

function, 204-205
ldi_prop_lookup_int_array()

function, 204-205
ldi_prop_lookup_int64_array()

function, 204-205
ldi_prop_lookup_string_array()

function, 204-205
ldi_prop_lookup_string()

function, 204-205
ldi_putmsg() function, 202-203
ldi_read() function, 202-203
ldi_remove_event_handler()

function, 205-206
ldi_strategy() function, 202-203
ldi_write() function, 202-203, 207

LDI types
ldi_callback_id_t, 205-206
ldi_handle_t, 201-206
ldi_ident_t, 200-201

leaf devices, description of, 55
length argument, ddi_dma_mem_alloc(),

changes to, 528
libdevinfo(), displaying the device tree, 57
libdevinfo device information

library, 217-223
linking a driver, 421
lint command, 64–bit environment, 523
lnode, 218-219
loadable module functions, 496
loading drivers

add_drv command, 424
compiling a driver, 421-422
hardware configuration file, 422
linking a driver, 421-422

loading modules, 35, 422-424
loading test modules, 437-438
locking primitives, types of, 63
locks

manipulating, 499-500
mutex, 64-65
readers/writer, 65
scheme for, 70

LP64
use in devmap(), 529
use in ioctl(), 528

LUN bits, 292

M
M_ERROR, 468
major numbers

description of, 53
example of, 257

makedevice() function, 257
mapsize argument, rmallocmap(), changes

to, 526
mdb

detecting kernel memory leaks, 450
writing commands, 450-451

mdb debugger, 447-448
navigating device tree with, 453-455
retrieving soft state information, 455
running, 447-448

memory allocation, description of, 49
memory allocation functions, 498-499, 499

deprecated, 499
memory leaks, detecting with mdb, 450
memory management unit, description of, 53
memory mapping

device context management of, 163
device memory management, 41, 153-161,

242
memory model

SPARC, 480
store buffers, 479-480

minor device node, 100
modifying permissions of, 424

minor numbers, 53
minphys() function, 240

bulk requests, 398-399
mmap() function, driver notification, 174
moddebug kernel variable, 438
modinfo command, 217, 437-438
modldrv structure, description of, 89
modlinkage structure, description of, 89
modload command, 437-438
modular

debugger
See mdb debugger

542 Writing Device Drivers • January 2005

module directory, 422-424
module functions, 496
module_info structure, network drivers, 361
modunload command, 437-438

description of, 425
mount() function, block drivers, 259
msgb() structure, 398-399, 400
multiplexing I/O, 243
multiprocessor considerations, 165
multithreading

and condition variables, 67
D_MP flag in cb_ops structure, 91
execution environment, 53
and locking primitives, 63
thread synchronization, 66

mutex
functions, 64
locks, 64-65

manipulating, 500
related panics, 71
routines, 64

mutex_init() function, 390
mutex_owned() function, example of, 462
mutual-exclusion locks, See mutex

N
name property, description of, 59
Nblocks property

required definition, 531
use in block device drivers, 257

nblocks property, use in block device
drivers, 257

nbytes argument, uiomove(), changes to, 527
network drivers

testing, 432
using GLD, 355-379

network statistics
DL_ETHER, 364
gld_stats, 363
gldm_get_stats(), 363
kstat, 362

nexus, See bus nexus device drivers
no-involuntary-power-cycles property, 184
normal interrupts, 121
nvlist_alloc structure, description of, 82

O
object locking, 138
offlining, 402, 403-404
OHCI (Open Host Controller Interface), 382
open() entry point

block drivers, 259
character drivers, 230
network drivers, 358

P
packaging, 425
packet processing

Ethernet V2, 356-357
ISO 8802-3 (IEEE 802.3), 356-357

panic, 468
partial store ordering, 480
PCI bus, 482

configuration address space, 483
configuration base address registers, 483
hardware configuration files, 484
I/O address space, 484
memory address space, 484

PCI configuration functions, alternate access
mechanisms, 503

PCI devices, 482
physical DMA, 131
physio() function, description of, 237
pipea, alternate setting, 411
pipes

closing, 393
default control, 390, 392
flushing, 401
mutex initialization, 391
opening, 393
policy, 395
USB device communication, 391-401
USB devices, 384
use before attach(), 387-388

pm_busy_component() function, 405-408
pm_idle_component() function, 405-408
pm_lower_power() function, 406
pm_raise_power() function, 405-408
postmortem debugging, 443-444
power.conf file, See /etc/power.conf file
power cycle, 184
power() entry point, 405-408

543

power management
See also device power management
See also system power management
flow of control, 194
USB devices, 405-408

power management functions, 513-514
deprecated, 514

print() entry point, block drivers, 272
printing functions, 515
printing messages, 48
probe() entry point

description of, 96-99
SCSI target drivers, 283

processor issues
SPARC, 475, 477
x86, 477

programmed I/O, 236
use with DDI access routines, 465

programmed I/O functions, 501-507
deprecated, 505-507

PROM commands, 489
prop_op() entry point, description of, 76
properties

class property, 279
ddi_prop_op, 76
device node name property, 59
LDI, 204-205
nblocks property, 257
no-involuntary-power-cycles, 184
overview, 46, 73
pm-hardware-state property, 188, 191,

