
Oracle9 i

Database Utilities

Release 2 (9.2)

March 2002

Part No. A96652-01

Oracle9i Database Utilities, Release 2 (9.2)

Part No. A96652-01

Copyright © 1996, 2002, Oracle Corporation. All rights reserved.

Primary Author: Kathy Rich

Contributors: Lee Barton, Ellen Batbouta, Janet Blowney, George Claborn, Jay Davison, William Fisher,
Dean Gagne, John Galanes, John Kalogeropoulos, Jonathan Klein, Cindy Lim, Eric Magrath, Brian
McCarthy, Ray Pfau, Rich Phillips, Paul Reilly, Mike Sakayeda, Francisco Sanchez, Jim Stenoish

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8, Oracle8i, Oracle9i, Oracle Store, SQL*Plus, Oracle7, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments ... xxxiii

Preface ... xxxv

Audience .. xxxv
Documentation Accessibility ... xxxvi
Organization... xxxvi
Related Documentation .. xxxix
Conventions.. xl

What’s New in Database Utilities? .. xliii

Oracle9i Utilities New Features for Release 9.2... xliii
Oracle9i Utilities New Features for Release 9.0.1.. xlv
Oracle8i Utilities New Features ... xlviii

Part I Export and Import

1 Export

What Is the Export Utility?.. 1-2
Before Using Export ... 1-3

Running catexp.sql or catalog.sql... 1-3
Ensuring Sufficient Disk Space... 1-4
Verifying Access Privileges... 1-4

Invoking Export .. 1-5
iii

Command-Line Entries.. 1-5
Interactive Export Prompts ... 1-6
Parameter Files.. 1-6
Invoking Export As SYSDBA.. 1-7

Export Modes ... 1-8
Table-Level and Partition-Level Export .. 1-12

Table-Level Export .. 1-12
Partition-Level Export... 1-12

Processing Restrictions... 1-13
Getting Online Help... 1-13
Export Parameters ... 1-13

BUFFER .. 1-16
Example: Calculating Buffer Size .. 1-17

COMPRESS.. 1-17
CONSISTENT.. 1-18
CONSTRAINTS .. 1-20
DIRECT .. 1-20
FEEDBACK.. 1-20
FILE... 1-20
FILESIZE .. 1-21
FLASHBACK_SCN... 1-22
FLASHBACK_TIME... 1-22
FULL ... 1-23
GRANTS... 1-23
HELP... 1-23
INDEXES.. 1-23
LOG... 1-23
OBJECT_CONSISTENT ... 1-24
OWNER.. 1-24
PARFILE... 1-24
QUERY ... 1-24

Restrictions ... 1-25
RECORDLENGTH ... 1-26
RESUMABLE... 1-26
RESUMABLE_NAME .. 1-26
iv

RESUMABLE_TIMEOUT.. 1-27
ROWS ... 1-27
STATISTICS... 1-27
TABLES .. 1-28

Table Name Restrictions... 1-29
TABLESPACES ... 1-30
TRANSPORT_TABLESPACE... 1-31
TRIGGERS ... 1-31
TTS_FULL_CHECK.. 1-31
USERID (username/password).. 1-31
VOLSIZE .. 1-32
Parameter Interactions ... 1-32

Example Export Sessions... 1-32
Example Export Session in Full Database Mode.. 1-33
Example Export Session in User Mode ... 1-36
Example Export Sessions in Table Mode .. 1-38

Example 1: DBA Exporting Tables for Two Users.. 1-38
Example 2: User Exports Tables That He Owns ... 1-39
Example 3: Using Pattern Matching to Export Various Tables 1-40

Example Export Session Using Partition-Level Export... 1-41
Example 1: Exporting a Table Without Specifying a Partition 1-41
Example 2: Exporting a Table with a Specified Partition .. 1-41
Example 3: Exporting a Composite Partition .. 1-42

Using the Interactive Method... 1-43
Restrictions .. 1-48

Warning, Error, and Completion Messages ... 1-48
Log File .. 1-48
Warning Messages.. 1-48
Nonrecoverable Error Messages .. 1-49
Completion Messages .. 1-49

Exit Codes for Inspection and Display ... 1-49
Conventional Path Export Versus Direct Path Export ... 1-50
Invoking a Direct Path Export .. 1-52

Security Considerations for Direct Path Exports ... 1-52
Performance Issues for Direct Path Exports ... 1-53
v

Network Considerations.. 1-53
Transporting Export Files Across a Network ... 1-53
Exporting and Importing with Oracle Net.. 1-53

Character Set and Globalization Support Considerations ... 1-54
Character Set Conversion .. 1-54
Effect of Character Set Sorting Order on Conversions.. 1-54
Multibyte Character Sets and Export and Import.. 1-55

Instance Affinity and Export ... 1-55
Considerations When Exporting Database Objects ... 1-56

Exporting Sequences .. 1-56
Exporting LONG and LOB Datatypes... 1-56
Exporting Foreign Function Libraries.. 1-56
Exporting Offline Bitmapped Tablespaces ... 1-56
Exporting Directory Aliases .. 1-57
Exporting BFILE Columns and Attributes.. 1-57
External Tables .. 1-57
Exporting Object Type Definitions... 1-57
Exporting Nested Tables.. 1-58
Exporting Advanced Queue (AQ) Tables ... 1-58
Exporting Synonyms.. 1-58

Possible Export Errors Related to Java Synonyms ... 1-59
Support for Fine-Grained Access Control... 1-59

Transportable Tablespaces .. 1-59
Exporting from a Read-Only Database... 1-60
Using Export and Import to Partition a Database Migration ... 1-60

Advantages of Partitioning a Migration.. 1-61
Disadvantages of Partitioning a Migration... 1-61
How to Use Export and Import to Partition a Database Migration 1-61

Using Different Releases and Versions of Export .. 1-61
Restrictions When Using Different Releases and Versions of Export and Import............ 1-62
Examples of Using Different Releases of Export and Import .. 1-63
Creating Oracle Release 8.0 Export Files from an Oracle9i Database 1-64
Possible Errors When Using Different Releases and Versions... 1-65

EXP-24 ... 1-65
EXP-23 ... 1-65
vi

EXP-37 ... 1-65

2 Import

What Is the Import Utility? ... 2-2
Table Objects: Order of Import... 2-3

Before Using Import... 2-4
Running catexp.sql or catalog.sql... 2-5
Verifying Access Privileges... 2-5

Importing Objects into Your Own Schema.. 2-6
Importing Grants... 2-7
Importing Objects into Other Schemas .. 2-7
Importing System Objects .. 2-7

Importing into Existing Tables... 2-8
Manually Creating Tables Before Importing Data .. 2-8
Disabling Referential Constraints .. 2-8
Manually Ordering the Import... 2-9

Effect of Schema and Database Triggers on Import Operations ... 2-9
Invoking Import.. 2-10

Command-Line Entries.. 2-10
Interactive Import Prompts... 2-10
Parameter Files.. 2-11
Invoking Import As SYSDBA ... 2-12

Import Modes .. 2-13
Getting Online Help .. 2-14
Import Parameters .. 2-14

BUFFER.. 2-18
CHARSET .. 2-18
COMMIT.. 2-19
COMPILE... 2-19
CONSTRAINTS .. 2-20
DATAFILES... 2-20
DESTROY... 2-20
FEEDBACK.. 2-20
FILE... 2-21
FILESIZE .. 2-21
vii

FROMUSER ... 2-22
FULL ... 2-22
GRANTS... 2-22
HELP... 2-23
IGNORE ... 2-23
INDEXES.. 2-24
INDEXFILE.. 2-24
LOG... 2-25
PARFILE... 2-25
RECORDLENGTH ... 2-25
RESUMABLE... 2-26
RESUMABLE_NAME .. 2-26
RESUMABLE_TIMEOUT .. 2-26
ROWS ... 2-27
SHOW... 2-27
SKIP_UNUSABLE_INDEXES ... 2-27
STATISTICS ... 2-27
STREAMS_CONFIGURATION.. 2-28
STREAMS_INSTANTIATION.. 2-28
TABLES .. 2-29

Table Name Restrictions... 2-30
TABLESPACES ... 2-31
TOID_NOVALIDATE.. 2-31
TOUSER ... 2-32
TRANSPORT_TABLESPACE ... 2-33
TTS_OWNERS... 2-33
USERID (username/password).. 2-33
VOLSIZE .. 2-34

Example Import Sessions .. 2-34
Example Import of Selected Tables for a Specific User... 2-35
Example Import of Tables Exported by Another User.. 2-36
Example Import of Tables from One User to Another.. 2-37
Example Import Session Using Partition-Level Import .. 2-38

Example 1: A Partition-Level Import.. 2-38
Example 2: A Partition-Level Import of a Composite Partitioned Table 2-39
viii

Example 3: Repartitioning a Table on a Different Column... 2-40
Example Import of Using Pattern Matching to Import Various Tables 2-43

Using the Interactive Method... 2-44
Warning, Error, and Completion Messages ... 2-45

Log File .. 2-46
Warning Messages.. 2-46
Nonrecoverable Error Messages .. 2-46
Completion Messages .. 2-46

Exit Codes for Inspection and Display ... 2-47
Error Handling During an Import ... 2-47

Row Errors... 2-47
Failed Integrity Constraints ... 2-48
Invalid Data.. 2-48

Errors Importing Database Objects.. 2-48
Object Already Exists.. 2-48
Sequences.. 2-49
Resource Errors.. 2-49
Domain Index Metadata... 2-49

Table-Level and Partition-Level Import ... 2-49
Guidelines for Using Table-Level Import ... 2-50
Guidelines for Using Partition-Level Import ... 2-50
Migrating Data Across Partitions and Tables... 2-51

Controlling Index Creation and Maintenance .. 2-52
Delaying Index Creation.. 2-52
Index Creation and Maintenance Controls... 2-52

Example of Postponing Index Maintenance.. 2-53
Reducing Database Fragmentation ... 2-53
Network Considerations ... 2-54

Transporting Export Files Across a Network... 2-54
Exporting and Importing with Oracle Net ... 2-54

Character Set and Globalization Support Considerations ... 2-54
Character Set Conversion .. 2-55

User Data .. 2-55
Data Definition Language (DDL).. 2-55

Import and Single-Byte Character Sets.. 2-55
ix

Import and Multibyte Character Sets .. 2-56
Considerations When Importing Database Objects .. 2-56

Importing Object Identifiers.. 2-56
Importing Existing Object Tables and Tables That Contain Object Types......................... 2-58
Importing Nested Tables ... 2-58
Importing REF Data ... 2-59
Importing BFILE Columns and Directory Aliases... 2-59
Importing Foreign Function Libraries ... 2-60
Importing Stored Procedures, Functions, and Packages ... 2-60
Importing Java Objects... 2-60
Importing External Tables ... 2-60
Importing Advanced Queue (AQ) Tables... 2-61
Importing LONG Columns ... 2-61
Importing Views ... 2-61
Importing Partitioned Tables .. 2-62
Support for Fine-Grained Access Control... 2-62

Materialized Views and Snapshots ... 2-63
Snapshot Log ... 2-63
Snapshots ... 2-64

Importing a Snapshot.. 2-64
Importing a Snapshot into a Different Schema ... 2-64

Transportable Tablespaces .. 2-64
Storage Parameters.. 2-65

The OPTIMAL Parameter .. 2-66
Storage Parameters for OID Indexes and LOB Columns... 2-66
Overriding Storage Parameters ... 2-66
The Export COMPRESS Parameter... 2-66

Read-Only Tablespaces.. 2-66
Dropping a Tablespace... 2-67
Reorganizing Tablespaces ... 2-67
Importing Statistics .. 2-68
Using Export and Import to Partition a Database Migration ... 2-69

Advantages of Partitioning a Migration.. 2-69
Disadvantages of Partitioning a Migration... 2-69
How to Use Export and Import to Partition a Database Migration 2-69
x

Using Export Files from a Previous Oracle Release ... 2-70
Using Oracle Version 7 Export Files .. 2-70

Check Constraints on DATE Columns... 2-70
Using Oracle Version 6 Export Files .. 2-71

User Privileges ... 2-71
CHAR Columns... 2-71
Status of Integrity Constraints... 2-71
Length of Default Column Values .. 2-71

Using Oracle Version 5 Export Files .. 2-72
Restrictions When Using Different Releases and Versions of Export and Import 2-72
The CHARSET Parameter ... 2-73

Part II SQL*Loader

3 SQL*Loader Concepts

SQL*Loader Features ... 3-1
SQL*Loader Control File... 3-3
Input Data and Datafiles ... 3-4

Fixed Record Format.. 3-4
Variable Record Format... 3-5
Stream Record Format .. 3-6
Logical Records... 3-7
Data Fields ... 3-8

LOBFILEs and Secondary Datafiles (SDFs)... 3-9
Data Conversion and Datatype Specification ... 3-9
Discarded and Rejected Records ... 3-10

The Bad File ... 3-10
SQL*Loader Rejects... 3-10
Oracle Rejects ... 3-10

The Discard File .. 3-11
Log File and Logging Information .. 3-11
Conventional Path Loads, Direct Path Loads, and External Table Loads 3-11

Conventional Path Loads .. 3-12
Direct Path Loads ... 3-12

Parallel Direct Path.. 3-12
xi

External Table Loads .. 3-13
Loading Objects, Collections, and LOBs.. 3-13

Supported Object Types... 3-13
column-objects ... 3-13
row objects .. 3-14

Supported Collection Types.. 3-14
Nested Tables ... 3-14
VARRAYs ... 3-14

Supported LOB Types.. 3-14
Partitioned Object Support ... 3-15
Application Development: Direct Path Load API .. 3-15

4 SQL*Loader Command-Line Reference

Invoking SQL*Loader ... 4-1
Specifying Parameters in the Control File... 4-3

Command-Line Parameters... 4-3
BAD (bad file).. 4-3
BINDSIZE (maximum size)... 4-4
COLUMNARRAYROWS... 4-4
CONTROL (control file)... 4-4
DATA (datafile)... 4-5
DATE_CACHE.. 4-5
DIRECT (data path) .. 4-6
DISCARD (filename) .. 4-6
DISCARDMAX (integer) ... 4-6
ERRORS (errors to allow) .. 4-6
EXTERNAL_TABLE... 4-7

Restrictions When Using EXTERNAL_TABLE... 4-8
FILE (file to load into) .. 4-9
LOAD (records to load) ... 4-9
LOG (log file)... 4-9
MULTITHREADING ... 4-9
PARALLEL (parallel load) .. 4-10
PARFILE (parameter file) .. 4-10
READSIZE (read buffer size) .. 4-10
xii

RESUMABLE... 4-11
RESUMABLE_NAME.. 4-12
RESUMABLE_TIMEOUT.. 4-12
ROWS (rows per commit) ... 4-12
SILENT (feedback mode) .. 4-12
SKIP (records to skip)... 4-13
SKIP_INDEX_MAINTENANCE.. 4-14
SKIP_UNUSABLE_INDEXES... 4-14
STREAMSIZE.. 4-15
USERID (username/password).. 4-15

Exit Codes for Inspection and Display ... 4-16

5 SQL*Loader Control File Reference

Control File Contents ... 5-2
Comments in the Control File... 5-4

Specifying Command-Line Parameters in the Control File ... 5-4
OPTIONS Clause .. 5-4

Specifying Filenames and Object Names .. 5-5
Filenames That Conflict with SQL and SQL*Loader Reserved Words 5-5
Specifying SQL Strings .. 5-5
Operating System Considerations ... 5-5

Specifying a Complete Path ... 5-6
Backslash Escape Character ... 5-6
Nonportable Strings.. 5-6
Escaping the Backslash ... 5-7
Escape Character Is Sometimes Disallowed.. 5-7

Specifying Datafiles ... 5-7
Examples of INFILE Syntax .. 5-9
Specifying Multiple Datafiles ... 5-9

Identifying Data in the Control File with BEGINDATA .. 5-10
Specifying Datafile Format and Buffering... 5-11
Specifying the Bad File.. 5-11

Examples of Specifying a Bad File Name.. 5-13
How Bad Files Are Handled with LOBFILEs and SDFs... 5-13
Criteria for Rejected Records .. 5-13
xiii

Specifying the Discard File ... 5-14
Specifying the Discard File in the Control File... 5-14
Specifying the Discard File from the Command Line ... 5-15
Examples of Specifying a Discard File Name... 5-15
Criteria for Discarded Records ... 5-15
How Discard Files Are Handled with LOBFILEs and SDFs .. 5-16
Limiting the Number of Discarded Records... 5-16

Handling Different Character Encoding Schemes ... 5-16
Multibyte (Asian) Character Sets.. 5-17
Unicode Character Sets .. 5-17
Database Character Sets... 5-18
Datafile Character Sets ... 5-18
Input Character Conversion.. 5-19

CHARACTERSET Parameter .. 5-19
Control File Character Set .. 5-21
Character-Length Semantics .. 5-22

Interrupted Loads.. 5-24
Discontinued Conventional Path Loads.. 5-24
Discontinued Direct Path Loads... 5-24

Load Discontinued Because of Space Errors ... 5-24
Load Discontinued Because Maximum Number of Errors Exceeded 5-25
Load Discontinued Because of Fatal Errors... 5-25
Load Discontinued Because a Control+C Was Issued ... 5-25

Status of Tables and Indexes After an Interrupted Load.. 5-26
Using the Log File to Determine Load Status... 5-26
Continuing Single-Table Loads .. 5-26

Assembling Logical Records from Physical Records... 5-27
Using CONCATENATE to Assemble Logical Records .. 5-27
Using CONTINUEIF to Assemble Logical Records .. 5-27

Loading Logical Records into Tables .. 5-31
Specifying Table Names .. 5-32

INTO TABLE Clause... 5-32
Table-Specific Loading Method.. 5-32

Loading Data into Empty Tables... 5-33
Loading Data into Nonempty Tables ... 5-33
xiv

Table-Specific OPTIONS Parameter .. 5-34
Loading Records Based on a Condition .. 5-35

Using the WHEN Clause with LOBFILEs and SDFs.. 5-35
Specifying Default Data Delimiters ... 5-36

fields_spec .. 5-36
termination_spec ... 5-36
enclosure_spec ... 5-36

Handling Short Records with Missing Data... 5-37
TRAILING NULLCOLS Clause .. 5-37

Index Options .. 5-38
SORTED INDEXES Clause.. 5-38
SINGLEROW Option ... 5-38

Benefits of Using Multiple INTO TABLE Clauses... 5-39
Extracting Multiple Logical Records ... 5-39

Relative Positioning Based on Delimiters.. 5-40
Distinguishing Different Input Record Formats .. 5-40

Relative Positioning Based on the POSITION Parameter ... 5-41
Distinguishing Different Input Row Object Subtypes .. 5-41
Loading Data into Multiple Tables .. 5-43
Summary.. 5-43

Bind Arrays and Conventional Path Loads ... 5-44
Size Requirements for Bind Arrays.. 5-44
Performance Implications of Bind Arrays .. 5-44
Specifying Number of Rows Versus Size of Bind Array .. 5-45
Calculations to Determine Bind Array Size.. 5-45

Determining the Size of the Length Indicator... 5-47
Calculating the Size of Field Buffers... 5-47

Minimizing Memory Requirements for Bind Arrays.. 5-49
Calculating Bind Array Size for Multiple INTO TABLE Clauses 5-50

6 Field List Reference

Field List Contents.. 6-1
Specifying the Position of a Data Field .. 6-3

Using POSITION with Data Containing Tabs.. 6-4
Using POSITION with Multiple Table Loads .. 6-4
xv

Examples of Using POSITION.. 6-4
Specifying Columns and Fields ... 6-5

Specifying Filler Fields... 6-6
Specifying the Datatype of a Data Field .. 6-7

SQL*Loader Datatypes .. 6-7
Nonportable Datatypes.. 6-8

INTEGER(n) ... 6-8
SMALLINT ... 6-9
FLOAT... 6-9
DOUBLE ... 6-10
BYTEINT... 6-10
ZONED ... 6-10
DECIMAL ... 6-11
VARGRAPHIC... 6-12
VARCHAR ... 6-13
VARRAW.. 6-14
LONG VARRAW... 6-14

Portable Datatypes.. 6-14
CHAR .. 6-15
Datetime and Interval Datatypes .. 6-16
GRAPHIC ... 6-18
GRAPHIC EXTERNAL... 6-19
Numeric EXTERNAL.. 6-19
RAW .. 6-20
VARCHARC... 6-20
VARRAWC... 6-21
Conflicting Native Datatype Field Lengths ... 6-21
Field Lengths for Length-Value Datatypes.. 6-22

Datatype Conversions.. 6-22
Datatype Conversions for Datetime and Interval Datatypes ... 6-23
Specifying Delimiters ... 6-24

TERMINATED Fields ... 6-25
ENCLOSED Fields... 6-25
Delimiter Marks in the Data... 6-26
Maximum Length of Delimited Data ... 6-27
xvi

Loading Trailing Blanks with Delimiters... 6-27
Conflicting Field Lengths for Character Datatypes... 6-28

Predetermined Size Fields.. 6-28
Delimited Fields... 6-28
Date Field Masks ... 6-29

Specifying Field Conditions... 6-29
Comparing Fields to BLANKS ... 6-31
Comparing Fields to Literals .. 6-32

Using the WHEN, NULLIF, and DEFAULTIF Clauses .. 6-32
Loading Data Across Different Platforms ... 6-36
Byte Ordering .. 6-37

Specifying Byte Order.. 6-38
Using Byte Order Marks (BOMs) ... 6-39

Suppressing Checks for BOMs .. 6-41
Loading All-Blank Fields .. 6-41
Trimming Whitespace .. 6-42

Datatypes for Which Whitespace Can Be Trimmed.. 6-44
Field Length Specifications for Datatypes for Which Whitespace Can Be Trimmed....... 6-45

Predetermined Size Fields.. 6-45
Delimited Fields... 6-45

Relative Positioning of Fields ... 6-46
No Start Position Specified for a Field ... 6-46
Previous Field Terminated by a Delimiter .. 6-46
Previous Field Has Both Enclosure and Termination Delimiters 6-47

Leading Whitespace ... 6-47
Previous Field Terminated by Whitespace.. 6-47
Optional Enclosure Delimiters .. 6-48

Trailing Whitespace.. 6-49
Enclosed Fields.. 6-49

Preserving Whitespace... 6-49
PRESERVE BLANKS Option .. 6-49

Terminated by Whitespace .. 6-50
Applying SQL Operators to Fields.. 6-50

Referencing Fields .. 6-52
Common Uses of SQL Operators in Field Specifications ... 6-53
xvii

Combinations of SQL Operators .. 6-53
Using SQL Strings with a Date Mask... 6-53
Interpreting Formatted Fields... 6-54

Using SQL*Loader to Generate Data for Input... 6-54
Loading Data Without Files .. 6-55
Setting a Column to a Constant Value... 6-55

CONSTANT Parameter .. 6-55
Setting a Column to an Expression Value... 6-56

EXPRESSION Parameter .. 6-56
Setting a Column to the Datafile Record Number ... 6-56

RECNUM Parameter... 6-56
Setting a Column to the Current Date ... 6-56

SYSDATE Parameter... 6-56
Setting a Column to a Unique Sequence Number ... 6-57

SEQUENCE Parameter ... 6-57
Generating Sequence Numbers for Multiple Tables ... 6-58

Example: Generating Different Sequence Numbers for Each Insert............................ 6-58

7 Loading Objects, LOBs, and Collections

Loading Column Objects... 7-1
Loading Column Objects in Stream Record Format.. 7-2
Loading Column Objects in Variable Record Format ... 7-3
Loading Nested Column Objects ... 7-4
Loading Column Objects with a Derived Subtype .. 7-4
Specifying Null Values for Objects .. 7-6

Specifying Attribute Nulls ... 7-6
Specifying Atomic Nulls... 7-7

Loading Column Objects with User-Defined Constructors ... 7-8
Loading Object Tables ... 7-12

Loading Object Tables with a Subtype .. 7-13
Loading REF Columns ... 7-15

Real REF Columns .. 7-15
Primary Key REF Columns ... 7-16
Unscoped REF Columns That Allow Primary Keys.. 7-16

Loading LOBs .. 7-18
xviii

Loading LOB Data from a Primary Datafile... 7-19
LOB Data in Predetermined Size Fields... 7-19
LOB Data in Delimited Fields.. 7-20
LOB Data in Length-Value Pair Fields ... 7-21

Loading LOB Data from an External LOBFILE (BFILE) ... 7-22
Loading LOB Data from LOBFILEs ... 7-23

Dynamic Versus Static LOBFILE Specifications ... 7-24
Examples of Loading LOB Data from LOBFILEs ... 7-24
Considerations When Loading LOBs from LOBFILEs .. 7-28

Loading Collections (Nested Tables and VARRAYs)... 7-29
Restrictions in Nested Tables and VARRAYs .. 7-30
Secondary Datafiles (SDFs) ... 7-31

Dynamic Versus Static SDF Specifications .. 7-33
Loading a Parent Table Separately from Its Child Table .. 7-33

Memory Issues When Loading VARRAY Columns ... 7-34

8 SQL*Loader Log File Reference

Header Information.. 8-1
Global Information .. 8-2
Table Information ... 8-2

Column Information .. 8-3
Position ... 8-3
Length ... 8-4
Delimiter ... 8-4
Datatype.. 8-4

Datafile Information... 8-4
Table Load Information ... 8-5
Summary Statistics ... 8-5

Oracle Statistics That Are Logged.. 8-6
Information About Single-Partition Loads .. 8-7
Statistics for Loading a Table... 8-7

Additional Summary Statistics for Direct Path Loads and Multithreading 8-7
Log File Created When EXTERNAL_TABLE=GENERATE_ONLY .. 8-8
xix

9 Conventional and Direct Path Loads

Data Loading Methods... 9-1
Conventional Path Load .. 9-4

Conventional Path Load of a Single Partition .. 9-4
When to Use a Conventional Path Load ... 9-4

Direct Path Load .. 9-5
Data Conversion During Direct Path Loads ... 9-6
Direct Path Load of a Partitioned or Subpartitioned Table .. 9-6
Direct Path Load of a Single Partition or Subpartition.. 9-7
Advantages of a Direct Path Load.. 9-8
Restrictions on Using Direct Path Loads... 9-8
Restrictions on a Direct Path Load of a Single Partition ... 9-9
When to Use a Direct Path Load... 9-9
Integrity Constraints .. 9-10
Field Defaults on the Direct Path.. 9-10
Loading into Synonyms... 9-10

Using Direct Path Load .. 9-10
Setting Up for Direct Path Loads.. 9-10
Specifying a Direct Path Load... 9-11
Building Indexes ... 9-11

Improving Performance.. 9-11
Temporary Segment Storage Requirements .. 9-12

Indexes Left in an Unusable State .. 9-12
Using Data Saves to Protect Against Data Loss ... 9-13

Using the ROWS Parameter... 9-14
Data Save Versus Commit.. 9-14

Data Recovery During Direct Path Loads... 9-15
Media Recovery and Direct Path Loads... 9-15
Instance Recovery and Direct Path Loads ... 9-15

Loading LONG Data Fields... 9-16
Loading Data As PIECED... 9-16

Optimizing Performance of Direct Path Loads ... 9-17
Preallocating Storage for Faster Loading .. 9-17
Presorting Data for Faster Indexing... 9-18

SORTED INDEXES Clause... 9-18
xx

Unsorted Data .. 9-18
Multiple-Column Indexes .. 9-19
Choosing the Best Sort Order .. 9-19

Infrequent Data Saves .. 9-20
Minimizing Use of the Redo Log ... 9-20

Disabling Archiving.. 9-20
Specifying the UNRECOVERABLE Parameter .. 9-20
Setting the NOLOG Attribute.. 9-21

Specifying the Number of Column Array Rows and Size of Stream Buffers 9-21
Specifying a Value for the Date Cache .. 9-22

Optimizing Direct Path Loads on Multiple-CPU Systems... 9-23
Avoiding Index Maintenance ... 9-24
Direct Loads, Integrity Constraints, and Triggers .. 9-25

Integrity Constraints .. 9-25
Enabled Constraints .. 9-25
Disabled Constraints... 9-25
Reenable Constraints .. 9-26

Database Insert Triggers.. 9-27
Replacing Insert Triggers with Integrity Constraints .. 9-27
When Automatic Constraints Cannot Be Used... 9-27
Preparation ... 9-28
Using an Update Trigger.. 9-28
Duplicating the Effects of Exception Conditions.. 9-28
Using a Stored Procedure... 9-29

Permanently Disabled Triggers and Constraints... 9-30
Increasing Performance with Concurrent Conventional Path Loads 9-30

Parallel Data Loading Models.. 9-30
Concurrent Conventional Path Loads ... 9-31
Intersegment Concurrency with Direct Path.. 9-31
Intrasegment Concurrency with Direct Path.. 9-31
Restrictions on Parallel Direct Path Loads.. 9-32
Initiating Multiple SQL*Loader Sessions.. 9-32
Parameters for Parallel Direct Path Loads .. 9-33

Specifying Temporary Segments .. 9-33
Enabling Constraints After a Parallel Direct Path Load ... 9-34
xxi

PRIMARY KEY and UNIQUE KEY Constraints .. 9-35
General Performance Improvement Hints... 9-35

10 SQL*Loader Case Studies

The Case Studies ... 10-2
Case Study Files .. 10-3
Tables Used in the Case Studies .. 10-4

Contents of Table emp ... 10-4
Contents of Table dept ... 10-4

Checking the Results of a Load.. 10-4
References and Notes ... 10-5
Case Study 1: Loading Variable-Length Data.. 10-5

Control File for Case Study 1 .. 10-5
Running Case Study 1.. 10-6
Log File for Case Study 1 ... 10-7

Case Study 2: Loading Fixed-Format Fields... 10-8
Control File for Case Study 2 .. 10-8
Datafile for Case Study 2 ... 10-9
Running Case Study 2.. 10-9
Log File for Case Study 2 ... 10-10

Case Study 3: Loading a Delimited, Free-Format File ... 10-11
Control File for Case Study 3 .. 10-11
Running Case Study 3.. 10-13
Log File for Case Study 3 ... 10-13

Case Study 4: Loading Combined Physical Records.. 10-14
Control File for Case Study 4 .. 10-15
Datafile for Case Study 4 ... 10-16

Rejected Records .. 10-16
Running Case Study 4.. 10-16
Log File for Case Study 4 ... 10-17
Bad File for Case Study 4... 10-18

Case Study 5: Loading Data into Multiple Tables .. 10-18
Control File for Case Study 5 .. 10-19
Datafile for Case Study 5 ... 10-20
Running Case Study 5.. 10-20
xxii

Log File for Case Study 5... 10-21
Loaded Tables for Case Study 5 ... 10-23

Case Study 6: Loading Data Using the Direct Path Load Method .. 10-24
Control File for Case Study 6 .. 10-25
Datafile for Case Study 6 ... 10-25
Running Case Study 6.. 10-26
Log File for Case Study 6... 10-26

Case Study 7: Extracting Data from a Formatted Report... 10-28
Creating a BEFORE INSERT Trigger... 10-28
Control File for Case Study 7 .. 10-29
Datafile for Case Study 7 ... 10-31
Running Case Study 7.. 10-31
Log File for Case Study 7... 10-32

Case Study 8: Loading Partitioned Tables ... 10-34
Control File for Case Study 8 .. 10-34
Table Creation ... 10-35
Datafile for Case Study 8 ... 10-35
Running Case Study 8.. 10-36
Log File for Case Study 8... 10-37

Case Study 9: Loading LOBFILEs (CLOBs) ... 10-38
Control File for Case Study 9 .. 10-39
Datafiles for Case Study 9 ... 10-40
Running Case Study 9.. 10-41
Log File for Case Study 9... 10-42

Case Study 10: Loading REF Fields and VARRAYs ... 10-43
Control File for Case Study 10 .. 10-43
Running Case Study 10.. 10-45
Log File for Case Study 10... 10-45

Case Study 11: Loading Data in the Unicode Character Set ... 10-47
Control File for Case Study 11 .. 10-48
Datafile for Case Study 11 ... 10-49
Running Case Study 11.. 10-49
Log File for Case Study 11... 10-50
Loaded Tables for Case Study 11 ... 10-52
xxiii

Part III External Tables

11 External Tables Concepts

The Access Driver ... 11-2
External Table Restrictions.. 11-3
Location of Datafiles and Output Files ... 11-3
Using External Tables to Load Data .. 11-5
Parallel Access to External Tables .. 11-6
Performance Hints When Using External Tables.. 11-6
Behavior Differences Between SQL*Loader and External Tables... 11-7

Multiple Primary Input Datafiles ... 11-7
Syntax and Datatypes... 11-8
Rejected Rows.. 11-8
Byte-Order Marks ... 11-8
Default Character Sets and Date Masks .. 11-8

12 External Tables Access Parameters

access_parameters Clause.. 12-2
record_format_info Clause.. 12-3

FIXED length ... 12-4
VARIABLE size ... 12-5
DELIMITED BY... 12-6
CHARACTERSET... 12-7
DATA IS...ENDIAN ... 12-7
BYTE ORDER MARK (CHECK | NOCHECK).. 12-8
STRING SIZES ARE IN.. 12-8
LOAD WHEN ... 12-8
BADFILE | NOBADFILE .. 12-9
DISCARDFILE | NODISCARDFILE... 12-9
LOG FILE | NOLOGFILE ... 12-10
SKIP... 12-10
READSIZE ... 12-10
DATE_CACHE.. 12-11
string ... 12-11
xxiv

condition_spec .. 12-12
[directory object name:] filename... 12-12
condition .. 12-13

range start : range end .. 12-14
field_definitions Clause ... 12-15

delim_spec ... 12-16
Example: External Table with Terminating Delimiters ... 12-18
Example: External Table with Enclosure and Terminator Delimiters....................... 12-18
Example: External Table with Optional Enclosure Delimiters 12-19

trim_spec.. 12-19
MISSING FIELD VALUES ARE NULL... 12-20
field_list.. 12-21
pos_spec Clause .. 12-22

start .. 12-23
* .. 12-23
increment .. 12-23
end ... 12-23
length... 12-23

datatype_spec Clause... 12-24
[UNSIGNED] INTEGER [EXTERNAL] [(len)].. 12-26
DECIMAL [EXTERNAL] and ZONED [EXTERNAL]... 12-26
ORACLE_DATE .. 12-26
ORACLE_NUMBER ... 12-26
DOUBLE [EXTERNAL] .. 12-27
FLOAT [EXTERNAL] ... 12-27
RAW .. 12-27
CHAR.. 12-27
date_format_spec... 12-28
VARCHAR and VARRAW .. 12-29
VARCHARC and VARRAWC .. 12-30

init_spec Clause .. 12-31

Part IV Other Utilities
xxv

13 DBVERIFY: Offline Database Verification Utility

Using DBVERIFY to Validate Disk Blocks of a Single Datafile .. 13-2
Syntax ... 13-2
Parameters ... 13-2
Command-Line Interface... 13-3
Sample DBVERIFY Output ... 13-3

Using DBVERIFY to Validate a Segment ... 13-4
Syntax ... 13-5
Parameters ... 13-5
Command-Line Interface... 13-6

14 DBNEWID Utility

What Is the DBNEWID Utility? ... 14-1
Ramifications of Changing the DBID and DBNAME ... 14-2
Changing the DBID and DBNAME of a Database .. 14-2

Changing the DBID and Database Name.. 14-2
Changing Only the Database Name .. 14-4
Troubleshooting a DBID Change Operation .. 14-5
Troubleshooting a Database Name Change Operation .. 14-6

DBNEWID Syntax .. 14-7
Parameters ... 14-7
Restrictions and Usage Notes ... 14-8
Examples of Using DBNEWID ... 14-9

Changing Only the DBID ... 14-9
Changing the DBID and Database Name .. 14-9
Changing Only the Database Name ... 14-9

15 Using the Metadata API

Introduction to the Metadata API .. 15-2
Previous Methods Used to Extract Metadata ... 15-2
Metadata API Components ... 15-2
Metadata API Features... 15-3
Internet Computing.. 15-3

How Is the Metadata API Implemented? ... 15-4
xxvi

DBMS_METADATA and Security... 15-4
DBMS_METADATA Programmatic Interface... 15-4

Using the DBMS_METADATA.FETCH_XML Procedure.. 15-6
Using the DBMS_METADATA.FETCH_DDL Procedure.. 15-7
Performance Tips for the Programmatic Interface of the Metadata API............................ 15-9

DBMS_METADATA Browsing Interface... 15-10
Example: Using the DBMS_METADATA Browsing Interface .. 15-11

Metadata API Example .. 15-11
mddemo.sql ... 15-11
PAYROLL_DEMO Output.. 15-17

Part V Appendixes

A SQL*Loader Syntax Diagrams

B DB2/DXT User Notes

Using the DB2 RESUME Option ... B-1
Inclusions for Compatibility .. B-2

LOG Statement.. B-2
WORKDDN Statement .. B-2
SORTDEVT and SORTNUM Statements .. B-2
DISCARD Specification ... B-3

Restrictions... B-3
FORMAT Statement ... B-3
PART Statement.. B-3
SQL/DS Option .. B-4
DBCS Graphic Strings.. B-4

SQL*Loader Syntax with DB2-Compatible Statements.. B-4

C Backus-Naur Form Syntax

Index
xxvii

List of Examples

3–1 Loading Data in Fixed Record Format ... 3-5
3–2 Loading Data in Variable Record Format .. 3-6
3–3 Loading Data in Stream Record Format... 3-7
5–1 Sample Control File ... 5-2
5–2 CONTINUEIF THIS Without the PRESERVE Parameter.. 5-30
5–3 CONTINUEIF THIS with the PRESERVE Parameter .. 5-30
5–4 CONTINUEIF NEXT Without the PRESERVE Parameter .. 5-30
5–5 CONTINUEIF NEXT with the PRESERVE Parameter... 5-31
6–1 Field List Section of Sample Control File ... 6-2
6–2 DEFAULTIF Clause Is Not Evaluated.. 6-34
6–3 DEFAULTIF Clause Is Evaluated.. 6-34
6–4 DEFAULTIF Clause Specifies a Position.. 6-35
6–5 DEFAULTIF Clause Specifies a Field Name ... 6-36
7–1 Loading Column Objects in Stream Record Format... 7-2
7–2 Loading Column Objects in Variable Record Format .. 7-3
7–3 Loading Nested Column Objects .. 7-4
7–4 Loading Column Objects with a Subtype .. 7-5
7–5 Specifying Attribute Nulls Using the NULLIF Clause .. 7-6
7–6 Loading Data Using Filler Fields... 7-7
7–7 Loading a Column Object with a User-Defined Constructor That Matches

the Attribute-Value Constructor ... 7-8
7–8 Loading a Column Object with a User-Defined Constructor That Does Not

Match the Attribute-Value Constructor ... 7-10
7–9 Loading a Column Object with a User-Defined Constructor That Does Not

Match the Attribute-Value Constructor by Using a SQL Expression 7-11
7–10 Loading an Object Table with Primary Key OIDs .. 7-12
7–11 Loading OIDs ... 7-13
7–12 Loading an Object Table with a Subtype ... 7-14
7–13 Loading Real REF Columns ... 7-15
7–14 Loading Primary Key REF Columns .. 7-16
7–15 Loading LOB Data in Predetermined Size Fields ... 7-19
7–16 Loading LOB Data in Delimited Fields .. 7-20
7–17 Loading LOB Data in Length-Value Pair Fields ... 7-21
7–18 Loading Data Using BFILEs: Only Filename Specified Dynamically.......................... 7-22
7–19 Loading Data Using BFILEs: Filename and Directory Name Specified

Dynamically ... 7-23
7–20 Loading LOB DATA with One LOB per LOBFILE... 7-25
7–21 Loading LOB Data Using Predetermined Size LOBs ... 7-26
7–22 Loading LOB Data Using Delimited LOBs.. 7-26
7–23 Loading LOB Data Using Length-Value Pair Specified LOBs 7-27
xxviii

7–24 Loading a VARRAY and a Nested Table... 7-30
7–25 Loading a Parent Table with User-Provided SIDs ... 7-33
7–26 Loading a Child Table (the Nested Table Storage Table) with User-Provided

SIDs.. 7-34
9–1 Setting the Date Format in the SQL*Loader Control File .. 9-6
9–2 Setting an NLS_DATE_FORMAT Environment Variable... 9-6
xxix

xxx

List of Figures

1–1 Exporting a Database .. 1-2
1–2 Database Reads on Conventional Path Export and Direct Path Export 1-51
2–1 Importing an Export File .. 2-3
3–1 SQL*Loader Overview.. 3-3
6–1 Example of Field Conversion... 6-43
6–2 Relative Positioning After a Fixed Field... 6-46
6–3 Relative Positioning After a Delimited Field... 6-47
6–4 Relative Positioning After Enclosure Delimiters .. 6-47
6–5 Fields Terminated by Whitespace... 6-48
6–6 Fields Terminated by Optional Enclosure Delimiters.. 6-48
9–1 Database Writes on SQL*Loader Direct Path and Conventional Path 9-3
15–1 Using DBMS_METADATA.FETCH_XML().. 15-7
15–2 Using DBMS_METADATA.FETCH_DDL() .. 15-9

List of Tables

1–1 Objects Exported and Imported in Each Mode.. 1-9
1–2 Sequence of Events During Updates by Two Users.. 1-18
1–3 Maximum Size for Dump Files... 1-22
1–4 Invoking Export Using the Interactive Method... 1-43
1–5 Exit Codes for Export... 1-49
1–6 Using Different Releases of Export and Import... 1-63
2–1 Privileges Required to Import Objects into Your Own Schema.................................... 2-6
2–2 Privileges Required to Import Grants ... 2-7
2–3 Invoking Import Using the Interactive Method... 2-44
2–4 Exit Codes for Import .. 2-47
4–1 Exit Codes for SQL*Loader ... 4-16
5–1 Parameters for the INFILE Clause ... 5-8
5–2 Parameters for CONTINUEIF .. 5-28
5–3 Fixed-Length Fields.. 5-48
5–4 Nongraphic Fields .. 5-48
5–5 Graphic Fields ... 5-48
5–6 Variable-Length Fields .. 5-49
6–1 Parameters for the Position Specification Clause .. 6-3
6–2 Datatype Conversions for Datetime and Interval Datatypes....................................... 6-24
6–3 Parameters for Termination and Enclosure Specification .. 6-26
6–4 Parameters for the Field Condition Clause .. 6-30
6–5 Behavior Summary for Trimming Whitespace .. 6-44
6–6 Parameters Used for Column Specification.. 6-57
10–1 Case Studies and Their Related Files... 10-3
14–1 Parameters for the DBNEWID Utility ... 14-8
15–1 Procedures for the DBMS_METADATA Programmatic Interface.............................. 15-5
15–2 Procedures for the DBMS_METADATA Browsing Interface.................................... 15-11
B–1 DB2 Functions and Equivalent SQL*Loader Options... B-1
C–1 Symbols and Conventions for Backus-Naur Form Syntax... C-1
xxxi

xxxii

Send Us Your Comments

Oracle9 i Database Utilities, Release 2 (9.2)

Part No. A96652-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: nedc-doc_us@oracle.com

■ FAX: 603-897-3825 Attn: Oracle9i Database Utilities Documentation

■ Postal service:

Oracle Corporation

Oracle9i Database Utilities Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xxxiii

xxxiv

Preface

This document describes how to use the Oracle9i database utilities for data transfer,

data maintenance, and database administration.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Audience
This document is for database administrators (DBAs), application programmers,

security administrators, system operators, and other Oracle users who perform the

following tasks:

■ Archive data, back up an Oracle database, or move data between Oracle

databases using the Export and Import utilities

■ Load data into Oracle tables from operating system files using SQL*Loader or

from external sources using the external tables feature

■ Extract and manipulate complete representations of the metadata for database

objects, using the Metadata API

■ Maintain the internal database identifier (DBID) and the database name

(DBNAME) for an operational database, using the DBNEWID utility.
xxxv

To use this manual, you need a working knowledge of SQL and Oracle

fundamentals, information that is contained in Oracle9i Database Concepts. In

addition, SQL*Loader requires that you know how to use the file management

facilities of your operating system.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Organization
This document contains:

Part I, "Export and Import"

Chapter 1, "Export"
This chapter describes how to use Export to write data from an Oracle database into

transportable files. It discusses export guidelines, export modes, interactive and

command-line methods, parameter specifications, and Export object support. It also

provides example Export sessions.

Chapter 2, "Import"
This chapter describes how to use Import to read data from Export files into an

Oracle database. It discusses import guidelines, interactive and command-line
xxxvi

methods, parameter specifications, and Import object support. It also provides

several examples of Import sessions.

Part II, "SQL*Loader"

Chapter 3, "SQL*Loader Concepts"
This chapter introduces SQL*Loader and describes its features. It also introduces

data loading concepts (including object support). It discusses input to SQL*Loader,

database preparation, and output from SQL*Loader.

Chapter 4, "SQL*Loader Command-Line Reference"
This chapter describes the command-line syntax used by SQL*Loader. It discusses

command-line arguments, suppressing SQL*Loader messages, sizing the bind array,

and more.

Chapter 5, "SQL*Loader Control File Reference"
This chapter describes the control file syntax you use to configure SQL*Loader and

to describe to SQL*Loader how to map your data to Oracle format. It provides

detailed syntax diagrams and information about specifying datafiles, tables and

columns, the location of data, the type and format of data to be loaded, and more.

Chapter 6, "Field List Reference"
This chapter describes the field list section of a SQL*Loader control file. The field list

provides information about fields being loaded, such as position, datatype,

conditions, and delimiters.

Chapter 7, "Loading Objects, LOBs, and Collections"
This chapter describes how to load column objects in various formats. It also

discusses how to load object tables, REF columns, LOBs, and collections.

Chapter 8, "SQL*Loader Log File Reference"
This chapter describes the information contained in SQL*Loader log file output.

Chapter 9, "Conventional and Direct Path Loads"
This chapter describes the differences between a conventional path load and a direct

path load. A direct path load is a high performance option that significantly reduces

the time required to load large quantities of data.
xxxvii

Chapter 10, "SQL*Loader Case Studies"
This chapter presents case studies that illustrate some of the features of

SQL*Loader. It demonstrates the loading of variable-length data, fixed-format

records, a free-format file, multiple physical records as one logical record, multiple

tables, direct path loads, and loading objects, collections, and REF columns.

Part III, "External Tables"

Chapter 11, "External Tables Concepts"
This chapter describes basic concepts about external tables.

Chapter 12, "External Tables Access Parameters"
This chapter describes the access parameters used to interface with the external

tables API.

Part IV, "Other Utilities"

Chapter 13, "DBVERIFY: Offline Database Verification Utility"
This chapter describes how to use the offline database verification utility,

DBVERIFY.

Chapter 14, "DBNEWID Utility"
This chapter describes how to use the DBNEWID utility to change the name or ID,

or both, for a database.

Chapter 15, "Using the Metadata API"
This chapter describes the Metadata API, which you can use to extract and

manipulate complete representations of the metadata for database objects.

Part V, "Appendixes"

Appendix A, "SQL*Loader Syntax Diagrams"
This appendix provides diagrams of the SQL*Loader syntax.

Appendix B, "DB2/DXT User Notes"
This appendix describes differences between the data definition language syntax of

SQL*Loader and DB2 Load Utility control files. It discusses SQL*Loader extensions
xxxviii

to the DB2 Load Utility, the DB2 RESUME option, options included for

compatibility, and SQL*Loader restrictions.

Appendix C, "Backus-Naur Form Syntax"
This appendix explains the symbols and conventions of the variant of Backus-Naur

Form (BNF) used in text descriptions of syntax diagrams.

Related Documentation
For more information, see the following Oracle resources.

The Oracle9i documentation set, especially:

■ Oracle9i Database Concepts

■ Oracle9i SQL Reference

■ Oracle9i Database Administrator’s Guide

Many books in the documentation set use the sample schemas of the seed database,

which is installed by default when you install the Oracle database server. Refer to

Oracle9i Sample Schemas for information on how these schemas were created and

how you can use them.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm
xxxix

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xl

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xli

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xlii

What’s New in Database Utilities?

This section describes new features of the Oracle9i database utilities and provides

pointers to additional information. To help those who are upgrading to the current

release, this section also describes features that were introduced in Oracle8i.

The information is divided into the following sections:

■ Oracle9i Utilities New Features for Release 9.2

■ Oracle9i Utilities New Features for Release 9.0.1

■ Oracle8i Utilities New Features

Oracle9 i Utilities New Features for Release 9.2
The following sections describe new and enhanced features that were introduced in

Oracle9i, release 2.

Export and Import Utilities
The following is a list of new and enhanced features for the Export and Import

utilities:

■ New OBJECT_CONSISTENT parameter for Export that lets you export each

object in its own read-only transaction, even if it is partitioned. See OBJECT_

CONSISTENT on page 1-24.

■ New STREAMS_CONFIGURATION parameter for Import that allows you to

import any general streams metadata that may be present in the export dump

file. See STREAMS_CONFIGURATION on page 2-28.
xliii

■ New STREAMS_INSTANTIATION parameter for Import that allows you to

import streams instantiation metadata that may be present in the export dump

file. See STREAMS_INSTANTIATION on page 2-28.

