
November 2005

N16899F
VERITAS File System 4.1

Administrator’s Guide

Solaris x64 Platform Edition

Disclaimer

The information contained in this publication is subject to change without notice. VERITAS Software
Corporation makes no warranty of any kind with regard to this manual, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. VERITAS Software
Corporation shall not be liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this manual.

VERITAS Legal Notice

Copyright © 2005 VERITAS Software Corporation. All rights reserved. VERITAS, the VERITAS Logo,
and Storage Foundation are trademarks or registered trademarks of VERITAS Software Corporation
or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective
owners.

VERITAS Software Corporation
350 Ellis Street
Mountain View, CA 94043
USA
Phone 650–527–8000 Fax 650–527–2908
www.veritas.com

Third-Party Legal Notices

Data Encryption Standard (DES) Copyright

Copyright © 1990 Dennis Ferguson. All rights reserved.

Commercial use is permitted only if products that are derived from or include this software are made available for purchase and/or use in
Canada. Otherwise, redistribution and use in source and binary forms are permitted.

Copyright 1985, 1986, 1987, 1988, 1990 by the Massachusetts Institute of Technology. All rights reserved.

Export of this software from the United States of America may require a specific license from the United States Government. It is the responsibility
of any person or organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is provided as
is without express or implied warranty.

Sun Microsystems Trademarks

Sun, Solaris, SunOS, Java, Sun Java System Cluster, Sun StorEdge, Solstice DiskSuite, Sun Fire, Sun Enterprise, Online: Backup, and Netra are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.
ii VERITAS File System Administrator’s Guide

http://www.veritas.com

Contents
Preface . xi

How This Guide Is Organized .xii

Conventions . xiii

Getting Help . xiv

Chapter 1. The VERITAS File System .1

VxFS Features . 2

Disk Layouts . 3

File System Performance Enhancements . 3

VERITAS Enterprise Administrator Graphical User Interface . 4

Extent-Based Allocation . 5

Typed Extents . 6

Extent Attributes . 7

Fast File System Recovery . 7

VxFS Intent Log . 7

VxFS Intent Log Resizing . 8

Online System Administration . 8

Defragmentation . 8

File System Resizing . 9

Application Interface . 9

Application Transparency . 9

Expanded Application Facilities . 10
iii

Extended mount Options . 10

Enhanced Data Integrity Modes . 11

Using blkclear Option for Data Integrity . 11

Using closesync Option for Data Integrity . 11

Using the log Option for Data Integrity . 12

Enhanced Performance Mode . 12

Using the delaylog Option for Enhanced Performance . 12

Modes of Temporary File System . 13

Using the tmplog option For Temporary File Systems . 13

Improved Synchronous Writes . 13

Support for Large Files . 13

Enhanced I/O Performance . 14

Enhanced I/O Clustering . 14

VxVM Integration . 14

Application-Specific Parameters . 14

Access Control Lists . 15

Online Backup . 15

Quotas . 15

Cross-Platform Data Sharing . 16

File Change Log . 16

Multi-Volume Support . 16

Chapter 2. VxFS Performance: Creating, Mounting, and Tuning File Systems . . . 17

Choosing mkfs Command Options . 19

Block Size . 19

Intent Log Size . 19

Choosing mount Command Options . 20

log . 20

delaylog . 21

tmplog . 21
iv VERITAS File System Administrator’s Guide

logiosize . 22

nodatainlog . 22

blkclear . 22

mincache . 23

convosync . 24

ioerror . 25

largefiles | nolargefiles . 26

Creating a File System with Large Files . 26

Mounting a File System with Large Files . 26

Managing a File System with Large Files . 27

Combining mount Command Options . 27

Example 1 - Desktop File System . 27

Example 2 - Temporary File System or Restoring from Backup 27

Example 3 - Data Synchronous Writes . 28

Kernel Tunables . 28

Internal Inode Table Size . 28

 vx_maxlink . 29

VxVM Maximum I/O Size . 29

vol_maxio . 29

Monitoring Free Space . 30

Monitoring Fragmentation . 30

I/O Tuning . 31

Tuning VxFS I/O Parameters . 32

Tunable VxFS I/O Parameters . 33

Chapter 3. Extent Attributes .41

Attribute Specifics . 42

Reservation: Preallocating Space to a File . 43

Fixed Extent Size . 43

Other Controls . 44
Contents v

Alignment . 44

Contiguity . 44

Write Operations Beyond Reservation . 44

Reservation Trimming . 44

Reservation Persistence . 45

Including Reservation in the File . 45

Commands Related to Extent Attributes . 45

Failure to Preserve Extent Attributes . 46

Chapter 4. Application Interface . 47

Cache Advisories . 48

Direct I/O . 48

Unbuffered I/O . 49

Discovered Direct I/O . 49

Data Synchronous I/O . 50

Other Advisories . 50

Extent Information . 51

Space Reservation . 51

Fixed Extent Sizes . 53

Freeze and Thaw . 54

Get I/O Parameters ioctl . 54

Named Data Streams . 54

Named Data Streams Programmatic Interface . 55

Listing Named Data Streams . 56

Namespace for Named Data Streams . 56

Behavior Changes in Other System Calls . 56

Chapter 5. Online Backup Using File System Snapshots . 57

Snapshot File Systems . 58

Using a Snapshot File System for Backup . 58

Creating a Snapshot File System . 59
vi VERITAS File System Administrator’s Guide

Making a Backup . 60

Performance of Snapshot File Systems . 60

Snapshot File System Internals . 61

Snapshot File System Disk Structure . 61

How a Snapshot File System Works . 62

Chapter 6. Quotas .65

Quota Limits . 66

Quota Files on VxFS . 66

Quota Commands . 67

Quota Checking With VxFS . 68

Using Quotas . 68

vxquotaon . 68

mount . 69

vxedquota . 69

vxquota . 70

vxquot . 70

vxquotaoff . 70

Chapter 7. File Change Log .71

File Change Log File . 71

File Change Log Administrative Interface . 72

File Change Log Programmatic Interface . 73

Reverse Path Name Lookup . 75

Chapter 8. Multi-Volume File Systems .77

Features Implemented Using MVS . 78

Volume Sets . 79

Creating MVS File Systems . 80

Allocation Policies . 81

Volume Encapsulation . 82
Contents vii

Appendix A. VERITAS File System Quick Reference . 85

Command Summary . 86

Online Manual Pages . 88

Creating a File System . 92

How to Create a File System . 92

Converting a File System to VxFS . 93

How to Convert a File System . 93

Mounting a File System . 94

How to Mount a File System . 94

Mount Options . 95

How to Edit the vfstab File . 96

Unmounting a File System . 97

How to Unmount a File System . 97

Displaying Information on Mounted File Systems . 97

How to Display File System Information . 97

Identifying File System Types . 98

How to Identify a File System . 98

Resizing a File System . 99

How to Extend a File System Using fsadm . 99

How to Shrink a File System . 100

How to Reorganize a File System . 101

Backing Up and Restoring a File System . 102

How to Create and Mount a Snapshot File System . 102

How to Back Up a File System . 103

How to Restore a File System . 103

Using Quotas . 104

How to Turn On Quotas . 104

How to Set Up User Quotas . 105

How to View Quotas . 106

How to Turn Off Quotas . 106
viii VERITAS File System Administrator’s Guide

Appendix B. Kernel Messages .107

File System Response to Problems . 108

Marking an Inode Bad . 108

Disabling Transactions . 108

Disabling a File System . 108

Recovering a Disabled File System . 109

Kernel Messages . 109

Global Message IDs . 109

Appendix C. Disk Layout .147

Disk Space Allocation . 148

VxFS Version 4 Disk Layout . 148

VxFS Version 5 Disk Layout . 152

VxFS Version 6 Disk Layout . 153

Using UNIX Commands on File Systems
Larger than One TB . 153

Glossary .155

Index .163
Contents ix

x VERITAS File System Administrator’s Guide

Preface
The VERITAS File System Administrator’s Guide provides information on the most
important aspects of VERITAS File System (VxFS) administration. This guide is for system
administrators who configure and maintain UNIX systems with the VERITAS File System,
and assumes that you have a:

◆ Basic understanding of system administration

◆ Working knowledge of the UNIX operating system

◆ General understanding of file systems
xi

How This Guide Is Organized
How This Guide Is Organized
Chapter 1. “The VERITAS File System” on page 1 introduces the major features and
characteristics of VxFS.

Chapter 2. “VxFS Performance: Creating, Mounting, and Tuning File Systems” on page 17
describes VxFS tools that optimize file system performance. This section includes
information on mount options.

Chapter 3. “Extent Attributes” on page 41 describes the policies associated with
allocation of disk space.

Chapter 4. “Application Interface” on page 47 describes ways to optimize an application
for use with VxFS. This chapter includes details on cache advisories, extent sizes, and
reservation of file space.

Chapter 5. “Online Backup Using File System Snapshots” on page 57 describes the
snapshot backup feature of VxFS.

Chapter 6. “Quotas” on page 65 describes VxFS methods to limit user access to file and
data resources.

Chapter 7. “File Change Log” on page 71 describes the File Change Log and Reverse
Name Lookup feature of VxFS.

Chapter 8. “Multi-Volume File Systems” on page 77 describes the multi-volume support
feature that allows several volumes to be represented by a single logical object in a volume
set.

Appendix A. “VERITAS File System Quick Reference” on page 85 provides information
on common file system tasks and examples of typical VxFS operations.

Appendix B. “Kernel Messages” on page 107 lists VxFS kernel error messages in
numerical order and provides explanations and suggestions for dealing with these
problems.

Appendix C. “Disk Layout” on page 147 describes and illustrates the major components
of VxFS disk layouts.

The “Glossary” contains a list of terms and definitions relevant to VxFS.
xii VERITAS File System Administrator’s Guide

Conventions
Conventions

Typeface Usage Examples

monospace Computer output, files,
directories, software elements
such as command options,
function names, and parameters

Read tunables from the
/etc/vx/tunefstab file.

See the vxtunefs(1M) manual page
for more information.

monospace
(bold)

User input # mount - vxfs /h/filesys

italic New terms, book titles,
emphasis, variables replaced
with a name or value

See the User’s Guide for details.

The variable vxfs_ninode determines
the value of...

Symbol Usage Examples

% C shell prompt

$ Bourne/Korn/Bash shell prompt

Superuser prompt (all shells)

\ Continued input on the
following line; you do not type
this character

mount - vxfs \
/h/filesys

 [] In a command synopsis, brackets
indicates an optional argument

ls [-a]

 | In a command synopsis, a
vertical bar separates mutually
exclusive arguments

 mount [suid | nosuid]

 blue text Indicates an active hypertext link In PDF and HTML files, click on links
to move to the specified location
Preface xiii

Getting Help
Getting Help

For technical assistance, visit http://support.veritas.com and select phone or email
support. This site also provides access to resources such as TechNotes, product alerts,
software downloads, hardware compatibility lists, and the VERITAS customer email
notification service. Use the Knowledge Base Search feature to access additional product
information, including current and past releases of product documentation.

Diagnostic tools are also available to assist in troubleshooting problems associated with
the product. These tools are available on disc or can be downloaded from the VERITAS
FTP site. See the README.VRTSspt file in the /support directory for details.

For license information, software updates and sales contacts, visit
https://my.veritas.com/productcenter/ContactVeritas.jsp. For information on
purchasing product documentation, visit http://webstore.veritas.com.
xiv VERITAS File System Administrator’s Guide

http://support.veritas.com
https://my.veritas.com/productcenter/ContactVeritas.jsp
http://webstore.veritas.com

The VERITAS File System
 1

VxFS is an extent-based, intent logging file system. VxFS is designed for use in UNIX
environments that require high performance and availability and deal with large amounts
of data.

This chapter provides an overview of major VxFS features that are described in detail in
later chapters. The following topics are introduced in this chapter:

◆ VxFS Features

◆ Disk Layouts

◆ File System Performance Enhancements

◆ VERITAS Enterprise Administrator Graphical User Interface

◆ Extent-Based Allocation

◆ Extent Attributes

◆ Fast File System Recovery

◆ Online System Administration

◆ Application Interface

◆ Extended mount Options

◆ Enhanced I/O Performance

◆ Access Control Lists

◆ Online Backup

◆ Quotas

◆ Cross-Platform Data Sharing

◆ File Change Log

◆ Multi-Volume Support
1

VxFS Features
VxFS Features
Basic features include:

◆ Extent-based allocation

◆ Extent attributes

◆ Fast file system recovery

◆ Access control lists (ACLs)

◆ Online administration

◆ Online backup

◆ Enhanced application interface

◆ Enhanced mount options

◆ Improved synchronous write performance

◆ Support for files and file systems up to 256 terabytes

◆ Enhanced I/O performance

◆ Quotas

◆ Improved database performance

◆ Cross-platform data sharing

◆ File Change Log

◆ Multi-volume support

Note VxFS supports all UFS file system features and facilities except for linking,
removing, or renaming “.” and “..” directory entries. These operations may
disrupt file system operations.
2 VERITAS File System Administrator’s Guide

Disk Layouts
Disk Layouts
The disk layout is the way file system information is stored on disk. On VxFS, six disk
layout versions, numbered 1 through 6, were created to support various new features and
specific UNIX environments. Currently, only Version 6 disk layout can be created and
mounted.

See “Disk Layout” on page 147 for a description of the disk layouts.

File System Performance Enhancements
Traditional file systems employ block-based allocation schemes that provide adequate
random access and latency for small files, but which limit throughput for larger files. As a
result, they are less than optimal for commercial environments.

VxFS addresses this file system performance issue through an alternative allocation
method and increased user control over allocation, I/O, and caching policies. An
overview of the VxFS allocation policy is provided in the section “Extent-Based
Allocation” on page 5.

VxFS provides the following performance enhancements:

◆ Extent-based allocation

◆ Enhanced mount options

◆ Data synchronous I/O

◆ Direct I/O and discovered direct I/O

◆ Caching advisories

◆ Enhanced directory features

◆ Explicit file alignment, extent size, and preallocation controls

◆ Tunable I/O parameters

◆ Tunable indirect data extent size

◆ Integration with VERITAS Volume Manager™ (VxVM
®
)

◆ Support for improved database performance

The rest of this chapter, as well as “VxFS Performance: Creating, Mounting, and Tuning
File Systems” on page 17 and “Application Interface” on page 47 provide details on many
of these features.
Chapter 1, The VERITAS File System 3

VERITAS Enterprise Administrator Graphical User Interface
VERITAS Enterprise Administrator Graphical User Interface
The VERITAS Enterprise Administrator (VEA) is a GUI based on the Java™ technology
that consists of a server and a client. The server runs on a UNIX system that is running the
VERITAS Volume Manager and VxFS. The client runs on any platform that supports the
Java Runtime Environment. You can use VEA to perform a subset of VxFS administrative
functions on a local or remote system. These functions include:

◆ Creating a New File System on a Volume

◆ Creating a New File System on a Volume Set

◆ Removing a File System from the File System Table

◆ Mounting/Unmounting a File System

◆ Defragmenting a File System

◆ Monitoring File System Capacity

◆ Creating a Snapshot Copy of a File System

◆ Checking a File System

◆ Viewing File System Properties

◆ Maintaining the File Change Log

◆ Using Multi-Volume File Systems

◆ Setting Intent Log Options

Details on how to use the VERITAS Enterprise Administrator (VEA) can be found in the
VERITAS Enterprise Administrator Getting Started manual and VEA online help. This
manual is available in the /opt/VRTS/docs directory after you install the VRTSvmdoc
package.

4 VERITAS File System Administrator’s Guide

Extent-Based Allocation
Extent-Based Allocation
Disk space is allocated in 512-byte sectors to form logical blocks. VxFS supports logical
block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is 1K.

An extent is defined as one or more adjacent blocks of data within the file system. An
extent is presented as an address-length pair, which identifies the starting block address
and the length of the extent (in file system or logical blocks). VxFS allocates storage in
groups of extents rather than a block at a time.

Extents allow disk I/O to take place in units of multiple blocks if storage is allocated in
consecutive blocks. For sequential I/O, multiple block operations are considerably faster
than block-at-a-time operations; almost all disk drives accept I/O operations of multiple
blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from the inode
structure compared to block based inodes. A VxFS inode references 10 direct extents, each
of which are pairs of starting block addresses and lengths in blocks. The VxFS inode also
points to two indirect address extents, which contain the addresses of other extents:

◆ The first indirect address extent is used for single indirection; each entry in the extent
indicates the starting block number of an indirect data extent.

◆ The second indirect address extent is used for double indirection; each entry in the
extent indicates the starting block number of a single indirect address extent.

Each indirect address extent is 8K long and contains 2048 entries. All indirect data extents
for a file must be the same size; this size is set when the first indirect data extent is
allocated and stored in the inode. Directory inodes always use an 8K indirect data extent
size. By default, regular file inodes also use an 8K indirect data extent size that can be
altered with vxtunefs (see “Tuning VxFS I/O Parameters” on page 32); these inodes
allocate the indirect data extents in clusters to simulate larger extents.
Chapter 1, The VERITAS File System 5

Extent-Based Allocation
Typed Extents
VxFS has an inode block map organization for indirect extents known as typed extents.
Each entry in the block map has a typed descriptor record containing a type, offset,
starting block, and number of blocks.

Indirect and data extents use this format to identify logical file offsets and physical disk
locations of any given extent. The extent descriptor fields are defined as follows:
:

◆ Indirect address blocks are fully typed and may have variable lengths up to a
maximum and optimum size of 8K. On a fragmented file system, indirect extents may
be smaller than 8K depending on space availability. VxFS always tries to obtain 8K
indirect extents but resorts to smaller indirects if necessary.

◆ Indirect Data extents are variable in size to allow files to allocate large, contiguous
extents and take full advantage of VxFS's optimized I/O.

◆ Holes in sparse files require no storage and are eliminated by typed records. A hole is
determined by adding the offset and length of a descriptor and comparing the result
with the offset of the next record.

◆ While there are no limits on the levels of indirection, lower levels are expected in this
format since data extents have variable lengths.

◆ This format uses a type indicator that determines its record format and content and
accommodates new requirements and functionality for future types.

The current typed format is used on regular files and directories only when indirection is
needed. Typed records are longer than the previous format and require less direct entries
in the inode. Newly created files start out using the old format which allows for ten direct
extents in the inode. The inode's block map is converted to the typed format when
indirection is needed to offer the advantages of both formats.

type Uniquely identifies an extent descriptor record and defines the
record's length and format.

offset Represents the logical file offset in blocks for a given descriptor.
Used to optimize lookups and eliminate hole descriptor entries.

starting block The starting file system block of the extent.

number of blocks The number of contiguous blocks in the extent.
6 VERITAS File System Administrator’s Guide

Extent Attributes
Extent Attributes
VxFS allocates disk space to files in groups of one or more extents. VxFS also allows
applications to control some aspects of the extent allocation. Extent attributes are the extent
allocation policies associated with a file.

The setext and getext commands allow the administrator to set or view extent
attributes associated with a file, as well as to preallocate space for a file. Refer to “Extent
Attributes” on page 41, “Application Interface” on page 47, and the setext(1) and
getext(1) manual pages for discussions on how to use extent attributes.

The vxtunefs command allows the administrator to set or view the default indirect data
extent size. Refer to “VxFS Performance: Creating, Mounting, and Tuning File Systems”
on page 17 and the vxtunefs(1M) manual page for discussions on how to use the
indirect data extent size feature.

Fast File System Recovery
Most file systems rely on full structural verification by the fsck utility as the only means
to recover from a system failure. For large disk configurations, this involves a
time-consuming process of checking the entire structure, verifying that the file system is
intact, and correcting any inconsistencies. VxFS provides fast recovery for more
information, see “VxFS Intent Log” and “VxFS Intent Log Resizing”.

VxFS Intent Log
VxFS reduces system failure recovery times by tracking file system activity in the VxFS
intent log. This feature records pending changes to the file system structure in a circular
intent log. The intent log recovery feature is not readily apparent to users or a system
administrator except during a system failure. During system failure recovery, the VxFS
fsck utility performs an intent log replay, which scans the intent log and nullifies or
completes file system operations that were active when the system failed. The file system
can then be mounted without completing a full structural check of the entire file system.
See “Using the log Option for Data Integrity” for more information on using the mount
option. Replaying the intent log may not completely recover the damaged file system
structure if there was a disk hardware failure; hardware problems may require a complete
system check using the fsck utility provided with VxFS.
Chapter 1, The VERITAS File System 7

Online System Administration
VxFS Intent Log Resizing
The VxFS intent log is allocated when the file system is first created. The size of the intent
log is based on the size of the file system—the larger the file system, the larger the intent
log. The maximum default intent log size for disk layout Version 6 is 64 megabytes.

With the Version 6 disk layout, you can dynamically increase or decrease the intent log
size using the logsize option of the fsadm command. Increasing the size of the intent
log can improve system performance because it reduces the number of times the log
wraps around. However, increasing the intent log size can lead to greater times required
for a log replay if there is a system failure.

Note Inappropriate sizing of the intent log can have a negative impact on system
performance.

See the mkfs_vxfs(1M) and the fsadm_vxfs(1M) manual pages for more information
on intent log size.

Online System Administration
A VxFS file system can be defragmented and resized while it remains online and
accessible to users. The following sections provide an overview of these features.

Defragmentation
Free resources are initially aligned and allocated to files in an order that provides optimal
performance. On an active file system, the original order of free resources is lost over time
as files are created, removed, and resized. The file system is spread farther along the disk,
leaving unused gaps or fragments between areas that are in use. This process is known as
fragmentation and leads to degraded performance because the file system has fewer
options when assigning a free extent to a file (a group of contiguous data blocks).

VxFS provides the online administration utility fsadm to resolve the problem of
fragmentation. The fsadm utility defragments a mounted file system by:

◆ Removing unused space from directories.

◆ Making all small files contiguous.

◆ Consolidating free blocks for file system use.

This utility can run on demand and should be scheduled regularly as a cron job.
8 VERITAS File System Administrator’s Guide

Application Interface
File System Resizing
A file system is assigned a specific size as soon as it is created; the file system may become
too small or too large as changes in file system usage take place over time.

VxFS is capable of changing the file system size up or down while in use. Many
competing file systems can not do this. The VxFS utility fsadm can expand or shrink a file
system without unmounting the file system or interrupting user productivity. However, to
expand a file system, the underlying device on which it is mounted must be expandable.

VxVM facilitates expansion using virtual disks that can be increased in size while in use.
The VxFS and VxVM packages complement each other to provide online expansion
capability. Use the vxresize command when resizing both the volume and the file
system. The vxresize command guarantees that the file system will shrink or grow
along with the volume. Do not use the vxassist and fsadm_vxfs commands for this
purpose. See the vxresize(1M) manual page and the VERITAS Volume Manager
Administrator’s Guide for more information.

Application Interface
VxFS conforms to the System V Interface Definition (SVID) requirements and supports
user access through the Network File System (NFS). Applications that require
performance features not available with other file systems can take advantage of VxFS
enhancements that are introduced in this section and covered in detail in “Application
Interface” on page 47.

Application Transparency
In most cases, any application designed to run on native file systems will run
transparently on VxFS.
Chapter 1, The VERITAS File System 9

Extended mount Options
Expanded Application Facilities
VxFS provides some facilities frequently associated with commercial applications that
make it possible to:

◆ Preallocate space for a file.

◆ Specify a fixed extent size for a file.

◆ Bypass the system buffer cache for file I/O.

◆ Specify the expected access pattern for a file.

Because these facilities are provided using VxFS-specific ioctl system calls, most existing
UNIX system applications do not use them. The VxFS-specific cp, cpio, and mv utilities
use the facilities to preserve extent attributes and allocate space more efficiently. The
current attributes of a file can be listed using the getext command or ls command. The
facilities can also improve performance for custom applications. For portability reasons,
these applications must check which file system type they are using before using these
interfaces.

Extended mount Options
The VxFS file system supports extended mount options to specify:

◆ Enhanced data integrity modes.

◆ Enhanced performance modes.

◆ Temporary file system modes.

◆ Improved synchronous writes.

◆ Large file sizes.

See “VxFS Performance: Creating, Mounting, and Tuning File Systems” on page 17 and
the mount_vxfs(1M) manual page for details on the VxFS mount options.
10 VERITAS File System Administrator’s Guide

Extended mount Options
Enhanced Data Integrity Modes

Note There are performance advantages and disadvantages associated with the use of
these mount options.

For most UNIX file systems, including VxFS, the default mode for writing to a file is
delayed, or buffered, meaning that the data to be written is copied to the file system cache
and later flushed to disk in a lazy fashion.

This provides much better performance than synchronously writing the data to disk.
However, in the event of a system failure, data written shortly before the failure may be
lost since it was not flushed to disk. In addition, if space was allocated to the file as part of
the write request, and the corresponding data was not flushed to disk before the system
failure occurred, uninitialized data can appear in the file.

For the most common type of write, delayed extending writes (a delayed write that
increases the file size), VxFS avoids the problem of uninitialized data appearing in the file
by waiting until the data has been flushed to disk before updating the new file size to disk.
If a system failure occurs before the data has been flushed to disk, the file size has not yet
been updated to be uninitialized data, thus no uninitialized data appears in the file. The
unused blocks that were allocated are reclaimed.

Using blkclear Option for Data Integrity

In environments where performance is more important than absolute data integrity, the
preceding situation is not of great concern. However, VxFS supports environments that
emphasize data integrity by providing the mount -o blkclear option that ensures
uninitialized data does not appear in a file.

Using closesync Option for Data Integrity

VxFS provides the mount -o mincache=closesync option, which is useful in desktop
environments with users who are likely to shut off the power on machines without halting
them first. In closesync mode, only files that are written during the system crash or
shutdown can lose data. Any changes to a file are flushed to disk when the file is closed.
Chapter 1, The VERITAS File System 11

Extended mount Options
Using the log Option for Data Integrity

File systems are typically asynchronous in that structural changes to the file system are
not immediately written to disk, which provides better performance. However, recent
changes made to a system can be lost if a system failure occurs. Specifically, attribute
changes to files and recently created files may disappear.

The mount -o log intent logging option guarantees that all structural changes to the file
system are logged to disk before the system call returns to the application. With this
option, the rename(2) system call flushes the source file to disk to guarantee the
persistence of the file data before renaming it. The rename() call is also guaranteed to be
persistent when the system call returns. The changes to file system data and metadata
caused by the fsync(2) and fdatasync(2) system calls are guaranteed to be persistent
once the calls return.

Enhanced Performance Mode
VxFS has several mount options that improve performance, such as delaylog.

Using the delaylog Option for Enhanced Performance

The default VxFS logging mode, mount -o delaylog, increases performance by delaying
the logging of some structural changes, but does not provide the equivalent data integrity
as the previously described modes. That is because recent changes may be lost during a
system failure. This option provides at least the same level of data accuracy that
traditional UNIX file systems provide for system failures, along with fast file system
recovery. delaylog is the default mount option.
12 VERITAS File System Administrator’s Guide

Extended mount Options
Modes of Temporary File System
On most UNIX systems, temporary file system directories (such as /tmp and /usr/tmp)
often hold files that do not need to be retained when the system reboots. The underlying
file system does not need to maintain a high degree of structural integrity for these
temporary directories.

Using the tmplog option For Temporary File Systems

VxFS provides a mount -o tmplog option, which allows the user to achieve higher
performance on temporary file systems by delaying the logging of most operations.

Improved Synchronous Writes
VxFS provides superior performance for synchronous write applications. The default
mount -o datainlog option greatly improves the performance of small synchronous
writes.

The mount -o convosync=dsync option improves the performance of applications
that require synchronous data writes but not synchronous inode time updates.

Caution The use of the -o convosync=dsync option violates POSIX semantics.

Support for Large Files
VxFS can support files larger than two terabytes. See “largefiles | nolargefiles” on page 26
for information on how to create, mount, and manage file systems containing large files.

Caution Some applications and utilities may not work on large files.
Chapter 1, The VERITAS File System 13

Enhanced I/O Performance
Enhanced I/O Performance
VxFS provides enhanced I/O performance by applying an aggressive I/O clustering
policy, integrating with VxVM, and allowing application specific parameters to be set on a
per-file system basis.

Enhanced I/O Clustering
I/O clustering is a technique of grouping multiple I/O operations together for improved
performance. VxFS I/O policies provide more aggressive clustering processes than other
file systems and offer higher I/O throughput when using large files. The resulting
performance is comparable to that provided by raw disk.