286
prtconf, 75
reg property, 188
removable-media, 182
reporting device properties, 76
SCSI HBA properties, 351
SCSI target driver, 352
size property, 229
types of, 73

property functions, 497-498
prtconf command

displaying device names, 384-386
displaying interfaces, 387
displaying kernel device usage

information, 220-222
displaying properties, 75
displaying the bound driver, 385

prtconf command (Continued)
displaying the device tree, 57

pseudo device driver, 33
putnext, 468

Q
queuing, 353

R
read() entry point, synchronous data

transfers, 235
readers/writer locks, 65

manipulating, 500
real_length argument, ddi_dma_mem_alloc(),

changes to, 528
recovering the device directory, 442
reg property, 73
register structure, DMA, 140
removable-media, 182
resource map functions, 519
rmallocmap() function, changes to, 526
rmallocmap_wait() function, changes

to, 526

S
S_IFCHR, 100
SAP, definition of, 356
saving crash dumps, 441
SBus

address bits, 486
geographical addressing, 485
hardware configuration files, 486
physical address space, 485
slots supporting DVMA, 486

scatter-gather
DMA engines, 132
I/O, 234

SCSA, 276, 302
global data definitions, 299
HBA transport layer, 303
interfaces, 304

544 Writing Device Drivers • January 2005

SCSI
architecture, 276
bus, 275

scsi_ functions
scsi_alloc_consistent_buf()

function, 291
scsi_destroy_pkt() function, 290
scsi_dmafree() function, 295
scsi_free_consistent_buf()

function, 291
scsi_ifgetcap() function, 293
scsi_ifsetcap() function, 293
scsi_init_pkt() function, 289
scsi_probe() function, 324
scsi_setup_cdb() function, 292
scsi_sync_pkt() function, 290, 295
scsi_transport() function, 293
scsi_unprobe() function, 324
summary, 278

scsi_ structures
scsi_address structure, 308
scsi_device structure, 308
scsi_hba_tran structure, 305
scsi_pkt structure, 310

scsi_alloc_consistent_buf() function,
changes to, 527

scsi_device structure, 280
SCSI functions, 517-519

deprecated, 518-519
scsi_hba_ functions

scsi_hba_attach_setup() function, 350
scsi_hba_lookup_capstr()

function, 342
scsi_hba_pkt_alloc() function, 325

scsi_hba_ functions, scsi_hba_pkt_free
() function, 333

scsi_hba_ functions
scsi_hba_probe() function, 324
summary list, 314

SCSI HBA driver
abort and reset management, 347
autoconfiguration, 318
capability management, 341
cloning, 312
command state structure, 316
command timeout, 341
command transport, 335
configuration properties, 350

SCSI HBA driver (Continued)
data structures, 305
DMA resources, 328
driver instance initialization, 323
entry points summary, 304
header files, 315
and hotplugging, 49, 349-350
initializing a transport structure, 319
installation, 350
interrupt handling, 337
overview, 302-304
properties, 352
resource allocation, 325

SCSI HBA driver entry points
by category, 322
tran_abort() function, 347
tran_dmafree() function, 334
tran_getcap() function, 341
tran_init_pkt() function, 325
tran_reset() function, 347
tran_reset_notify() function, 348
tran_setcap() function, 344
tran_start() function, 335
tran_sync_pkt() function, 333
tran_tgt_free() function, 324
tran_tgt_init() function, 323
tran_tgt_probe() function, 324

scsi_hba_tran structures, scsi_pkt
structure, 311

scsi_pkt structure, 281
changes to, 525

SCSI target driver
auto-request sense mode, 296
autoconfiguration of, 283
building a command, 291
callback routine, 294
data structures, 280
initializing a command descriptor block, 292
overview, 275
properties, 279, 286, 352
resource allocation, 289
reusing packets, 295
SCSI routines, 278
transporting a command, 293

segmap() entry point
description of, 242
driver notification, 174

self-identifying devices, 481

545

serial connection, 434
serviceability

add new device, 471
detect faulty device, 471
perform periodic ‘‘heath checks’’, 471
remove faulty device, 471
report faults, 471

single device node, 384
size property, 229
slice number for block devices, 257
SNAP

definition of, 357
DL_FDDI, 357
DL_TPR, 357

snoop command, network drivers, 360
soft interrupts, 121
soft state information

LDI, 206-215
retrieving in mdb, 455
USB, 391

software state functions, 498
Solaris kernel, See kernel
source compatibility, description of, 54
source files for device drivers, 419
SPARC processor

