Back to the Basics: Solaris Default Processes and init.d Pt. I
By Hal Flynn <hmflynn@earthlink.net>
last updated Monday, May 29, 2000
· Introduction

This article has been written to provide insight into a stock installation of Solaris 8, and the services started by default. Solaris 8 by default runs many services. This example was provided using Solaris 8, which is the latest version available, and a Sparcstation 20. Most of this document will apply to releases of Solaris prior to 8, and to both the Sparc and Intel architectures. For documentation purposes, a full OEM install was done. Many topics discussed will be familiar to seasoned administrators. However, this document will benefit all parties involved in the administration and security aspects of Solaris.

· The Install

If you're familiar with the installation process of Solaris, you might want to skip to the next section.

The initial lab system used for this document is a Sparcstation 20 with 224 Megs of ram, 2 SCSI Disks (5 Gig and 1 Gig), and dual SM61 processors. A tad sluggish under 8, but sufficient. The system was additionally installed on an isolated network (for security purposes, of course).

Thebes (the name of the system) was configured using a 24 bit subnet, and the ip address 192.168.1.2. IP version 6 compatibility was additionally enabled. It was not configured using dhcp under Solaris (something new with 8). However, something interesting occurred during the install using dhcp.

Solaris 8 now has a new selection in the window feature, which allows the person installing the system to select dhcp to give the system its configuration information. The isolated network was using dhcpd 3.0 b1p113 to bring up most of the workstations, and giving the machines on the network router, nameservers, and ip address (codes 1, 3, 6, and 15 per RFC 2132). After dhcpd received the request from thebes, and the mac entry was located and data returned, thebes crashed. This was reproduced three out of three times. To work around the problem, thebes was given the information statically.

An initial install of the OS was done. Kerberos (part of the Sun Enterprise Authentication Mechanism (SEAM) package) was not configured. No additional geographic region support was selected. The OS was installed on the 5 Gig disk (only ~1 Gig is required for a full install of 8), and /export/home was installed on the 1 Gig disk.

· Our example

Using the ps command with the e and f flags, I was able to get a list of all running processes. I've built our example off this. ps gives the current reports the process status of the system. The e flag in ps prints everything running on the system at time of execution, the f flag prints full status information.

· The Output

After running the command on our freshly installed, unaltered Solaris 8 system, this is the full output of ps -ef, which represents everything running on the system.