SQL*Loader Utility
The following is a list of new and enhanced features for SQL*Loader:

■ A new date cache feature reduces the actual number of date conversions done

when many duplicate date values are present in the input data. This can

increase performance during direct path loads. See Specifying a Value for the

Date Cache on page 9-22.

■ Overriding the default attribute-value constructor by creating one or more

user-defined constructors. See Loading Column Objects with User-Defined

Constructors on page 7-8.

External Tables
The following is a list of new and enhanced features for external tables:

■ A new date cache feature reduces the actual number of date conversions done

when many duplicate date values are present in the input data. This can

increase performance during direct path loads. See Performance Hints When

Using External Tables on page 11-6.

DBNEWID Utility
DBNEWID is a new database utility that can change the internal database identifier

(DBID) and the database name (DBNAME) for an operational database. See

Chapter 14, "DBNEWID Utility" for more information.

Metadata API
The Metadata API provides a centralized, simple, and flexible means for

performing the following tasks:

■ Extracting complete definitions of database objects (metadata) as either XML or

creation DDL

■ Transforming the metadata through industry-standard XSLT (Extensible

Stylesheet Language Transformation).

■ Generating SQL DDL to re-create the database objects
xliv

The Metadata API was available as of Oracle9i, release 9.0.1; however, it was

documented in a different book. As of release 9.2, it is documented in this manual.

See Chapter 15, "Using the Metadata API" for more information.

Oracle9 i Utilities New Features for Release 9.0.1
The following sections describe new and enhanced features that were introduced

for Oracle9i utilities.

Export and Import Utilities
The following is a list of new and enhanced features for the Export and Import

utilities:

■ Enhanced export/import functions for precalculated optimizer statistics. For

more information, see:

– STATISTICS on page 1-27 for information about use of this parameter with

the Export utility

– STATISTICS on page 2-27 for information about use of this parameter with

the Import utility

– Importing Statistics on page 2-68

■ Addition of new parameters, RESUMABLE, RESUMABLE_NAME, RESUMABLE_
TIMEOUT, FLASHBACK_SCN, and FLASHBACK_TIME. For more information,

see the descriptions of these parameters beginning in Export Parameters on

page 1-13 and in Import Parameters on page 2-14.

■ Export mode can be used to dump out all tables in a tablespace. See

TABLESPACES on page 1-30.

■ Pattern matching of table names during export. See TABLES on page 1-28.

■ Pattern matching of table names during import. See TABLES on page 2-29.

■ Reduced character set translations on Import. See Character Set Conversion on

page 2-55.

SQL*Loader Utility
The following is a list of new and enhanced features for SQL*Loader:
xlv

■ SQL*Loader enhancements that allow for correctly loading integer and

zoned/packed decimal datatypes across platforms. SQL*Loader can now do the

following:

– Load binary integer data created on a platform whose byte ordering is

different than that of the target platform

– Load binary floating-point data created on a platform whose byte ordering

is different than that of the target platform (if the floating-point format used

by source and target systems is the same)

– Specify the size, in bytes, of a binary integer and load it regardless of the

target platform’s native integer size

– Specify that integer values are to be treated as signed or unsigned

quantities

– Accept EBCDIC-based zoned or packed decimal data encoded in IBM

format

For more information on these enhancements, see the following:

■ INTEGER(n) on page 6-8

■ DECIMAL on page 6-11

■ ZONED on page 6-10

■ Loading Data Across Different Platforms on page 6-36

■ Support for loading XML columns. See Loading LOBs on page 7-18.

■ Support for loading object tables with a subtype. See Loading Object Tables

with a Subtype on page 7-13.

■ Support for loading column objects with a derived subtype. See Loading

Column Objects with a Derived Subtype on page 7-4.

■ SQL*Loader support for Unicode. This support includes the following:

– Use of the UTF16 character set in the SQL*Loader datafile

– Support of character-length semantics in the SQL*Loader control file

– Use of SQL*Loader to load data into columns of datatype NCHAR,
NVARCHAR2, and NCLOB when the national character set is AL16UTF16

– Specifying byte order (big endian or little endian) for SQL*Loader datafile
xlvi

■ SQL*Loader extensions for support of datetime and interval datatypes as

specified in the ANSI SQL 92 standards document. This support includes the

ability to:

– Load datetime and interval datatypes for both conventional and direct path

modes of SQL*Loader

– Perform datetime and interval datatype conversions between SQL*Loader

client and database server

– Load datetime and interval datatypes using the direct path API

For more information, see Datetime and Interval Datatypes on page 6-16.

■ New functionality that allows users to specify the UNSIGNED parameter for the

binary integers, SMALLINT and INTEGER(n) . For more information, see

SMALLINT on page 6-9 and INTEGER(n) on page 6-8.

■ New functionality that allows a length specification to be applied to the

INTEGER parameter; for example, INTEGER(n) . See INTEGER(n) on page 6-8.

■ New multithreaded loading functionality for direct path loads that, when

possible, converts column arrays to stream buffers and performs stream buffer

loading in parallel. For more information, see Optimizing Direct Path Loads on

Multiple-CPU Systems on page 9-23.

■ New COLUMNARRAYROWS parameter that lets you specify a value for the

number of column array rows in direct path loads. And a new STREAMSIZE
parameter that lets you specify the size of direct path stream buffers. For more

See Also:

■ Handling Different Character Encoding Schemes on page 5-16

■ SQL*Loader Datatypes on page 6-7

■ Byte Ordering on page 6-37
xlvii

information, see Specifying the Number of Column Array Rows and Size of

Stream Buffers on page 9-21.

■ Addition of RESUMABLE, RESUMABLE_NAME, and RESUMABLE_TIMEOUT
parameters to enable and disable resumable space allocation. See

Command-Line Parameters on page 4-3.

External Tables
The Oracle9i external tables feature is a complement to existing SQL*Loader

functionality. It allows you to access data in external sources as if it were in a table

in the database.

DBVERIFY Utility
The DBVERIFY utility now has an additional command-line interface that allows

you to specify a table segment or index segment for verification. It checks to make

sure that a row chain pointer is within the segment being verified. See Using

DBVERIFY to Validate a Segment on page 13-4.

Oracle8 i Utilities New Features
The Oracle8i new features described in this section comprise the overall effort to

optimize data transfer, maintenance, and administration. The features described in

this section were added for releases 8.1.5, 8.1.6, and 8.1.7.

Export Utility
The following are new or enhanced Export features:

See Also:

■ Chapter 11, "External Tables Concepts"

■ Chapter 12, "External Tables Access Parameters"
xlviii

■ Export of subpartitions. See Table-Level and Partition-Level Export on

page 1-12.

■ The ability to specify multiple dump files for an export command. See the

parameters FILE on page 1-20 and FILESIZE on page 1-21.

■ The ability to specify a query for the SELECT statements that Export uses to

unload tables. See QUERY on page 1-24.

■ The maximum number of bytes in an export file on each volume of tape has

been increased. See VOLSIZE on page 1-32.

■ The ability to export tables containing LOBs and objects, even if direct path is

specified on the command line. See Invoking a Direct Path Export on page 1-52.

■ The ability to export and import precalculated optimizer statistics instead of

recalculating the statistics at import time. (This feature is only applicable to

certain exports and tables.) See STATISTICS on page 1-27.

■ Developers of domain indexes can export application-specific metadata

associated with an index using the new ODCIIndexGetMetadata method on the

ODCIIndex interface. See the Oracle9i Data Cartridge Developer’s Guide for more

information.

■ Export of transportable tablespace metadata. See TRANSPORT_TABLESPACE

on page 1-31.

Import Utility
The following are new or enhanced Import features:
xlix

■ Import of subpartitions. See Table-Level and Partition-Level Import on

page 2-49.

■ The ability to specify multiple dump files for an Import command. See the

parameters FILE on page 2-21 and FILESIZE on page 2-21.

■ The Import parameter TOID_NOVALIDATE, which allows you to cause Import

to omit validation of object types (used typically when the types were created

by a cartridge installation). See TOID_NOVALIDATE on page 2-31.

■ The maximum number of bytes in an export file on each volume of tape has

been increased. See VOLSIZE on page 2-34.

■ Support for fine-grained access control. See Considerations When Importing

Database Objects on page 2-56.

■ The ability to export and import precalculated optimizer statistics instead of

recomputing the statistics at import time. (This feature is only applicable to

certain exports and tables.) See STATISTICS on page 2-27.

■ Import of transportable tablespace metadata. See TRANSPORT_TABLESPACE

on page 2-33.

SQL*Loader Utility
The following are new or enhanced SQL*Loader features:

■ There is now a PRESERVE parameter for use with CONTINUEIF THIS and

CONTINUEIF NEXT.

If the PRESERVE parameter is not used, the continuation field is removed from

all physical records when the logical record is assembled. That is, data values

are allowed to span the records with no extra characters (continuation

characters) in the middle.

If the PRESERVEparameter is used, the continuation field is kept in all

physical records when the logical record is assembled.

See Using CONTINUEIF to Assemble Logical Records on page 5-27.

■ DATE fields that contain only whitespace are loaded as NULL fields and,

therefore, no longer cause an error. See Datetime and Interval Datatypes on

page 6-16.

■ As of release 8.1.5, the behavior of certain DDL clauses and restrictions has been

changed to provide object support. Be sure to read Chapter 7, "Loading Objects,

LOBs, and Collections" for a complete description of how this now works.
l

Additionally, you should be sure to read the information in the following

sections:

– Specifying Filler Fields on page 6-6

– Using the WHEN, NULLIF, and DEFAULTIF Clauses on page 6-32

– Applying SQL Operators to Fields on page 6-50
li

lii

Part I

 Export and Import

The chapters in this section describe the Oracle Export and Import utilities:

Chapter 1, "Export"

This chapter describes how to use Export to write data from an Oracle database into

transportable files. It discusses export guidelines, export modes, interactive and

command-line methods, parameter specifications, and Export object support. It also

provides example Export sessions.

Chapter 2, "Import"

This chapter describes how to use Import to read data from Export files into an

Oracle database. It discusses import guidelines, interactive and command-line

methods, parameter specifications, and Import object support. It also provides

several examples of Import sessions.

E

1

Export

This chapter describes how to use the Export utility to write data from an Oracle

database into an operating system file in binary format. This file is stored outside

the database, and it can be read into another Oracle database using the Import

utility (described in Chapter 2).

This chapter discusses the following topics:

■ What Is the Export Utility?

■ Before Using Export

■ Invoking Export

■ Export Modes

■ Getting Online Help

■ Export Parameters

■ Example Export Sessions

■ Using the Interactive Method

■ Warning, Error, and Completion Messages

■ Exit Codes for Inspection and Display

■ Conventional Path Export Versus Direct Path Export

■ Invoking a Direct Path Export

■ Network Considerations

■ Character Set and Globalization Support Considerations

■ Instance Affinity and Export

■ Considerations When Exporting Database Objects
xport 1-1

What Is the Export Utility?
■ Transportable Tablespaces

■ Exporting from a Read-Only Database

■ Using Export and Import to Partition a Database Migration

■ Using Different Releases and Versions of Export

What Is the Export Utility?
The Export utility provides a simple way for you to transfer data objects between

Oracle databases, even if they reside on platforms with different hardware and

software configurations.

When you run Export against an Oracle database, objects (such as tables) are

extracted, followed by their related objects (such as indexes, comments, and grants),

if any. The extracted data is written to an Export file, as illustrated in Figure 1–1.

Figure 1–1 Exporting a Database

An Export file is an Oracle binary-format dump file that is typically located on disk

or tape. The dump files can be transferred using FTP or physically transported (in

the case of tape) to a different site. The files can then be used with the Import utility

to transfer data between databases that are on systems not connected through a

Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Export file

Index 5

Index 1

Index 4
1-2 Oracle9i Database Utilities

Before Using Export
network. The files can also be used as backups in addition to normal backup

procedures.

Export dump files can only be read by the Oracle Import utility. The version of the

Import utility cannot be earlier than the version of the Export utility used to create

the dump file.

You can also display the contents of an export file without actually performing an

import. To do this, use the Import SHOW parameter. See SHOW on page 2-27 for

more information.

To load data from ASCII fixed-format or delimited files, use the SQL*Loader utility.

Before Using Export
Before you begin using Export, be sure you take care of the following items

(described in detail in the following sections):

■ Run the catexp.sql or catalog.sql script

■ Ensure there is sufficient disk or tape storage to write the export file

■ Verify that you have the required access privileges

Running catexp.sql or catalog.sql
To use Export, you must run the script catexp.sql or catalog.sql (which runs

catexp.sql) after the database has been created.

See Also:

■ Using Different Releases and Versions of Export on page 1-61

■ Chapter 2 for information about the Import utility

■ Part II of this manual for information about the SQL*Loader

utility

■ Oracle9i Replication for information on how to use the Export

and Import utilities to facilitate certain aspects of Oracle

Advanced Replication, such as offline instantiation
Export 1-3

Before Using Export
catexp.sql or catalog.sql needs to be run only once on a database. You do

not need to run it again before you perform the export. The script performs the

following tasks to prepare the database for Export:

■ Creates the necessary export views in the data dictionary

■ Creates the EXP_FULL_DATABASE role

■ Assigns all necessary privileges to the EXP_FULL_DATABASE role

■ Assigns EXP_FULL_DATABASE to the DBA role

■ Records the version of catexp.sql that has been installed

Ensuring Sufficient Disk Space
Before you run Export, ensure that there is sufficient disk or tape storage space to

write the export file. If there is not enough space, Export terminates with a

write-failure error.

You can use table sizes to estimate the maximum space needed. You can find table

sizes in the USER_SEGMENTS view of the Oracle data dictionary. The following

query displays disk usage for all tables:

SELECT SUM(BYTES) FROM USER_SEGMENTS WHERE SEGMENT_TYPE=’TABLE’;

The result of the query does not include disk space used for data stored in LOB
(large object) or VARRAY columns or in partitioned tables.

Verifying Access Privileges
To use Export, you must have the CREATE SESSION privilege on an Oracle

database. To export tables owned by another user, you must have the EXP_FULL_
DATABASE role enabled. This role is granted to all DBAs.

Note: The actual names of the script files depend on your

operating system. The script filenames and the method for running

them are described in your Oracle operating system-specific

documentation.

See Also: Oracle9i Database Reference for more information about

dictionary views
1-4 Oracle9i Database Utilities

Invoking Export
If you do not have the system privileges contained in the EXP_FULL_DATABASE
role, you cannot export objects contained in another user’s schema. For example,

you cannot export a table in another user’s schema, even if you created a synonym

for it.

The following schema names are reserved and will not be processed by Export:

■ ORDSYS

■ MDSYS

■ CTXSYS

■ ORDPLUGINS

■ LBACSYS

Invoking Export
You can invoke Export and specify parameters by using any of the following

methods:

■ Command-line entries

■ Interactive Export prompts

■ Parameter files

Before you use one of these methods to invoke Export, be sure to read the

descriptions of the available parameters. See Export Parameters on page 1-13.

Command-Line Entries
You can specify all valid parameters and their values from the command line using

the following syntax:

exp username/password PARAMETER=value

or

exp username/password PARAMETER=(value1,value2,...,valuen)

The number of parameters cannot exceed the maximum length of a command line

on the system.
Export 1-5

Invoking Export
Interactive Export Prompts
If you prefer to let Export prompt you for the value of each parameter, you can use

the following syntax to start Export in interactive mode:

exp username / password

Export will display commonly used parameters with a request for you to enter a

value. This method exists for backward compatibility and is not recommended

because it provides less functionality than the other methods. See Using the

Interactive Method on page 1-43.

Parameter Files
You can specify all valid parameters and their values in a parameter file. Storing the

parameters in a file allows them to be easily modified or reused, and is the

recommended method for invoking Export. If you use different parameters for

different databases, you can have multiple parameter files.

Create the parameter file using any flat file text editor. The command-line option

PARFILE=filename tells Export to read the parameters from the specified file

rather than from the command line. For example:

exp PARFILE= filename
exp username/password PARFILE= filename

The first example does not specify the username / password on the command line

to illustrate that you can specify them in the parameter file, although, for security

reasons, this is not recommended.

The syntax for parameter file specifications is one of the following:

PARAMETER=value
PARAMETER=(value)
PARAMETER=(value1 , value2 , ...)

The following example shows a partial parameter file listing:

FULL=y
FILE=dba.imp
GRANTS=y
INDEXES=y
CONSISTENT=y
1-6 Oracle9i Database Utilities

Invoking Export
You can add comments to the parameter file by preceding them with the pound (#)

sign. Export ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters

on the command line. In fact, you can specify the same parameter in both places.

The position of the PARFILE parameter and other parameters on the command line

determines which parameters take precedence. For example, assume the parameter

file params.dat contains the parameter INDEXES=y and Export is invoked with

the following line:

exp username/password PARFILE=params.dat INDEXES=n

In this case, because INDEXES=n occurs after PARFILE=params.dat , INDEXES=n
overrides the value of the INDEXES parameter in the parameter file.

Invoking Export As SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the

same as for generalized users. Therefore, you should not typically need to invoke

Export as SYSDBA, except in the following situations:

■ At the request of Oracle technical support

■ When using transportable tablespaces (see Transportable Tablespaces on

page 1-59)

To invoke Export as SYSDBA, use the following syntax, adding any desired

parameters or parameter filenames:

Note: The maximum size of the parameter file may be limited by

the operating system. The name of the parameter file is subject to

the file-naming conventions of the operating system. See your

Oracle operating system-specific documentation for more

information.

See Also:

■ Export Parameters on page 1-13 for descriptions of the Export

parameters

■ Exporting and Importing with Oracle Net on page 1-53 for

information on how to specify an export from a remote

database
Export 1-7

Export Modes
exp \’ username/password AS SYSDBA\’

Optionally, you could also specify an instance name:

exp \’ username/password@instance AS SYSDBA\’

If either the username or password is omitted, Export will prompt you for it.

This example shows the entire connect string enclosed in single quotation marks

and backslashes. This is because the string, AS SYSDBA, contains a blank, a

situation for which most operating systems require that the entire connect string be

placed in quotation marks or marked as a literal by some method. Some operating

systems also require that quotation marks on the command line be preceded by an

escape character. In this example, backslashes are used as the escape character. If the

backslashes were not present, the command-line parser that Export uses would not

understand the quotation marks and would remove them before calling Export.

See your Oracle operating system-specific documentation for more information

about special and reserved characters on your system.

If you prefer to use the Export interactive mode, see Using the Interactive Method

on page 1-43 for more information.

Export Modes
The Export utility provides four modes of export:

■ Full

■ User (Owner)

■ Table

■ Tablespace

All users can export in table mode and user mode. Users with the EXP_FULL_
DATABASE role (privileged users) can export in all modes. Table 1–1 shows the

objects that are exported and imported in each mode. Also see Processing

Restrictions on page 1-13.

To specify one of these modes, use the appropriate parameter (FULL, OWNER,
TABLES, or TABLESPACES) when you invoke Export. See Export Parameters on

page 1-13 for information on the syntax for each of these parameters.

You can use conventional path Export or direct path Export to export in any of the

first three modes. The differences between conventional path Export and direct path
1-8 Oracle9i Database Utilities

Export Modes
Export are described in Conventional Path Export Versus Direct Path Export on

page 1-50.

See Also:

■ Oracle9i Database Administrator’s Guide

■ Oracle9i Database Concepts for an introduction to the

transportable tablespaces feature

Table 1–1 Objects Exported and Imported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode

Analyze cluster No Yes Yes No

Analyze
tables/statistics

Yes Yes Yes Yes

Application contexts No No Yes No

Auditing information Yes Yes Yes No

B-tree, bitmap, domain
functional indexes

Yes1 Yes1 Yes Yes

Cluster definitions No Yes Yes Yes

Column and table
comments

Yes Yes Yes Yes

Database links No Yes Yes No

Default roles No No Yes No

Dimensions No Yes Yes No

Directory aliases No No Yes No

External tables
(without data)

Yes Yes Yes No

Foreign function
libraries

No Yes Yes No

Indexes owned by
users other than table
owner

Yes
(Privileged
users only)

Yes Yes Yes

Index types No Yes Yes No
Export 1-9

Export Modes
Java resources and
classes

No Yes Yes No

Job queues No Yes Yes No

Nested table data Yes Yes Yes Yes

Object grants Yes (Only for
tables and
indexes)

Yes Yes Yes

Object type definitions
used by table

Yes Yes Yes Yes

Object types No Yes Yes No

Operators No Yes Yes No

Password history No No Yes No

Postinstance actions
and objects

No No Yes No

Postschema procedural
actions and objects

No Yes Yes No

Posttable actions Yes Yes Yes Yes

Posttable procedural
actions and objects

Yes Yes Yes Yes

Preschema procedural
objects and actions

No Yes Yes No

Pretable actions Yes Yes Yes Yes

Pretable procedural
actions

Yes Yes Yes Yes

Private synonyms No Yes Yes No

Procedural objects No Yes Yes No

Profiles No No Yes No

Public synonyms No No Yes No

Referential integrity
constraints

Yes Yes Yes No

Table 1–1 (Cont.) Objects Exported and Imported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode
1-10 Oracle9i Database Utilities

Export Modes
Refresh groups No Yes Yes No

Resource costs No No Yes No

Role grants No No Yes No

Roles No No Yes No

Rollback segment
definitions

No No Yes No

Security policies for
table

Yes Yes Yes Yes

Sequence numbers No Yes Yes No

Snapshot logs No Yes Yes No

Snapshots and
materialized views

No Yes Yes No

System privilege grants No No Yes No

Table constraints
(primary, unique,
check)

Yes Yes Yes Yes

Table data Yes Yes Yes No

Table definitions Yes Yes Yes Yes

Tablespace definitions No No Yes No

Tablespace quotas No No Yes No

Triggers Yes Yes2 Yes3 Yes

Triggers owned by
other users

Yes
(Privileged
users only)

No No No

User definitions No No Yes No

User proxies No No Yes No

User views No Yes Yes No

Table 1–1 (Cont.) Objects Exported and Imported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode
Export 1-11

Export Modes
Table-Level and Partition-Level Export
You can export tables, partitions, and subpartitions in the following ways:

■ Table-level Export: exports all data from the specified tables

■ Partition-level Export: exports only data from the specified source partitions or

subpartitions

In all modes, partitioned data is exported in a format such that partitions or

subpartitions can be imported selectively.

Table-Level Export
In table-level Export, you can export an entire table (partitioned or nonpartitioned)

along with its indexes and other table-dependent objects. If the table is partitioned,

all of its partitions and subpartitions are also exported. This applies to both direct

path Export and conventional path Export. You can perform a table-level export in

any Export mode.

Partition-Level Export
In partition-level Export, you can export one or more specified partitions or

subpartitions of a table. You can only perform a partition-level export in Table

mode.

User-stored
procedures, packages,
and functions

No Yes Yes No

1 Nonprivileged users can export and import only indexes they own on tables they own. They cannot
export indexes they own that are on tables owned by other users, nor can they export indexes owned
by other users on their own tables. Privileged users can export and import indexes on the specified
users’ tables, even if the indexes are owned by other users. Indexes owned by the specified user on
other users’ tables are not included, unless those other users are included in the list of users to
export.

2 Nonprivileged and privileged users can export and import all triggers owned by the user, even if
they are on tables owned by other users.

3 A full export does not export triggers owned by schema SYS. You must manually re-create SYS
triggers either before or after the full import. Oracle Corporation recommends that you re-create
them after the import in case they define actions that would impede progress of the import.

Table 1–1 (Cont.) Objects Exported and Imported in Each Mode

Object Table Mode User Mode

Full
Database
Mode

Tablespace
Mode
1-12 Oracle9i Database Utilities

Export Parameters
For information on how to specify table-level and partition-level Exports, see

TABLES on page 1-28.

Processing Restrictions
The following restrictions apply when you process data with the Export and Import

utilities:

■ Java classes, resources, and procedures that are created using Enterprise Java

Beans (EJBs) are not placed in the export file.

■ Constraints that have been altered using the RELY keyword lose the RELY
attribute when they are exported.

■ When a type definition has evolved and then data referencing that evolved type

is exported, the type definition on the import system must have evolved in the

same manner.

Getting Online Help
Export provides online help. Enter exp help=y on the command line to invoke it.

Export Parameters
The following diagrams show the syntax for the parameters that you can specify in

the parameter file or on the command line. Following the diagrams are descriptions

of each parameter.

Export_start

exp

HELP = Y

username / password
@ connect_string AS SYSDBA

ExpModes ExpOpts
Export 1-13

Export Parameters
ExpModes

ExpTSOpts (tablespaces_spec)

FULL = Y

OWNER = (username

,

)

TABLES = (
schemaname .

tablename
: partition_name

,

)

TABLESPACES = (tablespace_name

,

) ExpTSOpts

TRANSPORT_TABLESPACE = N

TTS_FULL_CHECK =
Y

N

1-14 Oracle9i Database Utilities

Export Parameters
ExpOpts

ExpFileOpts

LOG = filename

COMPRESS =
Y

N

ROWS =
Y

N

QUERY = SQL_string

DIRECT =
Y

N

FEEDBACK = integer

STATISTICS =

COMPUTE

ESTIMATE

NONE

INDEXES =
Y

N

CONSTRAINTS =
Y

N

GRANTS =
Y

N

TRIGGERS =
Y

N

,

Export 1-15

Export Parameters
ExpOpts_continued

ExpFileOpts

BUFFER
Default: operating system-dependent. See your Oracle operating system-specific

documentation to determine the default value for this parameter.

CONSISTENT =
Y

N

OBJECT_CONSISTENT =
Y

N

FLASHBACK_SCN = SCN_number

FLASHBACK_TIME = DATE

BUFFER = integer

RESUMABLE =
Y

N

RESUMABLE_NAME = resumable_string

RESUMABLE_TIMEOUT = integer

,

PARFILE = filename

FILE = filename

FILESIZE = number_of_bytes

VOLSIZE = number_of_bytes

LOG = filename

RECORDLENGTH = integer
1-16 Oracle9i Database Utilities

Export Parameters
Specifies the size, in bytes, of the buffer used to fetch rows. As a result, this

parameter determines the maximum number of rows in an array fetched by Export.

Use the following formula to calculate the buffer size:

buffer_size = rows_in_array * maximum_row_size

If you specify zero, the Export utility fetches only one row at a time.

Tables with columns of type LONG, LOB, BFILE , REF, ROWID, LOGICAL ROWID, or

DATE are fetched one row at a time.

Example: Calculating Buffer Size
This section shows an example of how to calculate buffer size.

The following table is created:

CREATE TABLE sample (name varchar(30), weight number);

The maximum size of the name column is 30, plus 2 bytes for the indicator. The

maximum size of the weight column is 22 (the size of the internal representation

for Oracle numbers), plus 2 bytes for the indicator.

Therefore, the maximum row size is 56 (30+2+22+2).

To perform array operations for 100 rows, a buffer size of 5600 should be specified.

COMPRESS
Default: y

Specifies how Export and Import manage the initial extent for table data.

The default, COMPRESS=y, causes Export to flag table data for consolidation into

one initial extent upon Import. If extent sizes are large (for example, because of the

PCTINCREASE parameter), the allocated space will be larger than the space

required to hold the data.

If you specify COMPRESS=n, Export uses the current storage parameters, including

the values of initial extent size and next extent size. The values of the parameters

may be the values specified in the CREATE TABLE or ALTER TABLE statements or

the values modified by the database system. For example, the NEXT extent size

Note: The BUFFER parameter applies only to conventional path

Export. It has no effect on a direct path Export.
Export 1-17

Export Parameters
value may be modified if the table grows and if the PCTINCREASE parameter is

nonzero.

CONSISTENT
Default: n

Specifies whether or not Export uses the SET TRANSACTION READ ONLY
statement to ensure that the data seen by Export is consistent to a single point in

time and does not change during the execution of the exp command. You should

specify CONSISTENT=y when you anticipate that other applications will be

updating the target data after an export has started.

If you use CONSISTENT=n, each table is usually exported in a single transaction.

However, if a table contains nested tables, the outer table and each inner table are

exported as separate transactions. If a table is partitioned, each partition is exported

as a separate transaction.

Therefore, if nested tables and partitioned tables are being updated by other

applications, the data that is exported could be inconsistent. To minimize this

possibility, export those tables at a time when updates are not being done.

Table 1–2 shows a sequence of events by two users: user1 exports partitions in a

table and user2 updates data in that table.

Note: Although the actual consolidation is performed upon

import, you can specify the COMPRESS parameter only when you

export, not when you import. The Export utility, not the Import

utility, generates the data definitions, including the storage

parameter definitions. Therefore, if you specify COMPRESS=y when

you export, you can import the data in consolidated form only.

Note: LOB data is not compressed. For LOB data, values of initial

extent size and next extent size at the time of export are used.

Table 1–2 Sequence of Events During Updates by Two Users

TIme Sequence User1 User2

1 Begins export of TAB:P1 No activity
1-18 Oracle9i Database Utilities

Export Parameters
If the export uses CONSISTENT=y, none of the updates by user2 are written to the

export file.

If the export uses CONSISTENT=n, the updates to TAB:P1 are not written to the

export file. However, the updates to TAB:P2 are written to the export file because

the update transaction is committed before the export of TAB:P2 begins. As a result,

the user2 transaction is only partially recorded in the export file, making it

inconsistent.

If you use CONSISTENT=yand the volume of updates is large, the rollback segment

usage will be large. In addition, the export of each table will be slower because the

rollback segment must be scanned for uncommitted transactions.

Keep in mind the following points about using CONSISTENT=y:

■ CONSISTENT=y is unsupported for exports that are performed when you are

connected as user SYS or you are using AS SYSDBA, or both.

■ Export of certain metadata may require the use of the SYS schema within

recursive SQL. In such situations, the use of CONSISTENT=y will be ignored.

Oracle Corporation recommends that you avoid making metadata changes

during an export process in which CONSISTENT=y is selected.

■ To minimize the time and space required for such exports, you should export

tables that need to remain consistent separately from those that do not.

For example, export the emp and dept tables together in a consistent export,

and then export the remainder of the database in a second pass.

■ A "snapshot too old" error occurs when rollback space is used up, and space

taken up by committed transactions is reused for new transactions. Reusing

space in the rollback segment allows database integrity to be preserved with

minimum space requirements, but it imposes a limit on the amount of time that

a read-consistent image can be preserved.

2 No activity Updates TAB:P2
Updates TAB:P1
Commits transaction

3 Ends export of TAB:P1 No activity

4 Exports TAB:P2 No activity

Table 1–2 (Cont.) Sequence of Events During Updates by Two Users

TIme Sequence User1 User2
Export 1-19

Export Parameters
If a committed transaction has been overwritten and the information is needed

for a read-consistent view of the database, a "snapshot too old" error results.

To avoid this error, you should minimize the time taken by a read-consistent

export. (Do this by restricting the number of objects exported and, if possible,

by reducing the database transaction rate.) Also, make the rollback segment as

large as possible.

CONSTRAINTS
Default: y

Specifies whether or not the Export utility exports table constraints.

DIRECT
Default: n

Specifies whether you use direct path or conventional path Export.

Specifying DIRECT=y causes Export to extract data by reading the data directly,

bypassing the SQL command-processing layer (evaluating buffer). This method can

be much faster than a conventional path Export.

For information about direct path Exports, including security and performance

considerations, see Invoking a Direct Path Export on page 1-52.

FEEDBACK
Default: 0 (zero)

Specifies that Export should display a progress meter in the form of a period for n
number of rows exported. For example, if you specify FEEDBACK=10, Export

displays a period each time 10 rows are exported. The FEEDBACK value applies to

all tables being exported; it cannot be set on a per-table basis.

FILE
Default: expdat.dmp

Specifies the names of the export files. The default extension is .dmp, but you can

specify any extension. Because Export supports multiple export files (see the

See Also: OBJECT_CONSISTENT on page 1-24
1-20 Oracle9i Database Utilities

Export Parameters
parameter FILESIZE on page 1-21), you can specify multiple filenames to be used.

For example:

exp scott/tiger FILE = dat1.dmp, dat2.dmp, dat3.dmp FILESIZE=2048

When Export reaches the value you have specified for the maximum FILESIZE,
Export stops writing to the current file, opens another export file with the next

name specified by the FILE parameter, and continues until complete or the

maximum value of FILESIZE is again reached. If you do not specify sufficient

export filenames to complete the export, Export will prompt you to provide

additional filenames.

FILESIZE
Default: Data is written to one file until the maximum size, as specified in Table 1–3,

is reached.

Export supports writing to multiple export files, and Import can read from multiple

export files. If you specify a value (byte limit) for the FILESIZE parameter, Export

will write only the number of bytes you specify to each dump file.

When the amount of data Export must write exceeds the maximum value you

specified for FILESIZE, it will get the name of the next export file from the FILE
parameter (see FILE on page 1-20 for more information) or, if it has used all the

names specified in the FILE parameter, it will prompt you to provide a new export

filename. If you do not specify a value for FILESIZE (note that a value of 0 is

equivalent to not specifying FILESIZE), then Export will write to only one file,

regardless of the number of files specified in the FILE parameter.

The FILESIZE parameter has a maximum value equal to the maximum value that

can be stored in 64 bits.

Table 1–3 shows that the maximum size for dump files depends on the operating

system you are using and on the release of the Oracle database server that you are

using.

Note: If the space requirements of your export file exceed the

available disk space, Export will abort, and you will have to repeat

the Export after making sufficient disk space available.
Export 1-21

Export Parameters
The FILESIZE value can also be specified as a number followed by KB (number of

kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048.
Similarly, MB specifies megabytes (1024 * 1024) and GB specifies gigabytes

(1024**3). B remains the shorthand for bytes; the number is not multiplied to obtain

the final file size (FILESIZE=2048B is the same as FILESIZE=2048).

FLASHBACK_SCN
Default: none

Specifies the system change number (SCN) that Export will use to enable flashback.

The export operation is performed with data consistent as of this specified SCN.

FLASHBACK_TIME
Default: none

Specifies a time. Export finds the SCN that most closely matches the specified time.

This SCN is used to enable flashback. The export operation is performed with data

consistent as of this SCN.

Table 1–3 Maximum Size for Dump Files

Operating System Release of Oracle Server Maximum Size

Any Prior to 8.1.5 2 gigabytes

32-bit 8.1.5 2 gigabytes

64-bit 8.1.5 and later Unlimited

32-bit with 32-bit files Any 2 gigabytes

32-bit with 64-bit files 8.1.6 and later Unlimited

Note: The maximum value that can be stored in a file is

dependent on your operating system. You should verify this

maximum value in your Oracle operating system-specific

documentation before specifying FILESIZE . You should also

ensure that the file size you specify for Export is supported on the

system on which Import will run.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about using flashback
1-22 Oracle9i Database Utilities

Export Parameters
FULL
Default: n

Indicates that the Export is a full database mode Export (that is, it exports the entire

database). Specify FULL=y to export in full database mode. You need to have the

EXP_FULL_DATABASE role to export in this mode.

GRANTS
Default: y

Specifies whether or not the Export utility exports object grants. The object grants

that are exported depend on whether you use full database mode or user mode. In

full database mode, all grants on a table are exported. In user mode, only those

granted by the owner of the table are exported. System privilege grants are always

exported.

HELP
Default: none

Displays a description of the Export parameters. Enter exp help=y on the

command line to invoke it.

INDEXES
Default: y

Specifies whether or not the Export utility exports indexes.

LOG
Default: none

Specifies a filename to receive informational and error messages. For example:

exp SYSTEM/ password LOG=export.log

If you specify this parameter, messages are logged in the log file and displayed to

the terminal display.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about using flashback
Export 1-23

Export Parameters
OBJECT_CONSISTENT
Default: n

Specifies whether or not the Export utility uses the SET TRANSACTION READ ONLY
statement to ensure that the data exported is consistent to a single point in time and

does not change during the export. If OBJECT_CONSISTENT is set to y, each object

is exported in its own read-only transaction, even if it is partitioned. In contrast, if

you use the CONSISTENT parameter, then there is only one read-only transaction.

OWNER
Default: none

Indicates that the Export is a user-mode Export and lists the users whose objects

will be exported. If the user initiating the export is the DBA, multiple users may be

listed.

PARFILE
Default: none

Specifies a filename for a file that contains a list of Export parameters. For more

information on using a parameter file, see Invoking Export on page 1-5.

QUERY
Default: none

This parameter allows you to select a subset of rows from a set of tables when doing

a table mode export. The value of the query parameter is a string that contains a

WHERE clause for a SQL SELECT statement that will be applied to all tables (or table

partitions) listed in the TABLE parameter.

For example, if user scott wants to export only those employees whose job title is

SALESMAN and whose salary is less than 1600, he could do the following (this

example is UNIX-based):

exp scott/tiger TABLES=emp QUERY=\"WHERE job=\'SALESMAN\' and sal \<1600\"

See Also: CONSISTENT on page 1-18
1-24 Oracle9i Database Utilities

Export Parameters
When executing this query, Export builds a SQL SELECT statement similar to the

following:

SELECT * FROM emp WHERE job=’SALESMAN’ and sal <1600;

The values specified for the QUERY parameter are applied to all tables (or table

partitions) listed in the TABLEparameter. For example, the following statement will

unload rows in both emp and bonus that match the query:

exp scott/tiger TABLES=emp,bonus QUERY=\"WHERE job=\'SALESMAN\' and sal\<1600\"

Again, the SQL statements that Export executes are similar to the following:

SELECT * FROM emp WHERE job=’SALESMAN’ and sal <1600;

SELECT * FROM bonus WHERE job=’SALESMAN’ and sal <1600;

If a table is missing the columns specified in the QUERY clause, an error message

will be produced, and no rows will be exported for the offending table.

Restrictions
■ The parameter QUERY cannot be specified for full, user, or tablespace mode

exports.

■ The parameter QUERY must be applicable to all specified tables.

■ The parameter QUERY cannot be specified in a direct path export (DIRECT=y)

■ The parameter QUERY cannot be specified for tables with inner nested tables.

■ You cannot determine from the contents of the export file whether the data is

the result of a QUERY export.

Note: Because the value of the QUERY parameter contains blanks,

most operating systems require that the entire strings WHERE
job=\'SALESMAN\' and sal\<1600 be placed in double

quotation marks or marked as a literal by some method. Operating

system reserved characters also need to be preceded by an escape

character. See your Oracle operating system-specific documentation

for information about special and reserved characters on your

system.
Export 1-25

Export Parameters
RECORDLENGTH
Default: operating system-dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTH parameter is

necessary when you must transfer the export file to another operating system that

uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent value for

buffer size. For more information about the buffer size default value, see your

Oracle operating system-specific documentation.

You can set RECORDLENGTH to any value equal to or greater than your system’s

buffer size. (The highest value is 64 KB.) Changing the RECORDLENGTH parameter

affects only the size of data that accumulates before writing to the disk. It does not

affect the operating system file block size.

See your Oracle operating system-specific documentation to determine the proper

value or to create a file with a different record size.

RESUMABLE
Default: n

The RESUMABLE parameter is used to enable and disable resumable space

allocation. Because this parameter is disabled by default, you must set

RESUMABLE=y in order to use its associated parameters, RESUMABLE_NAME and

RESUMABLE_TIMEOUT.

RESUMABLE_NAME
Default: ’User USERNAME (USERID), Session SESSIONID, Instance
INSTANCEID’

Note: You can use this parameter to specify the size of the Export

I/O buffer.

See Also:

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide for more information

about resumable space allocation
1-26 Oracle9i Database Utilities

Export Parameters
The value for this parameter identifies the statement that is resumable. This value is

a user-defined text string that is inserted in either the USER_RESUMABLE or DBA_
RESUMABLE view to help you identify a specific resumable statement that has been

suspended.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable

resumable space allocation.

RESUMABLE_TIMEOUT
Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be

fixed. If the error is not fixed within the timeout period, execution of the statement

is aborted.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable

resumable space allocation.

ROWS
Default: y

Specifies whether or not the rows of table data are exported.

STATISTICS
Default: ESTIMATE

Specifies the type of database optimizer statistics to generate when the exported

data is imported. Options are ESTIMATE, COMPUTE, and NONE. See the Import

parameter STATISTICS on page 2-27 and Importing Statistics on page 2-68.

In some cases, Export will place the precalculated statistics in the export file as well

as the ANALYZE statements to regenerate the statistics.

However, the precalculated optimizer statistics will not be used at export time if a

table has columns with system-generated names.

The precalculated optimizer statistics are flagged as questionable at export time if:

■ There are row errors while exporting

■ The client character set or NCHAR character set does not match the server

character set or NCHAR character set

■ A QUERY clause is specified
Export 1-27

Export Parameters
■ Only certain partitions or subpartitions are exported

TABLES
Default: none

Specifies that the Export is a table-mode Export and lists the table names and

partition and subpartition names to export. You can specify the following when you

specify the name of the table:

■ schemaname specifies the name of the user’s schema from which to export the

table or partition. The schema names ORDSYS, MDSYS, CTXSYS, and

ORDPLUGINS are reserved by Export.

■ tablename specifies the name of the table or tables to be exported. Table-level

export lets you export entire partitioned or nonpartitioned tables. If a table in

the list is partitioned and you do not specify a partition name, all its partitions

and subpartitions are exported.

The table name can contain any number of ’%’ pattern matching characters,

which can each match zero or more characters in the table name against the

table objects in the database. All the tables in the relevant schema that match

the specified pattern are selected for export, as if the respective table names

were explicitly specified in the parameter.

■ partition_name indicates that the export is a partition-level Export.

Partition-level Export lets you export one or more specified partitions or

subpartitions within a table.

The syntax you use to specify the preceding is in the form:

schemaname. tablename : partition_name
schemaname. tablename : subpartition_name

If you use tablename : partition_name , the specified table must be partitioned,

and partition_name must be the name of one of its partitions or subpartitions. If

Note: Specifying ROWS=n does not preclude saving the

precalculated statistics in the Export file. This allows you to tune

plan generation for queries in a nonproduction database using

statistics from a production database.

See Also: Oracle9i Database Concepts
1-28 Oracle9i Database Utilities

Export Parameters
the specified table is not partitioned, the partition_name is ignored and the

entire table is exported.

See Example Export Session Using Partition-Level Export on page 1-41 for several

examples of partition-level exports.

Table Name Restrictions
The following restrictions apply to table names:

■ By default, table names in a database are stored as uppercase. If you have a

table name in mixed-case or lowercase, and you want to preserve

case-sensitivity for the table name, you must enclose the name in quotation

marks. The name must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be

preceded by an escape character. The following are examples of how

case-sensitivity can be preserved in the different Export modes.

– In command-line mode:

TABLES=’\"Emp\"’

– In interactive mode:

Table(T) to be exported: "Emp"

– In parameter file mode:

TABLES=’"Emp"’

■ Table names specified on the command line cannot include a pound (#) sign,

unless the table name is enclosed in quotation marks. Similarly, in the

parameter file, if a table name includes a pound (#) sign, the Export utility

interprets the rest of the line as a comment, unless the table name is enclosed in

quotation marks.

Note: Some operating systems, such as UNIX, require that you

use escape characters before special characters, such as a

parenthesis, so that the character is not treated as a special

character. On UNIX, use a backslash (\) as the escape character, as

shown in the following example:

TABLES=\(emp,dept\)
Export 1-29

Export Parameters
For example, if the parameter file contains the following line, Export interprets

everything on the line after emp# as a comment and does not export the tables

dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Export utility exports all three tables

because emp# is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

For a TABLES parameter that specifies multiple

schema.tablename:(sub)partition_name arguments, Export attempts to

purge duplicates before processing the list of objects.

TABLESPACES
Default: none

The TABLESPACES parameter specifies that all tables in the tablespace be exported

to the Export dump file. This includes all tables contained in the list of tablespaces

and all tables that have a partition located in the list of tablespaces. Indexes are

exported with their tables, regardless of where the index is stored.

You must have the EXP_FULL_DATABASE role to use TABLESPACES to export all

tables in the tablespace.

When TABLESPACES is used in conjunction with TRANSPORT_TABLESPACE=y,
you can specify a limited list of tablespaces to be exported from the database to the

export file.

Note: Some operating systems require single quotation marks

rather than double quotation marks, or the reverse; see your Oracle

operating system-specific documentation. Different operating

systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a

dollar sign ($) or pound sign (#) (or certain other special

characters). You must use escape characters to get such characters

in the name past the shell and into Export.
1-30 Oracle9i Database Utilities

Export Parameters
TRANSPORT_TABLESPACE
Default: n

When specified as y, this parameter enables the export of transportable tablespace

metadata.

TRIGGERS
Default: y

Specifies whether or not the Export utility exports triggers.

TTS_FULL_CHECK
Default: FALSE

When TTS_FULL_CHECK is set to TRUE, Export verifies that a recovery set (set of

tablespaces to be recovered) has no dependencies (specifically, IN pointers) on

objects outside the recovery set, and vice versa.

USERID (username/password)
Default: none

Specifies the username / password (and optional connect string) of the user

performing the export. If you omit the password, Export will prompt you for it.

USERID can also be:

username/password AS SYSDBA

or

username/password@instance AS SYSDBA

If you connect as user SYS, you must also specify AS SYSDBA in the connect

string. Your operating system may require you to treat AS SYSDBA as a special

See Also:

■ Transportable Tablespaces on page 1-59

■ Oracle9i Database Administrator’s Guide

■ Oracle9i Database Concepts
Export 1-31

Example Export Sessions
string, in which case the entire string would be enclosed in quotation marks. See

Invoking Export As SYSDBA on page 1-7 for more information.

VOLSIZE
Specifies the maximum number of bytes in an export file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that

can be stored in 64 bits. See your Oracle operating system-specific documentation

for more information.

The VOLSIZE value can be specified as a number followed by KB (number of

kilobytes). For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly,

MB specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B

remains the shorthand for bytes; the number is not multiplied to get the final file

size (VOLSIZE=2048B is the same as VOLSIZE=2048) .

Parameter Interactions
Certain parameters can conflict with each other. For example, because specifying

TABLES can conflict with an OWNER specification, the following command causes

Export to terminate with an error:

exp SYSTEM/password OWNER=jones TABLES=scott.emp

Similarly, OWNER and TABLES conflict with FULL=y.

Example Export Sessions
This section provides examples of the following types of Export sessions:

■ Example Export Session in Full Database Mode

■ Example Export Session in User Mode

■ Example Export Sessions in Table Mode

■ Example Export Session Using Partition-Level Export

See Also:

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide

■ The user’s guide for your Oracle Net protocol for information

about specifying the @connect_string for Oracle Net
1-32 Oracle9i Database Utilities

Example Export Sessions
In each example, you are shown how to use both the command-line method and the

parameter file method.

Example Export Session in Full Database Mode
Only users with the DBA role or the EXP_FULL_DATABASE role can export in full

database mode. In this example, an entire database is exported to the file dba.dmp
with all GRANTS and all data.

Parameter File Method
> exp SYSTEM/ password PARFILE=params.dat

The params.dat file contains the following information:

FILE= dba.dmp
GRANTS=y
FULL=y
ROWS=y

Command-Line Method
> exp SYSTEM/ password FULL=y FILE=dba.dmp GRANTS=y ROWS=y

Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 16:52:15 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
. exporting rollback segment definitions
. exporting database links
. exporting sequence numbers
. exporting directory aliases
Export 1-33

Example Export Sessions
. exporting context namespaces

. exporting foreign function library names

. exporting PUBLIC type synonyms

. exporting private type synonyms

. exporting object type definitions

. exporting system procedural objects and actions

. exporting pre-schema procedural objects and actions

. exporting cluster definitions

. about to export SYSTEM’s tables via Conventional Path ...