byte ordering, 476-477
data alignment, 476
floating point operations, 475
multiply and divide instructions, 477
register windows, 477
structure member alignment, 476

special files, description of, 53
src_advcnt argument, ddi_device_copy(),

changes to, 527
state structure, 46, 99, 206-215
storage classes, driver data, 63
store buffers, 479-480
strategy() entry point

block drivers, 261
character drivers, 240

streaming access, 143
streams, 468
STREAMS

cb_ops structure, 91
drivers, 40
support for network driver, 355

Style 1 DLPI provider, 358
Style 2 DLPI provider, 358

synchronous data transfers
block drivers, 264
character drivers, 235
USB, 394-395

system calls, 51
system global state functions, 519
system power management

description of, 178
entry points, 188
model, 187
policy, 188
saving hardware state, 188
USB devices, 408

system registers, reading and writing, 449-450

T
tagged queuing, 353
tape drivers, testing, 430
test modules, 436
testing

asynchronous communication drivers, 431
configurations, 427-428
DDI compliance, 430
device drivers, 427
disk drivers, 431
functionality, 428
installation and packaging, 430
network drivers, 432
tape drivers, 430-431

testing debuggers, avoiding data loss, 439-442
testing device drivers, 433-442
third-party DMA, 131, 133
thread synchronization

condition variables, 66-68
mutex_init, 64
mutex locks, 64-65
per instance mutex, 99
readers/writer locks, 65

threads, preemption of, 63
ticks argument, delay(), changes to, 526
ticks argument, timeout(), changes to, 526
time-related functions, 513

deprecated, 513
timeout argument, cv_timedwait(), changes

to, 527
timeout() function, changes to, 526

546 Writing Device Drivers • January 2005

tip connection, 434
total store ordering, 480
tran_abort() entry point, SCSI HBA

drivers, 347
tran_destroy_pkt() entry point, SCSI HBA

drivers, 333
tran_dmafree() entry point, SCSI HBA

drivers, 334
tran_getcap() entry point, SCSI HBA

drivers, 341
tran_init_pkt() entry point, SCSI HBA

drivers, 325
tran_reset() entry point, SCSI HBA

drivers, 347
tran_reset_notify() entry point, SCSI

HBA drivers, 348
tran_setcap() entry point, SCSI HBA

drivers, 344
tran_start() entry point, SCSI HBA

drivers, 335
tran_sync_pkt() entry point, SCSI HBA

drivers, 333
tuning device drivers, 456-459

DTrace, 459
kstat structures, 457-459

U
UHCI (Universal Host Controller

Interface), 382
uiomove() function

changes to, 527
example of, 236

unloading drivers, 425
unloading test modules, 437-438
untagged queuing, 353
update_drv command, 217, 387
update_drv() function, description of, 424
USB device

alternate settings, 384
compatible device names, 384-386
composite, 386-387, 410
configuration descriptors, 388-390
current configuration, 384
endpoints, 384

bulk, 391-392
control, 391-392

USB device, endpoints (Continued)
default, 392
interrupt, 391-392
isochronous, 391-392

hotplugging, 402-405
callbacks, 402-403
insertion, 403
reinsertion, 404-405
removal, 403-404

interface number, 409
interfaces, 384
multiple configurations, 384
power management, 405-408

active, 406-408
device, 405-408
passive, 408
system, 408

remote wakeup, 406
splitting interfaces, 387, 410
states, 401-409

USB drivers, 382-383
asynchronous transfer callbacks, 394
bulk data transfer requests, 398-399
control data transfer requests, 398
data transfer

callback status flags, 395, 397
completion reasons, 395, 397

data transfer requests, 395-401
descriptor tree, 388-390, 391
event notification, 402
hubd USB hub driver, 403
interfaces, 382
interrupt data transfer requests, 399
isochronous data transfer requests, 400-401
message blocks, 397
mutex initialization, 390
pipes, 384, 391

closing, 393
default control, 387-388, 390, 392
flushing, 401
opening, 393

registering, 390-391
registering for events, 403
set alternate, 411
set configuration, 410-411
synchronous control requests, 398
usb_mid USB multi-interface driver, 386,

403-404, 409

547

USB drivers (Continued)
versioning, 390

USB functions
cfgadm_usb command, 410-411
usb_alloc_bulk_req() function, 396
usb_alloc_ctrl_req() function, 396
usb_alloc_intr_req() function, 396
usb_alloc_isoc_req() function, 396
usb_client_attach() function, 390-391
usb_client_detach() function, 391
usb_clr_feature() function, 412
usb_create_pm_components()

function, 405-408
usb_free_bulk_req() function, 396
usb_free_ctrl_req() function, 396
usb_free_descr_tree() function, 391
usb_free_dev_data() function, 391
usb_free_intr_req() function, 396
usb_free_isoc_req() function, 396
usb_get_addr() function, 412
usb_get_alt_if() function, 411
usb_get_cfg() function, 410-411
usb_get_current_frame_number()