VxVM Integration
VxFS interfaces with VxVM to determine the I/O characteristics of the underlying volume
and perform I/O accordingly. VxFS also uses this information when using mkfs to
perform proper allocation unit alignments for efficient I/O operations from the kernel.

As part of VxFS/VxVM integration, VxVM exports a set of I/O parameters to achieve
better I/O performance. This interface can enhance performance for different volume
configurations such as RAID-5, striped, and mirrored volumes. Full stripe writes are
important in a RAID-5 volume for strong I/O performance. VxFS uses these parameters to
issue appropriate I/O requests to VxVM.

Application-Specific Parameters
You can also set application specific parameters on a per-file system basis to improve I/O
performance.

◆ Discovered Direct I/O

All sizes above this value would be performed as direct I/O.

◆ Maximum Direct I/O Size

This value defines the maximum size of a single direct I/O.

For a discussion on VxVM integration and performance benefits, refer to “VxFS
Performance: Creating, Mounting, and Tuning File Systems” on page 17, “Application
Interface” on page 47, and the vxtunefs(1M) and tunefstab(1M) manual pages.
14 VERITAS File System Administrator’s Guide

Access Control Lists
Access Control Lists
An Access Control List (ACL) stores a series of entries that identify specific users or
groups and their access privileges for a directory or file. A file may have its own ACL or
may share an ACL with other files. ACLs have the advantage of specifying detailed access
permissions for multiple users and groups. Refer to the getfacl(1) and setfacl(1)
manual pages for information on viewing and setting ACLs.

Online Backup
VxFS provides online data backup using the snapshot feature. An image of a mounted file
system instantly becomes an exact read-only copy of the file system at a specific point in
time. The original file system is called the snapped file system, the copy is called the
snapshot.

When changes are made to the snapped file system, the old data is copied to the snapshot.
When the snapshot is read, data that has not changed is read from the snapped file
system, changed data is read from the snapshot.

Backups require one of the following methods:

◆ Copying selected files from the snapshot file system (using find and cpio)

◆ Backing up the entire file system (using fscat)

◆ Initiating a full or incremental backup (using vxdump)

 See “Online Backup Using File System Snapshots” on page 57 for information on doing
backups using the snapshot feature.

Quotas
VxFS supports quotas, which allocate per-user and per-group quotas and limit the use of
two principal resources: files and data blocks. You can assign quotas for each of these
resources. Each quota consists of two limits for each resource:

hard limitsoft limitThe hard limit represents an absolute limit on data blocks or files. A user
can never exceed the hard limit under any circumstances.

The soft limit is lower than the hard limit and can be exceeded for a limited amount of
time. This allows users to exceed limits temporarily as long as they fall under those limits
before the allotted time expires.

See “Quota Limits” on page 66 for details on using VxFS quotas.
Chapter 1, The VERITAS File System 15

Cross-Platform Data Sharing
Cross-Platform Data Sharing
Cross-platform data sharing allows data to be serially shared among heterogeneous
systems where each system has direct access to the physical devices that hold the data.
This feature can be used only in conjunction with VERITAS Volume Manager. See the
VERITAS Storage Foundation Cross-Platform Data Sharing Administrator’s Guide for more
information.

File Change Log
The VxFS File Change Log (FCL) tracks changes to files and directories in a file system.
The File Change Log can be used by applications such as backup products, webcrawlers,
search and indexing engines, and replication software that typically scan an entire file
system searching for modifications since a previous scan. FCL functionality is a separately
licensable feature. See “File Change Log” on page 71 for more information.

Multi-Volume Support
The multi-volume support (MVS) feature allows several volumes to be represented by a
single logical object. All I/O to and from an underlying logical volume is directed by way
of volume sets. This feature can be used only in conjunction with VERITAS Volume
Manager. MVS functionality is a separately licensable feature. See “Multi-Volume File
Systems” on page 77 for more information.
16 VERITAS File System Administrator’s Guide

VxFS Performance: Creating, Mounting, and
Tuning File Systems
 2
For any file system, the ability to provide peak performance is important. Adjusting the
available VERITAS File System (VxFS) options provides a way to increase system
performance. This chapter describes the commands and practices you can use to optimize
VxFS. For information on optimizing an application for use with VxFS, see “Application
Interface” on page 47.

The following topics are covered in this chapter:

◆ Choosing mkfs Command Options

◆ Block Size

◆ Intent Log Size

◆ Choosing mount Command Options

◆ log

◆ delaylog

◆ tmplog

◆ logiosize

◆ nodatainlog

◆ blkclear

◆ mincache

◆ convosync

◆ ioerror

◆ largefiles | nolargefiles

◆ Combining mount Command Options

◆ Kernel Tunables

◆ Internal Inode Table Size

◆ vx_maxlink

◆ VxVM Maximum I/O Size
17

◆ Monitoring Free Space

◆ Monitoring Fragmentation

◆ I/O Tuning

◆ Tuning VxFS I/O Parameters

◆ Tunable VxFS I/O Parameters
18 VERITAS File System Administrator’s Guide

Choosing mkfs Command Options
Choosing mkfs Command Options
There are several characteristics that you can select when you create a file system. The
most important options pertaining to system performance are the block size and intent log
size.

Block Size
The unit of allocation in VxFS is a block. Unlike some other UNIX file systems, VxFS does
not make use of block fragments for allocation because storage is allocated in extents that
consist of one or more blocks.

You specify the block size when creating a file system by using the mkfs –o bsize
option. The block size cannot be altered after the file system is created. The smallest
available block size for VxFS is 1K, which is also the default block size.

Choose a block size based on the type of application being run. For example, if there are
many small files, a 1K block size may save space. For large file systems, with relatively
few files, a larger block size is more appropriate. Larger block sizes use less disk space in
file system overhead, but consume more space for files that are not a multiple of the block
size. The easiest way to judge which block sizes provide the greatest system efficiency is to
try representative system loads against various sizes and pick the fastest. For most
applications, it is best to use the default values.

For 64-bit kernels, which support 32 terabyte file systems, the block size determines the
maximum size of the file system you can create. File systems up to 4 TB require a 1K block
size. For 4 to 8 TB file systems, the block size is 2K, For file systems between 8 and 16 TB,
block size is 4K, and for greater than 16 TB, the block size is 8K. If you specify the file
system size when creating a file system, the block size defaults to these values (see “VxFS
Version 6 Disk Layout” on page 153 for more information).

Intent Log Size
You specify the intent log size when creating a file system by using the mkfs –o logsize
option. With the Version 6 disk layout, you can dynamically increase or decrease the
intent log size using the log option of the fsadm command. The mkfs utility uses a
default intent log size of 16 megabytes for disk layout Versions 4 and 5, and 64 megabytes
for disk layout Version 6. The default size is sufficient for most workloads. If the system is
used as an NFS server or for intensive synchronous write workloads, performance may be
improved using a larger log size.

With larger intent log sizes, recovery time is proportionately longer and the file system
may consume more system resources (such as memory) during normal operation.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 19

Choosing mount Command Options
There are several system performance benchmark suites for which VxFS performs better
with larger log sizes. As with block sizes, the best way to pick the log size is to try
representative system loads against various sizes and pick the fastest.

Choosing mount Command Options
In addition to the standard mount mode (delaylog mode), VxFS provides blkclear,
log, tmplog, and nodatainlog modes of operation. Caching behavior can be altered
with the mincache option, and the behavior of O_SYNC and D_SYNC (see the fcntl(2)
manual page) writes can be altered with the convosync option.

The delaylog and tmplog modes can significantly improve performance. The
improvement over log mode is typically about 15 to 20 percent with delaylog; with
tmplog, the improvement is even higher. Performance improvement varies, depending
on the operations being performed and the workload. Read/write intensive loads should
show less improvement, while file system structure intensive loads (such as mkdir,
create, and rename) may show over 100 percent improvement. The best way to select a
mode is to test representative system loads against the logging modes and compare the
performance results.

Most of the modes can be used in combination. For example, a desktop machine might use
both the blkclear and mincache=closesync modes.

Additional information on mount options can be found in the mount_vxfs(1M) manual
page.

In the following descriptions, the term “effects of system calls” refers to changes to file
system data and metadata caused by the system call, excluding changes to st_atime (see
the stat(2) manual page).

log
In log mode, all system calls other than write(2), writev(2), and pwrite(2) are
guaranteed to be persistent once the system call returns to the application.

The rename(2) system call flushes the source file to disk to guarantee the persistence of
the file data before renaming it. The rename is also guaranteed to be persistent when the
system call returns. This benefits shell scripts and programs that try to update a file
atomically by writing the new file contents to a temporary file and then renaming it on
top of the target file.
20 VERITAS File System Administrator’s Guide

Choosing mount Command Options
delaylog
The default logging mode is delaylog. In delaylog mode, the effects of most system calls
other than write(2), writev(2), and pwrite(2) are guaranteed to be persistent
approximately 3 seconds after the system call returns to the application. Contrast this
with the behavior of most other file systems in which most system calls are not persistent
until approximately 30 seconds or more after the call has returned. Fast file system
recovery works with this mode.

The rename(2) system call flushes the source file to disk to guarantee the persistence of
the file data before renaming it. The rename is also guaranteed to be persistent when the
system call returns. This benefits shell scripts and programs that try to update a file
atomically by writing the new file contents to a temporary file and then renaming it on
top of the target file.

tmplog
In tmplog mode, the effects of system calls have persistence guarantees that are similar to
those in delaylog mode. In addition, enhanced flushing of delayed extending writes is
disabled, which results in better performance but increases the chances of data being lost
or uninitialized data appearing in a file that was being actively written at the time of a
system failure. This mode is only recommended for temporary file systems. Fast file
system recovery works with this mode.

Note In all logging modes, VxFS is fully POSIX compliant. The effects of the fsync(2)
and fdatasync(2) system calls are guaranteed to be persistent once the calls
return. The persistence guarantees for data or metadata modified by write(2),
writev(2), or pwrite(2) are not affected by the logging mount options. The effects
of these system calls are guaranteed to be persistent only if the O_SYNC, O_DSYNC,
VX_DSYNC, or VX_DIRECT flag, as modified by the convosync= mount option,
has been specified for the file descriptor.

The behavior of NFS servers on a VxFS file system is unaffected by the log and
tmplog mount options, but not delaylog. In all cases except with delaylog, VxFS
complies with the persistency requirements of the NFS v2 and NFS v3 standard.

Unless a UNIX application has been developed specifically for the VxFS file system
in log mode, it will expect the persistence guarantees offered by most other file
systems and will experience improved robustness when used with a VxFS file
system mounted in delaylog mode. Applications that expect better persistence
guarantees than that offered by most other file systems can benefit from the log,
mincache=, and closesync mount options. However, most commercially
available applications will work well with the default VxFS mount options,
including the delaylog mode.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 21

Choosing mount Command Options
logiosize
The logiosize=size option is provided to enhance the performance of storage devices
that employ a read-modify-write feature. If you specify logiosize when you mount a file
system, VxFS writes the intent log in at least size bytes to obtain the maximum
performance from such devices. The values for size can be 512, 1024, 2048, 4096, or 8192.

nodatainlog
Use the nodatainlog mode on systems with disks that do not support bad block
revectoring. Usually, a VxFS file system uses the intent log for synchronous writes. The
inode update and the data are both logged in the transaction, so a synchronous write only
requires one disk write instead of two. When the synchronous write returns to the
application, the file system has told the application that the data is already written. If a
disk error causes the metadata update to fail, then the file must be marked bad and the
entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is unlikely, so
logging synchronous writes should be allowed. If the disk does not support bad block
revectoring, then a failure is more likely, so the nodatainlog mode should be used.

A nodatainlog mode file system is approximately 50 percent slower than a standard
mode VxFS file system for synchronous writes. Other operations are not affected.

blkclear
The blkclear mode is used in increased data security environments. The blkclear
mode guarantees that uninitialized storage never appears in files. The increased integrity
is provided by clearing extents on disk when they are allocated within a file. Extending
writes are not affected by this mode. A blkclear mode file system is approximately 10
percent slower than a standard mode VxFS file system, depending on the workload.
22 VERITAS File System Administrator’s Guide

Choosing mount Command Options
mincache
The mincache mode has five suboptions:

◆ mincache=closesync

◆ mincache=direct

◆ mincache=dsync

◆ mincache=unbuffered

◆ mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users are
likely to shut off the power on the machine without halting it first. In this mode, any
changes to the file are flushed to disk when the file is closed.

To improve performance, most file systems do not synchronously update data and inode
changes to disk. If the system crashes, files that have been updated within the past minute
are in danger of losing data. With the mincache=closesync mode, if the system crashes
or is switched off, only files that are currently open can lose data. A
mincache=closesync mode file system should be approximately 15 percent slower
than a standard mode VxFS file system, depending on the workload.

The mincache=direct, mincache=unbuffered, and mincache=dsync modes are
used in environments where applications are experiencing reliability problems caused by
the kernel buffering of I/O and delayed flushing of non-synchronous I/O. The
mincache=direct and mincache=unbuffered modes guarantee that all
non-synchronous I/O requests to files will be handled as if the VX_DIRECT or
VX_UNBUFFERED caching advisories had been specified. The mincache=dsync mode
guarantees that all non-synchronous I/O requests to files will be handled as if the
VX_DSYNC caching advisory had been specified. Refer to the vxfsio(7) manual page for
explanations of VX_DIRECT, VX_UNBUFFERED, and VX_DSYNC, as well as for the
requirements for direct I/O. The mincache=direct, mincache=unbuffered, and
mincache=dsync modes also flush file data on close as mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync
modes change non-synchronous I/O to synchronous I/O, there can be a substantial
degradation in throughput for small to medium size files for most applications. Since the
VX_DIRECT and VX_UNBUFFERED advisories do not allow any caching of data,
applications that would normally benefit from caching for reads will usually experience
less degradation with the mincache=dsync mode. mincache=direct and
mincache=unbuffered require significantly less CPU time than buffered I/O.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 23

Choosing mount Command Options
If performance is more important than data integrity, you can use the
mincache=tmpcache mode. The mincache=tmpcache mode disables special delayed
extending write handling, trading off less integrity for better performance. Unlike the
other mincache modes, tmpcache does not flush the file to disk when it is closed. When
the mincache=tmpcache option is used, bad data can appear in a file that was being
extended when a crash occurred.

convosync

Note Use of the convosync=dsync option violates POSIX guarantees for synchronous
I/O.

The convosync (convert osync) mode has five suboptions:

◆ convosync=closesync

◆ convosync=delay

◆ convosync=direct

◆ convosync=dsync

◆ convosync=unbuffered

The convosync=closesync mode converts synchronous and data synchronous writes
to non-synchronous writes and flushes the changes to the file to disk when the file is
closed.

The convosync=delay mode causes synchronous and data synchronous writes to be
delayed rather than to take effect immediately. No special action is performed when
closing a file. This option effectively cancels any data integrity guarantees normally
provided by opening a file with O_SYNC. See the open(2), fcntl(2), and vxfsio(7)
manual pages for more information on O_SYNC.

Caution Be very careful when using the convosync=closesync or
convosync=delay mode because they actually change synchronous I/O into
non-synchronous I/O. This may cause applications that use synchronous I/O
for data reliability to fail if the system crashes and synchronously written data is
lost.

The convosync=direct and convosync=unbuffered mode convert synchronous
and data synchronous reads and writes to direct reads and writes.

The convosync=dsync mode converts synchronous writes to data synchronous writes.
24 VERITAS File System Administrator’s Guide

Choosing mount Command Options
As with closesync, the direct, unbuffered, and dsync modes flush changes to the
file to disk when it is closed. These modes can be used to speed up applications that use
synchronous I/O. Many applications that are concerned with data integrity specify the
O_SYNC fcntl in order to write the file data synchronously. However, this has the
undesirable side effect of updating inode times and therefore slowing down performance.
The convosync=dsync, convosync=unbuffered, and convosync=direct modes
alleviate this problem by allowing applications to take advantage of synchronous writes
without modifying inode times as well.

Caution Before using convosync=dsync, convosync=unbuffered, or
convosync=direct, make sure that all applications that use the file system do
not require synchronous inode time updates for O_SYNC writes.

ioerror
Sets the policy for handling I/O errors on a mounted file system. I/O errors can occur
while reading or writing file data, or while reading or writing metadata. The file system
can respond to these I/O errors either by halting or by gradually degrading. The ioerror
option provides four policies that determine how the file system responds to the various
errors. All four policies limit data corruption, either by stopping the file system or by
marking a corrupted inode as bad. The four policies are disable, nodisable,
wdisable, and mwdisable.

If disable is selected, VxFS disables the file system after detecting any I/O error. You
must then unmount the file system and correct the condition causing the I/O error. After
the problem is repaired, run fsck and mount the file system again. In most cases,
replaying fsck is sufficient to repair the file system. A full fsck is required only in cases
of structural damage to the file system’s metadata. Select disable in environments
where the underlying storage is redundant, such as RAID-5 or mirrored disks.

If nodisable is selected, when VxFS detects an I/O error, it sets the appropriate error
flags to contain the error, but continues running. Note that the “degraded” condition
indicates possible data or metadata corruption, not the overall performance of the file
system.

For file data read and write errors, VxFS sets the VX_DATAIOERR flag in the super-block.
For metadata read errors, VxFS sets the VX_FULLFSCK flag in the super-block. For
metadata write errors, VxFS sets the VX_FULLFSCK and VX_METAIOERR flags in the
super-block and may mark associated metadata as bad on disk. VxFS then prints the
appropriate error messages to the console (see “Kernel Messages” on page 107 for
information on actions to take for specific errors).
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 25

Choosing mount Command Options
You should stop the file system as soon as possible and repair the condition causing the
I/O error. After the problem is repaired, run fsck and mount the file system again. Select
nodisable if you want to implement the policy that most closely resembles the error
handling policy of the previous VxFS release.

If wdisable (write disable) or mwdisable (metadata-write disable) is selected, the file
system is disabled or degraded, depending on the type of error encountered. Select
wdisable or mwdisable for environments where read errors are more likely to persist
than write errors, such as when using non-redundant storage. mwdisable is the default
ioerror mount option for local mounts. See the mount_vxfs(1M) manual page for more
information.

largefiles | nolargefiles
VxFS supports files larger than two gigabytes. Files larger than 32 terabytes can be created
only on 64-bit kernel operating systems and on a VERITAS Volume Manager volume.

Note Applications and utilities such as backup may experience problems if they are not
aware of large files. In such a case, create your file system without large file
capability.

Creating a File System with Large Files

You can create a file system with large file capability by entering the following command:

mkfs -F vxfs -o largefiles special_device size

Specifying largefiles sets the largefiles flag, which allows the file system to hold
files that are two gigabytes or larger in size. The default option is largefiles.
Conversely, the nolargefiles option clears the flag and prevents large files from being
created:

mkfs -F vxfs -o nolargefiles special_device size

Note The largefiles flag is persistent and stored on disk.

Mounting a File System with Large Files

If a mount succeeds and nolargefiles is specified, the file system cannot contain or
create any large files. If a mount succeeds and largefiles is specified, the file system
may contain and create large files.
26 VERITAS File System Administrator’s Guide

Choosing mount Command Options
The mount command fails if the specified largefiles|nolargefiles option does not
match the on-disk flag.

The mount command defaults to match the current setting of the on-disk flag if specified
without the largefiles or nolargefiles option, so it’s best not to specify either
option. After a file system is mounted, you can use the fsadm utility to change the large
files option.

Managing a File System with Large Files

You can determine the current status of the largefiles flag using the fsadm fsadm or
mkfs command:

mkfs -F vxfs -m special_device
fsadm -F vxfs mount_point | special_device

You can switch capabilities on a mounted file system using the fsadm command:

fsadm -F vxfs -o [no]largefiles mount_point

You can also switch capabilities on an unmounted file system:

fsadm -F vxfs -o [no]largefiles special_device

You cannot change a file system to nolargefiles if it holds large files.

See the mount_vxfs(1M), fsadm_vxfs(1M), and mkfs_vxfs(1M) manual pages.

Combining mount Command Options
Although mount options can be combined arbitrarily, some combinations do not make
sense. The following examples provide some common and reasonable mount option
combinations.

Example 1 - Desktop File System

mount -F vxfs -o log,mincache=closesync /dev/dsk/c1t3d0s1 /mnt

This guarantees that when a file is closed, its data is synchronized to disk and cannot be
lost. Thus, once an application is exited and its files are closed, no data will be lost even if
the system is immediately turned off.

Example 2 - Temporary File System or Restoring from Backup

mount -F vxfs -o tmplog,convosync=delay,mincache=tmpcache \
/dev/dsk/c1t3d0s1 /mnt
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 27

Kernel Tunables
This combination might be used for a temporary file system where performance is more
important than absolute data integrity. Any O_SYNC writes are performed as delayed
writes and delayed extending writes are not handled specially (which could result in a file
that contains garbage if the system crashes at the wrong time). Any file written 30 seconds
or so before a crash may contain garbage or be missing if this mount combination is in
effect. However, such a file system will do significantly less disk writes than a log file
system, and should have significantly better performance, depending on the application.

Example 3 - Data Synchronous Writes

mount -F vxfs -o log,convosync=dsync /dev/dsk/c1t3d0s1 /mnt

This combination would be used to improve the performance of applications that perform
O_SYNC writes, but only require data synchronous write semantics. Their performance
can be significantly improved if the file system is mounted using convosync=dsync
without any loss of data integrity.

Kernel Tunables
This section describes the kernel tunable parameters in VxFS.

Internal Inode Table Size

VxFS caches inodes in an inode table. The tunable for VxFS to determine the number of
entries in its inode table is vxfs_ninode.

VxFS uses the value of vxfs_ninode in /etc/system as the number of entries in the
VxFS inode table. By default, the file system uses a value of vxfs_ninode, which is
computed based on system memory size. To increase the value, make the following
change in /etc/system and reboot:

set vxfs:vxfs_ninode = new_value

It may be necessary to tune the dnlc (directory name lookup cache) size to keep the value
within an acceptable range relative to vxfs_ninode. It must be within 80% of
vxfs_ninode to avoid spurious ENFILE errors or excessive CPU consumption, but must
be more than 50% of vxfs_ninode to maintain good performance. The variable ncsize
determines the size of dnlc. The default value of ncsize is based on the kernel variable
maxusers. It is computed at system boot time. This value can be changed by making an
entry in the /etc/system file:

set ncsize = new_value

The new ncsize is effective after you reboot the system.
28 VERITAS File System Administrator’s Guide

Kernel Tunables
 vx_maxlink
The VxFS vx_maxlink tunable determines the number of sub-directories that can be
created under a directory.

A VxFS file system obtains the value of vx_maxlink from the system configuration file
/etc/system. By default, vx_maxlink is 32K. To change the computed value of
vx_maxlink, you can add an entry to the system configuration file. For example:

set vxfs:vx_maxlink = 65534

sets vx_maxlink to the maximum number of sub-directories. Valid values are 1 to 65534
(FFFE hexadecimal). Changes to vx_maxlink take effect after rebooting.

VxVM Maximum I/O Size
When using VxFS with the VERITAS Volume Manager (VxVM), VxVM by default breaks
up I/O requests larger than 256K. When using striping, to optimize performance, the file
system issues I/O requests that are up to a full stripe in size. If the stripe size is larger than
256K, those requests are broken up.

To avoid undesirable I/O breakup, you can increase the maximum I/O size by changing
the value of the vol_maxio parameter in the /etc/system file.

vol_maxio

The vol_maxio parameter controls the maximum size of logical I/O operations that can
be performed without breaking up a request. Logical I/O requests larger than this value
are broken up and performed synchronously. Physical I/Os are broken up based on the
capabilities of the disk device and are unaffected by changes to the vol_maxio logical
request limit.

Raising the vol_maxio limit can cause problems if the size of an I/O requires more
memory or kernel mapping space than exists. The recommended maximum for
vol_maxio is 20% of the smaller of physical memory or kernel virtual memory. It is not
advisable to go over this limit. Within this limit, you can generally obtain the best results
by setting vol_maxio to the size of your largest stripe. This applies to both RAID-0
striping and RAID-5 striping.

To increase the value of vol_maxio, add an entry to /etc/system (after the entry
forceload:drv/vxio) and reboot for the change to take effect. For example, the
following line sets the maximum I/O size to 16 MB:

set vxio:vol_maxio=32768
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 29

Monitoring Free Space
This parameter is in 512-byte sectors and is stored as a 16-bit number, so it cannot be
larger than 65535.

See the VERITAS Volume Manager Administrator’s Guide for more information on avoiding
I/O breakup by setting the maximum I/O tunable parameter.

Monitoring Free Space
In general, VxFS works best if the percentage of free space in the file system does not get
below 10 percent. This is because file systems with 10 percent or more free space have less
fragmentation and better extent allocation. Regular use of the df command (see the
df_vxfs(1M) manual page) to monitor free space is desirable. Full file systems may have
an adverse effect on file system performance. Full file systems should therefore have some
files removed, or should be expanded (see the fsadm_vxfs(1M) manual page for a
description of online file system expansion).

Monitoring Fragmentation
Fragmentation reduces performance and availability. Regular use of fsadm’s
fragmentation reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to schedule
regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file systems)
to monthly (for infrequently used file systems). Extent fragmentation should be
monitored with fsadm or the df -o s commands. There are three factors which can be
used to determine the degree of fragmentation:

◆ Percentage of free space in extents of less than 8 blocks in length

◆ Percentage of free space in extents of less than 64 blocks in length

◆ Percentage of free space in extents of length 64 blocks or greater

An unfragmented file system will have the following characteristics:

◆ Less than 1 percent of free space in extents of less than 8 blocks in length

◆ Less than 5 percent of free space in extents of less than 64 blocks in length

◆ More than 5 percent of the total file system size available as free extents in lengths of
64 or more blocks
30 VERITAS File System Administrator’s Guide

I/O Tuning
A badly fragmented file system will have one or more of the following characteristics:

◆ Greater than 5 percent of free space in extents of less than 8 blocks in length

◆ More than 50 percent of free space in extents of less than 64 blocks in length

◆ Less than 5 percent of the total file system size available as free extents in lengths of 64
or more blocks

The optimal period for scheduling of extent reorganization runs can be determined by
choosing a reasonable interval, scheduling fsadm runs at the initial interval, and running
the extent fragmentation report feature of fsadm before and after the reorganization.

The “before” result is the degree of fragmentation prior to the reorganization. If the degree
of fragmentation is approaching the figures for bad fragmentation, reduce the interval
between fsadm runs. If the degree of fragmentation is low, increase the interval between
fsadm runs.

The “after” result is an indication of how well the reorganizer has performed. The degree
of fragmentation should be close to the characteristics of an unfragmented file system. If
not, it may be a good idea to resize the file system; full file systems tend to fragment and
are difficult to defragment. It is also possible that the reorganization is not being
performed at a time during which the file system in question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but regular
directory reorganization will improve performance. It is advisable to schedule directory
reorganization for file systems when the extent reorganization is scheduled. The following
is a sample script that is run periodically at 3:00 A.M. from cron for a number of file
systems:

outfile=/usr/spool/fsadm/out.‘/bin/date +’%m%d’‘
for i in /home /home2 /project /db
do
/bin/echo "Reorganizing $i"
/bin/timex fsadm -F vxfs -e -E -s $i
/bin/timex fsadm -F vxfs -s -d -D $i

done > $outfile 2>&1

I/O Tuning

Note The tunables and the techniques described in this section work on a per file system
basis. Use them judiciously based on the underlying device properties and
characteristics of the applications that use the file system.

Performance of a file system can be enhanced by a suitable choice of I/O sizes and proper
alignment of the I/O requests based on the requirements of the underlying special device.
VxFS provides tools to tune the file systems.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 31

I/O Tuning
Tuning VxFS I/O Parameters
VxFS provides a set of tunable I/O parameters that control some of its behavior. These
I/O parameters are useful to help the file system adjust to striped or RAID-5 volumes that
could yield performance superior to a single disk. Typically, data streaming applications
that access large files see the largest benefit from tuning the file system.

The file system queries VxVM to determine the geometry of the underlying volume and
automatically sets the I/O parameters. VxVM is queried by mkfs when the file system is
created to align automatically the file system to the volume geometry. If the default
alignment from mkfs is not acceptable, the -o align=n option can be used to override
alignment information obtained from VxVM. The mount command also queries VxVM
when the file system is mounted and downloads the I/O parameters.

