
Installing and Administering
IPFilter/9000

Edition 2

HP Networking

Customer Order Number: B9901-90005
Manufacturing Part Number: B9901-90005

1201

United States

© Copyright 2001 Hewlett-Packard Company

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and
(c) (2) of the Commercial Computer Software Restricted Rights clause at
FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY 3000 Hanover Street Palo Alto,
California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for
this pack is restricted to this product only. Additional copies of the
programs may be made for security and back-up purposes only. Resale of
the programs in their present form or with alterations, is expressly
prohibited.

The HP-UX Runtime Environment for Java is not designed or intended
for use in on-line control of aircraft, air traffic, aircraft navigation, or
aircraft communications; or in the design, construction, operation or
maintenance of any nuclear facility.

Copyright Notices. ©copyright 1983-97 Hewlett-Packard Company, all
rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

©copyright 2000 IPFilter Based Firewalls HOWTO by Brendan Conoboy
and Erik Fichtner.
2

Contents
1. Installing and Configuring IPFilter/9000

Overview of HP IPFilter/9000 Installation .11
Installation and Configuration Checklist .11

Step 1: Checking IPFilter/9000 Installation Prerequisites13

Step 2: Loading HP IPFilter/9000 Software .14

Step 3: Determining the Rules for IPFilter .16

Step 4: Adding IPFilter Rules .17

Step 5: Loading Rules to the IPFilter Rules File18

Step 6: Verifying the Installation and Configuration 21

Troubleshooting IPFilter/9000 .22

2. Basic Firewalling

Configuration File Dynamics .27

Basic Rules Processing .28

Controlling Rule Processing .30

Controlling Your Interfaces. .31

Using IP Address and Interface Together .32

Bi-Directional Filtering; The out Keyword .34

Logging What Happens; The log Keyword .35

Complete Bi-Directional Filtering by Interface .36

Controlling Specific Protocols; The proto Keyword38

Filtering ICMP with the icmp-type Keyword; Merging Rulesets39

TCP and UDP Ports; The port Keyword. .40

3. Advanced Firewalling
3

Contents
The Default-Deny Stance . 43

Implicit Allow; The keep state Rule . 44
keeping state . 44
Running an SSH server . 44

Stateful UDP . 47

Stateful ICMP. 48

FIN Scan Detection; flags Keyword, keep frags Keyword 49

Responding to a Blocked Packet . 51

Logging Techniques . 53

Putting It All Together. 54

Improving Performance With Rule Groups . 55

Keep State With Servers and Flags . 58

Localhost Filtering . 59
Drop-Safe Logging with dup-to and to. 59

The dup-to Method . 61

The to Method. 62

4. IPFilter Utilities

The ipf Utility . 65

The ipfstat Utility. 66

The ipmon Utility . 69

The ipftest Utility. 71

Unsupported Utilities and Commands . 75

5. IPFilter and FTP
4

Contents
How FTP Works .79

WU-FTPD on HP-UX. .80

Running an FTP Server .81
Active FTP .81
Passive FTP .81

Running an FTP Client .83
Active FTP .83
Passive FTP .83

6. IPFilter and IPSec

IPFilter and IPSec Basics .87

IPSec UDP Negotiation .89

Punching a Hole in Both Directions .91

When Traffic Appears to be Blocked. .92

Allowing Protocol 50 and Protocol 51 Traffic .94

IPSec Gateways .96

A. IPFilter Configuration Examples

BASIC_1.FW .99

BASIC_2.FW .102

example.1 .104

example.2 .105

example.3 .106

example.4 .107

example.5 .108

example.6 .109
5

Contents
example.7 . 110

example.8 . 111

example.9 . 112

example.10 . 113

example.11 . 114

example.12 . 115

example.13 . 116

example.sr. 117

firewall . 119

server . 120

tcpstate . 121

B. IPFilter Static Linking

Static Linking . 124
6

Preface
The information in this manual is intended for network managers or
network security administrators who install, configure, and troubleshoot
IPFilter/9000 on HP 9000 systems.

IPFilter/9000 is intended by HP to function as a system firewall. There
are elements of IPFilter/9000 that can also be used for perimeter
firewalls. However, perimeter firewall capability with IPFilter/9000 is
not supported by HP. For a complete list of unsupported commands and
utilities related to perimeter firewall functionality, see “Unsupported
Utilities and Commands” in Chapter 4.

The manual is organized as follows:

Chapter 1 “Installing and Configuring IPFilter/9000” describes
how to install and configure IPFilter/9000 software.

Chapter 2 “Basic Firewalling” describes basic IPFilter
configuration. It also provides numerous example
configurations.

Chapter 3 “Advanced Firewalling” provides information about
IPFilter advanced configuration.

Chapter 4 “IPFilter Utilities” provides detailed information about
IPFilter utilities. These include the ipf , ipfstat and
ipmon utilities. This chapter also includes a list of
unsupported utilities.

Chapter 5 “IPFilter and FTP” provides information about running
an FTP Server and an FTP Client.

Chapter 6 “IPFilter and IPSec” describes how IPFilter and IPSec
work together.

Appendix A “IPFilter Configuration Examples” provides nineteen
configuration examples.

Appendix B “IPFilter Static Linking” provides instructions for
statically linking the IPFilter modules to the kernel.
7

8

1 Installing and Configuring
IPFilter/9000

This chapter describes the procedures to load and configure HP
IPFilter/9000 software on your system. It contains the following sections:
9

Installing and Configuring IPFilter/9000
• Overview of HP IPFilter/9000 Installation.

• Step 1: Checking HP IPFilter/9000 Installation Prerequisites.

• Step 2: Loading HP IPFilter/9000 Software.

• Step 3: Determining the Rules for IPFilter/9000.

• Step 4: Adding IPFilter Rules.

• Step 5: Loading Rules to the IPFilter Rules File.

• Step 6: Verifying the Installation and Configuration.
10 Chapter 1

Installing and Configuring IPFilter/9000
Overview of HP IPFilter/9000 Installation
Overview of HP IPFilter/9000 Installation
Installation of HP-UX IPFilter/9000 includes checking installation
prerequisites and loading the HP-UX IPFilter/9000 filesets using the
swinstall(1M) utility. The list in the next section summarizes each step
in the process.

Installation and Configuration Checklist

The following checklist provides the sequence of steps that you will need
to complete installation and configuration of IPFilter/9000. References to
more in-depth information in this manual are also included as part of
each step.

• Check that system meets the system prerequisites. Refer to
“Checking IPFilter/9000 Installation Prerequisites” in this chapter
for detailed information about this task.

• Install IPFilter/9000 using swinstall . Refer to “Loading HP
IPFilter/9000 Software” in this chapter for detailed information about
this task.

• Determine the rules for your system. Chapter 3 contains the rules for
basic firewalling, Chapter 4 contains the rules for advanced
firewalling and Appendix A contains examples of rulesets for specific
problems. You should base your rules on the services running on your
system.

NOTE The default rule for IPFilter is pass all .

• Add the filtering rules for your system to /etc/opt/ipf/ipf.conf
file using the detailed information provided in “Step 4: Adding Your
Rules to the IPFilter Configuration File.”

• Load the rules into the IPFilter/9000 rules file.

• Run the ipf and ipfstat commands to verify the installation as
described in “Step 6, Verifying the Installation and Configuration” in
this chapter.
Chapter 1 11

Installing and Configuring IPFilter/9000
Overview of HP IPFilter/9000 Installation
You can also refer to the ipf (5), and ipfstat(8) man pages for
more detailed information on these commands.
12 Chapter 1

Installing and Configuring IPFilter/9000
Step 1: Checking IPFilter/9000 Installation Prerequisites
Step 1: Checking IPFilter/9000 Installation
Prerequisites

1. Check that the operating system has been upgraded to HP-UX 11.0 or
HP-UX 11.11. On HP-UX 11.0 systems, there is a dependency on the
ARPA Transport 11.00 patch PHNE_22397 or greater. You may
install IPFilter/9000 after the reboot following patch installation.
Check the latest IPFilter/9000 release note for all other patch
information.

To obtain information about the OS, execute the command:

uname -a

To obtain information about a patch, execute the command:

swlist -l patch < patch_id >

2. You have root access and are designated the network security
administrator.
Chapter 1 13

Installing and Configuring IPFilter/9000
Step 2: Loading HP IPFilter/9000 Software
Step 2: Loading HP IPFilter/9000 Software
Follow the steps below to load HP-UX IPFilter/9000 software using the
HP-UX swinstall program.

NOTE If the product is downloaded to the system using

swinstall -s | <path to product depot>

follow Steps 5 - 12 below.

1. Log in as root.

2. Insert the software media (disk) into the appropriate drive.

3. Run the swinstall program using the command:

swinstall

This opens the Software Selection Window and Specify Source
Window.

4. Change the Source Host Name if necessary, enter the mount point of
the drive in the Source Depot Path field, and activate the OK button
to return to the Software Selection Window. Activate the Help button
to get more information.

The Software Selection Window now contains a list of available
software bundles to install.

5. Highlight the HP IPFilter/9000 software for your system type.

6. Choose Mark for Install from the ‘‘Actions’’ menu to choose the
product to be installed. With an exception of the man pages and user’s
manual, you must install the complete IPFilter product.

7. Choose Install from the ‘‘Actions’’ menu to begin product
installation and open the Install Analysis Window.

8. Activate the OK button in the Install Analysis Window when the
Status field displays a Ready message.
14 Chapter 1

Installing and Configuring IPFilter/9000
Step 2: Loading HP IPFilter/9000 Software
9. Activate the Yes button at the Confirmation Window to confirm that
you want to install the software. swinstall displays the Install
Window.

View the Install Window to read processing data while the software is
being installed. When the Status field indicates Ready and the Note
Window opens.

swinstall loads the fileset. Estimated time for processing: 3 to 5
minutes.

10.Activate the OK button on the Note Window to reboot the system.

The user interface disappears and the system reboots.

11. After the system reboots, check the log files in
/var/adm/sw/swinstall.log and /var/adm/sw/swagent.log to make
sure the installation was successful.

NOTE Do not run the IPFilter/9000 product when the system is booted in
single-user mode.

12. Go to “Step 3 Determining the Rules for IPFilter.”
Chapter 1 15

Installing and Configuring IPFilter/9000
Step 3: Determining the Rules for IPFilter
Step 3: Determining the Rules for IPFilter
Review the IPFilter rule descriptions and examples in Chapter 3,
Chapter 4 and Appendix A to determine the appropriate rules for your
system. You should determine the rules that you use by the services that
are running on your system.

Refer to Chapter 2, Basic Firewalling for examples and detailed
information on the block , pass , quick and log keywords. Refer to
Chapter 3, Advance Firewalling for information on the keep state ,
flag s, and keep frags keywords.

Go to “Step 4: Adding Rules to the IPFilter/9000 Configuration File.”
16 Chapter 1

Installing and Configuring IPFilter/9000
Step 4: Adding IPFilter Rules
Step 4: Adding IPFilter Rules
When IPFilter is first installed, the default rules files ipf.conf is
empty. You must put rules into this file. Alternately, you can the
configuration to read different files that you configure to hold these rules.
After you have determined your IPFilter ruleset, add your rules to the
/etc/opt/ipf/ipf.conf file using a text editor such as vi .

Filtering rules added to /etc/opt/ipf/ipf.conf are loaded when the
system is booted. If you do not want the rules to load on bootup, place
your rules in a different location, such as /etc/ipf.conf . You can then
load these rules using the ipf(8) command.

Refer to the example rulesets in Appendix A for assistance in putting
your ruleset together.

Go to “Step 5: Installing Rules in the IPFilter/9000 Configuration File.”

NOTE Although NAT functionality is included with the Hewlett-Packard
product, Hewlett-Packard does not support NAT. See “Unsupported
Utilities and Commands” in Chapter 4 for a complete list of unsupported
NAT utilities. For NAT support, contact the IPFilter public domain
website.
Chapter 1 17

Installing and Configuring IPFilter/9000
Step 5: Loading Rules to the IPFilter Rules File
Step 5: Loading Rules to the IPFilter Rules
File
This section describes how to install rules in the IPFilter/9000 rules
file.The IPFilter/9000 configuration file is named:

/etc/opt/ipf/ipf.conf

When IPFilter/9000 is installed, the ipfconf file is put in the
/etc/rc.config.d directory. The information in this file determines
how IPFilter/9000 will be started when the system is rebooted. The
IPFilter/9000 ipfboot startup script reads ipfconf .

NOTE The following is a list of commands and file names, some of which are
very similar:

• ipfboot : The startup script for the ipf module.

• /etc/rc.config.d/ipfconf : The configuration file for the
ipfboot startup script.

• /etc/opt/ipf/ipf.conf : The default IPFilter rules file. Any rules
present in this file are automatically loaded at bootup by the
ipfboot startup script.

By default IPFilter/9000 will be started on bootup and the rules from the
/etc/opt/ipf/ipf.conf file will be processed.

• Add new rules to your ruleset using the -f option of the ipf
command:

ipf -f <rules file>

NOTE Once a rule has been loaded, it takes effect immediately. For example, if
you add a rule to block all traffic and load it using ipf -f <rule
file>, you will find yourself blocked from X-windows and networking
processes.

• Flush rules from your ruleset using the -F a option of the ipf
18 Chapter 1

Installing and Configuring IPFilter/9000
Step 5: Loading Rules to the IPFilter Rules File
command,

ipf -Fa

• The -Fa option will flush the previously configured rules. The -A
option specifies the active rules list.

ipf -Fa -A -f /etc/opt/ipf/ipf.conf

• Optionally, use the -I option if you do not want to save previously
configured rules. This command adds rules to the inactive rule list.

ipf -I -Fa -A -f /etc/opt/ipf/ipf.conf
Chapter 1 19

Installing and Configuring IPFilter/9000
Step 5: Loading Rules to the IPFilter Rules File
• This command enables the new rules. The option will swap the active
rules you just configured with the inactive rules. To make the old
rules effective again, use ipf -s to swap the rulesets.

ipf -s

Go to ”Step 6: Verifying the Installation and Configuration.”
20 Chapter 1

Installing and Configuring IPFilter/9000
Step 6: Verifying the Installation and Configuration
Step 6: Verifying the Installation and
Configuration
Once your IPFilter/9000 software is installed, run the following
commands to verify the installation and configuration.