function, 400
usb_get_dev_data() function, 388-390,

390-391, 392
usb_get_if_number() function, 409
usb_get_max_pkts_per_isoc_request

() function, 400
usb_get_status() function, 412
usb_get_string_descr() function, 411
usb_handle_remote_wakeup()

function, 406
usb_lookup_ep_data() function, 390,

393
usb_owns_device() function, 410
usb_parse_data() function, 388-390
usb_pipe_bulk_xfer() function, 394-401
usb_pipe_close() function, 393
usb_pipe_ctrl_xfer() function, 394-401
usb_pipe_ctrl_xfer_wait()

function, 396, 398
usb_pipe_drain_reqs() function, 401
usb_pipe_get_max_bulk_transfer_

size() function, 398-399
usb_pipe_get_private() function, 412
usb_pipe_get_state() function, 393,

401

USB functions (Continued)
usb_pipe_intr_xfer()
function, 394-401, 399
usb_pipe_isoc_xfer() function, 394-401
usb_pipe_open() function, 393, 395
usb_pipe_reset() function, 393, 401
usb_pipe_set_private() function, 412
usb_pipe_stop_intr_polling()

function, 396, 399
usb_pipe_stop_isoc_polling()

function, 396, 401
usb_print_descr_tree() function, 391
usb_register_hotplug_cbs()

function, 403
usb_set_alt_if() function, 411
usb_set_cfg() function, 410-411
usb_unregister_hotplug_cbs()

function, 403
usb_mid USB multi-interface driver, 386,

403-404, 409
USB structures

usb_alloc_intr_request, 399
usb_bulk_request, 396, 398-399
usb_callback_flags, 395, 397
usb_completion_reason, 395, 397
usb_ctrl_request, 396, 398
usb_intr_request, 396
usb_isoc_request, 396, 400
usb_request_attributes, 397

USB 2.0 specification, 381-382
USBA (Solaris USB Architecture), 381-413
USBA 2.0 framework, 381-413
user application kernel functions

deprecated, 512-513
table, 511-513

user process event functions, 511
user process information functions, 511

deprecated, 511
user space access functions, 509-510

deprecated, 510
utility functions, table, 520

V
virtual addresses, description of, 53
virtual DMA, 131

548 Writing Device Drivers • January 2005

virtual memory
address spaces, 53
memory management unit (MMU), 53

virtual memory functions
deprecated, 516
table, 516

volatile keyword, 469

W
windows, DMA, 150
wput, 468
write() function

synchronous data transfers, 235
user address example, 232

X
x86 processor

byte ordering, 478
data alignment, 477
floating point operations, 477

549

550 Writing Device Drivers • January 2005

	Writing Device Drivers
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books and Papers
	Related Third-Party Web Site References
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Designing Device Drivers for the Solaris Platform
	Overview of Solaris Device Drivers
	Device Driver Basics
	What Is a Device Driver?
	What Is a Device Driver Entry Point?

	Device Driver Entry Points
	Entry Points Common to All Drivers
	Device Access Entry Points
	Loadable Module Entry Points
	Autoconfiguration Entry Points
	Kernel Statistics Entry Points
	Power Management Entry Point
	Summary of Common Entry Points

	Entry Points for Block Device Drivers
	Entry Points for Character Device Drivers
	Entry Points for STREAMS Device Drivers
	Entry Points for Memory Mapped Devices
	Entry Points for the Generic LAN Device (GLD) Driver
	Entry Points for SCSI HBA Drivers
	Entry Points for PC Card Drivers

	Considerations in Device Driver Design
	DDI/DKI Facilities
	Device IDs
	Device Properties
	Interrupt Handling
	Callback Functions
	Software State Management
	Programmed I/O Device Access
	Direct Memory Access (DMA)
	Layered Driver Interfaces

	Driver Context
	Returning Errors
	Dynamic Memory Allocation
	Hotplugging

	Solaris Kernel and Device Tree
	What Is the Kernel?
	Multithreaded Execution Environment
	Virtual Memory
	Devices as Special Files
	DDI/DKI Interfaces

	Overview of the Device Tree
	Device Tree Components
	Displaying the Device Tree
	libdevinfo Library
	prtconf Command
	/devices Directory

	Binding a Driver to a Device
	Generic Device Names

	Multithreading
	Locking Primitives
	Storage Classes of Driver Data
	Mutual-Exclusion Locks
	Setting Up Mutexes
	Using Mutexes

	Readers/Writer Locks
	Semaphores

	Thread Synchronization
	Condition Variables in Thread Synchronization
	Initializing Condition Variables
	Waiting for the Condition
	Signaling the Condition

	cv_wait() and cv_timedwait() Functions
	cv_wait_sig() Function
	cv_timedwait_sig() Function

	Choosing a Locking Scheme
	Potential Locking Pitfalls
	Threads Unable to Receive Signals