If the default parameters are not acceptable or the file system is being used without
VxVM, then the /etc/vx/tunefstab file can be used to set values for I/O parameters.
The mount command reads the /etc/vx/tunefstab file and downloads any
parameters specified for a file system. The tunefstab file overrides any values obtained
from VxVM. While the file system is mounted, any I/O parameters can be changed using
the vxtunefs command which can have tunables specified on the command line or can
read them from the /etc/vx/tunefstab file. For more details, see the vxtunefs(1M)
and tunefstab(4) manual pages. The vxtunefs command can be used to print the
current values of the I/O parameters:

vxtunefs -p mount_point

The following is an example tunefstab file:

/dev/vx/dsk/userdg/netbackup
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/metasave
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solbuild
read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solrelease
read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solpatch
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
32 VERITAS File System Administrator’s Guide

I/O Tuning
Tunable VxFS I/O Parameters

read_pref_io The preferred read request size. The file system uses this in
conjunction with the read_nstream value to determine how
much data to read ahead. The default value is 64K.

write_pref_io The preferred write request size. The file system uses this in
conjunction with the write_nstream value to determine how
to do flush behind on writes. The default value is 64K.

read_nstream The number of parallel read requests of size read_pref_io to
have outstanding at one time. The file system uses the product
of read_nstream multiplied by read_pref_io to determine
its read ahead size. The default value for read_nstream is 1.

write_nstream The number of parallel write requests of size write_pref_io
to have outstanding at one time. The file system uses the
product of write_nstream multiplied by write_pref_io to
determine when to do flush behind on writes. The default value
for write_nstream is 1.

discovered_direct
_iosz

Any file I/O requests larger than the
discovered_direct_iosz are handled as discovered direct
I/O. A discovered direct I/O is unbuffered similar to direct I/O,
but it does not require a synchronous commit of the inode when
the file is extended or blocks are allocated. For larger I/O
requests, the CPU time for copying the data into the page cache
and the cost of using memory to buffer the I/O data becomes
more expensive than the cost of doing the disk I/O. For these
I/O requests, using discovered direct I/O is more efficient than
regular I/O. The default value of this parameter is 256K.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 33

I/O Tuning
fcl_keeptime Specifies the minimum amount of time, in seconds, that the
VxFS file change log (FCL) keeps records in the log. When the
oldest 8K block of FCL records have been kept longer than the
value of fcl_keeptime, they are purged from the FCL and the
extents nearest to the beginning of the FCL file are freed. This
process is referred to as “punching a hole.” Holes are punched in
the FCL file in 8K chunks.

If the fcl_maxalloc parameter is set, records are purged from
the FCL if the amount of space allocated to the FCL exceeds
fcl_maxalloc, even if the elapsed time the records have been
in the log is less than the value of fcl_keeptime. If the file
system runs out of space before fcl_keeptime is reached, the
FCL is deactivated.

Either or both of the fcl_keeptime or fcl_maxalloc
parameters must be set before the file change log can be
activated. fcl_keeptime does not apply to disk layout
Versions 1 through 5.

fcl_maxalloc Specifies the maximum amount of space that can be allocated to
the VxFS file change log (FCL). The FCL file is a sparse file that
grows as changes occur in the file system. When the space
allocated to the FCL file reaches the fcl_maxalloc value, the
oldest FCL records are purged from the FCL and the extents
nearest to the beginning of the FCL file are freed. This process is
referred to as “punching a hole.” Holes are punched in the FCL
file in 8K chunks. If the file system runs out of space before
fcl_maxalloc is reached, the FCL is deactivated.

Either or both of the fcl_maxalloc or fcl_keeptime
parameters must be set before the file change log can be
activated. fcl_maxalloc does not apply to disk lay out
Versions 1 through 5.
34 VERITAS File System Administrator’s Guide

I/O Tuning
fcl_winterval Specifies the time, in seconds, that must elapse before the VxFS
file change log (FCL) records a data overwrite, data extending
write, or data truncate for a file. The ability to limit the number
of repetitive FCL records for continuous writes to the same file is
important for file system performance and for applications
processing the FCL. fcl_winterval is best set to an interval
less than the shortest interval between reads of the FCL by any
application. This way all applications using the FCL can be
assured of finding at least one FCL record for any file
experiencing continuous data changes.

fcl_winterval is enforced for all files in the file system.
Each file maintains its own time stamps, and the elapsed time
between FCL records is per file. This elapsed time can be
overridden using the VxFS FCL sync public API (see the
vxfs_fcl_sync(3) manual page). fcl_winterval does not
apply to disk layout Versions 1 through 5.

hsm_write_
prealloc

For a file managed by a hierarchical storage management (HSM)
application, hsm_write_prealloc preallocates disk blocks
before data is migrated back into the file system. An HSM
application usually migrates the data back through a series of
writes to the file, each of which allocates a few blocks. By setting
hsm_write_prealloc (hsm_write_prealloc=1), a
sufficient number of disk blocks are allocated on the first write
to the empty file so that no disk block allocation is required for
subsequent writes. This improves the write performance during
migration.

The hsm_write_prealloc parameter is implemented outside
of the DMAPI specification, and its usage has limitations
depending on how the space within an HSM-controlled file is
managed. It is advisable to use hsm_write_prealloc only
when recommended by the HSM application controlling the file
system.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 35

I/O Tuning
initial_extent_
size

Changes the default initial extent size. VxFS determines, based
on the first write to a new file, the size of the first extent to be
allocated to the file. Normally the first extent is the smallest
power of 2 that is larger than the size of the first write. If that
power of 2 is less than 8K, the first extent allocated is 8K. After
the initial extent, the file system increases the size of subsequent
extents (see max_seqio_extent_size) with each allocation.
Since most applications write to files using a buffer size of 8K or
less, the increasing extents start doubling from a small initial
extent. initial_extent_size can change the default initial
extent size to be larger, so the doubling policy will start from a
much larger initial size and the file system will not allocate a set
of small extents at the start of file. Use this parameter only on file
systems that will have a very large average file size. On these file
systems it will result in fewer extents per file and less
fragmentation. initial_extent_size is measured in file
system blocks.

inode_aging_count Specifies the maximum number of inodes to place on an inode
aging list. Inode aging is used in conjunction with file system
Storage Checkpoints to allow quick restoration of large,
recently deleted files. The aging list is maintained in
first-in-first-out (fifo) order up to maximum number of inodes
specified by inode_aging_count. As newer inodes are placed
on the list, older inodes are removed to complete their aging
process. For best performance, it is advisable to age only a
limited number of larger files before completion of the removal
process. The default maximum number of inodes to age is 2048.

inode_aging_size Specifies the minimum size to qualify a deleted inode for inode
aging. Inode aging is used in conjunction with file system
Storage Checkpoints to allow quick restoration of large, recently
deleted files. For best performance, it is advisable to age only a
limited number of larger files before completion of the removal
process. Setting the size too low can push larger file inodes out
of the aging queue to make room for newly removed smaller file
inodes.

max_direct_iosz The maximum size of a direct I/O request that will be issued by
the file system. If a larger I/O request comes in, then it is broken
up into max_direct_iosz chunks. This parameter defines
how much memory an I/O request can lock at once, so it should
not be set to more than 20 percent of memory.
36 VERITAS File System Administrator’s Guide

I/O Tuning
max_diskq Limits the maximum disk queue generated by a single file.
When the file system is flushing data for a file and the number of
page being flushed exceeds max_diskq, processes will block
until the amount of data being flushed decreases. Although this
doesn't limit the actual disk queue, it prevents flushing
processes from making the system unresponsive. The default
value is 1 MB.

max_seqio_extent_
size

Increases or decreases the maximum size of an extent. When the
file system is following its default allocation policy for
sequential writes to a file, it allocates an initial extent which is
large enough for the first write to the file. When additional
extents are allocated, they are progressively larger (the
algorithm tries to double the size of the file with each new
extent) so each extent can hold several writes worth of data. This
is done to reduce the total number of extents in anticipation of
continued sequential writes. When the file stops being written,
any unused space is freed for other files to use. Normally this
allocation stops increasing the size of extents at 2048 blocks
which prevents one file from holding too much unused space.
max_seqio_extent_size is measured in file system blocks.

read_ahead The default for all VxFS read operations is to perform sequential
read ahead. You can specify the read_ahead cache advisory to
implement the VxFS enhanced read ahead functionality. This allows
read aheads to detect more elaborate patterns (such as
increasing or decreasing read offsets or multithreaded file
accesses) in addition to simple sequential reads. You can specify
the following values for read_ahead:

0—Disables read ahead functionality

1—Retains traditional sequential read ahead behavior

2—Enables enhanced read ahead for all reads

The default is 1—VxFS detects only sequential patterns.

read_ahead detects patterns on a per-thread basis, up to a
maximum determined by vx_era_nthreads parameter. The
default number of threads is 5, but you can change the default
value by setting the vx_era_nthreads parameter in the
/etc/system configuration file.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 37

I/O Tuning
write_throttle The write_throttle parameter is useful in special situations
where a computer system has a combination of a large amount
of memory and slow storage devices. In this configuration, sync
operations (such as fsync()) may take long enough to
complete that a system appears to hang. This behavior occurs
because the file system is creating dirty pages (in-memory
updates) faster than they can be asynchronously flushed to disk
without slowing system performance.

Lowering the value of write_throttle limits the number of
dirty pages per file that a file system will generate before
flushing the pages to disk. After the number of dirty pages for a
file reaches the write_throttle threshold, the file system
starts flushing pages to disk even if free memory is still
available.

The default value of write_throttle is zero, which puts no
limit on the number of dirty pages per file. If non-zero, VxFS
limits the number of dirty pages per file to write_throttle
pages.

The default value typically generates a large number of dirty
pages, but maintains fast user writes. Depending on the speed of
the storage device, if you lower write_throttle, user write
performance may suffer, but the number of dirty pages is
limited, so sync operations will complete much faster.

Because lowering write_throttle may in some cases delay
write requests (for example, lowering write_throttle may
increase the file disk queue to the max_diskq value, delaying
user writes until the disk queue decreases), it is advisable not to
change the value of write_throttle unless your system has a
combination of large physical memory and slow storage devices.
38 VERITAS File System Administrator’s Guide

I/O Tuning
If the file system is being used with VxVM, it is advisable to let the VxFS I/O parameters
get set to default values based on the volume geometry.

If the file system is being used with a hardware disk array or volume manager other than
VxVM, try to align the parameters to match the geometry of the logical disk. With striping
or RAID-5, it is common to set read_pref_io to the stripe unit size and read_nstream
to the number of columns in the stripe. For striped arrays, use the same values for
write_pref_io and write_nstream, but for RAID-5 arrays, set write_pref_io to
the full stripe size and write_nstream to 1.

For an application to do efficient disk I/O, it should issue read requests that are equal to
the product of read_nstream multiplied by read_pref_io. Generally, any multiple or
factor of read_nstream multiplied by read_pref_io should be a good size for
performance. For writing, the same rule of thumb applies to the write_pref_io and
write_nstream parameters. When tuning a file system, the best thing to do is try out the
tuning parameters under a real life workload.

If an application is doing sequential I/O to large files, it should try to issue requests larger
than the discovered_direct_iosz. This causes the I/O requests to be performed as
discovered direct I/O requests, which are unbuffered like direct I/O but do not require
synchronous inode updates when extending the file. If the file is larger than can fit in the
cache, using unbuffered I/O avoids removing useful data out of the cache and lessens
CPU overhead.
Chapter 2, VxFS Performance: Creating, Mounting, and Tuning File Systems 39

I/O Tuning
40 VERITAS File System Administrator’s Guide

Extent Attributes
 3

The VERITAS File System (VxFS) allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application interface that allows programs
to control various aspects of the extent allocation for a given file (see “Extent Information”
on page 51). The extent allocation policies associated with a file are referred to as extent
attributes.

The VxFS getext and setext commands let you view or manipulate file extent
attributes. In addition, the vxdump, vxrestore, mv, cp, and cpio commands preserve
extent attributes when a file is backed up, moved, copied, or archived.

The following topics are covered in this chapter:

◆ Attribute Specifics

◆ Reservation: Preallocating Space to a File

◆ Fixed Extent Size

◆ Other Controls

◆ Commands Related to Extent Attributes

◆ Failure to Preserve Extent Attributes
41

Attribute Specifics
Attribute Specifics
The two basic extent attributes associated with a file are its reservation and its fixed extent
size. You can preallocate space to the file by manipulating a file’s reservation, or override
the default allocation policy of the file system by setting a fixed extent size.

Other policies determine the way these attributes are expressed during the allocation
process. You can specify that:

◆ The space reserved for a file must be contiguous

◆ No allocations are made for a file beyond the current reservation

◆ An unused reservation is released when the file is closed

◆ Space is allocated, but no reservation is assigned

◆ The file size is changed to immediately incorporate the allocated space

Some of the extent attributes are persistent and become part of the on-disk information
about the file, while other attributes are temporary and are lost after the file is closed or
the system is rebooted. The persistent attributes are similar to the file’s permissions and
are written in the inode for the file. When a file is copied, moved, or archived, only the
persistent attributes of the source file are preserved in the new file (see “Other Controls”
on page 44 for more information).

In general, the user will only set extent attributes for reservation. Many of the attributes
are designed for applications that are tuned to a particular pattern of I/O or disk
alignment (see the mkfs_vxfs(1M) manual page and “Application Interface” on page 47
for more information).
42 VERITAS File System Administrator’s Guide

Attribute Specifics
Reservation: Preallocating Space to a File
VxFS makes it possible to preallocate space to a file at the time of the request rather than
when data is written into the file. This space cannot be allocated to other files in the file
system. VxFS prevents any unexpected out-of-space condition on the file system by
ensuring that a file’s required space will be associated with the file before it is required.

A persistent reservation is not released when a file is truncated. The reservation must be
cleared or the file must be removed to free the reserved space.

Fixed Extent Size
The VxFS default allocation policy uses a variety of methods to determine how to make an
allocation to a file when a write requires additional space. The policy attempts to balance
the two goals of optimum I/O performance through large allocations and minimal file
system fragmentation through allocation from space available in the file system that best
fits the data.

Setting a fixed extent size overrides the default allocation policies for a file and always
serves as a persistent attribute. Be careful to choose an extent size appropriate to the
application when using fixed extents. An advantage of VxFS’s extent-based allocation
policies is that they rarely use indirect blocks compared to block based file systems; VxFS
eliminates many instances of disk access that stem from indirect references. However, a
small extent size can eliminate this advantage.

Files with aggressive allocation sizes tend to be more contiguous and have better I/O
characteristics. However, the overall performance of the file system degrades because the
unused space fragments free space by breaking large extents into smaller pieces. By erring
on the side of minimizing fragmentation for the file system, files may become so
non-contiguous that their I/O characteristics would degrade.

Fixed extent sizes are particularly appropriate in the following situations:

◆ If a file is large and sparse and its write size is fixed, a fixed extent size that is a
multiple of the write size can minimize space wasted by blocks that do not contain
user data as a result of misalignment of write and extent sizes. (The default extent size
for a sparse file is 8K.)

◆ If a file is large and contiguous, a large fixed extent size can minimize the number of
extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as the need
to align extents to cylinder or striping boundaries on disk.
Chapter 3, Extent Attributes 43

Attribute Specifics
Other Controls
The auxiliary controls on extent attributes determine:

◆ Whether allocations are aligned

◆ Whether allocations are contiguous

◆ Whether the file can be written beyond its reservation

◆ Whether an unused reservation is released when the file is closed

◆ Whether the reservation is a persistent attribute of the file

◆ When the space reserved for a file will actually become part of the file

Alignment

Specific alignment restrictions coordinate a file’s allocations with a particular I/O pattern
or disk alignment (see the mkfs_vxfs(1M) manual page and “Application Interface” on
page 47 for details). Alignment can only be specified if a fixed extent size has also been set.
Setting alignment restrictions on allocations is best left to well designed applications.

Contiguity

A reservation request can specify that its allocation remain contiguous (all one extent).
Maximum contiguity of a file optimizes its I/O characteristics.

Note Fixed extent sizes or alignment cause a file system to return an error message
reporting insufficient space if no suitably sized (or aligned) extent is available. This
can happen even if the file system has sufficient free space and the fixed extent size
is large.

Write Operations Beyond Reservation

A reservation request can specify that no allocations can take place after a write operation
fills up the last available block in the reservation. This specification can be used in a
similar way to ulimit to prevent a file’s uncontrolled growth.

Reservation Trimming

A reservation request can specify that any unused reservation be released when the file is
closed. The file is not completely closed until all processes open against the file have
closed it.
44 VERITAS File System Administrator’s Guide

Commands Related to Extent Attributes
Reservation Persistence

A reservation request can ensure that the reservation does not become a persistent
attribute of the file. The unused reservation is discarded when the file is closed.

Including Reservation in the File

A reservation request can make sure the size of the file is adjusted to include the
reservation. Normally, the space of the reservation is not included in the file until an
extending write operation requires it. A reservation that immediately changes the file size
can generate large temporary files. Unlike a ftruncate operation that increases the size
of a file, this type of reservation does not perform zeroing of the blocks included in the file
and limits this facility to users with appropriate privileges. The data that appears in the
file may have been previously contained in another file.

Commands Related to Extent Attributes

The VxFS commands for manipulating extent attributes are setext and getext; they
allow the user to set up files with a given set of extent attributes or view any attributes
that are already associated with a file. See the setext(1) and getext(1) manual pages for
details on using these commands.

The VxFS-specific commands vxdump, vxrestore, mv_vxfs, cp_vxfs, and
cpio_vxfs preserve extent attributes when backing up, restoring, moving, or copying
files. Make sure to modify your PATH when using the VxFS versions of mv, cp, and cpio.

Most of these commands include a command line option (-e) for maintaining extent
attributes on files. This option specifies dealing with a VxFS file that has extent attribute
information including reserved space, a fixed extent size, and extent alignment. The
extent attribute information may be lost if the destination file system does not support
extent attributes, has a different block size than the source file system, or lacks free extents
appropriate to satisfy the extent attribute requirements.

The -e option takes any of the following keywords as an argument:

warn Issues a warning message if extent attribute information cannot be
maintained (the default)

force Fails the copy if extent attribute information cannot be maintained

ignore Ignores extent attribute information entirely
Chapter 3, Extent Attributes 45

Commands Related to Extent Attributes
Failure to Preserve Extent Attributes
Whenever a file is copied, moved, or archived using commands that preserve extent
attributes, there is nevertheless the possibility of losing the attributes. Such a failure might
occur for three reasons:

◆ The file system receiving a copied, moved, or restored file from an archive is not a
VxFS type. Since other file system types do not support the extent attributes of the
VxFS file system, the attributes of the source file are lost during the migration.

◆ The file system receiving a copied, moved, or restored file is a VxFS type but does not
have enough free space to satisfy the extent attributes. For example, consider a 50K
file and a reservation of 1 MB. If the target file system has 500K free, it could easily
hold the file but fail to satisfy the reservation.

◆ The file system receiving a copied, moved, or restored file from an archive is a VxFS
type but the different block sizes of the source and target file system make extent
attributes impossible to maintain. For example, consider a source file system of block
size 1024, a target file system of block size 4096, and a file that has a fixed extent size of
3 blocks (3072 bytes). This fixed extent size adapts to the source file system but cannot
translate onto the target file system.

The same source and target file systems in the preceding example with a file carrying
a fixed extent size of 4 could preserve the attribute; a 4 block (4096 byte) extent on the
source file system would translate into a 1 block extent on the target.

On a system with mixed block sizes, a copy, move, or restoration operation may or
may not succeed in preserving attributes. It is recommended that the same block size
be used for all file systems on a given system.
46 VERITAS File System Administrator’s Guide

Application Interface
 4

The VERITAS File System (VxFS) provides enhancements that can be used by applications
that require certain performance features. This chapter describes cache advisories and
provides information about fixed extent sizes and reservation of space for a file.

If you are writing applications, you can optimize them for use with the VxFS. To optimize
VxFS for use with applications, see “VxFS Performance: Creating, Mounting, and Tuning
File Systems” on page 17.

The following topics are covered in this chapter:

◆ Cache Advisories

◆ Direct I/O

◆ Unbuffered I/O

◆ Discovered Direct I/O

◆ Data Synchronous I/O

◆ Other Advisories

◆ Extent Information

◆ Space Reservation

◆ Fixed Extent Sizes

◆ Freeze and Thaw

◆ Get I/O Parameters ioctl

◆ Named Data Streams

◆ Named Data Streams Programmatic Interface

◆ Listing Named Data Streams

◆ Namespace for Named Data Streams

◆ Behavior Changes in Other System Calls
47

Cache Advisories
Cache Advisories
VxFS allows an application to set cache advisories for use when accessing files. These
advisories are in memory only and they do not persist across reboots. Some advisories are
currently maintained on a per-file, not a per-file-descriptor, basis. This means that only
one set of advisories can be in effect for all accesses to the file. If two conflicting
applications set different advisories, both use the last advisories that were set.

All advisories are set using the VX_SETCACHE ioctl command. The current set of
advisories can be obtained with the VX_GETCACHE ioctl command. For details on the use
of these ioctl commands, see the vxfsio(7) manual page.

Direct I/O
Direct I/O is an unbuffered form of I/O. If the VX_DIRECT advisory is set, the user is
requesting direct data transfer between the disk and the user-supplied buffer for reads
and writes. This bypasses the kernel buffering of data, and reduces the CPU overhead
associated with I/O by eliminating the data copy between the kernel buffer and the user’s
buffer. This also avoids taking up space in the buffer cache that might be better used for
something else. The direct I/O feature can provide significant performance gains for some
applications.

For an I/O operation to be performed as direct I/O, it must meet certain alignment
criteria. The alignment constraints are usually determined by the disk driver, the disk
controller, and the system memory management hardware and software. The
requirements for direct I/O are as follows:

◆ The starting file offset must be aligned to a 512-byte boundary.

◆ The ending file offset must be aligned to a 512-byte boundary, or the length must be a
multiple of 512 bytes.

◆ The memory buffer must start on an 8-byte boundary.

If the I/O is performed using the readv(2) and writev(2) system calls, these restrictions
apply to each element of the array of struct iovec.

The requirements to perform direct I/O on a given platform and operating system release
may be less restrictive than above, but these requirements are met, then direct I/O will
work on any platform. In particular, Solaris and HP-UX do not require any alignment of
the memory buffer.

Also note that on HP-UX, direct I/O will be the most efficient if the starting and ending
file offsets are aligned on file system block boundaries, as reported in the field f_frsize
of statvfs(2).
48 VERITAS File System Administrator’s Guide

Cache Advisories
If a request fails to meet the alignment constraints for direct I/O, the request is performed
as data synchronous I/O. If the file is currently being accessed by using memory mapped
I/O, any direct I/O accesses are done as data synchronous I/O.

Because direct I/O maintains the same data integrity as synchronous I/O, it can be used
in many applications that currently use synchronous I/O. If a direct I/O request does not
allocate storage or extend the file, the inode is not immediately written.

The CPU cost of direct I/O is about the same as a raw disk transfer. For sequential I/O to
very large files, using direct I/O with large transfer sizes can provide the same speed as
buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write the inode
change before returning to the application. This eliminates some of the performance
advantages of direct I/O.

The direct I/O and VX_DIRECT advisories are maintained on a per-file-descriptor basis.

Unbuffered I/O
If the VX_UNBUFFERED advisory is set, I/O behavior is the same as direct I/O with the
VX_DIRECT advisory set, so the alignment constraints that apply to direct I/O also apply
to unbuffered I/O. For unbuffered I/O, however, if the file is being extended, or storage is
being allocated to the file, inode changes are not updated synchronously before the write
returns to the user. The VX_UNBUFFERED advisory is maintained on a per-file-descriptor
basis.

Discovered Direct I/O
Discovered Direct I/O is a file system tunable you can set using the vxtunefs command.
When the file system gets an I/O request larger than the discovered_direct_iosz, it
tries to use direct I/O on the request. For large I/O sizes, Discovered Direct I/O can
perform much better than buffered I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require
writing the inode changes before returning to the application.

For information on how to set the discovered_direct_iosz, see “I/O Tuning” on
page 31.
Chapter 4, Application Interface 49

Cache Advisories
Data Synchronous I/O
If the VX_DSYNC advisory is set, the user is requesting data synchronous I/O. In
synchronous I/O, the data is written, and the inode is written with updated times and (if
necessary) an increased file size. In data synchronous I/O, the data is transferred to disk
synchronously before the write returns to the user. If the file is not extended by the write,
the times are updated in memory, and the call returns to the user. If the file is extended by
the operation, the inode is written before the write returns.

Like direct I/O, the data synchronous I/O feature can provide significant application
performance gains. Because data synchronous I/O maintains the same data integrity as
synchronous I/O, it can be used in many applications that currently use synchronous I/O.
If the data synchronous I/O does not allocate storage or extend the file, the inode is not
immediately written. The data synchronous I/O does not have any alignment constraints,
so applications that find it difficult to meet the alignment constraints of direct I/O should
use data synchronous I/O.

If the file is being extended or storage is allocated, data synchronous I/O must write the
inode change before returning to the application. This case eliminates the performance
advantage of data synchronous I/O.

The direct I/O and VX_DSYNC advisories are maintained on a per-file-descriptor basis.

Other Advisories
The VX_SEQ advisory indicates that the file is being accessed sequentially. When the file is
being read, the maximum read-ahead is always performed. When the file is written,
instead of trying to determine whether the I/O is sequential or random by examining the
write offset, sequential I/O is assumed. The pages for the write are not immediately
flushed. Instead, pages are flushed some distance behind the current write point.

The VX_RANDOM advisory indicates that the file is being accessed randomly. For reads, this
disables read-ahead. For writes, this disables the flush-behind. The data is flushed by the
pager, at a rate based on memory contention.

The VX_NOREUSE advisory is used as a modifier. If both VX_RANDOM and VX_NOREUSE
are set, VxFS notifies the operating system that the pages are free and may be reclaimed. If
VX_NOREUSE is set when doing sequential I/O, pages are also freed when they are
flushed to disk. The VX_NOREUSE advisory may slow down access to the file, but it can
reduce the cached data held by the system. This can allow more data to be cached for
other files and may speed up those accesses.
50 VERITAS File System Administrator’s Guide

Extent Information
Extent Information
The VX_SETEXT ioctl command allows an application to reserve space for a file, and set
fixed extent sizes and file allocation flags. Applications can obtain status information on
VxFS files by using the VX_GETEXT ioctl. The getext command also provides access to
this information. See the setext(1), getext(1), and vxfsio(7) manual pages for more
information.

Each invocation of the VX_SETEXT ioctl affects all the elements in the vx_ext structure.
When using VX_SETEXT, always use the following procedure:

▼ To use VX_SETEXT

1. Use VX_GETEXT to read the current settings.

2. Modify the values to be changed.

3. Call VX_SETEXT to set the values.

Caution Follow this procedure carefully. A fixed extent size may be inadvertently
cleared when the reservation is changed.

Space Reservation
Storage can be reserved for a file at any time. When a VX_SETEXT ioctl is issued, the
reservation value is set in the inode on disk. If the file size is less than the reservation
amount, the kernel allocates space to the file from the current file size up to the reservation
amount. When the file is truncated, space below the reserved amount is not freed. The
VX_TRIM, VX_NOEXTEND, VX_CHGSIZE, VX_NORESERVE and VX_CONTIGUOUS flags can
be used to modify reservation requests.

Note VX_NOEXTEND is the only one of these flags that is persistent; the other flags may
have persistent effects, but they are not returned by the VX_GETEXT ioctl.

If the VX_TRIM flag is set, when the last close occurs on the inode, the reservation is
trimmed to match the file size and the VX_TRIM flag is cleared. Any unused space is freed.
This can be useful if an application needs enough space for a file, but it is not known how
large the file will become. Enough space can be reserved to hold the largest expected file,
and when the file has been written and closed, any extra space will be released.

If the VX_NOEXTEND flag is set, an attempt to write beyond the current reservation, which
requires the allocation of new space for the file, fails instead. To allocate new space to the
file, the space reservation must be increased. This can be used like ulimit to prevent a
file from using too much space.
Chapter 4, Application Interface 51

Extent Information
If the VX_CONTIGUOUS flag is set, any space allocated to satisfy the current reservation
request is allocated in one extent. If there is not one extent large enough to satisfy the
request, the request fails. For example, if a file is created and a 1 MB contiguous
reservation is requested, the file size is set to zero and the reservation to 1 MB. The file will
have one extent that is 1 MB long. If another reservation request is made for a 3 MB
contiguous reservation, the new request will find that the first 1 MB is already allocated
and allocate a 2 MB extent to satisfy the request. If there are no 2 MB extents available, the
request fails. Extents are, by definition, contiguous.