• Verify that IPFilter/9000 is running using the -V option of the ipf
command:

ipf -V

NOTE The IPFilter modules are dynamically linked to the kernel by default. If
you want to statically link the modules, see Appendix B, “IPFilter Static
Linking” for instructions and information.

• Verify that IPFilter/9000 has been correctly loaded using the
kmadmin -s command:

kmadmin -s

Name ID Status Type
===
pfil 1 LOADED STREAMS
ipf 2 LOADED WSIO

• The following commands will verify that your rules have been
properly loaded. Run ipfstat -i to check for the inbound rules.
Run ipfstat -o to check for outbound rules.

ipfstat -i
ipfstat -o

To view all rules at the same time, run:

ipfstat -io

By default, IPFilter processes the rules in the ipf.conf file. The files
that are provided with the product are empty and need to be loaded.
Chapter 1 21

Installing and Configuring IPFilter/9000
Troubleshooting IPFilter/9000
Troubleshooting IPFilter/9000
This section describes how to troubleshoot IPFilter/9000 configuration. It
provides information about possible problems that may occur along with
the steps needed to resolve them.

• IPFilter/9000 is not working (It passes/allows all network
traffic).

Verify whether IPFilter/9000 is running using ipf -V . The running
field should say yes . If it says no, then the IPFilter/9000 module has
not been loaded. In fact, it was probably explicitly unloaded.

To load IPFilter again:

/sbin/init.d/ipfboot start

This script will load the IPFilter module and any modules it depends
on.

kmadmin -s will provide information similar to the following.

Name ID Status Type
===
pfil 1 LOADED STREAMS
ipf 2 LOADED WSIO

Note that the ‘2’ in the information displayed above is the module ID
and may vary depending on the number of DLKM modules configured
on the system.

Load the rules and check again that IPFilter works. If it still does not
work, reboot the system and check /etc/rc.log and
/var/adm/syslog/syslog.log for errors.

• The host does not seem to be on the network and pings do not
go through.

Check the rules you have configured using ipfstat -io. This
command will show the in and the out rules. Note: If you are using
/etc/opt/ipf/ipf.conf as your rules file, then it will be loaded at
boot time. The IPFilter startup script /sbin/init.d/ipfboot will:

— load the IPFilter module

— start the logging daemon, ipmo n
22 Chapter 1

Installing and Configuring IPFilter/9000
Troubleshooting IPFilter/9000
— load any uncommented rules present in
/etc/opt/ipf/ipf.conf

If the last effective rule amounts to “block in all,” the boot sequence
may not complete, for example, when sendmail, SNMP, NIS are
configured on the system.

• Nothing is logged.

Verify the following:

ipf -V should show the logging file as available .

ps -ef|grep ipmon to verify if ipmon is running. ipmon is started
during bootup. If it is not running, start it as follows:

ipmon -sD

The s option specifies that the log records go to
/var/adm/syslog/syslog.log and the D option directs ipmon to
run as a daemon in the background.

• Errors occur when loading rules.

ipf -f <the rulefile>
ioctl (add/insert rule); File Exists

This occurs when you try to add a rule which is already loaded. Use
the following command to load rules:

ipf -Fa -f <the rulefile>

The -Fa option will flush any previous rules present and all rules will
be loaded afresh.

In addition, you can use ipftest(1) to test a set of filter rules without
having to put them in place. Refer to the ipftest(1) for more
information on this tool.
Chapter 1 23

Installing and Configuring IPFilter/9000
Troubleshooting IPFilter/9000
24 Chapter 1

2 Basic Firewalling

This chapter describes the basic procedures to create filtering rules for
IPFilter/9000.
25

Basic Firewalling
 It contains the following sections:

• Configuration File Dynamics

• Basic Rule Processing

• Controlling Rule Processing

• Basic Filtering by IP Address

• Controlling Your Interfaces

• Using IP Address and Interface Together

• Bi-Directional Filtering; The out Keyword

• Logging What Happens; The log Keyword

• Complete Bi-Directional Filtering by Interface

• Controlling Specific Protocols; The proto Keyword

• Filtering ICMP with the icmp-type Keyword; Merging Rulesets

• TCP and UDP Ports; The port Keyword

NOTE Most of the information in this chapter has been derived from the IP
Filter-based Firewalls HOWTO document written by Brendan Conoby
and Erik Fichtner. You can find this document at
http://www.obfuscation.org/ipf/.
26 Chapter 2

Basic Firewalling
Configuration File Dynamics
Configuration File Dynamics
The IPFilter/9000 configuration file is named:

/etc/opt/ipf/ipf.conf

The UNIX configuration file conventions allow one rule per line, a “#”
mark denoting a comment at the beginning of a line, and a rule and a
comment on the same line. Extraneous whitespace is allowed and
encouraged to keep the rules readable.

When IPFilter/9000 is installed, the ipfconf file is put in the
/etc/rc.config.d directory. The information in this file determines
how IPFilter/9000 starts when the system is rebooted and also gives the
location of the rules file.

By default IPFilter/9000 starts on bootup and the rules from the
/etc/opt/ipf/ipf.conf file are processed.

When IPFilter/9000 is first installed, the rules file is empty. You must
put rules into this file or change the configuration to read the file that
holds these rules. You can change the file information by editing the
rules file.

Refer to the example files in Appendix A for assistance in creating your
ruleset.

NOTE Although NAT functionality is included with the Hewlett-Packard
product, Hewlett-Packard does not support NAT. See “Unsupported
Utilities and Commands” in Chapter 4 for a complete list of unsupported
NAT utilities. For NAT support, contact the IPFilter public domain
website.
Chapter 2 27

Basic Firewalling
Basic Rules Processing
Basic Rules Processing
Rules are processed in order from top to bottom. So, if the contents of
your configuration file are,

block in all

pass in all

the computer will process the rules as:

block in all

pass in all

When a packet comes in, the first rule IPFilter applies is the first rule in
the ruleset:

block in all

If IPFilter has a reason to move to the next rule, it would process the
second rule:

pass in all

IPFilter does not stop processing rules after a match is made.

Unlike other packet filters, IPFilter keeps a flag on whether or not it will
pass a packet. Unless the flow is interrupted, IPFilter goes through the
entire ruleset, making its decision on whether or not to pass or drop a
packet based on the last matching rule.

For example, IPFilter is running on your system with the following
ruleset:

block in all

pass in all

A packet comes in the interface and the first rule is processed:

block in all

Based on the information in the first rule, the system blocks the packet.
It then processes the second rule:

pass in all

The second rule indicates that the packet should be passed. It look for a
third rule. As there is no third rule, the system uses the specifications of
the last rule and passes the packet.

Given the following ruleset:
28 Chapter 2

Basic Firewalling
Basic Rules Processing
block in all
block in all
block in all
block in all
pass in all

All packets pass through. There is no cumulative effect during
processing. The last matching rule always takes precedence.
Chapter 2 29

Basic Firewalling
Controlling Rule Processing
Controlling Rule Processing
If you have had experience with other packet filters, you may find the
IPFilter rules processing confusing. You may also have concerns about
the portability with other filters and the speed of rule matching.
Imagine if you had 100 rules and most of the applicable rules were the
first ten. There would be considerable overhead for each packet in such a
ruleset. Fortunately, there is a simple keyword you can add to any rule
that causes it to take action if there is a match. That keyword is quick .

Here is a modified copy of the original ruleset using the quick keyword:

block in quick all

pass in all

In this example, IPFilter looks at the first rule:

block in quick all

The packet matches and the search is over. The packet is not allowed to
pass.

So, what happens with the next rule in the file?

pass in all

This rule is never encountered. The matching of all and the terminal
keyword quick in the previous rule stopped the rule processing.

If half of the rules in a configuration file are not applicable to most
packets but must be matched to each packet, system performance will be
negatively impacted. On the other hand, the purpose of IPFilter is to
block packets and, as configured, it’s doing a good job. IPFilter, however,
also lets some packets through, so a change to the ruleset to make this
possible is also in order.
30 Chapter 2

Basic Firewalling
Controlling Your Interfaces
Controlling Your Interfaces
Your system may have interfaces to more than one network. You can
control traffic based on the interface. Every packet you receive comes
from a network interface; every packet you transmit goes out a network
interface. If your machine has two interfaces, lo0 (loopback), lan0
(Ethernet), and you do not want packets coming in on the lan0 interface,
add the following rule:

block in quick on lan0 all

pass in all

In this case, the on keyword means that data is coming in on the named
interface. If a packet comes in on lan0, the first rule will block it. If a
packet comes in on lo0 , the first rule will not match, the second rule will,
and the packet will be passed.
Chapter 2 31

Basic Firewalling
Using IP Address and Interface Together
Using IP Address and Interface Together
The more criteria the firewall matches against, the tighter (or looser) the
firewall becomes. If you want data from tun0 , but not from
192.168.0.0/16, this is the start of a powerful firewall:

block in quick on tun0 from 192.168.0.0/16 to any
pass in all

Compare this to a previous ruleset:

block in quick from 192.168.0.0/16 to any
pass in all

In the previous ruleset, all traffic from 192.168.0.0/16, regardless of the
interface, was completely blocked. With the new rule, on tun0 means
that a packet is only blocked if it comes in on the tun0 interface. If a
packet arrives on the xl0 interface from 192.168.0.0/16, it is passed.

At this point you can build a set of definitive addresses that are passed or
blocked. For example, to block private address space to keep it from
entering tun0 :

block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any
block in quick on tun0 from 127.0.0.0/8 to any
pass in all

You are already familiar with the first three blocks, but not with the
fourth. The fourth is a wasted class-A network used for loopback. It is
common for software to communicate with itself on 127.0.0.1, so blocking
it from an external source is a good idea.

There is an important principle in packet filtering:

When you know there are certain types of data that only come from certain
places, set up the system to only allow data from those places.

With unroutable addresses, you know that nothing from 10.0.0.0/8
should be arriving on tun0 because you have no way to reply to it. It is
an illegitimate packet. The same goes for the other unroutables as well
as the 127.0.0.0/8 address.

Most software does all of its authentication based on the originating IP
address of the packet. When you have an internal network, for example
20.20.20.0/24, you know that the only traffic for that internal network is
going to come off the local Ethernet. Should a packet from 20.20.20.0/24
arrive over a tun dialup, it should not be allowed to get to its final
32 Chapter 2

Basic Firewalling
Using IP Address and Interface Together
destination. You can accomplish this with the following ruleset:

block in quick on tun0 from 192.168.0.0/16 to any

block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any
block in quick on tun0 from 127.0.0.0/8 to an
block in quick on tun0 from 20.20.20.0/24 to any

pass in all
Chapter 2 33

Basic Firewalling
Bi-Directional Filtering; The out Keyword
Bi-Directional Filtering; The out Keyword
In the previous examples, you have been passing or blocking inbound
traffic. You can also explicitly pass and block outbound traffic. Inbound
traffic is all traffic that enters the firewall on any interface. Conversely,
outbound traffic is all traffic that leaves on any interface, whether locally
generated or passing through. This means that packets coming in are not
only filtered as they enter the firewall, they are also filtered as they exit.
So far there has been an implied pass out all .

One possible use of this capability might be to limit permitted traffic to
packets originating at 20.20.20.0/24. To do so, add the following rules:

pass out quick on tun0 from 20.20.20.0/24 to any

block out quick on tun0 from any to any

If a packet arrives from IP address 20.20.20.1/32, it is sent out by the
first rule. If a packet comes from IP address 1.2.3.4/32, it is blocked by
the second rule.

You can also make similar rules for unroutable addresses. If a machine
routes a packet through IPFilter with a destination of 192.168.0.0/16,
you can drop it to save bandwidth. Use the following ruleset:

block out quick on tun0 from any to 192.168.0.0/16
block out quick on tun0 from any to 172.16.0.0/12
block out quick on tun0 from any to 10.0.0.0/8

This enhances the security of other systems. Spoofed packets cannot be
sent from your site. Thus your site has less value as a relay for crackers
and, as such, is a less appealing target.

Note that the in and out directions are in reference to your firewall
system, never any other machine.
34 Chapter 2

Basic Firewalling
Logging What Happens; The log Keyword
Logging What Happens; The log Keyword
In all of our examples so far, all blocked and passed packets have been
silently blocked and silently passed. You may want to know if you’re
being attacked.

While it is unnecessary to log every passed packet and, in some cases,
every blocked packet, you may want to know about the blocked packets
from a specific address such as 20.20.20.0/24.

To do so, add the log keyword to the rule with that address:

block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any
block in quick on tun0 from 127.0.0.0/8 to any
block in log quick on tun0 from 20.20.20.0/24 to any
pass in all
Chapter 2 35

Basic Firewalling
Complete Bi-Directional Filtering by Interface
Complete Bi-Directional Filtering by
Interface
When you create a ruleset, you should setup rules for all directions and
all interfaces. The default state of IPFilter is to pass packets. It is as
though there is an invisible rule at the beginning of the ruleset that
states pass in all and pass out all . Instead of relying on the
IPFilter default behavior, make every ruleset as specific as possible,
interface by interface, until all possibilities are explicitly covered.