	Properties
	Device Properties
	Device Property Names
	Creating and Updating Properties
	Looking Up Properties
	prop_op() Entry Point

	Events
	Introduction to Events
	Using ddi_log_sysevent() to Log Events
	ddi_log_sysevent() Syntax
	Sample Code for Logging Events

	Defining Event Attributes

	Driver Autoconfiguration
	Driver Loading and Unloading
	Data Structures Required for Drivers
	modlinkage Structure
	modldrv Structure
	dev_ops Structure
	cb_ops Structure

	Loadable Driver Interfaces
	_init() Example
	_fini() Example
	_info() Example

	Device Configuration Concepts
	Device Instances and Instance Numbers
	Minor Nodes and Minor Numbers
	probe() Entry Point
	attach() Entry Point
	Driver Soft–State Management
	Lock Variable and Conditional Variable Initialization
	Creating Minor Device Nodes
	Deferred Attach

	detach() Entry Point
	getinfo() Entry Point

	Using Device IDs
	Registering Device IDs
	Registering a Device-Supplied ID
	Registering a Fabricated ID

	Unregistering Device IDs

	Device Access: Programmed I/O
	Device Memory
	Managing Differences in Device and Host Endianness
	Managing Data Ordering Requirements
	ddi_device_acc_attr Structure
	Mapping Device Memory
	Mapping Setup Example

	Device Access Functions
	Alternate Device Access Interfaces
	Memory Space Access
	I/O Space Access
	PCI Configuration Space Access

	Interrupt Handlers
	Interrupt Handler Overview
	Interrupt Specification
	Interrupt Number
	Interrupt Block Cookies

	Device Interrupts
	High-Level Interrupts
	Normal Interrupts
	Software Interrupts

	Registering Interrupts
	Interrupt Handler Responsibilities
	Handling High-Level Interrupts
	High-level Mutexes
	High-Level Interrupt Handling Example

	Direct Memory Access (DMA)
	DMA Model
	Types of Device DMA
	Bus-Master DMA
	Third-Party DMA
	First-Party DMA

	Types of Host Platform DMA
	DMA Software Components: Handles, Windows, and Cookies
	DMA Operations
	Performing Bus-Master DMA Transfers
	Performing First-Party DMA Transfers
	Performing Third-Party DMA Transfers
	DMA Attributes
	ddi_dma_attr Structure
	SBus Example
	ISA Bus Example

	Managing DMA Resources
	Object Locking
	Allocating a DMA Handle
	Allocating DMA Resources
	Device Register Structure
	DMA Callback Example

	Determining Maximum Burst Sizes
	Allocating Private DMA Buffers
	Handling Resource Allocation Failures
	Programming the DMA Engine
	Freeing the DMA Resources
	Freeing the DMA Handle
	Canceling DMA Callbacks
	Synchronizing Memory Objects
	Cache
	ddi_dma_sync() Function

	DMA Windows

	Mapping Device and Kernel Memory
	Memory Mapping Overview
	Exporting the Mapping
	Associating Device Memory With User Mappings
	Associating Kernel Memory With User Mappings
	Allocating Kernel Memory for User Access
	Exporting Kernel Memory to Applications
	Freeing Kernel Memory Exported for User Access

	Device Context Management
	Introduction to Device Context
	What Is a Device Context?
	Context Management Model

	Context Management Operation
	devmap_callback_ctl Structure
	Entry Points for Device Context Management
	devmap_map() Entry Point
	devmap_access() Entry Point
	devmap_contextmgt() Entry Point
	devmap_dup() Entry Point
	devmap_unmap() Entry Point

	Associating User Mappings With Driver Notifications
	Managing Mapping Accesses
	devmap_load() Entry Point
	devmap_unload() Entry Point

	Power Management
	Power Management Framework
	Device Power Management
	System Power Management

	Device Power Management Model
	Power Management Components
	Multiple Power Management Components

	Power Management States
	Power Levels
	Power Management Dependencies
	Automatic Power Management for Devices
	Device Power Management Interfaces
	Busy-Idle State Transitions
	Device Power State Transitions

	power() Entry Point

	System Power Management Model
	Autoshutdown Threshold
	Busy State
	Hardware State
	Automatic Power Management for Systems
	Entry Points Used by System Power Management
	detach() Entry Point
	attach() Entry Point

	Power Management Device Access Example
	Power Management Flow of Control
	Changes to Power Management Interfaces

	Layered Driver Interface (LDI)
	LDI Overview
	Kernel Interfaces
	Layered Identifiers – Kernel Device Consumers
	Layered Driver Handles – Target Devices
	Opening and Closing Target Devices
	Accessing Target Devices
	Retrieving Target Device Information
	Retrieving Target Device Property Values
	Receiving Asynchronous Device Event Notification

	LDI Kernel Interfaces Example
	Device Configuration File
	Driver Source File
	How to Build and Load the Layered Driver
	Test the Layered Driver