Note Because VX_CONTIGUOUS is not a persistent flag, space will not be allocated
contiguously after doing a file system restore.

If the VX_NORESERVE flag is set, the reservation value in the inode is not changed. This
flag is used by applications to do temporary reservation. Any space past the end of the file
is given up when the file is closed. For example, if the cp command is copying a file that is
1 MB long, it can request a 1 MB reservation with the VX_NORESERVE flag set. The space
is allocated, but the reservation in the file is left at 0. If the program aborts for any reason
or the system crashes, the unused space past the end of the file is released. When the
program finishes, there is no cleanup because the reservation was never recorded on disk.

If the VX_CHGSIZE flag is set, the file size is increased to match the reservation amount.
This flag can be used to create files with uninitialized data. Because this allows
uninitialized data in files, it is restricted to users with appropriate privileges.

It is possible to use these flags in combination. For example, using VX_CHGSIZE and
VX_NORESERVE changes the file size but does not set any reservation. When the file is
truncated, the space is freed. If the VX_NORESERVE flag had not been used, the
reservation would have been set on disk along with the file size.

Space reservation is used to make sure applications do not fail because the file system is
out of space. An application can preallocate space for all the files it needs before starting to
do any work. By allocating space in advance, the file is optimally allocated for
performance, and file accesses are not slowed down by the need to allocate storage. This
allocation of resources can be important in applications that require a guaranteed
response time.

With very large files, use of space reservation can avoid the need to use indirect extents. It
can also improve performance and reduce fragmentation by guaranteeing that the file
consists of large contiguous extents. Sometimes when critical file systems run out of space,
cron jobs, mail, or printer requests fail. These failures are harder to track if the logs kept
by the application cannot be written due to a lack of space on the file system.
52 VERITAS File System Administrator’s Guide

Extent Information
By reserving space for key log files, the logs will not fail when the system runs out of
space. Process accounting files can also have space reserved so accounting records will not
be lost if the file system runs out of space. In addition, by using the VX_NOEXTEND flag for
log files, the maximum size of these files can be limited. This can prevent a runaway
failure in one component of the system from filling the file system with error messages
and causing other failures. If the VX_NOEXTEND flag is used for log files, the logs should
be cleaned up before they reach the size limit in order to avoid losing information.

Fixed Extent Sizes
VxFS uses the I/O size of write requests, and a default policy, when allocating space to a
file. For some applications, this may not work out well. These applications can set a fixed
extent size, so that all new extents allocated to the file are of the fixed extent size.

By using a fixed extent size, an application can reduce allocations and guarantee good
extent sizes for a file. An application can reserve most of the space a file needs, and then
set a relatively large fixed extent size. If the file grows beyond the reservation, any new
extents are allocated in the fixed extent size.

Another use of a fixed extent size occurs with sparse files. The file system usually does
I/O in page size multiples. When allocating to a sparse file, the file system allocates pages
as the smallest default unit. If the application always does sub-page I/O, it can request a
fixed extent size to match its I/O size and avoid wasting extra space.

When setting a fixed extent size, an application should not select too large a size. When all
extents of the required size have been used, attempts to allocate new extents fail: this
failure can happen even though there are blocks free in smaller extents.

Fixed extent sizes can be modified by the VX_ALIGN flag. If the VX_ALIGN flag is set, then
any future extents allocated to the file are aligned on a fixed extent size boundary relative
to the start of the allocation unit. This can be used to align extents to disk striping
boundaries or physical disk boundaries.

The VX_ALIGN flag is persistent and is returned by the VX_GETEXT ioctl.
Chapter 4, Application Interface 53

Freeze and Thaw
Freeze and Thaw
The VX_FREEZE ioctl command is used to freeze a file system. Freezing a file system
temporarily blocks all I/O operations to a file system and then performs a sync on the file
system. When the VX_FREEZE ioctl is issued, all access to the file system is blocked at the
system call level. Current operations are completed and the file system is synchronized to
disk. Freezing provides a stable, consistent file system.

When the file system is frozen, any attempt to use the frozen file system, except for a
VX_THAW ioctl command, is blocked until a process executes the VX_THAW ioctl command
or the time-out on the freeze expires.

Get I/O Parameters ioctl
VxFS provides the VX_GET_IOPARAMETERS ioctl to get the recommended I/O sizes to
use on a file system. This ioctl can be used by the application to make decisions about the
I/O sizes issued to VxFS for a file or file device. For more details on this ioctl, refer to the
vxfsio(7) manual page. For a discussion on various I/O parameters, refer to “VxFS
Performance: Creating, Mounting, and Tuning File Systems” on page 17 and the
vxtunefs(1M) manual page.

Named Data Streams
Named data streams associate multiple data streams with a file. Access to the named data
stream can be done through a file descriptor using the named data stream library
functions. Applications can open the named data stream to obtain a file descriptor and
perform read(), write(), and mmap() operations using the file descriptor. These system
calls would work as though they are operating on a regular file. The named data streams
of a file are stored in a hidden named data stream directory inode associated with the file.
The hidden directory inode for the file can be accessed only through the named data
stream application programming interface.

Note Named data streams are also known as named attributes.
54 VERITAS File System Administrator’s Guide

Named Data Streams Programmatic Interface
Named Data Streams Programmatic Interface
VxFS named data stream functionality is available only through the following application
programming interface (API) functions:

The vxfs_nattr_open() function works similarly to the open() system call, except that
the path is interpreted as a named data stream to a file descriptor. If the
vxfs_nattr_open() operation completes successfully, the return value is the file
descriptor associated with the named data stream. The file descriptor can be used by other
input/output functions to refer to that named data stream. If the path of the named data
stream is set to “.” the file descriptor returned points to the named data stream directory
vnode.

The vxfs_nattr_link() function creates a new directory entry for the existing named
data stream and increments its link count by one. There is a pointer to an existing named
data stream in the named data stream namespace and a pointer to the new directory entry
created in the named data stream namespace.

The vxfs_nattr_unlink() function removes the named data stream at a specified path.
The calling function must have write permission to remove the directory entry for the
named data stream.

The vxfs_nattr_rename() function changes a specified namespace entry at path1 to a
second specified namespace at path2. The specified paths are resolved relative to a
pointer to the named data stream directory vnodes.

See the vxfs_nattr_open(3), vxfs_nattr_link(3), vxfs_nattr_unlink(3), and
vxfs_nattr_rename(3) manual pages for more information.

vxfs_nattr_link Links to a named data stream.

vxfs_nattr_open Open a named data stream.

vxfs_nattr_rename Renames a named data stream.

vxfs_nattr_unlink Removes a named data stream.
Chapter 4, Application Interface 55

Named Data Streams Programmatic Interface
Listing Named Data Streams
The named data streams for a file can be listed by calling getdents() on the named data
stream directory inode. For example:

fd = open("foo", O_RDWR); /* open file foo */
afd = vxfs_nattr_open(fd, "attribute1",

O_RDWR|O_CREAT, 0777); /* create attribute
attribute1 for file foo */

write(afd, buf, 1024); /* writes to attribute file */
read(afd, buf, 1024); /* reads from attribute file */
dfd = vxfs_nattr_open(fd, ".", O_RDONLY);/* opens attribute

directory for file foo */
getdents(dfd, buf, 1024); /* reads directory entries for

attribute directory */

Namespace for Named Data Streams
Names starting with “$vxfs:” are reserved for future use. Creating a data stream where
the name starts with “$vxfs:” fail with an EINVAL error.

Behavior Changes in Other System Calls
Though the named data stream directory is hidden from the namespace, it is possible to
open the name data stream directory inode with a fchdir() or fchroot() call. Some of
the attributes (such as “..”) are not defined for a named data streams directory. Any
operation that accesses these fields can fail. Attempts to create directories, symbolic links,
or device files on a named data stream directory will fail. VOP_SETATTR() done on a
named data stream directory or named data stream inode will also fail.
56 VERITAS File System Administrator’s Guide

Online Backup Using File System
Snapshots
 5
This chapter describes the online backup facility provided with the VERITAS File System
(VxFS). The snapshot feature of VxFS can be used to create a snapshot image of a mounted
file system, which becomes a duplicate read-only copy of the mounted file system. This
chapter also provides a description of how to create a snapshot file system and some
examples of backing up all or part of a file system using the snapshot mechanism.

The following topics are covered in this chapter:

◆ Snapshot File Systems

◆ Using a Snapshot File System for Backup

◆ Creating a Snapshot File System

◆ Making a Backup

◆ Performance of Snapshot File SystemsSnapshot File System Internals

◆ Snapshot File System Internals

◆ Snapshot File System Disk Structure

◆ How a Snapshot File System Works
57

Snapshot File Systems
Snapshot File Systems
A snapshot file system is an exact image of a VxFS file system, referred to as the snapped file
system, that provides a mechanism for making backups. The snapshot is a consistent view
of the file system “snapped” at the point in time the snapshot is made. You can select files
to back up from the snapshot (using a standard utility such as cpio or cp), or back up the
entire file system image (using the vxdump or fscat utilities).

You use the mount command to create a snapshot file system (the mkfs command is not
required). A snapshot file system is always read-only. A snapshot file system exists only as
long as it and the snapped file system are mounted and ceases to exist when unmounted.
A snapped file system cannot be unmounted until all of its snapshots are unmounted.
Although it is possible to have multiple snapshots of a file system made at different times,
it is not possible to make a snapshot of a snapshot.

Note A snapshot file system ceases to exist when unmounted. If mounted again, it is
actually a fresh snapshot of the snapped file system.

A snapshot file system must be unmounted before its dependent snapped file
system can be unmounted. Neither the fuser command nor the mount command
will indicate that a snapped file system cannot be unmounted because a snapshot of
it exists.

Using a Snapshot File System for Backup

After a snapshot file system is created, the snapshot maintains a consistent backup of data
in the snapped file system.

Backup programs (such as cpio) that back up a standard file system tree can be used
without modification on a snapshot file system because the snapshot presents the same
data as the snapped file system. Backup programs (such as vxdump) that access the disk
structures of a file system require some modifications to handle a snapshot file system.

VxFS utilities recognize snapshot file systems and modify their behavior so that they
operate the same way on snapshots as they do on standard file systems. Other backup
programs that typically read the raw disk image cannot work on snapshots without
altering the backup procedure.
58 VERITAS File System Administrator’s Guide

Creating a Snapshot File System
These other backup programs can use the fscat command to obtain a raw image of the
entire file system that is identical to an image obtainable by running a dd command on the
disk device containing the snapped file system at the exact moment the snapshot was
created. The snapread ioctl takes arguments similar to those of the read system call and
returns the same results that are obtainable by performing a read on the disk device
containing the snapped file system at the exact time the snapshot was created. In both
cases, however, the snapshot file system provides a consistent image of the snapped file
system with all activity complete—it is an instantaneous read of the entire file system.
This is much different than the results that would be obtained by a dd or read command
on the disk device of an active file system.

If you create a complete backup of a snapshot file system using a utility such as vxdump
and later restore it, you must run the fsck command on the restored file system because
the snapshot file system is consistent, but not clean. That is, the file system may have some
extended inode operations to complete, but there should be no other changes. Because a
snapshot file system is not writable, it cannot be fully checked, but the fsck -n command
can be used to report any inconsistencies.

Creating a Snapshot File System
You create a snapshot file system by using the -o snapof= option of the mount
command. The -o snapsize= option may also be required if the device you are
mounting does not identify the device size in its disk label, or if you want a size smaller
than the entire device. Use the following syntax to create a snapshot file system:

mount -F vxfs -o snapof=special,snapsize=snapshot_size \
snapshot_special snapshot_mount_point

You must make the snapshot file system large enough to hold any blocks on the snapped
file system that may be written to while the snapshot file system exists. If a snapshot runs
out of blocks to hold copied data, it is disabled and further attempts to access the snapshot
file system fail.

During periods of low activity (such as nights and weekends), a snapshot typically
requires about two to six percent of the blocks of the snapped file system. During a period
of high activity, the snapshot of a typical file system may require 15 percent of the blocks
of the snapped file system. Most file systems do not turn over 15 percent of data in a single
day. These approximate percentages tend to be lower for larger file systems and higher for
smaller file systems. You can allocate blocks to a snapshot based on characteristics such as
file system usage and duration of backups.

Caution Any existing data on the device used for the snapshot is overwritten.
Chapter 5, Online Backup Using File System Snapshots 59

Making a Backup
Making a Backup
Here are some typical examples of making a backup of a 300,000 block file system named
/home using a snapshot file system on /dev/vx/dsk/fsvol/vol1 with a snapshot
mount point of /backup/home:

◆ To back up files changed within the last week using cpio:

mount -F vxfs –o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/vol1 /backup/home

cd /backup
find home –ctime –7 –depth –print | cpio –oc > /dev/rmt/c0s0
umount /backup/home

◆ To do a full backup of /home, which exists on disk /dev/vx/dsk/fsvol/vol1, and
use dd to control blocking of output onto tape device using vxdump:

vxdump f – /dev/vx/dsk/fsvol/vol1 | dd bs=128k > /dev/rmt/c0s0

◆ To do a level 3 backup of /dev/vx/dsk/fsvol/vol1 and collect those files that
have changed in the current directory:

vxdump 3f – /dev/vx/dsk/fsvol/vol1 | vxrestore –xf –

◆ To do a full backup of a snapshot file system:

mount –F vxfs –o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/vol1 /backup/home

vxdump f – /dev/vx/dsk/fsvol/vol1 | dd bs=128k > /dev/rmt/c0s0

The vxdump utility ascertains whether /dev/vx/dsk/fsvol/vol1 is a snapshot
mounted as /backup/home and do the appropriate work to get the snapshot data
through the mount point.

Performance of Snapshot File Systems
Snapshot file systems maximize the performance of the snapshot at the expense of writes
to the snapped file system. Reads from a snapshot file system typically perform at nearly
the throughput rates of reads from a standard VxFS file system.

The performance of reads from the snapped file system are generally not affected.
However, writes to the snapped file system, typically average two to three times as long as
without a snapshot. This is because the initial write to a data block requires reading the
old data, writing the data to the snapshot, and then writing the new data to the snapped
file system. If there are multiple snapshots of the same snapped file system, writes are
even slower. Only the initial write to a block experiences this delay, so operations such as
writes to the intent log or inode updates proceed at normal speed after the initial write.
60 VERITAS File System Administrator’s Guide

Snapshot File System Internals
Reads from the snapshot file system are impacted if the snapped file system is busy
because the snapshot reads are slowed by the disk I/O associated with the snapped file
system.

The overall impact of the snapshot is dependent on the read to write ratio of an
application and the mixing of the I/O operations. For example, a database application
running an online transaction processing (OLTP) workload on a snapped file system was
measured at about 15 to 20 percent slower than a file system that was not snapped.

Snapshot File System Internals
The following sections describe the internal structure of a snapshot file system and how it
copies changed data blocks from the original snapped file system.

Snapshot File System Disk Structure
A snapshot file system consists of:

◆ A super-block

◆ A bitmap

◆ A blockmap

◆ Data blocks copied from the snapped file system

The following figure shows the disk structure of a snapshot file system:

The Snapshot Disk Structure

 super-block

 bitmap

 blockmap

 data block
Chapter 5, Online Backup Using File System Snapshots 61

Snapshot File System Internals
The super-block is similar to the super-block of a standard VxFS file system, but the magic
number is different and many of the fields are not applicable.

The bitmap contains one bit for every block on the snapped file system. Initially, all
bitmap entries are zero. A set bit indicates that the appropriate block was copied from the
snapped file system to the snapshot. In this case, the appropriate position in the blockmap
references the copied block.

The blockmap contains one entry for each block on the snapped file system. Initially, all
entries are zero. When a block is copied from the snapped file system to the snapshot, the
appropriate entry in the blockmap is changed to contain the block number on the
snapshot file system that holds the data from the snapped file system.

The data blocks are filled by data copied from the snapped file system, starting from the
beginning of the data block area.

How a Snapshot File System Works
A snapshot file system is created by mounting an empty disk slice as a snapshot of a
currently mounted file system. The bitmap, blockmap and super-block are initialized and
then the currently mounted file system is frozen (see “Freeze and Thaw” on page 54, for a
description of the VX_FREEZE ioctl). After the file system to be snapped is frozen, the
snapshot is enabled and mounted and the snapped file system is thawed. The snapshot
appears as an exact image of the snapped file system at the time the snapshot was made.

Initially, the snapshot file system satisfies read requests by finding the data on the
snapped file system and returning it to the requesting process. When an inode update or a
write changes the data in block n of the snapped file system, the old data is first read and
copied to the snapshot before the snapped file system is updated. The bitmap entry for
block n is changed from 0 to 1 (indicating that the data for block n can be found on the
snapped file system). The blockmap entry for block n is changed from 0 to the block
number on the snapshot file system containing the old data.

A subsequent read request for block n on the snapshot file system will be satisfied by
checking the bitmap entry for block n and reading the data from the indicated block on the
snapshot file system, instead of from block n on the snapped file system. This technique is
called copy-on-write. Subsequent writes to block n on the snapped file system do not result
in additional copies to the snapshot file system, since the old data only needs to be saved
once.

All updates to the snapped file system for inodes, directories, data in files, extent maps,
and so forth, are handled in this fashion so that the snapshot can present a consistent view
of all file system structures on the snapped file system for the time when the snapshot was
created. As data blocks are changed on the snapped file system, the snapshot gradually
fills with data copied from the snapped file system.
62 VERITAS File System Administrator’s Guide

Snapshot File System Internals
The amount of disk space required for the snapshot depends on the rate of change of the
snapped file system and the amount of time the snapshot is maintained. In the worst case,
the snapped file system is completely full and every file is removed and rewritten. The
snapshot file system would need enough blocks to hold a copy of every block on the
snapped file system, plus additional blocks for the data structures that make up the
snapshot file system. This is approximately 101 percent of the size of the snapped file
system. Normally, most file systems do not undergo changes at this extreme rate. During
periods of low activity, the snapshot should only require two to six percent of the blocks of
the snapped file system. During periods of high activity, the snapshot might require 15
percent of the blocks of the snapped file system. These percentages tend to be lower for
larger file systems and higher for smaller ones.

Caution If a snapshot file system runs out of space for changed data blocks, it is disabled
and all further access to it fails. This does not affect the snapped file system.
Chapter 5, Online Backup Using File System Snapshots 63

Snapshot File System Internals
64 VERITAS File System Administrator’s Guide

Quotas
 6

The VERITAS File System (VxFS) supports user and group quotas. The quota system
limits the use of two principal resources of a file system: files and data blocks. For each of
these resources, you can assign quotas to individual users and groups to limit their usage.

The following topics are covered in this chapter:

◆ Quota Limits

◆ Quota Files on VxFS

◆ Quota Commands

◆ Quota Checking With VxFS

◆ Using Quotas
65

Quota Limits
Quota Limits
You can set limits for individual users and groups to file and data block usage on a file
system. You can set two kinds of limits for each of the two resources:

◆ The hard limit is an absolute limit that cannot be exceeded under any circumstances.

◆ The soft limit, which must be lower than the hard limit, can be exceeded, but only for a
limited time. The time limit can be configured on a per-file system basis only. The
VxFS default limit is seven days.

A typical use of soft limits is when a user must run an application that could generate
large temporary files. In this case, you can allow the user to exceed the quota limit for a
limited time. No allocations are allowed after the expiration of the time limit. Use the
vxedquota command to set limits (see “Using Quotas” on page 68 for an example).

Although file and data block limits can be set individually for each user and group, the
time limits apply to the file system as a whole. The quota limit information is associated
with user and group IDs and is stored in a user or group quota file (see “Quota Files on
VxFS” below).

The quota soft limit can be exceeded when VxFS preallocates space to a file. See “Attribute
Specifics” on page 42 for information on extent allocation policies.

Quota Files on VxFS
A quotas file (named quotas) must exist in the root directory of a file system for any of
the quota commands to work. For group quotas to work, there must be a quotas.grp
file.The files in the file system’s mount point are referred to as the external quotas file.
VxFS also maintains an internal quotas file for its own use.

The quota administration commands read and write to the external quotas file to obtain
or change usage limits. VxFS uses the internal file to maintain counts of data blocks and
inodes used by each user. When quotas are turned on, the quota limits are copied from the
external quotas file into the internal quotas file. While quotas are on, all the changes in
the usage information and changes to quotas are registered in the internal quotas file.
When quotas are turned off, the contents of the internal quotas file are copied into the
external quotas file so that all data between the two files is synchronized.

VxFS supports group quotas in addition to user quotas. Just as user quotas limit file system
resource (disk blocks and the number of inodes) usage on individual users, group quotas
specify and limit resource usage on a group basis. As with user quotas, group quotas
provide a soft and hard limit for file system resources. If both user and group quotas are
enabled, resource utilization is based on the most restrictive of the two limits for a given
user.
66 VERITAS File System Administrator’s Guide

Quota Commands
To distinguish between group and user quotas, VxFS quota commands use a –g and –u
option. The default is user quotas if neither option is specified. One exception to this rule
is when quotas are specified as a mount command option. In this case, both user and
group quotas are enabled. Support for group quotas also requires a separate group quotas
file. The VxFS group quota file is named quotas.grp. The VxFS user quotas file is
named quotas. This name was used to distinguish it from the quotas.user file used by
other file systems under Solaris.

Quota Commands

Note Most of the quota commands in VxFS are similar to BSD quota commands.
However, the quotacheck command is an exception—VxFS does not support an
equivalent command. This is discussed in more detail in “Quota Checking With
VxFS” on page 68.

In general, quota administration for VxFS is performed using commands similar to UFS
quota commands. On Solaris, the available quota commands are UFS specific (that is,
these commands work only on UFS file systems). For this reason, VxFS supports a similar
set of commands that work only for VxFS file systems.

VxFS supports the following quota-related commands:

◆ vxedquota—used to edit quota limits for users and groups. The limit changes made
by vxedquota are reflected both in the internal quotas file and the external quotas
file.

◆ vxrepquota—provides a summary of quotas and disk usage.

◆ vxquot—provides file ownership and usage summaries.

◆ vxquota—used to view quota limits and usage.

◆ vxquotaon—used to turn quotas on for a mounted VxFS file system.

◆ vxquotaoff—used to turn quotas off for a mounted VxFS file system.

Besides these commands, the VxFS mount command supports a special mount option
(–o quota), which can be used to turn on quotas at mount time.

For additional information on the quota commands, see the corresponding manual pages.

Note When VxFS file systems are exported via NFS, the VxFS quota commands on the
NFS client cannot query or edit quotas. You can use the VxFS quota commands on
the server to query or edit quotas.
Chapter 6, Quotas 67

Quota Checking With VxFS
Quota Checking With VxFS
The standard practice with most quota implementations is to mount all file systems and
then run a quota check on each one. The quota check reads all the inodes on disk and
calculates the usage for each user and group This can be time consuming, and because the
file system is mounted, the usage can change while quotacheck is running.

VxFS does not support a quotacheck command. With VxFS, quota checking is
performed automatically (if necessary) at the time quotas are turned on. A quota check is
necessary if the file system has changed with respect to the usage information as recorded
in the internal quotas file. This happens only if the file system was written with quotas
turned off, or if there was structural damage to the file system that required a full file
system check (see the fsck_vxfs(1M) manual page).

A quota check generally reads information for each inode on disk and rebuilds the
internal quotas file. It is possible that while quotas were not on, quota limits were changed
by the system administrator. These changes are stored in the external quotas file. As part
of enabling quotas processing, quota limits are read from the external quotas file into the
internal quotas file.

Using Quotas
This section shows usage examples of the VxFS quota commands.

vxquotaon
To use the quota functionality on a file system, quotas must be turned on. You can turn
them on at mount time or after a file system is mounted.

Note Before turning on quotas, the root directory of the file system must contain a file for
user quotas named quotasand a file for group quotas named quotas.grp owned
by root.

To turn on user and group quotas for a VxFS file system, enter:

vxquotaon /mount_point

To turn on only user quotas for a VxFS file system, enter:

vxquotaon –u /mount_point

To turn on only group quotas for a VxFS file system, enter:

vxquotaon –g /mount_point
68 VERITAS File System Administrator’s Guide

Using Quotas
mount
You can also turn on user or group quotas for a file system at mount time by specifying
the –o quota option to the mount command:

mount –F vxfs –o quota special /mount_point

To turn on only user quotas, enter:

mount –F vxfs –o usrquota special /mount_point

To turn on only group quotas, enter:

mount –F vxfs –o grpquota special /mount_point

vxedquota
You can set up user and group quotas using the vxedquota command. You must have
superuser privileges to edit quotas. By default, or when you specify the –u option,
vxedquota edits the quotas of one or more users specified by username:

vxedquota [–u] username

When you specify the –g option, vxedquota edits the quotas of one or more groups
specified by groupname:

vxedquota –g groupname

vxedquota creates a temporary file for the given user; this file contains on-disk quotas
for each mounted file system that has a quotas file. It is not necessary that quotas be
turned on for vxedquota to work. However, the quota limits are applicable only after
quotas are turned on for a given file system.

The soft and hard limits can be modified or assigned values. For any user or group, usage
can never exceed the hard limit after quotas are turned on. Time limits can be modified for
any user with the command:

vxedquota [–u] –t

Time limits can be modified for any group with the command:

vxedquota –g –t

Modified time limits apply to the entire file system and cannot be set selectively for each
user or group.
Chapter 6, Quotas 69

Using Quotas
vxquota
Use the vxquota command to view a user’s or group’s disk quotas and usage on VxFS
file systems. To display a user’s quotas and disk usage on all mounted VxFS file systems
where the quotas file exists, enter:

vxquota –v [–u] username

To display a group’s quotas and disk usage on all mounted VxFS file systems where the
quotas.grp file exists, enter:

vxquota –v –g groupname

vxquot
Use the vxquot command to display the number of blocks owned by each user or group
in a file system. The following command displays the number of files and the space
owned by each user:

vxquot [–u] –f filesystem

The following command displays the number of files and the space owned by each group:

vxquot –g –f filesystem

vxquotaoff
To turn off quotas for a mounted file system, enter:

vxquotaoff /mount_point

To turn off only user quotas for a VxFS file system, enter:

vxquotaoff –u /mount_point

To turn off only group quotas for a VxFS file system, enter:

vxquotaoff –g /mount_point
70 VERITAS File System Administrator’s Guide

File Change Log
 7

The VxFS File Change Log (FCL) tracks changes to files and directories in a file system.
Applications that can make use of FCL are those that are typically required to scan an
entire file system to discover changes since the last scan, such as backup utilities,
webcrawlers, search engines, and replication programs.

The FCL records file system changes such as creates, links, unlinks, renaming, data
appended, data overwritten, data truncated, extended attribute modifications, holes
punched, and miscellaneous file property updates.

Note FCL records only that data has changed, not the actual data. It is the responsibility
of the application to examine the files that have changed data to determine which
data has changed.

The FCL feature is not available on file systems created with the nolargefiles
option.

FCL functionality is a separately licensable feature. See the VERTIAS Storage Foundation
Release Notes for more information.

File Change Log File
FCL stores changes in a sparse file in the file system namespace. The FCL log file is always
located in mount_point/lost+found/changelog. The FCL file behaves like a regular
file, but some operations are prohibited. The standard system calls open(2), lseek(2),
read(2) and close(2) can access the data in the FCL, while the write(2), mmap(2) and
rename(2) calls are not allowed.

The FCL log file contains both the information about the FCL (stored in the FCL
superblock), and the changes to files and directories in the file system, stored as FCL
records. Details on the structure and semantics of the FCL superblock and FCL records,
and the types of changes tracked by the FCL, are located in the header file
/opt/VRTS/include/sys/fs/fcl.h (see “File Change Log Programmatic Interface”
on page 73).
71

File Change Log Administrative Interface
File Change Log Administrative Interface
The FCL can be set up and tuned through the VxFS administrative commands
fcladm(1M) and vxtunefs(1M). The FCL tunable parameters are:

Either or both fcl_maxalloc/fcl_keeptime must be set to activate the FCL. The
following are examples of using the FCL administration command.