In the continuation of the previous example, the lo0 loopback interface
will be added. As this interface talks to others on the local system, leave
these rules unrestricted:

 pass out quick on lo0
 pass in quick on lo0

The next rules are for the lan0 interface. For now, no restrictions will be
placed on the lan0 interface:

 pass out quick on lan0
 pass in quick on lan0

Finally, there’s the tun0 interface, which was half-filtered in our
previous firewall examples:

 block out quick on tun0 from any to 192.168.0.0/16

 block out quick on tun0 from any to 172.16.0.0/12
 block out quick on tun0 from any to 10.0.0.0/8
 pass out quick on tun0 from 20.20.20.0/24 to any
 block out quick on tun0 from any to any

 block in quick on tun0 from 192.168.0.0/16 to any
 block in quick on tun0 from 172.16.0.0/12 to any
 block in quick on tun0 from 10.0.0.0/8 to any
 block in quick on tun0 from 127.0.0.0/8 to any
 block in log quick on tun0 from 20.20.20.0/24 to any

 pass in all
36 Chapter 2

Basic Firewalling
Complete Bi-Directional Filtering by Interface
Future examples will continue to show the rules for one direction. When
setting up your own ruleset, however, be sure that you add rules for all
appropriate directions and interfaces.
Chapter 2 37

Basic Firewalling
Controlling Specific Protocols; The proto Keyword
Controlling Specific Protocols; The proto
Keyword
Denial of Service attacks are rampant in many networks. Many denial of
service attacks rely on glitches in the TCP/IP stack of the OS.
Frequently, this has come in the form of ICMP packets. To block ICMP
packets, add the proto command to your ruleset as follows:

block in log quick on tun0 proto icmp from any to any

In this example any ICMP traffic coming in from tun0 will be logged and
discarded.
38 Chapter 2

Basic Firewalling
Filtering ICMP with the icmp-type Keyword; Merging Rulesets
Filtering ICMP with the icmp-type Keyword;
Merging Rulesets
As dropping all ICMP packets may not be useful, you may want to keep
some types of ICMP traffic and drop other types. If you want ping and
traceroute to work, you will need to let in ICMP type 0 and type 11.
Strictly speaking, this might not be a good idea, but if you need to weigh
security against convenience, IPFilter will allow you to do that.

pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 0
pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 11

Rule order is important. As all rules are in quick mode, you should place
your pass rules before your block rules. The last three rules should be
in this order:

pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 0
pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 11
block in log quick on tun0 proto icmp from any to any

Adding these rules to the anti-spoofing rules created previously is tricky.
One possibility would be to put the new ICMP rules at the beginning:

pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 0

pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 11
block in log quick on tun0 proto icmp from any to any
block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any
block in quick on tun0 from 127.0.0.0/8 to any
block in log quick on tun0 from 20.20.20.0/24 to any

pass in all

The problem with this ordering is that an ICMP type 0 packet from
192.168.0.0/16 will get passed by the first rule and never blocked by the
fourth rule.

In this new ordering of the rules, the ruleset will block spoofed traffic
before the ICMP rules are processed. It’s important to keep rule order in
mind when merging rules.
Chapter 2 39

Basic Firewalling
TCP and UDP Ports; The port Keyword
TCP and UDP Ports; The port Keyword
In the last modification to the IPFilter example, you blocked packets
based on protocol. Now you can block packets based on specific parts of
a protocol. The most frequently used part is the port number. Services
such as rsh , rlogin , and telnet are convenient to have, but are
insecure against network sniffing and spoofing. One compromise is to
block only the services externally and only allow them to run internally.
This is easy to do because rlogin , rsh , and telnet use specific TCP
ports (513, 514, and 23 respectively). Create rules to block these services
as follows:

block in log quick on tun0 proto tcp from any to 20.20.20.0/24 port = 513
block in log quick on tun0 proto tcp from any to 20.20.20.0/24 port = 514
block in log quick on tun0 proto tcp from any to 20.20.20.0/24 port = 23

Make sure the services are placed before the pass in all and they’ll be
closed off from the outside (leaving out spoofing for the sake of brevity):

pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 0
pass in quick on tun0 proto icmp from any to 20.20.20.0/24 icmp-type 11
block in log quick on tun0 proto icmp from any to any
block in log quick on tun0 proto tcp from any to 20.20.20.0/24 port = 513
block in log quick on tun0 proto tcp from any to 20.20.20.0/24 port = 514
block in log quick on tun0 proto tcp from any to 20.20.20.0/24 port = 23
pass in all

You may also want to block 514/udp (syslog), 111/tcp & 111/udp
(portmap), 515/tcp (lpd), 2049/tcp and 2049/udp (NFS), and
6000/tcp (X11). You can get a complete listing of the ports being
listened to using netstat -a .

To block UDP instead of TCP, replace proto tcp with proto udp . The
rule for syslog would then be:

block in log quick on tun0 proto udp from any to 20.20.20.0/24 port = 514

IPFilter also has a shorthand for rules that apply to proto tcp and
proto udp at the same time, such as portmap or NFS. The rule for
portmap would be:

block in log quick on tun0 proto tcp/udp from any to 20.20.20.0/24 port = 111
40 Chapter 2

3 Advanced Firewalling

This chapter describes the advanced configuration procedures for
IPFilter software. It contains concepts for advanced firewall design and
41

Advanced Firewalling
advanced features contained only within IPFilter.

 It contains the following sections:

• The Default-Deny Stance

• Implicit Allow; The keep state Rule

• Stateful UDP

• Stateful ICMP

• FIN Scan Detection; flags Keyword, keep frags Keyword

• Responding to a Blocked Packet

• Logging Techniques

• Putting It All Together

• Improving Performance With Rule Groups

• Keep State with Servers and Flags

• Localhost Filtering

• The dup-to Method

• The to Method

NOTE Most of the information in this chapter has been derived from the IP
Filter-based Firewalls HOWTO document written by Brendan Conoby
and Erik Fichtner. You can find this document at
http://www.obfuscation.org/ipf/.
42 Chapter 3

Advanced Firewalling
The Default-Deny Stance
The Default-Deny Stance
A problem exists when blocking services by port as sometimes the port
may move. This frequently happens with RPC-based programs such as
lockd, statd, and even nfsd listen in places other than 2049. This is hard
to predict and it is even harder to automate adjustments. What if you
miss a service? Instead, let’s start from the beginning with an empty
ruleset.

The first rule in the new set is:

block in all

No network traffic will get through with this rule. While it is not an
extremely useful ruleset, you’re completely secure with this setup. It
won’t take much more to make your box secure and also useful.

In this example the machine IPFilter is running on is a web server and it
just wants to take connections on 80/tcp. You can set that up with a
second rule as follows:

block in on tun0 all
pass in quick on tun0 proto tcp from any to 20.20.20.1/32 port
= 80

This machine will pass in port 80 traffic for 20.20.20.1 and deny all other
traffic. For basic firewalling, these are all the rules you need.
Chapter 3 43

Advanced Firewalling
Implicit Allow; The keep state Rule
Implicit Allow; The keep state Rule
The purpose of a firewall is to prevent unwanted traffic from getting to
point B from point A. There are general rules that say “as long as this
packet is going to port 23, it’s okay.” There are also general rules that say
“as long as this packet has its FIN flag set, it’s okay.” IPFilter firewalls
don’t know the beginning, middle, or end of TCP/UDP/ICMP sessions.
There are only vague rules that are applied to all packets. You’re left to
hope that the packet with its FIN flag set isn’t really a FIN scan
mapping your services. You also hope that the packet to port 23 isn’t an
attempted hijack of your telnet session. If only there were a way to
identify and authorize individual TCP/UDP/ICMP sessions and
distinguish them from port scanners and DoS attacks. There is a way
and it is called keeping state.

keeping state

In the expanded ruleset below, the goal is to have convenience and
security in one ruleset.

IPFilter is able to keep track of whether or not a connection has been
established. And it will do it with TCP, UDP and ICMP, not just TCP.
IPFilter refers to it as keeping state. The keyword used for this in the
ruleset is keep state.

Until now this manual has described how packets come in and then how
the ruleset checks them. When packets go out, the ruleset also checks
them. Actually, what happens is: when packets come in, the state table
gets checked and then *maybe* the inbound ruleset gets checked. When
packets go out, the state table gets checked and then *maybe* the
outbound ruleset gets checked. The state table is a list of
TCP/UDP/ICMP sessions that are passed through the firewall
circumventing the entire ruleset.

Running an SSH server

All TCP/IP sessions have a start, a middle, and an end even though they
relate to the same connection. You cannot have an end without a middle
and you cannot have a middle without a beginning. So, all you need to
filter on is the beginning of the TCP/UDP/ICMP session. If the beginning
of the session is allowed by your firewall rules, you want the middle and
44 Chapter 3

Advanced Firewalling
Implicit Allow; The keep state Rule
end to be allowed too. If not, your IP stack may overflow and your
machines may become useless. Keeping state will ignore the middle and
the end of TCP/IP sessions and focus on blocking/passing new sessions.
If a new TCP/IP session is passed, all subsequent packets will be allowed
through. If it’s blocked, none of the subsequent packets will be allowed
through.

block out quick on tun0 all
pass in quick on tun0 proto tcp from any to 20.20.20.1/32
port = 22 keep state

In the above example there is no pass out provision. In fact, there is
only an all-inclusive block out rule. Despite this, the ruleset is complete.
This is because by keeping state, the entire ruleset is circumvented.
Once the first SYN packet hits the SSH server, state is created and the
remainder of the SSH session is allowed to take place without
interference from the firewall.

Here is another example:

block in quick on tun0 all
pass out quick on tun0 proto tcp from 20.20.20.1/32 to any
keep state

In this case, the server is not running any services. In fact, it is not a
server; it’s a client. And this client doesn’t want unauthorized packets
entering its IP stack at all. However, the client wants full access to the
internet and the reply packets that such privilege entails. This simple
ruleset creates state entries for every new outgoing TCP session. Again,
since a state entry is created, these new TCP sessions are free to talk
back and forth without the hindrance or inspection of the firewall
ruleset.

These rules also work for UDP and ICMP:

block in quick on tun0 all
pass out quick on tun0 proto tcp from 20.20.20.1/32 to any
keep state
pass out quick on tun0 proto udp from 20.20.20.1/32 to any
keep state
pass out quick on tun0 proto icmp from 20.20.20.1/32 to any
keep state

So far this example demonstrates keeping state on TCP, UDP, ICMP.
Now you can make outgoing connections as though there’s no firewall
and would be attackers will not be able to get back in. This is very
useful because there’s no need to track down which ports you’re listening
Chapter 3 45

Advanced Firewalling
Implicit Allow; The keep state Rule
to. Instead you attach only the ports you want people to be able to get to.

While state is useful, it is also tricky. Consider the following ruleset:

pass in quick on tun0 proto tcp from any to 20.20.20.1/32
port = 23
pass out quick on tun0 proto tcp from any to any keep state
block in quick all
block out quick all

This seems like a good setup. Incoming sessions are allowed to port 23
and outgoing sessions to any port. Naturally packets going to port 23
will have reply packets, but the ruleset is arranged so that the pass out
rule generates a state entry and everything seems to work fine.

Unfortunately after 60 seconds of idle time the state entry closes (as
opposed to the normal 5 days). This is because the state tracker did not
see the original SYN packet destined to port 23. It only saw the SYN
ACK. IPFilter is effective when following TCP sessions from start to
finish, but it’s not very successful when coming into the middle of a
connection. Rewrite the rule as follows:

pass in quick on tun0 proto tcp from any to 20.20.20.1/32
port = 23 keep state
pass out quick on tun0 proto tcp from any to any keep state
block in quick all
block out quick all

Adding this rule will cause the very first packet to be added to the state
table. Other processing will work as expected. Once the 3-way
handshake has been witnessed by the state engine, it is marked in 4/4
mode, that is, the connection is marked as fully established. This means
it is setup for long-term data exchange until such time as the connection
is torn down when the mode will change again. You can see the current
modes of your state table using ipfstat.
46 Chapter 3

Advanced Firewalling
Stateful UDP
Stateful UDP
As UDP is stateless, it is naturally harder to keep state on it.
Nevertheless, IPFilter is able to do so.

When machine A sends a UDP packet to machine B with source port X
and destination port Y, IPFilter will allow a reply from machine B to
machine A with source port Y and destination port X. This is a short
term state 60 second entry.

This is an example of how you use nslookup to get the IP address of
www.hp.com:

$ nslookup www.hp.com

The following DNS packet is generated by this command:

17:54:25.499852 20.20.20.1.2111 > 198.41.0.5.53: 51979+

The packet is from 20.20.20.1, port 2111 and is destined for 198.41.0.5,
port 53. A 60 second state entry is created. If a packet comes back from
198.41.0.5 port 53 destined for 20.20.20.1 port 2111 within that period of
time, the reply packet will be let through. The following packet is
received a few milliseconds later:

17:54:25.501209 198.41.0.5.53 > 20.20.20.1.2111: 51979 q:
www.hp.com:

The reply packet matches the state criteria and is let through. At the
same moment that packet is let through, the state gateway is closed and
new incoming packets are not allowed through, even if they are from the
same place of origin.
Chapter 3 47

Advanced Firewalling
Stateful ICMP
Stateful ICMP
There are two types of ICMP messages: requests and replies. When you
write a rule such as:

pass out on tun0 proto icmp from any to any icmp-type 8 keep
state

to allow outbound echo requests, such as a typical ping, the resultant
icmp-type 0 packet that comes back will be allowed in. This state entry
has a default timeout of an incomplete 0/0 state of 60 seconds. So, if you
are keeping state on any outbound icmp message that might send an
icmp message in reply, you need a proto icmp [...] keep state rule

The majority of ICMP messages are, however, status messages generated
by a failure in UDP (and sometimes TCP). For any ICMP error status
message (say icmp-type 3 code 3 port unreachable, or icmp- type 11 time
exceeded) that matches an active state table entry that may have
generated that message, the ICMP packet is let in. For example, you can
keep state on UDP with:

pass out on tun0 proto udp from any to any port 33434><33690
keep state

To provide protection against a third-party sneaking ICMP messages
through your firewall when an active connection is known to be in your
state table, check the incoming ICMP packet not only for matching
source and destination addresses (and ports, when applicable), but a tiny
part of the payload of the packet that the ICMP message is claiming it
was generated by.
48 Chapter 3

Advanced Firewalling
FIN Scan Detection; flags Keyword, keep frags Keyword
FIN Scan Detection; flags Keyword, keep frags
Keyword
Lets go back to the four rule set from the previous section:

pass in quick on tun0 proto tcp from any to 20.20.20.1/32
port = 23 keep state
pass out quick on tun0 proto tcp from any to any keep state
block in quick all
block out quick all

This is almost satisfactory. The problem is that it’s not only SYN packets
that are allowed to go to port 23. Any packet can get through. You can
change this using the flags option:

pass in quick on tun0 proto tcp from any to 20.20.20.1/32
port = 23 ...
 flags S keep state
pass out quick on tun0 proto tcp from any to any flags S keep
state
block in quick all
block out quick all

Now only TCP packets destined for 20.20.20.1 at port 23 with a SYN flag
will be allowed in and entered into the state table. A lone SYN flag is
only present as the very first packet in a TCP session (called the TCP
handshake). There are at least two advantages to this: no arbitrary
packets can come in and negatively impact your state table, and FIN and
XMAS scans will fail as they set flags other than the SYN flag. All
incoming packets must either be handshakes or have state already. If
any other packet comes in, it will probably be a port scan or a forged
packet. There’s one exception. That is when a packet comes in that’s
fragmented from its journey. The IPFilter provision for this is the keep
frags keyword. With it, IPFilter will notice and keep track of packets that
are fragmented, allowing the expected fragments to pass through. In this
example the three rules are rewritten to log forgeries and allow
fragments:

pass in quick on tun0 proto tcp from any to 20.20.20.1/32
port = 23 ...
 flags S keep state keep frags
pass out quick on tun0 proto tcp from any to any keep state
flags S keep frags
block in log quick all
Chapter 3 49

Advanced Firewalling
FIN Scan Detection; flags Keyword, keep frags Keyword
block out log quick all

This works because every valid packet makes it into the state table
before the blocking rules are reached. The only scan that is not detected
in this scenario is SYN scan itself. If you’re concerned about it, you may
even want to log all initial SYN packets.