. . exporting table AQ$_INTERNET_AGENTS 0 rows exported

. . exporting table AQ$_INTERNET_AGENT_PRIVS 0 rows exported

. . exporting table DEF$_AQCALL 0 rows exported

. . exporting table DEF$_AQERROR 0 rows exported

. . exporting table DEF$_CALLDEST 0 rows exported

. . exporting table DEF$_DEFAULTDEST 0 rows exported

. . exporting table DEF$_DESTINATION 0 rows exported

. . exporting table DEF$_ERROR 0 rows exported

. . exporting table DEF$_LOB 0 rows exported

. . exporting table DEF$_ORIGIN 0 rows exported

. . exporting table DEF$_PROPAGATOR 0 rows exported

. . exporting table DEF$_PUSHED_TRANSACTIONS 0 rows exported

. . exporting table DEF$_TEMP$LOB 0 rows exported

. . exporting table LOGSTDBY$APPLY_MILESTONE 0 rows exported

. . exporting table LOGSTDBY$APPLY_PROGRESS

. . exporting partition P0 0 rows exported

. . exporting table LOGSTDBY$EVENTS 0 rows exported

. . exporting table LOGSTDBY$PARAMETERS 0 rows exported

. . exporting table LOGSTDBY$PLSQL 0 rows exported

. . exporting table LOGSTDBY$SCN 0 rows exported

. . exporting table LOGSTDBY$SKIP 0 rows exported

. . exporting table LOGSTDBY$SKIP_TRANSACTION 0 rows exported

. . exporting table REPCAT$_AUDIT_ATTRIBUTE 2 rows exported

. . exporting table REPCAT$_AUDIT_COLUMN 0 rows exported

. . exporting table REPCAT$_COLUMN_GROUP 0 rows exported

. . exporting table REPCAT$_CONFLICT 0 rows exported

. . exporting table REPCAT$_DDL 0 rows exported

. . exporting table REPCAT$_EXCEPTIONS 0 rows exported

. . exporting table REPCAT$_EXTENSION 0 rows exported

. . exporting table REPCAT$_FLAVORS 0 rows exported

. . exporting table REPCAT$_FLAVOR_OBJECTS 0 rows exported

. . exporting table REPCAT$_GENERATED 0 rows exported

. . exporting table REPCAT$_GROUPED_COLUMN 0 rows exported

. . exporting table REPCAT$_INSTANTIATION_DDL 0 rows exported

. . exporting table REPCAT$_KEY_COLUMNS 0 rows exported

. . exporting table REPCAT$_OBJECT_PARMS 0 rows exported
1-34 Oracle9i Database Utilities

Example Export Sessions
. . exporting table REPCAT$_OBJECT_TYPES 28 rows exported

. . exporting table REPCAT$_PARAMETER_COLUMN 0 rows exported

. . exporting table REPCAT$_PRIORITY 0 rows exported

. . exporting table REPCAT$_PRIORITY_GROUP 0 rows exported

. . exporting table REPCAT$_REFRESH_TEMPLATES 0 rows exported

. . exporting table REPCAT$_REPCAT 0 rows exported

. . exporting table REPCAT$_REPCATLOG 0 rows exported

. . exporting table REPCAT$_REPCOLUMN 0 rows exported

. . exporting table REPCAT$_REPGROUP_PRIVS 0 rows exported

. . exporting table REPCAT$_REPOBJECT 0 rows exported

. . exporting table REPCAT$_REPPROP 0 rows exported

. . exporting table REPCAT$_REPSCHEMA 0 rows exported

. . exporting table REPCAT$_RESOLUTION 0 rows exported

. . exporting table REPCAT$_RESOLUTION_METHOD 19 rows exported

. . exporting table REPCAT$_RESOLUTION_STATISTICS 0 rows exported

. . exporting table REPCAT$_RESOL_STATS_CONTROL 0 rows exported

. . exporting table REPCAT$_RUNTIME_PARMS 0 rows exported

. . exporting table REPCAT$_SITES_NEW 0 rows exported

. . exporting table REPCAT$_SITE_OBJECTS 0 rows exported

. . exporting table REPCAT$_SNAPGROUP 0 rows exported

. . exporting table REPCAT$_TEMPLATE_OBJECTS 0 rows exported

. . exporting table REPCAT$_TEMPLATE_PARMS 0 rows exported

. . exporting table REPCAT$_TEMPLATE_REFGROUPS 0 rows exported

. . exporting table REPCAT$_TEMPLATE_SITES 0 rows exported

. . exporting table REPCAT$_TEMPLATE_STATUS 3 rows exported

. . exporting table REPCAT$_TEMPLATE_TARGETS 0 rows exported

. . exporting table REPCAT$_TEMPLATE_TYPES 2 rows exported

. . exporting table REPCAT$_USER_AUTHORIZATIONS 0 rows exported

. . exporting table REPCAT$_USER_PARM_VALUES 0 rows exported

. . exporting table SQLPLUS_PRODUCT_PROFILE 0 rows exported

. about to export OUTLN’s tables via Conventional Path ...

. . exporting table OL$ 0 rows exported

. . exporting table OL$HINTS 0 rows exported

. . exporting table OL$NODES 0 rows exported

. about to export DBSNMP’s tables via Conventional Path ...

. about to export SCOTT’s tables via Conventional Path ...

. . exporting table BONUS 0 rows exported

. . exporting table DEPT 4 rows exported

. . exporting table EMP 14 rows exported

. . exporting table SALGRADE 5 rows exported

. about to export ADAMS’s tables via Conventional Path ...

. about to export JONES’s tables via Conventional Path ...

. about to export CLARK’s tables via Conventional Path ...

. about to export BLAKE’s tables via Conventional Path ...

. . exporting table DEPT 8 rows exported
Export 1-35

Example Export Sessions
. . exporting table MANAGER 4 rows exported

. exporting synonyms

. exporting views

. exporting referential integrity constraints

. exporting stored procedures

. exporting operators

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting triggers

. exporting materialized views

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

. exporting user history table

. exporting default and system auditing options

. exporting statistics
Export terminated successfully without warnings.

Example Export Session in User Mode
User mode exports can be used to back up one or more database users. For

example, a DBA may want to back up the tables of deleted users for a period of

time. User mode is also appropriate for users who want to back up their own data

or who want to move objects from one owner to another. In this example, user

scott is exporting his own tables.

Parameter File Method
> exp scott/tiger PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
OWNER=scott
GRANTS=y
ROWS=y
COMPRESS=y

Command-Line Method
> exp scott/tiger FILE=scott.dmp OWNER=scott GRANTS=y ROWS=y COMPRESS=y
1-36 Oracle9i Database Utilities

Example Export Sessions
Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:01:06 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set
. exporting pre-schema procedural objects and actions
. exporting foreign function library names for user SCOTT
. exporting PUBLIC type synonyms
. exporting private type synonyms
. exporting object type definitions for user SCOTT
About to export SCOTT’s objects ...
. exporting database links
. exporting sequence numbers
. exporting cluster definitions
. about to export SCOTT’s tables via Conventional Path ...
. . exporting table BONUS 0 rows exported
. . exporting table DEPT 4 rows exported
. . exporting table EMP 14 rows exported
. . exporting table SALGRADE 5 rows exported
. exporting synonyms
. exporting views
. exporting stored procedures
. exporting operators
. exporting referential integrity constraints
. exporting triggers
. exporting indextypes
. exporting bitmap, functional and extensible indexes
. exporting posttables actions
. exporting materialized views
. exporting snapshot logs
. exporting job queues
. exporting refresh groups and children
. exporting dimensions
. exporting post-schema procedural objects and actions
. exporting statistics
Export terminated successfully without warnings.
Export 1-37

Example Export Sessions
Example Export Sessions in Table Mode
In table mode, you can export table data or the table definitions. (If no rows are

exported, the CREATE TABLEstatement is placed in the export file, with grants and

indexes, if they are specified.)

A user with the EXP_FULL_DATABASE role can use table mode to export tables

from any user’s schema by specifying TABLES=schemaname.tablename.

If schemaname is not specified, Export defaults to the previous schema name from

which an object was exported. If there is not a previous object, Export defaults to

the exporter’s schema. In the following example, Export defaults to the SYSTEM
schema for table a and to scott for table c :

> exp SYSTEM/ password TABLES=(a, scott.b, c, mary.d)

A user with the EXP_FULL_DATABASE role can also export dependent objects that

are owned by other users. A nonprivileged user can export only dependent objects

for the specified tables that the user owns.

Exports in table mode do not include cluster definitions. As a result, the data is

exported as unclustered tables. Thus, you can use table mode to uncluster tables.

Example 1: DBA Exporting Tables for Two Users
In this example, a DBA exports specified tables for two users.

Parameter File Method
> exp SYSTEM/ password PARFILE=params.dat

The params.dat file contains the following information:

FILE=expdat.dmp
TABLES=(scott.emp,blake.dept)
GRANTS=y
INDEXES=y

Command-Line Method
> exp SYSTEM/ password FILE=expdat.dmp TABLES=(scott.emp,blake.dept) GRANTS=y-
INDEXES=y

Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:01:35 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.
1-38 Oracle9i Database Utilities

Example Export Sessions
Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table EMP 14 rows exported
Current user changed to BLAKE
. . exporting table DEPT 8 rows exported
Export terminated successfully without warnings.

Example 2: User Exports Tables That He Owns
In this example, user blake exports selected tables that he owns.

Parameter File Method
> exp blake/paper PARFILE=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
TABLES=(dept,manager)
ROWS=y
COMPRESS=y

Command-Line Method
> exp blake/paper FILE=blake.dmp TABLES=(dept, manager) ROWS=y COMPRESS=y

Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:01:38 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table DEPT 8 rows exported
Export 1-39

Example Export Sessions
. . exporting table MANAGER 4 rows exported
Export terminated successfully without warnings.

Example 3: Using Pattern Matching to Export Various Tables
In this example, pattern matching is used to export various tables for users scott
and blake .

Parameter File Method
> exp SYSTEM/ password PARFILE=params.dat

The params.dat file contains the following information:

FILE=misc.dmp
TABLES=(scott.%P%,blake.%,scott.%S%)

Command-Line Method
> exp SYSTEM/ password FILE=misc.dmp TABLES=(scott.%P%,blake.%,scott.%S%)

Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:01:40 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table DEPT 4 rows exported
. . exporting table EMP 14 rows exported
Current user changed to BLAKE
. . exporting table DEPT 8 rows exported
. . exporting table MANAGER 4 rows exported
Current user changed to SCOTT
. . exporting table BONUS 0 rows exported
. . exporting table SALGRADE 5 rows exported
Export terminated successfully without warnings.
1-40 Oracle9i Database Utilities

Example Export Sessions
Example Export Session Using Partition-Level Export
In partition-level export, you can specify the partitions and subpartitions of a table

that you want to export.

Example 1: Exporting a Table Without Specifying a Partition
Assume emp is a table that is partitioned on employee name. There are two

partitions, m and z. As this example shows, if you export the table without

specifying a partition, all of the partitions are exported.

Parameter File Method
> exp scott/tiger PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp)
ROWS=y

Command-Line Method
> exp scott/tiger TABLES=emp rows=y

Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:01:53 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition M 8 rows exported
. . exporting partition Z 6 rows exported
Export terminated successfully without warnings.

Example 2: Exporting a Table with a Specified Partition
Assume emp is a table that is partitioned on employee name. There are two

partitions, m and z. As this example shows, if you export the table and specify a

partition, only the specified partition is exported.
Export 1-41

Example Export Sessions
Parameter File Method
 > exp scott/tiger PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp:m)
ROWS=y

Command-Line Method
> exp scott/tiger TABLES=emp:m rows=y

Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:01:55 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition M 8 rows exported
Export terminated successfully without warnings.

Example 3: Exporting a Composite Partition
Assume emp is a partitioned table with two partitions, m and z. Table emp is

partitioned using the composite method. Partition m has subpartitions sp1 and

sp2, and partition z has subpartitions sp3 and sp4. As the example shows, if you

export the composite partition m, all its subpartitions (sp1 and sp2) will be

exported. If you export the table and specify a subpartition (sp4), only the specified

subpartition is exported.

Parameter File Method
> exp scott/tiger PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp:m,emp:sp4)
ROWS=y
1-42 Oracle9i Database Utilities

Using the Interactive Method
Command-Line Method
> exp scott/tiger TABLES=(emp:m, emp:sp4) ROWS=y

Export Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:22:47 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting composite partition M
. . exporting subpartition SP1 1 rows exported
. . exporting subpartition SP2 3 rows exported
. . exporting composite partition Z
. . exporting subpartition SP4 1 rows exported
Export terminated successfully without warnings.

Using the Interactive Method
Starting Export from the command line with no parameters initiates the interactive

method. The command-line interactive method does not provide prompts for all

Export functionality and is provided only for backward compatibility. If you want

to use an interactive interface to the Export utility, it is recommended that you use

the Oracle Enterprise Manager (OEM) Export Wizard.

If you do not specify a username /password combination on the command line,

the Export utility prompts you for this information.

When you invoke Export interactively, the response given by Export depends on

what you enter at the command line. Table 1–4 shows the possibilities.

Table 1–4 Invoking Export Using the Interactive Method

You enter... Export’s Response

exp
username /password @instance
as sysdba

Starts an Export session
Export 1-43

Using the Interactive Method
In Export interactive mode, you are not prompted to specify whether you want to

connect as SYSDBA or @instance . You must specify AS SYSDBA and/or

@instance with the username.

Additionally, if you omit the password and allow Export to prompt you for it, you

cannot specify the @instance string as well. You can specify @instance only

with username.

Before you invoke Export using AS SYSDBA, be sure to read Invoking Export As

SYSDBA on page 1-7 for information about correct command-line syntax.

After Export is invoked, it displays the following prompts. You may not see all

prompts in a given Export session because some prompts depend on your

responses to other prompts. Some prompts show a default answer. If the default is

acceptable, press Enter.

Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:02:03 2002

exp
username /password @instance

Starts an Export session

exp username /password as
sysdba

Starts an Export session

exp username /password Starts an Export session

exp username @instance as
sysdba

Prompts for password

exp username @instance Prompts for password

exp username Prompts for password

exp username as sysdba Prompts for password

exp / as sysdba No prompt for password, operating system
authentication is used

exp / No prompt for password, operating system
authentication is used

exp /@instance as sysdba No prompt for password, operating system
authentication is used

exp /@instance No prompt for password, operating system
authentication is used

Table 1–4 (Cont.) Invoking Export Using the Interactive Method

You enter... Export’s Response
1-44 Oracle9i Database Utilities

Using the Interactive Method
(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Enter array fetch buffer size: 4096 >
Export file: expdat.dmp >
(1)E(ntire database), (2)U(sers), or (3)T(ables): (2)U >
Export grants (yes/no): yes >
Export table data (yes/no): yes >
Compress extents (yes/no): yes >
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
. exporting rollback segment definitions
. exporting database links
. exporting sequence numbers
. exporting directory aliases
. exporting context namespaces
. exporting foreign function library names
. exporting PUBLIC type synonyms
. exporting private type synonyms
. exporting object type definitions
. exporting system procedural objects and actions
. exporting pre-schema procedural objects and actions
. exporting cluster definitions
. about to export SYSTEM’s tables via Conventional Path ...
. . exporting table AQ$_INTERNET_AGENTS 0 rows exported
. . exporting table AQ$_INTERNET_AGENT_PRIVS 0 rows exported
. . exporting table DEF$_AQCALL 0 rows exported
. . exporting table DEF$_AQERROR 0 rows exported
. . exporting table DEF$_CALLDEST 0 rows exported
. . exporting table DEF$_DEFAULTDEST 0 rows exported
. . exporting table DEF$_DESTINATION 0 rows exported
. . exporting table DEF$_ERROR 0 rows exported
. . exporting table DEF$_LOB 0 rows exported
. . exporting table DEF$_ORIGIN 0 rows exported
. . exporting table DEF$_PROPAGATOR 0 rows exported
. . exporting table DEF$_PUSHED_TRANSACTIONS 0 rows exported
Export 1-45

Using the Interactive Method
. . exporting table DEF$_TEMP$LOB 0 rows exported

. . exporting table LOGSTDBY$APPLY_MILESTONE 0 rows exported

. . exporting table LOGSTDBY$APPLY_PROGRESS

. . exporting partition P0 0 rows exported

. . exporting table LOGSTDBY$EVENTS 0 rows exported

. . exporting table LOGSTDBY$PARAMETERS 0 rows exported

. . exporting table LOGSTDBY$PLSQL 0 rows exported

. . exporting table LOGSTDBY$SCN 0 rows exported

. . exporting table LOGSTDBY$SKIP 0 rows exported

. . exporting table LOGSTDBY$SKIP_TRANSACTION 0 rows exported

. . exporting table REPCAT$_AUDIT_ATTRIBUTE 2 rows exported

. . exporting table REPCAT$_AUDIT_COLUMN 0 rows exported

. . exporting table REPCAT$_COLUMN_GROUP 0 rows exported

. . exporting table REPCAT$_CONFLICT 0 rows exported

. . exporting table REPCAT$_DDL 0 rows exported

. . exporting table REPCAT$_EXCEPTIONS 0 rows exported

. . exporting table REPCAT$_EXTENSION 0 rows exported

. . exporting table REPCAT$_FLAVORS 0 rows exported

. . exporting table REPCAT$_FLAVOR_OBJECTS 0 rows exported

. . exporting table REPCAT$_GENERATED 0 rows exported

. . exporting table REPCAT$_GROUPED_COLUMN 0 rows exported

. . exporting table REPCAT$_INSTANTIATION_DDL 0 rows exported

. . exporting table REPCAT$_KEY_COLUMNS 0 rows exported

. . exporting table REPCAT$_OBJECT_PARMS 0 rows exported

. . exporting table REPCAT$_OBJECT_TYPES 28 rows exported

. . exporting table REPCAT$_PARAMETER_COLUMN 0 rows exported

. . exporting table REPCAT$_PRIORITY 0 rows exported

. . exporting table REPCAT$_PRIORITY_GROUP 0 rows exported

. . exporting table REPCAT$_REFRESH_TEMPLATES 0 rows exported

. . exporting table REPCAT$_REPCAT 0 rows exported

. . exporting table REPCAT$_REPCATLOG 0 rows exported

. . exporting table REPCAT$_REPCOLUMN 0 rows exported

. . exporting table REPCAT$_REPGROUP_PRIVS 0 rows exported

. . exporting table REPCAT$_REPOBJECT 0 rows exported

. . exporting table REPCAT$_REPPROP 0 rows exported

. . exporting table REPCAT$_REPSCHEMA 0 rows exported

. . exporting table REPCAT$_RESOLUTION 0 rows exported

. . exporting table REPCAT$_RESOLUTION_METHOD 19 rows exported

. . exporting table REPCAT$_RESOLUTION_STATISTICS 0 rows exported

. . exporting table REPCAT$_RESOL_STATS_CONTROL 0 rows exported

. . exporting table REPCAT$_RUNTIME_PARMS 0 rows exported

. . exporting table REPCAT$_SITES_NEW 0 rows exported

. . exporting table REPCAT$_SITE_OBJECTS 0 rows exported

. . exporting table REPCAT$_SNAPGROUP 0 rows exported

. . exporting table REPCAT$_TEMPLATE_OBJECTS 0 rows exported
1-46 Oracle9i Database Utilities

Using the Interactive Method
. . exporting table REPCAT$_TEMPLATE_PARMS 0 rows exported

. . exporting table REPCAT$_TEMPLATE_REFGROUPS 0 rows exported

. . exporting table REPCAT$_TEMPLATE_SITES 0 rows exported

. . exporting table REPCAT$_TEMPLATE_STATUS 3 rows exported

. . exporting table REPCAT$_TEMPLATE_TARGETS 0 rows exported

. . exporting table REPCAT$_TEMPLATE_TYPES 2 rows exported

. . exporting table REPCAT$_USER_AUTHORIZATIONS 0 rows exported

. . exporting table REPCAT$_USER_PARM_VALUES 0 rows exported

. . exporting table SQLPLUS_PRODUCT_PROFILE 0 rows exported

. about to export OUTLN’s tables via Conventional Path ...

. . exporting table OL$ 0 rows exported

. . exporting table OL$HINTS 0 rows exported

. . exporting table OL$NODES 0 rows exported

. about to export DBSNMP’s tables via Conventional Path ...

. about to export SCOTT’s tables via Conventional Path ...

. . exporting table BONUS 0 rows exported

. . exporting table DEPT 4 rows exported

. . exporting table EMP 14 rows exported

. . exporting table SALGRADE 5 rows exported

. about to export ADAMS’s tables via Conventional Path ...

. about to export JONES’s tables via Conventional Path ...

. about to export CLARK’s tables via Conventional Path ...

. about to export BLAKE’s tables via Conventional Path ...

. . exporting table DEPT 8 rows exported

. . exporting table MANAGER 4 rows exported

. exporting synonyms

. exporting views

. exporting referential integrity constraints

. exporting stored procedures

. exporting operators

. exporting indextypes

. exporting bitmap, functional and extensible indexes

. exporting posttables actions

. exporting triggers

. exporting materialized views

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting dimensions

. exporting post-schema procedural objects and actions

. exporting user history table

. exporting default and system auditing options

. exporting statistics
Export terminated successfully without warnings.
Export 1-47

Warning, Error, and Completion Messages
Restrictions
Keep in mind the following points when you use the interactive method:

■ In user mode, Export prompts for all usernames to be included in the export

before exporting any data. To indicate the end of the user list and begin the

current Export session, press Enter.

■ In table mode, if you do not specify a schema prefix, Export defaults to the

exporter’s schema or the schema containing the last table exported in the

current session.

For example, if beth is a privileged user exporting in table mode, Export

assumes that all tables are in the beth schema until another schema is

specified. Only a privileged user (someone with the EXP_FULL_DATABASE
role) can export tables in another user’s schema.

■ If you specify a null table list to the prompt "Table to be exported," the Export

utility exits.

Warning, Error, and Completion Messages
This section describes the different types of messages issued by Export and how to

save them in a log file.

Log File
You can capture all Export messages in a log file, either by using the LOG parameter

(see LOG on page 1-23) or, for those systems that permit it, by redirecting the Export

output to a file. The Export utility writes a log of detailed information about

successful unloads and any errors that may occur. Refer to your Oracle operating

system-specific documentation for information on redirecting output.

Warning Messages
Export does not terminate after recoverable errors. For example, if an error occurs

while exporting a table, Export displays (or logs) an error message, skips to the next

table, and continues processing. These recoverable errors are known as warnings.

Export also issues a warning whenever it encounters an invalid object.

For example, if a nonexistent table is specified as part of a table-mode export, the

Export utility exports all other tables. Then it issues a warning and terminates

successfully.
1-48 Oracle9i Database Utilities

Exit Codes for Inspection and Display
Nonrecoverable Error Messages
Some errors are nonrecoverable and terminate the Export session. These errors

typically occur because of an internal problem or because a resource, such as

memory, is not available or has been exhausted. For example, if the catexp.sql
script is not executed, Export issues the following nonrecoverable error message:

EXP-00024: Export views not installed, please notify your DBA

Completion Messages
When an export completes without errors, Export displays the following message:

Export terminated successfully without warnings

If one or more recoverable errors occurs but Export is able to continue to

completion, Export displays the following message:

Export terminated successfully with warnings

If a nonrecoverable error occurs, Export terminates immediately and displays the

following message:

Export terminated unsuccessfully

Exit Codes for Inspection and Display
Export provides the results of an export operation immediately upon completion.

Depending on the platform, Export may report the outcome in a process exit code

as well as recording the results in the log file. This enables you to check the outcome

from the command line or script. Table 1–5 shows the exit codes that get returned

for various results.

See Also: Oracle9i Database Error Messages and your Oracle

operating system-specific documentation

Table 1–5 Exit Codes for Export

Result Exit Code

Export terminated successfully without warnings EX_SUCC

Export terminated successfully with warnings EX_OKWARN

Export terminated unsuccessfully EX_FAIL
Export 1-49

Conventional Path Export Versus Direct Path Export
For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FAIL 1

Conventional Path Export Versus Direct Path Export
Export provides two methods for exporting table data:

■ Conventional path Export

■ Direct path Export

Conventional path Export uses the SQL SELECT statement to extract data from

tables. Data is read from disk into a buffer cache, and rows are transferred to the

evaluating buffer. The data, after passing expression evaluation, is transferred to the

Export client, which then writes the data into the export file.

Direct path Export is much faster than conventional path Export because data is

read from disk into the buffer cache and rows are transferred directly to the Export

client. The evaluating buffer is bypassed. The data is already in the format that

Export expects, thus avoiding unnecessary data conversion. The data is transferred

to the Export client, which then writes the data into the export file.

Figure 1–2 on page 1-51 illustrates how data extraction differs between conventional

path Export and direct path Export.
1-50 Oracle9i Database Utilities

Conventional Path Export Versus Direct Path Export
Figure 1–2 Database Reads on Conventional Path Export and Direct Path Export

Oracle Server

Export

Dump File Generate SQL
Commands

SQL Command
Processing

Buffer Cache
Management

Evaluating
Buffer

Read
Database

Blocks

Private
Buffer

or
Buffer
Cache

Oracle Server

Conventional Path Direct Path

Export

Dump File Generate SQL
Commands

SQL Command
Processing

Buffer Cache
Management

Evaluating
Buffer

Read
Database

Blocks

Database

Private
Buffer

or
Buffer
Cache

Database
Export 1-51

Invoking a Direct Path Export
Invoking a Direct Path Export
To invoke a direct path Export, you must use either the command-line method or a

parameter file. You cannot invoke a direct path Export using the interactive method.

To use direct path Export, specify the DIRECT=y parameter on the command line or

in the parameter file. The default is DIRECT=n, which extracts the table data using

the conventional path.

Additionally, be aware that the Export parameter BUFFER applies only to

conventional path Exports. For direct path Export, use the RECORDLENGTH
parameter to specify the size of the buffer that Export uses for writing to the export

file.

In versions of Export prior to 8.1.5, you could not use direct path Export for tables

containing objects and LOBs. If you tried to, their rows were not exported. This

behavior has changed. Rows in tables that contain objects and LOBs will now be

exported using conventional path, even if direct path was specified. Import will

correctly handle these conventional path tables within direct path dump files.

Security Considerations for Direct Path Exports
Virtual Private Database (VPD) and Oracle Label Security are not enforced during

direct path Exports.

The following users are exempt from Virtual Private Database and Oracle Label

Security enforcement regardless of the export mode, application, or utility used to

extract data from the database:

■ The database user SYS

■ Database users granted the Oracle9i EXEMPT ACCESS POLICY privilege, either

directly or through a database role

This means that any user who is granted the EXEMPT ACCESS POLICY privilege is

completely exempt from enforcement of VPD and Oracle Label Security. This is a

powerful privilege and should be carefully managed. This privilege does not affect

the enforcement of traditional object privileges such as SELECT, INSERT, UPDATE,
and DELETE. These privileges are enforced even if a user has been granted the

EXEMPT ACCESS POLICY privilege.

See Also:

■ Support for Fine-Grained Access Control on page 1-59

■ Oracle9i Application Developer’s Guide - Fundamentals
1-52 Oracle9i Database Utilities

Network Considerations
Performance Issues for Direct Path Exports
You may be able to improve performance by increasing the value of the

RECORDLENGTH parameter when you invoke a direct path Export. Your exact

performance gain depends upon the following factors:

■ DB_BLOCK_SIZE

■ The types of columns in your table

■ Your I/O layout (The drive receiving the export file should be separate from the

disk drive where the database files reside.)

The following values are generally recommended for RECORDLENGTH:

■ Multiples of the file system I/O block size

■ Multiples of DB_BLOCK_SIZE

Network Considerations
This section describes factors to take into account when you use Export and Import

across a network.

Transporting Export Files Across a Network
Because the export file is in binary format, use a protocol that supports binary

transfers to prevent corruption of the file when you transfer it across a network. For

example, use FTP or a similar file transfer protocol to transmit the file in binary
mode. Transmitting export files in character mode causes errors when the file is

imported.

Exporting and Importing with Oracle Net
With Oracle Net, you can perform exports and imports over a network. For

example, if you run Export locally, you can write data from a remote Oracle

database into a local export file. If you run Import locally, you can read data into a

remote Oracle database.

To use Import with Oracle Net, include the connection qualifier string @connect_
string when entering the username / password in the exp or imp command. For

the exact syntax of this clause, see the user’s guide for your Oracle Net protocol.
Export 1-53

Character Set and Globalization Support Considerations
Character Set and Globalization Support Considerations
This section describes the behavior of Export and Import with respect to

globalization support.

Character Set Conversion
The Export utility always exports user data, including Unicode data, in the

character sets of the Export server. The character sets are specified at database

creation.

The Import utility automatically converts the data to the character sets of the Import

server.

Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you

import an 8-bit character set export file. This occurs if the client system has a native

7-bit character set or if the NLS_LANG operating system environment variable is set

to a 7-bit character set. Most often, you notice that accented characters lose their

accent mark.

Both Export and Import provide descriptions of any required character set

conversion before exporting or importing the data.

Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character set,

then tables that are partitioned on character columns may yield unpredictable

results. For example, consider the following table definition, which is produced on a

database having an ASCII character set:

CREATE TABLE partlist
 (
 part VARCHAR2(10),
 partno NUMBER(2)
)

See Also:

■ Oracle9i Net Services Administrator’s Guide

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide

Note: Data definition language (DDL), such as a CREATE TABLE
command, is exported in the client character set.
1-54 Oracle9i Database Utilities

Instance Affinity and Export
PARTITION BY RANGE (part)
 (
 PARTITION part_low VALUES LESS THAN ('Z')
 TABLESPACE tbs_1,
 PARTITION part_mid VALUES LESS THAN ('z')
 TABLESPACE tbs_2,
 PARTITION part_high VALUES LESS THAN (MAXVALUE)
 TABLESPACE tbs_3
);

This partitioning scheme makes sense because z comes after Z in ASCII character

sets.

When this table is imported into a database based upon an EBCDIC character set,

all of the rows in the part_mid partition will migrate to the part_low partition

because z comes before Z in EBCDIC character sets. To obtain the desired results,

the owner of partlist must repartition the table following the import.

Multibyte Character Sets and Export and Import

Instance Affinity and Export
You can use instance affinity to associate jobs with instances in databases you plan

to export and import. Be aware that there may be some compatibility issues if you

are using a combination of releases 8.0, 8.1, and 9i.

See Also: Oracle9i Database Globalization Support Guide

Caution: When the character set width differs between the export

client and the export server, truncation of data can occur if

conversion causes expansion of data. If truncation occurs, Export

displays a warning message.

See Also:

■ Oracle9i Database Administrator’s Guide

■ Oracle9i Database Reference

■ Oracle9i Database Migration
Export 1-55

Considerations When Exporting Database Objects
Considerations When Exporting Database Objects
The following sections describe points you should consider when you export

particular database objects.

Exporting Sequences
If transactions continue to access sequence numbers during an export, sequence

numbers can be skipped. The best way to ensure that sequence numbers are not

skipped is to ensure that the sequences are not accessed during the export.

Sequence numbers can be skipped only when cached sequence numbers are in use.

When a cache of sequence numbers has been allocated, they are available for use in

the current database. The exported value is the next sequence number (after the

cached values). Sequence numbers that are cached, but unused, are lost when the

sequence is imported.

Exporting LONG and LOB Datatypes
On export, LONG datatypes are fetched in sections. However, enough memory must

be available to hold all of the contents of each row, including the LONG data.

LONG columns can be up to 2 gigabytes in length.

All data in a LOB column does not need to be held in memory at the same time.

LOB data is loaded and unloaded in sections.

Exporting Foreign Function Libraries
The contents of foreign function libraries are not included in the export file. Instead,

only the library specification (name, location) is included in full database and user

mode export. You must move the library’s executable files and update the library

specification if the database is moved to a new location.

Exporting Offline Bitmapped Tablespaces
If the data you are exporting contains offline bitmapped tablespaces, Export will not

be able to export the complete tablespace definition and will display an error

message. You can still import the data; however, you must first create the offline

bitmapped tablespaces before importing to prevent DDL commands that may

reference the missing tablespaces from failing.
1-56 Oracle9i Database Utilities

Considerations When Exporting Database Objects
Exporting Directory Aliases
Directory alias definitions are included only in a full database mode Export. To

move a database to a new location, the database administrator must update the

directory aliases to point to the new location.

Directory aliases are not included in user or table mode Export. Therefore, you must

ensure that the directory alias has been created on the target system before the

directory alias is used.

Exporting BFILE Columns and Attributes
The export file does not hold the contents of external files referenced by BFILE
columns or attributes. Instead, only the names and directory aliases for files are

copied on Export and restored on Import. If you move the database to a location

where the old directories cannot be used to access the included files, the database

administrator (DBA) must move the directories containing the specified files to a

new location where they can be accessed.

External Tables
The contents of external tables are not included in the export file. Instead, only the

table specification (name, location) is included in full database and user mode

export. You must manually move the external data and update the table

specification if the database is moved to a new location.

Exporting Object Type Definitions
In all Export modes, the Export utility includes information about object type

definitions used by the tables being exported. The information, including object

name, object identifier, and object geometry, is needed to verify that the object type

on the target system is consistent with the object instances contained in the export

file. This ensures that the object types needed by a table are created with the same

object identifier at import time.

Note, however, that in table, user, and tablespace mode, the export file does not

include a full object type definition needed by a table if the user running Export

does not have execute access to the object type. In this case, only enough

information is written to verify that the type exists, with the same object identifier

and the same geometry, on the import target system.
Export 1-57

Considerations When Exporting Database Objects
The user must ensure that the proper type definitions exist on the target system,

either by working with the DBA to create them, or by importing them from full

database or user mode exports performed by the DBA.

It is important to perform a full database mode export regularly to preserve all

object type definitions. Alternatively, if object type definitions from different

schemas are used, the DBA should perform a user mode export of the appropriate

set of users. For example, if table1 belonging to user scott contains a column on

blake ’s type type1, the DBA should perform a user mode export of both blake
and scott to preserve the type definitions needed by the table.

Exporting Nested Tables
Inner nested table data is exported whenever the outer containing table is exported.

Although inner nested tables can be named, they cannot be exported individually.

Exporting Advanced Queue (AQ) Tables
Queues are implemented on tables. The export and import of queues constitutes the

export and import of the underlying queue tables and related dictionary tables. You

can export and import queues only at queue table granularity.

When you export a queue table, both the table definition information and queue

data are exported. Because the queue table data is exported as well as the table

definition, the user is responsible for maintaining application-level data integrity

when queue table data is imported.

Exporting Synonyms
You should be cautious when exporting compiled objects that reference a name

used as a synonym and as another object. Exporting and importing these objects

will force a recompilation that could result in changes to the object definitions.

The following example helps to illustrate this problem:

CREATE PUBLIC SYNONYM emp FOR scott.emp;

CONNECT blake/paper;
CREATE TRIGGER t_emp BEFORE INSERT ON emp BEGIN NULL; END;
CREATE VIEW emp AS SELECT * FROM dual;

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing
1-58 Oracle9i Database Utilities

Transportable Tablespaces
If the database in the preceding example were exported, the reference to emp in the

trigger would refer to blake ’s view rather than to scott ’s table. This would cause

an error when Import tried to reestablish the t_emp trigger.

Possible Export Errors Related to Java Synonyms
If an export operation attempts to export a synonym named DBMS_JAVA when

there is no corresponding DBMS_JAVA package or when Java is either not loaded or

loaded incorrectly, the export will terminate unsuccessfully. The error messages that

are generated include, but are not limited to, the following: EXP-00008, ORA-00904,

and ORA-29516.

If Java is enabled, make sure that both the DBMS_JAVA synonym and DBMS_JAVA
package are created and valid before rerunning the export.

If Java is not enabled, remove Java-related objects before rerunning the export.

Support for Fine-Grained Access Control
You can export tables with fine-grained access control policies enabled. When doing

so, consider the following:

■ The user who imports from an export file containing such tables must have the

appropriate privileges (specifically, the EXECUTE privilege on the DBMS_RLS
package so that the tables’ security policies can be reinstated). If a user without

the correct privileges attempts to export a table with fine-grained access policies

enabled, only those rows that the exporter is privileged to read will be

exported.

■ If fine-grained access control is enabled on a SELECT statement, then

conventional path Export may not export the entire table because fine-grained

access may rewrite the query.

■ Only user SYS, or a user with the EXPORT_FULL_DATABASE role enabled or

who has been granted EXEMPT ACCESS POLICY, can perform direct path

Exports on tables having fine-grained access control.

Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from

one Oracle database to another.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about fine-grained access control
Export 1-59

Exporting from a Read-Only Database
To move or copy a set of tablespaces, you must make the tablespaces read-only,

copy the datafiles of these tablespaces, and use Export and Import to move the

database information (metadata) stored in the data dictionary. Both the datafiles

and the metadata export file must be copied to the target database. The transport of

these files can be done using any facility for copying flat binary files, such as the

operating system copying facility, binary-mode FTP, or publishing on CD-ROMs.

After copying the datafiles and exporting the metadata, you can optionally put the

tablespaces in read/write mode.

Export provides the following parameters to enable export of transportable

tablespace metadata.

■ TABLESPACES

■ TRANSPORT_TABLESPACE

See TABLESPACES on page 1-30 and TRANSPORT_TABLESPACE on page 1-31 for

more information.

Exporting from a Read-Only Database
To extract metadata from a source database, Export uses queries that contain

ordering clauses (sort operations). For these queries to succeed, the user performing

the export must be able to allocate on-disk sort segments. For these sort segments to

be allocated in a read-only database, the user’s temporary tablespace should be set

to point at a temporary, locally managed tablespace.

Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may be

more efficient to partition the migration into multiple export and import jobs. If you

decide to partition the migration, be aware of the following advantages and

disadvantages.

See Also:

■ Oracle9i Database Administrator’s Guide for details about

managing transportable tablespaces

■ Oracle9i Database Concepts for an introduction to transportable

tablespaces

See Also: Oracle9i Data Guard Concepts and Administration for

more information on setting up this environment
1-60 Oracle9i Database Utilities

Using Different Releases and Versions of Export
Advantages of Partitioning a Migration
Partitioning a migration has the following advantages:

■ Time required for the migration may be reduced because many of the subjobs

can be run in parallel.

■ The import can start as soon as the first export subjob completes, rather than

waiting for the entire export to complete.

Disadvantages of Partitioning a Migration
Partitioning a migration has the following disadvantages:

■ The export and import processes become more complex.

■ Support of cross-schema references for certain types of objects may be

compromised. For example, if a schema contains a table with a foreign key

constraint against a table in a different schema, you may not have the required

parent records when you import the table into the dependent schema.

How to Use Export and Import to Partition a Database Migration
To perform a database migration in a partitioned manner, take the following steps:

1. For all top-level metadata in the database, issue the following commands:

a. exp dba/password FILE=full FULL=y CONSTRAINTS=n
TRIGGERS=n ROWS=n INDEXES=n

b. imp dba/password FILE=full FULL=y

2. For each scheman in the database, issue the following commands:

a. exp dba/password OWNER=schema n FILE=schema n

b. imp dba/password FILE=schema n FROMUSER=scheman
TOUSER=scheman IGNORE=y

All exports can be done in parallel. When the import of full .dmp completes, all

remaining imports can also be done in parallel.

Using Different Releases and Versions of Export
This section describes compatibility issues that relate to using different releases of

Export and the Oracle database server.
Export 1-61

Using Different Releases and Versions of Export
Whenever you are moving data between different releases of the Oracle database

server, the following basic rules apply:

■ The Import utility and the database to which data is being imported (the target

database) must be the same version.

■ The version of the Export utility must be equal to the lowest version of the

source or target database.

For example, to create an export file for an import into a higher release

database, use a version of the Export utility that is equal to the source database.

Conversely, to create an export file for an import into a lower release database,

use a version of the Export utility that is equal to the version of the target

database. The following information is for specific versions:

– When you create an Oracle version 6 export file from an Oracle7 database

by running the Oracle version 6 Export utility against the Oracle7 database

server, you must first run the catexp6.sql script on the Oracle7 database.

This script creates the export views that make the database look, to Export,

like an Oracle version 6 database.

– When you create an Oracle7 export file from an Oracle8i database by

running the Oracle7 Export utility against the Oracle8i database, you must

first run the catexp7.sql script on the Oracle8i database. This script

creates the export views that make the database look, to Export, like an

Oracle8i database.

– In general, you can use the Export utility from any Oracle8 release to export

from an Oracle9i server and create an Oracle8 export file. See Creating

Oracle Release 8.0 Export Files from an Oracle9i Database on page 1-64.

Restrictions When Using Different Releases and Versions of Export and Import
The following restrictions apply when you are using different releases of Export

and Import:

■ Export dump files can be read only by the Import utility because they are stored

in a special binary format.

■ Any export dump file can be imported into a higher release of the Oracle

database server.

Note: The catexp6.sql and catexp7.sql scripts must be run

by user SYS. These scripts only need to be run once.
1-62 Oracle9i Database Utilities

Using Different Releases and Versions of Export
■ The Import utility can read export dump files created by Export release 5.1.22

and higher.

■ The Import utility cannot read export dump files created by the Export utility of

a higher maintenance release or version. For example, a release 8.1 export dump

file cannot be imported by a release 8.0 Import utility, and a version 8 export

dump file cannot be imported by a version 7 Import utility.

■ The Oracle version 6 (or earlier) Export utility cannot be used against an

Oracle8 or higher database.

■ Whenever a lower version of the Export utility runs with a higher version of the

Oracle database server, categories of database objects that did not exist in the

lower version are excluded from the export. For example, partitioned tables did

not exist in the Oracle database server version 7. So, if you need to move a

version 8 partitioned table to a version 7 database, you must first reorganize the

table into a nonpartitioned table.

■ Export files generated by Oracle9i Export, either direct path or conventional

path, are incompatible with earlier releases of Import and can be imported only

with Oracle9i Import. When backward compatibility is an issue, use the earlier

release or version of the Export utility against the Oracle9i database.

Examples of Using Different Releases of Export and Import
Table 1–6 shows some examples of which Export and Import releases to use when

moving data between different releases of the Oracle database server.

Table 1–6 Using Different Releases of Export and Import

Export from->Import to Use Export Release Use Import Release

7.3.3 -> 8.1.6 7.3.3 8.1.6

8.1.6 -> 8.1.6 8.1.6 8.1.6

8.1.5 -> 8.0.6 8.0.6 8.0.6

8.1.7 -> 8.1.6 8.1.6 8.1.6

8.1.7 -> 7.3.4 7.3.41

1 If catexp7.sql has never been run on the 8.1.7 database, then you must do that first to create the
Oracle7 data dictionary views. Only then can you successfully use Export release 7.3.4 on the
release 8.1.7 database.

7.3.4

9.0.1 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 9.0.2 9.0.1 9.0.2
Export 1-63

Using Different Releases and Versions of Export
Creating Oracle Release 8.0 Export Files from an Oracle9 i Database
You do not need to take any special steps to create an Oracle release 8.0 export file

from an Oracle9i database. However, the following features are not supported when

you use Export release 8.0 on an Oracle9i database:

■ Export does not export rows from tables containing objects and LOBs when you

have specified a direct path load (DIRECT=y).

■ Export does not export dimensions.

■ Functional and domain indexes are not exported.

■ Secondary objects (tables, indexes, sequences, and so on, created in support of a

domain index) are not exported.

■ Views, procedures, functions, packages, type bodies, and types containing

references to new Oracle9i features may not compile.

■ Objects whose DDL is implemented as a stored procedure rather than SQL are

not exported.

■ Triggers whose action is a CALL statement are not exported.

■ Tables containing logical ROWIDcolumns, primary key refs, or user-defined OID
columns will not be exported.

■ Temporary tables are not exported.

■ Index-organized tables (IOTs) revert to an uncompressed state.

■ Partitioned IOTs lose their partitioning information.

■ Index types and operators are not exported.

■ Bitmapped, temporary, and UNDO tablespaces are not exported.

■ Java sources, classes, and resources are not exported.

■ Varying-width CLOBs, collection enhancements, and LOB-storage clauses for

VARRAY columns or nested table enhancements are not exported.

■ Fine-grained access control policies are not preserved.

■ External tables are not exported.
1-64 Oracle9i Database Utilities

Using Different Releases and Versions of Export
Possible Errors When Using Different Releases and Versions
This section briefly discusses some of the error messages you might receive if

incompatible releases or versions of the Export utility and the Oracle database

server are used.

EXP-24
EXP-24: Export views not installed, please notify your DBA
Cause: The necessary export views were not installed.
Action: Ask the DBA to install the required views.

EXP-23
EXP-23: Import views not installed, please notify your DBA
Cause: The necessary import views were not installed.
Action: Ask the DBA to install the required views.

EXP-37
EXP-37: Export views not compatible with database version
Cause: The Export utility is at a higher version than the database version.
Action: Use the same version of the Export utility as the database.

See Also:

■ Oracle9i Database Error Messages

■ Restrictions When Using Different Releases and Versions of

Export and Import on page 1-62

■ Using Export Files from a Previous Oracle Release on page 2-70
Export 1-65

Using Different Releases and Versions of Export
1-66 Oracle9i Database Utilities

I

2

Import

This chapter describes how to use the Import utility to read an export file into an

Oracle database. Import only reads files created by the Export utility. For

information on how to export a database, see Chapter 1. To load data from other

operating system files, see the discussion of SQL*Loader in Part II of this manual.

This chapter discusses the following topics:

■ What Is the Import Utility?

■ Before Using Import

■ Importing into Existing Tables

■ Effect of Schema and Database Triggers on Import Operations

■ Invoking Import

■ Import Modes

■ Getting Online Help

■ Import Parameters

■ Example Import Sessions

■ Using the Interactive Method

■ Warning, Error, and Completion Messages

■ Exit Codes for Inspection and Display

■ Error Handling During an Import

■ Table-Level and Partition-Level Import

■ Controlling Index Creation and Maintenance

■ Reducing Database Fragmentation
mport 2-1

What Is the Import Utility?
■ Network Considerations

■ Character Set and Globalization Support Considerations

■ Considerations When Importing Database Objects

■ Materialized Views and Snapshots

■ Transportable Tablespaces

■ Storage Parameters

■ Dropping a Tablespace

■ Reorganizing Tablespaces

■ Importing Statistics

■ Using Export and Import to Partition a Database Migration

■ Using Export Files from a Previous Oracle Release

What Is the Import Utility?
The Import utility reads the object definitions and table data from an Export dump

file. It inserts the data objects into an Oracle database.

Figure 2–1 illustrates the process of importing from an Export dump file.
2-2 Oracle9i Database Utilities

What Is the Import Utility?
Figure 2–1 Importing an Export File

Export dump files can only be read by the Oracle Import utility. The version of the

Import utility cannot be earlier than the version of the Export utility used to create

the dump file.

Import can read export files created by Export release 5.1.22 and higher.

To read load data from ASCII fixed-format or delimited files, use the SQL*Loader

utility.

Table Objects: Order of Import
Table objects are imported as they are read from the export file. The export file

contains objects in the following order:

1. Type definitions

See Also:

■ Chapter 1 for information about the Export utility

■ Part II of this manual for information about the SQL*Loader

utility

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

DatabaseExport file

Index 1

Index 4

Index 5
Import 2-3

Before Using Import
2. Table definitions

3. Table data

4. Table indexes

5. Integrity constraints, views, procedures, and triggers

6. Bitmap, functional, and domain indexes

First, new tables are created. Then, data is imported and indexes are built. Then

triggers are imported, integrity constraints are enabled on the new tables, and any

bitmap, functional, and/or domain indexes are built. This sequence prevents data

from being rejected due to the order in which tables are imported. This sequence

also prevents redundant triggers from firing twice on the same data (once when it is

originally inserted and again during the import).

For example, if the emp table has a referential integrity constraint on the dept table

and the emp table is imported first, all emp rows that reference departments that

have not yet been imported into dept would be rejected if the constraints were

enabled.

When data is imported into existing tables, however, the order of import can still

produce referential integrity failures. In the situation just given, if the emp table

already existed and referential integrity constraints were in force, many rows could

be rejected.

A similar situation occurs when a referential integrity constraint on a table

references itself. For example, if scott ’s manager in the emp table is drake, and

drake ’s row has not yet been loaded, scott ’s row will fail, even though it would

be valid at the end of the import.

Before Using Import
Before you begin using Import, be sure you take care of the following items:

■ Run the catexp.sql or catalog.sql script

■ Verify that you have the required access privileges

Note: For the reasons mentioned previously, it is a good idea to

disable referential constraints when importing into an existing

table. You can then reenable the constraints after the import is

completed.
2-4 Oracle9i Database Utilities

Before Using Import
Additionally, before you begin using Import, you should read the following

sections:

■ Importing into Existing Tables on page 2-8

■ Effect of Schema and Database Triggers on Import Operations on page 2-9

Running catexp.sql or catalog.sql
To use Import, you must run either the script catexp.sql or catalog.sql
(which runs catexp.sql) after the database has been created or migrated to

Oracle9i.

The catexp.sql or catalog.sql script needs to be run only once on a

database. You do not need to run either script again before performing future

import operations. Both scripts perform the following tasks to prepare the database

for Import:

■ Assign all necessary privileges to the IMP_FULL_DATABASE role.

■ Assign IMP_FULL_DATABASE to the DBA role.

■ Create required views of the data dictionary.

Verifying Access Privileges
This section describes the privileges you need to use the Import utility and to

import objects into your own and others’ schemas.

To use Import, you need the privilege CREATE SESSION to log on to the Oracle

database server. This privilege belongs to the CONNECT role established during

database creation.

You can do an import even if you did not create the export file. However, keep in

mind that if the export file was created by a user with EXP_FULL_DATABASE
privilege, then you must have IMP_FULL_DATABASE privilege to import it. Both of

these privileges are typically assigned to DBAs.

Note: The actual names of the script files depend on your

operating system. The script filenames and the method for running

them are described in your Oracle operating system-specific

documentation.
Import 2-5

Before Using Import
Importing Objects into Your Own Schema
Table 2–1 lists the privileges required to import objects into your own schema. All of

these privileges initially belong to the RESOURCE role.