$ ps -ef |more

 UID PID PPID C STIME TTY TIME CMD

 root 0 0 0 02:20:10 ? 0:01 sched

 root 1 0 0 02:20:13 ? 0:01 /etc/init -

 root 2 0 0 02:20:13 ? 0:00 pageout

 root 3 0 0 02:20:13 ? 7:39 fsflush

 root 282 1 0 02:21:19 ? 0:00 /usr/lib/saf/sac -t 300

 root 143 1 0 02:21:05 ? 0:00 /usr/sbin/rpcbind

 root 52 1 0 02:20:24 ? 0:00 /usr/lib/devfsadm/devfseventd

 root 56 1 0 02:20:39 ? 0:00 /usr/lib/devfsadm/devfsadmd

 root 122 1 0 02:21:04 ? 0:00 /usr/sbin/in.routed -q

 root 178 1 0 02:21:07 ? 0:00 /usr/lib/nfs/lockd

 root 129 1 0 02:21:05 ? 0:00 /usr/lib/inet/in.ndpd

 root 212 1 0 02:21:10 ? 0:00 /usr/sbin/nscd

 root 218 1 0 02:21:11 ? 0:00 /usr/lib/lpsched

 root 166 1 0 02:21:07 ? 0:01 /usr/sbin/inetd -s

 root 197 1 0 02:21:09 ? 0:00 /usr/sbin/syslogd

 root 186 1 0 02:21:08 ? 0:01 /usr/lib/autofs/automountd

 daemon 174 1 0 02:21:07 ? 0:00 /usr/lib/nfs/statd

 root 248 1 0 02:21:13 ? 0:00 /usr/sbin/vold

 root 201 1 0 02:21:09 ? 0:00 /usr/sbin/cron

 root 231 1 0 02:21:12 ? 0:00 /usr/lib/power/powerd

 root 243 1 0 02:21:12 ? 0:00 /usr/sadm/lib/wbem/cimomboot start

 root 241 1 0 02:21:12 ? 0:00 /usr/lib/utmpd

 root 1780 276 0 01:37:50 ? 0:03 /usr/openwin/bin/Xsun :0 -nobanne

r -auth /var/dt/A:0-K0aGIa

 root 1795 1781 0 01:37:53 ? 0:01 dtgreet -display :0

 root 268 1 0 02:21:15 ? 0:00 /usr/lib/snmp/snmpdx -y -c /etc/s

nmp/conf

 root 283 1 0 02:21:19 console 0:00 /usr/lib/saf/ttymon -g -h -p theb

es console login: -T sun -d /dev/console -l c

 root 271 268 0 02:21:16 ? 1:18 mibiisa -r -p 32792

 root 278 1 0 02:21:18 ? 0:00 /usr/lib/dmi/snmpXdmid -s thebes

 root 1783 1 0 01:37:52 ? 0:00 /usr/openwin/bin/fbconsole -d :0

 root 276 1 0 02:21:18 ? 0:00 /usr/dt/bin/dtlogin -daemon

 root 277 1 0 02:21:18 ? 0:00 /usr/lib/dmi/dmispd

 root 287 282 0 02:21:20 ? 0:00 /usr/lib/saf/ttymon

 root 304 1 0 02:22:13 ? 0:01 /usr/lib/sendmail -bd -q15m

 root 1781 276 0 01:37:50 ? 0:00 /usr/dt/bin/dtlogin -daemon

 root 372 166 0 02:24:49 ? 0:00 rpc.ttdbserverd

 root 1805 166 0 01:39:30 ? 0:00 rquotad

· Analysis of the table

· sched is the first process running. It is referred to as the swapper. This process is responsible for operating system scheduling, and swapping out light weight processes when necessary to run higher priority processes. From this process, the scheduling of and swapping of processes on the system is controlled.

· init is the process that is responsible for the execution of all processes at their respective run levels. At bootstrap time, init is the first process started. From its execution, init starts all other processes, and brings the machine to its default run level (for Solaris, this is run level 3).

· pageout is the next process in the sequence. It is used to control the paging out of memory to disk, and back in again.

· fsflush is a daemon responsible for writing data back to the disks. The kernel checks superblocks on a 30 second interval, and the data in the superblock is either idle or unchanged, the kernel uses fsflush to clear the superblock and send the information back to the disks.

· sac is the Service Access Controller, and is started when the system enters multiuser mode. sac is a program designed to watch ports on a Solaris system. It can provide statics on port use, poll for failure, restart port monitors that fail, and a variety of other functions.

· fbconsole is used to redirect /dev/console output to a console window in X.

· rpcbind is the rpc program port mapper. This program runs on port 111, and contains a directory of all rpc services running on a system. We'll not get too deep into this in this section yet, but sufficed it to say that if you're making use of programs that use rpc, this daemon is mandatory. If you know little or nothing about remote procedure call and what it's used for, one is probably better off without it and rpc altogether.

· devfseventd and devfsadmd we'll cover together, as they're dependent upon one another. These two daemons are part of the Solaris 8 device management package. devfseventd is the kernel event notification daemon. This daemon runs on the system, monitoring the kernel for things such as when device nodes are added and removed from the kernel device tree. devfsadmd is the replacement to the antiquated programs such as disks, tapes, and devlinks (all part of the old devfs tools). devfsadmd builds the links in the /dev and /devices directories. All the old devfs tools are now symbolic links to devfsadm.

· in.routed is the routing daemon. This daemon listens to UDP on port 520 for dynamic updates to the routing table. This daemon makes use of Routing Information Protocol (RIP). The q flag puts this daemon into a passive state, where it listens only for routing updates. Details for RIP can be found in RFC 1723.

· lockd is the file locking manager for nfs. This daemon controls all the file locking procedures necessary for alteration of files mounted remotely via nfs. This daemon is necessary for both client and server running nfs. The daemon handles incoming locking requests from other locking daemons for files it's serving. It additionally communicates with other locking daemons to for locking on remotely mounted file systems.

· in.idpd is a daemon new in Solaris 8. This daemon provides auto configuration for hosts and routers under IPv6. IPv6 compatibility is new with this release of Solaris.

· nscd is the name service cache daemon. This daemon caches the most common name service requests for a system to enhance operation. The daemon caches common things such as password file entries, group file entries, host file entries, and miscellaneous attributes. This is not to be confused with the Domain Name System. The primary function of this service revolves around NIS and NIS+. The operation of this daemon is dictated by /etc/nscd.conf

· lpsched is a printer service utility. It is part of the UNIX lp package, and starts or restarts print services on a printer.