Some examples use flags S/SA instead of flags S. Flags S equates to flags
S/AUPRFS and matches against only the SYN packet, out of all six
possible flags, while flags S/SA allows packets that may or may not have
the URG, PSH, FIN, or RST flags set. Some protocols demand the URG
or PSH flags. S/SAFR would be a better choice for these protocols. It may
be less secure to use S/SA when it isn’t required.
50 Chapter 3

Advanced Firewalling
Responding to a Blocked Packet
Responding to a Blocked Packet
In the previous examples, blocked packets have been dumped on the
floor, logged or not, and no reply has been sent back to the originating
host. Sometimes this isn’t the best response because by doing so, the
attacker knows that a packet filter is present. An improvement would be
to misguide the attacker into believing that, while there’s no packet filter
running, there are also no services to break in to. This is where more
refined blocking becomes useful.

When a service isn’t running on a Unix system, it normally notifies the
remote host with a return packet. In TCP, this is done with an RST
(Reset) packet. When blocking a TCP packet, IPFilter returns an RST
packet to the origin when the return-rst keyword is used.

Past examples include the following:

block in log on tun0 proto tcp from any to 20.20.20.0/24 port =
23
pass in all

The example now looks like this:

block return-rst in log on tun0 from any to 20.20.20.0/24 proto
tcp port = 23
block in log quick on tun0
pass in all

This example has two block statements since return-rst only works with
TCP and it still wants to block protocols such as UDP and ICMP. When
this is done, the remote side receives a “connection refused” message
instead of a “connection timed out” message.

It is also possible to send an error message when a packet is sent to a
UDP port on your system. In previous examples you might have
observed:

block in log quick on tun0 proto udp from any to 20.20.20.0/24
port = 111

You could instead use the return-icmp keyword to send a reply:

block return-icmp(port-unr) in log quick on tun0 proto udp from
any to 20.20.20.0/24 port

According to TCP/IP Illustrated, port-unreachable is the correct ICMP
type to return when no service is listening on the port in question. You
Chapter 3 51

Advanced Firewalling
Responding to a Blocked Packet
can use any ICMP type, but port-unreachable is probably the best. It’s
also the default ICMP type for return-icmp.

When using return-icmp, you’ll notice that it returns the ICMP packet
with the IP address of the firewall, not the original destination of the
packet. Use the return-icmp-as-des keyword to return the original
destination of the ICMP packet. The format is:

block return-icmp-as-dest(port-unr) in log on tun0 proto udp
from any to 20.20.20.0/24 port = 111
52 Chapter 3

Advanced Firewalling
Logging Techniques
Logging Techniques
The presence of the log keyword in your ruleset ensures that the packet
will be available to the ipfilter logging device, /dev/ipl. To actually see
this information, you must be running the ipmon utility or some other
utility that reads from /dev/ipl. Users usually couple the usage of log
with ipmon -s to log the information to syslog. You can control the logging
behavior of syslog by using log level keywords, as in rules such as this:

block in log level auth.info quick on tun0 from 20.20.20.0/24
to any
block in log level auth.alert quick on tun0 proto tcp from any
to ...
 20.20.20.0/24 port = 21

NOTE At times the longer lines in the example rulesets may wrap around to the
next line. These lines have an ellipsis at the end of the line.

In addition, you can tailor the information being logged. For example,
you may not be interested that someone attempted to probe your telnet
port 500 times. You are, however, interested that they probed you once.
You can use the log first keyword to only log the first example of a certain
type of packet. “Firstness” only applies to packets in a specific session.
For the typical blocked packet, it will be difficult to find situations where
this keyword does what you expect. However, if you use it in conjunction
with pass and keep state, this can be a valuable keyword for keeping
tabs on traffic.

Another useful thing you can do with the logs is to keep track of other
parts of the packet in addition to the usual header information. IPFilter
will give you the first 128 bytes of the packet if you use the log body
keyword. You should limit the use of body logging, as it may make your
logs very verbose. For certain applications, it is often useful to be able to
go back and take a look at the packet or to send this data to another
application for further examination.
Chapter 3 53

Advanced Firewalling
Putting It All Together
Putting It All Together
Now the firewall is fairly secure, but it can still be more secure. Some of
the original rules in the original ruleset that were removed might be
useful at this time. The ruleset will now look as follows:

block in on tun0
block in quick on tun0 from 192.168.0.0/16 to any
block in quick on tun0 from 172.16.0.0/12 to any
block in quick on tun0 from 10.0.0.0/8 to any
block in quick on tun0 from 127.0.0.0/8 to any
block in log quick on tun0 from 20.20.20.0/24 to any
pass out quick on tun0 proto tcp/udp from 20.20.20.1/32 to any
keep state
pass out quick on tun0 proto icmp from 20.20.20.1/32 to any
keep state
pass in quick on tun0 proto tcp from any to 20.20.20.1/32
port = 80 flags S keep state
54 Chapter 3

Advanced Firewalling
Improving Performance With Rule Groups
Improving Performance With Rule Groups
To improve performance, you could change the interface names and
network numbers as shown in the next example. Let’s assume that there
are three interfaces in our firewall with interfaces xl0, xl1, and xl2.

xl0 is connected to our external network 20.20.20.0/26
xl1 is connected to our "DMZ" network 20.20.20.64/26
xl2 is connected to our protected network 20.20.20.128/25

Here is the entire ruleset:

block in quick on xl0 from 192.168.0.0/16 to any
block in quick on xl0 from 172.16.0.0/12 to any
block in quick on xl0 from 10.0.0.0/8 to any
block in quick on xl0 from 127.0.0.0/8 to any
block in log quick on xl0 from 20.20.20.0/24 to any
block in log quick on xl0 from any to 20.20.20.63/32
block in log quick on xl0 from any to 20.20.20.64/32
block in log quick on xl0 from any to 20.20.20.127/32
block in log quick on xl0 from any to 20.20.20.128/32
pass out on xl0 all
pass out quick on xl1 proto tcp from any to 20.20.20.64/26 port
= 80 ...
 flags S keep state
pass out quick on xl1 proto tcp from any to 20.20.20.64/26 port
= 21 ...
 flags S keep state
pass out quick on xl1 proto tcp from any to 20.20.20.64/26 port
= 20 ...
 flags S keep state
pass out quick on xl1 proto tcp from any to 20.20.20.65/32 port
= 53 ...
 flags S keep state
pass out quick on xl1 proto udp from any to 20.20.20.65/32 port
= 53 ...
 keep state
pass out quick on xl1 proto tcp from any to 20.20.20.66/32 port
= 53 ...
 flags S keep state
pass out quick on xl1 proto udp from any to 20.20.20.66/32 port
= 53 ...
 keep state

block out on xl1 all
Chapter 3 55

Advanced Firewalling
Improving Performance With Rule Groups
pass in quick on xl1 proto tcp/udp from 20.20.20.64/26 to any
keep state
block out on xl2 all
pass in quick on xl2 proto tcp/udp from 20.20.20.128/25 to any
keep state

From this example, it becomes apparent that the ruleset is starting to
become unwieldy. To make matters worse, as more rules are added to the
DMZ network, we are adding additional tests that must be parsed for
every packet, affecting the performance of the xl0 <-> xl2 connections. If
you set up a firewall with a ruleset like this one, and you have a lot of
bandwidth and a moderate amount of cpu, all your workstation users on
the xl2 network are going to be unhappy. To prevent this situation, you
can speed things up by creating rule groups. Rule groups allow you to
write your ruleset in a tree structure, instead of as a linear list, so that if
your packet is unrelated to the set of tests (say, all those xl1 rules) those
rules will never be processed. It’s equivalent to having multiple firewalls
on the same machine.

Here’s an example:

block out quick on xl1 all head 10

pass out quick proto tcp from any to 20.20.20.64/26 port = 80
flags S keep state group 10

block out on xl2 all

In this example, you can see a hint of the power of the rule group. If the
packet is not destined for xl1, the head of rule group 10 will not match
and will go on with the processing of the tests. If the packet does match
for xl1, the quick keyword will short circuit all further processing at the
root level (rule group 0) and focus the testing on rules which belong to
group 10, namely, the SYN check for 80/tcp. Using this technique you can
rewrite the above rules to maximize the performance of your firewall.

block in quick on xl0 all head 1
block in quick on xl0 from 192.168.0.0/16 to any group 1
block in quick on xl0 from 172.16.0.0/12 to any group 1
block in quick on xl0 from 10.0.0.0/8 to any group 1
block in quick on xl0 from 127.0.0.0/8 to any group 1
block in log quick on xl0 from 20.20.20.0/24 to any group 1
block in log quick on xl0 from any to 20.20.20.0/32 group 1
block in log quick on xl0 from any to 20.20.20.63/32 group 1
block in log quick on xl0 from any to 20.20.20.64/32 group 1
block in log quick on xl0 from any to 20.20.20.127/32 group 1
block in log quick on xl0 from any to 20.20.20.128/32 group 1
56 Chapter 3

Advanced Firewalling
Improving Performance With Rule Groups
block in log quick on xl0 from any to 20.20.20.255/32 group 1
pass in on xl0 all group 1
pass out on xl0 all
block out quick on xl1 all head 10
pass out quick on xl1 proto tcp from any to 20.20.20.64/26 port
= 80 ...
 flags S keep state group 10
pass out quick on xl1 proto tcp from any to 20.20.20.64/26 port
= 21 ...
 flags S keep state group 10
pass out quick on xl1 proto tcp from any to 20.20.20.64/26 port
= 20 ...
 flags S keep state group 10
pass out quick on xl1 proto tcp from any to 20.20.20.65/32 port
= 53 ...

flags S keep state group 10
pass out quick on xl1 proto udp from any to 20.20.20.65/32 port
= 53 ...
 keep state group 10
pass out quick on xl1 proto tcp from any to 20.20.20.66/32 port
= 53 ...
 flags S keep state group 10
pass out quick on xl1 proto udp from any to 20.20.20.66/32 port
= 53 ...
 keep state group 10

Now you can see the rule groups in action. For a host on the xl2 network,
you can completely bypass all the checks in group 10 when you’re not
communicating with hosts on that network.

Depending on your situation, it may be appropriate to group your rules
by protocol, by machine, by netblock, or whatever makes the processing
flow smoothly.
Chapter 3 57

Advanced Firewalling
Keep State With Servers and Flags
Keep State With Servers and Flags
Keeping state is useful, but it’s easy to make a mistake when setting the
direction that you want to keep state in. Generally, you want to have a
keep state keyword on the first rule that interacts with a packet for that
connection. One mistake that is made when mixing state tracking with
filtering on flags is as follows:

block in all
pass in quick proto tcp from any to 20.20.20.20/32 port = 23
flags S
pass out all keep state

This ruleset appears to allow a connection to be created to the telnet
server on 20.20.20.20 with the replies going back. If you use this rule,
you’ll see that it does work--for a few moments. Since the rules are
filtering for the SYN flag, the state entry never fully gets completed. The
default time to live for an incomplete state is sixty seconds.

This can be solved this by rewriting the rules in one of two ways:

1)

block in all
pass in quick proto tcp from any to 20.20.20.20/32 port = 23
keep state
block out all

2)

block in all
pass in quick proto tcp from any to 20.20.20.20/32 port = 23
flags S keep state
pass out all keep state

Either of these sets of rules will result in a fully established state entry
for a connection to your server.
58 Chapter 3

Advanced Firewalling
Localhost Filtering
Localhost Filtering
The tcp-wrapper package adds a layer of protection to network services
all over the world. TCP-wrappers, however, have flaws. This is because
TCP-wrappers only protect TCP services, as the name suggests. Also,
unless you run your service from inet or you have compiled it with
libwrap and the appropriate hooks, your service isn’t protected. Large
holes in your host security may result. You can plug these up using ipf on
the local host as shown in the example below.

pass in quick on lo0 all
pass out quick on lo0 all
block in log all
block out all
pass in quick proto tcp from any to any port = 113 flags S keep
state
pass in quick proto tcp from any to any port = 22 flags S keep
state
pass in quick proto tcp from any port = 20 to any port 39999 >
< 45000 flags S keep state
pass out quick proto icmp from any to any keep state
pass out quick proto tcp/udp from any to any keep state keep
frags

There has not been any negative impact resulting from running ipf all
the time.

Using local host filtering in addition to a somewhat less restrictive “main
firewall” machine can solve many performance issues as well as political
user nightmares such as “Why doesn’t ICQ work?” and “Why can’t I put a
web server on my own workstation! It’s MY WORKSTATION!!” This
solution allows you to have security and convenience at the same time.