Table 2–1 Privileges Required to Import Objects into Your Own Schema

Object Required Privilege (Privilege Type, If Applicable)

Clusters CREATE CLUSTER (System) and Tablespace Quota, or
UNLIMITED TABLESPACE (System)

Database links CREATE DATABASE LINK (System) and CREATE SESSION
(System) on remote database

Triggers on tables CREATE TRIGGER (System)

Triggers on schemas CREATE ANY TRIGGER (System)

Indexes CREATE INDEX (System) and Tablespace Quota, or
UNLIMITED TABLESPACE (System)

Integrity constraints ALTER TABLE (Object)

Libraries CREATE ANY LIBRARY (System)

Packages CREATE PROCEDURE (System)

Private synonyms CREATE SYNONYM (System)

Sequences CREATE SEQUENCE (System)

Snapshots CREATE SNAPSHOT (System)

Stored functions CREATE PROCEDURE (System)

Stored procedures CREATE PROCEDURE (System)

Table data INSERT TABLE (Object)

Table definitions
(including comments and
audit options)

CREATE TABLE (System) and Tablespace Quota, or
UNLIMITED TABLESPACE (System)

Views CREATE VIEW(System) and SELECT(Object) on the base table,
or SELECT ANY TABLE (System)

Object types CREATE TYPE (System)

Foreign function libraries CREATE LIBRARY (System)

Dimensions CREATE DIMENSION (System)

Operators CREATE OPERATOR (System)

Indextypes CREATE INDEXTYPE (System)
2-6 Oracle9i Database Utilities

Before Using Import
Importing Grants
To import the privileges that a user has granted to others, the user initiating the

import must either own the objects or have object privileges with the WITH GRANT
OPTION. Table 2–2 shows the required conditions for the authorizations to be valid

on the target system.

Importing Objects into Other Schemas
To import objects into another user’s schema, you must have the IMP_FULL_
DATABASE role enabled.

Importing System Objects
To import system objects from a full database export file, the role IMP_FULL_
DATABASEmust be enabled. The parameter FULL specifies that these system objects

are included in the import when the export file is a full export:

■ Profiles

■ Public database links

■ Public synonyms

■ Roles

■ Rollback segment definitions

■ Resource costs

■ Foreign function libraries

■ Context objects

■ System procedural objects

■ System audit options

Table 2–2 Privileges Required to Import Grants

Grant Conditions

Object privileges The object must exist in the user’s schema, or

the user must have the object privileges with the WITH GRANT
OPTIONor,

the user must have the IMP_FULL_DATABASE role enabled.

System privileges User must have the SYSTEM privilege as well as the WITH
ADMIN OPTION.
Import 2-7

Importing into Existing Tables
■ System privileges

■ Tablespace definitions

■ Tablespace quotas

■ User definitions

■ Directory aliases

■ System event triggers

Importing into Existing Tables
This section describes factors to take into account when you import data into

existing tables.

Manually Creating Tables Before Importing Data
When you choose to create tables manually before importing data into them from

an export file, you should use either the same table definition previously used or a

compatible format. For example, although you can increase the width of columns

and change their order, you cannot do the following:

■ Add NOT NULL columns

■ Change the datatype of a column to an incompatible datatype (LONG to
NUMBER, for example)

■ Change the definition of object types used in a table

■ Change DEFAULT column values

Disabling Referential Constraints
In the normal import order, referential constraints are imported only after all tables

are imported. This sequence prevents errors that could occur if a referential

integrity constraint existed for data that has not yet been imported.

Note: When tables are manually created before data is imported,

the CREATE TABLE statement in the export dump file will fail

because the table already exists. To avoid this failure and continue

loading data into the table, set the import parameter IGNORE=y.

Otherwise, no data will be loaded into the table because of the table

creation error.
2-8 Oracle9i Database Utilities

Effect of Schema and Database Triggers on Import Operations
These errors can still occur when data is loaded into existing tables. For example, if

table emp has a referential integrity constraint on the mgr column that verifies that

the manager number exists in emp, a perfectly legitimate employee row might fail

the referential integrity constraint if the manager’s row has not yet been imported.

When such an error occurs, Import generates an error message, bypasses the failed

row, and continues importing other rows in the table. You can disable constraints

manually to avoid this.

Referential constraints between tables can also cause problems. For example, if the

emp table appears before the dept table in the export file, but a referential check

exists from the emp table into the dept table, some of the rows from the emp table

may not be imported due to a referential constraint violation.

To prevent errors like these, you should disable referential integrity constraints

when importing data into existing tables.

Manually Ordering the Import
When the constraints are reenabled after importing, the entire table is checked,

which may take a long time for a large table. If the time required for that check is

too long, it may be beneficial to order the import manually.

To do so, perform several imports from an export file instead of one. First, import

tables that are the targets of referential checks. Then, import the tables that reference

them. This option works if tables do not reference each other in a circular fashion,

and if a table does not reference itself.

Effect of Schema and Database Triggers on Import Operations
Triggers that are defined to trigger on DDL events for a specific schema or on

DDL-related events for the database are system triggers. These triggers can have

detrimental effects on certain Import operations. For example, they can prevent

successful re-creation of database objects, such as tables. This causes errors to be

returned that give no indication that a trigger caused the problem.

Database administrators and anyone creating system triggers should verify that

such triggers do not prevent users from performing database operations for which

they are authorized. To test a system trigger, take the following steps:

1. Define the trigger.

2. Create some database objects.

3. Export the objects in table or user mode.
Import 2-9

Invoking Import
4. Delete the objects.

5. Import the objects.

6. Verify that the objects have been successfully re-created.

Invoking Import
You can invoke Import and specify parameters by using any of the following

methods:

■ Command-line entries

■ Interactive Import prompts

■ Parameter files

Before you use one of these methods to invoke Import, be sure to read the

descriptions of the available parameters. See Import Parameters on page 2-14.

Command-Line Entries
You can specify all valid parameters and their values from the command line using

the following syntax:

imp username/password PARAMETER=value

or

imp username/password PARAMETER=(value1 , value2 ,..., valuen)

The number of parameters cannot exceed the maximum length of a command line

on the system.

Interactive Import Prompts
If you prefer to let Import prompt you for the value of each parameter, you can use

the following syntax to start Import in interactive mode:

Note: A full export does not export triggers owned by schema

SYS. You must manually re-create SYS triggers either before or

after the full import. Oracle Corporation recommends that you

re-create them after the import in case they define actions that

would impede progress of the import.
2-10 Oracle9i Database Utilities

Invoking Import
imp username/password

Import will display each parameter with a request for you to enter a value. This

method exists for backward compatibility and is not recommended because it

provides less functionality than the other methods. See Using the Interactive

Method on page 2-44 for more information.

Parameter Files
You can specify all valid parameters and their values in a parameter file. Storing the

parameters in a file allows them to be easily modified or reused, and is the

recommended method for invoking Import. If you use different parameters for

different databases, you can have multiple parameter files.

Create the parameter file using any flat file text editor. The command-line option

PARFILE=filename tells Import to read the parameters from the specified file

rather than from the command line. For example:

imp PARFILE= filename
imp username/password PARFILE= filename

The first example does not specify the username / password on the command line

to illustrate that you can specify them in the parameter file, although, for security

reasons, this is not recommended.

The syntax for parameter file specifications is one of the following:

PARAMETER=value
PARAMETER=(value)
PARAMETER=(value1 , value2 , ...)

The following example shows a partial parameter file listing:

FULL=y
FILE=dbay
INDEXES=y
CONSISTENT=y

Note: The maximum size of the parameter file may be limited by

the operating system. The name of the parameter file is subject to

the file-naming conventions of the operating system. See your

Oracle operating system-specific documentation for more

information.
Import 2-11

Invoking Import
You can add comments to the parameter file by preceding them with the pound (#)

sign. Import ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters

on the command line. In fact, you can specify the same parameter in both places.

The position of the PARFILE parameter and other parameters on the command line

determines which parameters take precedence. For example, assume the parameter

file params.dat contains the parameter INDEXES=y and Import is invoked with

the following line:

imp username/password PARFILE=params.dat INDEXES=n

In this case, because INDEXES=n occurs after PARFILE=params.dat , INDEXES=n
overrides the value of the INDEXES parameter in the parameter file.

Invoking Import As SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the

same as for generalized users. Therefore, you should not typically need to invoke

Import as SYSDBA, except in the following situations:

■ At the request of Oracle technical support

■ When importing a transportable tablespace set

To invoke Import as SYSDBA, use the following syntax, adding any desired

parameters or parameter filenames:

imp \’ username/password AS SYSDBA\’

Optionally, you could also specify an instance name:

imp \’ username/password@instance AS SYSDBA\’

If either the username or password is omitted, Import will prompt you for it.

This example shows the entire connect string enclosed in quotation marks and

backslashes. This is because the string, AS SYSDBA, contains a blank, a situation

See Also:

■ Import Parameters on page 2-14 for descriptions of the Import

parameters

■ Exporting and Importing with Oracle Net on page 2-54 for

information on how to specify an import from a remote

database
2-12 Oracle9i Database Utilities

Import Modes
for which most operating systems require that the entire connect string be placed in

quotation marks or marked as a literal by some method. Some operating systems

also require that quotation marks on the command line be preceded by an escape

character. In this example, backslashes are used as the escape character. If the

backslashes were not present, the command-line parser that Export uses would not

understand the quotation marks and would remove them before calling Export.

See your Oracle operating system-specific documentation for more information

about special and reserved characters on your system.

If you prefer to use the Import interactive mode, see Using the Interactive Method

on page 2-44.

Import Modes
The Import utility provides four modes of import.

■ Full—Only users with the IMP_FULL_DATABASE role can import in this mode,

which imports a full database export dump file. Use the FULL parameter to

specify this mode.

■ Tablespace—allows a privileged user to move a set of tablespaces from one

Oracle database to another. Use the TRANSPORT_TABLESPACE parameter to

specify this mode.

■ User (Owner)—allows you to import all objects that belong to you (such as

tables, grants, indexes, and procedures). A privileged user importing in user

mode can import all objects in the schemas of a specified set of users. Use the

FROMUSER parameter to specify this mode.

■ Table—allows you to import specific tables and partitions. A privileged user

can qualify the tables by specifying the schema that contains them. Use the

TABLES parameter to specify this mode.

Caution: When you use table mode to import tables that have

columns of type ANYDATA, you may receive the following error:

ORA-22370: Incorrect usage of method. Nonexistent type.

This indicates that the ANYDATA column depends on other types

that are not present in the database. You must manually create

dependent types in the target database before you use table mode

to import tables that use the ANYDATA type.
Import 2-13

Getting Online Help
All users can import in table mode and user mode. Users with the

IMP_FULL_DATABASE role (privileged users) can import in all modes.

A user with the IMP_FULL_DATABASE role must specify one of these modes.

Otherwise, an error results. If a user without the IMP_FULL_DATABASE role fails to

specify one of these modes, a user-level import is performed.

The objects that are imported depend on the Import mode you choose and the

mode that was used during the export.

Getting Online Help
Import provides online help. Enter imp HELP=y on the command line to invoke it.

Import Parameters
The following diagrams show the syntax for the parameters that you can specify in

the parameter file or on the command line. Following the diagrams are descriptions

of each parameter.

Import_start

See Also:

■ Import Parameters on page 2-14 for information on the syntax

for each of these parameters

■ Table 1–1 on page 1-9 for a list of the objects that are exported

in the various Export modes

imp

HELP = Y

username / password
@ connect_string AS SYSDBA

ImpModes ImpOpts
2-14 Oracle9i Database Utilities

Import Parameters
ImpModes

ImpUserOpts

ImpTableOpts

ImpTTSOpts

ImpTTSFiles

FULL = Y

FROMUSER = ImpUserOpts TOUSER = ImpUserOpts
TABLES = ImpTableOpts

TABLES = ImpTableOpts

TRANSPORT_TABLESPACE =
Y

N
ImpTTSOpts ImpTTSFiles

(username

,

)

(tablename

:
partition

subpartition

,

)

TABLESPACES = (tablespacename

,

) TTS_OWNERS = (schemaname

,

)

DATAFILES = (filename

,

)

Import 2-15

Import Parameters
ImpOpts

ImpFileOpts

ROWS =
Y

N

COMMIT =
Y

N

FEEDBACK = integer

BUFFER = integer

IGNORE =
Y

N

DESTROY =
Y

N

INDEXES =
Y

N

CONSTRAINTS =
Y

N

SKIP_UNUSABLE_INDEXES =
Y

N

STREAMS_CONFIGURATION =
Y

N

STREAMS_INSTANTIATION =
Y

N

,

2-16 Oracle9i Database Utilities

Import Parameters
ImpOpts_continued

GRANTS =
Y

N

STATISTICS =

always

safe

recalculate

none

TOID_NOVALIDATE = (
schemaname .

typename

,

)

SHOW =
Y

N

RESUMABLE =
Y

N

RESUMABLE_NAME = resumable_string

RESUMABLE_TIMEOUT = integer

COMPILE =
Y

N

,

Import 2-17

Import Parameters
ImpFileOpts

The following sections describe parameter functionality and default values.

BUFFER
Default: operating system-dependent

The integer specified for BUFFER is the size, in bytes, of the buffer through which

data rows are transferred.

BUFFER determines the number of rows in the array inserted by Import. The

following formula gives an approximation of the buffer size that inserts a given

array of rows:

buffer_size = rows_in_array * maximum_row_size

For tables containing LONG, LOB, BFILE, REF, ROWID, UROWID, or DATE
columns, rows are inserted individually. The size of the buffer must be large enough

to contain the entire row, except for LOB and LONG columns. If the buffer cannot

hold the longest row in a table, Import attempts to allocate a larger buffer.

CHARSET
This parameter applies to Oracle version 5 and 6 export files only. Use of this

parameter is not recommended. It is provided only for compatibility with previous

Note: See your Oracle operating system-specific documentation

to determine the default value for this parameter.

PARFILE = filename

FILE = filename

FILESIZE = number_of_bytes

VOLSIZE = number_of_bytes

LOG = filename

RECORDLENGTH = integer

INDEXFILE = filename
2-18 Oracle9i Database Utilities

Import Parameters
versions. Eventually, it will no longer be supported. See The CHARSET Parameter

on page 2-73 if you still need to use this parameter.

COMMIT
Default: n

Specifies whether Import should commit after each array insert. By default, Import

commits only after loading each table, and Import performs a rollback when an

error occurs, before continuing with the next object.

If a table has nested table columns or attributes, the contents of the nested tables are

imported as separate tables. Therefore, the contents of the nested tables are always

committed in a transaction distinct from the transaction used to commit the outer

table.

If COMMIT=n and a table is partitioned, each partition and subpartition in the

Export file is imported in a separate transaction.

Specifying COMMIT=y prevents rollback segments from growing inordinately large

and improves the performance of large imports. Specifying COMMIT=y is advisable

if the table has a uniqueness constraint. If the import is restarted, any rows that

have already been imported are rejected with a recoverable error.

If a table does not have a uniqueness constraint, Import could produce duplicate

rows when you reimport the data.

For tables containing LONG, LOB, BFILE, REF, ROWID, UROWID, or DATE
columns, array inserts are not done. If COMMIT=y, Import commits these tables after

each row.

COMPILE
Default: y

Specifies whether or not Import should compile packages, procedures, and

functions as they are created.

If COMPILE=n, these units are compiled on their first use. For example, packages

that are used to build domain indexes are compiled when the domain indexes are

created.

See Also: Importing Stored Procedures, Functions, and Packages

on page 2-60
Import 2-19

Import Parameters
CONSTRAINTS
Default: y

Specifies whether or not table constraints are to be imported. The default is to

import constraints. If you do not want constraints to be imported, you must set the

parameter value to n.

Note that primary key constraints for index-organized tables (IOTs) and object

tables are always imported.

DATAFILES
Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the

datafiles to be transported into the database.

DESTROY
Default: n

Specifies whether or not the existing datafiles making up the database should be

reused. That is, specifying DESTROY=y causes Import to include the REUSE option

in the datafile clause of the CREATE TABLESPACE statement, which causes Import

to reuse the original database’s datafiles after deleting their contents.

Note that the export file contains the datafile names used in each tablespace. If you

specify DESTROY=y and attempt to create a second database on the same system

(for testing or other purposes), the Import utility will overwrite the first database’s

datafiles when it creates the tablespace. In this situation you should use the default,

DESTROY=n, so that an error occurs if the datafiles already exist when the

tablespace is created. Also, when you need to import into the original database, you

will need to specify IGNORE=y to add to the existing datafiles without replacing

them.

FEEDBACK
Default: 0 (zero)

See Also: TRANSPORT_TABLESPACE on page 2-33

Caution: If datafiles are stored on a raw device, DESTROY=ndoes
not prevent files from being overwritten.
2-20 Oracle9i Database Utilities

Import Parameters
Specifies that Import should display a progress meter in the form of a period for n
number of rows imported. For example, if you specify FEEDBACK=10, Import

displays a period each time 10 rows have been imported. The FEEDBACK value

applies to all tables being imported; it cannot be set on a per-table basis.

FILE
Default: expdat .dmp

Specifies the names of the export files to import. The default extension is .dmp.

Because Export supports multiple export files (see the following description of the

FILESIZE parameter), you may need to specify multiple filenames to be imported.

For example:

imp scott/tiger IGNORE=y FILE = dat1.dmp, dat2.dmp, dat3.dmp FILESIZE=2048

You need not be the user who exported the export files; however, you must have

read access to the files. If you were not the exporter of the export files, you must

also have the IMP_FULL_DATABASE role granted to you.

FILESIZE
Default: operating-system dependent

Export supports writing to multiple export files, and Import can read from multiple

export files. If, on export, you specify a value (byte limit) for the Export FILESIZE
parameter, Export will write only the number of bytes you specify to each dump

file. On import, you must use the Import parameter FILESIZE to tell Import the

maximum dump file size you specified on export.

The FILESIZE value can be specified as a number followed by KB (number of

kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048.
Similarly, MB specifies megabytes (1024 * 1024) and GB specifies gigabytes

(1024**3). B remains the shorthand for bytes; the number is not multiplied to obtain

the final file size (FILESIZE=2048B is the same as FILESIZE=2048).

For information on the maximum size of dump files, see FILESIZE on page 1-21.

Note: The maximum value that can be stored in a file is operating

system-dependent. You should verify this maximum value in your

Oracle operating system-specific documentation before specifying

FILESIZE.
Import 2-21

Import Parameters
FROMUSER
Default: none

A comma-separated list of schemas to import. This parameter is relevant only to

users with the IMP_FULL_DATABASE role. The parameter enables you to import a

subset of schemas from an export file containing multiple schemas (for example, a

full export dump file or a multischema, user-mode export dump file).

Schema names that appear inside functional indexes, functions, procedures,

triggers, type bodies, views, and so on, are not affected by FROMUSER or TOUSER
processing. Only the name of the object is affected. After the import has completed,

items in any TOUSER schema should be manually checked for references to old

(FROMUSER) schemas, and corrected if necessary.

You will typically use FROMUSER in conjunction with the Import parameter

TOUSER, which you use to specify a list of usernames whose schemas will be targets

for import (see TOUSER on page 2-32). However, if you omit specifying TOUSER,
Import will:

■ Import objects into the FROMUSER schema if the export file is a full dump or a

multischema, user-mode export dump file

■ Create objects in the importer’s schema (regardless of the presence of or

absence of the FROMUSER schema on import) if the export file is a

single-schema, user-mode export dump file created by an unprivileged user

FULL
Default: n

Specifies whether to import the entire export file.

GRANTS
Default: y

Specifies whether to import object grants.

Note: Specifying FROMUSER=SYSTEM causes only schema objects

belonging to user SYSTEM to be imported; it does not cause system

objects to be imported.
2-22 Oracle9i Database Utilities

Import Parameters
By default, the Import utility imports any object grants that were exported. If the

export was a user-mode Export, the export file contains only first-level object grants

(those granted by the owner).

If the export was a full database mode Export, the export file contains all object

grants, including lower-level grants (those granted by users given a privilege with

the WITH GRANT OPTION). If you specify GRANTS=n, the Import utility does not

import object grants. (Note that system grants are imported even if GRANTS=n.)

HELP
Default: none

Displays a description of the Import parameters. Enter imp HELP=y on the

command line to invoke it.

IGNORE
Default: n

Specifies how object creation errors should be handled. If you accept the default,

IGNORE=n, Import logs or displays object creation errors before continuing.

If you specify IGNORE=y, Import overlooks object creation errors when it attempts

to create database objects, and continues without reporting the errors.

Note that only object creation errors are ignored; other errors, such as operating

system, database, and SQL errors, are not ignored and may cause processing to stop.

In situations where multiple refreshes from a single export file are done with

IGNORE=y, certain objects can be created multiple times (although they will have

unique system-defined names). You can prevent this for certain objects (for

example, constraints) by doing an import with CONSTRAINTS=n. If you do a full

import with the CONSTRAINTS=n, no constraints for any tables are imported.

If a table already exists and IGNORE=y, then rows are imported into existing tables

without any errors or messages being given. You might want to import data into

tables that already exist in order to use new storage parameters or because you have

already created the table in a cluster.

Note: Export does not export grants on data dictionary views for

security reasons that affect Import. If such grants were exported,

access privileges would be changed and the importer would not be

aware of this.
Import 2-23

Import Parameters
If a table already exists and IGNORE=n, then errors are reported and the table is

skipped with no rows inserted. Also, objects dependent on tables, such as indexes,

grants, and constraints, will not be created.

INDEXES
Default: y

Specifies whether or not to import indexes. System-generated indexes such as LOB

indexes, OID indexes, or unique constraint indexes are re-created by Import

regardless of the setting of this parameter.

You can postpone all user-generated index creation until after Import completes, by

specifying INDEXES=n.

If indexes for the target table already exist at the time of the import, Import

performs index maintenance when data is inserted into the table.

INDEXFILE
Default: none

Specifies a file to receive index-creation statements.

When this parameter is specified, index-creation statements for the requested mode

are extracted and written to the specified file, rather than used to create indexes in

the database. No database objects are imported.

If the Import parameter CONSTRAINTS is set to y, Import also writes table

constraints to the index file.

The file can then be edited (for example, to change storage parameters) and used as

a SQL script to create the indexes.

To make it easier to identify the indexes defined in the file, the export file’s CREATE
TABLE statements and CREATE CLUSTER statements are included as comments.

Perform the following steps to use this feature:

1. Import using the INDEXFILE parameter to create a file of index-creation

statements.

2. Edit the file, making certain to add a valid password to the connect strings.

Caution: When you import into existing tables, if no column in

the table is uniquely indexed, rows could be duplicated.
2-24 Oracle9i Database Utilities

Import Parameters
3. Rerun Import, specifying INDEXES=n.

(This step imports the database objects while preventing Import from using the

index definitions stored in the export file.)

4. Execute the file of index-creation statements as a SQL script to create the index.

The INDEXFILE parameter can be used only with the FULL=y, FROMUSER,
TOUSER, or TABLES parameters.

LOG
Default: none

Specifies a file to receive informational and error messages. If you specify a log file,

the Import utility writes all information to the log in addition to the terminal

display.

PARFILE
Default: none

Specifies a filename for a file that contains a list of Import parameters. For more

information on using a parameter file, see Invoking Import on page 2-10.

RECORDLENGTH
Default: operating system dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTH parameter is

necessary when you must transfer the export file to another operating system that

uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent value for

BUFSIZ. For more information about the BUFSIZ default value, see your Oracle

operating system-specific documentation.

You can set RECORDLENGTH to any value equal to or greater than your system’s

BUFSIZ. (The highest value is 64 KB.) Changing the RECORDLENGTH parameter

affects only the size of data that accumulates before writing to the database. It does

not affect the operating system file block size.

You can also use this parameter to specify the size of the Import I/O buffer.
Import 2-25

Import Parameters
RESUMABLE
Default: n

The RESUMABLE parameter is used to enable and disable resumable space

allocation. Because this parameter is disabled by default, you must set

RESUMABLE=y in order to use its associated parameters, RESUMABLE_NAME and

RESUMABLE_TIMEOUT.

RESUMABLE_NAME
Default: ’User USERNAME (USERID), Session SESSIONID, Instance
INSTANCEID’

The value for this parameter identifies the statement that is resumable. This value is

a user-defined text string that is inserted in either the USER_RESUMABLE or DBA_
RESUMABLE view to help you identify a specific resumable statement that has been

suspended.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable

resumable space allocation.

RESUMABLE_TIMEOUT
Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be

fixed. If the error is not fixed within the timeout period, execution of the statement

is aborted.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable

resumable space allocation.

Note: See your Oracle operating system-specific documentation to

determine the proper value or to create a file with a different record

size.

See Also:

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide for more information

about resumable space allocation
2-26 Oracle9i Database Utilities

Import Parameters
ROWS
Default: y

Specifies whether or not to import the rows of table data.

SHOW
Default: n

When SHOW=y, the contents of the export file are listed to the display and not

imported. The SQL statements contained in the export are displayed in the order in

which Import will execute them.

The SHOW parameter can be used only with the FULL=y, FROMUSER, TOUSER, or

TABLES parameter.

SKIP_UNUSABLE_INDEXES
Default: n

Specifies whether or not Import skips building indexes that were set to the Index

Unusable state (by either system or user). Other indexes (not previously set Index

Unusable) continue to be updated as rows are inserted.

This parameter allows you to postpone index maintenance on selected index

partitions until after row data has been inserted. You then have the responsibility to

rebuild the affected index partitions after the Import.

You can use the INDEXFILE parameter in conjunction with INDEXES=n to provide

the SQL scripts for re-creating the index. Without this parameter, row insertions that

attempt to update unusable indexes will fail.

STATISTICS
Default: ALWAYS

Note: Indexes that are unique and marked Unusable are not

allowed to skip index maintenance. Therefore, the SKIP_
UNUSABLE_INDEXES parameter has no effect on unique indexes.

See Also: The ALTER SESSION statement in the Oracle9i SQL
Reference
Import 2-27

Import Parameters
Specifies what is done with the database optimizer statistics at import time.

The options are:

■ ALWAYS

Always import database optimizer statistics regardless of whether or not they

are questionable.

■ NONE

Do not import or recalculate the database optimizer statistics.

■ SAFE

Import database optimizer statistics only if they are not questionable. If they are

questionable, recalculate the optimizer statistics.

■ RECALCULATE

Do not import the database optimizer statistics. Instead, recalculate them on

import.

STREAMS_CONFIGURATION
Default: y

Specifies whether or not to import any general streams metadata that may be

present in the export dump file.

STREAMS_INSTANTIATION
Default: n

Specifies whether or not to import streams instantiation metadata that may be

present in the export dump file. Specify y if the import is part of an instantiation in

a Streams environment.

See Also:

■ Oracle9i Database Concepts for more information about the

optimizer and the statistics it uses

■ STATISTICS on page 1-27

■ Importing Statistics on page 2-68

See Also: Oracle9i Streams
2-28 Oracle9i Database Utilities

Import Parameters
TABLES
Default: none

Specifies that the Import is a table-mode import and lists the table names and

partition and subpartition names to import. Table-mode import lets you import

entire partitioned or nonpartitioned tables. The TABLES parameter restricts the

import to the specified tables and their associated objects, as listed in Table 1–1 on

page 1-9. You can specify the following values for the TABLES parameter:

■ tablename specifies the name of the table or tables to be imported. If a table in

the list is partitioned and you do not specify a partition name, all its partitions

and subpartitions are imported. To import all the exported tables, specify an

asterisk (*) as the only table name parameter.

tablename can contain any number of ’%’ pattern matching characters, which

can each match zero or more characters in the table names in the export file. All

the tables whose names match all the specified patterns of a specific table name

in the list are selected for import. A table name in the list that consists of all

pattern matching characters and no partition name results in all exported tables

being imported.

■ partition_name and subpartition_name let you restrict the import to one

or more specified partitions or subpartitions within a partitioned table.

The syntax you use to specify the preceding is in the form:

tablename:partition_name

tablename:subpartition_name

If you use tablename :partition_name , the specified table must be partitioned,

and partition_name must be the name of one of its partitions or subpartitions. If

the specified table is not partitioned, the partition_name is ignored and the

entire table is imported.

The number of tables that can be specified at the same time is dependent on

command-line limits.

As the export file is processed, each table name in the export file is compared

against each table name in the list, in the order in which the table names were

specified in the parameter. To avoid ambiguity and excessive processing time,

See Also: Oracle9i Streams
Import 2-29

Import Parameters
specific table names should appear at the beginning of the list, and more general

table names (those with patterns) should appear at the end of the list.

Although you can qualify table names with schema names (as in scott .emp) when

exporting, you cannot do so when importing. In the following example, the TABLES
parameter is specified incorrectly:

imp SYSTEM/ password TABLES=(jones.accts, scott.emp, scott.dept)

The valid specification to import these tables is as follows:

imp SYSTEM/ password FROMUSER=jones TABLES=(accts)
imp SYSTEM/ password FROMUSER=scott TABLES=(emp,dept)

For a more detailed example, see Example Import of Using Pattern Matching to

Import Various Tables on page 2-43.

Table Name Restrictions
The following restrictions apply to table names:

■ By default, table names in a database are stored as uppercase. If you have a

table name in mixed-case or lowercase, and you want to preserve

case-sensitivity for the table name, you must enclose the name in quotation

marks. The name must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be

preceded by an escape character. The following are examples of how

case-sensitivity can be preserved in the different Import modes.

– In command-line mode:

tables=’\"Emp\"’

– In interactive mode:

Table(T) to be exported: "Exp"

Note: Some operating systems, such as UNIX, require that you

use escape characters before special characters, such as a

parenthesis, so that the character is not treated as a special

character. On UNIX, use a backslash (\) as the escape character, as

shown in the following example:

TABLES=\(emp,dept\)
2-30 Oracle9i Database Utilities

Import Parameters
– In parameter file mode:

tables=’"Emp"’

■ Table names specified on the command line cannot include a pound (#) sign,

unless the table name is enclosed in quotation marks. Similarly, in the

parameter file, if a table name includes a pound (#) sign, the Import utility

interprets the rest of the line as a comment, unless the table name is enclosed in

quotation marks.

For example, if the parameter file contains the following line, Import interprets

everything on the line after emp# as a comment and does not import the tables

dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Import utility exports all three tables

because emp# is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

TABLESPACES
Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to provide a

list of tablespaces to be transported into the database.

See TRANSPORT_TABLESPACE on page 2-33 for more information.

TOID_NOVALIDATE
Default: none

Note: Some operating systems require single quotation marks

rather than double quotation marks, or the reverse; see your Oracle

operating system-specific documentation. Different operating

systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a

dollar sign ($) or pound sign (#) (or certain other special

characters). You must use escape characters to get such characters

in the name past the shell and into Import.
Import 2-31

Import Parameters
When you import a table that references a type, but a type of that name already

exists in the database, Import attempts to verify that the preexisting type is, in fact,

the type used by the table (rather than a different type that just happens to have the

same name).

To do this, Import compares the type's unique identifier (TOID) with the identifier

stored in the export file. Import will not import the table rows if the TOIDs do not

match.

In some situations, you may not want this validation to occur on specified types (for

example, if the types were created by a cartridge installation). You can use the

TOID_NOVALIDATE parameter to specify types to exclude from TOID comparison.

The syntax is as follows:

TOID_NOVALIDATE=([schemaname.]typename [, ...])

For example:

imp scott/tiger TABLE=foo TOID_NOVALIDATE=bar
imp scott/tiger TABLE=foo TOID_NOVALIDATE=(fred.type0,sally.type2,type3)

If you do not specify a schema name for the type, it defaults to the schema of the

importing user. For example, in the first preceding example, the type bar defaults

to scott.bar.

The output of a typical import with excluded types would contain entries similar to

the following:

[...]
. importing IMP3's objects into IMP3
. . skipping TOID validation on type IMP2.TOIDTYP0
. . importing table "TOIDTAB3"
[...]

TOUSER
Default: none

Caution: When you inhibit validation of the type identifier, it is

your responsibility to ensure that the attribute list of the imported

type matches the attribute list of the existing type. If these attribute

lists do not match, results are unpredictable.
2-32 Oracle9i Database Utilities

Import Parameters
Specifies a list of usernames whose schemas will be targets for Import. The

IMP_FULL_DATABASE role is required to use this parameter. To import to a

different schema than the one that originally contained the object, specify TOUSER.
For example:

imp SYSTEM/ password FROMUSER=scott TOUSER=joe TABLES=emp

If multiple schemas are specified, the schema names are paired. The following

example imports scott’ s objects into joe ’s schema, and fred ’s objects into ted’ s

schema:

imp SYSTEM/ password FROMUSER=scott,fred TOUSER=joe,ted

If the FROMUSER list is longer than the TOUSER list, the remaining schemas will be

imported into either the FROMUSERschema, or into the importer’s schema, based on

normal defaulting rules. You can use the following syntax to ensure that any extra

objects go into the TOUSER schema:

imp SYSTEM/ password FROMUSER=scott,adams TOUSER=ted,ted

Note that user ted is listed twice.

TRANSPORT_TABLESPACE
Default: n

When specified as y, instructs Import to import transportable tablespace metadata

from an export file.

TTS_OWNERS
Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the

users who own the data in the transportable tablespace set.

See TRANSPORT_TABLESPACE on page 2-33.

USERID (username/password)
Default: none

See Also: FROMUSER on page 2-22 for information about

restrictions when using FROMUSER and TOUSER
Import 2-33

Example Import Sessions
Specifies the username / password (and optional connect string) of the user

performing the import.

USERID can also be:

username/password AS SYSDBA

or

username/password @instance

or

username/password @instance AS SYSDBA

If you connect as user SYS, you must also specify AS SYSDBA in the connect

string. Your operating system may require you to treat AS SYSDBA as a special

string, in which case the entire string would be enclosed in quotation marks. See

Invoking Import As SYSDBA on page 2-12 for more information.

VOLSIZE
Specifies the maximum number of bytes in an export file on each volume of tape.

The VOLSIZE parameter has a maximum value equal to the maximum value that

can be stored in 64 bits. See your Oracle operating system-specific documentation

for more information.

The VOLSIZE value can be specified as number followed by KB (number of

kilobytes). For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly,

MB specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). The

shorthand for bytes remains B; the number is not multiplied to get the final file size

(VOLSIZE=2048B is the same as VOLSIZE=2048).

Example Import Sessions
This section gives some examples of import sessions that show you how to use the

parameter file and command-line methods. The examples illustrate the following

scenarios:

See Also:

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide

■ The user’s guide for your Oracle Net protocol for information

about specifying the @connect_string for Oracle Net
2-34 Oracle9i Database Utilities

Example Import Sessions
■ Example Import of Selected Tables for a Specific User

■ Example Import of Tables Exported by Another User

■ Example Import of Tables from One User to Another

■ Example Import Session Using Partition-Level Import

■ Example Import of Using Pattern Matching to Import Various Tables

Example Import of Selected Tables for a Specific User
In this example, using a full database export file, an administrator imports the dept
and emp tables into the scott schema.

Parameter File Method
> imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=dba.dmp
SHOW=n
IGNORE=n
GRANTS=y
FROMUSER=scott
TABLES=(dept,emp)

Command-Line Method
> imp SYSTEM/ password FILE=dba.dmp FROMUSER=scott TABLES=(dept,emp)

Import Messages
Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:20:51 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00 via conventional path
import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT’s objects into SCOTT
. . importing table "DEPT" 4 rows imported
Import 2-35

Example Import Sessions
. . importing table "EMP" 14 rows imported
Import terminated successfully without warnings.

Example Import of Tables Exported by Another User
This example illustrates importing the unit and manager tables from a file

exported by blake into the scott schema.

Parameter File Method
> imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=blake.dmp
SHOW=n
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=blake
TOUSER=scott
TABLES=(unit,manager)

Command-Line Method
> imp SYSTEM/ password FROMUSER=blake TOUSER=scott FILE=blake.dmp -
TABLES=(unit,manager)

Import Messages
Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:21:40 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00 via conventional path

Warning: the objects were exported by BLAKE, not by you

import done in WE8DEC character set and AL16UTF16 NCHAR character set
. . importing table "UNIT" 4 rows imported
. . importing table "MANAGER" 4 rows imported
2-36 Oracle9i Database Utilities

Example Import Sessions
Import terminated successfully without warnings.

Example Import of Tables from One User to Another
In this example, a DBA imports all tables belonging to scott into user blake’ s

account.

Parameter File Method
 > imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=scott.dmp
FROMUSER=scott
TOUSER=blake
TABLES=(*)

Command-Line Method
> imp SYSTEM/ password FILE=scott.dmp FROMUSER=scott TOUSER=blake TABLES=(*)

Import Messages
Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:21:44 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00 via conventional path

Warning: the objects were exported by SCOTT, not by you

import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT’s objects into BLAKE
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported
. . importing table "EMP" 14 rows imported
. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.
Import 2-37

Example Import Sessions
Example Import Session Using Partition-Level Import
This section describes an import of a table with multiple partitions, a table with

partitions and subpartitions, and repartitioning a table on different columns.

Example 1: A Partition-Level Import
In this example, emp is a partitioned table with three partitions: p1, p2, and p3.

A table-level export file was created using the following command:

> exp scott/tiger TABLES=emp FILE=exmpexp.dat ROWS=y

Import Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:22:55 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition P1 7 rows exported
. . exporting partition P2 12 rows exported
. . exporting partition P3 3 rows exported
Export terminated successfully without warnings.

In a partition-level import you can specify the specific partitions of an exported

table that you want to import. In this example, these are p1 and p3 of table emp:

> imp scott/tiger TABLES=(emp:p1,emp:p3) FILE=exmpexp.dat ROWS=y

Import Messages
Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:22:57 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
2-38 Oracle9i Database Utilities

Example Import Sessions
Export file created by EXPORT:V09.02.00 via conventional path
import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT’s objects into SCOTT
. . importing partition "EMP":"P1" 7 rows imported
. . importing partition "EMP":"P3" 3 rows imported
Import terminated successfully without warnings.

Example 2: A Partition-Level Import of a Composite Partitioned Table
This example demonstrates that the partitions and subpartitions of a composite

partitioned table are imported. emp is a partitioned table with two composite

partitions: p1 and p2. P1 has three subpartitions: p1_sp1, p1_sp2, and p1_
sp3. P2 has two subpartitions: p2_sp1 and p2_sp2.

A table-level export file was created using the following command:

> exp scott/tiger TABLES=emp FILE=exmpexp.dat ROWS=y

Import Messages
Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:23:06 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting composite partition P1
. . exporting subpartition P1_SP1 2 rows exported
. . exporting subpartition P1_SP2 10 rows exported
. . exporting subpartition P1_SP3 7 rows exported
. . exporting composite partition P2
. . exporting subpartition P2_SP1 4 rows exported
. . exporting subpartition P2_SP2 2 rows exported
Export terminated successfully without warnings.

The following import command results in the importing of subpartition p1_sp2
and p1_sp3 of composite partition p1 in table emp and all subpartitions of

composite partition p2 in table emp.
Import 2-39

Example Import Sessions
> imp scott/tiger TABLES=(emp:p1_sp2,emp:p1_sp3,emp:p2) FILE=exmpexp.dat ROWS=y

Import Messages
Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:23:07 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00 via conventional path
import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT’s objects into SCOTT
. . importing subpartition "EMP":"P1_SP2" 10 rows imported
. . importing subpartition "EMP":"P1_SP3" 7 rows imported
. . importing subpartition "EMP":"P2_SP1" 4 rows imported
. . importing subpartition "EMP":"P2_SP2" 2 rows imported
Import terminated successfully without warnings.

Example 3: Repartitioning a Table on a Different Column
This example assumes the emptable has two partitions based on the empno column.

This example repartitions the emp table on the deptno column.

Perform the following steps to repartition a table on a different column:

1. Export the table to save the data.

2. Drop the table from the database.

3. Create the table again with the new partitions.

4. Import the table data.

The following example illustrates these steps.

> exp scott/tiger table=emp file=empexp.dat

Export: Release 9.2.0.1.0 - Production on Wed Feb 27 17:22:19 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
2-40 Oracle9i Database Utilities

Example Import Sessions
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8DEC character set and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition EMP_LOW 4 rows exported
. . exporting partition EMP_HIGH 10 rows exported
Export terminated successfully without warnings.

SQL> connect scott/tiger
Connected.
SQL> drop table emp cascade constraints;
Statement processed.
SQL> create table emp
 2> (
 3> empno number(4) not null,
 4> ename varchar2(10),
 5> job varchar2(9),
 6> mgr number(4),
 7> hiredate date,
 8> sal number(7,2),
 9> comm number(7,2),
 10> deptno number(2)
 11>)
 12> partition by range (deptno)
 13> (
 14> partition dept_low values less than (15)
 15> tablespace tbs_1,
 16> partition dept_mid values less than (25)
 17> tablespace tbs_2,
 18> partition dept_high values less than (35)
 19> tablespace tbs_3
 20>);
Statement processed.
SQL> exit

> imp scott/tiger tables=emp file=empexp.dat ignore=y

Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:22:25 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
Import 2-41

Example Import Sessions
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00 via conventional path
import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT’s objects into SCOTT
. . importing partition "EMP":"EMP_LOW" 4 rows imported
. . importing partition "EMP":"EMP_HIGH" 10 rows imported
Import terminated successfully without warnings.

The following SELECT statements show that the data is partitioned on the deptno
column:

SQL> connect scott/tiger
Connected.
SQL> select empno, deptno from emp partition (dept_low);
EMPNO DEPTNO
---------- ----------
 7782 10
 7839 10
 7934 10
3 rows selected.
SQL> select empno, deptno from emp partition (dept_mid);
EMPNO DEPTNO
---------- ----------
 7369 20
 7566 20
 7788 20
 7876 20
 7902 20
5 rows selected.
SQL> select empno, deptno from emp partition (dept_high);
EMPNO DEPTNO
---------- ----------
 7499 30
 7521 30
 7654 30
 7698 30
 7844 30
 7900 30
6 rows selected.
SQL> exit;
2-42 Oracle9i Database Utilities

Example Import Sessions
Example Import of Using Pattern Matching to Import Various Tables
In this example, pattern matching is used to import various tables for user scott .

Parameter File Method
imp SYSTEM/ password PARFILE=params.dat

The params .dat file contains the following information:

FILE=scott.dmp
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=scott
TABLES=(%d%,b%s)

Command-Line Method
imp SYSTEM/ password FROMUSER=scott FILE=scott.dmp TABLES=(%d%,b%s)

Import Messages
Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:22:25 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00 via conventional path

import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses JA16SJIS character set (possible charset conversion)
. importing SCOTT’s objects into SCOTT
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported
. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.
Import 2-43

Using the Interactive Method
Using the Interactive Method
Starting Import from the command line with no parameters initiates the interactive

method. The interactive method does not provide prompts for all Import

functionality. The interactive method is provided only for backward compatibility.

If you do not specify a username /password combination on the command line,

the Import utility prompts you for this information.

When you invoke Import interactively, the response given by Import depends on

what you enter at the command line. Table 2–3 shows the possibilities.

In Import interactive mode, you are not prompted to specify whether you want to

connect as SYSDBA or @instance . You must specify AS SYSDBA and/or

@instance with the username.

Additionally, if you omit the password and allow Import to prompt you for it, you

cannot specify the @instance string as well. You can specify @instance only

with username .

Before you invoke Import using AS SYSDBA, be sure to read Invoking Import As

SYSDBA on page 2-12 for information about correct command-line syntax.

After Import is invoked, it displays the following prompts. You may not see all

prompts in a given Import session because some prompts depend on your

Table 2–3 Invoking Import Using the Interactive Method

You enter... Import’s Response

imp
username / password @instance
as sysdba

Starts an Import session

imp
username /password @instance

Starts an Import session

imp username /password as
sysdba

Starts an Import session

imp username /password Starts an Import session

imp username @instance as
sysdba

Prompts for password

imp username @instance Prompts for password

imp username Prompts for password

imp username as sysdba Prompts for password
2-44 Oracle9i Database Utilities

Warning, Error, and Completion Messages
responses to other prompts. Some prompts show a default answer. If the default is

acceptable, press Enter.

Import: Release 9.2.0.1.0 - Production on Wed Feb 27 17:22:37 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

Import file: expdat.dmp >
Enter insert buffer size (minimum is 8192) 30720>
Export file created by EXPORT:V09.02.00 via conventional path

Warning: the objects were exported by BLAKE, not by you

import done in WE8DEC character set and AL16UTF16 NCHAR character set
List contents of import file only (yes/no): no >
Ignore create error due to object existence (yes/no): no >
Import grants (yes/no): yes >
Import table data (yes/no): yes >
Import entire export file (yes/no): no > y
. importing BLAKE’s objects into SYSTEM
. . importing table "DEPT" 4 rows imported
. . importing table "MANAGER" 3 rows imported
Import terminated successfully without warnings.

If you specify No at the Import entire export file(yes/no): prompt,

Import prompts you for a schema name and the table names you want to import for

that schema, as follows:

Enter table(T) or partition(T:P) names. Null list means all tables for user

Entering a null table list causes all tables in the schema to be imported. You can

specify only one schema at a time when you use the interactive method.

Warning, Error, and Completion Messages
This section describes the different types of messages issued by Import and how to

save them in a log file.
Import 2-45

Warning, Error, and Completion Messages
Log File
You can capture all Import messages in a log file, either by using the LOG parameter

or, for those systems that permit it, by redirecting Import’s output to a file. The

Import utility writes a log of detailed information about successful loads and any

errors that may occur.

Warning Messages
Import does not terminate after recoverable errors. For example, if an error occurs

while importing a table, Import displays (or logs) an error message, skips to the

next table, and continues processing. These recoverable errors are known as

warnings.

Import also issues a warning whenever it encounters an invalid object.

For example, if a nonexistent table is specified as part of a table-mode import, the

Import utility imports all other tables. Then it issues a warning and terminates

successfully.

Nonrecoverable Error Messages
Some errors are nonrecoverable and terminate the Import session. These errors

typically occur because of an internal problem or because a resource, such as

memory, is not available or has been exhausted.

Completion Messages
When an import completes without errors, Import displays the following message:

Import terminated successfully without warnings

If one or more recoverable errors occurs but Import is able to continue to

completion, Import displays the following message:

Import terminated successfully with warnings

See Also:

■ LOG on page 2-25

■ Your Oracle operating system-specific documentation for

information on redirecting output
2-46 Oracle9i Database Utilities

Error Handling During an Import
If a nonrecoverable error occurs, Import terminates immediately and displays the

following message:

Import terminated unsuccessfully

Exit Codes for Inspection and Display
Import provides the results of an import operation immediately upon completion.

Depending on the platform, Import may report the outcome in a process exit code

as well as recording the results in the log file. This enables you to check the outcome

from the command line or script. Table 2–4 shows the exit codes that are returned

for various results.

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FAIL 1

Error Handling During an Import
This section describes errors that can occur when you import database objects.

Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, Import

displays a warning message but continues processing the rest of the table. Some

errors, such as "tablespace full," apply to all subsequent rows in the table. These

errors cause Import to stop processing the current table and skip to the next table.

A "tablespace full" error can suspend the import if the RESUMABLE=y parameter is

specified.

See Also: Oracle9i Database Error Messages and your Oracle

operating system-specific documentation

Table 2–4 Exit Codes for Import

Result Exit Code

Import terminated successfully without warnings EX_SUCC

Import terminated successfully with warnings EX_OKWARN

Import terminated unsuccessfully EX_FAIL
Import 2-47

Error Handling During an Import
Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on

your system, including:

■ NOT NULL constraints

■ Uniqueness constraints

■ Primary key (not null and unique) constraints

■ Referential integrity constraints

■ Check constraints

Invalid Data
Row errors can also occur when the column definition for a table in a database is

different from the column definition in the export file. The error is caused by data

that is too long to fit into a new table’s columns, by invalid datatypes, or by any

other INSERT error.

Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as described

in this section. When these errors occur, import of the current database object is

discontinued. Import then attempts to continue with the next database object in the

export file.

Object Already Exists
If a database object to be imported already exists in the database, an object creation

error occurs. What happens next depends on the setting of the IGNORE parameter.

If IGNORE=n (the default), the error is reported, and Import continues with the next

database object. The current database object is not replaced. For tables, this behavior

means that rows contained in the export file are not imported.

If IGNORE=y, object creation errors are not reported. The database object is not

replaced. If the object is a table, rows are imported into it. Note that only object
creation errors are ignored; all other errors (such as operating system, database, and

SQL errors) are reported and processing may stop.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Database Concepts
2-48 Oracle9i Database Utilities

Table-Level and Partition-Level Import
Sequences
If sequence numbers need to be reset to the value in an export file as part of an

import, you should drop sequences. If a sequence is not dropped before the import,

it is not set to the value captured in the export file, because Import does not drop

and re-create a sequence that already exists. If the sequence already exists, the

export file’s CREATE SEQUENCE statement fails and the sequence is not imported.

Resource Errors
Resource limitations can cause objects to be skipped. When you are importing

tables, for example, resource errors can occur as a result of internal problems, or

when a resource such as memory has been exhausted.

If a resource error occurs while you are importing a row, Import stops processing

the current table and skips to the next table. If you have specified COMMIT=y,
Import commits the partial import of the current table. If not, a rollback of the

current table occurs before Import continues. See the description of COMMIT on

page 2-19.

Domain Index Metadata
Domain indexes can have associated application-specific metadata that is imported

using anonymous PL/SQL blocks. These PL/SQL blocks are executed at import

time prior to the CREATE INDEX statement. If a PL/SQL block causes an error, the

associated index is not created because the metadata is considered an integral part

of the index.

Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions in the following ways:

■ Table-level Import: imports all data from the specified tables in an Export file.