· inetd is the services superserver. It provides a wrapper-like service for numerous user services on a Solaris system, starting services only when they're called, and killing them when they're not needed. For more information on inetd, see the first two editions of "Back to the Basics," part I and part II.

· syslogd is the system logging daemon. This daemon is responsible for monitoring and logging system events, or sending them to users on the system. syslogd is a critical application on every system, and is configurable with the /etc/syslog.conf file.

· automountd is the autofs mount daemon. This service makes use of RPC to mount and unmount remote file systems.

· statd is the status monitoring daemon, and it works in conjunction with lockd. This daemon communicates with clients to tell them when the server has rebooted. The daemon operating on clients also communicates with the statd process on the server to tell the server when a client has rebooted. The principle purpose for the daemon is tracking client sessions, and recovery post-crash or after a reboot.

· vold is the volume manager. This neat little daemon manages the system cdrom and floppy. When media is inserted into either the cdrom or the floppy drive, vold goes to work and mounts the media automatically. Configuration information for this utility is in /etc/vold.conf.

· cron is a system scheduling utility. Cron is capable of executing events for specific users on a predetermined time schedule if entries are made into the users crontab.

· powerd is the system power daemon. This daemon performs suspend operations, saving system state and writing it to disk. Upon reboot of the system, the system picks up from state powerd saved, and begins a resume operation.

· cimomboot is part of the Solaris Web Based Enterprise Management (WBEM). To give a little background, CIM is the Common Information Model, an Object Oriented model built to describe managed resources such as disks and CPUs. cimomboot is the daemon process for starting a WBEM session. When a WBEM client requests a connection, cimomboot starts the CIM Object Manager. For more in depth information about this service, see the Solaris WBEM Services Administrator Guide at http://docs.sun.com. We'll only touch lightly upon it in this document.

· utmpd is the utmp and utmpx monitoring daemon. utmp has been obsoleted by utmpx, but for reverse compatibility, it exists. To cut to the chase, utmpx is used to record the current users on a system. When a user terminates a process or logs out of a system, utmpd polls these files to ensure the entries for these events has been removed. Should the entries still exist in the files, utmpd removes them.

· Xsun is the X11 server for Solaris. This process is started by xinit through openwin. This process provides the graphical framework for the Window Manager to run on top of.

· dtgreet is the graphical login the Common Desktop Environment (CDE) provides.

· snmpdx is part of the Solstice package. Officially defined, snmpdx is the Solstice Enterprise Master Agent. This daemon listens on udp port 161, and also listens on a secondary port for snmp traps to forward.

· ttymon is a port monitor for terminal ports. This process is usually used in conjunction with sac. This facility controls TTY settings to users and services.

· mibiisa is the Sun RFC compliant Simple Network Management Protocol (SNMP) daemon. This daemon is fully RFC compliant, and supports additional directives, which can be found in RFC 1213.

· snmpXdmid is another part of the Solstice suite. This package is the DMI mapper subagent. The process is part of the Desktop Management Interface, and communicates from itself to snmpdx.

· dtlogin is another member of the CDE suite of tools distributed with Solaris. This program launches dtgreet when it starts. dtlogin also provides the vector for authentication of user credentials when logging into the system.

· dmispd is the DMI Service Provider. This process is the core of DMI. dmispd provides all the services locally for applications to use DMI, and can additionally serve and receive DMI requests remotely.

· sendmail is the Mail Transport Agent used on Solaris 8.

· rpc.ttdbserverd is part of the ToolTalk Suite. This daemon serves its database (TT_DB) to remote clients using a Desktop Environment (normally CDE) for remote point and click usage of local resources. This service uses RPC.

· rquotad. This is an RPC based service that functions as part of NFS. This service enforces quotas for local file systems remotely. If a local file system is shared and remotely mounted, this daemon sends data to the remote machine in format readable by quota for the sake of quota information for users.

· Conclusion

So far, we've built the system, installed the Full Distribution of Solaris 8 plus OEM support, gathered information about the processes running, and discussed them.

In our next article, we'll look at how these processes are started, the significance of the startup scripts and how to customize the system to conform to our security needs.

Back to the Basics: Solaris Default Processes and init.d Pt. II
By Hal Flynn <hmflynn@earthlink.net>
last updated Monday, June 11, 2000
· Introduction

This article has been written to provide insight into a stock installation of Solaris 8, and the services started by default. Out of the box, Solaris 8 by runs many services. This article was written using Solaris 8, the latest version available, and a Sparcstation 20. Most of this document will apply to releases of Solaris prior to 8, and to both the Sparc and Intel architectures. For documentation purposes, a full OEM install was done. Many topics discussed will be familiar to seasoned administrators. However, this document will benefit all parties involved in the administration and security aspects of Solaris.