Drop-Safe Logging with dup-to and to

In the examples so far, IPfilter has been used to drop packets. Instead of
dropping them, you might pass them on to another system that can do
more with this information beyond the logging performed with ipmon. A
firewall system can have multiple interfaces. You can use this
information to create a “drop-safe” for your packets. You could also use
this feature to implement an intrusion detection network. To begin, you
might hide the presence of your intrusion detection system from the real
network so that it is not detected.
Chapter 3 59

Advanced Firewalling
Localhost Filtering
In addition, there are some operational characteristics that should be
noted. If you are only dealing with blocked packets, you can use the to
keyword. These keywords will be described later. If you’re going to pass
the packets as you usually do, you should make a copy of the packet for
our drop-safe log with the dup-to keyword.
60 Chapter 3

Advanced Firewalling
The dup-to Method
The dup-to Method
If, for example, you want to send a copy of every packet going out the xl3
interface off to your drop-safe network on ed0, you should include this
rule in your filter list:

pass out on xl3 dup-to ed0 from any to any

You might also need to send a packet directly to a specific IP address on
your drop-safe network, instead of making a copy of the packet out there
and hoping for the best. To do this, you should modify your rule slightly:

pass out on xl3 dup-to ed0:192.168.254.2 from any to any

This method will alter the copied packet’s destination address, which
may negatively impact the usefulness of the log. For this reason, it is
recommended that you use only the known address method of logging so
you can be certain that the address that you’re logging to corresponds in
some way to the system for which you’re logging. Don’t use
“192.168.254.2” for logging to your web server and your mail server,
since, at a later time, you’ll have a hard time trying to figure out which
system was the target of a specific set of packets.)

This technique can be used effectively if you treat an IP Address on your
drop-safe network in much the same way that you treat a multicast
group on the real internet. In this case, “192.168.254.2” could be the
channel for your HTTP traffic analysis system and “23.23.23.23” could be
your channel for telnet sessions. You don’t need to actually have this
address set as an address or alias on any of your analysis systems.
Normally, your IPFilter machine will need to ARP for the new
destination address using dup-to ed0:192.168.254.2 style, but we can
avoid this by creating a static arp entry for this “channel” on our IPFilter
system.

In general, dup-to ed0 is all that is required to get a new copy of the
packet over to the drop-safe network for logging and examination.
Chapter 3 61

Advanced Firewalling
The to Method
The to Method
The dup-to method, however, does have an immediate drawback. As it
has to make a copy of the packet and optionally modify it for its new
destination, it’s going to take a while to complete this task and be ready
to receive and process the next packet coming in to the IPFilter system.

If it is not important to pass the packet to its normal destination and you
want to block it anyway, you can use the to keyword to push this packet
past the normal routing table and force it to go out a different interface
than it would normally go out.

block in quick on lan0 to ed0 proto tcp from any to any port <
1024

Use block quick for to interface routing, because the to interface code will
generate two packet paths through IPFilter when used with pass.
62 Chapter 3

4 IPFilter Utilities

This chapter describes IPFilter utilities. It contains the following
sections:
63

IPFilter Utilities
• The ipf Utility

• The ipfstat Utility

• The ipmon Utility

• The ipftest Utility

• Unsupported Utilities and Commands

NOTE Most of the information in this chapter has been derived from the IP
Filter-based Firewalls HOWTO document written by Brendan Conoby
and Erik Fichtner. You can find this document at
http://www.obfuscation.org/ipf/.
64 Chapter 4

IPFilter Utilities
The ipf Utility
The ipf Utility
IPFilter has two sets of rules, an active set and an inactive set. By
default, all operations are performed on the active set. You can
manipulate the inactive set by adding the -I option to the ipf
command line. You can then toggle the two sets using the -s command
line option. This is useful when you want to test new rule sets without
wiping out the old ruleset.

You can also remove rules from the list using the -r command line
option. It is usually safer, however, to flush the ruleset that you’re
working on with the -F option and completely reload it when you make
changes.

In summary, the easiest way to load a ruleset is by entering a command
similar to the following:

ipf -Fa -f <rules files>

For more complicated manipulations of the ruleset, refer to the ipf(5)
ipf(8) man pages.
Chapter 4 65

IPFilter Utilities
The ipfstat Utility
The ipfstat Utility
The ipfstat utility displays a table of data about your firewall
performance, including how many packets have been passed or blocked,
whether the packets were logged or not, and how many state entries
have been made. Here’s an example of the information you might
see displayed after running this tool:

ipfstat

input packets: blocked 99286 passed 1255609 nomatch 14686 counted 0
output packets: blocked 4200 passed 1284345 nomatch 14687 counted 0
input packets logged: blocked 99286 passed 0
output packets logged: blocked 0 passed 0
packets logged: input 0 output 0
log failures: input 3898 output 0
fragment state(in): kept 0 lost 0
fragment state(out): kept 0 lost 0
packet state(in): kept 169364 lost 0
packet state(out): kept 431395 lost 0
ICMP replies: 0 TCP RSTs sent: 0
Result cache hits(in): 1215208 (out): 1098963
IN Pullups succeeded: 2 failed: 0
OUT Pullups succeeded: 0 failed: 0
Fastroute successes: 0 failures: 0
TCP cksum fails(in): 0 (out): 0

Packet log flags set: (0) none

The ipfstat utility can also provide information about your current
ruleset. Using the -i flag or the -o flag will show the currently loaded
rules for in or out , respectively. Adding a -h option to this command
will provide more useful information while also showing you the “hit
count” on each rule. For example:

ipfstat -ho

2451423 pass out on xl0 from any to any
354727 block out on ppp0 from any to any
430918 pass out quick on ppp0 proto tcp/udp from
20.20.20.0/24 From to any keep state keep frags

From this we might conclude that the ruleset is not working as intended
as there are a lot of blocked packets outbound in spite of a very
permissive pass out rule. ipfstat will not indicate whether your rules
are right or wrong. It can only show you what is happening at the
present time with a given ruleset. To debug your ruleset, you may also
want to run the utility with the -n flag set. The output will show the rule
number next to each rule.
66 Chapter 4

IPFilter Utilities
The ipfstat Utility
ipfstat -on

@1 pass out on xl0 from any to any

@2 block out on ppp0 from any to any
@3 pass out quick on ppp0 proto tcp/udp from 20.20.20.0/24 to any keep state keep
 frags

ipfstat can provide a dump of the state table. This is done by running
the ipfstat utility with the -s flag:

ipfstat -s

281458 TCP
319349 UDP
0 ICMP
19780145 hits
5723648 misses
0 maximum
0 no memory
1 active
319349 expired
281419 closed
100.100.100.1 -> 20.20.20.1 ttl 864000
pass 20490 pr 6 state 4/4
pkts 196 bytes 17394 987 -> 22
585538471:2213225493 16592:16500
pass in log quick keep state
pkt_flags & b = 2,
pkt_options & ffffffff = 0

pkt_security & ffff = 0, pkt_auth & ffff = 0

In this example there is one state entry for a TCP connection. The output
will vary slightly from version to version, but the basic information is the
same. There is a fully established connection, represented by the 4/4
state. Other states are incomplete and will be documented later. The
state entry has a time life of 240 hours, which is an unusually long time.
It is also the default for an established TCP connection. The TTL counter
is decremented every second that the state entry is not used and will
result in the connection being purged if it is left idle.

The TTL counter is reset to 864000 whenever the state is used, ensuring
the entry will not time out while it is being actively used. 196 packets
consisting of about 17kB worth of data have been passed over this
connection. We can see the ports for both endpoints. In this case 987 and
22, which means that this state entry represents a connection from
100.100.100.1 port 987 to 20.20.20.1 port 22. The numbers in the second
line are the TCP sequence numbers for this connection. These numbers
will help you ensure that someone isn’t able to inject a forged packet into
your session. The TCP window is also shown. The third line is a synopsis
Chapter 4 67

IPFilter Utilities
The ipfstat Utility
of the implicit rule generated by the keep state code showing that this
connection is an inbound connection.
68 Chapter 4

IPFilter Utilities
The ipmon Utility
The ipmon Utility
ipfstat collects snapshots of what’s happening with the system. It is
often helpful, however, to have a tool that looks at events as they occur.
ipmon has this capability. ipmon is capable of watching the packet log,
as created with the log keyword in your rules, the state log, or the nat
log, or any combination of these three. You can run this tool in the
foreground or as a daemon which logs to syslog or a file. If you want to
watch the state table in action, ipmon -o S will display the following:

ipmon -o S

01/08/1999 15:58:57.836053 STATE:NEW 100.100.100.1,53 ->20.20.20.15,53 PR udp

01/08/1999 15:58:58.030815 STATE:NEW 20.20.20.15,123 ->128.167.1.69,123 PR udp

01/08/1999 15:59:18.032174 STATE:NEW 20.20.20.15,123 ->128.173.14.71,123 PR udp

01/08/1999 15:59:24.570107 STATE:EXPIRE 100.100.100.1,53 ->20.20.20.15,53 PR udp
Pkts 4 Bytes 356

01/08/1999 16:03:51.754867 STATE:NEW 20.20.20.13,1019 ->100.100.100.10,22 PR tcp

01/08/1999 16:04:03.070127 STATE:EXPIRE 20.20.20.13,1019 ->100.100.100.10,22 PR
tcp Pkts 63 Bytes 4604

In this case there is a state entry for an external DNS request off our
nameserver, two xntp pings to well-known time servers, and a short-
lived outbound ssh connection.

ipmon can also show us what packets have been logged. For example,
when using state , you’ll often run into the following packets:

ipmon -o I

15:57:33.803147 ppp0 @0:2 b 100.100.100.103,443 -> 20.20.20.10,4923 PR tcp len 20

1488 -A:

What does this output mean? The first field is a time stamp. The second
field is the interface that this event occurred on. The third field is the
rule that caused the event to happen.

Run ipfstat -in if you want to know which rule caused the problem.
You use this command to look at rule 2 in rule group 0.

The fourth field, the little b, indicates that this packet was blocked. You
can ignore this unless you’re logging passed packets as well, which would
show up as a little p instead.

The fifth and sixth fields are self-explanatory. They indicate where the
packet came from and where it was going. The seventh (PR) and eighth
fields display the protocol and the ninth field displays the size of the
Chapter 4 69

IPFilter Utilities
The ipmon Utility
packet. The last part, the -A in this case, displays the flags that were on
the packet. This one was an ACK packet.

Why was state mentioned earlier? Due to the nature of the Internet,
packets may be regenerated. Sometimes you’ll receive two copies of the
same packet and your state rule, which keeps track of sequence
numbers, will have already seen this packet. If this occurs it will
assume that the packet is part of a different connection. Eventually this
packet will run into a real rule and have to be dealt with. You’ll often see
the last packet, of a session being closed, get logged because the keep
state code has already torn down the connection before the last packet
had a chance to make it to your firewall. This is normal.

Here is example packet that might get logged

12:46:12.470951 xl0 @0:1 S 20.20.20.254 -> 255.255.255.255 PR icmp len 20 9216

icmp 9/0

This is a ICMP router discovery broadcast. It is indicated by the ICMP
type 9/0.
70 Chapter 4

IPFilter Utilities
The ipftest Utility
The ipftest Utility
The ipftest program tool can help you understand the actions that will
be taken when you have IPFilter installed on your system. Generally it
takes a set of rules (the same ones used with ipf) and applies them to a
description of packets that simulate real traffic. The description of the
packets can take many forms, as described in the ipftest(1) man
page. The native format is described here. The final action taken by
IPFilter is written out for every packet processed.

The advantage to using a tool such as ipftest is that it runs entirely in
user space as a non-root program. No special privileges are necessary.
This will allow you to test out a set of rules without compromising the
security of the machine where the rules will eventually be placed.

For example use this rule set:

>>>Rule file start>>>
default
block in all

particular test
pass in from 10.1.84.195 to any
<<< Rule file end <<<<<

For testing purposes, the following packets will be used to test this rule
set:

>>>Packet file start>>>

in on lan0 udp 10.1.84.195,16000 10.1.84.196,16000
in on lan1 udp 10.1.84.195,16000 10.1.85.196,16000
in on lan0 udp 10.1.84.195,16000 10.1.80.196,16000

in on lan0 udp 10.1.85.195,16000 10.1.84.196,16000
in on lan1 udp 10.1.85.195,16000 10.1.85.196,16000
in on lan0 udp 10.1.85.195,16000 10.1.80.196,16000

out on lan0 udp 10.1.84.196,16000 10.1.84.195,16000
out on lan1 udp 10.1.85.196,16000 10.1.84.195,16000
out on lan0 udp 10.1.80.196,16000 10.1.84.195,16000

out on lan0 udp 10.1.84.196,16000 10.1.85.195,16000
out on lan1 udp 10.1.85.196,16000 10.1.85.195,16000
out on lan0 udp 10.1.80.196,16000 10.1.85.195,16000

in on lan0 udp 10.1.81.195,16000 10.1.84.196,16000
in on lan1 udp 10.1.81.195,16000 10.1.85.196,16000
Chapter 4 71

IPFilter Utilities
The ipftest Utility
out on lan0 udp 10.1.84.196,16000 10.1.81.195,16000
out on lan1 udp 10.1.85.196,16000 10.1.81.195,16000

out on lan0 icmp 10.1.84.196 10.1.84.195
in on lan0 icmp 10.1.84.195 10.1.84.196

out on lan0 udp 10.1.80.196,16001 10.1.84.195,16000
out on lan0 udp 10.1.80.196,16001 10.1.85.195,16000

in on lan0 udp 10.1.84.195,16000 10.1.80.196,16001
in on lan0 udp 10.1.85.195,16000 10.1.80.196,16001

<<< Packet file end <<<

There are many packets. These packets are similar to a test machine
setup that is used in the actual testing of IPFilter. These packets are
processed with the ipftest program and produce the following output
using the command:

ipftest -r <rule set file> -i <packet file>

The name of the rules file is called test01 in this case.