■ Partition-level Import: imports only data from the specified source partitions or

subpartitions.

Caution: Specifying IGNORE=y can cause duplicate rows to be

entered into a table unless one or more columns of the table are

specified with the UNIQUEintegrity constraint. This could occur, for

example, if Import were run twice.
Import 2-49

Table-Level and Partition-Level Import
You must set the parameter IGNORE=ywhen loading data into an existing table. See

IGNORE on page 2-23 for more information.

Guidelines for Using Table-Level Import
For each specified table, table-level Import imports all rows of the table. With

table-level Import:

■ All tables exported using any Export mode (except TRANSPORT_
TABLESPACES) can be imported.

■ Users can import the entire (partitioned or nonpartitioned) table, partitions, or

subpartitions from a table-level export file into a (partitioned or nonpartitioned)

target table with the same name.

If the table does not exist, and if the exported table was partitioned, table-level

Import creates a partitioned table. If the table creation is successful, table-level

Import reads all source data from the export file into the target table. After Import,

the target table contains the partition definitions of all partitions and subpartitions

associated with the source table in the Export file. This operation ensures that the

physical and logical attributes (including partition bounds) of the source partitions

are maintained on Import.

Guidelines for Using Partition-Level Import
Partition-level Import can only be specified in table mode. It lets you selectively

load data from specified partitions or subpartitions in an export file. Keep the

following guidelines in mind when using partition-level import.

■ Import always stores the rows according to the partitioning scheme of the target

table.

■ Partition-level Import inserts only the row data from the specified source

partitions or subpartitions.

■ If the target table is partitioned, partition-level Import rejects any rows that fall

above the highest partition of the target table.

■ Partition-level Import cannot import a nonpartitioned exported table. However,

a partitioned table can be imported from a nonpartitioned exported table using

table-level Import.

■ Partition-level Import is legal only if the source table (that is, the table called

tablename at export time) was partitioned and exists in the Export file.
2-50 Oracle9i Database Utilities

Table-Level and Partition-Level Import
■ If the partition or subpartition name is not a valid partition in the export file,

Import generates a warning.

■ The partition or subpartition name in the parameter refers to only the partition

or subpartition in the Export file, which may not contain all of the data of the

table on the export source system.

■ If ROWS=y(default), and the table does not exist in the Import target system, the

table is created and all rows from the source partition or subpartition are

inserted into the partition or subpartition of the target table.

■ If ROWS=y (default) and IGNORE=y, but the table already existed before Import,

all rows for the specified partition or subpartition in the table are inserted into

the table. The rows are stored according to the existing partitioning scheme of

the target table.

■ If ROWS=n, Import does not insert data into the target table and continues to

process other objects associated with the specified table and partition or

subpartition in the file.

■ If the target table is nonpartitioned, the partitions and subpartitions are

imported into the entire table. Import requires IGNORE=y to import one or

more partitions or subpartitions from the Export file into a nonpartitioned table

on the import target system.

Migrating Data Across Partitions and Tables
If you specify a partition name for a composite partition, all subpartitions within

the composite partition are used as the source.

In the following example, the partition specified by the partition-name is a

composite partition. All of its subpartitions will be imported:

imp SYSTEM/ password FILE=expdat.dmp FROMUSER=scott TABLES=b:py

The following example causes row data of partitions qc and qd of table scott.e to

be imported into the table scott.e :

imp scott/tiger FILE=expdat.dmp TABLES=(e:qc, e:qd) IGNORE=y

If table e does not exist in the Import target database, it is created and data is

inserted into the same partitions. If table e existed on the target system before

Import, the row data is inserted into the partitions whose range allows insertion.

The row data can end up in partitions of names other than qc and qd .
Import 2-51

Controlling Index Creation and Maintenance
Controlling Index Creation and Maintenance
This section describes the behavior of Import with respect to index creation and

maintenance.

Delaying Index Creation
Import provides you with the capability of delaying index creation and

maintenance services until after completion of the import and insertion of exported

data. Performing index creation, re-creation, or maintenance after Import completes

is generally faster than updating the indexes for each row inserted by Import.

Index creation can be time consuming, and therefore can be done more efficiently

after the import of all other objects has completed. You can postpone creation of

indexes until after the Import completes by specifying INDEXES=n. (INDEXES=y is

the default.) You can then store the missing index definitions in a SQL script by

running Import while using the INDEXFILE parameter. The index-creation

statements that would otherwise be issued by Import are instead stored in the

specified file.

After the import is complete, you must create the indexes, typically by using the

contents of the file (specified with INDEXFILE) as a SQL script after specifying

passwords for the connect statements.

Index Creation and Maintenance Controls
If SKIP_UNUSABLE_INDEXES=y, the Import utility postpones maintenance on all

indexes that were set to Index Unusable before Import. Other indexes (not

previously set Index Unusable) continue to be updated as rows are inserted. This

approach saves on index updates during import of existing tables.

Delayed index maintenance may cause a violation of an existing unique integrity

constraint supported by the index. The existence of a unique integrity constraint on

a table does not prevent existence of duplicate keys in a table that was imported

with INDEXES=n. The supporting index will be in an UNUSABLE state until the

duplicates are removed and the index is rebuilt.

Note: With partition-level Import to an existing table, you must set

up the target partitions or subpartitions properly and use

IGNORE=y.
2-52 Oracle9i Database Utilities

Reducing Database Fragmentation
Example of Postponing Index Maintenance
For example, assume that partitioned table t with partitions p1 and p2 exists on the

Import target system. Assume that local indexes p1_ind on partition p1 and p2_
ind on partition p2 exist also. Assume that partition p1 contains a much larger

amount of data in the existing table t , compared with the amount of data to be

inserted by the Export file (expdat .dmp). Assume that the reverse is true for p2 .

Consequently, performing index updates for p1_ind during table data insertion

time is more efficient than at partition index rebuild time. The opposite is true for

p2_ind .

Users can postpone local index maintenance for p2_ind during Import by using

the following steps:

1. Issue the following SQL statement before Import:

ALTER TABLE t MODIFY PARTITION p2 UNUSABLE LOCAL INDEXES;

2. Issue the following Import command:

 imp scott/tiger FILE=expdat.dmp TABLES = (t:p1, t:p2) IGNORE=y SKIP_UNUSABLE_INDEXES=y

This example executes the ALTER SESSION SET SKIP_UNUSABLE_INDEXES=y
statement before performing the import.

3. Issue the following SQL statement after Import:

ALTER TABLE t MODIFY PARTITION p2 REBUILD UNUSABLE LOCAL INDEXES;

In this example, local index p1_ind on p1 will be updated when table data is

inserted into partition p1 during Import. Local index p2_ind on p2 will be

updated at index rebuild time, after Import.

Reducing Database Fragmentation
A database with many noncontiguous, small blocks of free space is said to be

fragmented. A fragmented database should be reorganized to make space available

in contiguous, larger blocks. You can reduce fragmentation by performing a full

database export and import as follows:

1. Do a full database export (FULL=y) to back up the entire database.

2. Shut down the Oracle database server after all users are logged off.

3. Delete the database. See your Oracle operating system-specific documentation

for information on how to delete a database.
Import 2-53

Network Considerations
4. Re-create the database using the CREATE DATABASE statement.

5. Do a full database import (FULL=y) to restore the entire database.

Network Considerations
This section describes factors to take into account when using Export and Import

across a network.

Transporting Export Files Across a Network
Because the export file is in binary format, use a protocol that supports binary

transfers to prevent corruption of the file when you transfer it across a network. For

example, use FTP or a similar file transfer protocol to transmit the file in binary

mode. Transmitting export files in character mode causes errors when the file is

imported.

Exporting and Importing with Oracle Net
With Oracle Net, you can perform exports and imports over a network. For

example, if you run Export locally, you can write data from a remote Oracle

database into a local export file. If you run Import locally, you can read data into a

remote Oracle database.

To use Import with Oracle Net, include the connection qualifier string @connect_
string when entering the username / password in the exp or imp command. For

the exact syntax of this clause, see the user’s guide for your Oracle Net protocol.

Character Set and Globalization Support Considerations
This section describes the character set conversions that can take place during

export and import operations.

See Also: Oracle9i Database Administrator’s Guide for more

information about creating databases

See Also:

■ Oracle9i Net Services Administrator’s Guide

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide
2-54 Oracle9i Database Utilities

Character Set and Globalization Support Considerations
Character Set Conversion
The following sections describe character conversion as it applies to user data and

DDL.

User Data
Data of datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, and NCLOB are

written to the export file directly in the character sets of the source database. If the

character sets of the source database are different than the character sets of the

import database, a single conversion is performed.

Data Definition Language (DDL)
Up to three character set conversions may be required for DDL during an

export/import operation:

1. Export writes export files using the character set specified in the NLS_LANG
environment variable for the user session. A character set conversion is

performed if the value of NLS_LANG differs from the database character set.

2. If the export file’s character set is different than the Import user session

character set, then Import converts the character set to its user session character

set. Import can only perform this conversion for single-byte character sets. This

means that for multibyte character sets, the import file’s character set must be

identical to the export file’s character set.

3. A final character set conversion may be performed if the target database’s

character set is different from Import’s user session character set.

To minimize data loss due to character set conversions, ensure that the export

database, the export user session, the import user session, and the import database

all use the same character set.

Import and Single-Byte Character Sets
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you

import an 8-bit character set export file. This occurs if the system on which the

import occurs has a native 7-bit character set, or the NLS_LANG operating system

environment variable is set to a 7-bit character set. Most often, this is apparent when

accented characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system

environment variable to be that of the export file character set.
Import 2-55

Considerations When Importing Database Objects
When importing an Oracle version 5 or 6 export file with a character set different

from that of the native operating system or the setting for NLS_LANG, you must set

the CHARSET import parameter to specify the character set of the export file.

Import and Multibyte Character Sets
During character set conversion, any characters in the export file that have no

equivalent in the target character set are replaced with a default character. (The

default character is defined by the target character set.) To guarantee 100%

conversion, the target character set must be a superset (or equivalent) of the source

character set.

Considerations When Importing Database Objects
The following sections describe points you should consider when you import

particular database objects.

Importing Object Identifiers
The Oracle database server assigns object identifiers to uniquely identify object

types, object tables, and rows in object tables. These object identifiers are preserved

by Import.

When you import a table that references a type, but a type of that name already

exists in the database, Import attempts to verify that the preexisting type is, in fact,

the type used by the table (rather than a different type that just happens to have the

same name).

To do this, Import compares the types’s unique identifier (TOID) with the identifier

stored in the export file. If those match, Import then compares the type’s unique

hashcode with that stored in the export file. Import will not import table rows if the

TOIDs or hashcodes do not match.

In some situations, you may not want this validation to occur on specified types (for

example, if the types were created by a cartridge installation). You can use the

parameter TOID_NOVALIDATE to specify types to exclude from the TOID and

hashcode comparison. See TOID_NOVALIDATE on page 2-31 for more information.

See Also: Oracle9i Database Globalization Support Guide
2-56 Oracle9i Database Utilities

Considerations When Importing Database Objects
Import uses the following criteria to decide how to handle object types, object

tables, and rows in object tables:

■ For object types, if IGNORE=y, the object type already exists, and the object

identifiers, hashcodes, and type descriptors match, no error is reported. If the

object identifiers or hashcodes do not match and the parameter TOID_
NOVALIDATEhas not been set to ignore the object type, an error is reported and

any tables using the object type are not imported.

■ For object types, if IGNORE=n and the object type already exists, an error is

reported. If the object identifiers, hashcodes, or type descriptors do not match

and the parameter TOID_NOVALIDATE has not been set to ignore the object

type, any tables using the object type are not imported.

■ For object tables, if IGNORE=y, the table already exists, and the object

identifiers, hashcodes, and type descriptors match, no error is reported. Rows

are imported into the object table. Import of rows may fail if rows with the same

object identifier already exist in the object table. If the object identifiers,

hashcodes, or type descriptors do not match, and the parameter TOID_
NOVALIDATEhas not been set to ignore the object type, an error is reported and

the table is not imported.

■ For object tables, if IGNORE=n and the table already exists, an error is reported

and the table is not imported.

Because Import preserves object identifiers of object types and object tables,

consider the following when you import objects from one schema into another

schema using the FROMUSER and TOUSER parameters:

■ If the FROMUSER object types and object tables already exist on the target

system, errors occur because the object identifiers of the TOUSER object types

and object tables are already in use. The FROMUSER object types and object

tables must be dropped from the system before the import is started.

■ If an object table was created using the OID AS option to assign it the same

object identifier as another table, both tables cannot be imported. You can

Caution: Be very careful about using TOID_NOVALIDATE,
because type validation provides an important capability that helps

avoid data corruption. Be sure you are confident of your

knowledge of type validation and how it works before attempting

to perform an import operation with this feature disabled.
Import 2-57

Considerations When Importing Database Objects
import one of the tables, but the second table receives an error because the

object identifier is already in use.

Importing Existing Object Tables and Tables That Contain Object Types
Users frequently create tables before importing data to reorganize tablespace usage

or to change a table’s storage parameters. The tables must be created with the same

definitions as were previously used or a compatible format (except for storage

parameters). For object tables and tables that contain columns of object types,

format compatibilities are more restrictive.

For object tables and for tables containing columns of objects, each object the table

references has its name, structure, and version information written out to the Export

file. Export also includes object type information from different schemas, as needed.

Import verifies the existence of each object type required by a table prior to

importing the table data. This verification consists of a check of the object type’s

name followed by a comparison of the object type’s structure and version from the

import system with that found in the Export file.

If an object type name is found on the import system, but the structure or version

do not match that from the Export file, an error message is generated and the table

data is not imported.

The Import parameter TOID_NOVALIDATEcan be used to disable the verification of

the object type’s structure and version for specific objects.

Importing Nested Tables
Inner nested tables are exported separately from the outer table. Therefore,

situations may arise where data in an inner nested table might not be properly

imported:

■ Suppose a table with an inner nested table is exported and then imported

without dropping the table or removing rows from the table. If the IGNORE=y
parameter is used, there will be a constraint violation when inserting each row

in the outer table. However, data in the inner nested table may be successfully

imported, resulting in duplicate rows in the inner table.

■ If nonrecoverable errors occur inserting data in outer tables, the rest of the data

in the outer table is skipped, but the corresponding inner table rows are not

skipped. This may result in inner table rows not being referenced by any row in

the outer table.
2-58 Oracle9i Database Utilities

Considerations When Importing Database Objects
■ If an insert to an inner table fails after a recoverable error, its outer table row

will already have been inserted in the outer table and data will continue to be

inserted in it and any other inner tables of the containing table. This

circumstance results in a partial logical row.

■ If nonrecoverable errors occur inserting data in an inner table, Import skips the

rest of that inner table’s data but does not skip the outer table or other nested

tables.

You should always carefully examine the log file for errors in outer tables and inner

tables. To be consistent, table data may need to be modified or deleted.

Because inner nested tables are imported separately from the outer table, attempts

to access data from them while importing may produce unexpected results. For

example, if an outer row is accessed before its inner rows are imported, an

incomplete row may be returned to the user.

Importing REF Data
REF columns and attributes may contain a hidden ROWID that points to the

referenced type instance. Import does not automatically recompute these ROWIDs
for the target database. You should execute the following statement to reset the

ROWIDs to their proper values:

ANALYZE TABLE [schema.]table VALIDATE REF UPDATE;

Importing BFILE Columns and Directory Aliases
Export and Import do not copy data referenced by BFILE columns and attributes

from the source database to the target database. Export and Import only propagate

the names of the files and the directory aliases referenced by the BFILE columns. It

is the responsibility of the DBA or user to move the actual files referenced through

BFILE columns and attributes.

When you import table data that contains BFILE columns, the BFILE locator is

imported with the directory alias and filename that was present at export time.

Import does not verify that the directory alias or file exists. If the directory alias or

file does not exist, an error occurs when the user accesses the BFILE data.

For directory aliases, if the operating system directory syntax used in the export

system is not valid on the import system, no error is reported at import time.

Subsequent access to the file data receives an error.

See Also: Oracle9i SQL Reference for more information about the

ANALYZE TABLE statement
Import 2-59

Considerations When Importing Database Objects
It is the responsibility of the DBA or user to ensure the directory alias is valid on the

import system.

Importing Foreign Function Libraries
Import does not verify that the location referenced by the foreign function library is

correct. If the formats for directory and filenames used in the library's specification

on the export file are invalid on the import system, no error is reported at import

time. Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the library and ensure

the library's specification is valid on the import system.

Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is

imported depends upon whether the COMPILE parameter is set to y or to n.

When a local stored procedure, function, or package is imported and COMPILE=y,
the procedure, function, or package is recompiled upon import and retains its

original timestamp specification. If the compilation is successful, it can be accessed

by remote procedures without error.

If COMPILE=n, the procedure, function, or package is still imported, but the original

timestamp is lost. The compilation takes place the next time the procedure,

function, or package is used.

Importing Java Objects
When you import Java objects into any schema, the Import utility leaves the

resolver unchanged. (The resolver is the list of schemas used to resolve Java full

names.) This means that after an import, all user classes are left in an invalid state

until they are either implicitly or explicitly revalidated. An implicit revalidation

occurs the first time the classes are referenced. An explicit revalidation occurs when

the SQL statement ALTER JAVA CLASS...RESOLVE is used. Both methods result

in the user classes being resolved successfully and becoming valid.

Importing External Tables
Import does not verify that the location referenced by the external table is correct. If

the formats for directory and filenames used in the table's specification on the

See Also: COMPILE on page 2-19
2-60 Oracle9i Database Utilities

Considerations When Importing Database Objects
export file are invalid on the import system, no error is reported at import time.

Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the table and ensure the

table's specification is valid on the import system.

Importing Advanced Queue (AQ) Tables
Importing a queue table also imports any underlying queues and the related

dictionary information. A queue can be imported only at the granularity level of the

queue table. When a queue table is imported, export pretable and posttable action

procedures maintain the queue dictionary.

Importing LONG Columns
LONG columns can be up to 2 gigabytes in length. In importing and exporting, the

LONG columns must fit into memory with the rest of each row’s data. The memory

used to store LONG columns, however, does not need to be contiguous, because

LONG data is loaded in sections.

Import can be used to convert LONG columns to CLOB columns. To do this, first

create a table specifying the new CLOB column. When Import is run, the LONG data

is converted to CLOB format. The same technique can be used to convert LONG RAW
columns to BLOB columns.

Importing Views
Views are exported in dependency order. In some cases, Export must determine the

ordering, rather than obtaining the order from the server database. In doing so,

Export may not always be able to duplicate the correct ordering, resulting in

compilation warnings when a view is imported, and the failure to import column

comments on such views.

In particular, if viewa uses the stored procedure procb , and procb uses the view

viewc , Export cannot determine the proper ordering of viewa and viewc . If

viewa is exported before viewc and procb already exists on the import system,

viewa receives compilation warnings at import time.

Grants on views are imported even if a view has compilation errors. A view could

have compilation errors if an object it depends on, such as a table, procedure, or

another view, does not exist when the view is created. If a base table does not exist,

See Also: Oracle9i Application Developer’s Guide - Advanced
Queuing
Import 2-61

Considerations When Importing Database Objects
the server cannot validate that the grantor has the proper privileges on the base

table with the GRANT OPTION. Access violations could occur when the view is used

if the grantor does not have the proper privileges after the missing tables are

created.

Importing views that contain references to tables in other schemas requires that the

importer have SELECT ANY TABLE privilege. If the importer has not been granted

this privilege, the views will be imported in an uncompiled state. Note that

granting the privilege to a role is insufficient. For the view to be compiled, the

privilege must be granted directly to the importer.

Importing Partitioned Tables
Import attempts to create a partitioned table with the same partition or subpartition

names as the exported partitioned table, including names of the form SYS_Pnnn. If

a table with the same name already exists, Import processing depends on the value

of the IGNORE parameter.

Unless SKIP_UNUSABLE_INDEXES=y, inserting the exported data into the target

table fails if Import cannot update a nonpartitioned index or index partition that is

marked Indexes Unusable or is otherwise not suitable.

Support for Fine-Grained Access Control
You can export tables with fine-grained access control policies enabled. When doing

so, keep the following considerations in mind:

To restore the fine-grained access control policies, the user who imports from an

export file containing such tables must have the following privileges:

■ EXECUTE privilege on the DBMS_RLS package so that the tables’ security

policies can be reinstated.

■ EXPORT_FULL_DATABASE role enabled or EXEMPT ACCESS POLICY granted

If a user without the correct privileges attempts to import from an export file that

contains tables with fine-grained access control policies, a warning message will be

issued. Therefore, it is advisable for security reasons that the exporter and importer

of such tables be the DBA.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about fine-grained access control
2-62 Oracle9i Database Utilities

Materialized Views and Snapshots
Materialized Views and Snapshots

The three interrelated objects in a snapshot system are the master table, optional

snapshot log, and the snapshot itself. The tables (master table, snapshot log table

definition, and snapshot tables) can be exported independently of one another.

Snapshot logs can be exported only if you export the associated master table. You

can export snapshots using full database or user-mode Export; you cannot use

table-mode Export.

This section discusses how fast refreshes are affected when these objects are

imported.

Snapshot Log
The snapshot log in a dump file is imported if the master table already exists for the

database to which you are importing and it has a snapshot log.

When a ROWIDsnapshot log is exported, ROWIDs stored in the snapshot log have no

meaning upon import. As a result, each ROWID snapshot’s first attempt to do a fast

refresh fails, generating an error indicating that a complete refresh is required.

To avoid the refresh error, do a complete refresh after importing a ROWID snapshot

log. After you have done a complete refresh, subsequent fast refreshes will work

properly. In contrast, when a primary key snapshot log is exported, the values of the

primary keys do retain their meaning upon Import. Therefore, primary key

snapshots can do a fast refresh after the import.

Note: In certain situations, particularly those involving data

warehousing, snapshots may be referred to as materialized views.

This section retains the term snapshot.

See Also: Oracle9i Replication for Import-specific information

about migration and compatibility and for more information about

snapshots and snapshot logs

See Also: Oracle9i Replication for information about primary key

snapshots
Import 2-63

Transportable Tablespaces
Snapshots
A snapshot that has been restored from an export file has reverted to a previous

state. On import, the time of the last refresh is imported as part of the snapshot table

definition. The function that calculates the next refresh time is also imported.

Each refresh leaves a signature. A fast refresh uses the log entries that date from the

time of that signature to bring the snapshot up to date. When the fast refresh is

complete, the signature is deleted and a new signature is created. Any log entries

that are not needed to refresh other snapshots are also deleted (all log entries with

times before the earliest remaining signature).

Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem

under certain circumstances.

Assume that a snapshot is refreshed at time A, exported at time B, and refreshed

again at time C. Then, because of corruption or other problems, the snapshot needs

to be restored by dropping the snapshot and importing it again. The newly

imported version has the last refresh time recorded as time A. However, log entries

needed for a fast refresh may no longer exist. If the log entries do exist (because

they are needed for another snapshot that has yet to be refreshed), they are used,

and the fast refresh completes successfully. Otherwise, the fast refresh fails,

generating an error that says a complete refresh is required.

Importing a Snapshot into a Different Schema
Snapshots, snapshot logs, and related items are exported with the schema name

explicitly given in the DDL statements; therefore, snapshots and their related items

cannot be imported into a different schema.

If you attempt to use FROMUSER and TOUSER to import snapshot data, an error will

be written to the Import log file and the items will not be imported.

Transportable Tablespaces
Transportable tablespaces let you move a set of tablespaces from one Oracle

database to another.

To do this, you must make the tablespaces read-only, copy the datafiles of these

tablespaces, and use Export and Import to move the database information

(metadata) stored in the data dictionary. Both the datafiles and the metadata export

file must be copied to the target database. The transport of these files can be done
2-64 Oracle9i Database Utilities

Storage Parameters
using any facility for copying flat binary files, such as the operating system copying

facility, binary-mode FTP, or publishing on CD-ROMs.

After copying the datafiles and importing the metadata, you can optionally put the

tablespaces in read/write mode.

See Transportable Tablespaces on page 1-59 for information on creating an Export

file containing transportable tablespace metadata.

Import provides the following parameters to enable import of transportable

tablespaces metadata.

■ TRANSPORT_TABLESPACE

■ TABLESPACES

■ DATAFILES

■ TTS_OWNERS

See TRANSPORT_TABLESPACE on page 2-33, TABLESPACES on page 2-31,

DATAFILES on page 2-20, and TTS_OWNERS on page 2-33 for more information.

Storage Parameters
By default, a table is imported into its original tablespace.

If the tablespace no longer exists, or the user does not have sufficient quota in the

tablespace, the system uses the default tablespace for that user, unless the table:

■ Is partitioned

■ Is a type table

■ Contains LOB, VARRAY, or OPAQUE type columns

■ Has an index-organized table (IOT) overflow segment

If the user does not have sufficient quota in the default tablespace, the user’s tables

are not imported. See Reorganizing Tablespaces on page 2-67 to see how you can

use this to your advantage.

See Also:

■ Oracle9i Database Administrator’s Guide for details about how to

move or copy tablespaces to another database

■ Oracle9i Database Concepts for an introduction to the

transportable tablespaces feature
Import 2-65

Storage Parameters
The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during

export and import.

Storage Parameters for OID Indexes and LOB Columns
Tables are exported with their current storage parameters. For object tables, the

OIDINDEX is created with its current storage parameters and name, if given. For

tables that contain LOB, VARRAY, or OPAQUE type columns, LOB, VARRAY, or

OPAQUE type data is created with their current storage parameters.

If you alter the storage parameters of existing tables prior to export, the tables are

exported using those altered storage parameters. Note, however, that storage

parameters for LOB data cannot be altered prior to export (for example, chunk size

for a LOB column, whether a LOB column is CACHE or NOCACHE, and so forth).

Note that LOB data might not reside in the same tablespace as the containing table.

The tablespace for that data must be read/write at the time of import or the table

will not be imported.

If LOB data resides in a tablespace that does not exist at the time of import or the

user does not have the necessary quota in that tablespace, the table will not be

imported. Because there can be multiple tablespace clauses, including one for the

table, Import cannot determine which tablespace clause caused the error.

Overriding Storage Parameters
Before using the Import utility to import data, you may want to create large tables

with different storage parameters. If so, you must specify IGNORE=y on the

command line or in the parameter file.

The Export COMPRESS Parameter
By default at export time, storage parameters are adjusted to consolidate all data

into its initial extent. To preserve the original size of an initial extent, you must

specify at export time that extents are not to be consolidated (by setting

COMPRESS=n). See COMPRESS on page 1-17.

Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not

already exist in the target database, the tablespace is created as a read/write

tablespace. If you want read-only functionality, you must manually make the

tablespace read-only after the import.
2-66 Oracle9i Database Utilities

Reorganizing Tablespaces
If the tablespace already exists in the target database and is read-only, you must

make it read/write before the import.

Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces

before the import. You can then issue the imp command and specify IGNORE=y.

In many cases, you can drop a tablespace by doing a full database export, then

creating a zero-block tablespace with the same name (before logging off) as the

tablespace you want to drop. During import, with IGNORE=y, the relevant CREATE
TABLESPACE statement will fail and prevent the creation of the unwanted

tablespace.

All objects from that tablespace will be imported into their owner’s default

tablespace with the exception of partitioned tables, type tables, and tables that

contain LOB or VARRAY columns or index-only tables with overflow segments.

Import cannot determine which tablespace caused the error. Instead, you must first

create a table and then import the table again, specifying IGNORE=y.

Objects are not imported into the default tablespace if the tablespace does not exist

or you do not have the necessary quotas for your default tablespace.

Reorganizing Tablespaces
If a user’s quota allows it, the user’s tables are imported into the same tablespace

from which they were exported. However, if the tablespace no longer exists or the

user does not have the necessary quota, the system uses the default tablespace for

that user as long as the table is unpartitioned, contains no LOB or VARRAY columns,

is not a type table, and is not an index-only table with an overflow segment. This

scenario can be used to move a user’s tables from one tablespace to another.

For example, you need to move joe ’s tables from tablespace A to tablespace B after

a full database export. Follow these steps:

1. If joe has the UNLIMITED TABLESPACEprivilege, revoke it. Set joe ’s quota on

tablespace A to zero. Also revoke all roles that might have such privileges or

quotas.

Role revokes do not cascade. Therefore, users who were granted other roles by

joe will be unaffected.

2. Export joe ’s tables.
Import 2-67

Importing Statistics
3. Drop joe ’s tables from tablespace A.

4. Give joe a quota on tablespace B and make it the default tablespace for joe .

5. Import joe ’s tables. (By default, Import puts joe ’s tables into

tablespace B.)

Importing Statistics
If statistics are requested at export time and analyzer statistics are available for a

table, Export will place the ANALYZE statement to recalculate the statistics for the

table into the dump file. In most circumstances, Export will also write the

precalculated optimizer statistics for tables, indexes, and columns to the dump file.

See the description of the Export parameter STATISTICS on page 1-27 and the

Import parameter STATISTICS on page 2-27.

Because of the time it takes to perform an ANALYZE statement, it is usually

preferable for Import to use the precalculated optimizer statistics for a table (and its

indexes and columns) rather than executing the ANALYZE statement saved by

Export. By default, Import will always use the precalculated statistics that are found

in the export dump file.

The Export utility flags certain precalculated statistics as questionable. See the

Export parameter, STATISTICS on page 1-27 for more information. In certain

situations, the importer might want to import only unquestionable statistics, and

may not want to import precalculated statistics in the following situations:

■ Character set translations between the dump file and the import client and the

import database could potentially change collating sequences that are implicit

in the precalculated statistics.

■ Row errors occurred while importing the table.

■ A partition level import is performed (column statistics will no longer be

accurate).

Note: Specifying ROWS=nwill not prevent the use of precalculated

statistics. This feature allows plan generation for queries to be

tuned in a nonproduction database using statistics from a

production database. In these cases, the importer should specify

STATISTICS=SAFE.
2-68 Oracle9i Database Utilities

Using Export and Import to Partition a Database Migration
In certain situations, the importer might want to always use ANALYZE statements

rather than precalculated statistics. For example, the statistics gathered from a

fragmented database may not be relevant when the data is imported in a

compressed form. In these cases, the importer should specify

STATISTICS=RECALCULATE to force the recalculation of statistics.

If you do not want any statistics to be established by Import, you should specify

STATISTICS=NONE.

Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may be

more efficient to partition the migration into multiple export and import jobs. If you

decide to partition the migration, be aware of the following advantages and

disadvantages.

Advantages of Partitioning a Migration
Partitioning a migration has the following advantages:

■ Time required for the migration may be reduced because many of the subjobs

can be run in parallel.

■ The import can start as soon as the first export subjob completes, rather than

waiting for the entire export to complete.

Disadvantages of Partitioning a Migration
Partitioning a migration has the following disadvantages:

■ The export and import processes become more complex.

■ Support of cross-schema references for certain types of objects may be

compromised. For example, if a schema contains a table with a foreign key

constraint against a table in a different schema, you may not have all required

parent records when you import the table into the dependent schema.

How to Use Export and Import to Partition a Database Migration
To perform a database migration in a partitioned manner, take the following steps:

1. For all top-level metadata in the database, issue the following commands:
Import 2-69

Using Export Files from a Previous Oracle Release
a. exp dba/password FILE=full FULL=y CONSTRAINTS=n
TRIGGERS=n ROWS=n INDEXES=n

b. imp dba/password FILE=full FULL=y

2. For each scheman in the database, issue the following commands:

a. exp dba/password OWNER=schema n FILE=schema n

b. imp dba/password FILE=schema n FROMUSER=scheman
TOUSER=scheman IGNORE=y

All exports can be done in parallel. When the import of full.dmp completes, all

remaining imports can also be done in parallel.

Using Export Files from a Previous Oracle Release
The following sections describe considerations when you import data from earlier

versions of the Oracle database server into an Oracle9i server.

Using Oracle Version 7 Export Files
This section describes guidelines and restrictions that apply when you import data

from an Oracle version 7 database into an Oracle9i server.

Check Constraints on DATE Columns
In Oracle9i, check constraints on DATE columns must use the TO_DATE function to

specify the format of the date. Because this function was not required in versions

prior to Oracle8i, data imported from an earlier Oracle database might not have

used the TO_DATE function. In such cases, the constraints are imported into the

Oracle9i database, but they are flagged in the dictionary as invalid.

The catalog views DBA_CONSTRAINTS, USER_CONSTRAINTS, and ALL_
CONSTRAINTS can be used to identify such constraints. Import issues a warning

message if invalid date constraints are in the database.

See Also: Using Different Releases and Versions of Export on

page 1-61

See Also: Oracle9i Database Migration
2-70 Oracle9i Database Utilities

Using Export Files from a Previous Oracle Release
Using Oracle Version 6 Export Files
This section describes guidelines and restrictions that apply when you import data

from an Oracle version 6 database into an Oracle9i server.

User Privileges
When user definitions are imported into an Oracle database, they are created with

the CREATE USER statement. So, when importing from export files created by

previous versions of Export, users are not granted CREATE SESSION privileges

automatically.

CHAR Columns
Oracle version 6 CHAR columns are automatically converted into the Oracle

VARCHAR2 datatype.

Status of Integrity Constraints
NOT NULL constraints are imported as ENABLED. All other constraints are

imported as DISABLED.

Length of Default Column Values
A table with a default column value that is longer than the maximum size of that

column generates the following error on import to Oracle9i:

ORA-1401: inserted value too large for column

Oracle version 6 did not check the columns in a CREATE TABLE statement to be

sure they were long enough to hold their default values so these tables could be

imported into a version 6 database. The Oracle9i server does make this check,

however. As a result, column defaults that could be imported into a version 6

database may not import into Oracle9i.

If the default is a value returned by a function, the column must be large enough to

hold the maximum value that can be returned by that function. Otherwise, the

CREATE TABLE statement recorded in the export file produces an error on import.
Import 2-71

Using Export Files from a Previous Oracle Release
Using Oracle Version 5 Export Files
Oracle9i Import reads Export dump files created by Oracle release 5.1.22 and higher.

Keep in mind the following:

■ CHAR columns are automatically converted to VARCHAR2.

■ NOT NULL constraints are imported as ENABLED.

■ Import automatically creates an index on any clusters to be imported.

Restrictions When Using Different Releases and Versions of Export and Import
The following restrictions apply when you are using different releases of Export

and Import:

■ Export dump files can be read only by the Import utility because they are stored

in a special binary format.

■ Any export dump file can be imported into a higher release of the Oracle

database server.

■ Export dump files cannot be read by previous versions and releases of the

Import utility. Therefore, a release 8.1 export file cannot be imported by a

release 8.0 Import utility and a version 8 export dump file cannot be imported

by a version 7 Import utility.

■ The Import utility can read export dump files created by Export release 5.1.22

and higher.

■ The Import utility cannot read export dump files created by the Export utility of

a higher maintenance release or version. For example, a release 8.1 export dump

Note: The maximum value of the USER function increased in

Oracle7, so columns with a default of USER may not be long

enough. To determine the maximum size that the USER function

returns, execute the following SQL statement:

DESCRIBE user_sys_privs

The length shown for the USERNAME column is the maximum

length returned by the USER function.

See Also: Oracle9i Database Migration
2-72 Oracle9i Database Utilities

Using Export Files from a Previous Oracle Release
file cannot be imported by a release 8.0 Import utility, and a version 8 export

dump file cannot be imported by a version 7 Import utility.

■ The Oracle version 6 (or earlier) Export utility cannot be used against an

Oracle8 or higher database.

■ Whenever a lower version of the Export utility runs with a higher version of the

Oracle database server, categories of database objects that did not exist in the

lower version are excluded from the export. For example, partitioned tables did

not exist in the Oracle database server version 7. So, if you need to move a

version 8 partitioned table to a version 7 database, you must first reorganize the

table into a nonpartitioned table.

■ Export files generated by Oracle9i Export, either direct path or conventional

path, are incompatible with earlier releases of Import and can be imported only

with Oracle9i Import. When backward compatibility is an issue, use the earlier

release or version of the Export utility against the Oracle9i database.

■ You cannot import job queues from a release 8.1.7 database into earlier releases

of the database. Therefore, you must manually restart your jobs after the import

is finished.

The CHARSET Parameter
Default: none

This parameter applies to Oracle version 5 and 6 export files only. Use of this

parameter is not recommended. It is provided only for compatibility with previous

versions. Eventually, it will no longer be supported.

Oracle version 5 and 6 export files do not contain the database character set

identifier. However, a version 5 or 6 export file does indicate whether the user

session character set was ASCII or EBCDIC.

Use this parameter to indicate the actual character set used at export time. The

Import utility will verify whether the specified character set is ASCII or EBCDIC

based on the character set in the export file.

If you do not specify a value for the CHARSET parameter and the export file is

ASCII, Import will verify that the user session character set is ASCII. Or, if the

export file is EBCDIC, Import will verify that the user session character set is

EBCDIC.

If you are using a version of Oracle greater than version 5 or 6, the character set is

specified within the export file, and conversion to the current database’s character
Import 2-73

Using Export Files from a Previous Oracle Release
set is automatic. Specification of this parameter serves only as a check to ensure that

the export file’s character set matches the expected value. If not, an error results.
2-74 Oracle9i Database Utilities

PartII

 SQL*Loader

The chapters in this section describe the SQL*Loader utility:

Chapter 3, "SQL*Loader Concepts"

This chapter introduces SQL*Loader and describes its features. It also introduces

data loading concepts (including object support). It discusses input to SQL*Loader,

database preparation, and output from SQL*Loader.

Chapter 4, "SQL*Loader Command-Line Reference"

This chapter describes the command-line syntax used by SQL*Loader. It discusses

command-line arguments, suppressing SQL*Loader messages, sizing the bind array,

and more.

Chapter 5, "SQL*Loader Control File Reference"

This chapter describes the control file syntax you use to configure SQL*Loader and

to describe to SQL*Loader how to map your data to Oracle format. It provides

detailed syntax diagrams and information about specifying datafiles, tables and

columns, the location of data, the type and format of data to be loaded, and more.

Chapter 6, "Field List Reference"

This chapter describes the field list section of a SQL*Loader control file. The field list

provides information about fields being loaded, such as position, datatype,

conditions, and delimiters.

Chapter 7, "Loading Objects, LOBs, and Collections"

This chapter describes how to load objects in various formats, as well as loading

object tables and REF columns. This chapter also discusses loading LOBs and

columns.

Chapter 8, "SQL*Loader Log File Reference"

This chapter describes the information contained in SQL*Loader log file output.

Chapter 9, "Conventional and Direct Path Loads"

This chapter describes the differences between a conventional path load and a direct

path load. A direct path load is a high-performance option that significantly reduces

the time required to load large quantities of data.

Chapter 10, "SQL*Loader Case Studies"

This chapter presents case studies that illustrate some of the features of

SQL*Loader. It demonstrates the loading of variable-length data, fixed-format

records, a free-format file, multiple physical records as one logical record, multiple

tables, direct path loads, and loading objects, collections, and REF columns.

SQL*Loader Con
3

SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database

with SQL*Loader. This chapter covers the following topics:

■ SQL*Loader Features

■ SQL*Loader Control File

■ Input Data and Datafiles

■ LOBFILEs and Secondary Datafiles (SDFs)

■ Data Conversion and Datatype Specification

■ Discarded and Rejected Records

■ Log File and Logging Information

■ Conventional Path Loads, Direct Path Loads, and External Table Loads

■ Loading Objects, Collections, and LOBs

■ Partitioned Object Support

■ Application Development: Direct Path Load API

SQL*Loader Features
SQL*Loader loads data from external files into tables of an Oracle database. It has a

powerful data parsing engine that puts little limitation on the format of the data in

the datafile. You can use SQL*Loader to do the following:

■ Load data from multiple datafiles during the same load session.

■ Load data into multiple tables during the same load session.

■ Specify the character set of the data.
cepts 3-1

SQL*Loader Features
■ Selectively load data (you can load records based on the records’ values).

■ Manipulate the data before loading it, using SQL functions.

■ Generate unique sequential key values in specified columns.

■ Use the operating system’s file system to access the datafiles.

■ Load data from disk, tape, or named pipe.

■ Generate sophisticated error reports, which greatly aids troubleshooting.

■ Load arbitrarily complex object-relational data.

■ Use secondary datafiles for loading LOBs and collections.

■ Use either conventional or direct path loading. While conventional path loading

is very flexible, direct path loading provides superior loading performance. See

Chapter 9.

■ Use a DB2 Load Utility control file as a SQL*Loader control file with few or no

changes involved. See Appendix B.

A typical SQL*Loader session takes as input a control file, which controls the

behavior of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an

Oracle database (where the data is loaded), a log file, a bad file, and potentially, a

discard file. An example of the flow of a SQL*Loader session is shown in Figure 3–1.
3-2 Oracle9i Database Utilities

SQL*Loader Control File
Figure 3–1 SQL*Loader Overview

SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.

The control file tells SQL*Loader where to find the data, how to parse and interpret

the data, where to insert the data, and more.

Although not precisely defined, a control file can be said to have three sections.

The first section contains session-wide information, for example:

■ Global options such as bindsize, rows, records to skip, and so on

■ INFILE clauses to specify where the input data is located

■ Data to be loaded

The second section consists of one or more INTO TABLE blocks. Each of these

blocks contains information about the table into which the data is to be loaded, such

as the table name and the columns of the table.

The third section is optional and, if present, contains input data.

Some control file syntax considerations to keep in mind are:

Discard
Files

Bad
Files

Database

SQL*Loader

Loader
Control

File

Bad
Files

Log
File

Discard
Files

Bad
FilesInput

Datafiles

TableTableIndexes
TableTableTables
SQL*Loader Concepts 3-3

Input Data and Datafiles
■ The syntax is free-format (statements can extend over multiple lines).

■ It is case insensitive; however, strings enclosed in single or double quotation

marks are taken literally, including case.

■ In control file syntax, comments extend from the two hyphens (--) that mark the

beginning of the comment to the end of the line. The optional third section of

the control file is interpreted as data rather than as control file syntax;

consequently, comments in this section are not supported.

■ The CONSTANT keyword has special meaning to SQL*Loader and is therefore

reserved. To avoid potential conflicts, Oracle Corporation recommends that you

do not use the word CONSTANT as a name for any tables or columns.

Input Data and Datafiles
SQL*Loader reads data from one or more files (or operating system equivalents of

files) specified in the control file. From SQL*Loader’s perspective, the data in the

datafile is organized as records. A particular datafile can be in fixed record format,

variable record format, or stream record format. The record format can be specified

in the control file with the INFILE parameter. If no record format is specified, the

default is stream record format.

Fixed Record Format
A file is in fixed record format when all records in a datafile are the same byte

length. Although this format is the least flexible, it results in better performance

than variable or stream format. Fixed format is also simple to specify. For example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular datafile as

being in fixed record format where every record is n bytes long.

Example 3–1 shows a control file that specifies a datafile that should be interpreted

in the fixed record format. The datafile in the example contains five physical

See Also: Chapter 5 for details about control file syntax and

semantics

Note: If data is specified inside the control file (that is, INFILE *
was specified in the control file), then the data is interpreted in the

stream record format with the default record terminator.
3-4 Oracle9i Database Utilities

Input Data and Datafiles
records. Assuming that a period (.) indicates a space, the first physical record is

[001,...cd,.] which is exactly eleven bytes (assuming a single-byte character set). The

second record is [0002,fghi,\n] followed by the newline character (which is the

eleventh byte), and so on. Note that newline characters are not required with the

fixed record format.

Note that the length is always interpreted in bytes, even if character-length

semantics are in effect for the file. This is necessary because the file could contain a

mix of fields, some of which are processed with character-length semantics and

others which are processed with byte-length semantics. See Character-Length

Semantics on page 5-22.

Example 3–1 Loading Data in Fixed Record Format

load data
infile ’example.dat’ "fix 11"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1, col2)

example.dat:
001, cd, 0002,fghi,
00003,lmn,
1, "pqrs",
0005,uvwx,

Variable Record Format
A file is in variable record format when the length of each record in a character field

is included at the beginning of each record in the datafile. This format provides

some added flexibility over the fixed record format and a performance advantage

over the stream record format. For example, you can specify a datafile that is to be

interpreted as being in variable record format as follows:

INFILE " datafile_name " "var n"

In this example, n specifies the number of bytes in the record length field. If n is not

specified, SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40 will

result in an error.

Example 3–2 shows a control file specification that tells SQL*Loader to look for data

in the datafile example .dat and to expect variable record format where the record

length fields are 3 bytes long. The example.dat datafile consists of three physical

records. The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes
SQL*Loader Concepts 3-5

Input Data and Datafiles
long (that is, 10, including a 1-byte newline), and the third is 012 bytes long (also

including a 1-byte newline). Note that newline characters are not required with the

variable record format. This example also assumes a single-byte character set for the

datafile.

The lengths are always interpreted in bytes, even if character-length semantics are

in effect for the file. This is necessary because the file could contain a mix of fields,

some processed with character-length semantics and others processed with

byte-length semantics. See Character-Length Semantics on page 5-22.

Example 3–2 Loading Data in Variable Record Format

load data
infile ’example.dat’ "var 3"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1 char(5),
 col2 char(7))

example.dat:
009hello,cd,010world,im,
012my,name is,

Stream Record Format
A file is in stream record format when the records are not specified by size; instead

SQL*Loader forms records by scanning for the record terminator. Stream record

format is the most flexible format, but there can be a negative effect on performance.

The specification of a datafile to be interpreted as being in stream record format

looks similar to the following:

INFILE datafile_name ["str terminator_string"]

The terminator_string is specified as either ’ char_string ’ or X’hex_
string ’ where:

■ ’ char_string ’ is a string of characters enclosed in single or double quotation

marks

■ X’hex_string ’ is a byte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it

should be specified as a X’hex_string ’ . However, some nonprintable characters

can be specified as (’ char_string ’) by using a backslash. For example:

■ \n indicates a line feed
3-6 Oracle9i Database Utilities

Input Data and Datafiles
■ \t indicates a horizontal tab

■ \f indicates a form feed

■ \v indicates a vertical tab

■ \r indicates a carriage return

If the character set specified with the NLS_LANG parameter for your session is

different from the character set of the datafile, character strings are converted to the

character set of the datafile. This is done before SQL*Loader checks for the default

record terminator.

Hexadecimal strings are assumed to be in the character set of the datafile, so no

conversion is performed.

On UNIX-based platforms, if no terminator_string is specified, SQL*Loader

defaults to the line feed character, \n .

On Windows NT, if no terminator_string is specified, then SQL*Loader uses

either \n or \r\n as the record terminator, depending on which one it finds first in

the datafile. This means that if you know that one or more records in your datafile

has \n embedded in a field, but you want \r\n to be used as the record terminator,

you must specify it.

Example 3–3 illustrates loading data in stream record format where the terminator

string is specified using a character string, ’|\n’ . The use of the backslash

character allows the character string to specify the nonprintable line feed character.

Example 3–3 Loading Data in Stream Record Format

load data
infile ’example.dat’ "str ’|\n’"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1 char(5),
 col2 char(7))

example.dat:
hello,world,|
james,bond,|

Logical Records
SQL*Loader organizes the input data into physical records, according to the

specified record format. By default a physical record is a logical record, but for
SQL*Loader Concepts 3-7

Input Data and Datafiles
added flexibility, SQL*Loader can be instructed to combine a number of physical

records into a logical record.

SQL*Loader can be instructed to follow one of the following logical record-forming

strategies:

■ Combine a fixed number of physical records to form each logical record

■ Combine physical records into logical records while a certain condition is true

Data Fields
Once a logical record is formed, field setting on the logical record is done. Field

setting is a process in which SQL*Loader uses control-file field specifications to

determine which parts of logical record data correspond to which control-file fields.

It is possible for two or more field specifications to claim the same data. Also, it is

possible for a logical record to contain data that is not claimed by any control-file

field specification.

Most control-file field specifications claim a particular part of the logical record.

This mapping takes the following forms:

■ The byte position of the data field’s beginning, end, or both, can be specified.

This specification form is not the most flexible, but it provides high field-setting

performance.

■ The strings delimiting (enclosing and/or terminating) a particular data field can

be specified. A delimited data field is assumed to start where the last data field

ended, unless the byte position of the start of the data field is specified.

■ The byte offset and/or the length of the data field can be specified. This way

each field starts a specified number of bytes from where the last one ended and

continues for a specified length.

■ Length-value datatypes can be used. In this case, the first n number of bytes of

the data field contain information about how long the rest of the data field is.

See Also:

■ Assembling Logical Records from Physical Records on

page 5-27

■ Case Study 4: Loading Combined Physical Records on

page 10-14 for an example of how to use continuation fields to

form one logical record from multiple physical records
3-8 Oracle9i Database Utilities

Data Conversion and Datatype Specification
LOBFILEs and Secondary Datafiles (SDFs)
LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In

LOBFILEs, LOB data instances are still considered to be in fields (predetermined

size, delimited, length-value), but these fields are not organized into records (the

concept of a record does not exist within LOBFILEs). Therefore, the processing

overhead of dealing with records is avoided. This type of organization of data is

ideal for LOB loading.

For example, you might use LOBFILEs to load employee names, employee IDs, and

employee resumes. You could read the employee names and IDs from the main

datafiles and you could read the resumes, which can be quite lengthy, from

LOBFILEs.