· Review

In the last article, we discussed which services are started by default, and gave a ps -ef of our host Thebes. If you haven't read the first part or don't recall, you can find it here.

· Initialization

At bootstrap time, init is the first process started. It's the parent process of everything that will later run on the system. To touch lightly on this, after init is started and it inherits its environment, it begins running through the initialization scripts. These are what's known as the "Run Command" scripts, or rc scripts. rc scripts are nothing more than executable bourne shell scripts.

Solaris has a different directory for each run level. Each run level has a number or letter attached to it, and a different set of scripts in it, such as run level three (normal multiuser mode on a Solaris system), which keeps the initialization scripts in /etc/rc3.d, to be executed when run level 3 is entered.

Within these directories are scripts prefixed first with a letter (either K or S) a number (which determines chronologically when they are started in the sequence) and a name (which is usually a hint as to what they do, although this isn't always true). The files in these directories are hard links, which are linked to files in the master directory, /etc/init.d.

Below is a partial listing of what /etc/init.d looks like:

$ pwd

/etc/init.d

$ ls -li

total 250

 81666 -rwxr--r-- 3 root sys 171 Jan 5 18:55 ANNOUNCE

 81667 -rwxr--r-- 3 root sys 1881 Jan 5 18:55 MOUNTFSYS

 81668 -rwxr--r-- 2 root sys 256 Jan 5 19:27 PRESERVE

 81669 -rw-r--r-- 1 root sys 2681 Jan 5 18:55 README

 81670 -rwxr--r-- 2 root sys 2004 Jan 5 18:55 RMTMPFILES

 81720 -rwxr--r-- 1 root sys 833 Jan 5 18:52 acct

 81703 -rwxr-xr-x 2 root sys 1707 May 4 1998 afbinit

 81722 -rwxr--r-- 6 root sys 572 Jan 5 19:27 apache

 81723 -rwxr--r-- 5 root sys 1365 Jan 5 18:56 asppp

 81671 -rwxr--r-- 5 root sys 447 Jan 5 18:55 audit

 81704 -rwxr--r-- 5 root sys 364 Jan 5 18:55 autofs

 81700 -rwxr-xr-x 2 root other 1558 Dec 16 17:19 autoinstall

 81672 -rwxr--r-- 2 root sys 1153 Jan 5 18:55 buildmnttab

 81726 -rwxr--r-- 1 root sys 271 Dec 7 1999 buttons_n_dials-setup

 81673 -rwxr--r-- 2 root sys 1101 Jan 5 18:55 cachefs.daemon

 81674 -rwxr--r-- 2 root sys 392 Jan 5 18:55 cachefs.root

<--- Rest of output snipped --->

As you can see, our current working directory is /etc/init.d. In this directory, we have a multitude of files, all of which are executable. These files are the master rc scripts.

For documentation purposes, we'll also show a partial list of the scripts in /etc/rc2.d. Here is the output:

$ ls -li

total 158

 81714 -rwxr--r-- 6 root sys 861 Jan 5 19:13 K07dmi

 81715 -rwxr--r-- 6 root sys 404 Jan 5 19:13 K07snmpdx

 81722 -rwxr--r-- 6 root sys 572 Jan 5 19:27 K16apache

 81690 -rwxr--r-- 6 root sys 3080 Jan 5 18:55 K28nfs.server

 126209 -rw-r--r-- 1 root sys 1369 Jan 5 18:55 README

 81667 -rwxr--r-- 3 root sys 1881 Jan 5 18:55 S01MOUNTFSYS

 81670 -rwxr--r-- 2 root sys 2004 Jan 5 18:55 S05RMTMPFILES

 81696 -rwxr--r-- 2 root sys 611 Jan 5 18:55 S20sysetup

 81721 -rwxr--r-- 2 root sys 989 Jan 5 19:01 S21perf

 81701 -rwxr-xr-x 2 root other 1995 Dec 16 17:19 S30sysid.net

 81706 -rwxr--r-- 5 root sys 359 Jan 5 18:57 S40llc2

 81723 -rwxr--r-- 5 root sys 1365 Jan 5 18:56 S47asppp

 81683 -rwxr--r-- 5 root sys 11201 Jan 5 18:52 S69inet

 81724 -rwxr--r-- 2 root sys 327 Jan 5 18:55 S70uucp

 81686 -rwxr--r-- 5 root sys 413 Jan 5 18:55 S71ldap.client

 81693 -rwxr--r-- 5 root sys 2839 Jan 5 18:55 S71rpc

 81702 -rwxr-xr-x 2 root other 1498 Dec 16 17:19 S71sysid.sys

 81700 -rwxr-xr-x 2 root other 1558 Dec 16 17:19 S72autoinstall

 81684 -rwxr--r-- 5 root sys 7134 Jan 5 18:52 S72inetsvc

 81716 -rwxr--r-- 5 root sys 525 Jan 5 17:46 S72slpd

 81673 -rwxr--r-- 2 root sys 1101 Jan 5 18:55 S73cachefs.daemon

<---Output snipped--->

Were more output displayed in each of the lists, you'd start to see matching inodes in each output. This reasserts the fact that the scripts in each run level directory are hard links to the master files in /etc/init.d.

· The Functions of rc scripts

rc scripts serve two purposes. The first one is execution of the process for which they are responsible. The other is stopping the process(es) they start. With rc scripts in each run level, a script prefixed with K denotes "Kill", and S denotes "Start".

On the command line, these scripts can be executed and post-appended with a start or stop, allowing command like execution or killing of the respective processes. Here's a sample of source of one of these scripts, taken from S71rpc (listed above). We're only going to show the sections pertinent to our discussion:

#!/sbin/sh

#

Copyright (c) 1997-1999 by Sun Microsystems, Inc.

All rights reserved.

#

#ident "@(#)rpc 1.46 99/09/22 SMI"

[! -d /usr/bin] && exit

case "$1" in

'start'|'rpcstart')

 if ["$1" = start]; then

 if [-z "$_INIT_PREV_LEVEL"]; then

 set -- `/usr/bin/who -r`

 _INIT_PREV_LEVEL="$9"

 fi

<---Lines snipped--->

'stop')

 # Bring all of the RPC service daemons to a halt. Note that the

 # daemons are stopped in a particular order. Further note that rpcbind

 # is special in that it needs to be killed with -9 to prevent it from

 # saving its state and sending a message to syslog.

 for daemon in rpc.nisd nis_cachemgr keyserv rpc.nispasswdd; do

 /usr/bin/pkill -x -u 0 $daemon

 done

 if [-x /usr/lib/netsvc/yp/ypstop]; then

 /usr/lib/netsvc/yp/ypstop

 fi

 /usr/bin/pkill -9 -x -u 0 rpcbind

 /usr/bin/rm -rf /var/run/rpc_door

 ;;

*)

 echo "Usage: $0 { rpcstart | start | stop }"

 exit 1

 ;;

esac

exit 0

As you can see, there's a subsection 'start'|'rpcstart', a subsection 'stop', and one last subsection '*'. These sections contain the commands executed for each argument specified with script.

Another thing we should mention here while on the topic of shell scripts is choice of shell. As you can see, the scripts are being written with the Bourne shell, however, not /bin/sh (actually, /usr/bin/sh. /bin is a symbolic link to /usr/bin). The executable being used here is /sbin/sh. There's a valid reason for this. We'll give some output below to show why.

This is the Bourne shell executable in /usr/bin/sh:

$ pwd

/usr/bin

$ ls -l sh

-r-xr-xr-x 4 root root 95308 Jan 5 19:02 sh

$ file sh

sh: ELF 32-bit MSB executable SPARC Version 1, dynamically linked,

 stripped

Here is the Bourne shell executable in /sbin:

$ pwd

/sbin

$ ls -l sh

-r-xr-xr-x 2 root root 275692 Jan 5 19:02 sh

$ file sh

sh: ELF 32-bit MSB executable SPARC Version 1, statically linked,

stripped

As you can see here, one is dynamically linked, and one statically linked. The reason for this is availability of libraries. When the system is bootstrapping, and init is executing, the libraries in /usr/lib may not be readily available, creating a situation where the shell can't execute. To avoid this, a statically linked binary is available, and should be used for all rc scripts.

While we're on the topic, it's also worth mentioning /sbin/sh as a login shell. It's no coincidence that this is the default login shell for root. As mentioned previously, if /usr/lib is not mounted, the shell will not execute properly. This can be displayed by changing the default shell to /bin/sh and booting into single user mode. However I don't recommend this unless you have time to fix the problem. You've been warned. If you do so, it is at your own risk. Changing the default shell (unless you've statically compiled a new shell from source to replace it with) is a bad idea.

· Run Levels

We'll review run levels as well, and talk about how the system initializes different things at different run levels. The first thing to do is describe the run levels (or init states...the difference is purely dogmatic).