	User Interfaces
	Device Information Library Interfaces
	Print System Configuration Command Interfaces
	Device User Command Interfaces

	Designing Specific Kinds of Device Drivers
	Drivers for Character Devices
	Overview of the Character Driver Structure
	Character Device Autoconfiguration
	Device Access (Character Drivers)
	open() Entry Point (Character Drivers)
	close() Entry Point (Character Drivers)

	I/O Request Handling
	User Addresses
	Vectored I/O
	Differences Between Synchronous and Asynchronous I/O
	Data Transfer Methods
	Programmed I/O Transfers
	DMA Transfers (Synchronous)
	DMA Transfers (Asynchronous)
	minphys() Entry Point
	strategy() Entry Point

	Mapping Device Memory
	segmap() Entry Point
	devmap() Entry Point

	Multiplexing I/O on File Descriptors
	Miscellaneous I/O Control
	ioctl() Entry Point (Character Drivers)
	I/O Control Support for 64-Bit Capable Device Drivers
	Handling copyout() Overflow

	32–bit and 64–bit Data Structure Macros
	How Do the Structure Macros Work?
	When to Use Structure Macros
	Declaring and Initializing Structure Handles
	Operations on Structure Handles
	Other Operations

	Drivers for Block Devices
	Block Driver Structure Overview
	File I/O
	Block Device Autoconfiguration
	Controlling Device Access
	open() Entry Point (Block Drivers)
	close() Entry Point (Block Drivers)
	strategy() Entry Point
	buf Structure
	bp_mapin Structure

	Synchronous Data Transfers (Block Drivers)
	Asynchronous Data Transfers (Block Drivers)
	Checking for Invalid buf Requests
	Enqueuing the Request
	Starting the First Transfer
	Handling the Interrupting Device

	dump() and print() Entry Points
	dump() Entry Point (Block Drivers)
	print() Entry Point (Block Drivers)

	Disk Device Drivers
	Disk ioctls
	Disk Performance

	SCSI Target Drivers
	Introduction to Target Drivers
	Sun Common SCSI Architecture Overview
	General Flow of Control
	SCSA Functions

	Hardware Configuration File
	Declarations and Data Structures
	scsi_device Structure
	scsi_pkt Structure (Target Drivers)

	Autoconfiguration for SCSI Target Drivers
	probe() Entry Point (SCSI Target Drivers)
	attach() Entry Point (SCSI Target Drivers)
	detach() Entry Point (SCSI Target Drivers)
	getinfo() Entry Point (SCSI Target Drivers)

	Resource Allocation
	scsi_init_pkt() Function
	scsi_sync_pkt() Function
	scsi_destroy_pkt() Function
	scsi_alloc_consistent_buf() Function
	scsi_free_consistent_buf() Function

	Building and Transporting a Command
	Building a Command
	Setting Target Capabilities
	Transporting a Command
	Synchronous scsi_transport() Function

	Command Completion
	Reuse of Packets
	Auto-Request Sense Mode
	Dump Handling

	SCSI Options

	SCSI Host Bus Adapter Drivers
	Introduction to Host Bus Adapter Drivers
	SCSI Interface
	SCSA HBA Interfaces
	SCSA HBA Entry Point Summary
	SCSA HBA Data Structures
	scsi_hba_tran() Structure
	scsi_address Structure
	scsi_device Structure
	scsi_pkt Structure (HBA)

	Per-Target Instance Data
	Transport Structure Cloning
	SCSA HBA Functions

	HBA Driver Dependency and Configuration Issues
	Declarations and Structures
	Per-Command Structure

	Entry Points for Module Initialization
	_init() Entry Point (SCSI HBA Drivers)
	_fini() Entry Point (SCSI HBA Drivers)

	Autoconfiguration Entry Points
	attach() Entry Point (SCSI HBA Drivers)
	Soft-State Structure
	DMA
	Transport Structure
	Attaching an HBA Driver
	Register Mapping
	Adding an Interrupt Handler
	Create Power Manageable Components
	Report Attachment Status

	detach() Entry Point (SCSI HBA Drivers)

	Entry Points for SCSA HBA Drivers
	Target Driver Instance Initialization
	tran_tgt_init() Entry Point
	tran_tgt_probe() Entry Point
	tran_tgt_free() Entry Point

	Resource Allocation
	tran_init_pkt() Entry Point
	Allocation and Initialization of a scsi_pkt(9S) Structure
	Allocation of DMA Resources
	Reallocation of DMA Resources for Data Transfer
	tran_destroy_pkt() Entry Point
	tran_sync_pkt() Entry Point
	tran_dmafree() Entry Point

	Command Transport
	tran_start() Entry Point
	Interrupt Handler and Command Completion
	Timeout Handler