You might also use LOBFILEs to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data

can be quite lengthy.

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary

datafiles, SDFs are a collection of records, and each record is made up of fields. The

SDFs are specified on a per control-file-field basis. Only a collection_fld_spec
can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by

either the file specification string, or a FILLER field that is mapped to a data field

containing one or more file specification strings.

Data Conversion and Datatype Specification
During a conventional path load, data fields in the datafile are converted into

columns in the database (direct path loads are conceptually similar, but the

implementation is different). There are two conversion steps:

See Also:

■ SQL*Loader Datatypes on page 6-7

■ Specifying Delimiters on page 6-24

See Also:

■ Loading LOB Data from LOBFILEs on page 7-23

■ Secondary Datafiles (SDFs) on page 7-31
SQL*Loader Concepts 3-9

Discarded and Rejected Records
1. SQL*Loader uses the field specifications in the control file to interpret the

format of the datafile, parse the input data, and populate the bind arrays that

correspond to a SQL INSERT statement using that data.

2. The Oracle database server accepts the data and executes the INSERT statement

to store the data in the database.

The Oracle database server uses the datatype of the column to convert the data into

its final, stored form. Keep in mind the distinction between a field in a datafile and a

column in the database. Remember also that the field datatypes defined in a

SQL*Loader control file are not the same as the column datatypes.

Discarded and Rejected Records
Records read from the input file might not be inserted into the database. Such

records are placed in either a bad file or a discard file.

The Bad File
The bad file contains records that were rejected, either by SQL*Loader or by the

Oracle database server. Some of the possible reasons for rejection are discussed in

the next sections.

SQL*Loader Rejects
Datafile records are rejected by SQL*Loader when the input format is invalid. For

example, if the second enclosure delimiter is missing, or if a delimited field exceeds

its maximum length, SQL*Loader rejects the record. Rejected records are placed in

the bad file.

Oracle Rejects
After a datafile record is accepted for processing by SQL*Loader, it is sent to the

Oracle database server for insertion into a table as a row. If the Oracle database

server determines that the row is valid, then the row is inserted into the table. If the

row is determined to be invalid, then the record is rejected and SQL*Loader puts it

in the bad file. The row may be invalid, for example, because a key is not unique,

because a required field is null, or because the field contains invalid data for the

Oracle datatype.
3-10 Oracle9i Database Utilities

Conventional Path Loads, Direct Path Loads, and External Table Loads
The Discard File
As SQL*Loader executes, it may create a file called the discard file. This file is

created only when it is needed, and only if you have specified that a discard file

should be enabled. The discard file contains records that were filtered out of the

load because they did not match any record-selection criteria specified in the control

file.

The discard file therefore contains records that were not inserted into any table in

the database. You can specify the maximum number of such records that the discard

file can accept. Data written to any database table is not written to the discard file.

Log File and Logging Information
When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,

execution terminates. The log file contains a detailed summary of the load,

including a description of any errors that occurred during the load.

Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides the following methods to load data:

■ Conventional Path Loads

■ Direct Path Loads

See Also:

■ Specifying the Bad File on page 5-11

■ Case Study 4: Loading Combined Physical Records on

page 10-14 for an example use of a bad file

See Also:

■ Case Study 4: Loading Combined Physical Records on

page 10-14

■ Specifying the Discard File on page 5-14

See Also:

■ Chapter 8, "SQL*Loader Log File Reference"

■ Chapter 10, "SQL*Loader Case Studies" for sample log files
SQL*Loader Concepts 3-11

Conventional Path Loads, Direct Path Loads, and External Table Loads
■ External Table Loads

Conventional Path Loads
During conventional path loads, the input records are parsed according to the field

specifications, and each data field is copied to its corresponding bind array. When

the bind array is full (or no more data is left to read), an array insert is executed.

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any

errors in processing the LOB field (for example, the LOBFILE could not be found),

the LOB field is left empty. Note also that because LOB data is loaded after the array

insert has been performed, BEFORE and AFTER row triggers may not work as

expected for LOB columns. This is because the triggers fire before SQL*Loader has a

chance to load the LOB contents into the column. For instance, suppose you are

loading a LOB column, C1, with data and that you want a BEFORE row trigger to

examine the contents of this LOB column and derive a value to be loaded for some

other column, C2, based on its examination. This is not possible because the LOB

contents will not have been loaded at the time the trigger fires.

Direct Path Loads
A direct path load parses the input records according to the field specifications,

converts the input field data to the column datatype, and builds a column array.

The column array is passed to a block formatter, which creates data blocks in Oracle

database block format. The newly formatted database blocks are written directly to

the database, bypassing most RDBMS processing. Direct path load is much faster

than conventional path load, but entails several restrictions.

Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently

load the same data segments (allows intrasegment parallelism). Parallel direct path

is more restrictive than direct path.

See Also:

■ Data Loading Methods on page 9-1

■ Bind Arrays and Conventional Path Loads on page 5-44

See Also: Direct Path Load on page 9-5

See Also: Parallel Data Loading Models on page 9-30
3-12 Oracle9i Database Utilities

Loading Objects, Collections, and LOBs
External Table Loads
An external table load creates an external table for data in a datafile and executes

INSERT statements to insert the data from the datafile into the target table.

The advantages of using external table loads over conventional path and direct path

loads are as follows:

■ An external table load attempts to load datafiles in parallel. If a datafile is big

enough, it will attempt to load that file in parallel.

■ An external table load allows modification of the data being loaded by using

SQL functions and PL/SQL functions as part of the INSERT statement that is

used to create the external table.

Loading Objects, Collections, and LOBs
You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed

that you are familiar with the concept of objects and with Oracle’s implementation

of object support as described in Oracle9i Database Concepts and in the Oracle9i
Database Administrator’s Guide.

Supported Object Types
SQL*Loader supports loading of the following two object types:

column-objects
When a column of a table is of some object type, the objects in that column are

referred to as column-objects. Conceptually such objects are stored in their entirety

in a single column position in a row. These objects do not have object identifiers and

cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader

allows a derived type (or subtype) to be loaded into the column object.

See Also:

■ Chapter 11, "External Tables Concepts"

■ Chapter 12, "External Tables Access Parameters"
SQL*Loader Concepts 3-13

Loading Objects, Collections, and LOBs
row objects
These objects are stored in tables, known as object tables, that have columns

corresponding to the attributes of the object. The object tables have an additional

system-generated column, called SYS_NC_OID$, that stores system-generated

unique identifiers (OIDs) for each of the objects in the table. Columns in other tables

can refer to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader

allows a derived type (or subtype) to be loaded into the row object.

Supported Collection Types
SQL*Loader supports loading of the following two collection types:

Nested Tables
A nested table is a table that appears as a column in another table. All operations

that can be performed on other tables can also be performed on nested tables.

VARRAYs
VARRAYs are variable sized arrays. An array is an ordered set of built-in types or

objects, called elements. Each array element is of the same type and has an index,
which is a number corresponding to the element’s position in the VARRAY.

When creating a VARRAY type, you must specify the maximum size. Once you have

declared a VARRAY type, it can be used as the datatype of a column of a relational

table, as an object type attribute, or as a PL/SQL variable.

Supported LOB Types
A LOB is a large object type. This release of SQL*Loader supports loading of four

LOB types:

■ BLOB: a LOB containing unstructured binary data

See Also:

■ Loading Column Objects on page 7-1

■ Loading Object Tables on page 7-12

See Also: Loading Collections (Nested Tables and VARRAYs) on

page 7-29 for details on using SQL*Loader control file data

definition language to load these collection types
3-14 Oracle9i Database Utilities

Application Development: Direct Path Load API
■ CLOB: a LOB containing character data

■ NCLOB: a LOB containing characters in a database national character set

■ BFILE: a BLOB stored outside of the database tablespaces in a server-side

operating system file

LOBs can be column datatypes, and with the exception of the NCLOB, they can be

an object’s attribute datatypes. LOBs can have an actual value, they can be null, or

they can be "empty."

Partitioned Object Support
SQL*Loader supports loading partitioned objects in the database. A partitioned

object in an Oracle database is a table or index consisting of partitions (pieces) that

have been grouped, typically by common logical attributes. For example, sales data

for the year 2000 might be partitioned by month. The data for each month is stored

in a separate partition of the sales table. Each partition is stored in a separate

segment of the database and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:

■ A single partition of a partitioned table

■ All partitions of a partitioned table

■ A nonpartitioned table

Application Development: Direct Path Load API
Oracle Corporation provides a direct path load API for application developers. See

the Oracle Call Interface Programmer’s Guide for more information.

See Also: Loading LOBs on page 7-18 for details on using

SQL*Loader control file data definition language to load these LOB

types
SQL*Loader Concepts 3-15

Application Development: Direct Path Load API
3-16 Oracle9i Database Utilities

SQL*Loader Command-Line Refe
4

SQL*Loader Command-Line Reference

This chapter describes the command-line parameters used to invoke SQL*Loader.

The following topics are discussed:

■ Invoking SQL*Loader

■ Command-Line Parameters

■ Exit Codes for Inspection and Display

Invoking SQL*Loader
When you invoke SQL*Loader, you can specify certain parameters to establish

session characteristics. Parameters can be entered in any order, optionally separated

by commas. You specify values for parameters, or in some cases, you can accept the

default without entering a value.

For example:

SQLLDR CONTROL=foo.ctl, LOG=bar.log, BAD=baz.bad, DATA=etc.dat
 USERID=scott/tiger, ERRORS=999, LOAD=2000, DISCARD=toss.dis,
 DISCARDMAX=5

If you invoke SQL*Loader without specifying any parameters, SQL*Loader displays

a help screen similar to the following. It lists the available parameters and their

default values.

sqlldr
...
SQL*Loader: Release 9.2.0.1.0 - Production on Wed Feb 27 12:06:17 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.
rence 4-1

Invoking SQL*Loader
Usage: SQLLDR keyword=value [,keyword=value,...]

Valid Keywords:

 userid -- ORACLE username/password
 control -- Control file name
 log -- Log file name
 bad -- Bad file name
 data -- Data file name
 discard -- Discard file name
discardmax -- Number of discards to allow (Default all)
 skip -- Number of logical records to skip (Default 0)
 load -- Number of logical records to load (Default all)
 errors -- Number of errors to allow (Default 50)
 rows -- Number of rows in conventional path bind array or between
direct path data saves
 (Default: Conventional path 64, Direct path all)
 bindsize -- Size of conventional path bind array in bytes (Default 256000)
 silent -- Suppress messages during run (header,feedback,errors,discards,partitions)
 direct -- use direct path (Default FALSE)
 parfile -- parameter file: name of file that contains parameter specifications
 parallel -- do parallel load (Default FALSE)
 file -- File to allocate extents from
skip_unusable_indexes -- disallow/allow unusable indexes or index partitions (Default FALSE)
skip_index_maintenance -- do not maintain indexes, mark affected indexes as unusable (Default
FALSE)
 readsize -- Size of Read buffer (Default 1048576)
external_table -- use external table for load; NOT_USED, GENERATE_ONLY, EXECUTE (Default NOT_
USED)
columnarrayrows -- Number of rows for direct path column array (Default 5000)
streamsize -- Size of direct path stream buffer in bytes (Default 256000)
multithreading -- use multithreading in direct path
 resumable -- enable or disable resumable for current session (Default FALSE)
resumable_name -- text string to help identify resumable statement
resumable_timeout -- wait time (in seconds) for RESUMABLE (Default 7200)
date_cache -- size (in entries) of date conversion cache (Default 1000)

PLEASE NOTE: Command-line parameters may be specified either by position or by keywords.
An example of the former case is ’sqlldr scott/tiger foo’; an example of the latter is ’sqlldr
control=foo userid=scott/tiger’. One may specify parameters by position before but not after
parameters specified by keywords. For example,’sqlldr scott/tiger control=foo logfile=log’ is
allowed, but ’sqlldr scott/tiger control=foo log’ is not, even though the position of the
parameter ’log’ is correct.
4-2 Oracle9i Database Utilities

Command-Line Parameters
Specifying Parameters in the Control File
If the length of the command line exceeds the size of the maximum command line

on your system, you can put some command-line parameters in the control file. See

OPTIONS Clause on page 5-4 for information on how to do this.

They can also be specified in a separate file specified by the PARFILE parameter.

These alternative methods are useful for specifying parameters whose values

seldom change. Parameters specified in this manner can be overridden from the

command line.

Command-Line Parameters
This section describes each SQL*Loader command-line parameter. The defaults and

maximum values listed for these parameters are for UNIX-based systems. They

may be different on your operating system. Refer to your Oracle operating

system-specific documentation for more information.

BAD (bad file)
Default: The name of the datafile, with an extension of .bad .

BAD specifies the name of the bad file created by SQL*Loader to store records that

cause errors during insert or that are improperly formatted. If a filename is not

specified, the default is used.

Note: The command to invoke SQL*Loader is operating

system-dependent. The examples in this chapter use the

UNIX-based name, sqlldr . See your Oracle operating

system-specific documentation for the correct command for your

system.

See Also: Command-Line Parameters on page 4-3 for

descriptions of all the command-line parameters

See Also:

■ Chapter 5 for a detailed description of the SQL*Loader control

file

■ PARFILE (parameter file) on page 4-10
SQL*Loader Command-Line Reference 4-3

Command-Line Parameters
A bad file filename specified on the command line becomes the bad file associated

with the first INFILE statement in the control file. If the bad file filename was also

specified in the control file, the command-line value overrides it.

BINDSIZE (maximum size)
Default: To see the default value for this parameter, invoke SQL*Loader without

any parameters, as described in Invoking SQL*Loader on page 4-1.

BINDSIZE specifies the maximum size (bytes) of the bind array. The size of the

bind array given by BINDSIZE overrides the default size (which is system

dependent) and any size determined by ROWS.

COLUMNARRAYROWS
Default: To see the default value for this parameter, invoke SQL*Loader without

any parameters, as described in Invoking SQL*Loader on page 4-1.

Specifies the number of rows to allocate for direct path column arrays. The value for

this parameter is not calculated by SQL*Loader. You must either specify it or accept

the default.

CONTROL (control file)
Default: none

CONTROL specifies the name of the SQL*Loader control file that describes how to

load data. If a file extension or file type is not specified, it defaults to .ctl . If the

filename is omitted, SQL*Loader prompts you for it.

See Also: Specifying the Bad File on page 5-11 for information

about the format of bad files

See Also:

■ Bind Arrays and Conventional Path Loads on page 5-44

■ READSIZE (read buffer size) on page 4-10

See Also:

■ Using CONCATENATE to Assemble Logical Records on

page 5-27

■ Specifying the Number of Column Array Rows and Size of

Stream Buffers on page 9-21
4-4 Oracle9i Database Utilities

Command-Line Parameters
If the name of your SQL*Loader control file contains special characters, your

operating system may require that they be preceded by an escape character. Also, if

your operating system uses backslashes in its file system paths, you may need to

use multiple escape characters or to enclose the path in quotation marks. See your

Oracle operating system-specific documentation for more information.

DATA (datafile)
Default: The name of the control file, with an extension of .dat .

DATA specifies the name of the datafile containing the data to be loaded. If you do

not specify a file extension or file type, the default is .dat.

If you specify a datafile on the command line and also specify datafiles in the

control file with INFILE, the data specified on the command line is processed first.

The first datafile specified in the control file is ignored. All other datafiles specified

in the control file are processed.

If you specify a file processing option when loading data from the control file, a

warning message will be issued.

DATE_CACHE
Default: Enabled (for 1000 elements). To completely disable the date cache feature,

set it to 0.

DATE_CACHE specifies the date cache size (in entries). For example, DATE_
CACHE=5000 specifies that each date cache created can contain a maximum of 5000

unique date entries. Every table has its own date cache, if one is needed. A date

cache is created only if at least one date or timestamp value is loaded that requires

datatype conversion in order to be stored in the table.

The date cache feature is only available for direct path loads. It is enabled by

default. The default date cache size is 1000 elements. If the default size is used and

the number of unique input values loaded exceeds 1000, then the date cache feature

is automatically disabled for that table. However, if you override the default and

specify a nonzero date cache size and that size is exceeded, then the cache is not

disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log

file to tune the size of the cache for future similar loads.

See Also: Chapter 5 for a detailed description of the SQL*Loader

control file
SQL*Loader Command-Line Reference 4-5

Command-Line Parameters
DIRECT (data path)
Default: false

DIRECT specifies the data path, that is, the load method to use, either conventional

path or direct path. A value of true specifies a direct path load. A value of false
specifies a conventional path load.

DISCARD (filename)
Default: The name of the datafile, with an extension of .dsc .

DISCARD specifies a discard file (optional) to be created by SQL*Loader to store

records that are neither inserted into a table nor rejected.

A discard file filename specified on the command line becomes the discard file

associated with the first INFILE statement in the control file. If the discard file

filename is specified also in the control file, the command-line value overrides it.

DISCARDMAX (integer)
Default: ALL

DISCARDMAXspecifies the number of discard records to allow before data loading is

terminated. To stop on the first discarded record, specify one (1).

ERRORS (errors to allow)
Default: To see the default value for this parameter, invoke SQL*Loader without

any parameters, as described in Invoking SQL*Loader on page 4-1.

ERRORS specifies the maximum number of insert errors to allow. If the number of

errors exceeds the value specified for ERRORS, then SQL*Loader terminates the

load. To permit no errors at all, set ERRORS=0.To specify that all errors be allowed,

use a very high number.

On a single-table load, SQL*Loader terminates the load when errors exceed this

error limit. Any data inserted up that point, however, is committed.

See Also: Specifying a Value for the Date Cache on page 9-22

See Also: Chapter 9, "Conventional and Direct Path Loads"

See Also: Discarded and Rejected Records on page 3-10 for

information about the format of discard files
4-6 Oracle9i Database Utilities

Command-Line Parameters
SQL*Loader maintains the consistency of records across all tables. Therefore,

multitable loads do not terminate immediately if errors exceed the error limit. When

SQL*Loader encounters the maximum number of errors for a multitable load, it

continues to load rows to ensure that valid rows previously loaded into tables are

loaded into all tables and/or rejected rows filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

EXTERNAL_TABLE
Default: NOT_USED

EXTERNAL_TABLE instructs SQL*Loader whether or not to load data using the

external tables option. There are three possible values:

■ NOT_USED—the default value. It means the load is performed using either

conventional or direct path mode.

■ GENERATE_ONLY—places all the SQL statements needed to do the load using

external tables, as described in the control file, in the SQL*Loader log file. These

SQL statements can be edited and customized. The actual load can be done later

without the use of SQL*Loader by executing these statements in SQL*Plus. See

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY on page 8-8

for an example of what this log file would look like.

■ EXECUTE—attempts to execute the SQL statements that are needed to do the

load using external tables. However, if any of the SQL statements returns an

error, then the attempt to load stops. Statements are placed in the log file as they

are executed. This means that if a SQL statement returns an error, then the

remaining SQL statements required for the load will not be placed in the control

file.

Note that the external tables option uses directory objects in the database to indicate

where all datafiles are stored and to indicate where output files, such as bad files

and discard files, are created. You must have READ access to the directory objects

containing the datafiles, and you must have WRITE access to the directory objects

where the output files are created. If there are no existing directory objects for the

location of a datafile or output file, SQL*Loader will generate the SQL statement to

create one. Note that if the EXECUTE option is specified, then you must have the

CREATE ANY DIRECTORY privilege.
SQL*Loader Command-Line Reference 4-7

Command-Line Parameters
When using a multitable load, SQL*Loader does the following:

1. Creates a table in the database that describes all fields in the datafile that will be

loaded into any table.

2. Creates an INSERT statement to load this table from an external table

description of the data.

3. Executes one INSERT statement for every table in the control file.

To see an example of this, run case study 5 (Case Study 5: Loading Data into

Multiple Tables on page 10-18), but add the EXTERNAL_TABLE=GENERATE_ONLY
parameter. To guarantee unique names in the external table, SQL*Loader uses

generated names for all fields. This is because the field names may not be unique

across the different tables in the control file.

Restrictions When Using EXTERNAL_TABLE
The following restrictions apply when you use the EXTERNAL_TABLE qualifier:

Note: The EXTERNAL_TABLE=EXECUTE qualifier tells

SQL*Loader to create an external table that can be used to load data

and then execute the INSERT statement to load the data. All files in

the external table must be identified as being in a directory object.

SQL*Loader is supposed to use directory objects that already exist

and that you have privileges to access. However, SQL*Loader does

not find the matching directory object. Because no match is found,

SQL*Loader attempts to create a temporary directory object. If you

do not have privileges to create new directory objects, then the

operation fails.

To work around this, use EXTERNAL_TABLE=GENERATE_ONLY to
create the SQL statements that SQL*Loader would try to execute.

Extract those SQL statements and change references to directory

objects to be the directory object that you have privileges to access.

Then, execute those SQL statements

See Also:

■ Chapter 11, "External Tables Concepts"

■ Chapter 12, "External Tables Access Parameters"
4-8 Oracle9i Database Utilities

Command-Line Parameters
■ Julian dates cannot be used when you insert data into a database table from an

external table through SQL*Loader. To work around this, use TO_DATE and TO_
CHAR to convert the Julian date format, as shown in the following example:

TO_CHAR(TO_DATE(:COL1, ’MM-DD-YYYY’), ’J’)

■ Built-in functions and SQL strings cannot be used for object elements when you

insert data into a database table from an external table.

FILE (file to load into)
Default: none

FILE specifies the database file to allocate extents from. It is used only for parallel

loads. By varying the value of the FILE parameter for different SQL*Loader

processes, data can be loaded onto a system with minimal disk contention.

LOAD (records to load)
Default: All records are loaded.

LOAD specifies the maximum number of logical records to load (after skipping the

specified number of records). No error occurs if fewer than the maximum number

of records are found.

LOG (log file)
Default: The name of the control file, with an extension of .log .

LOG specifies the log file that SQL*Loader will create to store logging information

about the loading process.

MULTITHREADING
Default: true on multiple-CPU systems, false on single-CPU systems

This parameter is available only for direct path loads.

By default, the multithreading option is always enabled (set to true) on

multiple-CPU systems. In this case, the definition of a multiple-CPU system is a

single system that has more than one CPU.

See Also: Parallel Data Loading Models on page 9-30
SQL*Loader Command-Line Reference 4-9

Command-Line Parameters
On single-CPU systems, multithreading is set to false by default. To use

multithreading between two single-CPU systems, you must enable multithreading;

it will not be on by default. This will allow stream building on the client system to

be done in parallel with stream loading on the server system.

Multithreading functionality is operating system-dependent. Not all operating

systems support multithreading.

PARALLEL (parallel load)
Default: false

PARALLEL specifies whether direct loads can operate in multiple concurrent

sessions to load data into the same table.

PARFILE (parameter file)
Default: none

PARFILE specifies the name of a file that contains commonly used command-line

parameters. For example, the command line could read:

sqlldr PARFILE=example.par

The parameter file could have the following contents:

USERID=scott/tiger
CONTROL=example.ctl
ERRORS=9999
LOG=example.log

READSIZE (read buffer size)
Default: To see the default value for this parameter, invoke SQL*Loader without

any parameters, as described in Invoking SQL*Loader on page 4-1.

See Also: Optimizing Direct Path Loads on Multiple-CPU

Systems on page 9-23

See Also: Parallel Data Loading Models on page 9-30

Note: Although it is not usually important, on some systems it

may be necessary to have no spaces around the equal sign (=) in the

parameter specifications.
4-10 Oracle9i Database Utilities

Command-Line Parameters
The READSIZE parameter is used only when reading data from datafiles. When

reading records from a control file, a value of 64K is always used as the READSIZE.

The READSIZE parameter lets you specify (in bytes) the size of the read buffer, if

you choose not to use the default. The maximum size allowed is 20MB for both

direct path loads and conventional path loads.

In the conventional path method, the bind array is limited by the size of the read

buffer. Therefore, the advantage of a larger read buffer is that more data can be read

before a commit is required.

For example:

sqlldr scott/tiger CONTROL=ulcas1.ctl READSIZE=1000000

This example enables SQL*Loader to perform reads from the external datafile in

chunks of 1,000,000 bytes before a commit is required.

The READSIZE parameter has no effect on LOBs. The size of the LOB read buffer is

fixed at 64 KB.

See BINDSIZE (maximum size) on page 4-4.

RESUMABLE
Default: false

The RESUMABLE parameter is used to enable and disable resumable space

allocation. Because this parameter is disabled by default, you must set

RESUMABLE=true in order to use its associated parameters, RESUMABLE_NAME
and RESUMABLE_TIMEOUT.

Note: If the READSIZE value specified is smaller than the

BINDSIZE value, the READSIZE value will be increased.

See Also:

■ Oracle9i Database Concepts

■ Oracle9i Database Administrator’s Guide
SQL*Loader Command-Line Reference 4-11

Command-Line Parameters
RESUMABLE_NAME
Default: ’User USERNAME (USERID), Session SESSIONID, Instance
INSTANCEID’

The value for this parameter identifies the statement that is resumable. This value is

a user-defined text string that is inserted in either the USER_RESUMABLE or DBA_
RESUMABLE view to help you identify a specific resumable statement that has been

suspended.

This parameter is ignored unless the RESUMABLEparameter is set to true to enable

resumable space allocation.

RESUMABLE_TIMEOUT
Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be

fixed. If the error is not fixed within the timeout period, execution of the statement

is aborted.

This parameter is ignored unless the RESUMABLEparameter is set to true to enable

resumable space allocation.

ROWS (rows per commit)
Default: To see the default value for this parameter, invoke SQL*Loader without

any parameters, as described in Invoking SQL*Loader on page 4-1.

Conventional path loads only: ROWS specifies the number of rows in the bind array.

See Bind Arrays and Conventional Path Loads on page 5-44.

Direct path loads only: ROWS identifies the number of rows you want to read from

the datafile before a data save. The default is to read all rows and save data once at

the end of the load. See Using Data Saves to Protect Against Data Loss on page 9-13.

Because the direct load is optimized for performance, it uses buffers that are the

same size and format as the system’s I/O blocks. Only full buffers are written to the

database, so the value of ROWS is approximate.

SILENT (feedback mode)
When SQL*Loader begins, a header message similar to the following appears on the

screen and is placed in the log file:

SQL*Loader: Release 9.2.0.1.0 - Production on Wed Feb 27 14:33:54 2002
4-12 Oracle9i Database Utilities

Command-Line Parameters
(c) Copyright 2002 Oracle Corporation. All rights reserved.

As SQL*Loader executes, you also see feedback messages on the screen, for

example:

Commit point reached - logical record count 20

SQL*Loader may also display data error messages like the following:

Record 4: Rejected - Error on table EMP
ORA-00001: unique constraint <name> violated

You can suppress these messages by specifying SILENT with one or more values.

For example, you can suppress the header and feedback messages that normally

appear on the screen with the following command-line argument:

SILENT=(HEADER, FEEDBACK)

Use the appropriate values to suppress one or more of the following:

■ HEADER - Suppresses the SQL*Loader header messages that normally appear

on the screen. Header messages still appear in the log file

■ FEEDBACK - Suppresses the "commit point reached" feedback messages that

normally appear on the screen

■ ERRORS - Suppresses the data error messages in the log file that occur when a

record generates an Oracle error that causes it to be written to the bad file. A

count of rejected records still appears.

■ DISCARDS - Suppresses the messages in the log file for each record written to

the discard file.

■ PARTITIONS - Disables writing the per-partition statistics to the log file during

a direct load of a partitioned table.

■ ALL - Implements all of the suppression values: HEADER, FEEDBACK,
ERRORS, DISCARDS, and PARTITIONS.

SKIP (records to skip)
Default: No records are skipped.

SKIP specifies the number of logical records from the beginning of the file that

should not be loaded.
SQL*Loader Command-Line Reference 4-13

Command-Line Parameters
This parameter continues loads that have been interrupted for some reason. It is

used for all conventional loads, for single-table direct loads, and for multiple-table

direct loads when the same number of records were loaded into each table. It is not

used for multiple-table direct loads when a different number of records were loaded

into each table.

SKIP_INDEX_MAINTENANCE
Default: false

The SKIP_INDEX_MAINTENANCE parameter stops index maintenance for direct

path loads but does not apply to conventional path loads. It causes the index

partitions that would have had index keys added to them instead to be marked

Index Unusable because the index segment is inconsistent with respect to the data it

indexes. Index segments that are not affected by the load retain the Index Unusable

state they had prior to the load.

The SKIP_INDEX_MAINTENANCE parameter:

■ Applies to both local and global indexes

■ Can be used (with the PARALLEL parameter) to do parallel loads on an object

that has indexes

■ Can be used (with the PARTITION parameter on the INTO TABLEclause) to do

a single partition load to a table that has global indexes

■ Puts a list (in the SQL*Loader log file) of the indexes and index partitions that

the load set into Index Unusable state

SKIP_UNUSABLE_INDEXES
Default: false

The SKIP_UNUSABLE_INDEXES parameter applies to both conventional and direct

path loads.

SKIP_UNUSABLE_INDEXES=true allows SQL*Loader to load a table with indexes

that are in Index Unusable (IU) state prior to the beginning of the load. Indexes that

are not in IU state at load time will be maintained by SQL*Loader. Indexes that are

in IU state at load time will not be maintained but will remain in IU state at load

completion.

See Also: Interrupted Loads on page 5-24
4-14 Oracle9i Database Utilities

Command-Line Parameters
However, indexes that are unique and marked IU are not allowed to skip index

maintenance. This rule is enforced by DML operations, and enforced by the direct

path load to be consistent with DML.

Load behavior with SKIP_UNUSABLE_INDEXES=false differs slightly between

conventional path loads and direct path loads:

■ On a conventional path load, records that are to be inserted will instead be

rejected if their insertions would require updating an index.

■ On a direct path load, the load terminates upon encountering a record that

would require index maintenance be done on an index that is in unusable state.

STREAMSIZE
Default: To see the default value for this parameter, invoke SQL*Loader without

any parameters, as described in Invoking SQL*Loader on page 4-1.

Specifies the size, in bytes, for direct path streams.

USERID (username/password)
Default: none

USERIDis used to provide your Oracle username/password. If it is omitted, you

are prompted for it. If only a slash is used, USERID defaults to your operating

system login.

If you connect as user SYS, you must also specify AS SYSDBA in the connect string.

For example:

sqlldr \’SYS/ password AS SYSDBA\’ foo.ctl

See Also: Specifying the Number of Column Array Rows and

Size of Stream Buffers on page 9-21
SQL*Loader Command-Line Reference 4-15

Exit Codes for Inspection and Display
Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon

completion. Depending on the platform, SQL*Loader may report the outcome in a

process exit code as well as recording the results in the log file. This Oracle

SQL*Loader functionality allows for checking the outcome of a SQL*Loader

invocation from the command line or script. Table 4–1 shows the exit codes for

various results.

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1

Note: This example shows the entire connect string enclosed in

quotation marks and backslashes. This is because the string, AS
SYSDBA, contains a blank, a situation for which most operating

systems require that the entire connect string be placed in quotation

marks or marked as a literal by some method. Some operating

systems also require that quotation marks on the command line be

preceded by an escape character. In this example, backslashes are

used as the escape character. If the backslashes were not present,

the command line parser that SQL*Loader uses would not

understand the quotation marks and would remove them.

See your Oracle operating system-specific documentation for

information about special and reserved characters on your system.

Table 4–1 Exit Codes for SQL*Loader

Result Exit Code

All rows loaded successfully EX_SUCC

All or some rows rejected EX_WARN

All or some rows discarded EX_WARN

Discontinued load EX_WARN

Command-line or syntax errors EX_FAIL

Oracle errors nonrecoverable for SQL*Loader EX_FAIL

Operating system errors (such as file open/close and malloc) EX_FAIL
4-16 Oracle9i Database Utilities

Exit Codes for Inspection and Display
EX_WARN 2
EX_FTL 3

For Windows NT, the exit codes are as follows:

EX_SUCC 0
EX_WARN 2
EX_FAIL 3
EX_FTL 4

If SQL*Loader returns any exit code other than zero, you should consult your

system log files and SQL*Loader log files for more detailed diagnostic information.

In UNIX, you can check the exit code from the shell to determine the outcome of a

load. For example, you could place the SQL*Loader command in a script and check

the exit code within the script:

#!/bin/sh
sqlldr scott/tiger control=ulcase1.ctl log=ulcase1.log
retcode=`echo $?`
case "$retcode" in
0) echo "SQL*Loader execution successful" ;;
1) echo "SQL*Loader execution exited with EX_FAIL, see logfile" ;;
2) echo "SQL*Loader execution exited with EX_WARN, see logfile" ;;
3) echo "SQL*Loader execution encountered a fatal error" ;;
*) echo "unknown return code";;
esac
SQL*Loader Command-Line Reference 4-17

Exit Codes for Inspection and Display
4-18 Oracle9i Database Utilities

SQL*Loader Control File Refe
5

SQL*Loader Control File Reference

This chapter describes the SQL*Loader control file. The following topics are

included:

■ Control File Contents

■ Specifying Command-Line Parameters in the Control File

■ Specifying Filenames and Object Names

■ Specifying Datafiles

■ Identifying Data in the Control File with BEGINDATA

■ Specifying Datafile Format and Buffering

■ Specifying the Bad File

■ Specifying the Discard File

■ Handling Different Character Encoding Schemes

■ Interrupted Loads

■ Assembling Logical Records from Physical Records

■ Loading Logical Records into Tables

■ Index Options

■ Benefits of Using Multiple INTO TABLE Clauses

■ Bind Arrays and Conventional Path Loads
rence 5-1

Control File Contents
Control File Contents
The SQL*Loader control file is a text file that contains data definition language

(DDL) instructions. DDL is used to control the following aspects of a SQL*Loader

session:

■ Where SQL*Loader will find the data to load

■ How SQL*Loader expects that data to be formatted

■ How SQL*Loader will be configured (memory management, rejecting records,

interrupted load handling, and so on) as it loads the data

■ How SQL*Loader will manipulate the data being loaded

See Appendix A for syntax diagrams of the SQL*Loader DDL.

To create the SQL*Loader control file, use a text editor such as vi or xemacs.create.

In general, the control file has three main sections, in the following order:

■ Session-wide information

■ Table and field-list information

■ Input data (optional section)

Example 5–1 shows a sample control file.

Example 5–1 Sample Control File

1 -- This is a sample control file
2 LOAD DATA
3 INFILE ’sample.dat’
4 BADFILE ’sample.bad’
5 DISCARDFILE ’sample.dsc’
6 APPEND
7 INTO TABLE emp
8 WHEN (57) = ’.’
9 TRAILING NULLCOLS
10 (hiredate SYSDATE,
 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
5-2 Oracle9i Database Utilities

Control File Contents
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,’$99,999.99’)",
 comm INTEGER EXTERNAL ENCLOSED BY ’(’ AND ’%’
 ":comm * 100"
)

In this sample control file, the numbers that appear to the left would not appear in a

real control file. They are keyed in this sample to the explanatory notes in the

following list:

1. This is how comments are entered in a control file. See Comments in the

Control File on page 5-4.

2. The LOAD DATA statement tells SQL*Loader that this is the beginning of a new

data load. See Appendix A for syntax information.

3. The INFILE clause specifies the name of a datafile containing data that you

want to load. See Specifying Datafiles on page 5-7.

4. The BADFILE parameter specifies the name of a file into which rejected records

are placed. See Specifying the Bad File on page 5-11.

5. The DISCARDFILE parameter specifies the name of a file into which discarded

records are placed. See Specifying the Discard File on page 5-14.

6. The APPEND parameter is one of the options you can use when loading data

into a table that is not empty. See Loading Data into Nonempty Tables on

page 5-33.

To load data into a table that is empty, you would use the INSERT parameter.

See Loading Data into Empty Tables on page 5-33.

7. The INTO TABLE clause allows you to identify tables, fields, and datatypes. It

defines the relationship between records in the datafile and tables in the

database. See Specifying Table Names on page 5-32.

8. The WHEN clause specifies one or more field conditions. SQL*Loader decides

whether or not to load the data based on these field conditions. See Loading

Records Based on a Condition on page 5-35.

9. The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively

positioned columns that are not present in the record as null columns. See

Handling Short Records with Missing Data on page 5-37.
SQL*Loader Control File Reference 5-3

Specifying Command-Line Parameters in the Control File
10. The remainder of the control file contains the field list, which provides

information about column formats in the table being loaded. See Chapter 6 for

information about that section of the control file.

Comments in the Control File
Comments can appear anywhere in the command section of the file, but they

should not appear within the data. Precede any comment with two hyphens, for

example:

--This is a comment

All text to the right of the double hyphen is ignored, until the end of the line. An

example of comments in a control file is shown in Case Study 3: Loading a

Delimited, Free-Format File on page 10-11.

Specifying Command-Line Parameters in the Control File
The OPTIONS clause is useful when you typically invoke a control file with the

same set of options. The OPTIONS clause precedes the LOAD DATA statement.

OPTIONS Clause
The OPTIONS clause allows you to specify runtime parameters in the control file,

rather than on the command line. The following parameters can be specified using

the OPTIONS clause. These parameters are described in greater detail in Chapter 4.

BINDSIZE = n
COLUMNARRAYROWS =n
DIRECT = {TRUE | FALSE}
ERRORS = n
LOAD = n
MULTITHREADING = {TRUE | FALSE}
PARALLEL = {TRUE | FALSE}
READSIZE = n
RESUMABLE = {TRUE | FALSE}
RESUMABLE_NAME = ’text string’
RESUMABLE_TIMEOUT =n
ROWS = n
SILENT = {HEADERS | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL}
SKIP = n
SKIP_INDEX_MAINTENANCE = {TRUE | FALSE}
SKIP_UNUSABLE_INDEXES = {TRUE | FALSE}
STREAMSIZE = n
5-4 Oracle9i Database Utilities

Specifying Filenames and Object Names
For example:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Specifying Filenames and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for

example, table and column names). The information in this section discusses the

following topics:

■ Filenames That Conflict with SQL and SQL*Loader Reserved Words

■ Specifying SQL Strings

■ Operating System Considerations

Filenames That Conflict with SQL and SQL*Loader Reserved Words
SQL and SQL*Loader reserved words must be specified within double quotation

marks. The only SQL*Loader reserved word is CONSTANT.

You must use double quotation marks if the object name contains special characters

other than those recognized by SQL ($, #, _), or if the name is case sensitive.

Specifying SQL Strings
You must specify SQL strings within double quotation marks. The SQL string

applies SQL operators to data fields.

Operating System Considerations
The following sections discuss situations in which your course of action may

depend on the operating system you are using.

Note: Values specified on the command line override values

specified in the OPTIONS clause in the control file.

See Also: Oracle9i SQL Reference

See Also: Applying SQL Operators to Fields on page 6-50
SQL*Loader Control File Reference 5-5

Specifying Filenames and Object Names
Specifying a Complete Path
If you encounter problems when trying to specify a complete path name, it may be

due to an operating system-specific incompatibility caused by special characters in

the specification. In many cases, specifying the path name within single quotation

marks prevents errors.

If not, please see your Oracle operating system-specific documentation for possible

solutions.

Backslash Escape Character
In DDL syntax, you can place a double quotation mark inside a string delimited by

double quotation marks by preceding it with the escape character, "\" (if the escape

character is allowed on your operating system). The same rule applies when single

quotation marks are required in a string delimited by single quotation marks.

For example, homedir\data"norm\mydata contains a double quotation mark.

Preceding the double quotation mark with a backslash indicates that the double

quotation mark is to be taken literally:

INFILE ’homedir\data\"norm\mydata’

You can also put the escape character itself into a string by entering it twice:

For example:

"so’\"far" or ’so\’"far’ is parsed as so’"far
"’so\\far’" or ’\’so\\far\’’ is parsed as ’so\far’
"so\\\\far" or ’so\\\\far’ is parsed as so\\far

Nonportable Strings
There are two kinds of character strings in a SQL*Loader control file that are not

portable between operating systems: filename and file processing option strings. When

you convert to a different operating system, you will probably need to modify these

strings. All other strings in a SQL*Loader control file should be portable between

operating systems.

Note: A double quotation mark in the initial position cannot be

preceded by an escape character. Therefore, you should avoid

creating strings with an initial quotation mark.
5-6 Oracle9i Database Utilities

Specifying Datafiles
Escaping the Backslash
If your operating system uses the backslash character to separate directories in a

path name, and if the version of the Oracle database server running on your

operating system implements the backslash escape character for filenames and

other nonportable strings, then you must specify double backslashes in your path

names and use single quotation marks.

See your Oracle operating system-specific documentation for information about

which escape characters are required or allowed.

Escape Character Is Sometimes Disallowed
The version of the Oracle database server running on your operating system may

not implement the escape character for nonportable strings. When the escape

character is disallowed, a backslash is treated as a normal character, rather than as

an escape character (although it is still usable in all other strings). Then path names

such as the following can be specified normally:

INFILE ’topdir\mydir\myfile’

Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single

quotation marks cannot be embedded inside another string delimited by single

quotation marks. This rule also holds for double quotation marks. A string within

double quotation marks cannot be embedded inside another string delimited by

double quotation marks.

Specifying Datafiles
To specify a datafile that contains the data to be loaded, use the INFILE clause,

followed by the filename and optional file processing options string. You can

specify multiple files by using multiple INFILE clauses.

If no filename is specified, the filename defaults to the control filename with an

extension or file type of .dat .

Note: You can also specify the datafile from the command line,

using the DATA parameter described in Command-Line Parameters

on page 4-3. A filename specified on the command line overrides

the first INFILE clause in the control file.
SQL*Loader Control File Reference 5-7

Specifying Datafiles
If the control file itself contains the data to be loaded, specify an asterisk (*). This

specification is described in Identifying Data in the Control File with BEGINDATA

on page 5-10.

The syntax for the INFILE clause is as follows:

Table 5–1 describes the parameters for the INFILE clause.

Note: The information in this section applies only to primary

datafiles. It does not apply to LOBFILEs or SDFs.

For information about LOBFILES, see Loading LOB Data from

LOBFILEs on page 7-23.

For information about SDFs, see Secondary Datafiles (SDFs) on

page 7-31.

Table 5–1 Parameters for the INFILE Clause

Parameter Description

INFILE or INDDN Specifies that a datafile specification follows.

Note that INDDN has been retained for situations in which
compatibility with DB2 is required.

input_filename Name of the file containing the data.

Any spaces or punctuation marks in the filename must be
enclosed in single quotation marks. See Specifying Filenames
and Object Names on page 5-5.

INFILE

INDDN

*

input_filename

os_file_proc_clause

BADFILE filename

BADDN

DISCARDFILE

DISCARDDN
filename

DISCARDS

DISCARDMAX
integer
5-8 Oracle9i Database Utilities

Specifying Datafiles
Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax:

■ Data contained in the control file itself:

INFILE *

■ Data contained in a file named foo with a default extension of .dat:

INFILE foo

■ Data contained in a file named datafile .dat with a full path specified:

INFILE ’c:/topdir/subdir/datafile.dat’

Specifying Multiple Datafiles
To load data from multiple datafiles in one SQL*Loader run, use an INFILE
statement for each datafile. Datafiles need not have the same file processing options,

although the layout of the records must be identical. For example, two files could be

specified with completely different file processing options strings, and a third could

consist of data in the control file.

You can also specify a separate discard file and bad file for each datafile. In such a

case, the separate bad files and discard files must be declared immediately after

* If your data is in the control file itself, use an asterisk instead of
the filename. If you have data in the control file as well as
datafiles, you must specify the asterisk first in order for the
data to be read.

os_file_proc_clause This is the file-processing options string. It specifies the datafile
format. It also optimizes datafile reads. The syntax used for
this string is specific to your operating system. See Specifying
Datafile Format and Buffering on page 5-11.

Note: Filenames that include spaces or punctuation marks must

be enclosed in single quotation marks. For more details on filename

specification, see Specifying Filenames and Object Names on

page 5-5.

Table 5–1 (Cont.) Parameters for the INFILE Clause

Parameter Description
SQL*Loader Control File Reference 5-9

Identifying Data in the Control File with BEGINDATA
each datafile name. For example, the following excerpt from a control file specifies

four datafiles with separate bad and discard files:

INFILE mydat1.dat BADFILE mydat1.bad DISCARDFILE mydat1.dis
INFILE mydat2.dat
INFILE mydat3.dat DISCARDFILE mydat3.dis
INFILE mydat4.dat DISCARDMAX 10 0

■ For mydat1.dat, both a bad file and discard file are explicitly specified.

Therefore both files are created, as needed.

■ For mydat2.dat, neither a bad file nor a discard file is specified. Therefore,

only the bad file is created, as needed. If created, the bad file has the default

filename and extension mydat2.bad . The discard file is not created, even if

rows are discarded.

■ For mydat3.dat, the default bad file is created, if needed. A discard file with

the specified name (mydat3.dis) is created, as needed.

■ For mydat4.dat, the default bad file is created, if needed. Because the

DISCARDMAXoption is used, SQL*Loader assumes that a discard file is required

and creates it with the default name mydat4.dsc .

Identifying Data in the Control File with BEGINDATA
If the data is included in the control file itself, then the INFILE clause is followed

by an asterisk rather than a filename. The actual data is placed in the control file

after the load configuration specifications.

Specify the BEGINDATA parameter before the first data record. The syntax is:

BEGINDATA
data

Keep the following points in mind when using the BEGINDATA parameter:

■ If you omit the BEGINDATA parameter but include data in the control file,

SQL*Loader tries to interpret your data as control information and issues an

error message. If your data is in a separate file, do not use the BEGINDATA
parameter.

■ Do not use spaces or other characters on the same line as the BEGINDATA
parameter, or the line containing BEGINDATAwill be interpreted as the first line

of data.
5-10 Oracle9i Database Utilities

Specifying the Bad File
■ Do not put comments after BEGINDATA, or they will also be interpreted as

data.

Specifying Datafile Format and Buffering
When configuring SQL*Loader, you can specify an operating system-dependent file

processing options string (os_file_proc_clause) in the control file to specify

file format and buffering.

For example, suppose that your operating system has the following option-string

syntax:

In this syntax, RECSIZE is the size of a fixed-length record, and BUFFERS is the

number of buffers to use for asynchronous I/O.

To declare a file named mydata.dat as a file that contains 80-byte records and

instruct SQL*Loader to use 8 I/O buffers, you would use the following control file

entry:

INFILE ’mydata.dat’ "RECSIZE 80 BUFFERS 8"

For details on the syntax of the file processing options string, see your Oracle

operating system-specific documentation.

Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file or reject file in which

it places records that were rejected because of formatting errors or because they

See Also:

■ Specifying Datafiles on page 5-7 for an explanation of using

INFILE

■ Case Study 1: Loading Variable-Length Data on page 10-5

Note: This example uses the recommended convention of single

quotation marks for filenames and double quotation marks for

everything else.

RECSIZE integer BUFFERS integer
SQL*Loader Control File Reference 5-11

Specifying the Bad File
caused Oracle errors. If you have specified that a bad file is to be created, the

following applies:

■ If one or more records are rejected, the bad file is created and the rejected

records are logged.

■ If no records are rejected, then the bad file is not created. When this occurs, you

must reinitialize the bad file for the next run.

■ If the bad file is created, it overwrites any existing file with the same name;

ensure that you do not overwrite a file you wish to retain.

To specify the name of the bad file, use the BADFILE parameter (or BADDN for DB2

compatibility), followed by the bad file filename. If you do not specify a name for

the bad file, the name defaults to the name of the datafile with an extension or file

type of .bad. You can also specify the bad file from the command line with the

BAD parameter described in Command-Line Parameters on page 4-3.

A filename specified on the command line is associated with the first INFILE or

INDDN clause in the control file, overriding any bad file that may have been

specified as part of that clause.

The bad file is created in the same record and file format as the datafile so that the

data can be reloaded after making corrections. For datafiles in stream record format,

the record terminator that is found in the datafile is also used in the bad file.

The syntax for the bad file is as follows:

The BADFILE or BADDN parameter specifies that a filename for the bad file follows.

(Use BADDN when DB2 compatibility is required.)

The bad_filename parameter specifies a valid filename specification for your

platform. Any spaces or punctuation marks in the filename must be enclosed in

single quotation marks.

Note: On some systems, a new version of the file is created if a file

with the same name already exists. See your Oracle operating

system-specific documentation to find out if this is the case on your

system.

BADFILE

BADDN
bad_filename
5-12 Oracle9i Database Utilities

Specifying the Bad File
Examples of Specifying a Bad File Name
To specify a bad file with filename foo and default file extension or file type of

.bad, enter:

BADFILE foo

To specify a bad file with filename bad0001 and file extension or file type of .rej,
enter either of the following lines:

BADFILE bad0001.rej
BADFILE ’/REJECT_DIR/bad0001.rej’

How Bad Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a bad file when there are rejected

rows. If there is an error loading a LOB, the row is not rejected. Rather, the LOB
column is left empty (not null with a length of zero (0) bytes). However, when the

LOBFILE is being used to load an XML column and there is an error loading this

LOB data, then the XML column is left as null.

Criteria for Rejected Records
A record can be rejected for the following reasons:

1. Upon insertion, the record causes an Oracle error (such as invalid data for a

given datatype).