Run level 0 is Open Boot Prom mode. This is the most basic operation level of the machine. At run level 0, there is no kernel in memory, and it's safe to shut down the system.

Run level s (or S, they're synonymous), is single user mode. This run level does not allow remote logins of other users, and makes an attempt to mount all the file systems for the performance of administrative upkeep. Few things are running at this level.

Run level 1 is similar to run level s. Run level 1 is an administrative run level, however, it also allows remote logins. Again, this administrative mode makes an effort to mount all available file systems.

Run level 2 is the first multiuser mode. This run level by default runs the standard UNIX services (telnetd, ftpd, smtp, etc).

Run level 3 is the default run level of a given Solaris system. This run level, like 2, is a multiuser mode. The key difference between run level 2 and run level three is NFS. At run level three, all NFS shared resources are available.

Run level 4 is not yet implemented, but is the third multiuser mode.

Run level 5 is a shutdown mode. This mode will take the system from its present state, shut it down, and power off the system, respectively. A note, this is not the same with Intel Solaris. This applies only to Solaris Systems running on various Sparc-style platforms.

Run level 6 is the final mode. This run level takes the system from its present state, shuts down the operating system, and reboots the system.

As the superuser on a system, any of these run levels can be reached at nearly any given time. Execution on the command line of init (i.e. init 0, init 5, etc) will take the system to the desired run level.

· Conclusion

In this article, we built a solid understanding of the initialization of the system. We talked about init, the location of the initialization scripts, and how they're started. We also discussed the content of the startup scripts, the shell used for them, an important detail about the root shell, and run levels.

To further this understanding, in our next article, we'll look back at what services are started on a stock install of Solaris 8, and examine the scripts that make them run. From there, we'll talk about the necessity of these services, their applications, and the shutting down the unnecessary ones.

Back to the Basics: Solaris Default Processes and init.d Pt. III
By Hal Flynn <hmflynn@earthlink.net>
last updated Monday, June 25, 2000
· Introduction

This article has been written to provide insight into a stock installation of Solaris 8, and the services started by default. Out of the box, Solaris 8 by runs many services. This article was written using Solaris 8, the latest version available, and a Sparcstation 20. Most of this document will apply to releases of Solaris prior to 8, and to both the Sparc and Intel architectures. For documentation purposes, a full OEM install was done. Many topics discussed will be familiar to seasoned administrators. However, this document will benefit all parties involved in the administration and security aspects of Solaris.

· Review

In the first part of this article, we performed a default installation of the Solaris 8 Operating System, and looked at the processes that run on a stock install of Solaris 8.

In the second part of this article, we reviewed Solaris bootstrap and initialization, rc scripts, and run levels on the Solaris 8 Operating System.

· Overview

Now that we understand how the system is booted, how the processes are started when the system is booted, and where the processes are started from, we'll discuss altering the processes started a boot. We'll additionally look further into the rc scripts and daemons for configuration options to disable their startup, and discuss ways that daemons may be disabled either through removal of the rc script responsible for their starting, or alternate configuration options.

· Processes and their origin

Our reference point for this section is Part I of this article. We'll start with the first true process started on a Solaris system, and work out way down the table to see where each process is started, and how it can be disabled. We'll do this by locating and showing the rc script that actually starts each respective process while the system boots into run level 3.

These scripts may changed to disable their startup on an individual basis. One can either move the script from an S##name (where ## is the startup sequence number, and name is the name of the script) file to a s##name. This will disable the running of the script at boot time, although the script is capable of being executed on the command line. Many other scripts that launch daemons into the process table support additional configuration options that allow certain aspects to be disabled without entirely moving the script or hacking on the source. Some of these configuration options will be mentioned as encountered.

init is the first true process started on a Solaris System. sched, init, pageout, and fsflush we'll not talk about, as these processes are mandatory on any functional Solaris System.

Processes 52 and 56 are devfseventd and devfsadmd and are started together from the S50devfsadm script in the /etc/rc.S directory. This script additionally configures the symbolic links to devices in the /dev directory, and sets the default frame buffer device.

Process 122 is in.routed. in.routed is started from the /etc/rc2.d directory in the S69inet script. This script has many responsibilities, including initializing IPsec, setting the randomization of sequence numbers for tcp, dhcp configuration options, and more. Keeping focus, in.routed is started if there's no default route set, and for the sake of router discovery. This daemon will also permit ip forwarding if more than two interfaces exist, at least one point-to-point interface exists, or /etc/gateways exists. Upon examining the script, we find the following code:

if [! -f /etc/notrouter -a $numdhcp -eq 0 -a \

 \($numifs -gt 2 -o $numptpifs -gt 0 -o -f /etc/gateways \)]; then

 < --- comments snipped --- >

 echo 'Machine is an IPv4 router.'