To activate the FCL for a mounted file system, enter:

fcladm on mount_point

To deactivate the FCL for a mounted file system, enter:

fcladm off mount_point

To remove the FCL file for a mounted file system (the FCL must be OFF before it can be
removed), enter:

fcladm rm mount_point

To obtain the current FCL state for a mounted file system, enter:

fcladm state mount_point

fcl_keeptime Specifies the duration in seconds that FCL records stay in the FCL
file before they can be purged. The first records to be purged are
the oldest ones, which are located at the beginning of the file.
Additionally, records at the beginning of the file can be purged if
allocation to the FCL file exceeds fcl_maxalloc bytes. The default
value is 0. Note that fcl_keeptime takes precedence over
fcl_maxalloc. No hole is punched if the FCL file exceeds
fcl_maxalloc bytes but the life of the oldest record has not reached
fcl_keeptime seconds.

fcl_maxalloc Specifies the maximum number of spaces in bytes to be allocated
to the FCL file. When the space allocated exceeds fcl_maxalloc, a
hole is punched at the beginning of the file. As a result, records are
purged and the first valid offset (fc_foff) is updated. The minimum
value of fcl_maxalloc is 4MB. The default value is fs_size/33.

fcl_winterval Specifies the time in seconds that must elapse before the FCL
records an overwrite, extending write, or a truncate. This helps to
reduce the number of repetitive records in the FCL. fcl_winterval
time-out is per inode. If an inode happens to go out of cache and
returns, its write interval is reset. As a result, there could be more
than one write record for that file in the same write interval. The
default value is 3600 seconds.
72 VERITAS File System Administrator’s Guide

File Change Log Programmatic Interface
Print the on-disk FCL super-block in text format to obtain information about the FCL by
using offset 0. Because the FCL on-disk super-block occupies the first block of the FCL file,
the first and last valid offsets into the FCL file can be determined by reading the FCL
super-block and checking the fc_foff field. Enter:

fcladm print 0 mount_point

To print the contents of the FCL in text format (the offset used must be 32-byte aligned),
enter:

fcladm print offset mount_point

File Change Log Programmatic Interface
The standard system calls open(2), lseek(2), read(2) and close(2) can be used on the
FCL file at mount_point/lost+found/changelog. Only one programmatic interface
is exposed through libvxfsutil, the vxfs_fcl_sync API (see the
vxfs_fcl_sync(3) manual page). The prototype is available at
/opt/VRTSfssdk/4.1.00.0/include/vxfsutil.h.

The following sample code fragment reads the FCL superblock, checks that the state of the
FCL is VX_FCLS_ON, issues a call to vxfs_fcl_sync to obtain a finishing offset to read
to, determines the first valid offset in the FCL file, then reads the entries in 8K chunks
from this offset. The section process fcl entries is what an application developer
must supply to process the entries in the FCL.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/fcntl.h>
#include <errno.h>
#include <fcl.h>
#include <vxfsutil.h>

#define FCL_READSZ 8192

char* fclname = "/mnt/lost+found/changelog";

int
read_fcl(fclname)

char* fclname;
{

struct fcl_sb fclsb;
uint64_t off, lastoff;
size_t size;
char buf[FCL_READSZ], *bufp = buf;
Chapter 7, File Change Log 73

File Change Log Programmatic Interface
int fd;
int err = 0;

if ((fd = open(fclname, O_RDONLY)) < 0) {
return ENOENT;

}
if ((off = lseek(fd, 0, SEEK_SET)) != 0) {

close(fd);
return EIO;

}
size = read(fd, &fclsb, sizeof (struct fcl_sb));
if (size < 0) {

close(fd);
return EIO;

}
if (fclsb.fc_state == VX_FCLS_OFF) {

close(fd);
return 0;

}
if (err = vxfs_fcl_sync(fclname, &lastoff)) {

close(fd);
return err;

}
if ((off = lseek(fd, fclsb.fc_foff, SEEK_SET)) !=

fclsb.fc_foff) {
close(fd);
return EIO;

}
while (off < lastoff) {

if ((size = read(fd, bufp, FCL_READSZ)) <= 0) {
close(fd);
return errno;

}
/* process fcl entries */
off += size;

}
close(fd);
return 0;

}

74 VERITAS File System Administrator’s Guide

Reverse Path Name Lookup
Reverse Path Name Lookup
The reverse path name lookup feature obtains the full path name of a file or directory
from the inode number of that file or directory. The inode number is provided as an
argument to the vxlsino administrative command, or the vxfs_inotopath
application programming interface library function.

The reverse path name lookup feature can be useful for a variety of applications, such as
for clients of the VxFS file change log feature, in backup and restore utilities, and for
replication products. Typically, these applications store information by inode numbers
because a path name for a file or directory can be very long, thus the need for an easy
method of obtaining a path name.

An inode is a unique identification number for each file in a file system. An inode contains
the data and metadata associated with that file, but does not include the file name to
which the inode corresponds. It is therefore relatively difficult to determine the name of a
file from an inode number. The ncheck command provides a mechanism for obtaining a
file name from an inode identifier by scanning each directory in the file system, but this
process can take a long period of time. The VxFS reverse path name lookup feature
obtains path names relatively quickly.

Note Because symbolic links do not constitute a path to the file, the reverse path name
lookup feature cannot track symbolic links to files.

Because of the possibility of errors with processes renaming or unlinking and creating
new files, it is advisable to perform a lookup (or open) with the path name and verify that
the inode number matches the path names obtained.

See the vxlsino(1M), vxfs_inotopath_gen(3) and vxfs_inotopath(3) manual
pages for more information.
Chapter 7, File Change Log 75

Reverse Path Name Lookup
76 VERITAS File System Administrator’s Guide

Multi-Volume File Systems
 8

VxFS provides support for multi-volume file systems when used in conjunction with the
VERITAS Volume Manager. Using multi-volume support (MVS), a single file system can
be created over multiple volumes, each volume having its own properties. For example, it
is possible to place metadata on mirrored storage while placing file data on better
performing volume types such as RAID5.

The MVS feature also allows file systems to reside on different classes of devices, so that a
file system can be supported from both inexpensive disks and from expensive arrays.
Using the MVS administrative interface, you can control which data goes on which
volume types.

Topics in this chapter include:

◆ Features Implemented Using MVS

◆ Volume Sets

◆ Creating MVS File Systems

◆ Allocation Policies

◆ Volume Encapsulation
77

Features Implemented Using MVS
Features Implemented Using MVS
Features that can be implemented using multi-volume support include the following:

◆ Separating metadata from file data.

◆ Encapsulating volumes so that a volume appears in the file system as a file. This is
particularly useful for databases that are running on raw volumes.

To use the multi-volume file system features, the VERITAS Volume Manager must be
installed and the Volume Set feature must be accessible.
78 VERITAS File System Administrator’s Guide

Volume Sets
Volume Sets
The VERITAS Volume Manager exports a feature called volume sets. Unlike the traditional
Volume Manager volume, which can be used for raw I/O access or to contain a file
system, a volume set is a container for multiple different volumes. Each volume can have
its own geometry.

The Volume Manager vxvset command is used to create and manage volume sets. For
example, the following command creates a new volume set from an existing volume
named vol1:

vxvset make myvset vol1

The following commands create two new volumes and add them to the volume set:

vxassist make vol2 50m
vxassist make vol3 50m
vxvset addvol myvset vol2
vxvset addvol myvset vol3

The following command lists the component volumes of the previously created volume
set:

vxvset list myvset
VOLUME INDEX LENGTH STATE CONTEXT
vol1 0 20480 ACTIVE -
vol2 1 102400 ACTIVE -
vol3 2 102400 ACTIVE -

When a volume set is created, the volumes contained by the volume set are removed from
the namespace and are instead accessed through the volume set name, as shown by the
output of the ls command:

ls -l /dev/vx/rdsk/rootdg/myvset
1 root root 108,70009 May 21 15:37 /dev/vx/rdsk/rootdg/myvset

However, when a volume is added to the volume set, it is no longer visible in the
namespace, as shown in the following example:

vxassist make vol4 50m
ls -l /dev/vx/rdsk/rootdg/vol4
crw-- 1 root root 108,70012 May 21 15:43 /dev/vx/rdsk/rootdg/vol4
vxvset addvol myvset vol4
ls -l /dev/vx/rdsk/rootdg/vol4
/dev/vx/rdsk/rootdg/vol4: No such file or directory

Volume sets cannot be empty, so when the last entry is removed, the volume set itself is
removed.
Chapter 8, Multi-Volume File Systems 79

Creating MVS File Systems
Creating MVS File Systems
After a volume set is created, creating a VxFS file system is the same as creating a file
system on a raw device or volume. You must specify the volume set name as an argument
to mkfs as shown in the following example:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset
version 6 layout
327680 sectors, 163840 blocks of size 1024, log size 1024 blocks
largefiles supported

Note MVS is available only on file systems using disk layout Version 6. See Appendix C,
“Disk Layout” for more information about disk layout versions.

After the file system is created, VxFS allocates space from the different volumes within the
volume set. You can list the component volumes of the volume set using of the fsvoladm
command:

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1
fsvoladm list /mnt1
devid size used avail name
0 10240 1280 8960 vol1
1 51200 16 51184 vol2
2 51200 16 51184 vol3
3 51200 16 51184 vol4

To add a new volume, first add the volume to the volume set, then add it to the file
system:

vxassist make vol5 50m
vxvset addvol myvset vol5
fsvoladm add /mnt1 vol5 50m
fsvoladm list /mnt1
devid size used avail name
0 10240 1300 8940 vol1
1 51200 16 51184 vol2
2 51200 16 51184 vol3
3 51200 16 51184 vol4
4 51200 16 51184 vol5

A volume must be empty before you can remove it from the file system. With the
exception of volume additions and deletions, file system commands operate the same on
volumes within a volume set.
80 VERITAS File System Administrator’s Guide

Allocation Policies
Allocation Policies
To make full use of multi-volume support features, VxFS provides support for allocation
policies that allow files or groups of files to be assigned to specified volumes within the
volume set.

A policy specifies a list of volumes and the order in which to attempt allocations. A policy
can be assigned to a file, to a file system, or to a Storage Checkpoint created from a file
system. When policies are assigned to objects in the file system, you must specify how the
policy maps to both metadata and file data. For example, if a policy is assigned to a single
file, the file system must know where to place both the file data and metadata. If no
policies are specified, the file system places data randomly.

The following example shows how allocation policies work. Assume that there are two
volumes from different classes of storage:

vxvset -g rootdg list myvset
VOLUME INDEX LENGTH STATE CONTEXT
vol1 0 102400 ACTIVE -
vol2 1 102400 ACTIVE -

Create a file system on the myvset volume set and mount it:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset
version 6 layout
204800 sectors, 102400 blocks of size 1024, log size 1024 blocks
largefiles supported

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

Use the following fsapadm commands to define two allocation policies called
“datapolicy” and “metadatapolicy” to refer to the vol1 and vol2 volumes:

fsapadm define /mnt1 datapolicy vol1
fsapadm define /mnt1 metadatapolicy vol2

Assign these policies at the file system level. The data policy must be specified before the
metadata policy:

fsapadm assignfs /mnt1 datapolicy metadatapolicy
fsvoladm list /mnt1
devid size used avail name
0 51200 1250 49950 vol1
1 51200 16 51184 vol2

The assignment of the policies on a file system-wide basis ensures that any metadata
allocated is stored on the device with the policy “metadatapolicy” (vol2) and all user
data is be stored on vol1 with the associated “datapolicy” policy.
Chapter 8, Multi-Volume File Systems 81

Volume Encapsulation
The effect of creating a number of files is shown in the following script:

i=1
while [$i -lt 1000]
do

dd if=/dev/zero of=/mnt1/$i bs=65536 count=1
i=‘expr $i + 1‘

done

Before the script completes, it runs out of space even though space is still available on the
vol2 volume:

fsvoladm list /mnt1
devid size used avail name
0 51200 51200 0 vol1
1 51200 221 50979 vol2

To allocate user data from the vol1 volume and then use vol2 if space runs out, assign
the allocation policy as follows:

fsapadm define /mnt1 datapolicy vol1 vol2

You must have system administrator privileges to create, remove, change policies, or set
file system or Storage Checkpoint level policies. Users can assign a pre-existing policy to
their files if the policy allows that. Policies can be inherited for new files.

Volume Encapsulation
Multi-volume support enables the ability to encapsulate an existing raw volume and
make the volume contents appear as a file in the file system. There are two steps required
to achieve this:

◆ Add the volume to an existing volume set.

◆ Add the volume to the file system using fsvoladm.

As an example, assume that the following volume set and new volume exist:

vxvset list myvset
VOLUME INDEX LENGTH STATE CONTEXT
vol1 0 102400 ACTIVE -
vol2 1 102400 ACTIVE -
82 VERITAS File System Administrator’s Guide

Volume Encapsulation
The volume set has two volumes. Create a third volume as part of the passwd file and
write it to the volume. This is to demonstrate how the volume can be accessed as a file as
shown later:

vxassist make dbvol 100m
dd if=/etc/passwd of=/dev/vx/rdsk/rootdg/dbvol count=1
1+0 records in
1+0 records out

Create a file system on the volume set and mount it. The new volume is added to the
volume set:

mkfs –F vxfs /dev/vx/rdsk/rootdg/myvset
version 6 layout
204800 sectors, 102400 blocks of size 1024, log size 1024 blocks
largefiles not supported

mount –F vxfs /dev/vx/dsk/rootdg/myvset /mnt1
vxvset addvol myvset dbvol

The final step is to call fsvoladm to perform the encapsulation:

fsvoladm encapsulate /mnt1/dbfile dbvol 100m
ls -l /mnt1/dbfile
-rw------- 1 root other 104857600 May 22 11:30 /mnt1/dbfile

head -2 /mnt1/dbfile
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:

Note that the passwd file that was written to the raw volume is now visible in the new
file.

Note If the encapsulated file is changed in any way, for example, extended, truncated, or
moved with an allocation policy or resized volume, or the volume is encapsulated
with a bias, the file cannot be de-encapsulated.
Chapter 8, Multi-Volume File Systems 83

Volume Encapsulation
84 VERITAS File System Administrator’s Guide

VERITAS File System Quick Reference
 A

This appendix lists the VERITAS File System (VxFS) commands and manual pages.

◆ Command Summary

◆ Online Manual Pages

This appendix provides instructions and examples on performing the following VxFS
operations:

◆ Creating a File System

◆ Converting a File System to VxFS

◆ Mounting a File System

◆ Unmounting a File System

◆ Displaying Information on Mounted File Systems

◆ Identifying File System Types

◆ Resizing a File System

◆ Backing Up and Restoring a File System

◆ Using Quotas
85

Command Summary
Command Summary
Symbolic links to all VxFS command executables are installed in the /opt/VRTS/bin
directory. Add this directory to the end of your PATH environment variable to access the
commands.

Command Description

df Reports the number of free disk blocks and inodes for a VxFS file system.

fcladm VxFS File Change Log administration utility.

ff Lists file names and inode information for a VxFS file system.

fsadm Resizes or defragments a VxFS file system.

fsapadm VxFS allocation policy administration utility.

fscat Cats a VxFS file system.

fscdsconv Converts the byte order of a file system.

fscdstask Performs various CDS operations.

fsck Checks and repairs a VxFS file system.

fsdb VxFS file system debugger.

fsrpadm VxFS relocation policy administration utility.

fstyp Returns the type of file system on a specified disk partition.

fsvoladm VxFS device administration utility.

getext Gets extent attributes for a VxFS file system.

mkfs Constructs a VxFS file system.

mount Mounts a VxFS file system.

ncheck Generates path names from inode numbers for a VxFS file system.

setext Sets extent attributes on a file in a VxFS file system.

vxdump Incremental file system dump.

vxfsconvert Converts an unmounted file system to VxFS disk layout.
86 VERITAS File System Administrator’s Guide

Command Summary
vxfsstat Displays file system statistics.

vxlsino VxFS reverse path name lookup utility.

vxrestore Restores a file system incrementally.

vxtunefs Tunes a VxFS file system.

Command Description
Appendix A, VERITAS File System Quick Reference 87

Online Manual Pages
Online Manual Pages
This release includes the following online manual pages as part of the VRTSvxfs
package. These are installed in the appropriate directories under /opt/VRTS/man (add
this to your MANPATH environment variable), but does not update the windex database.
To ensure that new VxFS manual pages display correctly, update the windex database
after installing VRTSvxfs. See the catman(1M) manual page for more information.

Section 1 Description

cp_vxfs VxFS-specific copy command.

cpio_vxfs VxFS-specific cpio command.

getext Gets extent attributes for a VxFS file system.

ls_vxfs VxFS-specific list command.

mv_vxfs VxFS-specific move command.

setext Sets extent attributes on a file in a VxFS file system.

Section 1M Description

df_vxfs Reports the number of free disk blocks and inodes for a
VxFS file system.

fcladm VxFS File Change Log administration utility.

ff_vxfs Lists file names and inode information for a VxFS file
system.

fsrpadm VxFS relocation policy administration utility.

fsadm_vxfs Resizes or reorganizes a VxFS file system.

fsapadm VxFS allocation policy administration utility.

fscat_vxfs Cats a VxFS file system.

fscdsconv Converts the byte order of a file system.

fscdstask Performs various CDS operations.

fsck_vxfs Checks and repairs a VxFS file system.

fsvoladm VxFS device administration utility.
88 VERITAS File System Administrator’s Guide

Online Manual Pages
fsdb_vxfs VxFS file system debugger.

fsmove Relocates files to a destination component volume.

fsrpadm VxFS relocation policy administration command.

fssweep Traverses the directory structure of one or more file
systems.

fstyp_vxfs Returns the type of file system on a specified disk
partition.

fsvoladm VxFS volume administration utility.

getext Gets extent attributes for a VxFS file system.

mkfs_vxfs Constructs a VxFS file system.

mount_vxfs Mounts a VxFS file system.

ncheck_vxfs Generates path names from inode numbers for a VxFS
file system.

quot Summarizes ownership on a VxFS file system.

quotacheck_vxfs Checks VxFS file system quota consistency.

umount_vxfs Unmounts a VxFS file system.

vxdump Incremental file system dump.

vxedquota Edits user quotas for a VxFS file system.

vxenablef Enables specific VxFS features.

vxfsconvert Converts an unmounted file system to VxFS disk layout.

vxfsstat Displays file system statistics.

vxlsino VxFS reverse path name lookup utility.

vxquot Displays file system ownership summaries for a VxFS
file system.

vxquota Displays user disk quotas and usage on a VxFS file
system.
Appendix A, VERITAS File System Quick Reference 89

Online Manual Pages
vxquotaoff
vxquotaon

Turns quotas on and off for a VxFS file system.

vxrepquota Summarizes quotas for a VxFS file system.

vxrestore Restores a file system incrementally.

vxtunefs Tunes a VxFS file system.

Section 3 Description

vxfs_ap_assign_ckpt Assigns an allocation policy to file data in a Storage
Checkpoint.

vxfs_ap_assign_file Assigns an allocation policy for file data and metadata.

vxfs_ap_assign_fs Assigns an allocation policy for all file data and
metadata within a specified file system.

vxfs_ap_define Defines a new allocation policy.

vxfs_ap_enforce_file Ensures that all blocks in a specified file match the file
allocation policy.

vxfs_ap_enumerate Returns information about all allocation policies.

vxfs_ap_query Returns information about a specific allocation policy.

vxfs_ap_query_ckpt Returns information about allocation policies for each
Storage Checkpoint.

vxfs_ap_query_file Returns information about allocation policies assigned
to a specified file.

vxfs_ap_query_fs Retrieves allocation policies assigned to a specified file
system.

vxfs_ap_remove Deletes a specified allocation policy.

vxfs_fcl_sync Sets a synchronization point in the VxFS File Change
Log.

vxfs_get_ioffsets Obtains VxFS inode field offsets.

vxfs_inotopath Returns path names for a given inode number.

vxfs_nattr_link Links to a named data stream.
90 VERITAS File System Administrator’s Guide

Online Manual Pages
vxfs_nattr_open Opens a named data stream.

vxfs_nattr_rename Renames a named data stream.

vxfs_nattr_unlink Removes a named data stream.

vxfs_nattr_utimes Sets access and modification times for named data
streams.

vxfs_vol_add Adds a volume to a multi-volume file system.

vxfs_vol_deencapsulate De-encapsulates a volume from a multi-volume file
system.

vxfs_vol_encapsulate Encapsulates a volume within a multi-volume file
system.

vxfs_vol_encapsulate_bias Encapsulates a volume within a multi-volume file
system.

vxfs_vol_enumerate Returns information about the volumes within a
multi-volume file system.

vxfs_vol_remove Removes a volume from a multi-volume file system.

vxfs_vol_resize Resizes a specific volume within a multi-volume file
system.

vxfs_vol_stat Returns free space information about a component
volume within a multi-volume file system.

Section 4 Description

fs_vxfs Format of a VxFS file system volume.

inode_vxfs Format of a VxFS file system inode.

tunefstab VxFS file system tuning parameters table.

Section 7 Description

vxfsio VxFS file system control functions.
Appendix A, VERITAS File System Quick Reference 91

Creating a File System
Creating a File System
The mkfs command creates a VxFS file system by writing to a special character device file.
The special character device is a raw disk device or a VERITAS Volume Manager (VxVM)
volume. mkfs builds a file system with a root directory and a lost+found directory.

Before running mkfs, you must create the target device. Refer to your operating system
documentation for more information. If you are using a logical device (such as a VxVM
volume), see the VxVM documentation for instructions on device initialization.

How to Create a File System
To create a file system, use the mkfs command:

mkfs [-F vxfs] [generic_options] [-o specific_options] special [size]

See the following manual pages for more information about creating VxFS file systems:

◆ mkfs(1M)

◆ mkfs_vxfs(1M)

vxfs The file system type.

generic_options Options common to most other file system types.

specific_options Options specific to VxFS.

-o N Displays the geometry of the file system and does not write to the
device.

-o largefiles Allows users to create files larger than two gigabytes. The default
option is largefiles.

special The character (raw) device or VERITAS Volume Manager volume.

size The size of the new file system (in sectors).
92 VERITAS File System Administrator’s Guide

Converting a File System to VxFS
Example

To create a VxFS file system 12288 sectors in size on VxVM volume, enter:

mkfs -F vxfs /dev/vx/rdsk/diskgroup/volume 12288

Information similar to the following displays:

version 6 layout
12288 sectors, 6144 blocks of size 1024, log size 512 blocks
unlimited inodes, 5597 data blocks, 5492 free data blocks
1 allocation units of 32778 blocks, 32768 data blocks
last allocation unit has 5597 data blocks
first allocation unit starts at block 537
overhead per allocation unit is 10 blocks
initial allocation overhead is 105 blocks

At this point, you can mount the newly created file system.

Converting a File System to VxFS
The vxfsconvert command can be used to convert a file system to a VxFS file system.

How to Convert a File System
To convert a file system, use the vxfsconvert command:

vxfsconvert [-l logsize] [-s size] [-efnNvyY] special

-e Estimates the amount of space required to complete the conversion.

-f Displays the list of supported file system types.

-l logsize Specifies the size of the file system intent log.

-n|N Assumes a no response to all questions asked by vxfsconvert.

-s size Directs vxfsconvert to use free disk space past the current end of
the file system to store VxFS metadata.

-v Specifies verbose mode.

-y|Y Assumes a yes response to all questions asked by vxfsconvert.

special
Appendix A, VERITAS File System Quick Reference 93

Mounting a File System
See the vxfsconvert(1M) manual page for more information about converting a file
system to a VxFS file system.

Example

To convert a file system to a VxFS file system with an intent log size of 4096 blocks, enter:

vxfsconvert -l 4096 /dev/vx/rdsk/diskgroup/volume

Mounting a File System
You can mount a VxFS file system by using the mount command. When you enter the
mount command, the generic mount command parses the arguments and the -F FSType
option executes the mount command specific to that file system type. The mount
command first searches the /etc/fs/FSType directory, then the
/usr/lib/fs/FSType directory. If the -F option is not supplied, the command searches
the file /etc/vfstab for a file system and an FSType matching the special file or mount
point provided. If no file system type is specified, mount uses the default file system.

How to Mount a File System
After you create a VxFS file system, you can use the mount command to mount the file
system:

mount [-F vxfs] [generic_options] [-r] [-o specific_options] \
special mount_point

vxfs File system type.

generic_options Options common to most other file system types.

specific_options Options specific to VxFS.

-o ckpt=ckpt_name Mounts a VERITAS Storage Checkpoint.

special Block special device.

mount_point Directory on which to mount the file system.

-r Mounts the file system as read-only.
94 VERITAS File System Administrator’s Guide

Mounting a File System
Mount Options

The mount command has numerous options to tailor a file system for various functions
and environments. Some specific_options are listed below.

◆ Security feature

If security is important, use blkclear to ensure that deleted files are completely
erased before the space is reused.

◆ Support for large files

If you specify the largefiles option, you can create files larger than two gigabytes
on the file system. The default option is largefiles.

◆ News file systems

If you are using cnews, use delaylog (or tmplog),mincache=closesync
because cnews does an fsync() on each news file before marking it received. The
fsync() is performed synchronously as required, but other options are delayed.

◆ Temporary file systems

For a temporary file system such as /tmp, where performance is more important than
data integrity, use tmplog,mincache=tmpcache.

See “Choosing mount Command Options” on page 20 and the following manual pages
for more information about the mount command and its available options:

mount(1M)

mount_vxfs(1M)

vfstab(4)

Example

To mount the file system /dev/vx/dsk/fsvol/vol1 on the /ext directory with
read/write access and delayed logging, enter:

mount -F vxfs -o delaylog /dev/vx/dsk/fsvol/vol1 /ext
Appendix A, VERITAS File System Quick Reference 95

Mounting a File System
How to Edit the vfstab File
You can edit the /etc/vfstab file to automatically mount a file system at boot time. You
must specify:

◆ the special block device name to mount

◆ the special character device name used by fsck

◆ the mount point

◆ the mount options

◆ the file system type (vxfs)

◆ which fsck pass looks at the file system

◆ whether to mount the file system at boot time

Each entry must be on a single line. See the vfstab(4) manual page for more information
about the /etc/vfstab file format.

Here is a typical vfstab file with the new file system on the last line:

device
to mount
#

device
to fsck

mount
point

FS
type

fsck
pass

mount
at boot

mount
options

/dev/dsk/c1d0s2 /dev/rdsk/c1d0s2 /usr ufs 1 yes —

/proc — /proc proc — no —

fd — /dev/fd fd — no —

swap — /tmp tmpfs — yes —

/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 / ufs 1 no —

/dev/dsk/c0t3d0s1 — — swap — no —

/dev/vx/dsk/fsvol/vol1 /dev/vx/rdsk/fsvol/vol1 /ext vxfs 1 yes —
96 VERITAS File System Administrator’s Guide

Unmounting a File System
Unmounting a File System
Use the umount command to unmount a currently mounted file system.

How to Unmount a File System
To unmount a file system, use the following syntax:

 umount special | mount_point

Specify the file system to be unmounted as a mount_point or special (the device on which
the file system resides). See the umount_vxfs(1M) manual page for more information
about this command and its available options.

Example

To unmount the file system /dev/vx/dsk/fsvol/vol1, enter:

umount /dev/vx/dsk/fsvol/vol1

To unmount all file systems not required by the system, enter:

umount -a

This unmounts all file systems except /, /usr, /usr/kvm, /var, /proc, /dev/fd, and
/tmp.

Displaying Information on Mounted File Systems
You can use the mount command to display a list of currently mounted file systems.

How to Display File System Information
To view the status of mounted file systems, use the syntax:

 mount -v

This shows the file system type and mount options for all mounted file systems. The -v
option specifies verbose mode.

See the following manual pages for more information about the mount command and its
available options:

mount(1M)

mount_vxfs(1M)
Appendix A, VERITAS File System Quick Reference 97

Identifying File System Types
Example

When invoked without options, the mount command displays file system information
similar to the following:

mount
mount

/ on /dev/root read/write/setuid on Thu May 26 16:58:24 2004
/proc on /proc read/write on Thu May 26 16:58:25 2004
/dev/fd on /dev/fd read/write on Thu May 26 16:58:26 2004
/tmp on /tmp read/write on Thu May 26 16:59:33 2004
/var/tmp on /var/tmp read/write on Thu May 26 16:59:34 2004

Identifying File System Types
Use the fstyp command to determine the file system type for a specified file system. This
is useful when a file system was created elsewhere and you want to know its type.

How to Identify a File System
To determine the status of mounted file systems, use the syntax:

 fstyp -v special

See the following manual pages for more information about the fstyp command and its

available options:

fstyp(1M)

fstyp_vxfs(1M)

special The character (raw) device.