	Capability Management
	tran_getcap() Entry Point
	tran_setcap() Entry Point

	Abort and Reset Management
	tran_abort() Entry Point
	tran_reset() Entry Point
	tran_bus_reset() Entry Point
	tran_reset_notify() Entry Point

	Dynamic Reconfiguration

	SCSI HBA Driver Specific Issues
	Installing HBA Drivers
	HBA Configuration Properties
	scsi-reset-delay Property
	scsi-options Property
	Per-Target scsi-options

	x86 Target Driver Configuration Properties

	Support for Queuing

	Drivers for Network Devices
	Generic LAN Driver Overview
	Type DL_ETHER: Ethernet V2 and ISO 8802-3 (IEEE 802.3)
	Types DL_TPR and DL_FDDI: SNAP Processing
	Type DL_TPR: Source Routing
	Style 1 and Style 2 DLPI Providers
	Implemented DLPI Primitives
	Implemented ioctl Functions
	GLD Driver Requirements
	Network Statistics

	Declarations and Data Structures
	gld_mac_info Structure
	gld_stats Structure

	GLD Arguments
	GLD Entry Points
	gldm_reset() Entry Point
	gldm_start() Entry Point
	gldm_stop() Entry Point
	gldm_set_mac_addr() Entry Point
	gldm_set_multicast() Entry Point
	gldm_set_promiscuous() Entry Point
	gldm_send() Entry Point
	gldm_intr() Entry Point
	gldm_get_stats() Entry Point
	gldm_ioctl() Entry Point
	GLD Return Values

	GLD Service Routines
	gld_mac_alloc() Function
	gld_mac_free() Function
	gld_register() Function
	gld_unregister() Function
	gld_recv() Function
	gld_sched() Function
	gld_intr() Function

	USB Drivers
	USB in the Solaris Environment
	USBA 2.0 Framework
	USB Client Drivers

	Binding Client Drivers
	How USB Devices Appear to the System
	USB Devices and the Solaris Device Tree
	Compatible Device Names
	Devices With Multiple Interfaces
	Checking Device Driver Bindings

	Basic Device Access
	Before the Client Driver Is Attached
	The Descriptor Tree
	Registering Drivers to Gain Device Access

	Device Communication
	USB Endpoints
	The Default Pipe
	Pipe States
	Opening Pipes
	Closing Pipes
	Data Transfer
	Synchronous and Asynchronous Transfers and Callbacks
	Requests
	Request Allocation and Deallocation
	Request Features and Fields
	Control Requests
	Bulk Requests
	Interrupt Requests
	Isochronous Requests

	Flushing Pipes

	Device State Management
	Hotplugging USB Devices
	Hotplug Callbacks
	Hot Insertion
	Hot Removal
	Hot Reinsertion

	Power Management
	Device Power Management
	Active Power Management
	Passive Power Management

	System Power Management

	Serialization

	Utility Functions
	Device Configuration Facilities
	Getting Interface Numbers
	Managing Entire Devices
	Multiple-Configuration Devices
	Modifying or Getting the Alternate Setting

	Other Utility Functions
	Retrieving a String Descriptor
	Pipe Private Data Facility
	Clearing a USB Condition
	Getting Device, Interface, or Endpoint Status
	Getting the Bus Address of a Device

	Sample USB Device Driver

	Building a Device Driver
	Compiling, Loading, Packaging, and Testing Drivers
	Driver Development Summary
	Driver Code Layout
	Header Files
	.c Files
	driver.conf Files

	Preparing for Driver Installation
	Compiling and Linking the Driver
	Module Dependencies
	Writing a Hardware Configuration File

	Installing, Updating, and Removing Drivers
	Copying the Driver to a Module Directory
	Installing Drivers with add_drv
	Updating Driver Information
	Removing the Driver

	Loading and Unloading Drivers
	Driver Packaging
	Package Postinstall
	Package Preremove

	Criteria for Testing Drivers
	Configuration Testing
	Functionality Testing
	Error Handling
	Testing Loading and Unloading
	Stress, Performance, and Interoperability Testing
	DDI/DKI Compliance Testing
	Installation and Packaging Testing
	Testing Specific Types of Drivers
	Tape Drivers
	Disk Drivers
	Asynchronous Communication Drivers
	Network Drivers

	Debugging, Testing, and Tuning Device Drivers
	Testing Drivers
	Testing With a Serial Connection
	To Set Up the Host System for a tip Connection
	Setting Up a Target System on the SPARC Platform
	Setting Up a Target System on the x86 Platform

	Setting Up Test Modules
	Setting Kernel Variables
	Loading and Unloading Test Modules
	Using the modload() Function
	Using the modinfo() Function
	Using modunload()
	Setting the moddebug Kernel Variable

	Setting kmem_flags Debugging Flags

	Avoiding Data Loss on a Test System
	Back Up Critical System Files
	To Boot With an Alternate Kernel
	Consider Alternative Back–Up Plans
	Capture System Crash Dumps