 /usr/sbin/ndd -set /dev/ip ip_forwarding 1

This piece of logic is pertinent. It states that if an interface is NOT configured via dhcp, or if the file /etc/notrouter exists, in.routed will permit ip forwarding, calling ndd to set this in the ip kernel module. Therefore, if a machine has more than one interface, and one does not wish to enable ip forwarding between interfaces, creating the blank file /etc/notrouter will disable this functionality. The supported arguments for command line execution are 'start' and 'stop'.

Process 129 is in.ndpd. in.ndpd is started from within the same script as in.routed. During execution, the script searches for more than one loopback interface. If another loopback interface exists, parsing takes place to find out if the interface is IPv6. If this is a fact, the script searches for the file /etc/inet/ndpd.conf. If this file doesn't exist, the host portion of IPv6 is run. Otherwise, the script will execute ndd, and IPv6 based ip forwarding, send redirects, and ignore redirects will be enabled. In host mode, the script will launch the in.ndpd daemon, and perform IPv6 neighbor discovery.

Process 143 is rpcbind. rpcbind is started from the script S71rpc in the /etc/rc2.d directory. When init executes the S71rpc script, it tests for the rpcbind daemon, and if the daemon is not running, executes it. The S71rpc script is not responsible only for rpc, though. Within the source of the script, it creates a directory /var/run/rpc_door, NIS and/or NIS+ is configured, and the NIS+ Password Update Daemon is launched. Command line execution of the script supports three arguments: rpcstart, start, and stop. start and rpcstart are synonymous. The stop argument is self explanatory.

Process 166 is inetd. inetd is started from the S72inetsvc script located in /etc/rc2.d. inetd is the topic of previous writing in this series. "Solaris inetd.conf" contains information about the configuration of daemon accessible via the inetd service. Part I and Part II can be found at their respective links. inetd is started with the -s flag by default. This is due to dependency on the Service Access Facility. If the sac (Service Access Controller) is not running at the time inetd is executed (which it usually is not, as it's executed later in the boot sequence), inetd will not start. The -s flag will run inetd as a stand alone process, thereby allowing functionality. Two more notable flags supported by the inetd service at execution are the -t and -r flags. The -t flag forces inetd to perform a trace on all TCP services within its control. The initiating clients IP address and port number are then logged, and stored in syslog. The -r flag instructs inetd to monitor and suspend datagram servers within its control that are misbehaving or performing unexpectedly. Such services can fail while filling and request, and since under the control of inetd, will be restarted immediately after failure. This can begin a vicious cycle that will consume resources and impact performance. Upon suspension, the service will be reinitialized after a specified amount of time (the count and interval are specified as arguments to -r). See the man page inetd(1M) for more details on this subject.

Processes 174 and 178 are the nfs statd and nfs lockd. statd and lockd are both started from the S73nfs.client script in /etc/rc2.d. This script additionally mounts all remotely shared nfs file systems, as well as all cache file systems. Supported command line arguments are start and stop.

Process 186 is the automounter daemon. This daemon is started in the S74autofs script in /etc/rc2.d. This script executes automountd, and automount. automountd is the autofs manager, while automount maps autofs filesystems and mounts them upon execution. After a period of inactivity (10 minutes by default) autofs mounts will be umounted via automountd. The standard start and stop arguments apply.

Process 197 is syslogd. syslogd is started in S74syslog, located in /etc/rc2.d. The script first checks for the existence of /etc/syslog.conf (the syslog configuration file), and if it exists, attempts to execute syslogd. This script will additionally make an attempt to save any crash data generated by executing /usr/bin/savecore and saving it per the configurations in /etc/dumpadm.conf. This script also checks for the existence of /var/adm/messages, the output file for syslogd. If this file does not exist, a copy is made from /dev/null, and chmod 644 is executed on the newly created file. Standard arguments to execution apply.

Process 201 is cron. cron is started in the S75cron file in /etc/rc2.d. The sole purpose of this file is the graceful starting and stopping of cron. It checks for the file /etc/cron.d/FIFO and the process cron in the process table, and if cron is already running, will not execute an additional process. If cron is not running, it executes rm to remove /etc/cron.d/FIFO from the file system in case it exists, and executes a new cron process. Standard arguments apply.