-v Specifies verbose mode.
98 VERITAS File System Administrator’s Guide

Resizing a File System
Example

To find out what kind of file system is on the device /dev/vx/dsk/fsvol/vol1, enter:

fstyp -v /dev/vx/dsk/fsvol/vol1

The output indicates that the file system type is vxfs, and displays file system
information similar to the following:

vxfs
magic a501fcf5 version 6 ctime Tue Jun 25 18:29:39 2003
logstart 17 logend 1040
bsize 1024 size 1048576 dsize 1047255 ninode 0 nau 8
defiextsize 64 ilbsize 0 immedlen 96 ndaddr 10
aufirst 1049 emap 2 imap 0 iextop 0 istart 0
bstart 34 femap 1051 fimap 0 fiextop 0 fistart 0 fbstart 1083
nindir 2048 aulen 131106 auimlen 0 auemlen 32
auilen 0 aupad 0 aublocks 131072 maxtier 17
inopb 4 inopau 0 ndiripau 0 iaddrlen 8 bshift 10
inoshift 2 bmask fffffc00 boffmask 3ff checksum d7938aa1
oltext1 9 oltext2 1041 oltsize 8 checksum2 52a
free 382614 ifree 0
efree 676 413 426 466 612 462 226 112 85 35 14 3 6 5 4 4 0 0

Resizing a File System
You can extend or shrink mounted VxFS file systems using the fsadm command.Use the
extendfs command to extend the size of an unmounted file system. A file system using
the Version 4 disk layout can be up to two terabytes in size. A file system using the Version
5 disk layout can be up to 32 terabytes in size. A file system using the Version 6 disk layout
can be up to 8 exabytes in size. The size to which a Version 5 or Version 6 disk layout file
system can be increased depends on the file system block size (as shown in the tables
under “VxFS Version 5 Disk Layout” on page 152 and “VxFS Version 6 Disk Layout” on
page 153). See the following manual pages for more information about resizing file
systems:

format(1M)

fsadm_vxfs(1M)

How to Extend a File System Using fsadm
If a VxFS file system is not large enough, you can increase its size. The size of the file
system is specified in units of 512-byte blocks (or sectors).

Note If a file system is full, busy, or too fragmented, the resize operation may fail.
Appendix A, VERITAS File System Quick Reference 99

Resizing a File System
To extend a VxFS file system, use the syntax:

fsadm [-b newsize] [-r rawdev] mount_point

Note The device must have enough space to contain the larger file system. See the
format(1M) manual page or the VERITAS Volume Manager Administrator’s Guide for
more information.

Example

To extend the VxFS file system mounted on /ext to 22528 sectors, enter:

fsadm -b 22528 /ext

How to Shrink a File System
You can decrease the size of the file system using fsadm, even while the file system is
mounted.

Note In cases where data is allocated towards the end of the file system, shrinking may
not be possible. If a file system is full, busy, or too fragmented, the resize operation
may fail.

To decrease the size of a VxFS file system, use the syntax:

fsadm [-b newsize] [-r rawdev] mount_point

newsize The size (in sectors) to which the file system will increase.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/vfstab and fsadm cannot determine the raw device.

newsize The size (in sectors) to which the file system will shrink.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/vfstab and fsadm cannot determine the raw device.
100 VERITAS File System Administrator’s Guide

Resizing a File System
Example

To shrink a VxFS file system mounted at /ext to 20480 sectors, enter:

fsadm -b 20480 /ext

Caution After this operation, there is unused space at the end of the device. You can then
resize the device, but be careful not to make the device smaller than the new
size of the file system.

How to Reorganize a File System
You can reorganize (or compact) a fragmented file system using fsadm, even while the
file system is mounted. This may help shrink a file system that could not previously be
decreased.

Note If a file system is full or busy, the reorg operation may fail.

To reorganize a VxFS file system, use the syntax:

fsadm [-e] [-d] [-E] [-D] [-r rawdev] mount_point

Example

To reorganize the VxFS file system mounted at /ext, enter:

fsadm -EeDd /ext

-d Reorders directory entries to put subdirectory entries first, then all
other entries in decreasing order of time of last access. Also
compacts directories to remove free space.

-D Reports on directory fragmentation.

-e Minimizes file system fragmentation. Files are reorganized to have
the minimum number of extents.

-E Reports on extent fragmentation.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/vfstab and fsadm cannot determine the raw device.
Appendix A, VERITAS File System Quick Reference 101

Backing Up and Restoring a File System
Backing Up and Restoring a File System
To back up a VxFS file system, you first create a read-only snapshot file system, then back
up the snapshot. This procedure lets you keep the main file system on line. The snapshot
is a copy of the snapped file system that is frozen at the moment the snapshot is created.

See “Online Backup Using File System Snapshots” on page 57 and the following manual
pages for more information about the mount, vxdump, and vxrestore commands and
their available options:

◆ mount(1M)

◆ mount_vxfs(1M)

◆ vxdump(1M)

◆ vxrestore(1M)

How to Create and Mount a Snapshot File System
The first step in backing up a VxFS file system is to create and mount a snapshot file
system. To create and mount a snapshot of a VxFS file system, use the syntax:

mount [-F vxfs] -o snapof=source,[snapsize=size] \
destination snap_mount_point

Example

To create a snapshot file system of the file system at /home on
/dev/vx/dsk/fsvol/vol1 and mount it at /snapmount, enter:

mount -F vxfs -o snapof=/dev/vx/dsk/fsvol/vol1, \
snapsize=32768 /dev/vx/dsk/fsvol/vol1 /snapmount

You can now back up the file system, as described in the following section.

source The special device name or mount point of the file system to copy.

destination The name of the special device on which to create the snapshot.

size The size of the snapshot file system in sectors.

snap_mount_point Location where to mount the snapshot; snap_mount_point must
exist before you enter this command.
102 VERITAS File System Administrator’s Guide

Backing Up and Restoring a File System
How to Back Up a File System
After creating a snapshot file system as described in the previous section, you can use
vxdump to back it up. To back up a VxFS snapshot file system, use the syntax:

vxdump [-c] [-f backupdev] snap_mount_point

Example

To back up the VxFS snapshot file system mounted at /snapmount to the tape drive with
device name /dev/rmt/00m, enter:

vxdump -cf /dev /snapmount

How to Restore a File System
After backing up the file system, you can restore it using the vxrestore command. First,
create and mount an empty file system. To restore a VxFS snapshot file system, use the
syntax:

vxrestore [-v] [-x] [filename]

Example

To restore a VxFS snapshot file system from the tape /dev/st1 into the mount point
/restore, enter:

cd /restore
vxrestore -v -x -f /dev/st1

-c Specifies using a cartridge tape device.

backupdev The device on which to back up the file system.

snap_mount_point The snapshot file system’s mount point.

-v Specifies verbose mode.

-x Extracts the named files from the tape.

filename The file or directory to restore. If filename is omitted, the root
directory (and thus the entire tape) is extracted.
Appendix A, VERITAS File System Quick Reference 103

Using Quotas
Using Quotas
You can use quotas to allocate per-user quotas on VxFS file systems.

See “Quotas” on page 65 and the following manual pages for more information about the
vxquota, vxquotaon, vxquotaoff, and vxedquota commands and their available
options:

◆ vxquota(1M)

◆ vxquotaon(1M)

◆ vxquotaoff(1M)

◆ vxedquota(1M)

How to Turn On Quotas
You can enable quotas at mount time or after a file system is mounted. The root directory
of the file system must contain a file named quotas that is owned by root.

To turn on quotas for a mounted file system, use the syntax:

vxquotaon mount_point

To mount a file system and turn on quotas at the same time, use the syntax:

 mount -F vxfs -o quota special mount_point

If the root directory does not contain a quotas file, the mount command succeeds, but
quotas are not turned on.

Example

To create a quotas file (if it does not already exist) and turn on quotas for a VxFS file
system mounted at /mnt, enter:

touch /mnt/quotas
vxquotaon /mnt

To turn on quotas for a file system at mount time, enter:

mount -F vxfs -o quota /dev/vx/dsk/fsvol/vol1 /mnt
104 VERITAS File System Administrator’s Guide

Using Quotas
How to Set Up User Quotas
You can set user quotas with the vxedquota command if you have superuser privileges.
User quotas can have a soft limit and/or hard limit. You can modify the limits or assign
them specific values. Users are allowed to exceed the soft limit, but only for a specified
time. Disk usage can never exceed the hard limit. The default time limit for exceeding the
soft limit is seven days on VxFS file systems.

vxedquota creates a temporary file for a specified user. This file contains on-disk quotas
for each mounted VxFS file system that has a quotas file. The temporary file has one or
more lines similar to:

fs /mnt blocks (soft = 0, hard = 0) inodes (soft=0, hard=0)
fs /mnt1 blocks (soft = 100, hard = 200) inodes (soft=10, hard=20)

Quotas do not need to be turned on for to work. However, the quota limits apply only
after quotas are turned on for a given file system.

vxedquota has an option to modify time limits. Modified time limits apply to the entire
file system; you cannot set time limits for an individual user.

To invoke the quota editor, use the syntax:

 vxedquota username

To modify the time limit, use the syntax:

 vxedquota -t
Appendix A, VERITAS File System Quick Reference 105

Using Quotas
How to View Quotas
The superuser or individual user can view disk quotas and usage on VxFS file systems
using the vxquota command. To view quotas for a specific user, use the syntax:

vxquota -v username

This command displays the user’s quotas and disk usage on all mounted VxFS file
systems where the quotas file exists. You will see all established quotas regardless of
whether or not the quotas are actually turned on.

How to Turn Off Quotas
You can turn off quotas for a mounted file system using the vxquotaoff command. To
turn off quotas for a file system, use the syntax:

 vxquotaoff mount_point

Example

To turn off quotas for a VxFS file system mounted at /mnt, enter:

vxquotaoff /mnt
106 VERITAS File System Administrator’s Guide

Kernel Messages
 B

This appendix contains a listing of diagnostic or error messages generated by the
VERITAS File System (VxFS) kernel. Each message has a description and a suggestion on
how to handle or correct the underlying problem.

The following topics are covered in this chapter:

◆ File System Response to Problems

◆ Marking an Inode Bad

◆ Disabling Transactions

◆ Disabling a File System

◆ Recovering a Disabled File System

◆ Kernel Messages

◆ Global Message IDs
107

File System Response to Problems
File System Response to Problems
When the file system encounters problems, it responds in one of three ways:

◆ Marks an inode bad

◆ Disables transactions

◆ Disables the file system

Marking an Inode Bad
Inodes can be marked bad if an inode update or a directory-block update fails. In these
types of failures, the file system does not know what information is on the disk, and
considers all the information that it finds to be invalid. After an inode is marked bad, the
kernel still permits access to the file name, but any attempt to access the data in the file or
change the inode fails.

Disabling Transactions
If the file system detects an error while writing the intent log, it disables transactions.
After transactions are disabled, the files in the file system can still be read or written, but
no block or inode frees or allocations, structural changes, directory entry changes, or other
changes to metadata are allowed.

Disabling a File System
If an error occurs that compromises the integrity of the file system, VxFS disables itself. If
the intent log fails or an inode-list error occurs, the super-block is ordinarily updated
(setting the VX_FULLFSCK flag) so that the next fsck does a full structural check. If this
super-block update fails, any further changes to the file system can cause inconsistencies
that are undetectable by the intent log replay. To avoid this situation, the file system
disables itself.
108 VERITAS File System Administrator’s Guide

Kernel Messages
Recovering a Disabled File System
When the file system is disabled, no data can be written to the disk. Although some minor
file system operations still work, most simply return EIO. The only thing that can be done
when the file system is disabled is to do a umount and run a full fsck.

Although a log replay may produce a clean file system, do a full structural check to be
safe. To execute a full structural check, enter:

fsck -F vxfs -o full -y /dev/vx/rdsk/diskgroup/volume

Caution Be careful when running this command. By specifying the –y option, all fsck
user prompts are answered with a “yes”, which can make irreversible changes
if it performs a full file system check.

The file system usually becomes disabled because of disk errors. Disk failures that disable
a file system should be fixed as quickly as possible (see the fsck_vxfs(1M) manual
page).

Kernel Messages
This section lists the VxFS kernel error messages in numerical order. The Description
subsection for each message describes the problem, the Action subsection suggests
possible solutions.

Global Message IDs
When a VxFS kernel message displays on the system console, it is preceded by a
numerical ID shown in the msgcnt field. This ID number increases with each instance of
the message to guarantee that the sequence of events is known when analyzing file system
problems.

Each message is also written to an internal kernel buffer that you can view in the file
/var/adm/messages.

In some cases, additional data is written to the kernel buffer. For example, if an inode is
marked bad, the contents of the bad inode are written. When an error message is
displayed on the console, you can use the unique message ID to find the message in
/var/adm/messages and obtain the additional information.
Appendix B, Kernel Messages 109

Kernel Messages
Message
Number

Message and Definition

001 NOTICE: msgcnt x: mesg 001: V-2-01: vx_nospace - mount_point file system full (n
block extent)

◆ Description

The file system is out of space.

Often, there is plenty of space and one runaway process used up all the
remaining free space. In other cases, the available free space becomes
fragmented and unusable for some files.

◆ Action

Monitor the free space in the file system and prevent it from becoming full. If a
runaway process has used up all the space, stop that process, find the files
created by the process, and remove them. If the file system is out of space,
remove files, defragment, or expand the file system.

To remove files, use the find command to locate the files that are to be
removed. To get the most space with the least amount of work, remove large
files or file trees that are no longer needed. To defragment or expand the file
system, use fsadm (see the fsadm_vxfs(1M) manual page).

002 WARNING: msgcnt x: mesg 002: V-2-02: vx_snap_strategy - mount_point file
system write attempt to read-only file system

WARNING: msgcnt x: mesg 002: V-2-02: vx_snap_copyblk - mount_point file
system write attempt to read-only file system

◆ Description

The kernel tried to write to a read-only file system. This is an unlikely problem,
but if it occurs, the file system is disabled.

◆ Action

The file system was not written, so no action is required. Report this as a bug to
your customer support organization.
110 VERITAS File System Administrator’s Guide

Kernel Messages
003, 004, 005 WARNING: msgcnt x: mesg 003: V-2-03: vx_mapbad - mount_point file system
free extent bitmap in au aun marked bad

WARNING: msgcnt x: mesg 004: V-2-04: vx_mapbad - mount_point file system
free inode bitmap in au aun marked bad

WARNING: msgcnt x: mesg 005: V-2-05: vx_mapbad - mount_point file system
inode extended operation bitmap in au aun marked bad

◆ Description

If there is an I/O failure while writing a bitmap, the map is marked bad. The
kernel considers the maps to be invalid, so does not do any more resource
allocation from maps. This situation can cause the file system to report out of
space or out of inode error messages even though df may report an
adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a
consistency check, or blocks are freed that are already free in the bitmap, the file
system has been corrupted. This may have occurred because a user or process
wrote directly to the device or used fsdb to change the file system.

The VX_FULLFSCK flag is set. If the map that failed was a free extent bitmap,
and the VX_FULLFSCK flag can’t be set, then the file system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

006, 007 WARNING: msgcnt x: mesg 006: V-2-06: vx_sumupd - mount_point file system
summary update in au aun failed

WARNING: msgcnt x: mesg 007: V-2-07: vx_sumupd - mount_point file system
summary update in inode au iaun failed

◆ Description

An I/O error occurred while writing the allocation unit or inode allocation unit
bitmap summary to disk. This sets the VX_FULLFSCK flag on the file system. If
the VX_FULLFSCK flag can’t be set, the file system is disabled.

◆ Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access, and
use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 111

Kernel Messages
008, 009 WARNING: msgcnt x: mesg 008: V-2-08: vx_direrr: function - mount_point file
system dir inode dir_inumber dev/block device_ID/block dirent inode
dirent_inumber error errno

WARNING: msgcnt x: mesg 009: V-2-09: vx_direrr: function - mount_point file
system dir inode dir_inumber dirent inode dirent_inumber immediate directory
error errno

◆ Description

A directory operation failed in an unexpected manner. The mount point, inode,
and block number identify the failing directory. If the inode is an immediate
directory, the directory entries are stored in the inode, so no block number is
reported. If the error is ENOENT or ENOTDIR, an inconsistency was detected in
the directory block. This inconsistency could be a bad free count, a corrupted
hash chain, or any similar directory structure error. If the error is EIO or ENXIO,
an I/O failure occurred while reading or writing the disk block.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a full
structural check the next time it is run.

◆ Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access.
Unmount the file system and use fsck to run a full structural check.

010 WARNING: msgcnt x: mesg 010: V-2-10: vx_ialloc - mount_point file system inode
inumber not free

◆ Description

When the kernel allocates an inode from the free inode bitmap, it checks the
mode and link count of the inode. If either is non-zero, the free inode bitmap or
the inode list is corrupted.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a full
structural check the next time it is run.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
112 VERITAS File System Administrator’s Guide

Kernel Messages
011 NOTICE: msgcnt x: mesg 011: V-2-11: vx_noinode - mount_point file system out of
inodes

◆ Description

The file system is out of inodes.

◆ Action

Monitor the free inodes in the file system. If the file system is getting full, create
more inodes either by removing files or by expanding the file system. File
system resizing is described in “Online System Administration” on page 8, and
in the fsadm_vxfs(1M) online manual page.

012 WARNING: msgcnt x: mesg 012: V-2-12: vx_iget - mount_point file system invalid
inode number inumber

◆ Description

When the kernel tries to read an inode, it checks the inode number against the
valid range. If the inode number is out of range, the data structure that
referenced the inode number is incorrect and must be fixed.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a full
structural check the next time it is run.

◆ Action

Unmount the file system and use fsck to run a full structural check.

013 WARNING: msgcnt x: mesg 013: V-2-13: vx_iposition - mount_point file system
inode inumber invalid inode list extent

◆ Description

For a Version 2 and above disk layout, the inode list is dynamically allocated.
When the kernel tries to read an inode, it must look up the location of the inode
in the inode list file. If the kernel finds a bad extent, the inode can’t be accessed.
All of the inode list extents are validated when the file system is mounted, so if
the kernel finds a bad extent, the integrity of the inode list is questionable. This
is a very serious error.

The VX_FULLFSCK flag is set in the super-block and the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 113

Kernel Messages
014 WARNING: msgcnt x: mesg 014: V-2-14: vx_iget - inode table overflow

◆ Description

All the system in-memory inodes are busy and an attempt was made to use a
new inode.

◆ Action

Look at the processes that are running and determine which processes are using
inodes. If it appears there are runaway processes, they might be tying up the
inodes. If the system load appears normal, increase the vxfs_ninode
parameter in the kernel (see “Kernel Tunables” on page 28).

015 WARNING: msgcnt x: mesg 015: V-2-15: vx_ibadinactive - mount_point file
system can’t mark inode inumber bad

WARNING: msgcnt x: mesg 015: V-2-15: vx_ilisterr - mount_point file system can’t
mark inode inumber bad

◆ Description

An attempt to mark an inode bad on disk, and the super-block update to set the
VX_FULLFSCK flag, failed. This indicates that a catastrophic disk error may
have occurred since both an inode list block and the super-block had I/O
failures. The file system is disabled to preserve file system integrity.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk failed, replace it before remounting the file
system.

016 WARNING: msgcnt x: mesg 016: V-2-16: vx_ilisterr - mount_point file system
error reading inode inumber

◆ Description

An I/O error occurred while reading the inode list. The VX_FULLFSCK flag is
set.

◆ Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access.
Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
114 VERITAS File System Administrator’s Guide

Kernel Messages
017 WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_getblk - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iget - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indadd - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indtrunc - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iremove - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_bmap - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_bmap_indirect_ext4 - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_delbuf_flush - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dio_iovec - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dirbread - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dircreate - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dirlook - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_doextop_iau - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_doextop_now - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_do_getpage - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_enter_ext4 - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_exttrunc - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_get_alloc - mount_point file system
inode inumber marked bad in core

Message
Number

Message and Definition
Appendix B, Kernel Messages 115

Kernel Messages
017 (continued) WARNING: msgcnt x: mesg 017: V-2-17: vx_ilisterr - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_indtrunc - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iread - mount_point file system inode
inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove_attr - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_logwrite_flush - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_oltmount_iget - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_overlay_bmap - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_readnomap - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_reorg_trunc - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_stablestore - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_tranitimes - mount_point file system
inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_trunc - mount_point file system inode
inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_alloc2 - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_default - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_zero_alloc - mount_point file system
inode inumber marked bad in core

Message
Number

Message and Definition
116 VERITAS File System Administrator’s Guide

Kernel Messages
017 (continued) ◆ Description

When inode information is no longer dependable, the kernel marks it bad in
memory. This is followed by a message to mark it bad on disk as well unless the
mount command ioerror option is set to disable, or there is subsequent I/O
failure when updating the inode on disk. No further operations can be
performed on the inode.

The most common reason for marking an inode bad is a disk I/O failure. If there
is an I/O failure in the inode list, on a directory block, or an indirect address
extent, the integrity of the data in the inode, or the data the kernel tried to write
to the inode list, is questionable. In these cases, the disk driver prints an error
message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address, invalid
inode fields, or corruption in directory data blocks during a validation check. A
validation check failure indicates the file system has been corrupted. This
usually occurs because a user or process has written directly to the device or
used fsdb to change the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a full structural
check the next time it is run.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system. The file system can be remounted without a full fsck unless the
VX_FULLFSCK flag is set for the file system.

Message
Number

Message and Definition
Appendix B, Kernel Messages 117

Kernel Messages
019 WARNING: msgcnt x: mesg 019: V-2-19: vx_log_add - mount_point file system log
overflow

◆ Description

Log ID overflow. When the log ID reaches VX_MAXLOGID (approximately one
billion by default), a flag is set so the file system resets the log ID at the next
opportunity. If the log ID has not been reset, when the log ID reaches
VX_DISLOGID (approximately VX_MAXLOGID plus 500 million by default), the
file system is disabled. Since a log reset will occur at the next 60 second sync
interval, this should never happen.

◆ Action

Unmount the file system and use fsck to run a full structural check.

020 WARNING: msgcnt x: mesg 020: V-2-20: vx_logerr - mount_point file system log
error errno

◆ Description

Intent log failed. The kernel will try to set the VX_FULLFSCK and VX_LOGBAD
flags in the super-block to prevent running a log replay. If the super-block can’t
be updated, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk failed, replace it before remounting the file
system.

Message
Number

Message and Definition
118 VERITAS File System Administrator’s Guide

Kernel Messages
021 WARNING: msgcnt x: mesg 021: V-2-21: vx_fs_init - mount_point file system
validation failure

◆ Description

When a VxFS file system is mounted, the structure is read from disk. If the file
system is marked clean, the structure is correct and the first block of the intent
log is cleared.

If there is any I/O problem or the structure is inconsistent, the kernel sets the
VX_FULLFSCK flag and the mount fails.

If the error isn’t related to an I/O failure, this may have occurred because a user
or process has written directly to the device or used fsdb to change the file
system.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system and use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 119

Kernel Messages
022 WARNING: msgcnt x: mesg 022: V-2-22: vx_mountroot - root file system
remount failed

◆ Description

The remount of the root file system failed. The system will not be usable if the
root file system can’t be remounted for read/write access.

When a VERITAS root file system is first mounted, it is mounted for read-only
access. After fsck is run, the file system is remounted for read/write access.
The remount fails if fsck completed a resize operation or modified a file that
was opened before the fsck was run. It also fails if an I/O error occurred
during the remount.

Usually, the system halts or reboots automatically.

◆ Action

Reboot the system. The system either remounts the root cleanly or runs a full
structural fsck and remounts cleanly. If the remount succeeds, no further
action is necessary.

Check the console log for I/O errors. If the disk has failed, replace it before the
file system is mounted for write access.

If the system won’t come up and a full structural fsck hasn’t been run, reboot
the system on a backup root and manually run a full structural fsck. If the
problem persists after the full structural fsck and there are no I/O errors,
contact your customer support organization.

023 WARNING: msgcnt x: mesg 023: V-2-23: vx_unmountroot - root file system is
busy and can’t be unmounted cleanly

◆ Description

There were active files in the file system and they caused the unmount to fail.

When the system is halted, the root file system is unmounted. This happens
occasionally when a process is hung and it can’t be killed before unmounting
the root.

◆ Action

fsck will run when the system is rebooted. It should clean up the file system.
No other action is necessary.

If the problem occurs every time the system is halted, determine the cause and
contact your customer support organization.

Message
Number

Message and Definition
120 VERITAS File System Administrator’s Guide

Kernel Messages
024 WARNING: msgcnt x: mesg 024: V-2-24: vx_cutwait - mount_point file system
current usage table update error

◆ Description

Update to the current usage table (CUT) failed.

For a Version 2 disk layout, the CUT contains a fileset version number and total
number of blocks used by each fileset.

The VX_FULLFSCK flag is set in the super-block. If the super-block can’t be
written, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

025 WARNING: msgcnt x: mesg 025: V-2-25: vx_wsuper - mount_point file system
super-block update failed

◆ Description

An I/O error occurred while writing the super-block during a resize operation.
The file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the problem is a disk failure, replace the disk before
the file system is mounted for write access.

026 WARNING: msgcnt x: mesg 026: V-2-26: vx_snap_copyblk - mount_point primary
file system read error

◆ Description

Snapshot file system error.

When the primary file system is written, copies of the original data must be
written to the snapshot file system. If a read error occurs on a primary file
system during the copy, any snapshot file system that doesn’t already have a
copy of the data is out of date and must be disabled.

◆ Action

An error message for the primary file system prints. Resolve the error on the
primary file system and rerun any backups or other applications that were
using the snapshot that failed when the error occurred.

Message
Number

Message and Definition
Appendix B, Kernel Messages 121

Kernel Messages
027 WARNING: msgcnt x: mesg 027: V-2-27: vx_snap_bpcopy - mount_point
snapshot file system write error

◆ Description

A write to the snapshot file system failed.

As the primary file system is updated, copies of the original data are read from
the primary file system and written to the snapshot file system. If one of these
writes fails, the snapshot file system is disabled.

◆ Action

Check the console log for I/O errors. If the disk has failed, replace it. Resolve the
error on the disk and rerun any backups or other applications that were using
the snapshot that failed when the error occurred.

028 WARNING: msgcnt x: mesg 028: V-2-28: vx_snap_alloc - mount_point snapshot
file system out of space

◆ Description

The snapshot file system ran out of space to store changes.

During a snapshot backup, as the primary file system is modified, the original
data is copied to the snapshot file system. This error can occur if the snapshot
file system is left mounted by mistake, if the snapshot file system was given too
little disk space, or the primary file system had an unexpected burst of activity.
The snapshot file system is disabled.

◆ Action

Make sure the snapshot file system was given the correct amount of space. If it
was, determine the activity level on the primary file system. If the primary file
system was unusually busy, rerun the backup. If the primary file system is no
busier than normal, move the backup to a time when the primary file system is
relatively idle or increase the amount of disk space allocated to the snapshot file
system.

Rerun any backups that failed when the error occurred.

Message
Number

Message and Definition
122 VERITAS File System Administrator’s Guide

Kernel Messages
029, 030 WARNING: msgcnt x: mesg 029: V-2-29: vx_snap_getbp - mount_point snapshot
file system block map write error

WARNING: msgcnt x: mesg 030: V-2-30: vx_snap_getbp - mount_point snapshot
file system block map read error

◆ Description

During a snapshot backup, each snapshot file system maintains a block map on
disk. The block map tells the snapshot file system where data from the primary
file system is stored in the snapshot file system. If an I/O operation to the block
map fails, the snapshot file system is disabled.

◆ Action

Check the console log for I/O errors. If the disk has failed, replace it. Resolve the
error on the disk and rerun any backups that failed when the error occurred.

031 WARNING: msgcnt x: mesg 031: V-2-31: vx_disable - mount_point file system
disabled

◆ Description

File system disabled, preceded by a message that specifies the reason. This
usually indicates a serious disk problem.

◆ Action

Unmount the file system and use fsck to run a full structural check. If the
problem is a disk failure, replace the disk before the file system is mounted for
write access.

032 WARNING: msgcnt x: mesg 032: V-2-32: vx_disable - mount_point snapshot file
system disabled

◆ Description

Snapshot file system disabled, preceded by a message that specifies the reason.

◆ Action

Unmount the snapshot file system, correct the problem specified by the
message, and rerun any backups that failed due to the error.