	Recovering the Device Directory

	Debugging Tools
	Postmortem Debugging
	Using the kmdb Kernel Debugger
	Booting kmdb With an Alternate Kernel on the SPARC Platform
	Booting kmdb With an Alternate Kernel on the x86 Platform
	Setting Breakpoints in kmdb
	kmdb Macros for Driver Developers

	Using the mdb Modular Debugger
	Getting Started With the Modular Debugger

	Useful Debugging Tasks With kmdb and mdb
	Exploring System Registers With kmdb
	Detecting Kernel Memory Leaks
	Writing Debugger Commands With mdb
	Obtaining Kernel Data Structure Information
	Obtaining Device Tree Information
	Retrieving Driver Soft State Information
	Modifying Kernel Variables

	Tuning Drivers
	Kernel Statistics
	kstat Members
	kstat Structures
	kstat Functions

	DTrace for Dynamic Instrumentation

	Recommended Coding Practices
	Debugging Preparation Techniques
	Use cmn_err() to Log Driver Activity
	Use ASSERT() to Catch Invalid Assumptions
	Use mutex_owned() to Validate and Document Locking Requirements
	Use Conditional Compilation to Toggle Costly Debugging Features

	Defensive Programming
	Using Separate Device Driver Instances
	Exclusive Use of DDI Access Handles
	Detecting Corrupted Data
	Corruption of Device Management and Control Data
	Corruption of Received Data

	DMA Isolation
	Handling Stuck Interrupts
	Additional Programming Considerations
	Thread Interaction
	Threats From Top-Down Requests
	Adaptive Strategies

	Declaring a Variable Volatile
	Serviceability
	Periodic Health Checks

	Appendixes
	Hardware Overview
	SPARC Processor Issues
	SPARC Data Alignment
	Member Alignment in SPARC Structures
	SPARC Byte Ordering
	SPARC Register Windows
	SPARC Multiply and Divide Instructions

	x86 Processor Issues
	x86 Byte Ordering
	x86 Architecture Manuals

	Endianness
	Store Buffers
	System Memory Model
	Total Store Ordering (TSO)
	Partial Store Ordering (PSO)

	Bus Architectures
	Device Identification
	Supported Interrupt Types

	Bus Specifics
	PCI Local Bus
	PCI Address Domain
	PCI Configuration Address Space
	PCI Configuration Base Address Registers
	PCI Memory Address Space
	PCI I/O Address Space
	PCI Hardware Configuration Files

	SBus
	SBus Physical Address Space
	Physical SBus Addresses
	SBus Hardware Configuration Files

	Device Issues
	Timing-Critical Sections
	Delays
	Internal Sequencing Logic
	Interrupt Issues

	PROM on SPARC Machines
	Open Boot PROM 3
	Forth Commands
	Walking the PROMs Device Tree
	Mapping the Device

	Reading and Writing

	Summary of Solaris DDI/DKI Services
	Module Functions
	Device Information Tree Node (dev_info_t) Functions
	Device (dev_t) Functions
	Property Functions
	Device Software State Functions
	Memory Allocation and Deallocation Functions
	Kernel Thread Control and Synchronization Functions
	Interrupt Functions
	Programmed I/O Functions
	Direct Memory Access (DMA) Functions
	User Space Access Functions
	User Process Event Functions
	User Process Information Functions
	User Application Kernel and Device Access Functions
	Time-Related Functions
	Power Management Functions
	Kernel Statistics Functions
	Kernel Logging and Printing Functions
	Buffered I/O Functions
	Virtual Memory Functions
	Device ID Functions
	SCSI Functions
	Resource Map Management Functions
	System Global State
	Utility Functions

	Making a Device Driver 64-Bit Ready
	Introduction to 64–Bit Driver Design
	General Conversion Steps
	Use Fixed-Width Types for Hardware Registers
	Use Fixed-Width Common Access Functions
	Check and Extend Use of Derived Types
	Check Changed Fields in DDI Data Structures
	buf Structure Changes
	ddi_dma_attr
	ddi_dma_cookie Structure Changes
	csi_arq_status Structure Changes
	scsi_pkt Structure Changes

	Check Changed Arguments of DDI Functions
	getrbuf() Argument Changes
	drv_getparm() Argument Changes
	delay() and timeout() Argument Changes
	rmallocmap() and rmallocmap_wait() Argument Changes
	scsi_alloc_consistent_buf() Argument Changes
	uiomove() Argument Changes
	cv_timedwait() and cv_timedwait_sig() Argument Changes
	ddi_device_copy() Argument Changes
	ddi_device_zero() Argument Changes
	ddi_dma_mem_alloc() Argument Changes

	Modify Routines That Handle Data Sharing
	Data Sharing in ioctl()
	Data Sharing in devmap()
	Data Sharing in mmap()

	Check Structures with 64–bit Long Data Types on x86–Based Platforms

	Well-known ioctl Interfaces
	Device Sizes

	Index