2. The record is formatted incorrectly so that SQL*Loader cannot find field

boundaries.

3. The record violates a constraint or tries to make a unique index non-unique.

If the data can be evaluated according to the WHEN clause criteria (even with

unbalanced delimiters), then it is either inserted or rejected.

Neither a conventional path nor a direct path load will write a row to any table if it

is rejected because of reason number 2 in the previous list.

Additionally, a conventional path load will not write a row to any tables if reason

number 1 or 3 in the previous list is violated for any one table. The row is rejected

for that table and written to the reject file.

The log file indicates the Oracle error for each rejected record. Case Study 4:

Loading Combined Physical Records on page 10-14 demonstrates rejected records.
SQL*Loader Control File Reference 5-13

Specifying the Discard File
Specifying the Discard File
During SQL*Loader execution, it can create a discard file for records that do not

meet any of the loading criteria. The records contained in this file are called

discarded records. Discarded records do not satisfy any of the WHEN clauses

specified in the control file. These records differ from rejected records. Discarded
records do not necessarily have any bad data. No insert is attempted on a discarded

record.

A discard file is created according to the following rules:

■ You have specified a discard filename and one or more records fail to satisfy all

of the WHEN clauses specified in the control file. (If the discard file is created, it

overwrites any existing file with the same name, so be sure that you do not

overwrite any files you wish to retain.)

■ If no records are discarded, then a discard file is not created.

To create a discard file from within a control file, specify any of the following:

DISCARDFILE filename , DISCARDDNfilename (DB2), DISCARDS, or

DISCARDMAX.

To create a discard file from the command line, specify either DISCARD or

DISCARDMAX.

You can specify the discard file directly by specifying its name, or indirectly by

specifying the maximum number of discards.

The discard file is created in the same record and file format as the datafile. For

datafiles in stream record format, the same record terminator that is found in the

datafile is also used in the discard file.

Specifying the Discard File in the Control File
To specify the name of the file, use the DISCARDFILE or DISCARDDN (for

DB2-compatibility) parameter, followed by the filename.

The DISCARDFILE or DISCARDDN parameter specifies that a discard filename

follows. (Use DISCARDDN when DB2 compatibility is required.)

DISCARDFILE

DISCARDDN
discard_filename

DISCARDS

DISCARDMAX
integer
5-14 Oracle9i Database Utilities

Specifying the Discard File
The discard_filename parameter specifies a valid filename specification for

your platform. Any spaces or punctuation marks in the filename must be enclosed

in single quotation marks.

The default filename is the name of the datafile, and the default file extension or file

type is .dsc . A discard filename specified on the command line overrides one

specified in the control file. If a discard file with that name already exists, it is either

overwritten or a new version is created, depending on your operating system.

Specifying the Discard File from the Command Line
See DISCARD (filename) on page 4-6 for information on how to specify a discard

file from the command line.

A filename specified on the command line overrides any discard file that you may

have specified in the control file.

Examples of Specifying a Discard File Name
The following list shows different ways you can specify a name for the discard file

from within the control file:

■ To specify a discard file with filename circular and default file extension or

file type of .dsc :

DISCARDFILE circular

■ To specify a discard file named notappl with the file extension or file type of

.may:

DISCARDFILE notappl.may

■ To specify a full path to the discard file forget .me:

DISCARDFILE ’/discard_dir/forget.me’

Criteria for Discarded Records
If there is no INTO TABLE clause specified for a record, the record is discarded.

This situation occurs when every INTO TABLE clause in the SQL*Loader control

file has a WHEN clause and, either the record fails to match any of them, or all fields

are null.
SQL*Loader Control File Reference 5-15

Handling Different Character Encoding Schemes
No records are discarded if an INTO TABLE clause is specified without a WHEN
clause. An attempt is made to insert every record into such a table. Therefore,

records may be rejected, but none are discarded.

Case Study 7: Extracting Data from a Formatted Report on page 10-28 provides an

example of using a discard file.

How Discard Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a discard file when there are

discarded rows.

Limiting the Number of Discarded Records
You can limit the number of records to be discarded for each datafile by specifying

an integer:

When the discard limit (specified with integer) is reached, processing of the

datafile terminates and continues with the next datafile, if one exists.

You can specify a different number of discards for each datafile. Or, if you specify

the number of discards only once, then the maximum number of discards specified

applies to all files.

If you specify a maximum number of discards, but no discard filename,

SQL*Loader creates a discard file with the default filename and file extension or file

type.

Handling Different Character Encoding Schemes
SQL*Loader supports different character encoding schemes (called character sets, or

code pages). SQL*Loader uses features of Oracle’s globalization support technology

to handle the various single-byte and multibyte character encoding schemes

available today.

See Also: Oracle9i Database Globalization Support Guide

DISCARDS

DISCARDMAX
integer
5-16 Oracle9i Database Utilities

Handling Different Character Encoding Schemes
In general, loading shift-sensitive character data can be much slower than loading

simple ASCII or EBCDIC data. The fastest way to load shift-sensitive character data

is to use fixed-position fields without delimiters. To improve performance,

remember the following points:

■ The field data must have an equal number of shift-out/shift-in bytes.

■ The field must start and end in single-byte mode.

■ It is acceptable for the first byte to be shift-out and the last byte to be shift-in.

■ The first and last characters cannot be multibyte.

■ If blanks are not preserved and multibyte-blank-checking is required, a slower

path is used. This can happen when the shift-in byte is the last byte of a field

after single-byte blank stripping is performed.

The following sections provide a brief introduction to some of the supported

character encoding schemes.

Multibyte (Asian) Character Sets
Multibyte character sets support Asian languages. Data can be loaded in multibyte

format, and database object names (fields, tables, and so on) can be specified with

multibyte characters. In the control file, comments and object names can also use

multibyte characters.

Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

Unicode is a universal encoded character set that supports storage of information

from most languages in a single character set. Unicode provides a unique code

value for every character, regardless of the platform, program, or language. There

are two different encodings for Unicode, UTF-16 and UTF-8.

Note: In this manual, you will see the terms UTF-16 and UTF16

both used. The term UTF-16 is a general reference to UTF-16

encoding for Unicode. The term UTF16 (no hyphen) is the specific

name of the character set and is what you should specify for the

CHARACTERSET parameter when you want to use UTF-16

encoding. This also applies to UTF-8 and UTF8.
SQL*Loader Control File Reference 5-17

Handling Different Character Encoding Schemes
The UTF-16 Unicode encoding is a fixed-width multibyte encoding in which the

character codes 0x0000 through 0x007F have the same meaning as the single-byte

ASCII codes 0x00 through 0x7F.

The UTF-8 Unicode encoding is a variable-width multibyte encoding in which the

character codes 0x00 through 0x7F have the same meaning as ASCII. A character in

UTF-8 can be 1 byte, 2 bytes, or 3 bytes long.

Database Character Sets
The Oracle database server uses the database character set for data stored in SQL

CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG), for identifiers such as table

names, and for SQL statements and PL/SQL source code. Only single-byte

character sets and varying-width character sets that include either ASCII or

EBCDIC characters are supported as database character sets. Multibyte fixed-width

character sets (for example, AL16UTF16) are not supported as the database

character set.

An alternative character set can be used in the database for data stored in SQL

NCHARdatatypes (NCHAR, NVARCHAR,and NCLOB). This alternative character set is

called the database national character set. Only Unicode character sets are

supported as the database national character set.

Datafile Character Sets
By default, the datafile is in the character set as defined by the NLS_LANG
parameter. The datafile character sets supported with NLS_LANG are the same as

those supported as database character sets. SQL*Loader supports all

Oracle-supported character sets in the datafile (even those not supported as

database character sets).

For example, SQL*Loader supports multibyte fixed-width character sets (such as

AL16UTF16 and JA16EUCFIXED) in the datafile. SQL*Loader also supports UTF-16

encoding with little endian byte ordering. However, the Oracle database server

supports only UTF-16 encoding with big endian byte ordering (AL16UTF16) and

only as a database national character set, not as a database character set.

See Also:

■ Case Study 11: Loading Data in the Unicode Character Set on

page 10-47

■ Oracle9i Database Globalization Support Guide for more

information on Unicode encoding.
5-18 Oracle9i Database Utilities

Handling Different Character Encoding Schemes
The character set of the datafile can be set up by using the NLS_LANG parameter or

by specifying a SQL*Loader CHARACTERSET parameter.

Input Character Conversion
The default character set for all datafiles, if the CHARACTERSET parameter is not

specified, is the session character set defined by the NLS_LANG parameter. The

character set used in input datafiles can be specified with the CHARACTERSET
parameter.

SQL*Loader has the capacity to automatically convert data from the datafile

character set to the database character set or the database national character set,

when they differ.

When data character set conversion is required, the target character set should be a

superset of the source datafile character set. Otherwise, characters that have no

equivalent in the target character set are converted to replacement characters, often

a default character such as a question mark (?). This causes loss of data.

The sizes of the database character types CHAR and VARCHAR2 can be specified in

bytes (byte-length semantics) or in characters (character-length semantics). If they

are specified in bytes, and data character set conversion is required, the converted

values may take more bytes than the source values if the target character set uses

more bytes than the source character set for any character that is converted. This

will result in the following error message being reported if the larger target value

exceeds the size of the database column:

ORA-01401: inserted value too large for column

You can avoid this problem by specifying the database column size in characters

and by also using character sizes in the control file to describe the data. Another

way to avoid this problem is to ensure that the maximum column size is large

enough, in bytes, to hold the converted value.

CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the

input datafile. The default character set for all datafiles, if the CHARACTERSET

See Also:

■ Oracle9i Database Concepts for more information about

character-length semantics in the database.

■ Character-Length Semantics on page 5-22
SQL*Loader Control File Reference 5-19

Handling Different Character Encoding Schemes
parameter is not specified, is the session character set defined by the NLS_LANG
parameter. Only character data (fields in the SQL*Loader datatypes CHAR,
VARCHAR, VARCHARC, numeric EXTERNAL, and the datetime and interval

datatypes) is affected by the character set of the datafile.

The CHARACTERSET syntax is as follows:

CHARACTERSET char_set_name

The char_set_name variable specifies the character set name. Normally, the

specified name must be the name of an Oracle-supported character set.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16.

AL16UTF16, which is the supported Oracle character set name for UTF-16 encoded

data, is only for UTF-16 data that is in big endian byte order. However, because you

are allowed to set up data using the byte order of the system where you create the

datafile, the data in the datafile can be either big endian or little endian. Therefore, a

different character set name (UTF16) is used. The character set name AL16UTF16 is

also supported. But if you specify AL16UTF16 for a datafile that has little endian

byte order, SQL*Loader issues a warning message and processes the datafile as big

endian.

The CHARACTERSET parameter can be specified for primary datafiles as well as

LOBFILEs and SDFs. It is possible to specify different character sets for different

input datafiles. A CHARACTERSET parameter specified before the INFILE
parameter applies to the entire list of primary datafiles. If the CHARACTERSET
parameter is specified for primary datafiles, the specified value will also be used as

the default for LOBFILEs and SDFs. This default setting can be overridden by

specifying the CHARACTERSET parameter with the LOBFILE or SDF specification.

The character set specified with the CHARACTERSET parameter does not apply to

data in the control file (specified with INFILE). To load data in a character set other

than the one specified for your session by the NLS_LANGparameter, you must place

the data in a separate datafile.
5-20 Oracle9i Database Utilities

Handling Different Character Encoding Schemes
Control File Character Set
The SQL*Loader control file itself is assumed to be in the character set specified for

your session by the NLS_LANG parameter. If the control file character set is different

from the datafile character set, keep the following issue in mind. Delimiters and

comparison clause values specified in the SQL*Loader control file as character

strings are converted from the control file character set to the datafile character set

before any comparisons are made. To ensure that the specifications are correct, you

may prefer to specify hexadecimal strings, rather than character string values.

If hexadecimal strings are used with a datafile in the UTF-16 Unicode encoding, the

byte order is different on a big endian versus a little endian system. For example, ","

(comma) in UTF-16 on a big endian system is X’002c’. On a little endian system it is

X’2c00’. SQL*Loader requires that you always specify hexadecimal strings in big

endian format. If necessary, SQL*Loader swaps the bytes before making

comparisons. This allows the same syntax to be used in the control file on both a big

endian and a little endian system.

Record terminators for datafiles that are in stream format in the UTF-16 Unicode

encoding default to "\n" in UTF-16 (that is, 0x000A on a big endian system and

0x0A00 on a little endian system). You can override these default settings by using

the "STR ’ char_str ’" or the "STR x’hex_str’ " specification on the INFILE
line. For example, you could use either of the following to specify that ’ab’ is to be

used as the record terminator, instead of ’\n’ .

INFILE myfile.dat "STR ’ab’"

INFILE myfile.dat "STR x’00410042’"

Any data included after the BEGINDATA statement is also assumed to be in the

character set specified for your session by the NLS_LANG parameter.

See Also:

■ Byte Ordering on page 6-37

■ Oracle9i Database Globalization Support Guide for more

information on the names of the supported character sets

■ Control File Character Set on page 5-21

■ Case Study 11: Loading Data in the Unicode Character Set on

page 10-47 for an example of loading a datafile that contains

little endian UTF-16 encoded data
SQL*Loader Control File Reference 5-21

Handling Different Character Encoding Schemes
For the SQL*Loader datatypes (CHAR, VARCHAR, VARCHARC, DATE, and

EXTERNAL numerics), SQL*Loader supports lengths of character fields that are

specified in either bytes (byte-length semantics) or characters (character-length

semantics). For example, the specification CHAR(10) in the control file can mean 10

bytes or 10 characters. These are equivalent if the datafile uses a single-byte

character set. However, they are often different if the datafile uses a multibyte

character set.

To avoid insertion errors caused by expansion of character strings during character

set conversion, use character-length semantics in both the datafile and the target

database columns.

Character-Length Semantics
Byte-length semantics are the default for all datafiles except those that use the

UTF16 character set (which uses character-length semantics by default). To override

the default you can specify CHAR or CHARACTER, as shown in the following syntax:

The LENGTH parameter is placed after the CHARACTERSET parameter in the

SQL*Loader control file. The LENGTH parameter applies to the syntax specification

for primary datafiles as well as to LOBFILEs and secondary datafiles (SDFs). It is

possible to specify different length semantics for different input datafiles. However,

a LENGTH specification before the INFILE parameters applies to the entire list of

primary datafiles. The LENGTH specification specified for the primary datafile is

used as the default for LOBFILEs and SDFs. You can override that default by

specifying LENGTH with the LOBFILE or SDF specification. Unlike the

CHARACTERSETparameter, the LENGTHparameter can also apply to data contained

within the control file itself (that is, INFILE * syntax).

You can specify CHARACTER instead of CHAR for the LENGTH parameter.

If character-length semantics are being used for a SQL*Loader datafile, then the

following SQL*Loader datatypes will use character-length semantics:

■ CHAR

■ VARCHAR

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
5-22 Oracle9i Database Utilities

Handling Different Character Encoding Schemes
■ VARCHARC

■ DATE

■ EXTERNALnumerics (INTEGER, FLOAT, DECIMAL, and ZONED)

For the VARCHAR datatype, the length subfield is still a binary SMALLINT length

subfield, but its value indicates the length of the character string in characters.

The following datatypes use byte-length semantics even if character-length

semantics are being used for the datafile, because the data is binary, or is in a special

binary-encoded form in the case of ZONED and DECIMAL:

■ INTEGER

■ SMALLINT

■ FLOAT

■ DOUBLE

■ BYTEINT

■ ZONED

■ DECIMAL

■ RAW

■ VARRAW

■ VARRAWC

■ GRAPHIC

■ GRAPHIC EXTERNAL

■ VARGRAPHIC

The start and end arguments to the POSITION parameter are interpreted in bytes,

even if character-length semantics are in use in a datafile. This is necessary to

handle datafiles that have a mix of data of different datatypes, some of which use

character-length semantics, and some of which use byte-length semantics. It is also

needed to handle position with the VARCHAR datatype, which has a SMALLINT
length field and then the character data. The SMALLINT length field takes up a

certain number of bytes depending on the system (usually 2 bytes), but its value

indicates the length of the character string in characters.

Character-length semantics in the datafile can be used independent of whether or

not character-length semantics are used for the database columns. Therefore, the
SQL*Loader Control File Reference 5-23

Interrupted Loads
datafile and the database columns can use either the same or different length

semantics.

Interrupted Loads
Loads are interrupted and discontinued for a number of reasons. A primary reason

is space errors, in which SQL*Loader runs out of space for data rows or index

entries. A load might also be discontinued because the maximum number of errors

was exceeded, an unexpected error was returned to SQL*Loader from the server, a

record was too long in the datafile, or a Control+C was executed.

The behavior of SQL*Loader when a load is discontinued varies depending on

whether it is a conventional path load or a direct path load, and on the reason the

load was interrupted. Additionally, when an interrupted load is continued, the use

and value of the SKIP parameter can vary depending on the particular case. The

following sections explain the possible scenarios.

Discontinued Conventional Path Loads
In a conventional path load, data is committed after all data in the bind array is

loaded into all tables. If the load is discontinued, only the rows that were processed

up to the time of the last commit operation are loaded. There is no partial commit of

data.

Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the

reason the load was discontinued.

Load Discontinued Because of Space Errors
If there is one INTO TABLEstatement in the control file and a space error occurs, the

following scenarios can take place:

■ If you are loading data into an unpartitioned table, one partition of a

partitioned table, or one subpartition of a composite partitioned table, then

SQL*Loader commits as many rows as were loaded before the error occurred.

This is independent of whether the ROWS parameter was specified.

■ If you are loading data into multiple subpartitions (that is, loading into a

partitioned table, a composite partitioned table, or one partition of a composite

See Also: SKIP (records to skip) on page 4-13
5-24 Oracle9i Database Utilities

Interrupted Loads
partitioned table), the load is discontinued and no data is saved unless ROWS
has been specified. In that case, all data that was previously committed will be

saved.

If there are multiple INTO TABLE statements in the control file and a space error

occurs on one of those tables, the following scenarios can take place:

■ If the space error occurs when you are loading data into an unpartitioned table,

one partition of a partitioned table, or one subpartition of a composite

partitioned table, SQL*Loader attempts to load data already read from the

datafile into other tables. SQL*Loader then commits as many rows as were

loaded before the error occurred. This is independent of whether the ROWS
parameter was specified. In this scenario, a different number of rows could be

loaded into each table; to continue the load you would need to specify a

different value for the SKIP parameter for every table. SQL*Loader only reports

the value for the SKIP parameter if it is the same for all tables.

■ If the space error occurs when you are loading data into multiple subpartitions

(that is, loading into a partitioned table, a composite partitioned table, or one

partition of a composite partitioned table), the load is discontinued for all tables

and no data is saved unless ROWS has been specified. In that case, all data that

was previously committed is saved, and when you continue the load the value

you supply for the SKIP parameter will be the same for all tables.

Load Discontinued Because Maximum Number of Errors Exceeded
If the maximum number of errors is exceeded, SQL*Loader stops loading records

into any table and the work done to that point is committed. This means that when

you continue the load, the value you specify for the SKIP parameter may be

different for different tables. SQL*Loader only reports the value for the SKIP
parameter if it is the same for all tables.

Load Discontinued Because of Fatal Errors
If a fatal error is encountered, the load is stopped and no data is saved unless ROWS
was specified at the beginning of the load. In that case, all data that was previously

committed is saved. SQL*Loader only reports the value for the SKIP parameter if

it is the same for all tables.

Load Discontinued Because a Control+C Was Issued
If SQL*Loader is in the middle of saving data when a Control+C is issued, it

continues to do the save and then stops the load after the save completes.

Otherwise, SQL*Loader stops the load without committing any work that was not
SQL*Loader Control File Reference 5-25

Interrupted Loads
committed already. This means that the value of the SKIP parameter will be the

same for all tables.

Status of Tables and Indexes After an Interrupted Load
When a load is discontinued, any data already loaded remains in the tables, and the

tables are left in a valid state. If the conventional path is used, all indexes are left in

a valid state.

If the direct path load method is used, any indexes that run out of space are left in

an unusable state. You must drop these indexes before the load can continue. You

can re-create the indexes either before continuing or after the load completes.

Other indexes are valid if no other errors occurred. See Indexes Left in an Unusable

State on page 9-12 for other reasons why an index might be left in an unusable state.

Using the Log File to Determine Load Status
The SQL*Loader log file tells you the state of the tables and indexes and the number

of logical records already read from the input datafile. Use this information to

resume the load where it left off.

Continuing Single-Table Loads
When SQL*Loader must discontinue a direct path or conventional path load before

it is finished, some rows have probably already been committed or marked with

savepoints. To continue the discontinued load, use the SKIP parameter to specify

the number of logical records that have already been processed by the previous

load. At the time the load is discontinued, the value for SKIP is written to the log

file in a message similar to the following:

Specify SKIP=1001 when continuing the load.

This message specifying the value of the SKIP parameter is preceded by a message

indicating why the load was discontinued.

Note that for multiple-table loads, the value of the SKIP parameter is displayed

only if it is the same for all tables.

See Also: SKIP (records to skip) on page 4-13
5-26 Oracle9i Database Utilities

Assembling Logical Records from Physical Records
Assembling Logical Records from Physical Records
Because Oracle9i supports user-defined record sizes larger than 64 KB (see

READSIZE (read buffer size) on page 4-10), the need to break up logical records into

multiple physical records is reduced. However, there may still be situations in

which you may want to do so. At some point, when you want to combine those

multiple physical records back into one logical record, you can use one of the

following clauses, depending on your data:

■ CONCATENATE

■ CONTINUEIF

Using CONCATENATE to Assemble Logical Records
Use CONCATENATE when you want SQL*Loader to always combine the same

number of physical records to form one logical record. In the following example,

integer specifies the number of physical records to combine.

CONCATENATE integer

The integer value specified for CONCATENATE determines the number of physical

record structures that SQL*Loader allocates for each row in the column array.

Because the default value for COLUMNARRAYROWSis large, if you also specify a large

value for CONCATENATE, then excessive memory allocation can occur. If this

happens, you can improve performance by reducing the value of the

COLUMNARRAYROWS parameter to lower the number of rows in a column array.

Using CONTINUEIF to Assemble Logical Records
Use CONTINUEIF if the number of physical records to be continued varies. The

parameter CONTINUEIF is followed by a condition that is evaluated for each

physical record, as it is read. For example, two records might be combined if a

pound sign (#) were in byte position 80 of the first record. If any other character

were there, the second record would not be added to the first.

The full syntax for CONTINUEIF adds even more flexibility:

See Also:

■ COLUMNARRAYROWS on page 4-4

■ Specifying the Number of Column Array Rows and Size of

Stream Buffers on page 9-21
SQL*Loader Control File Reference 5-27

Assembling Logical Records from Physical Records
Table 5–2 describes the parameters for CONTINUEIF.

Table 5–2 Parameters for CONTINUEIF

Parameter Description

THIS If the condition is true in the current record, then the next
physical record is read and concatenated to the current
physical record, continuing until the condition is false. If the
condition is false, then the current physical record becomes the
last physical record of the current logical record. THIS is the
default.

NEXT If the condition is true in the next record, then the current
physical record is concatenated to the current logical record,
continuing until the condition is false.

operator The supported operators are equal and not equal.

For the equal operator, the field and comparison string must
match exactly for the condition to be true. For the not equal
operator, they may differ in any character.

LAST This test is similar to THIS, but the test is always against the
last nonblank character. If the last nonblank character in the
current physical record meets the test, then the next physical
record is read and concatenated to the current physical record,
continuing until the condition is false. If the condition is false
in the current record, then the current physical record is the
last physical record of the current logical record.

CONTINUEIF

THIS

NEXT PRESERVE (
pos_spec

LAST
PRESERVE (operator

str

X’hex_str’

)

5-28 Oracle9i Database Utilities

Assembling Logical Records from Physical Records
If the PRESERVE parameter is not used, the continuation field is removed from all

physical records when the logical record is assembled. That is, data values are

allowed to span the records with no extra characters (continuation characters) in the

middle.

If the PRESERVE parameter is used, the continuation field is kept in all physical

records when the logical record is assembled.

Example 5–2 through Example 5–5 show the use of CONTINUEIF THIS and

CONTINUEIF NEXT, with and without the PRESERVE parameter.

pos_spec Specifies the starting and ending column numbers in the
physical record.

Column numbers start with 1. Either a hyphen or a colon is
acceptable (start -end or start :end).

If you omit end, the length of the continuation field is the
length of the byte string or character string. If you use end, and
the length of the resulting continuation field is not the same as
that of the byte string or the character string, the shorter one is
padded. Character strings are padded with blanks,
hexadecimal strings with zeros.

str A string of characters to be compared to the continuation field
defined by start and end, according to the operator. The string
must be enclosed in double or single quotation marks. The
comparison is made character by character, blank padding on
the right if necessary.

X’hex-str’ A string of bytes in hexadecimal format used in the same way
as str. X’1FB033 would represent the three bytes with values 1F,
B0, and 33 (hexadecimal).

PRESERVE Includes ’char_string ’ or X’hex_string ’ in the logical
record. The default is to exclude them.

Note: The positions in the CONTINUEIF clause refer to positions

in each physical record. This is the only time you refer to positions

in physical records. All other references are to logical records.

Table 5–2 (Cont.) Parameters for CONTINUEIF

Parameter Description
SQL*Loader Control File Reference 5-29

Assembling Logical Records from Physical Records
Example 5–2 CONTINUEIF THIS Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a

space:

 %%aaaaaaaa....
 %%bbbbbbbb....
 ..cccccccc....
 %%dddddddddd..
 %%eeeeeeeeee..
 ..ffffffffff..

In this example, the CONTINUEIF THIS clause does not use the PRESERVE
parameter:

CONTINUEIF THIS (1:2) = ’%%’

Therefore, the logical records are assembled as follows:

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Note that columns 1 and 2 (for example, %% in physical record 1) are removed from

the physical records when the logical records are assembled.

Example 5–3 CONTINUEIF THIS with the PRESERVE Parameter

Assume that you have the same physical records as in Example 5–2.

In this example, the CONTINUEIF THIS clause uses the PRESERVE parameter:

CONTINUEIF THIS PRESERVE (1:2) = ’%%’

Therefore, the logical records are assembled as follows:

 %%aaaaaaaa....%%bbbbbbbb......cccccccc....
 %%dddddddddd..%%eeeeeeeeee....ffffffffff..

Note that columns 1 and 2 are not removed from the physical records when the

logical records are assembled.

Example 5–4 CONTINUEIF NEXT Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a

space:

 ..aaaaaaaa....
 %%bbbbbbbb....
5-30 Oracle9i Database Utilities

Loading Logical Records into Tables
 %%cccccccc....
 ..dddddddddd..
 %%eeeeeeeeee..
 %%ffffffffff..

In this example, the CONTINUEIF NEXT clause does not use the PRESERVE
parameter:

CONTINUEIF NEXT (1:2) = ’%%’

Therefore, the logical records are assembled as follows (the same results as for

Example 5–2).

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Example 5–5 CONTINUEIF NEXT with the PRESERVE Parameter

Assume that you have the same physical records as in Example 5–4.

In this example, the CONTINUEIF NEXT clause uses the PRESERVE parameter:

CONTINUEIF NEXT PRESERVE (1:2) = ’%%’

Therefore, the logical records are assembled as follows:

 ..aaaaaaaa....%%bbbbbbbb....%%cccccccc....
 ..dddddddddd..%%eeeeeeeeee..%%ffffffffff..

Loading Logical Records into Tables
This section describes the way in which you specify:

■ Which tables you want to load

■ Which records you want to load into them

■ Default data delimiters for those records

■ How to handle short records with missing data

See Also: Case Study 4: Loading Combined Physical Records on

page 10-14 for an example of the CONTINUEIF clause
SQL*Loader Control File Reference 5-31

Loading Logical Records into Tables
Specifying Table Names
The INTO TABLE clause of the LOAD DATA statement allows you to identify tables,

fields, and datatypes. It defines the relationship between records in the datafile and

tables in the database. The specification of fields and datatypes is described in later

sections.

INTO TABLE Clause
Among its many functions, the INTO TABLE clause allows you to specify the table

into which you load data. To load multiple tables, you include one INTO TABLE
clause for each table you wish to load.

To begin an INTO TABLE clause, use the keywords INTO TABLE, followed by the

name of the Oracle table that is to receive the data.

The syntax is as follows:

The table must already exist. The table name should be enclosed in double

quotation marks if it is the same as any SQL or SQL*Loader reserved keyword, if it

contains any special characters, or if it is case sensitive.

INTO TABLE scott."CONSTANT"
INTO TABLE scott."Constant"
INTO TABLE scott."-CONSTANT"

The user must have INSERT privileges for the table being loaded. If the table is not

in the user’s schema, then the user must either use a synonym to reference the table

or include the schema name as part of the table name (for example, scott.emp).

Table-Specific Loading Method
When you are loading a table, you can use the INTO TABLE clause to specify a

table-specific loading method (INSERT, APPEND, REPLACE, or TRUNCATE) that

applies only to that table. That method overrides the global table-loading method.

The global table-loading method is INSERT, by default, unless a different method

INTO TABLE name

(
PARTITION name

SUBPARTITION name
)

INSERT

REPLACE

TRUNCATE

APPEND
5-32 Oracle9i Database Utilities

Loading Logical Records into Tables
was specified before any INTO TABLE clauses. The following sections discuss using

these options to load data into empty and nonempty tables.

Loading Data into Empty Tables
If the tables you are loading into are empty, use the INSERT option.

INSERT This is SQL*Loader’s default method. It requires the table to be empty

before loading. SQL*Loader terminates with an error if the table contains rows.

Case Study 1: Loading Variable-Length Data on page 10-5 provides an example.

Loading Data into Nonempty Tables
If the tables you are loading into already contain data, you have three options:

■ APPEND

■ REPLACE

■ TRUNCATE

APPEND If data already exists in the table, SQL*Loader appends the new rows to it.

If data does not already exist, the new rows are simply loaded. You must have

SELECT privilege to use the APPEND option. Case Study 3: Loading a Delimited,

Free-Format File on page 10-11 provides an example.

REPLACE With REPLACE, all rows in the table are deleted and the new data is

loaded. The table must be in your schema, or you must have DELETE privilege on

the table. Case Study 4: Loading Combined Physical Records on page 10-14

provides an example.

Caution: When REPLACE or TRUNCATE is specified, the entire

table is replaced, not just individual rows. After the rows are

successfully deleted, a commit is issued. You cannot recover the

data that was in the table before the load, unless it was saved with

Export or a comparable utility.

Note: This section corresponds to the DB2 keyword RESUME;
users of DB2 should also refer to the description of RESUME in
Appendix B.
SQL*Loader Control File Reference 5-33

Loading Logical Records into Tables
The row deletes cause any delete triggers defined on the table to fire. If DELETE
CASCADE has been specified for the table, then the cascaded deletes are carried out.

For more information on cascaded deletes, see the information about data integrity

in Oracle9i Database Concepts.

Updating Existing Rows The REPLACE method is a table replacement, not a

replacement of individual rows. SQL*Loader does not update existing records, even

if they have null columns. To update existing rows, use the following procedure:

1. Load your data into a work table.

2. Use the SQL language UPDATE statement with correlated subqueries.

3. Drop the work table.

For more information, see the UPDATE statement in Oracle9i SQL Reference.

TRUNCATE The SQL TRUNCATE statement quickly and efficiently deletes all rows

from a table or cluster, to achieve the best possible performance. For the TRUNCATE
statement to operate, the table’s referential integrity constraints must first be

disabled. If they have not been disabled, SQL*Loader returns an error.

Once the integrity constraints have been disabled, DELETE CASCADE is no longer

defined for the table. If the DELETE CASCADE functionality is needed, then the

contents of the table must be manually deleted before the load begins.

The table must be in your schema, or you must have the DROP ANY TABLE
privilege.

Table-Specific OPTIONS Parameter
The OPTIONS parameter can be specified for individual tables in a parallel load. (It

is only valid for a parallel load.)

The syntax for the OPTIONS parameter is as follows:

See Also: Oracle9i Database Administrator’s Guide for more

information about the TRUNCATE statement

See Also: Parameters for Parallel Direct Path Loads on page 9-33

OPTIONS (FILE=database_filename)
5-34 Oracle9i Database Utilities

Loading Logical Records into Tables
Loading Records Based on a Condition
You can choose to load or discard a logical record by using the WHEN clause to test a

condition in the record.

The WHEN clause appears after the table name and is followed by one or more field

conditions. The syntax for field_condition is as follows:

For example, the following clause indicates that any record with the value "q" in the

fifth column position should be loaded:

WHEN (5) = ’q’

A WHENclause can contain several comparisons, provided each is preceded by AND.
Parentheses are optional, but should be used for clarity with multiple comparisons

joined by AND, for example:

WHEN (deptno = ’10’) AND (job = ’SALES’)

Using the WHEN Clause with LOBFILEs and SDFs
If a record with a LOBFILE or SDF is discarded, SQL*Loader skips the

corresponding data in that LOBFILE or SDF.

See Also:

■ Using the WHEN, NULLIF, and DEFAULTIF Clauses on

page 6-32 for information about how SQL*Loader evaluates

WHEN clauses, as opposed to NULLIF and DEFAULTIF clauses

■ Case Study 5: Loading Data into Multiple Tables on page 10-18

provides an example of the WHEN clause

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND
SQL*Loader Control File Reference 5-35

Loading Logical Records into Tables
Specifying Default Data Delimiters
If all data fields are terminated similarly in the datafile, you can use the FIELDS
clause to indicate the default delimiters. The syntax for the fields_spec,
termination_spec, and enclosure_spec clauses is as follows:

fields_spec

termination_spec

enclosure_spec

Note: Terminator strings can contain one or more characters. Also,

TERMINATED BY EOF applies only to loading LOBs from

LOBFILE.

Note: Enclosure strings can contain one or more characters.

FIELDS

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’
5-36 Oracle9i Database Utilities

Loading Logical Records into Tables
You can override the delimiter for any given column by specifying it after the

column name. Case Study 3: Loading a Delimited, Free-Format File on page 10-11

provides an example.

Handling Short Records with Missing Data
When the control file definition specifies more fields for a record than are present in

the record, SQL*Loader must determine whether the remaining (specified) columns

should be considered null or whether an error should be generated.

If the control file definition explicitly states that a field’s starting position is beyond

the end of the logical record, then SQL*Loader always defines the field as null. If a

field is defined with a relative position (such as dname and loc in the following

example), and the record ends before the field is found, then SQL*Loader could

either treat the field as null or generate an error. SQL*Loader uses the presence or

absence of the TRAILING NULLCOLS clause (shown in the following syntax

diagram) to determine the course of action.

TRAILING NULLCOLS Clause
The TRAILING NULLCOLSclause tells SQL*Loader to treat any relatively positioned

columns that are not present in the record as null columns.

For example, consider the following data:

10 Accounting

Assume that the preceding data is read with the following control file and the

record ends after dname:

See Also:

■ Specifying Delimiters on page 6-24 for a complete description

of the syntax

■ Loading LOB Data from LOBFILEs on page 7-23

OID_spec

SID_spec FIELDS
delim_spec

TRAILING
NULLCOLS

TREAT AS typename
SQL*Loader Control File Reference 5-37

Index Options
INTO TABLE dept
 TRAILING NULLCOLS
(deptno CHAR TERMINATED BY " ",
 dname CHAR TERMINATED BY WHITESPACE,
 loc CHAR TERMINATED BY WHITESPACE
)

In this case, the remaining loc field is set to null. Without the TRAILING
NULLCOLS clause, an error would be generated due to missing data.

Index Options
This section describes the following SQL*Loader options that control how index

entries are created:

■ SORTED INDEXES

■ SINGLEROW

SORTED INDEXES Clause
The SORTED INDEXES clause applies to direct path loads. It tells SQL*Loader that

the incoming data has already been sorted on the specified indexes, allowing

SQL*Loader to optimize performance.

SINGLEROW Option
The SINGLEROW option is intended for use during a direct path load with APPEND
on systems with limited memory, or when loading a small number of records into a

large table. This option inserts each index entry directly into the index, one record at

a time.

By default, SQL*Loader does not use SINGLEROW to append records to a table.

Instead, index entries are put into a separate, temporary storage area and merged

with the original index at the end of the load. This method achieves better

performance and produces an optimal index, but it requires extra storage space.

During the merge, the original index, the new index, and the space for new entries

all simultaneously occupy storage space.

See Also: Case Study 7: Extracting Data from a Formatted Report

on page 10-28 for an example of TRAILING NULLCOLS

See Also: SORTED INDEXES Clause on page 9-18
5-38 Oracle9i Database Utilities

Benefits of Using Multiple INTO TABLE Clauses
With the SINGLEROW option, storage space is not required for new index entries or

for a new index. The resulting index may not be as optimal as a freshly sorted one,

but it takes less space to produce. It also takes more time because additional UNDO

information is generated for each index insert. This option is suggested for use

when either of the following situations exists:

■ Available storage is limited.

■ The number of records to be loaded is small compared to the size of the table (a

ratio of 1:20 or less is recommended).

Benefits of Using Multiple INTO TABLE Clauses
Multiple INTO TABLE clauses allow you to:

■ Load data into different tables

■ Extract multiple logical records from a single input record

■ Distinguish different input record formats

■ Distinguish different input row object subtypes

In the first case, it is common for the INTO TABLEclauses to refer to the same table.

This section illustrates the different ways to use multiple INTO TABLE clauses and

shows you how to use the POSITION parameter.

Extracting Multiple Logical Records
Some data storage and transfer media have fixed-length physical records. When the

data records are short, more than one can be stored in a single, physical record to

use the storage space efficiently.

In this example, SQL*Loader treats a single physical record in the input file as two

logical records and uses two INTO TABLE clauses to load the data into the emp
table. For example, assume the data is as follows:

1119 Smith 1120 Yvonne

Note: A key point when using multiple INTO TABLE clauses is

that field scanning continues from where it left off when a new INTO
TABLE clause is processed. The remainder of this section details

important ways to make use of that behavior. It also describes

alternative ways using fixed field locations or the POSITION
parameter.
SQL*Loader Control File Reference 5-39

Benefits of Using Multiple INTO TABLE Clauses
1121 Albert 1130 Thomas

The following control file extracts the logical records:

INTO TABLE emp
 (empno POSITION(1:4) INTEGER EXTERNAL,
 ename POSITION(6:15) CHAR)
INTO TABLE emp
 (empno POSITION(17:20) INTEGER EXTERNAL,
 ename POSITION(21:30) CHAR)

Relative Positioning Based on Delimiters
The same record could be loaded with a different specification. The following

control file uses relative positioning instead of fixed positioning. It specifies that

each field is delimited by a single blank (" ") or with an undetermined number of

blanks and tabs (WHITESPACE):

INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR) TERMINATED BY WHITESPACE)

The important point in this example is that the second empno field is found

immediately after the first ename, although it is in a separate INTO TABLE clause.

Field scanning does not start over from the beginning of the record for a new INTO
TABLE clause. Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION
parameter. That mechanism is described in Distinguishing Different Input Record

Formats on page 5-40 and in Loading Data into Multiple Tables on page 5-43.

Distinguishing Different Input Record Formats
A single datafile might contain records in a variety of formats. Consider the

following data, in which emp and dept records are intermixed:

1 50 Manufacturing — DEPT record
2 1119 Smith 50 — EMP record
2 1120 Snyder 50
1 60 Shipping
2 1121 Stevens 60
5-40 Oracle9i Database Utilities

Benefits of Using Multiple INTO TABLE Clauses
A record ID field distinguishes between the two formats. Department records have

a 1 in the first column, while employee records have a 2. The following control file

uses exact positioning to load this data:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 deptno POSITION(3:4) INTEGER EXTERNAL,
 dname POSITION(8:21) CHAR)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 empno POSITION(3:6) INTEGER EXTERNAL,
 ename POSITION(8:17) CHAR,
 deptno POSITION(19:20) INTEGER EXTERNAL)

Relative Positioning Based on the POSITION Parameter
The records in the previous example could also be loaded as delimited data. In this

case, however, it is necessary to use the POSITION parameter. The following control

file could be used:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 dname CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1) INTEGER EXTERNAL TERMINATED BY ’ ’,
 empno INTEGER EXTERNAL TERMINATED BY ’ ’
 ename CHAR TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY ’ ’)

The POSITION parameter in the second INTO TABLE clause is necessary to load

this data correctly. It causes field scanning to start over at column 1 when checking

for data that matches the second format. Without it, SQL*Loader would look for the

recid field after dname.

Distinguishing Different Input Row Object Subtypes
A single datafile may contain records made up of row objects inherited from the

same base row object type. For example, consider the following simple object type
SQL*Loader Control File Reference 5-41

Benefits of Using Multiple INTO TABLE Clauses
and object table definitions in which a nonfinal base object type is defined along

with two object subtypes that inherit from the base type:

CREATE TYPE person_t AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3)) not final;

CREATE TYPE employee_t UNDER person_t
 (empid NUMBER(5),
 deptno NUMBER(4),
 dept VARCHAR2(30)) not final;

CREATE TYPE student_t UNDER person_t
 (stdid NUMBER(5),
 major VARCHAR2(20)) not final;

CREATE TABLE persons OF person_t;

The following input datafile contains a mixture of these row objects subtypes. A

type ID field distinguishes between the three subtypes. person_t objects have a P
in the first column, employee_t objects have an E, and student_t objects have

an S.

P,James,31,
P,Thomas,22,
E,Pat,38,93645,1122,Engineering,
P,Bill,19,
P,Scott,55,
S,Judy,45,27316,English,
S,Karen,34,80356,History,
E,Karen,61,90056,1323,Manufacturing,
S,Pat,29,98625,Spanish,
S,Cody,22,99743,Math,
P,Ted,43,
E,Judy,44,87616,1544,Accounting,
E,Bob,50,63421,1314,Shipping,
S,Bob,32,67420,Psychology,
E,Cody,33,25143,1002,Human Resources,

The following control file uses relative positioning based on the POSITION
parameter to load this data. Note the use of the TREAT AS clause with a specific

object type name. This informs SQL*Loader that all input row objects for the object

table will conform to the definition of the named object type.

INTO TABLE persons
5-42 Oracle9i Database Utilities

Benefits of Using Multiple INTO TABLE Clauses
REPLACE
WHEN typid = ’P’ TREAT AS person_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR)

INTO TABLE persons
REPLACE
WHEN typid = ’E’ TREAT AS employee_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 empid CHAR,
 deptno CHAR,
 dept CHAR)

INTO TABLE persons
REPLACE
WHEN typid = ’S’ TREAT AS student_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 stdid CHAR,
 major CHAR)

Loading Data into Multiple Tables
By using the POSITION clause with multiple INTO TABLE clauses, data from a

single record can be loaded into multiple normalized tables. See Case Study 5:

Loading Data into Multiple Tables on page 10-18.

Summary
Multiple INTO TABLE clauses allow you to extract multiple logical records from a

single input record and recognize different record formats in the same file.

For delimited data, proper use of the POSITION parameter is essential for achieving

the expected results.

See Also: Loading Column Objects on page 7-1 for more

information on loading object types
SQL*Loader Control File Reference 5-43

Bind Arrays and Conventional Path Loads
When the POSITION parameter is not used, multiple INTO TABLE clauses process

different parts of the same (delimited data) input record, allowing multiple tables to

be loaded from one record. When the POSITION parameter is used, multiple INTO
TABLE clauses can process the same record in different ways, allowing multiple

formats to be recognized in one input file.

Bind Arrays and Conventional Path Loads
SQL*Loader uses the SQL array-interface option to transfer data to the database.

Multiple rows are read at one time and stored in the bind array. When SQL*Loader

sends the Oracle database an INSERT command, the entire array is inserted at one

time. After the rows in the bind array are inserted, a COMMIT is issued.

The determination of bind array size pertains to SQL*Loader’s conventional path

option. It does not apply to the direct path load method because a direct path load

uses the direct path API, rather than Oracle’s SQL interface.

Size Requirements for Bind Arrays
The bind array must be large enough to contain a single row. If the maximum row

length exceeds the size of the bind array, as specified by the BINDSIZE parameter,

SQL*Loader generates an error. Otherwise, the bind array contains as many rows as

can fit within it, up to the limit set by the value of the ROWS parameter.

The BINDSIZE and ROWS parameters are described in Command-Line Parameters

on page 4-3.

Although the entire bind array need not be in contiguous memory, the buffer for

each field in the bind array must occupy contiguous memory. If the operating

system cannot supply enough contiguous memory to store a field, SQL*Loader

generates an error.

Performance Implications of Bind Arrays
Large bind arrays minimize the number of calls to the Oracle database server and

maximize performance. In general, you gain large improvements in performance

with each increase in the bind array size up to 100 rows. Increasing the bind array

size to be greater than 100 rows generally delivers more modest improvements in

performance. The size (in bytes) of 100 rows is typically a good value to use.

See Also: Oracle Call Interface Programmer’s Guide for more

information about the concepts of direct path loading
5-44 Oracle9i Database Utilities

Bind Arrays and Conventional Path Loads
In general, any reasonably large size permits SQL*Loader to operate effectively. It is

not usually necessary to perform the detailed calculations described in this section.

Read this section when you need maximum performance or an explanation of

memory usage.

Specifying Number of Rows Versus Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE
(see BINDSIZE (maximum size) on page 4-4) or the OPTIONS clause in the control

file (see OPTIONS Clause on page 5-4), you impose an upper limit on the bind

array. The bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the size in bytes required to

load a single row. If that size is too large to fit within the specified maximum, the

load terminates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether

that value was specified with the command-line parameter ROWS (see ROWS (rows

per commit) on page 4-12) or the OPTIONS clause in the control file (see OPTIONS

Clause on page 5-4).

If that size fits within the bind array maximum, the load continues—SQL*Loader

does not try to expand the number of rows to reach the maximum bind array size. If
the number of rows and the maximum bind array size are both specified, SQL*Loader always
uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of

rows, SQL*Loader uses a smaller number of rows that fits within the maximum.

Calculations to Determine Bind Array Size
The bind array’s size is equivalent to the number of rows it contains times the

maximum length of each row. The maximum length of a row is equal to the sum of

the maximum field lengths, plus overhead, as follows:

bind array size =
 (number of rows) * (SUM(fixed field lengths)
 + SUM(maximum varying field lengths)
 + ((number of varying length fields)
 * (size of length indicator))
)

Many fields do not vary in size. These fixed-length fields are the same for each

loaded row. For these fields, the maximum length of the field is the field size, in
SQL*Loader Control File Reference 5-45

Bind Arrays and Conventional Path Loads
bytes, as described in SQL*Loader Datatypes on page 6-7. There is no overhead for

these fields.

The fields that can vary in size from row to row are:

■ CHAR

■ DATE

■ INTERVAL DAY TO SECOND

■ INTERVAL DAY TO YEAR

■ LONG VARRAW

■ numeric EXTERNAL

■ TIME

■ TIMESTAMP

■ TIME WITH TIME ZONE

■ TIMESTAMP WITH TIME ZONE

■ VARCHAR

■ VARCHARC

■ VARGRAPHIC

■ VARRAW

■ VARRAWC

The maximum length of these datatypes is described in SQL*Loader Datatypes on

page 6-7. The maximum lengths describe the number of bytes that the fields can

occupy in the input data record. That length also describes the amount of storage

that each field occupies in the bind array, but the bind array includes additional

overhead for fields that can vary in size.

When the character datatypes (CHAR, DATE, and numeric EXTERNAL) are specified

with delimiters, any lengths specified for these fields are maximum lengths. When

specified without delimiters, the size in the record is fixed, but the size of the

inserted field may still vary, due to whitespace trimming. So internally, these

datatypes are always treated as varying-length fields—even when they are

fixed-length fields.

A length indicator is included for each of these fields in the bind array. The space

reserved for the field in the bind array is large enough to hold the longest possible
5-46 Oracle9i Database Utilities

Bind Arrays and Conventional Path Loads
value of the field. The length indicator gives the actual length of the field for each

row.

Determining the Size of the Length Indicator
On most systems, the size of the length indicator is 2 bytes. On a few systems, it is 3

bytes. To determine its size, use the following control file:

OPTIONS (ROWS=1)
LOAD DATA
INFILE *
APPEND
INTO TABLE DEPT
(deptno POSITION(1:1) CHAR(1))
BEGINDATA
a

This control file loads a 1-byte CHAR using a 1-row bind array. In this example, no

data is actually loaded because a conversion error occurs when the character a is

loaded into a numeric column (deptno). The bind array size shown in the log file,

minus one (the length of the character field) is the value of the length indicator.

Calculating the Size of Field Buffers
Table 5–3 through Table 5–6 summarize the memory requirements for each

datatype. "L" is the length specified in the control file. "P" is precision. "S" is the size

of the length indicator. For more information on these values, see SQL*Loader

Datatypes on page 6-7.

Note: In conventional path loads, LOBFILEs are not included

when allocating the size of a bind array.

Note: A similar technique can determine bind array size without

doing any calculations. Run your control file without any data and

with ROWS=1 to determine the memory requirements for a single

row of data. Multiply by the number of rows you want in the bind

array to determine the bind array size.
SQL*Loader Control File Reference 5-47

Bind Arrays and Conventional Path Loads
.