Message
Number

Message and Definition
Appendix B, Kernel Messages 123

Kernel Messages
033 WARNING: msgcnt x: mesg 033: V-2-33: vx_check_badblock - mount_point file
system had an I/O error, setting VX_FULLFSCK

◆ Description

When the disk driver encounters an I/O error, it sets a flag in the super-block
structure. If the flag is set, the kernel will set the VX_FULLFSCK flag as a
precautionary measure. Since no other error has set the VX_FULLFSCK flag, the
failure probably occurred on a data block.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the problem is a disk failure, replace the disk before
the file system is mounted for write access.

034 WARNING: msgcnt x: mesg 034: V-2-34: vx_resetlog - mount_point file system
can’t reset log

◆ Description

The kernel encountered an error while resetting the log ID on the file system.
This happens only if the super-block update or log write encountered a device
failure. The file system is disabled to preserve its integrity.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the problem is a disk failure, replace the disk before
the file system is mounted for write access.

035 WARNING: msgcnt x: mesg 035: V-2-35: vx_inactive - mount_point file system
inactive of locked inode inumber

◆ Description

VOP_INACTIVE was called for an inode while the inode was being used. This
should never happen, but if it does, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Report as a
bug to your customer support organization.

Message
Number

Message and Definition
124 VERITAS File System Administrator’s Guide

Kernel Messages
036 WARNING: msgcnt x: mesg 036: V-2-36: vx_lctbad - mount_point file system link
count table lctnumber bad

◆ Description

Update to the link count table (LCT) failed.

For a Version 2 and above disk layout, the LCT contains the link count for all the
structural inodes. The VX_FULLFSCK flag is set in the super-block. If the
super-block can’t be written, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

037 WARNING: msgcnt x: mesg 037: V-2-37: vx_metaioerr - function - volume_name
file system meta data [read|write] error in dev/block device_ID/block

◆ Description

A read or a write error occurred while accessing file system metadata. The full
fsck flag on the file system was set. The message specifies whether the disk
I/O that failed was a read or a write.

File system metadata includes inodes, directory blocks, and the file system log.
If the error was a write error, it is likely that some data was lost. This message
should be accompanied by another file system message describing the
particular file system metadata affected, as well as a message from the disk
driver containing information about the disk I/O error.

◆ Action

Resolve the condition causing the disk error. If the error was the result of a
temporary condition (such as accidentally turning off a disk or a loose cable),
correct the condition. Check for loose cables, etc. Unmount the file system and
use fsck to run a full structural check (possibly with loss of data).

In case of an actual disk error, if it was a read error and the disk driver remaps
bad sectors on write, it may be fixed when fsck is run since fsck is likely to
rewrite the sector with the read error. In other cases, you replace or reformat the
disk drive and restore the file system from backups. Consult the documentation
specific to your system for information on how to recover from disk errors. The
disk driver should have printed a message that may provide more information.

Message
Number

Message and Definition
Appendix B, Kernel Messages 125

Kernel Messages
038 WARNING: msgcnt x: mesg 038: V-2-38: vx_dataioerr - volume_name file system
file data [read|write] error in dev/block device_ID/block

◆ Description

A read or a write error occurred while accessing file data. The message specifies
whether the disk I/O that failed was a read or a write. File data includes data
currently in files and free blocks. If the message is printed because of a read or
write error to a file, another message that includes the inode number of the file
will print. The message may be printed as the result of a read or write error to a
free block, since some operations allocate an extent and immediately perform
I/O to it. If the I/O fails, the extent is freed and the operation fails. The message
is accompanied by a message from the disk driver regarding the disk I/O error.

◆ Action

Resolve the condition causing the disk error. If the error was the result of a
temporary condition (such as accidentally turning off a disk or a loose cable),
correct the condition. Check for loose cables, etc. If any file data was lost, restore
the files from backups. Determine the file names from the inode number (see the
ncheck(1M) manual page for more information).

If an actual disk error occurred, make a backup of the file system, replace or
reformat the disk drive, and restore the file system from the backup. Consult the
documentation specific to your system for information on how to recover from
disk errors. The disk driver should have printed a message that may provide
more information.

Message
Number

Message and Definition
126 VERITAS File System Administrator’s Guide

Kernel Messages
039 WARNING: msgcnt x: mesg 039: V-2-39: vx_writesuper - file system super-block
write error

◆ Description

An attempt to write the file system super block failed due to a disk I/O error. If
the file system was being mounted at the time, the mount will fail. If the file
system was mounted at the time and the full fsck flag was being set, the file
system will probably be disabled and Message 031 will also be printed. If the
super-block was being written as a result of a sync operation, no other action is
taken.

◆ Action

Resolve the condition causing the disk error. If the error was the result of a
temporary condition (such as accidentally turning off a disk or a loose cable),
correct the condition. Check for loose cables, etc. Unmount the file system and
use fsck to run a full structural check.

If an actual disk error occurred, make a backup of the file system, replace or
reformat the disk drive, and restore the file system from backups. Consult the
documentation specific to your system for information on how to recover from
disk errors. The disk driver should have printed a message that may provide
more information.

040 WARNING: msgcnt x: mesg 040: V-2-40: vx_dqbad - mount_point file system
user|group quota file update error for id id

◆ Description

An update to the user quotas file failed for the user ID.

The quotas file keeps track of the total number of blocks and inodes used by
each user, and also contains soft and hard limits for each user ID. The
VX_FULLFSCK flag is set in the super-block. If the super-block cannot be
written, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk has a hardware failure, it should be
repaired before the file system is mounted for write access.

Message
Number

Message and Definition
Appendix B, Kernel Messages 127

Kernel Messages
041 WARNING: msgcnt x: mesg 041: V-2-41: vx_dqget - mount_point file system
user|group quota file can't read quota for id id

◆ Description

A read of the user quotas file failed for the uid.

The quotas file keeps track of the total number of blocks and inodes used by
each user, and contains soft and hard limits for each user ID. The VX_FULLFSCK
flag is set in the super-block. If the super-block cannot be written, the file system
is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. Check the
console log for I/O errors. If the disk has a hardware failure, it should be
repaired before the file system is mounted for write access.

042 WARNING: msgcnt x: mesg 042: V-2-42: vx_bsdquotaupdate - mount_point file
system user|group_id disk limit reached

◆ Description

The hard limit on blocks was reached. Further attempts to allocate blocks for
files owned by the user will fail.

◆ Action

Remove some files to free up space.

043 WARNING: msgcnt x: mesg 043: V-2-43: vx_bsdquotaupdate - mount_point file
system user|group_id disk quota exceeded too long

◆ Description

The soft limit on blocks was exceeded continuously for longer than the soft
quota time limit. Further attempts to allocate blocks for files will fail.

◆ Action

Remove some files to free up space.

Message
Number

Message and Definition
128 VERITAS File System Administrator’s Guide

Kernel Messages
044 WARNING: msgcnt x: mesg 044: V-2-44: vx_bsdquotaupdate - mount_point file
system user|group_id disk quota exceeded

◆ Description

The soft limit on blocks is exceeded. Users can exceed the soft limit for a limited
amount of time before allocations begin to fail. After the soft quota time limit
has expired, subsequent attempts to allocate blocks for files fail.

◆ Action

Remove some files to free up space.

045 WARNING: msgcnt x: mesg 045: V-2-45: vx_bsdiquotaupdate - mount_point file
system user|group_id inode limit reached

◆ Description

The hard limit on inodes was exceeded. Further attempts to create files owned
by the user will fail.

◆ Action

Remove some files to free inodes.

046 WARNING: msgcnt x: mesg 046: V-2-46: vx_bsdiquotaupdate - mount_point file
system user|group_id inode quota exceeded too long

◆ Description

The soft limit on inodes has been exceeded continuously for longer than the soft
quota time limit. Further attempts to create files owned by the user will fail.

◆ Action

Remove some files to free inodes.

047 WARNING: msgcnt x: mesg 047: V-2-47: vx_bsdiquotaupdate - warning:
mount_point file system user|group_id inode quota exceeded

◆ Description

The soft limit on inodes was exceeded. The soft limit can be exceeded for a
certain amount of time before attempts to create new files begin to fail. Once the
time limit has expired, further attempts to create files owned by the user will
fail.

◆ Action

Remove some files to free inodes.

Message
Number

Message and Definition
Appendix B, Kernel Messages 129

Kernel Messages
048, 049 WARNING: msgcnt x: mesg 048: V-2-48: vx_dqread - warning: mount_point file
system external user|group quota file read failed

WARNING: msgcnt x: mesg 049: V-2-49: vx_dqwrite - warning: mount_point file
system external user|group quota file write failed

◆ Description

To maintain reliable usage counts, VxFS maintains the user quotas file as a
structural file in the structural fileset. These files are updated as part of the
transactions that allocate and free blocks and inodes. For compatibility with the
quota administration utilities, VxFS also supports the standard user visible
quota files.

When quotas are turned off, synced, or new limits are added, VxFS tries to
update the external quota files. When quotas are enabled, VxFS tries to read the
quota limits from the external quotas file. If these reads or writes fail, the
external quotas file is out of date.

◆ Action

Determine the reason for the failure on the external quotas file and correct it.
Recreate the quotas file.

056 WARNING: msgcnt x: mesg 056: V-2-56: vx_mapbad - mount_point file system
extent allocation unit state bitmap number number marked bad

◆ Description

If there is an I/O failure while writing a bitmap, the map is marked bad. The
kernel considers the maps to be invalid, so does not do any more resource
allocation from maps. This situation can cause the file system to report “out of
space” or “out of inode” error messages even though df may report an
adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a
consistency check, or blocks are freed that are already free in the bitmap, the file
system has been corrupted. This may have occurred because a user or process
wrote directly to the device or used fsdb to change the file system.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the file
system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

Message
Number

Message and Definition
130 VERITAS File System Administrator’s Guide

Kernel Messages
057 WARNING: msgcnt x: mesg 057: V-2-57: vx_esum_bad - mount_point file system
extent allocation unit summary number number marked bad

◆ Description

An I/O error occurred reading or writing an extent allocation unit summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the file
system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

058 WARNING: msgcnt x: mesg 058: V-2-58: vx_isum_bad - mount_point file system
inode allocation unit summary number number marked bad

◆ Description

An I/O error occurred reading or writing an inode allocation unit summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set, the file
system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Unmount the file system and
use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 131

Kernel Messages
059 WARNING: msgcnt x: mesg 059: V-2-59: vx_snap_getbitbp - mount_point
snapshot file system bitmap write error

◆ Description

An I/O error occurred while writing to the snapshot file system bitmap. There
is no problem with the snapped file system, but the snapshot file system is
disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Restart the snapshot on an
error free disk partition. Rerun any backups that failed when the error occurred.

060 WARNING: msgcnt x: mesg 060: V-2-60: vx_snap_getbitbp - mount_point
snapshot file system bitmap read error

◆ Description

An I/O error occurred while reading the snapshot file system bitmap. There is
no problem with snapped file system, but the snapshot file system is disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process was writing to the device, report the
problem to your customer support organization. Restart the snapshot on an
error free disk partition. Rerun any backups that failed when the error occurred.

061 WARNING: msgcnt x: mesg 061: V-2-61: vx_resize - mount_point file system
remount failed

◆ Description

During a file system resize, the remount to the new size failed. The
VX_FULLFSCK flag is set and the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check. After the
check, the file system shows the new size.

Message
Number

Message and Definition
132 VERITAS File System Administrator’s Guide

Kernel Messages
062 NOTICE: msgcnt x: mesg 062: V-2-62: vx_attr_creatop - invalid disposition
returned by attribute driver

◆ Description

A registered extended attribute intervention routine returned an invalid return
code to the VxFS driver during extended attribute inheritance.

◆ Action

Determine which vendor supplied the registered extended attribute
intervention routine and contact their customer support organization.

063 WARNING: msgcnt x: mesg 063: V-2-63: vx_fset_markbad - mount_point file
system mount_point fileset (index number) marked bad

◆ Description

An error occurred while reading or writing a fileset structure. VX_FULLFSCK
flag is set. If the VX_FULLFSCK flag can’t be set, the file system is disabled.

◆ Action

Unmount the file system and use fsck to run a full structural check.

064 WARNING: msgcnt x: mesg 064: V-2-64: vx_ivalidate - mount_point file system
inode number version number exceeds fileset's

◆ Description

During inode validation, a discrepancy was found between the inode version
number and the fileset version number. The inode may be marked bad, or the
fileset version number may be changed, depending on the ratio of the
mismatched version numbers.

VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the file system is
disabled.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system and use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 133

Kernel Messages
067 WARNING: msgcnt x: mesg 067: V-2-67: mount of device_path requires HSM
agent

◆ Description

The file system mount failed because the file system was marked as being under
the management of an HSM agent, and no HSM agent was found during the
mount.

◆ Action

Restart the HSM agent and try to mount the file system again.

069 WARNING: msgcnt x: mesg 069: V-2-69: memory usage specified by the
vxfs:vxfs_ninode and vxfs:vx_bc_bufhwm parameters exceeds available
memory; the system may hang under heavy load

◆ Description

The value of the system tunable parameters—vxfs_ninode and
vx_bc_bufhwm—add up to a value that is more than 66% of the kernel virtual
address space or more than 50% of the physical system memory. VxFS inodes
require approximately one kilobyte each, so both values can be treated as if they
are in units of one kilobyte.

◆ Action

To avoid a system hang, reduce the value of one or both parameters to less than
50% of physical memory or to 66% of kernel virtual memory. For more
information on performance and tuning, see “VxFS Performance: Creating,
Mounting, and Tuning File Systems” on page 17.

071 NOTICE: msgcnt x: mesg 071: V-2-71: cleared data I/O error flag in mount_point
file system

◆ Description

The user data I/O error flag was reset when the file system was mounted. This
message indicates that a read or write error occurred (see Message Number 038)
while the file system was previously mounted.

◆ Action

Informational only, no action required.

Message
Number

Message and Definition
134 VERITAS File System Administrator’s Guide

Kernel Messages
076 NOTICE: msgcnt x: mesg 076: V-2-76: checkpoint asynchronous operation on
mount_point file system still in progress

◆ Description

An EBUSY message was received while trying to unmount a file system. The
unmount failure was caused by a pending asynchronous fileset operation, such
as a fileset removal or fileset conversion to a nodata Storage Checkpoint.

◆ Action

The operation may take a considerable length of time. You can do a forced
unmount (see the umount_vxfs(1M) manual page), or simply wait for the
operation to complete so file system can be unmounted cleanly.

Message
Number

Message and Definition
Appendix B, Kernel Messages 135

Kernel Messages
077 WARNING: msgcnt x: mesg 077: V-2-77: vx_fshdchange - mount_point file system
number fileset, fileset header: checksum failed

◆ Description

Disk corruption was detected while changing fileset headers. This can occur
when writing a new inode allocation unit, preventing the allocation of new
inodes in the fileset.

◆ Action

Unmount the file system and use fsck to run a full structural check.

078 WARNING: msgcnt x: mesg 078: V-2-78: vx_ilealloc - mount_point file system
mount_point fileset (index number) ilist corrupt

◆ Description

The inode list for the fileset was corrupted and the corruption was detected
while allocating new inodes. The failed system call returns an ENOSPC error.
Any subsequent inode allocations will fail unless a sufficient number of files are
removed.

◆ Action

Unmount the file system and use fsck to run a full structural check.

Message
Number

Message and Definition
136 VERITAS File System Administrator’s Guide

Kernel Messages
079 WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_getblk - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_iget - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indadd - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indtrunc - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_iremove - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_bmap - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_bmap_indirect_ext4 - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_delbuf_flush - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dio_iovec - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dirbread - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dircreate - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dirlook - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_doextop_iau - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_doextop_now - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_do_getpage - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_enter_ext4 - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_exttrunc - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_get_alloc - mount_point file system
inode inumber marked bad on disk

Message
Number

Message and Definition
Appendix B, Kernel Messages 137

Kernel Messages
079 (continued) WARNING: msgcnt x: mesg 017: V-2-79: vx_ilisterr - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_indtrunc - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iread - mount_point file system inode
inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove_attr - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_logwrite_flush - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_oltmount_iget - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_overlay_bmap - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_readnomap - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_reorg_trunc - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_stablestore - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_tranitimes - mount_point file system
inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_trunc - mount_point file system inode
inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_write_alloc2 - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_write_default - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_zero_alloc - mount_point file system
inode inumber marked bad on disk

Message
Number

Message and Definition
138 VERITAS File System Administrator’s Guide

Kernel Messages
079 (continued) ◆ Description

When inode information is no longer dependable, the kernel marks it bad on
disk. The most common reason for marking an inode bad is a disk I/O failure. If
there is an I/O failure in the inode list, on a directory block, or an indirect
address extent, the integrity of the data in the inode, or the data the kernel tried
to write to the inode list, is questionable. In these cases, the disk driver prints an
error message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address, invalid
inode fields, or corruption in directory data blocks during a validation check. A
validation check failure indicates the file system has been corrupted. This
usually occurs because a user or process has written directly to the device or
used fsdb to change the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a full structural
check the next time it is run.

◆ Action

Check the console log for I/O errors. If the problem is a disk failure, replace the
disk. If the problem is not related to an I/O failure, find out how the disk
became corrupted. If no user or process is writing to the device, report the
problem to your customer support organization. In either case, unmount the file
system and use fsck to run a full structural check.

Message
Number

Message and Definition
Appendix B, Kernel Messages 139

Kernel Messages
080 WARNING: msgcnt x: mesg 080: V-2-80: Disk layout versions older than Version
4 will not be supported in the next release. It is advisable to upgrade to the latest
disk layout version now. See vxupgrade(1M) for information on upgrading a
VxFS file system and see the VxFS Release Notes for information on disk layout
support.

◆ Action

Use the vxupgrade command to begin upgrading file systems using older disk
layouts to Version 5. Consider the following when planning disk layout
upgrades:

◆ Version 1 disk layout file systems can support more than 8 million inodes,
while Version 2 disk layout file systems have an 8 million inode limit.

◆ The Version 1 disk layout provides finer control of disk geometry than
subsequent disk layouts. This finer control is not relevant on disks
employing newer technologies, but can still be applicable on older
hardware. If you are using Version 1 disk layout file systems on older
hardware that needs fine control of disk geometry, a disk layout upgrade
may be problematic.

◆ Images of Version 1 or Version 2 disk layout file systems created by copy
utilities, such as dd or volcopy, will become unusable after a disk layout
upgrade. Offline conversions tools will be provided in the next VxFS feature
release to aid in migrating volume-image backup copies of Version 1 and
Version 2 disk layout file systems to a Version 4 disk layout.

081 WARNING: msgcnt x: mesg 081: V-2-81: possible network partition detected

◆ Description

This message displays when CFS detects a possible network partition and
disables the file system locally, that is, on the node where the message appears.

◆ Action

There are one or more private network links for communication between the
nodes in a cluster. At least one link must be active to maintain the integrity of
the cluster. If all the links go down, after the last network link is broken, the
node can no longer communicate with other nodes in the cluster.

Check the network connections. After verifying that the network connections is
operating correctly, unmount the disabled file system and mount it again.

Message
Number

Message and Definition
140 VERITAS File System Administrator’s Guide

Kernel Messages
082 WARNING: msgcnt x: mesg 082: V-2-82: volume_name file system is on shared
volume. It may get damaged if cluster is in partitioned state.

◆ Description

If a cluster node is in a partitioned state, and if the file system is on a shared
VxVM volume, this volume may become corrupted by accidental access from
another node in the cluster.

◆ Action

These shared disks can also be seen by nodes in a different partition, so they can
inadvertently be corrupted. So the second message 082 tells that the device
mentioned is on shared volume and damage can happen only if it is a real
partition problem. Do not use it on any other node until the file system is
unmounted from the mounted nodes.

083 WARNING: msgcnt x: mesg 083: V-2-83: mount_point file system log is not
compatible with the specified intent log I/O size

◆ Description

Either the specified mount logiosize size is not compatible with the file
system layout, or the file system is corrupted.

◆ Action

Mount the file system again without specifying the logiosize option, or use a
logiosize value compatible with the intent log specified when the file system
was created. If the error persists, unmount the file system and use fsck to run a
full structural check.

085 WARNING: msgcnt x: mesg 085: V-2-85: Checkpoint quota - warning: file_system
file system fileset quota hard limit exceeded

◆ Description

The system administrator sets the quotas for checkpoints in the form of a soft
limit and hard limit. This message displays when the hard limit is exceeded.

◆ Action

Delete checkpoints or increase the hard limit.

Message
Number

Message and Definition
Appendix B, Kernel Messages 141

Kernel Messages
086 WARNING: msgcnt x: mesg 086: V-2-86: Checkpoint quota - warning: file_system
file system fileset quota soft limit exceeded

◆ Description

The system administrator sets the quotas for checkpoints in the form of a soft
limit and hard limit. This message displays when the soft limit is exceeded.

◆ Action

Delete checkpoints or increase the soft limit. This is not a mandatory action, but
is recommended.

087 WARNING: msgcnt x: mesg 087: V-2-87: vx_dotdot_manipulate: file_system file
system inumber inode ddnumber dotdot inode error

◆ Description

When performing an operation that changes an inode entry, if the inode is
incorrect, this message will display.

◆ Action

Run a full file system check using fsck to correct the errors.

088 WARNING: msgcnt x: mesg 088: V-2-88: quotaon on file_system failed; limits
exceed limit

◆ Description

The external quota file, quotas, contains the quota values, which range from 0
up to 2147483647. When quotas are turned on by the quotaon command, this
message displays when a user exceeds the quota limit.

◆ Action

Correct the quota values in the quotas file.

089 WARNING: msgcnt x: mesg 089: V-2-89: quotaon on file_system invalid; disk
usage for group/user id uid exceeds sectors sectors

◆ Description

The supported quota limit is up to 2147483647 sectors. When quotas are turned
on by the quotaon command, this message displays when a user exceeds the
supported quota limit.

◆ Action

Ask the user to delete files to lower the quota below the limit.

Message
Number

Message and Definition
142 VERITAS File System Administrator’s Guide

Kernel Messages
090 WARNING: msgcnt x: mesg 090: V-2-90: quota on file_system failed; soft limits
greater than hard limits

◆ Description

One or more users or groups has a soft limit set greater than the hard limit,
preventing the BSD quota from being turned on.

◆ Action

Check the soft limit and hard limit for every user and group and confirm that
the soft limit is not set greater than the hard limit.

091 WARNING: msgcnt x: mesg 091: V-2-91: vx_fcl_truncate - failure to punch hole
at offset offset for bytes bytes in File Change Log file; error error_number

◆ Description

The vxfs kernel has experienced an error while trying to manage the space
consumed by the File Change Log file. Because the space cannot be actively
managed at this time, the FCL has been deactivated and has been truncated to 1
file system block, which contains the FCL superblock.

◆ Action

Re-activate the FCL.

092 WARNING: msgcnt x: mesg 092: V-2-92: vx_mkfcltran - failure to map offset
offset in File Change Log file

◆ Description

The vxfs kernel was unable to map actual storage to the next offset in the File
Change Log file. This is mostly likely caused by a problem with allocating to the
FCL file. Because no new FCL records can be written to the FCL file, the FCL has
been deactivated.

◆ Action

Re-activate the FCL.

Message
Number

Message and Definition
Appendix B, Kernel Messages 143

Kernel Messages
093 WARNING: msgcnt x: mesg 093: V-2-93: Disk layout versions older than Version
6 will not be supported for shared mounts in the next release. It is advisable to
upgrade to the latest layout version now. See vxupgrade(1M) for information on
upgrading a VxFS file system and see the VxFS Release Notes for information
on disk layout support.

◆ Action

Upgrade your disk layout to Version 6 for shared mounts. This is not a
mandatory action, but is recommended. Disk layout Versions 4 and 5 will still
be supported for local mounts in the next release of the VxFS.

Use the vxupgrade command to begin upgrading file systems using older disk
layouts to Version 6.

096 WARNING: msgcnt x: mesg 096: V-2-96: file_system file system fullfsck flag
set - function_name.

◆ Description

The next time the file system is mounted, a full fsck must be performed.

◆ Action

No immediate action required. When the file system is unmounted, run a full
file system check using fsck before mounting it again.

097 WARNING: msgcnt x: mesg 097: V-2-97: VxFS failed to create new thread
(error_number, function_address:argument_address)

◆ Description

VxFS failed to create a kernel thread due to resource constraints, which is often a
memory shortage.

◆ Action

VxFS will retry the thread creation until it succeeds; no immediate action is
required. Kernel resources, such as kernel memory, might be overcommitted. If
so, reconfigure the system accordingly.

Message
Number

Message and Definition
144 VERITAS File System Administrator’s Guide

Kernel Messages
098 WARNING: msgcnt x: mesg 098: V-2-98: VxFS failed to initialize File Change
Log for fileset fileset (index number) of mount_point file system

◆ Description

VxFS mount failed to initialize FCL structures for the current fileset mount. As a
result, FCL could not be turned on. The FCL file will have no logging records.

◆ Action

Reactivate the FCL.

099 WARNING: msgcnt x: mesg 099: V-2-99: The specified value for vx_ninode is
less than the recommended minimum value of min_value

◆ Description

Auto-tuning or the value specified by the system administrator resulted in a
value lower than the recommended minimum for the total number of inodes
that can be present in the inode cache. VxFS will ignore the newly tuned value
and will keep the value specified in the message (VX_MINNINODE).

◆ Action

Informational only; no action required.

101 WARNING: msgcnt x: mesg 101: V-2-101: File Change Log on mount_point for file
set index approaching max file size supported. File Change Log will be
reactivated when its size hits max file size supported.

◆ Description

The size of the FCL file is approching the maximum file size supported. This
size is platform specific. When the FCL file is reaches the maximum file size, the
FCL will be deactivated and reactivated. All logging information gathered so far
will be lost.

◆ Action

Take any corrective action possible to restrict the loss due to the FCL being
deactivated and reactivated.

Message
Number

Message and Definition
Appendix B, Kernel Messages 145

Kernel Messages
102 WARNING: msgcnt x: mesg 102: V-2-102: File Change Log of mount_point for file
set index has been reactivated.

◆ Description

The size of FCL file reached the maximum supported file size and the FCL has
been reactivated. All records stored in the FCL file, starting from the current
fc_loff up to the maximum file size, have been purged. New records will be
recorded in the FCL file starting from offset fs_bsize. The activation time in the
FCL is reset to the time of reactivation. The impact is equivalent to File Change
Log being deactivated and activated.

◆ Action

Informational only; no action required.

Message
Number

Message and Definition
146 VERITAS File System Administrator’s Guide

Disk Layout
 C

The disk layout is the way file system information is stored on disk. On VxFS, six different
disk layout versions were created to take advantage of evolving technological
developments. The disk layout versions used on VxFS were:

Some of the disk layout versions were not supported on all UNIX operating systems.
Currently, only Version 6 disk layouts can be created and mounted. Version 4 and 5 file
systems cannot be created nor mounted. Version 6 is the default disk layout version.

The following additional topics are covered in this appendix:

◆ Disk Space Allocation

◆ VxFS Version 4 Disk Layout

◆ VxFS Version 5 Disk Layout

◆ VxFS Version 6 Disk Layout

◆ Using UNIX Commands on File Systems Larger than One TB

Version 1 The Version 1 disk layout is the original VxFS disk layout provided with
pre-2.0 versions of VxFS.

Not
Supported

Version 2 The Version 2 disk layout supports features such as filesets, dynamic
inode allocation, and enhanced security. The Version 2 layout is
available with and without quotas support.

Not
Supported

Version 3 The Version 3 disk layout encompasses all file system structural
information in files, rather than at fixed locations on disk, allowing for
greater scalability. Version 3 supports files and file systems up to one
terabyte in size.

Not
Supported

Version 4 The Version 4 disk layout encompasses all file system structural
information in files, rather than at fixed locations on disk, allowing for
greater scalability. Version 4 supports files and file systems up to one
terabyte in size.

Supported

Version 6 The Version 6 disk layout enables features such as multi-volume support,
cross-platform data sharing, named data streams, and file change log.

Supported
147

Disk Space Allocation
Disk Space Allocation
Disk space is allocated by the system in 512-byte sectors. An integral number of sectors are
grouped together to form a logical block. VxFS supports logical block sizes of 1024, 2048,
4096, and 8192 bytes. The default block size is 1024 bytes. The block size may be specified
as an argument to the mkfs utility and may vary between VxFS file systems mounted on
the same system. VxFS allocates disk space to files in extents. An extent is a set of
contiguous blocks.

VxFS Version 4 Disk Layout
The Version 4 disk layout allows the file system to scale easily to accommodate large files
and large file systems.