Process 212 is nscd. nscd is started in the S76nscd file in /etc/rc2.d. This script checks for /etc/nscd.conf prior to executing nscd, and attempts execution if the check is successful. Additionally, this script check /etc/nsswitch.conf for NIS+ configuration, and if NIS+ configuration information is found, attempts to run nscd in a more secure mode. Standard arguments apply.

Process 218 is lpsched. lpsched is executed from S80lp in /etc/rc2.d. When started, this script will run lpsched. If the stop argument is specified when this script is executed, lpshut is called. Standard arguments apply.

Process 231 is powerd. powerd is started after S85power is executed from /etc/rc2.d. This script checks for /etc/power.conf, and if the test is successful, executes pmconfig. This will spawn powerd to standby and monitor status according to configuration in /etc/power.conf. Standard arguments apply.

Process 241 is utmpd. utmpd is started in S88utmpd located in /etc/rc2.d. This script checks for a running process of utmpd in the process table, and also searches for the file /etc/utmppipe. If the process is not running in the process table, this script removes any occurrence of /etc/utmppipe that may exist, and executes the daemon. Standard arguments apply.

Process 243 is cimomboot. This process is started from the S90wbem script in /etc/rc2.d. Upon execution of this script, first the directory /var/sadm/wbem/log is checked for. If the existence is false, mkdir is executed to create the directory, and the cimomboot daemon is started. To communicated the pertinence of the /var/sadm/wbem/log directory, after cimomboot is started, a file named cimombootserver.pid is created in the directory, which stores the pid of the running process. This is important, as the stop argument to the rc script will cat this file and parse it for the servers pid, then kill the process from the returned pid.

Process 248 is vold. vold starts from the execution of the S92volmgt script in /etc/rc2.d. S92volmgt simply checks for the /etc/vold.conf configuration file, and then executes vold if the test for the configuration file returns true. Standard arguments apply.

Process 268 is snmpdx. This process starts from S76snmpdx in /etc/rc3.d. This script checks for the existence of /etc/snmp/conf/snmpdx.rsrc and the executable /usr/lib/snmp/snmpdx. If these exist, /usr/lib/snmp/snmpdx is executed using the /etc/snmp/conf file. Standard arguments apply.

Process 271 is mibiisa. As you may have noted, this process is parented by snmpdx (PPID 268). This is part of the standard execution of the snmpdx package.

Process 276 is dtlogin. This process is started from the /etc/rc2.d directory in script S99dtlogin. Numerous command line arguments exist in this script. The one used that we're interested in is 'start'. See this script for other information and options.

Processes 277 and 278 are dmispd and snmpXdmid. These processes are started from the S77dmi script in /etc/rc3.d. dmispd is executed using a block of logic that first checks for the existence of /etc/dmi/conf/dmispd.conf and the executable /usr/lib/dmi/dmispd. Next, the existence of /etc/dmi/conf/snmpXdmid.conf is tested as well as the executable /usr/lib/dmi/snmpXdmid. If both of these tests return true, snmpXdmid is executed. Standard command line arguments apply to this script.

Process 282 is sac. sac is started from the /etc/inittab.

Process 283 is ttymon. ttymon is started from /etc/inittab as well.

Process 287 is also ttymon. This ttymon is spawned as part of sac.

Process 304 is sendmail. This process is started in directory /etc/rc2.d from S88sendmail. This script checks for sendmail and a sendmail.cf. Additionally, it checks for the existence of /var/spool/mqueue, and if this directory doesn't exist, makes it and sets it to mode 0750. This script additionally changes the /var/spool/mqueue directory to root owned and bin group. The default flag used to launch sendmail is -bd. Later in the script, things such as queue checking and log levels are set. Standard arguments apply.

Process 1783 is fbconsole. This program is started from /usr/openwin/lib/openwin-sys.

Finally, we see the remaining processes not previously discussed. These processes are children of parents started previously by inetd. This reasserts our original statement that init is the parent of ALL processes to later run on a system.

· Conclusion

In this volume, we've discussed the default installation of Solaris 8, and what processes run on a stock installation. We've also spoken about run levels, rc scripts, the origin of processes at boot time, and configuration options of interest. We can see the importance of init. We can also see the importance of understanding the boot process, and the configuration of services that may or may not be necessary. From this document forth, we can now find the origin of a process that may or may not be necessary, configure it for further security, or completely disable it.

· Acknowledgements

Special thanks to Jeremy Rauch of Securityfocus.com.

PAGE
1