>>>

opening rule file "test01"
input: in on lan0 udp 10.1.84.195,16000 10.1.84.196,16000
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.84.196,16000

input: in on lan1 udp 10.1.84.195,16000 10.1.85.196,16000
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.85.196,16000

input: in on lan0 udp 10.1.84.195,16000 10.1.80.196,16000
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.80.196,16000

input: in on lan0 udp 10.1.85.195,16000 10.1.84.196,16000
block ip 28(20) 17 10.1.85.195,16000 > 10.1.84.196,16000

input: in on lan1 udp 10.1.85.195,16000 10.1.85.196,16000
block ip 28(20) 17 10.1.85.195,16000 > 10.1.85.196,16000

input: in on lan0 udp 10.1.85.195,16000 10.1.80.196,16000
block ip 28(20) 17 10.1.85.195,16000 > 10.1.80.196,16000

input: out on lan0 udp 10.1.84.196,16000 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.84.196,16000 > 10.1.84.195,16000

input: out on lan1 udp 10.1.85.196,16000 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.85.196,16000 > 10.1.84.195,16000
72 Chapter 4

IPFilter Utilities
The ipftest Utility

input: out on lan0 udp 10.1.80.196,16000 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.80.196,16000 > 10.1.84.195,16000

input: out on lan0 udp 10.1.84.196,16000 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.84.196,16000 > 10.1.85.195,16000

input: out on lan1 udp 10.1.85.196,16000 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.85.196,16000 > 10.1.85.195,16000

input: out on lan0 udp 10.1.80.196,16000 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.80.196,16000 > 10.1.85.195,16000

input: in on lan0 udp 10.1.81.195,16000 10.1.84.196,16000
block ip 28(20) 17 10.1.81.195,16000 > 10.1.84.196,16000

input: in on lan1 udp 10.1.81.195,16000 10.1.85.196,16000
block ip 28(20) 17 10.1.81.195,16000 > 10.1.85.196,16000

input: out on lan0 udp 10.1.84.196,16000 10.1.81.195,16000
nomatch ip 28(20) 17 10.1.84.196,16000 > 10.1.81.195,16000

input: out on lan1 udp 10.1.85.196,16000 10.1.81.195,16000
nomatch ip 28(20) 17 10.1.85.196,16000 > 10.1.81.195,16000

input: out on lan0 icmp 10.1.84.196 10.1.84.195
nomatch ip 48(20) 1 10.1.84.196 > 10.1.84.195

input: in on lan0 icmp 10.1.84.195 10.1.84.196
pass ip 48(20) 1 10.1.84.195 > 10.1.84.196

input: out on lan0 udp 10.1.80.196,16001 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.80.196,16001 > 10.1.84.195,16000

input: out on lan0 udp 10.1.80.196,16001 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.80.196,16001 > 10.1.85.195,16000

input: in on lan0 udp 10.1.84.195,16000 10.1.80.196,16001
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.80.196,16001

input: in on lan0 udp 10.1.85.195,16000 10.1.80.196,16001
block ip 28(20) 17 10.1.85.195,16000 > 10.1.80.196,16001

<<<

The resulting output indicates the processing that the kernel level filter
Chapter 4 73

IPFilter Utilities
The ipftest Utility
would do on your “real system” had the rules been used. The results are
one of three: pass , block or nomatch (in the HP released version of
IPFilter, the default is pass . From the results you can verify that the
filter SHOULD operate as expected. Obviously, this is a simple example.
More complex examples can be created to reflect traffic that is actually
encountered in a production environment. In addition, the rules would
most likely be more complex to reflect the various connections used.

When generating simulated traffic, one can use example data obtained
from a packet probe or other such monitors. These packets may show
the specifics of the eventual traffic that will be encountered in the subject
machine. You should be careful to include the various flags in TCP
packets, as they are used in the various keep state rules.

For further information, consult the manual pages ipftest(1) ,
ipf(8) , and ipf(5) .
74 Chapter 4

IPFilter Utilities
Unsupported Utilities and Commands
Unsupported Utilities and Commands
HP does not support the following public domain IPFilter utilities and
commands:

• Rule Directives

— map

— bimap

— portmap

— rdr

— fastroute

— ipnat.rules (configuration file)

• Commands

— ipscan

— ipsyncs

— ipsyncm

— ipfs

— ipsend

— ipresend

— ipnat

• Application proxy
Chapter 4 75

IPFilter Utilities
Unsupported Utilities and Commands
76 Chapter 4

5 IPFilter and FTP

This chapter describes how to filter FTP services. It contains the
following sections:
77

IPFilter and FTP
• How FTP works

• WU-FTPD on HP-UX

• Running an FTP Server

• Running an FTP Client
78 Chapter 5

IPFilter and FTP
How FTP Works
How FTP Works
The File Transfer Protocol (FTP) is a user-level protocol for transferring
files between host computers.

An FTP session involves two separate connections:

• The control connection is established in normal client-server fashion.
The server “listens” on port 21 and waits for client connections. The
client opens from a port above 1023 to the server’s port 21. This
connection is then used by the client to send commands and receive
replies from the server. This connection lasts through the FTP
session.

• The data connection is used for transferring data between the client
and server. A new data connection is opened for each command. The
way the data connection is created depends on the type of FTP session
- Active or Passive.

In active FTP, the client makes an active open to the FTP server at port
21. It uses a port number > 1023 as its port for the control connection.
The client then opens a new port (passive open) as its data port and
sends this port number across to the server using the PORT command.
The server then opens a data connection (active open) to the data port
specified in the PORT command of the client. The server uses port 20 as
its data connection port.

In passive FTP, the initial control connection is established very much
like the active case described above. The data connection, however, is
different. In this case the server opens an arbitrary port (>1023) as its
data port and sends this port number to the client via the PASV
command. The client then connects to the port specified in the PASV
command. The client itself uses another port > 1023 as its data port.
Chapter 5 79

IPFilter and FTP
WU-FTPD on HP-UX
WU-FTPD on HP-UX
The HP implementation of the FTP daemon for HP-UX 11i core
networking is based on the WU-FTPD daemon, version 2.4. Additional
security correction has been added to WU-FTPD 2.6.1. HP recommends
upgrading to WU-FTPD 2.6.1 for enhanced security.

For systems on HP-UX 11.0, you can upgrade to WU-FTPD 2.6.1 from
either the legacy FTP version that is delivered with the core networking
products on 11.0, or from WU-FTPD 2.4, which has been made available
as the patch PHNE_21936.

WU-FTPD 2.6.1 is downloadable from the HP Software Depot for
systems running HP-UX 11.0 or 11i. The URL is
http://www.software.hp.com/cgi-bin/swdepot_parser.cgi/cgi/displayProduc
t Info.pl?productNumber=3DWUFTPD26
80 Chapter 5

IPFilter and FTP
Running an FTP Server
Running an FTP Server
This section describes active FTP and passive FTP server setup.

Active FTP

In active FTP in an FTP server, you want to allow control connections in
and data connections out.

pass in quick proto tcp from any port > 1023 to < server-ip >
port = 21 flags S keep state
pass out quick proto tcp from any port = 20 to any port > 1023
flags S keep state
block in from any to any
block out from any to any

Passive FTP

As web browsers default to this mode, passive FTP is becoming fairly

FTP Server Direction of
Connection
Initiated

FTP Client

port 21
control port

<---------------- any port 1024 or higher

port 20
data port

----------------> any port 1024 or higher

FTP Server Direction of
Connection
Initiated

FTP Client

port 21
control port

<---------------- any port 1024 or higher

any port 1024 or higher
data port

<---------------- any port 1024 or higher
Chapter 5 81

IPFilter and FTP
Running an FTP Server
common. The problem with passive connections is that for every data
connection, the server starts listening on a new port (usually above
1023). This is like creating a new unknown service on the server.
Assuming you have a good firewall with a default-deny policy, the new
service will be blocked, and active FTP sessions will be broken.

Fortunately the FTP server determines which ports are to be assigned to
passive sessions. Instead of opening all ports above 1023, you can limit
the port range that you allow access, for example, you allocate ports
15001-15500 as FTP ports and only open up that range of your firewall.
In WU-FTPD, you use the “passive ports” directive in /etc/ftpaccess
configuration file to designate the ports, as below:

passive ports < server-ip > 15001 15500

Refer to the man page on ftpaccess(4) for details on WU-FTPD
configuration.

For IPFilter, all you need to do is set up the corresponding rules:

pass in quick proto tcp from any port > 1023 to < server-ip >
port = 21 flags S keep state
pass in quick proto tcp from any port > 1023 to < server-ip >
port 15000 ><15501 flags S keep state
block in from any to any
block out from any to any
82 Chapter 5

IPFilter and FTP
Running an FTP Client
Running an FTP Client
As with FTP servers, there are two types of FTP client transfers, active
and passive.

Active FTP

To allow an FTP client to open an active FTP session, we want to allow
control connections out and data connections in.

FTP Proxy is not supported by HP. For a complete list of unsupported
utilities and commands, see “Unsupported Utilities and Commands” in
Chapter 4. Instead, the following rules for client side active FTP are
provided:

pass out quick proto tcp from < client-ip > port > 1023 to any
port = 21 flags S keep state
pass in quick proto tcp from any port 20 to < client-ip > port >
1023 flags S keep state
block in from any to any
block out from any to any

Passive FTP

To allow an FTP client to open a passive FTP session, we want to allow

FTP Server Direction of
Connection
Initiated

FTP Client

port 21
control port

<---------------- any port 1024 or higher

port 20
data port

----------------> any port 1024 or higher
Chapter 5 83

IPFilter and FTP
Running an FTP Client
both the control and data connections out.

The examples below is for client side passive FTP. However, if possible,
you should only allow active FTP from FTP servers for stronger security.

pass out quick proto tcp from < client-ip > port > 1023 to any
port = 21 flags S keep state
pass out quick proto tcp from < client-ip > port > 1023 to any
port > 1023 flags S keep state
block in from any to any
block out from any to any

FTP Server Direction of
Connection
Initiated

FTP Client

port 21
control port

<---------------- any port 1024 or higher

any port 1024 or higher
data port

<---------------- any port 1024 or higher
84 Chapter 5

6 IPFilter and IPSec

This chapter describes how IPFilter/9000 and IPSec/9000 work together.
It contains the following sections:

• IPFilter and IPSec Basics
85

IPFilter and IPSec
• IPSec UDP Negotiation

• Punching a Hole in Both Directions

• When Traffic Appears to be Blocked

• Allowing Protocol 50 and Protocol 51 Traffic

• IPSec Gateways
86 Chapter 6

IPFilter and IPSec
IPFilter and IPSec Basics
IPFilter and IPSec Basics
To use IPSec and IPFilter together, you must have an understanding of
how the two products work together. While the products will not panic or
corrupt each other, you do have to understand the situations in which
one product might block traffic.

Figure 6-1

IPFilter, which is below IPSec in the networking stack, filters network
packets. IPFilter also filters these packets before they reach IPSec.
IPSec receives packets after IPFilter has decided whether it will pass or
block them. You can have both IPFilter and IPSec configured and
running on a machine without them negatively affecting each other.

Figure 6-2 Scenario One

For example, in Scenario One above you have IPFilter and IPSec on
machine A with IPFilter blocking packets from machine B and IPSec
encrypting packets from machine C. When a packet arrives at machine
A, IPFilter checks to see if it is from machine B, and, if so, blocks the
packet. If not, the packet continues up the stack to IPSec. IPSec checks
to see if it is from machine C. If so, the packet arrives encrypted.

 IPSec

IPFilter

B <---------------> A <-----------------> C
(IPFilter) (IPSec)
Chapter 6 87

IPFilter and IPSec
IPFilter and IPSec Basics
As there is no overlap in the configurations of IPFilter and IPSec in this
network topology, there are no problems in Scenario One.
88 Chapter 6

IPFilter and IPSec
IPSec UDP Negotiation
IPSec UDP Negotiation
If you have configured your IPSec and IPFilter products so that there is
some overlap in the configurations, there are a few other details about
IPSec that you should consider.

IPSec negotiates between two machines on a connection using Protocol
UDP from Port 500 to Port 500.

And, if the IPFilter configuration is so broad that it is blocking the UDP
traffic, then IPSec cannot complete it’s negotiation. When the negotiation
is not completed, the encrypted packets are not received. If this happens,
you will see an IPSec error on the initiating side of “MM negotiation
timeout.”

To complete this negotiation, you may have to “punch a hole in your
firewall” to let these packets through.

Lets go through an example.

Figure 6-3 Scenario Two

In Scenario Two, you want all UDP traffic to be blocked on machine A,
you want all TCP traffic to pass through, and, from machine B on the
network, you want all TCP traffic encrypted. Machine A has IP Address
10.10.10.10 and machine B has IP Address 15.15.15.15.

On machine A, you configure IPFilter to block all UDP traffic from all
other machines as follows:

block in proto UDP
block out proto UDP

As the TCP traffic with machine B must by encrypted, you configure

IPSec <---------------> TCP <-----------------> IPSec

A B
10.10.10.10 15.15.15.15

IPFilter

-----UDP-----
Chapter 6 89

IPFilter and IPSec
IPSec UDP Negotiation
IPSec on both machines using IPSec Manager. To do so, use the IP
Addresses to specify that the TCP traffic is to be encrypted.

When TCP traffic is initiated from A to B or from B to A, the IPSec
products on both machines will talk through a UDP/500 connection. You
must punch a hole in IPFilter on machine A to let this traffic through. To
do so, add the following commands to your configuration.

pass in quick proto UDP from 15.15.15.15 port = 500 to 10.10.10.10 port = 500
pass out quick proto UDP from 10.10.10.10 port = 500 to 15.15.15.15 port = 500
block in proto UDP
block out proto UDP

Scenario Two will now work correctly.

You could also setup this configuration by moving the UDP traffic block
into IPSec. You would not use IPFilter in this situation.
90 Chapter 6

IPFilter and IPSec
Punching a Hole in Both Directions
Punching a Hole in Both Directions
Note: you MUST punch the hole in both directions.

If you let a UDP port 500 packet go out in IPFilter, a response can come
back in during the next 60 seconds if the addressing is exactly reversed.
This is done by punching the hole outward and entering “keep state”:

pass out quick proto UDP from 10.10.10.10 port = 500 to 15.15.15.15 port = 500

keep state

If all IPSec connections are initiated outward, you may think that the
UDP port 500 negotiation will always be initiated outward but this
would be incorrect.

This causes a problem for IPSec. The negotiation of IPSec is a dialog that
may resume at any point from either direction, even if the application
you use always initiates in one direction.

So, when a hole is only punched outward, and a telnet session is initiated
outward to machine B described in the last scenario, it worked fine at
first. Then, after 10 minutes when the Main Mode and Quick Mode SAs
of IPSec had to be renegotiated, the dialog failed and the telnet session
was unresponsive. It timed-out and IPSec logged the following error
“MM negotiation timeout.”

The hole MUST be punched in IPFilter so the dialog can be resumed in
either direction at any time. For this to happen, you must punch the hole
in both directions.
Chapter 6 91

IPFilter and IPSec
When Traffic Appears to be Blocked
When Traffic Appears to be Blocked
In this scenario there is even more overlap in the configurations of
IPFilter and IPSec.