The original disk layouts divided up the file system space into allocation units. The first
AU started part way into the file system which caused potential alignment problems
depending on where the first AU started. Each allocation unit also had its own summary,
bitmaps, and data blocks. Because this AU structural information was stored at the start of
each AU, this also limited the maximum size of an extent that could be allocated. By
replacing the allocation unit model of previous versions, the need for alignment of
allocation units and the restriction on extent sizes was removed.

The VxFS Version 4 disk layout divides the entire file system space into fixed size
allocation units. The first allocation unit starts at block zero and all allocation units are a
fixed length of 32K blocks. (An exception may be the last AU, which occupies whatever
space remains at the end of the file system). Because the first AU starts at block zero
instead of part way through the file system as in previous versions, there is no longer a
need for explicit AU alignment or padding to be added when creating a file system.

The Version 4 file system also moves away from the model of storing AU structural data at
the start of an AU and puts all structural information in files. So expanding the file system
structures simply requires extending the appropriate structural files. This removes the
extent size restriction imposed by the previous layouts.

All Version 4 structural files reside in the structural fileset. The structural files in the
Version 4 disk layout are:

object location table file Contains the object location table (OLT). The OLT, which is
referenced from the super-block, is used to locate the other
structural files.

label file Encapsulates the super-block and super-block replicas.
Although the location of the primary super-block is known, the
label file can be used to locate super-block copies if there is
structural damage to the file system.
148 VERITAS File System Administrator’s Guide

VxFS Version 4 Disk Layout
The following figure shows how the kernel and utilities build information about the
structure of the file system. The super-block location is in a known location from which
the OLT can be located. From the OLT, the initial extents of the structural inode list can be
located along with the inode number of the fileset header file. The initial inode list extents
contain the inode for the fileset header file from which the extents associated with the
fileset header file are obtained.

As an example, when mounting the file system, the kernel needs to access the primary
fileset in order to access its inode list, inode allocation unit, quotas file and so on. The
required information is obtained by accessing the fileset header file from which the kernel
can locate the appropriate entry in the file and access the required information.

device file Records device information such as volume length and volume
label, and contains pointers to other structural files.

fileset header file Holds information on a per-fileset basis. This may include the
inode of the fileset's inode list file, the maximum number of
inodes allowed, an indication of whether the file system
supports large files, and the inode number of the quotas file if
the fileset supports quotas. When a file system is created, there
are two filesets—the structural fileset defines the file system
structure, the primary fileset contains user data.

inode list file Both the primary fileset and the structural fileset have their own
set of inodes stored in an inode list file. Only the inodes in the
primary fileset are visible to users. When the number of inodes
is increased, the kernel increases the size of the inode list file.

inode allocation unit
file

Holds the free inode map, extended operations map, and a
summary of inode resources.

log file Maps the block used by the file system intent log.

extent allocation unit
state file

Indicates the allocation state of each AU by defining whether
each AU is free, allocated as a whole (no bitmaps allocated), or
expanded, in which case the bitmaps associated with each AU
determine which extents are allocated.

extent allocation unit
summary file

Contains the AU summary for each allocation unit, which
contains the number of free extents of each size. The summary
for an extent is created only when an allocation unit is expanded
for use.

free extent map file Contains the free extent maps for each of the allocation units.

quotas files There is a quotas file which is used to track the resources
allocated to each user and a quotas.grp file to track the
resources allocated to each group.
Appendix C, Disk Layout 149

VxFS Version 4 Disk Layout
The Version 4 disk layout supports Access Control Lists and Block-Level Incremental
(BLI) Backup. BLI Backup is a backup method that stores and retrieves only the data
blocks changed since the previous backup, not entire files. This saves times, storage space,
and computing resources required to backup large databases. This file system technology
is implemented in other VERITAS products. For information on how to use this feature,
contact your sales channel.
150 VERITAS File System Administrator’s Guide

VxFS Version 4 Disk Layout
VxFS Version 4 Disk Layout

Fileset Header File

Structural Fileset

Primary Fileset

Header

Inode List inum

Fileset Index

max_inodes

Features

....

Primary Fileset Header

....

Initial Inode Extents

Inode List Inode

Fileset Header/

Initial Inode List

....

Object Location Table

....

File Inode Number

Extent Addresses

OLT Replica

Inode Allocation

Unit Inode

Fileset Header
File Inode

OLT
Extent
Addresses

Super-block

Header

and Name
Appendix C, Disk Layout 151

VxFS Version 5 Disk Layout
VxFS Version 5 Disk Layout
VxFS disk layout Version 5 is similar to Version 4. Structural files in Version 5 are the same
in Version 4. However, the Version 5 disk layout supports file systems up to 32 terabytes.
For a file system to take advantage of VxFS 32-terabyte support, it must be created on a
VERITAS Volume Manager volume, and only on a 64-bit kernel operating system. The
maximum file system size on a 32-bit kernel is still one terabyte. Files cannot exceed two
terabytes in size. For 64-bit kernels, the maximum size of the file system you can create
depends on the block size:

If you specify the file system size when creating a file system, the block size defaults to the
appropriate value as shown above (see the mkfs(1M) manual page for more information).

The Version 5 disk layout also supports group quotas (see “Quota Files on VxFS” on
page 66). Quota limits cannot exceed one terabyte.

Some UNIX commands may not work correctly on file systems larger than one terabyte.
See “Using UNIX Commands on File Systems Larger than One TB” below for more
information.

Block Size Maximum File System Size

1024 bytes 4,294,967,039 sectors (≈ 4 TB)

2048 bytes 8,589,934,078 sectors (≈ 8 TB)

4096 bytes 17,179,868,156 sectors (≈ 16 TB)

8192 bytes 34,359,736,312 sectors (≈ 32 TB)
152 VERITAS File System Administrator’s Guide

VxFS Version 6 Disk Layout
VxFS Version 6 Disk Layout
VxFS disk layout Version 6 is similar to Version 5. Structural files in Version 6 are the same
in Version 5. The Version 6 disk layout can theoretically support files and file systems up
to 8 exabytes (263). The maximum file system size that can be created is currently restricted
to 235 blocks. For a file system to take advantage of greater than 1 terabyte support, it must
be created on a VERITAS Volume Manager volume, and only on a 64-bit kernel operating
system. The maximum file system size on a 32-bit kernel is still one terabyte. For 64-bit
kernels, the maximum size of the file system you can create depends on the block size:

The Version 6 disk layout also supports group quotas (see “Quota Files on VxFS” on
page 66).

Some UNIX commands may not work correctly on file systems larger than one terabyte.
See “Using UNIX Commands on File Systems Larger than One TB” below for more
information.

Using UNIX Commands on File Systems
Larger than One TB

Some UNIX commands may not work correctly on file systems larger than one terabyte.

The ustat command returns an EOVERFLOW error for VxFS files systems larger than
one terabyte because the variable used to store file system size overflows (see the
ustat(2) manual page).

System administration utilities such as backup may not operate correctly if they are not
large file aware (files larger than two gigabytes). Similarly, utilities that operate at the file
system level must be large file aware to operate correctly on large file systems (file
systems that are larger than one terabyte). Note also that you can have a large file system
without creating the file system with the mkfs –o largefiles option. See the
lfcompile(5) manual page for information on the large file compilation environment.

Block Size Currently-Supported Maximum File System Size

1024 bytes 68,719,472,624 sectors (≈ 32 TB)

2048 bytes 137,438,945,248 sectors (≈ 64 TB)

4096 bytes 274,877,890,496 sectors (≈ 128 TB)

8192 bytes 549,755,780,992 sectors (≈ 256 TB)
Appendix C, Disk Layout 153

Using UNIX Commands on File Systems Larger than One TB
154 VERITAS File System Administrator’s Guide

Glossary
access control list (ACL)

The information that identifies specific users or groups and their access privileges for a
particular file or directory.

agent

A process that manages predefined VERITAS Cluster Server (VCS) resource types. Agents
bring resources online, take resources offline, and monitor resources to report any state
changes to VCS. When an agent is started, it obtains configuration information from VCS
and periodically monitors the resources and updates VCS with the resource status.

allocation unit

A group of consecutive blocks on a file system that contain resource summaries, free
resource maps, and data blocks. Allocation units also contain copies of the super-block.

API

Application Programming Interface.

asynchronous writes

A delayed write in which the data is written to a page in the system’s page cache, but is
not written to disk before the write returns to the caller. This improves performance, but
carries the risk of data loss if the system crashes before the data is flushed to disk.

atomic operation

An operation that either succeeds completely or fails and leaves everything as it was
before the operation was started. If the operation succeeds, all aspects of the operation
take effect at once and the intermediate states of change are invisible. If any aspect of the
operation fails, then the operation aborts without leaving partial changes.

Block-Level Incremental Backup (BLI Backup)

A VERITAS backup capability that does not store and retrieve entire files. Instead, only
the data blocks that have changed since the previous backup are backed up.
155

buffered I/O

During a read or write operation, data usually goes through an intermediate kernel buffer
before being copied between the user buffer and disk. If the same data is repeatedly read
or written, this kernel buffer acts as a cache, which can improve performance. See
unbuffered I/O and direct I/O.

contiguous file

A file in which data blocks are physically adjacent on the underlying media.

CVM

The cluster functionality of VERITAS Volume Manager.

data block

A block that contains the actual data belonging to files and directories.

data synchronous writes

A form of synchronous I/O that writes the file data to disk before the write returns, but
only marks the inode for later update. If the file size changes, the inode will be written
before the write returns. In this mode, the file data is guaranteed to be on the disk before
the write returns, but the inode modification times may be lost if the system crashes.

defragmentation

The process of reorganizing data on disk by making file data blocks physically adjacent to
reduce access times.

direct extent

An extent that is referenced directly by an inode.

direct I/O

An unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct I/O,
the file system transfers data directly between the disk and the user-supplied buffer. See
buffered I/O and unbuffered I/O.

discovered direct I/O

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require
writing the inode changes before returning to the application.
156 VERITAS File System Administrator’s Guide

encapsulation

A process that converts existing partitions on a specified disk to volumes. If any partitions
contain file systems, /etc/ entries are modified so that the file systems are mounted on
volumes instead. Encapsulation is not applicable on some systems.

extent

A group of contiguous file system data blocks treated as a single unit. An extent is defined
by the address of the starting block and a length.

extent attribute

A policy that determines how a file allocates extents.

external quotas file

A quotas file (named quotas) must exist in the root directory of a file system for
quota-related commands to work. See quotas file and internal quotas file.

file system block

The fundamental minimum size of allocation in a file system. This is equivalent to the
fragment size on some UNIX file systems.

fileset

A collection of files within a file system.

fixed extent size

An extent attribute used to override the default allocation policy of the file system and set
all allocations for a file to a specific fixed size.

fragmentation

The on-going process on an active file system in which the file system is spread further
and further along the disk, leaving unused gaps or fragments between areas that are in use.
This leads to degraded performance because the file system has fewer options when
assigning a file to an extent.

GB

Gigabyte (230 bytes or 1024 megabytes).

hard limit

The hard limit is an absolute limit on system resources for individual users for file and
data block usage on a file system. See quota.
Glossary 157

indirect address extent

An extent that contains references to other extents, as opposed to file data itself. A single
indirect address extent references indirect data extents. A double indirect address extent
references single indirect address extents.

indirect data extent

An extent that contains file data and is referenced via an indirect address extent.

inode

A unique identifier for each file within a file system that contains the data and metadata
associated with that file.

inode allocation unit

A group of consecutive blocks containing inode allocation information for a given fileset.
This information is in the form of a resource summary and a free inode map.

intent logging

A method of recording pending changes to the file system structure. These changes are
recorded in a circular intent log file.

internal quotas file

VxFS maintains an internal quotas file for its internal usage. The internal quotas file
maintains counts of blocks and indices used by each user. See quotas and external quotas
file.

K

Kilobyte (210 bytes or 1024 bytes).

large file

A file larger than two terabytes. VxFS supports files up to 256 terabytes in size.

large file system

A file system larger than two terabytes. VxFS supports file systems up to 256 terabytes in
size.

latency

For file systems, this typically refers to the amount of time it takes a given file system
operation to return to the user.
158 VERITAS File System Administrator’s Guide

local mounted file system

A file system mounted on a single host. The single host mediates all file system writes to
storage from other clients. To be a local mount, a file system cannot be mounted using the
mount –o cluster option. See cluster mounted file system.

metadata

Structural data describing the attributes of files on a disk.

MB

Megabyte (220 bytes or 1024 kilobytes).

mirror

A duplicate copy of a volume and the data therein (in the form of an ordered collection of
subdisks). Each mirror is one copy of the volume with which the mirror is associated.

multi-volume file system

A single file system that has been created over multiple volumes, with each volume
having its own properties.

MVS

Multi-volume support.

node

One of the hosts in a cluster.

node abort

A situation where a node leaves a cluster (on an emergency basis) without attempting to
stop ongoing operations.

node join

The process through which a node joins a cluster and gains access to shared disks.

object location table (OLT)

The information needed to locate important file system structural elements. The OLT is
written to a fixed location on the underlying media (or disk).

object location table replica

A copy of the OLT in case of data corruption. The OLT replica is written to a fixed location
on the underlying media (or disk).
Glossary 159

page file

A fixed-size block of virtual address space that can be mapped onto any of the physical
addresses available on a system.

preallocation

A method of allowing an application to guarantee that a specified amount of space is
available for a file, even if the file system is otherwise out of space.

primary fileset

The files that are visible and accessible to the user.

quotas

Quota limits on system resources for individual users for file and data block usage on a
file system. See hard limit and soft limit.

quotas file

The quotas commands read and write the external quotas file to get or change usage
limits. When quotas are turned on, the quota limits are copied from the external quotas
file to the internal quotas file. See quotas, internal quotas file, and external quotas file.

reservation

An extent attribute used to preallocate space for a file.

root disk group

A special private disk group that always exists on the system. The root disk group is
named rootdg.

shared disk group

A disk group in which the disks are shared by multiple hosts (also referred to as a
cluster-shareable disk group).

shared volume

A volume that belongs to a shared disk group and is open on more than one node at the
same time.

snapshot file system

An exact copy of a mounted file system at a specific point in time. Used to do online
backups.
160 VERITAS File System Administrator’s Guide

snapped file system

A file system whose exact image has been used to create a snapshot file system.

soft limit

The soft limit is lower than a hard limit. The soft limit can be exceeded for a limited time.
There are separate time limits for files and blocks. See hard limit and quotas.

Storage Checkpoint

A facility that provides a consistent and stable view of a file system or database image and
keeps track of modified data blocks since the last Storage Checkpoint.

structural fileset

The files that define the structure of the file system. These files are not visible or accessible
to the user.

super-block

A block containing critical information about the file system such as the file system type,
layout, and size. The VxFS super-block is always located 8192 bytes from the beginning of
the file system and is 8192 bytes long.

synchronous writes

A form of synchronous I/O that writes the file data to disk, updates the inode times, and
writes the updated inode to disk. When the write returns to the caller, both the data and
the inode have been written to disk.

TB

Terabyte (240 bytes or 1024 gigabytes).

transaction

Updates to the file system structure that are grouped together to ensure they are all
completed.

throughput

For file systems, this typically refers to the number of I/O operations in a given unit of
time.

ufs

The UNIX file system type. Used as parameter in some commands.
Glossary 161

UFS

The UNIX file system; derived from the 4.2 Berkeley Fast File System.

unbuffered I/O

I/O that bypasses the kernel cache to increase I/O performance. This is similar to direct
I/O, except when a file is extended; for direct I/O, the inode is written to disk
synchronously, for unbuffered I/O, the inode update is delayed. See buffered I/O and direct
I/O.

VCS

VERITAS Cluster Server.

volume

A virtual disk which represents an addressable range of disk blocks used by applications
such as file systems or databases.

volume set

A container for multiple different volumes. Each volume can have its own geometry.

vxfs

The VERITAS File System type. Used as a parameter in some commands.

VxFS

The VERITAS File System.

VxVM

The VERITAS Volume Manager.
162 VERITAS File System Administrator’s Guide

Index
A
access control lists 15
allocation policies 43

default 43
extent 5
extent based 5
multi-volume support 81

application
expanded facilities 9
transparency 9

B
bad block revectoring 22
blkclear 11
blkclear mount option 20, 22
block based architecture 3
block size 5, 148
blockmap for a snapshot file system 62
buffered file systems 11
buffered I/O 49

C
cache advisories 48
closesync 11
commands

cron 9
fsadm 8
fscat 15
getext 45
mkfs 148
setext 45

contiguous reservation 44
convosync mount option 20, 24
cp_vxfs 45
cpio_vxfs 45
creating a multi-volume support file

system 80
creating file systems with large files 26
creating files with mkfs 92, 93

cron 8, 30
cron sample script 31

D
data copy 48
data integrity 11
data synchronous I/O 23, 50
data transfer 48
default

allocation policy 43
block sizes 5, 148

defragmentation 8
extent 30
scheduling with cron 30

delaylog mount option 20, 21
device file 149
direct data transfer 48
direct I/O 48
directory reorganization 31
disabled file system

snapshot 63
transactions 108

discovered direct I/O 49
discovered_direct_iosize tunable

parameter 33
disk layout

Version 4 148
Version 5 152

disk space allocation 5, 148
displaying mounted file systems 97

E
encapsulating volumes 78
enhanced data integrity modes 11
ENOENT 112
ENOTDIR 112
expansion 9
expansion of a file system 30
extent 5, 41
163

attributes 41
description 148
indirect 5
information 51
reorganization 31

extent allocation 5
aligned 42
control 41
fixed size 42
unit state file 149
unit summary file 149

extent size
fixed 53
indirect 5

external quotas file 66

F
fc_foff 72
fcl_inode_aging_count tunable

parameter 36
fcl_inode_aging_size tunable parameter 36
fcl_keeptime tunable parameter 34
fcl_maxalloc tunable parameter 34
fcl_winterval tunable parameter 35
file

device 149
extent allocation unit state 149
extent allocation unit summary 149
fileset header 149
free extent map 149
inode allocation unit 149
inode list 149
intent log 149
label 148
object location table 148
quotas 149
sparse 43, 53

file change log 34
file system

block size 46
buffering 11
displaying mounted 97
increasing size 99

fileset
header file 149

fixed extent size 42, 53
fixed write size 43
fragmentation

monitoring 30, 31

reorganization facilities 30
reporting 30

fragmented file system characteristics 31
free extent map file 149
free space monitoring 30
freeze 54
fsadm 8

how to reorganize a file system 101
how to resize a file system 99
reporting extent fragmentation 31
scheduling defragmentation using
cron 31

fsadm_vxfs 27
fsapadm 81
fscat 59
fstyp, how to determine the file system

type 98
fsvoladm 80

G
get I/O parameter ioctl 54
getext 45
getfacl 15
global message IDs 109

H
how to create a backup file system 102
how to determine the file system type 98
how to display mounted file systems 97
how to edit the vfstab file 96
how to reorganize a file system 101
how to resize a file system 99
how to restore a file system 103
how to set up user quotas 105
how to turn on quotas 104
how to view quotas 106
HSM agent error message 134
hsm_write_prealloc 35

I
I/O

direct 48
sequential 49
synchronous 49

I/O requests
asynchronous 23
synchronous 22

increasing file system size 99
indirect extent

address size 5
164 VERITAS File System Administrator’s Guide

double 5
single 5

initial_extent_size tunable parameter 36
inode allocation unit file 149
inode list error 108
inode list file 149
inode table 28

internal 28
sizes 28

inodes, block based 5
intent log 7

file 149
Intent Log Resizing 8
internal inode table 28
internal quotas file 66
ioctl interface 41

K
kernel tunable parameters 28

L
label file 148
large files 13, 26

creating file systems with 26
mounting file systems with 26

largefiles mount option 27
log failure 108
log files 53
log mount option 20
logiosize mount option 22

M
max_direct_iosize tunable parameter 36
max_diskq tunable parameter 37
max_seqio_extent_size tunable

parameter 37
maximum I/O size 29
metadata

multi-volume support 78
mincache mount option 20, 23
mkfs 148

creating files with 92, 93
creating large files 27

modes, enhanced data integrity 11
monitoring fragmentation 30
mount 10, 27

how to display mounted file systems 97
mount options 19

blkclear 20, 22
choosing 19

combining 27
convosync 20, 24
delaylog 12, 20, 21
extended 10
largefiles 27
log 12, 20
logiosize 22
mincache 20, 23
nodatainlog 20, 22
tmplog 20, 21

mounted file system, displaying 97
mounting a file system

option combinations 27
with large files 26

msgcnt field 109
multiple block operations 5
multi-volume support 77

creating a MVS file system 80
mv_vxfs 45

N
named data streams 54

listing 56
namespace 56
other system calls 56
programmatic interface 55

ncheck 75
NFS 9
nodatainlog mount option 20, 22

O
O_SYNC 20
object location table file 148

P
parameters

default 32
tunable 33
tuning 32

performance
enhancing 47
overall 19
snapshot file systems 60

Q
quota commands 67
quotacheck 68
quotas 65

exceeding the soft limit 66
hard limit 66
soft limit 66
Index 165

quotas file 66, 149
quotas.grp file 66

R
read_ahead 37
read_nstream tunable parameter 33
read_pref_io tunable parameter 33
reorganization

directory 31
extent 31

report extent fragmentation 30
reservation space 42, 51, 53
Reverse Path Name Lookup 75

S
sectors, forming logical blocks 148
sequential I/O 49
setext 45
setfacl 15
snapof 59
snapped file systems 15, 58

performance 60
unmounting 58

snapread 59
snapshot 102
snapshot file systems 15, 58

blockmap 62
creating 59
data block area 62
disabled 63
errors 121
for backup 58
fscat 59
fsck 59
fuser 58
mounting 59
multiple 58
performance 60
read 59
super-block 62

snapshot, how to create a backup file
system 102

snapsize 59
space reservation 51
sparse file 43, 53
storage

clearing 22
uninitialized 22

super-block 62
SVID requirement, VxFS conformance to 9

synchronous I/O 49
system failure recovery 7
system performance 17

enhancing 47
overall 19

T
temporary directories 13
thaw 54
tmplog mount option 20, 21
transaction disabling 108
tunable I/O parameters 33

discovered_direct_iosize 33
fcl_keeptime 34
fcl_maxalloc 34
fcl_winterval 35
initial_extent_size 36
inode_aging_count 36
inode_aging_size 36
max_direct_iosize 36
max_diskq 37
max_seqio_extent_size 37
read_nstream 33
read_pref_io 33
Volume Manager maximum I/O size 29
write_nstream 33
write_pref_io 33
write_throttle 38

tuning I/O parameters 32
typed extents 6

U
umount command 97
uninitialized storage, clearing 22
unmount 109

a snapped file system 58

V
VEA 4
VERITAS Enterprise Administrator 4
Version 4 disk layout 148
Version 5 disk layout 152
vfstab file, editing 96
virtual disks 9
vol_maxio tunable I/O parameter 29
volume sets 79
VOP_INACTIVE 124
VX_CHGSIZE 51
VX_CONTIGUOUS 51
VX_DSYNC 50
166 VERITAS File System Administrator’s Guide

VX_FREEZE 54, 68
VX_FULLFSCK 108, 111, 112, 113, 114, 117,

118, 119, 121, 124, 125, 127, 128, 130,
131, 132, 133, 139

VX_GETCACHE 48
VX_GETEXT 51
VX_NOEXTEND 51
VX_NORESERVE 51
VX_NOREUSE 50
VX_RANDOM 50
VX_SEQ 50
VX_SETCACHE 48
VX_SETEXT 51
VX_SNAPREAD 59
VX_THAW 54
VX_TRIM 51
VX_UNBUFFERED 49
vxdump 45
vxedquota, how to set up user quotas 105

VxFS
storage allocation 19

vxfs_inotopath 75
vxfs_ninode 28
vxfsu_fcl_sync 35
vxlsino 75
vxquota, how to view quotas 106
vxquotaoff, how to turn off quotas 106
vxquotaon 104
vxrestore 45, 103
vxtunefs, changing extent size 5
vxvset 79

W
write size 43
write_nstream tunable parameter 33
write_pref_io tunable parameter 33
write_throttle tunable parameter 38
Index 167

168 VERITAS File System Administrator’s Guide

	Administrator’s Guide
	Contents
	Preface
	How This Guide Is Organized
	Conventions
	Getting Help

	The VERITAS File System
	VxFS Features
	Disk Layouts
	File System Performance Enhancements
	VERITAS Enterprise Administrator Graphical User Interface
	Extent-Based Allocation
	Typed Extents

	Extent Attributes
	Fast File System Recovery
	VxFS Intent Log
	VxFS Intent Log Resizing

	Online System Administration
	Defragmentation
	File System Resizing

	Application Interface
	Application Transparency
	Expanded Application Facilities

	Extended mount Options
	Enhanced Data Integrity Modes
	Enhanced Performance Mode
	Modes of Temporary File System
	Improved Synchronous Writes
	Support for Large Files

	Enhanced I/O Performance
	Enhanced I/O Clustering
	VxVM Integration
	Application-Specific Parameters

	Access Control Lists
	Online Backup
	Quotas
	Cross-Platform Data Sharing
	File Change Log
	Multi-Volume Support

	VxFS Performance: Creating, Mounting, and Tuning File Systems
	Choosing mkfs Command Options
	Block Size
	Intent Log Size

	Choosing mount Command Options
	log
	delaylog
	tmplog
	logiosize
	nodatainlog
	blkclear
	mincache
	convosync
	ioerror
	largefiles | nolargefiles
	Combining mount Command Options

	Kernel Tunables
	Internal Inode Table Size
	vx_maxlink
	VxVM Maximum I/O Size

	Monitoring Free Space
	Monitoring Fragmentation

	I/O Tuning
	Tuning VxFS I/O Parameters
	Tunable VxFS I/O Parameters

	Extent Attributes
	Attribute Specifics
	Reservation: Preallocating Space to a File
	Fixed Extent Size
	Other Controls

	Commands Related to Extent Attributes
	Failure to Preserve Extent Attributes

	Application Interface
	Cache Advisories
	Direct I/O
	Unbuffered I/O
	Discovered Direct I/O
	Data Synchronous I/O
	Other Advisories

	Extent Information
	Space Reservation
	Fixed Extent Sizes

	Freeze and Thaw
	Get I/O Parameters ioctl
	Named Data Streams
	Named Data Streams Programmatic Interface
	Listing Named Data Streams
	Namespace for Named Data Streams
	Behavior Changes in Other System Calls

	Online Backup Using File System Snapshots
	Snapshot File Systems
	Using a Snapshot File System for Backup
	Creating a Snapshot File System
	Making a Backup
	Performance of Snapshot File Systems
	Snapshot File System Internals
	Snapshot File System Disk Structure
	How a Snapshot File System Works

	Quotas
	Quota Limits
	Quota Files on VxFS
	Quota Commands
	Quota Checking With VxFS
	Using Quotas
	vxquotaon
	mount
	vxedquota
	vxquota
	vxquot
	vxquotaoff

	File Change Log
	File Change Log File
	File Change Log Administrative Interface
	File Change Log Programmatic Interface
	Reverse Path Name Lookup

	Multi-Volume File Systems
	Features Implemented Using MVS
	Volume Sets
	Creating MVS File Systems
	Allocation Policies
	Volume Encapsulation

	VERITAS File System Quick Reference
	Command Summary
	Online Manual Pages
	Creating a File System
	How to Create a File System

	Converting a File System to VxFS
	How to Convert a File System

	Mounting a File System
	How to Mount a File System
	How to Edit the vfstab File

	Unmounting a File System
	How to Unmount a File System

	Displaying Information on Mounted File Systems
	How to Display File System Information

	Identifying File System Types
	How to Identify a File System

	Resizing a File System
	How to Extend a File System Using fsadm
	How to Shrink a File System
	How to Reorganize a File System

	Backing Up and Restoring a File System
	How to Create and Mount a Snapshot File System
	How to Back Up a File System
	How to Restore a File System

	Using Quotas
	How to Turn On Quotas
	How to Set Up User Quotas
	How to View Quotas
	How to Turn Off Quotas

	Kernel Messages
	File System Response to Problems
	Marking an Inode Bad
	Disabling Transactions
	Disabling a File System
	Recovering a Disabled File System

	Kernel Messages
	Global Message IDs

	Disk Layout
	Disk Space Allocation
	VxFS Version 4 Disk Layout
	VxFS Version 5 Disk Layout
	VxFS Version 6 Disk Layout
	Using UNIX Commands on File Systems Larger than One TB

	Glossary
	Index