To get this negotiation through, you must “punch a hole in your firewall”
to let the TCP traffic through.

Figure 6-4 Scenario Three

In Scenario Three, IPSec is configured to encrypt TCP traffic between
machine A and machine B and IPFilter is configured to block all TCP
traffic:

block in proto TCP
block out proto TCP

What will happen?

In this case an FTP session between A and B works fine.

When IPSec encrypts packets, it creates a new packet with a protocol
number of 50. When it authenticates packets, it creates a new packet
with a protocol number of 51.

Figure 6-5 Packet with Vanilla TCP Data

IPSec <---------------> TCP <-----------------> IPSec

A B
10.10.10.10 15.15.15.15

IPFilter

---TCP-----

TCP header DataIP header Protocol # = 6
92 Chapter 6

IPFilter and IPSec
When Traffic Appears to be Blocked
Figure 6-6 Packet Where IPSec Has Encrypted TCP Data

IPFilter never sees the TCP packets between machine A and machine B
with a protocol number of 6. These packets are encrypted (or wrapped) in
a packet that has a protocol number of 50. IPFilter was configured to
block packets with protocol number 6, so it lets protocol number 50 pass
through. Then IPSec will take apart the packet and unencrypt the TCP
data.

ESP header EncryptedIP header Protocol # = 50
Chapter 6 93

IPFilter and IPSec
Allowing Protocol 50 and Protocol 51 Traffic
Allowing Protocol 50 and Protocol 51 Traffic
If the IPFilter configuration is so broad that it blocks protocol 50 or
protocol 51 traffic, then IPSec traffic will not get through.

Figure 6-7 Scenario Four

In Scenario Four, IPSec is configured to encrypt TCP traffic between the
two machines and IPFilter is configured to block all traffic except TCP
traffic. An IPSec UDP/500 hole has been correctly punched on machine
B:

IPSec hole with machine B

pass in quick proto UDP from 15.15.15.15 port 500 to 10.10.10.10 port = 500
pass out quick proto UDP from 10.10.10.10 port 500 to 15.15.15.15 port = 500
Allow TCP traffic to/from anywhere
pass in quick proto TCP
pass out quick proto TCP
Block all other traffic to/from anywhere
block in from any to any

block out from any to any

You might think that an FTP session between machine A and machine B
would work. After all, both products have been configured to allow TCP
traffic through.

Unfortunately, however, it doesn’t work and there are no error messages
in either IPSec or IPFilter that explain why this happens.

It occurs because IPSec encrypts the TCP traffic between the two
machines and encrypted traffic has a protocol number of 50. These
packets are being blocked by IPFilter!

To allow this traffic through IPFilter, add the following filter rules to

IPSec <---------------> TCP <-----------------> IPSec

A B
10.10.10.10 15.15.15.15

IPFilter

-----block !TCP-----
94 Chapter 6

IPFilter and IPSec
Allowing Protocol 50 and Protocol 51 Traffic
your configuration file:

pass in quick proto 50 from 15.15.15.15 to 10.10.10.10
pass out quick proto 50 from 10.10.10.10 to 15.15.15.15

Now the FTP session will work.

If IPSec is configured to do authentication, rather then encryption, the
protocol 51 traffic must be let through.
Chapter 6 95

IPFilter and IPSec
IPSec Gateways
IPSec Gateways
With the IPSec protocol there is the ability to configure encryption to a
gateway as well as the end host with which you are communicating. The
encryption to the gateway is called an IPSec Tunnel.

This poses no special problems, except that you will need to configure
IPFilter to allow IPSec traffic with the gateway instead of the end node.
To be more specific, the IPSec UDP/500 hole and protocol 50/51 traffic are
passed to/from the gateway IP Address instead.
96 Chapter 6

A IPFilter Configuration
Examples

This appendix provides IPFilter configuration examples. These examples
are also included in the /opt/ipf/examples directory with the
97

IPFilter Configuration Examples
IPFilter/9000 product. You can take useful rules that you find in these
examples and copy them into your IPFilter/9000 configuration file:
/etc/opt/ipf/ipf.conf.

These files are taken from the files provided with the IPFilter freeware
product.
98 Appendix A

IPFilter Configuration Examples
BASIC_1.FW
BASIC_1.FW
#!/sbin/ipf -f -
#

SAMPLE: RESTRICTIVE FILTER RULES
#
ppp0 - (external) PPP connection to ISP, address a.b.c.d/32
#
ed0 - (internal) network interface, address w.x.y.z/32
#
This file contains the basic rules needed to construct a
firewall for the above connections.
#
#---
Block short packets which are packets fragmented too short to
be real packets.
block in log quick all with short
#---
Group setup.
============
By default, block and log all packets. This may result in
too much information to be logged (especially for ed0)
and needs to be further refined.
#
block in log on ppp0 all head 100
block in log proto tcp all flags S/SA head 101 group 100
block out log on ppp0 all head 150
block in log on ed0 from w.x.y.z/24 to any head 200
block in log proto tcp all flags S/SA head 201 group 200
block in log proto udp all head 202 group 200
block out log on ed0 all head 250
#---
Localhost packets.
==================
Packets going in/out of network interfaces that aren’t on the
loopback interface should *NOT* exist.
block in log quick from 127.0.0.0/8 to any group 100
block in log quick from any to 127.0.0.0/8 group 100
block in log quick from 127.0.0.0/8 to any group 200
block in log quick from any to 127.0.0.0/8 group 200
Make sure the loopback allows packets to
traverse it.
pass in quick on lo0 all
Appendix A 99

IPFilter Configuration Examples
BASIC_1.FW
pass out quick on lo0 all
#---
Invalid Internet packets.
=========================
#
Deny reserved addresses.
#
block in log quick from 10.0.0.0/8 to any group 100
block in log quick from 192.168.0.0/16 to any group 100
block in log quick from 172.16.0.0/12 to any group 100
#
Prevent IP spoofing.
#
block in log quick from a.b.c.d/24 to any group 100
#
#---
Allow outgoing DNS requests (no named on firewall)
#
pass in quick proto udp from any to any port = 53 keep ...
 state group 202
#
If you are running named on the firewall and all internal
hosts talk to it,use the following:
#
#pass in quick proto udp from any to w.x.y.z/32 port = 53 keep
#state group 202
#pass out quick on ppp0 proto udp from a.b.c.d/32 to any port =
#53 keep state
#
Allow outgoing FTP from any internal host to any external FTP
server.
#
pass in quick proto tcp from any to any port = ftp keep ...
 state group 201
pass in quick proto tcp from any to any port = ftp-data ...
 keep state group 201
pass in quick proto tcp from any port = ftp-data to any
 port > 1023 keep state group 101
#
Allow NTP from any internal host to any external NTP server.
#
pass in quick proto udp from any to any port = ntp keep
 state group 202
#
Allow outgoing connections: SSH, TELNET, WWW
#

100 Appendix A

IPFilter Configuration Examples
BASIC_1.FW
pass in quick proto tcp from any to any port = 22 keep ...
 state group 201
pass in quick proto tcp from any to any port = telnet ...
 keep state group 201
pass in quick proto tcp from any to any port = www keep ...
 state group 201
#
#---
block in log proto tcp from any to a.b.c.d/32 flags S/SA ...
 head 110 group 100
#
Allow the following incoming packets types to the external
firewall interface: mail, WWW, DNS
pass in log quick proto tcp from any to any port = smtp ...
 keep state group 110
pass in log quick proto tcp from any to any port = www keep...
 state group 110
pass in log quick proto tcp from any to any port = 53 keep ...
 state group 110
pass in log quick proto udp from any to any port = 53 keep ...
 state group 100
#---
Log these:
==========
* Return RST packets for invalid SYN packets to help the
#other end close
block return-rst in log proto tcp from any to any flags ...
 S/SA group 100
* Return ICMP error packets for invalid UDP packets
block return-icmp(net-unr) in proto udp all group 100
Appendix A 101

IPFilter Configuration Examples
BASIC_2.FW
BASIC_2.FW
SAMPLE: PERMISSIVE FILTER RULES
#
ppp0 - (external) PPP connection to ISP, address a.b.c.d/32
#
ed0 - (internal) network interface, address w.x.y.z/32
#
This file contains the basic rules needed to construct a
firewall for the above situation.
#
#---
Short packets which are packets fragmented too short to be
real packets.
block in log quick all with short
#---
Group setup.
============
By default, block and log all packets. This may result in
too much information to be logged (especially for ed0) and
the rules needs to be further refined.
#
block in log on ppp0 all head 100
block out log on ppp0 all head 150
block in log on ed0 from w.x.y.z/24 to any head 200
block out log on ed0 all head 250
#---
Invalid Internet packets.
=========================
#
Deny reserved addresses.
#
block in log quick from 10.0.0.0/8 to any group 100
block in log quick from 192.168.0.0/16 to any group 100
block in log quick from 172.16.0.0/12 to any group 100
#
Prevent IP spoofing.
#
block in log quick from a.b.c.d/24 to any group 100
#
#---
Localhost packets.
==================
packets going in/out of network interfaces that aren’t on the
102 Appendix A

IPFilter Configuration Examples
BASIC_2.FW
loopbackinterface should *NOT* exist
block in log quick from 127.0.0.0/8 to any group 100
block in log quick from any to 127.0.0.0/8 group 100
block in log quick from 127.0.0.0/8 to any group 200
block in log quick from any to 127.0.0.0/8 group 200
And of course, make sure the loopback allows packets to
traverse it.
pass in quick on lo0 all
pass out quick on lo0 all
#---
Allow any communication between the inside network and the
outside only.
#
Allow all outgoing connections (SSH, TELNET, FTP, WWW,
gopher, etc)
#
pass in log quick proto tcp all flags S/SA keep state group 200
#
Support all UDP ‘connections’ initiated from inside.
#
Allow ping out
#
pass in log quick proto icmp all keep state group 200
#---
Log these:
==========
* return RST packets for invalid SYN packets to help the
other end close
block return-rst in log proto tcp from any to any flags S/SA
group 100
* return ICMP error packets for invalid UDP packets
block -icmp(net-unr) in proto udp all group 100
Appendix A 103

IPFilter Configuration Examples
example.1
example.1
#
block all incoming TCP packets on le0 from host 10.1.1.1 to
any destination.
#
block in on le0 proto tcp from 10.1.1.1/32 to any
104 Appendix A

IPFilter Configuration Examples
example.2
example.2
#

block all outgoing TCP packets on le0 from any host to port
23 of host 10.1.1.2
#
block out on le0 proto tcp from any to 10.1.1.3/32 port = 23
Appendix A 105

IPFilter Configuration Examples
example.3
example.3
block all inbound packets.
#
block in from any to any
#
pass through packets to and from localhost.
#
pass in from 127.0.0.1/32 to 127.0.0.1/32
#
allow a variety of individual hosts to send any type of IP
packet to any other host.
#
pass in from 10.1.3.1/32 to any
pass in from 10.1.3.2/32 to any
pass in from 10.1.3.3/32 to any
pass in from 10.1.3.4/32 to any
pass in from 10.1.3.5/32 to any
pass in from 10.1.0.13/32 to any
pass in from 10.1.1.1/32 to any
pass in from 10.1.2.1/32 to any
#
#
block all outbound packets.
#
block out from any to any
#
allow any packets destined for localhost out.
#
pass out from any to 127.0.0.1/32
#
allow any host to send any IP packet out to a limited number
of hosts.
#
pass out from any to 10.1.3.1/32
pass out from any to 10.1.3.2/32
pass out from any to 10.1.3.3/32
pass out from any to 10.1.3.4/32
pass out from any to 10.1.3.5/32
pass out from any to 10.1.0.13/32
pass out from any to 10.1.1.1/32
pass out from any to 10.1.2.1/32
106 Appendix A

IPFilter Configuration Examples
example.4
example.4
#
block all ICMP packets.
#
block in proto icmp from any to any
#

Appendix A 107

IPFilter Configuration Examples
example.5
example.5
#
test ruleset
#
allow packets coming from foo to bar through.
#
pass in from 10.1.1.2 to 10.2.1.1
#
allow any TCP packets from the same subnet as foo is on
through to host 10.1.1.2 if they are destined for port 6667.
#
pass in proto tcp from 10.2.2.2/24 to 10.1.1.2/32 port = 6667
#
allow in UDP packets that are NOT from port 53 and are
destined for localhost
#
pass in proto udp from 10.2.2.2 port != 53 to localhost
#
block all ICMP unreachables.
#
block in proto icmp from any to any icmp-type unreach
#
allow packets through that have a non-standard IP header
length (ie there are IP options such as source-routing
present).
#
pass in from any to any with ipopts
#

108 Appendix A

IPFilter Configuration Examples
example.6
example.6
#
block all TCP packets with only the SYN flag set (this is the
first packet sent to establish a connection) out of the
SYN-ACK pair.
#
block in proto tcp from any to any flags S/SA
Appendix A 109

IPFilter Configuration Examples
example.7
example.7
block all ICMP packets.
#
block in proto icmp all
#
allow in ICMP echos and echo-replies.
#
pass in on le1 proto icmp from any to any icmp-type echo
pass in on le1 proto icmp from any to any icmp-type echorep
#
block all ICMP destination unreachable packets which are
port-unreachables
#
block in on le1 proto icmp from any to any icmp-type unreach
code 3
110 Appendix A

IPFilter Configuration Examples
example.8
example.8
#
block all incoming TCP connections but send back a TCP-RST
for ones to the ident port
#
block in proto tcp from any to any flags S/SA
block return-rst in quick proto tcp from any to any port = 113
flags S/SA
#
block all inbound UDP packets and send back an ICMP error.
#
block return-icmp in proto udp from any to any
Appendix A 111

IPFilter Configuration Examples
example.9
example.9
drop all packets without IP security options
#
block in all
pass in all with opt sec
#
only allow packets in and out on le0 which are top secret
#
block out on le1 all
pass out on le1 all with opt sec-class topsecret
block in on le1 all
pass in on le1 all with opt sec-class topsecret

#

112 Appendix A

IPFilter Configuration Examples
example.10
example.10
#
pass ack packets (ie established connection)
#
pass in proto tcp from 10.1.0.0/16 port = 23 to 10.2.0.0/16 ...
 flags A/A
pass out proto tcp from 10.1.0.0/16 port = 23 to 10.2.0.0/16...
 flags A/A
#
block incoming connection requests to my internal network
from the internet.
#
block in on le0 proto tcp from any to 10.1.0.0/16 flags S/SA
block the replies:
block out on le0 proto tcp from 10.1.0.0 to any flags SA/SA
Appendix A 113

IPFilter Configuration Examples
example.11
example.11
#
allow any TCP packets from the same subnet as foo is on
through to host 10.1.1.2 if they are destined for port 6667.
#
pass in proto tcp from 10.2.2.2/24 to 10.1.1.2/32 port = 6667
#
allow in UDP packets which are NOT from port 53 and are
destined for localhost
#
pass in proto udp from 10.2.2.2 port != 53 to localhost
#
block any packet trying to get to X terminal ports, X:0 to
X:9
#
block in proto tcp from any to any port 5999 >< 6010
#
allow any connections to be made,except to BSD
print/r-services this will also protect syslog.
#
block in proto tcp/udp all
pass in proto tcp/udp from any to any port 512 <> 515
#
allow any connections to be made, except to BSD
print/r-services
this will also protect syslog.
#
pass in proto tcp/udp all
block in proto tcp/udp from any to any port 511 >< 516
114 Appendix A

IPFilter Configuration Examples
example.12
example.12
#
get rid of all short IP fragments (too small for valid
comparison)
#
block in proto tcp all with short
#
drop and log any IP packets with options set in them.
#
block in log all with ipopts
#
log packets with BOTH ssrr and lsrr set
#
log in all with opt lsrr,ssrr
#
drop any source routing options
#
block in quick all with opt lsrr
block in quick all with opt ssrr
Appendix A 115

IPFilter Configuration Examples
example.13
example.13
#
log all short TCP packets to qe3, with 10.3.3.3 as the
intended destination for the packet.
#
block in on qe0 to qe3:10.3.3.3 proto tcp all with short
#
log all connection attempts for TCP
#
pass in on le0 dup-to le1:10.3.3.3 proto tcp all flags S/SA
#
route all UDP packets through transparently.
#
pass in on ppp0 fastroute proto udp all
#
route all ICMP packets to network 10 out through le1, to
10.3.3.1
#
pass in on le0 to le1:10.3.3.1 proto icmp all
116 Appendix A

IPFilter Configuration Examples
example.sr
example.sr
log all inbound packets on le0 which has IP options present
log in on le0 from any to any with ipopts
#
block any inbound packets on le0 which are fragmented and
#"too short" to do any meaningful comparison on. This actually
only applies to TCP packets which can be missing the
flags/ports (depending on which part of the fragment you
see).
#
 block in log quick on le0 from any to any with short frag
#
log all inbound TCP packets with the SYN flag (only) set
(NOTE: if it were an inbound TCP packet with the SYN flag
#set and it had IP options present, this rule and the above
#would cause it to be logged twice).
#
log in on le0 proto tcp from any to any flags S/SA
#
block and log any inbound ICMP unreachables
#
block in log on le0 proto icmp from any to any icmp-type
unreach
#
block and log any inbound UDP packets on le0 which are going
to port 2049 (the NFS port).
#
block in log on le0 proto udp from any to any port = 2049
#
quickly allow any packets to/from a particular pair of hosts
#
pass in quick from any to 10.1.3.2/32
pass in quick from any to 10.1.0.13/32
pass in quick from 10.1.3.2/32 to any
pass in quick from 10.1.0.13/32 to any
#
block (and stop matching) any packet with IP options present.
#
block in quick on le0 from any to any with ipopts
#
allow any packet through
#
pass in from any to any
Appendix A 117

IPFilter Configuration Examples
example.sr
#
block any inbound UDP packets destined for these subnets.
#
block in on le0 proto udp from any to 10.1.3.0/24
block in on le0 proto udp from any to 10.1.1.0/24
block in on le0 proto udp from any to 10.1.2.0/24
#
block any inbound TCP packets with only the SYN flag set that
are destined for these subnets.
#
block in on le0 proto tcp from any to 10.1.3.0/24 flags S/SA
block in on le0 proto tcp from any to 10.1.2.0/24 flags S/SA
block in on le0 proto tcp from any to 10.1.1.0/24 flags S/SA
#
block any inbound ICMP packets destined for these subnets.
#
block in on le0 proto icmp from any to 10.1.3.0/24
block in on le0 proto icmp from any to 10.1.1.0/24
block in on le0 proto icmp from any to 10.1.2.0/24
118 Appendix A

IPFilter Configuration Examples
firewall
firewall
#Configuring IP Filter for firewall usage.
===

Step 1 - Block out "bad" IP packets.

Run the perl script "mkfilters". This will generate a list of
blocking rules which:
a) blocks all packets which might belong to an IP Spoofing
attack;
b) blocks all packets with IP options;
c) blocks all packets which have a length which is too short
for any legal packet;

Step 2 - Convert Network Security Policy to filter rules.

Draw up a list of which services you want to allow users to use
on the Internet (e.g. WWW, ftp, etc). Draw up a separate list
for what you want each host that is part of your firewall to be
allowed to do, including communication with internal hosts.

Step 3 - Create TCP "keep state" rules.

For each service that uses TCP, create a rule as follows:

pass in on <int-a> proto tcp from <int-net> to any port
<ext-service> flags S/SA keep state

where
* "int-a" is the internal interface of the firewall. That is,
it is the closest to your internal network in terms of network
hops.

* "int-net" is the internal network IP# subnet address range.
This might be something like 10.1.0.0/16, or 128.33.1.0/24

* "ext-service" is the service to which you wish to connect or
if it doesn’t have a proper name, a number can be used. The
translation of "ext-service" as a name to a number is
controlled with the /etc/services file.
Appendix A 119

IPFilter Configuration Examples
server
server
#
For a network server, which has two interfaces, 128.1.40.1
#(le0) and 128.1.2.1 (le1), we want to block all IP spoofing .
attacks. le1 is connected to the majority of the network,
while le0 is connected to a leaf subnet.
We’re not concerned about filtering individual services
#
#
pass in quick on le0 from 128.1.40.0/24 to any
block in log quick on le0 from any to any
block in log quick on le1 from 128.1.1.0/24 to any
pass in quick on le1 from any to any
120 Appendix A

IPFilter Configuration Examples
tcpstate
tcpstate
#
Only allow TCP packets in/out of le0 if there is an outgoing
connection setup somewhere, waiting for it.
#
pass out quick on le0 proto tcp from any to any flags S/SAFR
keep state
block out on le0 proto tcp all
block in on le0 proto tcp all
#
allow nameserver queries and replies to pass through, but no
other UDP
#
pass out quick on le0 proto udp from any to any port = 53
keep state
block out on le0 proto udp all
block in on le0 proto udp all
Appendix A 121

IPFilter Configuration Examples
tcpstate
122 Appendix A

B IPFilter Static Linking

This appendix provides instructions for statically linking the IPFilter
kernel modules to the kernel.
123

IPFilter Static Linking
Static Linking
Static Linking
IPFilter has two kernel modules, pfil, a streams module and ipf, a WSIO
pseudo driver. These are dynamically loadable kernel modules. When
IPFilter is installed on an HP-UX system using swinstall , these two
modules are loaded and configured as dynamically linked modules. They
can be loaded and unloaded when required without shutting down the
system as long as the modules are not currently in use.

As with any other DLKM modules for HP-UX version 11.0 and later,
these modules can be statically linked to the kernel, if desired. Follow
these steps to statically link the IPFilter modules to the kernel:

1. Use kmadmin command to find out if the modules have been loaded
dynamically. See the kmadmin (1M) manpage for usage information.
For example:

$ kmadmin -s

2. Use the kmsystem command to find the status of each module. See the
kmsystem (1M) manpage for more detail. For example:

$ kmsystem -q pfil

The output would be similar for the ipf module. This output shows
that the pfil module is loadable.

3. Use the kmsystem command to set the loadable parameter to N.

$ kmsystem -l N -c Y ipf

Name ID Status Type

pfil 1 LOADED STREAMS

ipf 2 LOADED WSIO

Module Configured Loadable

pfil Y Y
124 Appendix B

IPFilter Static Linking
Static Linking
$ kmsystem -q ipf

$ kmsystem -l N -c Y pfil

4. Use the following command to build the new kernel with the modified
configuration:

$config /stand/system

5. Use the kmupdate command to prepare the system to boot from the
new kernel during the next system shutdown.

$ kmupdate /stand/build/vmunix_test

$ shutdown -r 0 # Shutdown the system now

This boots the system using the new kernel that has both IPFilter
modules statically linked.

CAUTION If you need to remove or update IPFilter software, you must reconfigure
the ipf and pfil modules to link dynamically to the kernel. The install
and remove scripts for IPFilter assume the IPFilter modules to be
dynamically linked. Do not try installing a newer version or removing
the existing IPFilter product if it is statically linked to the kernel.

Module Configured Loadable

ipf Y N
Appendix B 125

IPFilter Static Linking
Static Linking
126 Appendix B

Index
B
bidirectional filtering

by interface, 36
out keyword, 34

blocked packets, 51
blocked traffic

correcting, 92

C
configuring

file conventions, 18, 27
quick keyword, 30
rules processing, 28

E
examples, 99

F
file

configuration, 27
filtering

bidirectional, 34
by interface, 31
by IP address and interface, 32

firewall
basic configuration, 26

ftp client
active ftp, 81
passive ftp, 81

ftp server
active ftp, 80

I
icmp, 48
icmp and ssh server, 44
icmp-type keyword, 39
installing

loading software, 14
overview, 11
prerequisites, 13

interface as filtering criteria, 31
Index
ip address and interface
as filter criteria, 32

ipf utility, 65
ipfilter

and ipsec, 87
configuration examples, 99

ipfstat utility, 66
ipmon utility, 69
IPSec

gateway, 96
ipsec and ipfilter, 87
ipsec udp negotiation, 89

K
keep state keyword, 44
keeping state, 44

icmp, 48
udp, 47
with servers and flags, 58

keywords
flags, 49
icmp-type, 39
keep frags, 49
keep state, 44
log, 35, 53
port, 40
proto, 38
quick, 30

L
loading software, 14
log keyword, 35, 53
logging

packets, 35

O
overview, installing, 11

P
port keyword, 40
proto keyword, 38
punching a hole, 91

Q
quick keyword, 30

R
reporting problems, 47
rule groups, 55
rules processing, 28

S
software, loading, 14
ssh server, 44
swinstall(1M), 14
swlist(1M), 13

T
tcp and ssh server, 44
tree structure, 55

U
udp and ssh server, 44
uname(1), 13
utilities

ipf, 65
ipfstat, 66
127

	BookInfo - Installing and Administering IPFilter/9000
	Preface - Preface
	Chapter - 1� Installing and Configuring IPFilter/9000
	Section - Overview of HP IPFilter/9000 Installation
	Section - Installation and Configuration Checklist

	Section - Step 1: Checking IPFilter/9000 Installation Prerequisites
	Section - Step 2: Loading HP IPFilter/9000 Software
	Section - Step 3: Determining the Rules for IPFilter
	Section - Step 4: Adding IPFilter Rules
	Section - Step 5: Loading Rules to the IPFilter Rules File
	Section - Step 6: Verifying the Installation and Configuration
	Section - Troubleshooting IPFilter/9000

	Chapter - 2� Basic Firewalling
	Section - Configuration File Dynamics
	Section - Basic Rules Processing
	Section - Controlling Rule Processing
	Section - Controlling Your Interfaces
	Section - Using IP Address and Interface Together
	Section - Bi-Directional Filtering; The
	Section - Logging What Happens; The log Keyword
	Section - Complete Bi-Directional Filtering by Interface
	Section - Controlling Specific Protocols; The
	Section - Filtering ICMP with the
	Section - TCP and UDP Ports; The

	Chapter - 3� Advanced Firewalling
	Section - The Default-Deny Stance
	Section - Implicit Allow; The keep state Rule
	Section - keeping state
	Section - Running an SSH server

	Section - Stateful UDP
	Section - Stateful ICMP
	Section - FIN Scan Detection;
	Section - Responding to a Blocked Packet
	Section - Logging Techniques
	Section - Putting It All Together
	Section - Improving Performance With Rule Groups
	Section - Keep State With Servers and Flags
	Section - Localhost Filtering
	Section - Drop-Safe Logging with dup-to and to

	Section - The dup-to Method
	Section - The to Method

	Chapter - 4� IPFilter Utilities
	Section - The
	Section - The ipfstat Utility
	Section - The ipmon Utility
	Section - The ipftest Utility
	Section - Unsupported Utilities and Commands

	Chapter - 5� IPFilter and FTP
	Section - How FTP Works
	Section - WU-FTPD on HP-UX
	Section - Running an FTP Server
	Section - Active FTP
	Section - Passive FTP

	Section - Running an FTP Client
	Section - Active FTP
	Section - Passive FTP

	Chapter - 6� IPFilter and IPSec
	Section - IPFilter and IPSec Basics
	Section - IPSec UDP Negotiation
	Section - Punching a Hole in Both Directions
	Section - When Traffic Appears to be Blocked
	Section - Allowing Protocol 50 and Protocol 51 Traffic
	Section - IPSec Gateways

	Appendix - A� IPFilter Configuration Examples
	Section - BASIC_1.FW
	Section - BASIC_2.FW
	Section - example.1
	Section - example.2
	Section - example.3
	Section - example.4
	Section - example.5
	Section - example.6
	Section - example.7
	Section - example.8
	Section - example.9
	Section - example.10
	Section - example.11
	Section - example.12
	Section - example.13
	Section - example.sr
	Section - firewall
	Section - server
	Section - tcpstate

	Appendix - B� IPFilter Static Linking
	Section - Static Linking
	GroupTitlesIX - B
	GroupTitlesIX - C
	GroupTitlesIX - E
	GroupTitlesIX - F
	GroupTitlesIX - I
	GroupTitlesIX - K
	GroupTitlesIX - L
	GroupTitlesIX - O
	GroupTitlesIX - P
	GroupTitlesIX - Q
	GroupTitlesIX - R
	GroupTitlesIX - S
	GroupTitlesIX - T
	GroupTitlesIX - U