Table 5–3 Fixed-Length Fields

Datatype Size in Bytes (Operating System-Dependent)

INTEGER The size of the INT datatype, in C

INTEGER(N) N bytes

SMALLINT The size of SHORT INT datatype, in C

FLOAT The size of the FLOAT datatype, in C

DOUBLE The size of the DOUBLE datatype, in C

BYTEINT The size of UNSIGNED CHAR, in C

VARRAW The size of UNSIGNED SHORT, plus 4096 bytes or whatever is
specified as max_length

LONG VARRAW The size of UNSIGNED INT, plus 4096 bytes or whatever is
specified as max_length

VARCHARC Composed of 2 numbers. The first specifies length, and the
second (which is optional) specifies max_length (default is
4096 bytes).

VARRAWC This datatype is for RAW data. It is composed of 2 numbers.
The first specifies length, and the second (which is optional)
specifies max_length (default is 4096 bytes).

Table 5–4 Nongraphic Fields

Datatype Default Size Specified Size

(packed) DECIMAL None (N+1)/2, rounded up

ZONED None P

RAW None L

CHAR (no delimiters) 1 L+S

datetime and interval (no delimiters) None L+S

numeric EXTERNAL (no delimiters) None L+S

Table 5–5 Graphic Fields

Datatype Default Size
Length Specified
with POSITION

Length Specified
with DATATYPE

GRAPHIC None L 2*L
5-48 Oracle9i Database Utilities

Bind Arrays and Conventional Path Loads
Minimizing Memory Requirements for Bind Arrays
Pay particular attention to the default sizes allocated for VARCHAR, VARGRAPHIC,
and the delimited forms of CHAR, DATE, and numeric EXTERNAL fields. They can

consume enormous amounts of memory—especially when multiplied by the

number of rows in the bind array. It is best to specify the smallest possible

maximum length for these fields. Consider the following example:

CHAR(10) TERMINATED BY ","

With byte-length semantics, this example uses (10 + 2) * 64 = 768 bytes in the bind

array, assuming that the length indicator is 2 bytes long and that 64 rows are loaded

at a time.

With character-length semantics, the same example uses ((10 * s) + 2) * 64 bytes in

the bind array, where "s" is the maximum size in bytes of a character in the datafile

character set.

Now consider the following example:

CHAR TERMINATED BY ","

Regardless of whether byte-length semantics or character-length semantics are

used, this example uses (255 + 2) * 64 = 16,448 bytes, because the default maximum

GRAPHIC
EXTERNAL

None L - 2 2*(L-2)

VARGRAPHIC 4Kb*2 L+S (2*L)+S

Table 5–6 Variable-Length Fields

Datatype Default Size
Maximum Length
Specified (L)

VARCHAR 4Kb L+S

CHAR (delimited) 255 L+S

datetime and interval (delimited) 255 L+S

numeric EXTERNAL (delimited) 255 L+S

Table 5–5 (Cont.) Graphic Fields

Datatype Default Size
Length Specified
with POSITION

Length Specified
with DATATYPE
SQL*Loader Control File Reference 5-49

Bind Arrays and Conventional Path Loads
size for a delimited field is 255 bytes. This can make a considerable difference in the

number of rows that fit into the bind array.

Calculating Bind Array Size for Multiple INTO TABLE Clauses
When calculating a bind array size for a control file that has multiple INTO TABLE
clauses, calculate as if the INTO TABLE clauses were not present. Imagine all of the

fields listed in the control file as one, long data structure—that is, the format of a

single row in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLE clauses,

additional space in the bind array is required each time it is mentioned. It is

especially important to minimize the buffer allocations for such fields.

Note: Generated data is produced by the SQL*Loader functions

CONSTANT, EXPRESSION, RECNUM, SYSDATE, and SEQUENCE. Such

generated data does not require any space in the bind array.
5-50 Oracle9i Database Utilities

Field List Refe
6

Field List Reference

This chapter describes the field-list portion of the SQL*Loader control file. The

following topics are included:

■ Field List Contents

■ Specifying the Position of a Data Field

■ Specifying Columns and Fields

■ SQL*Loader Datatypes

■ Specifying Field Conditions

■ Using the WHEN, NULLIF, and DEFAULTIF Clauses

■ Loading Data Across Different Platforms

■ Byte Ordering

■ Loading All-Blank Fields

■ Trimming Whitespace

■ Preserving Whitespace

■ Applying SQL Operators to Fields

■ Using SQL*Loader to Generate Data for Input

Field List Contents
The field-list portion of a SQL*Loader control file provides information about fields

being loaded, such as position, datatype, conditions, and delimiters.

Example 6–1 shows the field list section of the sample control file that was

introduced in Chapter 5.
rence 6-1

Field List Contents
Example 6–1 Field List Section of Sample Control File

.

.

.
1 (hiredate SYSDATE,
2 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
3 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,’$99,999.99’)",
4 comm INTEGER EXTERNAL ENCLOSED BY ’(’ AND ’%’
 ":comm * 100"
)

In this sample control file, the numbers that appear to the left would not appear in a

real control file. They are keyed in this sample to the explanatory notes in the

following list:

1. SYSDATE sets the column to the current system date. See Setting a Column to

the Current Date on page 6-56.

2. POSITION specifies the position of a data field. See Specifying the Position of a

Data Field on page 6-3.

INTEGER EXTERNALis the datatype for the field. See Specifying the Datatype of

a Data Field on page 6-7 and Numeric EXTERNAL on page 6-19.

The NULLIF clause is one of the clauses that can be used to specify field

conditions. See Using the WHEN, NULLIF, and DEFAULTIF Clauses on

page 6-32.

In this sample, the field is being compared to blanks, using the BLANKS
parameter. See Comparing Fields to BLANKS on page 6-31.

3. The TERMINATED BY WHITESPACE clause is one of the delimiters it is possible

to specify for a field. See TERMINATED Fields on page 6-25.

4. The ENCLOSED BYclause is another possible field delimiter. See Enclosed Fields

on page 6-49.
6-2 Oracle9i Database Utilities

Specifying the Position of a Data Field
Specifying the Position of a Data Field
To load data from the datafile, SQL*Loader must know the length and location of

the field. To specify the position of a field in the logical record, use the POSITION
clause in the column specification. The position may either be stated explicitly or

relative to the preceding field. Arguments to POSITION must be enclosed in

parentheses. The start, end, and integer values are always in bytes, even if

character-length semantics are used for a datafile.

The syntax for the position specification (pos_spec) clause is as follows:

Table 6–1 describes the parameters for the position specification clause.

Table 6–1 Parameters for the Position Specification Clause

Parameter Description

start The starting column of the data field in the logical record. The
first byte position in a logical record is 1.

end The ending position of the data field in the logical record.
Either start -end or start:end is acceptable. If you omit
end, the length of the field is derived from the datatype in the
datafile. Note that CHAR data specified without start or end,
and without a length specification (CHAR(n)), is assumed to
have a length of 1. If it is impossible to derive a length from the
datatype, an error message is issued.

* Specifies that the data field follows immediately after the
previous field. If you use * for the first data field in the control
file, that field is assumed to be at the beginning of the logical
record. When you use * to specify position, the length of the
field is derived from the datatype.

+integer You can use an offset, specified as +integer , to offset the
current field from the next position after the end of the
previous field. A number of bytes, as specified by +integer ,
are skipped before reading the value for the current field.

(

start

*
+integer

:

–
end

)

Field List Reference 6-3

Specifying the Position of a Data Field
You may omit POSITION entirely. If you do, the position specification for the data

field is the same as if POSITION(*) had been used.

Using POSITION with Data Containing Tabs
When you are determining field positions, be alert for tabs in the datafile. The

following situation is highly likely when you use the SQL*Loader advanced SQL

string capabilities to load data from a formatted report:

■ You look at a printed copy of the report, carefully measuring all character

positions, and create your control file.

■ The load fails with multiple "invalid number" and "missing field" errors.

These kinds of errors occur when the data contains tabs. When printed, each tab

expands to consume several columns on the paper. In the datafile, however, each

tab is still only one character. As a result, when SQL*Loader reads the datafile, the

POSITION specifications are wrong.

To fix the problem, inspect the datafile for tabs and adjust the POSITION
specifications, or else use delimited fields.

Using POSITION with Multiple Table Loads
In a multiple table load, you specify multiple INTO TABLE clauses. When you

specify POSITION(*) for the first column of the first table, the position is

calculated relative to the beginning of the logical record. When you specify

POSITION(*) for the first column of subsequent tables, the position is calculated

relative to the last column of the last table loaded.

Thus, when a subsequent INTO TABLE clause begins, the position is not set to the

beginning of the logical record automatically. This allows multiple INTO TABLE
clauses to process different parts of the same physical record. For an example, see

Extracting Multiple Logical Records on page 5-39.

A logical record might contain data for one of two tables, but not both. In this case,

you would reset POSITION. Instead of omitting the position specification or using

POSITION(*+ n) for the first field in the INTO TABLE clause, use POSITION(1)
or POSITION(n) .

Examples of Using POSITION
siteid POSITION (*) SMALLINT

See Also: Specifying Delimiters on page 6-24
6-4 Oracle9i Database Utilities

Specifying Columns and Fields
siteloc POSITION (*) INTEGER

If these were the first two column specifications, siteid would begin in column 1,

and siteloc would begin in the column immediately following.

ename POSITION (1:20) CHAR
empno POSITION (22-26) INTEGER EXTERNAL
allow POSITION (*+2) INTEGER EXTERNAL TERMINATED BY "/"

Column ename is character data in positions 1 through 20, followed by column

empno, which is presumably numeric data in columns 22 through 26. Column

allow is offset from the next position (27) after the end of empno by +2, so it starts

in column 29 and continues until a slash is encountered.

Specifying Columns and Fields
You may load any number of a table’s columns. Columns defined in the database,

but not specified in the control file, are assigned null values.

A column specification is the name of the column, followed by a specification for

the value to be put in that column. The list of columns is enclosed by parentheses

and separated with commas as follows:

(columnspec,columnspec, ...)

Each column name must correspond to a column of the table named in the INTO
TABLE clause. A column name must be enclosed in quotation marks if it is a SQL or

SQL*Loader reserved word, contains special characters, or is case sensitive.

If the value is to be generated by SQL*Loader, the specification includes the

RECNUM, SEQUENCE, or CONSTANT parameter. See Using SQL*Loader to Generate

Data for Input on page 6-54.

If the column’s value is read from the datafile, the data field that contains the

column’s value is specified. In this case, the column specification includes a column
name that identifies a column in the database table, and a field specification that

describes a field in a data record. The field specification includes position, datatype,

null restrictions, and defaults.

It is not necessary to specify all attributes when loading column objects. Any

missing attributes will be set to NULL.
Field List Reference 6-5

Specifying Columns and Fields
Specifying Filler Fields
A filler field, specified by FILLER , is a datafile mapped field that does not

correspond to a database column. Filler fields are assigned values from the data

fields to which they are mapped.

Keep the following in mind with regard to filler fields:

■ The syntax for a filler field is same as that for a column-based field, except that a

filler field's name is followed by FILLER.

■ Filler fields have names but they are not loaded into the table.

■ Filler fields can be used as arguments to init_specs (for example, NULLIF
and DEFAULTIF).

■ Filler fields can be used as arguments to directives (for example, SID , OID, REF,
BFILE).

■ Filler fields can be used in field condition specifications in NULLIF, DEFAULTIF,

and WHEN clauses. However, they cannot be used in SQL strings.

■ Filler field specifications cannot contain a NULLIF or DEFAULTIF clause.

■ Filler fields are initialized to NULL if TRAILING NULLCOLS is specified and

applicable. If another field references a nullified filler field, an error is

generated.

■ Filler fields can occur anyplace in the datafile, including inside the field list for

an object or inside the definition of a VARRAY.

■ SQL strings cannot be specified as part of a filler field specification because no

space is allocated for fillers in the bind array.

A sample filler field specification looks as follows:

 field_1_count FILLER char,
 field_1 varray count(field_1_count)
 (
 filler_field1 char(2),
 field_1 column object

Note: The information in this section also applies to specifying

bound fillers by using BOUNDFILLER. The only exception is that

with bound fillers, SQL strings can be specified as part of the field

because space is allocated for them in the bind array.
6-6 Oracle9i Database Utilities

SQL*Loader Datatypes
 (
 attr1 char(2),
 filler_field2 char(2),
 attr2 char(2),
)
 filler_field3 char(3),
)
 filler_field4 char(6)

Specifying the Datatype of a Data Field
The datatype specification of a field tells SQL*Loader how to interpret the data in

the field. For example, a datatype of INTEGERspecifies binary data, while INTEGER
EXTERNAL specifies character data that represents a number. A CHAR field can

contain any character data.

Only one datatype can be specified for each field; if a datatype is not specified, CHAR
is assumed.

SQL*Loader Datatypes on page 6-7 describes how SQL*Loader datatypes are

converted into Oracle datatypes and gives detailed information on each

SQL*Loader datatype.

Before you specify the datatype, you must specify the position of the field.

SQL*Loader Datatypes
SQL*Loader datatypes can be grouped into portable and nonportable datatypes.

Within each of these two groups, the datatypes are subgrouped into value datatypes

and length-value datatypes.

Portable versus nonportable refers to whether or not the datatype is platform

dependent. Platform dependency can exist for a number of reasons, including

differences in the byte ordering schemes of different platforms (big endian versus

little endian), differences in the number of bits in a platform (16-bit, 32-bit, 64-bit),

differences in signed number representation schemes (2’s complement versus 1’s

complement), and so on. In some cases, such as with byte ordering schemes and

platform word length, SQL*Loader provides mechanisms to help overcome

platform dependencies. These mechanisms are discussed in the descriptions of the

appropriate datatypes.

Both portable and nonportable datatypes can be values or length-values. Value

datatypes assume that a data field has a single part. Length-value datatypes require
Field List Reference 6-7

SQL*Loader Datatypes
that the data field consist of two subfields where the length subfield specifies how

long the value subfield can be.

Nonportable Datatypes
Nonportable datatypes are grouped into value datatypes and length-value

datatypes. The nonportable value datatypes are as follows:

■ INTEGER(n)

■ SMALLINT

■ FLOAT

■ DOUBLE

■ BYTEINT

■ ZONED

■ (packed) DECIMAL

The nonportable length-value datatypes are as follows:

■ VARGRAPHIC

■ VARCHAR

■ VARRAW

■ LONG VARRAW

The syntax for the nonportable datatypes is shown in the syntax diagram for

datatype_spec on page A-9.

INTEGER(n)
The data is a full-word binary integer, where n is an optionally supplied length of 1,

2, 4, or 8. If no length specification is given, then the length, in bytes, is based on the

size of a LONG INT in the C programming language on your particular platform.

INTEGERs are not portable because their byte size, their byte order, and the

representation of signed values may be different between systems. However, if the

representation of signed values is the same between systems, SQL*Loader may be

able to access INTEGER data with correct results. If INTEGER is specified with a

length specification (n), and the appropriate technique is used (if necessary) to

indicate the byte order of the data, then SQL*Loader can access the data with

correct results between systems. If INTEGER is specified without a length

specification, then SQL*Loader can access the data with correct results only if the
6-8 Oracle9i Database Utilities

SQL*Loader Datatypes
size of a LONG INT in the C programming language is the same length in bytes on

both systems. In that case, the appropriate technique must still be used (if

necessary) to indicated the byte order of the data.

Specifying an explicit length for binary integers is useful in situations where the

input data was created on a platform whose word length differs from that on which

SQL*Loader is running. For instance, input data containing binary integers might

be created on a 64-bit platform and loaded into a database using SQL*Loader on a

32-bit platform. In this case, use INTEGER(8) to instruct SQL*Loader to process the

integers as 8-byte quantities, not as 4-byte quantities.

By default, INTEGER is treated as a SIGNED quantity. If you want SQL*Loader to

treat it as an unsigned quantity, specify UNSIGNED. To return to the default

behavior, specify SIGNED.

SMALLINT
The data is a half-word binary integer. The length of the field is the length of a

half-word integer on your system. By default, it is treated as a SIGNED quantity. If

you want SQL*Loader to treat it as an unsigned quantity, specify UNSIGNED. To

return to the default behavior, specify SIGNED.

SMALLINT can be loaded with correct results only between systems where a SHORT
INT has the same length in bytes. If the byte order is different between the systems,

use the appropriate technique to indicate the byte order of the data. See Byte

Ordering on page 6-37.

FLOAT
The data is a single-precision, floating-point, binary number. If you specify end in

the POSITION clause, end is ignored. The length of the field is the length of a

single-precision, floating-point binary number on your system. (The datatype is

FLOAT in C.) This length cannot be overridden in the control file.

See Also: Loading Data Across Different Platforms on page 6-36

Note: This is the SHORT INT datatype in the C programming

language. One way to determine its length is to make a small

control file with no data and look at the resulting log file. This

length cannot be overridden in the control file. See your Oracle

operating system-specific documentation for details.
Field List Reference 6-9

SQL*Loader Datatypes
FLOAT can be loaded with correct results only between systems where the

representation of a FLOAT is compatible and of the same length. If the byte order is

different between the two systems, use the appropriate technique to indicate the

byte order of the data. See Byte Ordering on page 6-37.

DOUBLE
The data is a double-precision, floating-point binary number. If you specify end in

the POSITION clause, end is ignored. The length of the field is the length of a

double-precision, floating-point binary number on your system. (The datatype is

DOUBLE or LONG FLOAT in C.) This length cannot be overridden in the control file.

DOUBLE can be loaded with correct results only between systems where the

representation of a DOUBLEis compatible and of the same length. If the byte order is

different between the two systems, use the appropriate technique to indicate the

byte order of the data. See Byte Ordering on page 6-37.

BYTEINT
The decimal value of the binary representation of the byte is loaded. For example,

the input character x"1C" is loaded as 28. The length of a BYTEINT field is always 1

byte. If POSITION(start:end) is specified, end is ignored. (The datatype is

UNSIGNED CHAR in C.)

An example of the syntax for this datatype is:

(column1 position(1) BYTEINT,
column2 BYTEINT,
...
)

ZONED
ZONED data is in zoned decimal format: a string of decimal digits, one per byte,

with the sign included in the last byte. (In COBOL, this is a SIGN TRAILING field.)

The length of this field is equal to the precision (number of digits) that you specify.

The syntax for the ZONED datatype is:

ZONED (precision
, scale

)

6-10 Oracle9i Database Utilities

SQL*Loader Datatypes
In this syntax, precision is the number of digits in the number, and scale (if

given) is the number of digits to the right of the (implied) decimal point. The

following example specifies an 8-digit integer starting at position 32:

sal POSITION(32) ZONED(8),

The Oracle database server uses the VAX/VMS zoned decimal format when the

zoned data is generated on an ASCII-based platform. It is also possible to load

zoned decimal data that is generated on an EBCDIC-based platform. In this case,

Oracle uses the IBM format as specified in the ESA/390 Principles of Operations,

version 8.1 manual. The format that is used depends on the character set encoding

of the input datafile. See CHARACTERSET Parameter on page 5-19 for more

information.

DECIMAL
DECIMAL data is in packed decimal format: two digits per byte, except for the last

byte, which contains a digit and sign. DECIMAL fields allow the specification of an

implied decimal point, so fractional values can be represented.

The syntax for the DECIMAL datatype is:

The precision parameter is the number of digits in a value. The length of the field

in bytes, as computed from digits, is (N+1)/2 rounded up.

The scale parameter is the scaling factor, or number of digits to the right of the

decimal point. The default is zero (indicating an integer). The scaling factor can be

greater than the number of digits but cannot be negative.

An example is:

sal DECIMAL (7,2)

This example would load a number equivalent to +12345.67. In the data record, this

field would take up 4 bytes. (The byte length of a DECIMAL field is equivalent to

(N+1)/2, rounded up, where N is the number of digits in the value, and 1 is added

for the sign.)

DECIMAL (precision
, scale

)

Field List Reference 6-11

SQL*Loader Datatypes
VARGRAPHIC
The data is a varying-length, double-byte character string. It consists of a length

subfield followed by a string of double-byte characters (DBCS). The Oracle database

server does not support DBCS; however, SQL*Loader reads DBCS as single bytes

and loads it as RAW data. Like RAW data, VARGRAPHIC fields are stored without

modification in whichever column you specify.

VARGRAPHICdata can be loaded with correct results only between systems where a

SHORT INT has the same length in bytes. If the byte order is different between the

systems, use the appropriate technique to indicate the byte order of the length

subfield. See Byte Ordering on page 6-37.

The syntax for the VARGRAPHIC datatype is:

The length of the current field is given in the first 2 bytes. A maximum length

specified for the VARGRAPHIC datatype does not include the size of the length

subfield. The maximum length specifies the number of graphic (double-byte)

characters. It is multiplied by 2 to determine the maximum length of the field in

bytes.

The default maximum field length is 2 KB graphic characters, or 4 KB

(2 * 2KB). To minimize memory requirements, specify a maximum length for such

fields whenever possible.

If a position specification is specified (using pos_spec) before the VARGRAPHIC
statement, it provides the location of the length subfield, not of the first graphic

character. If you specify pos_spec (start:end), the end location determines a

maximum length for the field. Both start and end identify single-character (byte)

positions in the file. Start is subtracted from (end + 1) to give the length of the

field in bytes. If a maximum length is specified, it overrides any maximum length

calculated from the position specification.

If a VARGRAPHIC field is truncated by the end of the logical record before its full

length is read, a warning is issued. Because the length of a VARGRAPHIC field is

Note: The size of the length subfield is the size of the SQL*Loader

SMALLINT datatype on your system (C type SHORT INT). See

SMALLINT on page 6-9 for more information.

VARGRAPHIC
(max_length)
6-12 Oracle9i Database Utilities

SQL*Loader Datatypes
embedded in every occurrence of the input data for that field, it is assumed to be

accurate.

VARGRAPHIC data cannot be delimited.

VARCHAR
A VARCHAR field is a length-value datatype. It consists of a binary length subfield

followed by a character string of the specified length. The length is in bytes unless

character-length semantics are used for the datafile. In that case, the length is in

characters. See Character-Length Semantics on page 5-22.

VARCHAR fields can be loaded with correct results only between systems where a

SHORTdata field INT has the same length in bytes. If the byte order is different

between the systems, or if the VARCHAR field contains data in the UTF16 character

set, use the appropriate technique to indicate the byte order of the length subfield

and of the data. The byte order of the data is only an issue for the UTF16 character

set. See Byte Ordering on page 6-37.

The syntax for the VARCHAR datatype is:

A maximum length specified in the control file does not include the size of the

length subfield. If you specify the optional maximum length for a VARCHAR
datatype, then a buffer of that size, in bytes, is allocated for these fields. However, if

character-length semantics are used for the datafile, the buffer size in bytes is the

max_length times the size in bytes of the largest possible character in the character

set. See Character-Length Semantics on page 5-22.

The default maximum size is 4 KB. Specifying the smallest maximum length that is

needed to load your data can minimize SQL*Loader’s memory requirements,

especially if you have many VARCHAR fields.

The POSITION clause, if used, gives the location, in bytes, of the length subfield,

not of the first text character. If you specify POSITION(start:end), the end

Note: The size of the length subfield is the size of the SQL*Loader

SMALLINT datatype on your system (C type SHORT INT). See

SMALLINT on page 6-9 for more information.

VARCHAR
(max_length)
Field List Reference 6-13

SQL*Loader Datatypes
location determines a maximum length for the field. Start is subtracted from (end
+ 1) to give the length of the field in bytes. If a maximum length is specified, it

overrides any length calculated from POSITION.

If a VARCHAR field is truncated by the end of the logical record before its full length

is read, a warning is issued. Because the length of a VARCHAR field is embedded in

every occurrence of the input data for that field, it is assumed to be accurate.

VARCHAR data cannot be delimited.

VARRAW
VARRAW is made up of a 2-byte binary length subfield followed by a RAW string

value subfield.

VARRAW results in a VARRAW with a 2-byte length subfield and a maximum size of 4

KB (that is, the default). VARRAW(65000) results in a VARRAW with a length

subfield of 2 bytes and a maximum size of 65000 bytes.

VARRAW fields can be loaded between systems with different byte orders if the

appropriate technique is used to indicate the byte order of the length subfield. See

Byte Ordering on page 6-37.

LONG VARRAW
LONG VARRAW is a VARRAW with a 4-byte length subfield instead of a 2-byte length

subfield.

LONG VARRAWresults in a VARRAWwith 4-byte length subfield and a maximum size

of 4 KB (that is, the default). LONG VARRAW(300000) results in a VARRAW with a

length subfield of 4 bytes and a maximum size of 300000 bytes.

LONG VARRAW fields can be loaded between systems with different byte orders if

the appropriate technique is used to indicate the byte order of the length subfield.

See Byte Ordering on page 6-37.

Portable Datatypes
The portable datatypes are grouped into value datatypes and length-value

datatypes. The portable value datatypes are as follows:

■ CHAR

■ Datetime and Interval

■ GRAPHIC
6-14 Oracle9i Database Utilities

SQL*Loader Datatypes
■ GRAPHIC EXTERNAL

■ Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, ZONED)

■ RAW

The portable length-value datatypes are as follows:

■ VARCHARC

■ VARRAWC

The syntax for these datatypes is shown in the diagram for datatype_spec on

page A-9.

The character datatypes are CHAR, DATE, and the numeric EXTERNAL datatypes.

These fields can be delimited and can have lengths (or maximum lengths) specified

in the control file.

CHAR
The data field contains character data. The length, which is optional, is a maximum

length. Note the following with regard to length:

■ If a length is not specified, it is derived from the POSITION specification.

■ If a length is specified, it overrides the length in the POSITION specification.

■ If no length is given and there is no position specification, CHAR data is

assumed to have a length of 1, unless the field is delimited:

– For a delimited CHAR field, if a length is specified, that length is used as a

maximum.

– For a delimited CHAR field for which no length is specified, the default is

255 bytes.

– For a delimited CHARfield that is greater than 255 bytes, you must specify a

maximum length. Otherwise you will receive an error stating that the field

in the datafile exceeds maximum length.

The syntax for the CHAR datatype is:

See Also: Specifying Delimiters on page 6-24

CHAR
(length) delim_spec
Field List Reference 6-15

SQL*Loader Datatypes
Datetime and Interval Datatypes
The datetime datatypes are:

■ DATE

■ TIME

■ TIMESTAMP

■ TIME WITH TIME ZONE

■ TIMESTAMP WITH TIME ZONE

Values of datetime datatypes are sometimes called datetimes.

The interval datatypes are:

■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND

Values of interval datatypes are sometimes called intervals.

Both datetimes and intervals are made up of fields. The values of these fields

determine the value of the datatype.

DATE The DATE field contains character data that should be converted to an Oracle

date using the specified date mask. The syntax for the DATE field is:

For example:

LOAD DATA
INTO TABLE dates (col_a POSITION (1:15) DATE "DD-Mon-YYYY")
BEGINDATA
1-Jan-1991
1-Apr-1991 28-Feb-1991

Whitespace is ignored and dates are parsed from left to right unless delimiters are

present. (A DATE field that consists entirely of whitespace is loaded as a NULL field.)

See Also: Oracle9i SQL Reference for more detailed information

about datetime and interval datatypes

DATE
(length) "mask" delim_spec
6-16 Oracle9i Database Utilities

SQL*Loader Datatypes
The length specification is optional, unless a varying-length date mask is specified.

The length is in bytes unless character-length semantics are used for the datafile. In

that case, the length is in characters. See Character-Length Semantics on page 5-22.

In the preceding example, the date mask, "DD-Mon-YYYY" contains 11 bytes, with

byte-length semantics. Therefore, SQL*Loader expects a maximum of 11 bytes in the

field, so the specification works properly. But, suppose a specification such as the

following is given:

DATE "Month dd, YYYY"

In this case, the date mask contains 14 bytes. If a value with a length longer than 14

bytes is specified, such as "September 30, 1991" , a length must be specified.

Similarly, a length is required for any Julian dates (date mask "J"). A field length is

required any time the length of the date string could exceed the length of the mask

(that is, the count of bytes in the mask).

If an explicit length is not specified, it can be derived from the POSITION clause. It

is a good idea to specify the length whenever you use a mask, unless you are

absolutely sure that the length of the data is less than, or equal to, the length of the

mask.

An explicit length specification, if present, overrides the length in the POSITION
clause. Either of these overrides the length derived from the mask. The mask may

be any valid Oracle date mask. If you omit the mask, the default Oracle date mask

of "dd-mon-yy" is used.

The length must be enclosed in parentheses and the mask in quotation marks. Case

Study 3: Loading a Delimited, Free-Format File on page 10-11 provides an example

of the DATE datatype.

A field of datatype DATE may also be specified with delimiters. For more

information, see Specifying Delimiters on page 6-24.

TIME The TIME datatype stores hour, minute, and second values. For example:

09:26:50

TIMESTAMP The TIMESTAMPdatatype is an extension of the DATEdatatype. It stores

the year, month, and day of the DATE datatype, plus the hour, minute, and second

values of the TIME datatype. An example TIMESTAMP is as follows:

TIMESTAMP ’1999-01-31 09:26:50’
Field List Reference 6-17

SQL*Loader Datatypes
If you specify a date value without a time component, the default time is 12:00:00

AM (midnight).

TIME WITH TIME ZONE The TIME WITH TIME ZONE datatype is a variant of TIME that

includes a time zone displacement in its value. The time zone displacement is the

difference (in hours and minutes) between local time and UTC (coordinated

universal time, formerly Greenwich mean time).

If the LOCAL option is specified, then data stored in the database is normalized to

the database time zone, and time zone displacement is not stored as part of the

column data. When the data is retrieved, it is returned in the user’s local session

time zone.

TIMESTAMP WITH TIME ZONE The TIMESTAMP WITH TIME ZONE datatype is a

variant of TIMESTAMP that includes a time zone displacement in its value. The time

zone displacement is the difference (in hours and minutes) between local time and

UTC (coordinated universal time, formerly Greenwich mean time).

If the LOCAL option is specified, then data stored in the database is normalized to

the database time zone, and time zone displacement is not stored as part of the

column data. When the data is retrieved, it is returned in the user’s local session

time zone.

INTERVAL YEAR TO MONTH The INTERVAL YEAR TO MONTH datatype stores a period

of time using the YEAR and MONTH datetime fields.

INTERVAL DAY TO SECOND The INTERVAL DAY TO SECOND datatype stores a period

of time using the DAY and SECOND datetime fields.

GRAPHIC
The data is a string of double-byte characters (DBCS). The Oracle database server

does not support DBCS; however, SQL*Loader reads DBCS as single bytes. Like

RAWdata, GRAPHICfields are stored without modification in whichever column you

specify.

The syntax for the GRAPHIC datatype is:

GRAPHIC
(graphic_char_length)
6-18 Oracle9i Database Utilities

SQL*Loader Datatypes
For GRAPHIC and GRAPHIC EXTERNAL, specifying POSITION(start:end) gives

the exact location of the field in the logical record.

If you specify a length for the GRAPHIC (EXTERNAL) datatype, however, then you

give the number of double-byte graphic characters. That value is multiplied by 2 to

find the length of the field in bytes. If the number of graphic characters is specified,

then any length derived from POSITION is ignored. No delimited data field

specification is allowed with GRAPHIC datatype specification.

GRAPHIC EXTERNAL
If the DBCS field is surrounded by shift-in and shift-out characters, use GRAPHIC
EXTERNAL. This is identical to GRAPHIC, except that the first and last characters

(the shift-in and shift-out) are not loaded.

The syntax for the GRAPHIC EXTERNAL datatype is:

GRAPHICindicates that the data is double-byte characters. EXTERNALindicates that

the first and last characters are ignored. The graphic_char_length value

specifies the length in DBCS (see GRAPHIC on page 6-18).

For example, let [] represent shift-in and shift-out characters, and let # represent

any double-byte character.

To describe ####, use POSITION(1:4) GRAPHIC or POSITION(1) GRAPHIC(2) .

To describe [####], use POSITION(1:6) GRAPHIC EXTERNAL or POSITION(1)
GRAPHIC EXTERNAL(2).

Numeric EXTERNAL
The numeric EXTERNAL datatypes are the numeric datatypes (INTEGER, FLOAT,
DECIMAL, and ZONED) specified as EXTERNAL, with optional length and delimiter

specifications. The length is in bytes unless character-length semantics are used for

the datafile. In that case, the length is in characters. See Character-Length Semantics

on page 5-22.

These datatypes are the human-readable, character form of numeric data. The same

rules that apply to CHAR data with regard to length, position, and delimiters apply

to numeric EXTERNAL data. See CHAR on page 6-15 for a complete description of

these rules.

GRAPHIC EXTERNAL
(graphic_char_length)
Field List Reference 6-19

SQL*Loader Datatypes
The syntax for the numeric EXTERNAL datatypes is shown as part of datatype_spec

on page A-9.

FLOAT EXTERNAL data can be given in either scientific or regular notation. Both

"5.33" and "533E-2" are valid representations of the same value.

RAW
When raw, binary data is loaded "as is" into a RAW database column, it is not

converted by the Oracle database server. If it is loaded into a CHAR column, the

Oracle database server converts it to hexadecimal. It cannot be loaded into a DATE
or number column.

The syntax for the RAW datatype is as follows:

The length of this field is the number of bytes specified in the control file. This

length is limited only by the length of the target column in the database and by

memory resources. The length is always in bytes, even if character-length semantics

are used for the datafile. RAW data fields cannot be delimited.

VARCHARC
The datatype VARCHARC consists of a character length subfield followed by a

character string value-subfield.

The declaration for VARCHARC specifies the length of the length subfield, optionally

followed by the maximum size of any string. If byte-length semantics are in use for

the datafile, then the length and the maximum size are both in bytes. If

character-length semantics are in use for the datafile, then the length and maximum

size are in characters. If a maximum size is not specified, 4 KB is the default

Note: The data is a number in character form, not binary

representation. Therefore, these datatypes are identical to CHARand

are treated identically, except for the use of DEFAULTIF. If you want

the default to be null, use CHAR; if you want it to be zero, use

EXTERNAL. See Using the WHEN, NULLIF, and DEFAULTIF

Clauses on page 6-32.

RAW
(length)
6-20 Oracle9i Database Utilities

SQL*Loader Datatypes
regardless of whether byte-length semantics or character-length semantics are in

use.

For example:

■ VARCHARC results in an error because you must at least specify a value for the

length subfield.

■ VARCHARC(7)results in a VARCHARCwhose length subfield is 7 bytes long and

whose maximum size is 4 KB (the default) if byte-length semantics are used for

the datafile. If character-length semantics are used, it results in a VARCHARC
with a length subfield that is 7 characters long and a maximum size of 4 KB (the

default). Remember that when a maximum size is not specified, the default of 4

KB is always used, regardless of whether byte-length or character-length

semantics are in use.

■ VARCHARC(3,500) results in a VARCHARC whose length subfield is 3 bytes

long and whose maximum size is 500 bytes if byte-length semantics are used for

the datafile. If character-length semantics are used, it results in a VARCHARC
with a length subfield that is 3 characters long and a maximum size of 500

characters.

See Character-Length Semantics on page 5-22.

VARRAWC
The datatype VARRAWC consists of a RAW string value subfield.

For example:

■ VARRAWC results in an error.

■ VARRAWC(7) results in a VARRAWC whose length subfield is 7 bytes long and

whose maximum size is 4 KB (that is, the default).

■ VARRAWC(3,500) results in a VARRAWC whose length subfield is 3 bytes long

and whose maximum size is 500 bytes.

Conflicting Native Datatype Field Lengths
There are several ways to specify a length for a field. If multiple lengths are

specified and they conflict, then one of the lengths takes precedence. A warning is

issued when a conflict exists. The following rules determine which field length is

used:

1. The size of SMALLINT, FLOAT, and DOUBLE data is fixed, regardless of the

number of bytes specified in the POSITION clause.
Field List Reference 6-21

SQL*Loader Datatypes
2. If the length specified (or precision) of a DECIMAL, INTEGER, ZONED, GRAPHIC,
GRAPHIC EXTERNAL, or RAW field conflicts with the size calculated from a

POSITION(start:end) specification, then the specified length (or precision)

is used.

3. If the maximum size specified for a character or VARGRAPHIC field conflicts

with the size calculated from a POSITION(start:end) specification, then the

specified maximum is used.

For example, assume that the native datatype INTEGER is 4 bytes long and the

following field specification is given:

column1 POSITION(1:6) INTEGER

In this case, a warning is issued, and the proper length (4) is used. The log file

shows the actual length used under the heading "Len" in the column table:

Column Name Position Len Term Encl Datatype
----------------------- --------- ----- ---- ---- ---------
COLUMN1 1:6 4 INTEGER

Field Lengths for Length-Value Datatypes
A control file can specify a maximum length for the following length-value

datatypes: VARCHAR, VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC. The

specified maximum length is in bytes if byte-length semantics are used for the field,

and in characters if character-length semantics are used for the field. If no length is

specified, the maximum length defaults to 4096 bytes. If the length of the field

exceeds the maximum length, the record is rejected with the following error:

Variable length field exceed maximum length

Datatype Conversions
The datatype specifications in the control file tell SQL*Loader how to interpret the

information in the datafile. The server defines the datatypes for the columns in the

database. The link between these two is the column name specified in the control file.

SQL*Loader extracts data from a field in the input file, guided by the datatype

specification in the control file. SQL*Loader then sends the field to the server to be

stored in the appropriate column (as part of an array of row inserts).

SQL*Loader or the server does any necessary data conversion to store the data in

the proper internal format. This includes converting data from the datafile character

set to the database character set when they differ.
6-22 Oracle9i Database Utilities

SQL*Loader Datatypes
The datatype of the data in the file does not need to be the same as the datatype of

the column in the Oracle table. The Oracle database server automatically performs

conversions, but you need to ensure that the conversion makes sense and does not

generate errors. For instance, when a datafile field with datatype CHAR is loaded

into a database column with datatype NUMBER, you must make sure that the

contents of the character field represent a valid number.

Datatype Conversions for Datetime and Interval Datatypes
Table 6–2 shows which conversions between Oracle database datatypes and

SQL*Loader control file datetime and interval datatypes are supported and which

are not.

In the table, the abbreviations for the Oracle Database Datatypes are as follows:

N = NUMBER

C = CHAR or VARCHAR2

D = DATE

T = TIME and TIME WITH TIME ZONE

TS = TIMESTAMP and TIMESTAMP WITH TIME ZONE

YM = INTERVAL YEAR TO MONTH

DS = INTERVAL DAY TO SECOND

For the SQL*Loader datatypes, the definitions for the abbreviations in the table are

the same for D, T, TS, YM, and DS. However, as noted in the previous section,

SQL*Loader does not contain datatype specifications for Oracle internal datatypes

such as NUMBER,CHAR, and VARCHAR2. However, any data that the Oracle database

server is capable of converting can be loaded into these or other database columns.

Note: SQL*Loader does not contain datatype specifications for

Oracle internal datatypes such as NUMBER or VARCHAR2. The

SQL*Loader datatypes describe data that can be produced with text

editors (character datatypes) and with standard programming

languages (native datatypes). However, although SQL*Loader does

not recognize datatypes like NUMBER and VARCHAR2, any data that

the Oracle database server is capable of converting may be loaded

into these or other database columns.
Field List Reference 6-23

SQL*Loader Datatypes
For an example of how to read this table, look at the row for the SQL*Loader

datatype DATE (abbreviated as D). Reading across the row, you can see that

datatype conversion is supported for the Oracle database datatypes of CHAR,
VARCHAR2, DATE, TIMESTAMP, and TIMESTAMP WITH TIMEZONE datatypes.

However, conversion is not supported for the Oracle database datatypes NUMBER,
TIME, TIME WITH TIME ZONE, INTERVAL YEAR TO MONTH, or INTERVAL DAY TO
SECOND datatypes.

Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields may also

be marked by specific delimiter characters contained in the input data record. The

RAW datatype may also be marked by delimiters, but only if it is in an input

LOBFILE, and only if the delimiter is TERMINATED BY EOF (end of file). You

indicate how the field is delimited by using a delimiter specification after specifying

the datatype.

Delimited data can be terminated or enclosed, as shown in the following syntax:

You can specify a TERMINATED BY clause, an ENCLOSED BY clause, or both. If

both are used, the TERMINATED BY clause must come first.

Table 6–2 Datatype Conversions for Datetime and Interval Datatypes

SQL*Loader Datatype Oracle Database Datatype (Conversion Support)

N N (Yes), C (Yes), D (No), T (No), TS (No), YM (No), DS (No)

C N (Yes), C (Yes), D (Yes), T (Yes), TS (Yes), YM (Yes), DS (Yes)

D N (No), C (Yes), D (Yes), T (No), TS (Yes), YM (No), DS (No)

T N (No), C (Yes), D (No), T (Yes), TS (Yes), YM (No), DS (No)

TS N (No), C (Yes), D (Yes), T (Yes), TS (Yes), YM (No), DS (No)

YM N (No), C (Yes), D (No), T (No), TS (No), YM (Yes), DS (No)

DS N (No), C (Yes), D (No), T (No), TS (No), YM (No), DS (Yes)

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec
6-24 Oracle9i Database Utilities

SQL*Loader Datatypes
TERMINATED Fields
TERMINATED fields are read from the starting position of the field up to, but not

including, the first occurrence of the delimiter character. If the terminator delimiter

is found in the first column position, the field is null.

If TERMINATED BY WHITESPACEis specified, data is read until the first occurrence

of a whitespace character (spaces, tabs, blanks, line feeds, form feeds, or carriage

returns). Then the current position is advanced until no more adjacent whitespace

characters are found. This allows field values to be delimited by varying amounts of

whitespace. For more information about the syntax, see Syntax for Termination and

Enclosure Specification on page 6-25.

ENCLOSED Fields
ENCLOSED fields are read by skipping whitespace until a nonwhitespace character

is encountered. If that character is the delimiter, then data is read up to the second

delimiter. Any other character causes an error.

If two delimiter characters are encountered next to each other, a single occurrence of

the delimiter character is used in the data value. For example, ’DON’’T’ is stored as

DON’T. However, if the field consists of just two delimiter characters, its value is

null. For more information about the syntax, see Syntax for Termination and

Enclosure Specification on page 6-25.

Syntax for Termination and Enclosure Specification

Table 6–3 describes the syntax for the termination and enclosure specification.

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’
Field List Reference 6-25

SQL*Loader Datatypes
Here are some examples, with samples of the data they describe:

TERMINATED BY ’,’ a data string,
ENCLOSED BY ’"’ "a data string"
TERMINATED BY ’,’ ENCLOSED BY ’"’ "a data string",
ENCLOSED BY ’(’ AND ’)’ (a data string)

Delimiter Marks in the Data
Sometimes the punctuation mark that is a delimiter must also be included in the

data. To make that possible, two adjacent delimiter characters are interpreted as a

single occurrence of the character, and this character is included in the data. For

example, this data:

(The delimiters are left parentheses, (, and right parentheses,)).)

Table 6–3 Parameters for Termination and Enclosure Specification

Parameter Description

TERMINATED Data is read until the first occurrence of a delimiter.

BY An optional word to increase readability.

WHITESPACE Delimiter is any whitespace character including spaces, tabs,
blanks, line feeds, form feeds, or carriage returns. (Only used
with TERMINATED, not with ENCLOSED.)

OPTIONALLY Data can be enclosed by the specified character. If SQL*Loader
finds a first occurrence of the character, it reads the data value
until it finds the second occurrence. If the data is not enclosed,
the data is read as a terminated field. If you specify an optional
enclosure, you must specify a TERMINATED BY clause (either
locally in the field definition or globally in the FIELDS clause).

ENCLOSED The data will be found between two delimiters.

string The delimiter is a string.

X’hexstr ’ The delimiter is a string that has the value specified by
X’hexstr’ in the character encoding scheme, such as X’1F’
(equivalent to 31 decimal). "X"can be either lowercase or
uppercase.

AND Specifies a trailing enclosure delimiter that may be different
from the initial enclosure delimiter. If AND is not present, then
the initial and trailing delimiters are assumed to be the same.

EOF Indicates that the entire file has been loaded into the LOB. This
is valid only when data is loaded from a LOB file. Fields
terminated by EOF cannot be enclosed.
6-26 Oracle9i Database Utilities

SQL*Loader Datatypes
with this field specification:

ENCLOSED BY "(" AND ")"

puts the following string into the database:

The delimiters are left parentheses, (, and right parentheses,).

For this reason, problems can arise when adjacent fields use the same delimiters.

For example, with the following specification:

field1 TERMINATED BY "/"
field2 ENCLOSED by "/"

the following data will be interpreted properly:

This is the first string/ /This is the second string/

But if field1 and field2 were adjacent, then the results would be incorrect,

because

This is the first string//This is the second string/

would be interpreted as a single character string with a "/" in the middle, and that

string would belong to field1 .

Maximum Length of Delimited Data
The default maximum length of delimited data is 255 bytes. Therefore, delimited

fields can require significant amounts of storage for the bind array. A good policy is

to specify the smallest possible maximum value if the fields are shorter than 255

bytes. If the fields are longer than 255 bytes, then you must specify a maximum

length for the field, either with a length specifier or with the POSITION clause.

Loading Trailing Blanks with Delimiters
Trailing blanks are not loaded with nondelimited datatypes unless you specify

PRESERVE BLANKS. If a data field is 9 characters long and contains the value

DANIELbbb , where bbb is three blanks, it is loaded into the Oracle database as

"DANIEL" if declared as CHAR(9) .

If you want the trailing blanks, you could declare it as CHAR(9) TERMINATED BY
’:’ , and add a colon to the datafile so that the field is DANIELbbb : . This field is

loaded as "DANIEL " , with the trailing blanks. You could also specify
Field List Reference 6-27

SQL*Loader Datatypes
PRESERVE BLANKS without the TERMINATED BY clause and obtain the same

results.

Conflicting Field Lengths for Character Datatypes
A control file can specify multiple lengths for the character-data fields CHAR, DATE,

and numeric EXTERNAL. If conflicting lengths are specified, one of the lengths takes

precedence. A warning is also issued when a conflict exists. This section explains

which length is used.

Predetermined Size Fields
If you specify a starting position and ending position for one of these fields, then

the length of the field is determined by these specifications. If you specify a length

as part of the datatype and do not give an ending position, the field has the given

length. If starting position, ending position, and length are all specified, and the

lengths differ, then the length given as part of the datatype specification is used for

the length of the field, as follows:

POSITION(1:10) CHAR(15)

In this example, the length of the field is 15.

Delimited Fields
If a delimited field is specified with a length, or if a length can be calculated from

the starting and ending positions, then that length is the maximum length of the

field. The specified maximum length is in bytes if byte-length semantics are used for

the field, and in characters if character-length semantics are used for the field. If no

length is specified or can be calculated from the start and end positions, the

maximum length defaults to 255 bytes. The actual length can vary up to that

maximum, based on the presence of the delimiter.

If starting and ending positions are specified for the field, as well as delimiters, then

only the position specification has any effect. Any enclosure or termination

delimiters are ignored.

If the expected delimiter is absent, then the end of record terminates the field. If

TRAILING NULLCOLS is specified, remaining fields are null. If either the delimiter

See Also:

■ Trimming Whitespace on page 6-42

■ Preserving Whitespace on page 6-49
6-28 Oracle9i Database Utilities

Specifying Field Conditions
or the end of record produces a field that is longer than the maximum, SQL*Loader

rejects the record and returns and error.

Date Field Masks
The length of a date field depends on the mask, if a mask is specified. The mask

provides a format pattern, telling SQL*Loader how to interpret the data in the

record. For example, assume the mask is specified as follows:

"Month dd, yyyy"

Then "May 3, 1991" would occupy 11 bytes in the record (with byte-length

semantics), while "January 31, 1992" would occupy 16.

If starting and ending positions are specified, however, then the length calculated

from the position specification overrides a length derived from the mask. A

specified length such as DATE(12) overrides either of those. If the date field is also

specified with terminating or enclosing delimiters, then the length specified in the

control file is interpreted as a maximum length for the field.

Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as

true or false. It is used in the NULLIF and DEFAULTIF clauses, as well as in the

WHEN clause.

A field condition is similar to the condition in the CONTINUEIF clause, with two

important differences. First, positions in the field condition refer to the logical

record, not to the physical record. Second, you can specify either a position in the

logical record or the name of a field in the datafile (including filler fields).

The syntax for the field_condition clause is as follows:

See Also: Datetime and Interval Datatypes on page 6-16 for more

information on the DATE field

Note: A field condition cannot be based on fields in a secondary

datafile (SDF).
Field List Reference 6-29

Specifying Field Conditions
The syntax for the pos_spec clause is as follows:

Table 6–4 describes the parameters used for the field condition clause. For a full

description of the position specification parameters, see Table 6–1.

Table 6–4 Parameters for the Field Condition Clause

Parameter Description

pos_spec Specifies the starting and ending position of the comparison
field in the logical record. It must be surrounded by
parentheses. Either start -end or start :end is acceptable.

The starting location can be specified as a column number, or
as * (next column), or as *+n (next column plus an offset).

If you omit an ending position, the length of the field is
determined by the length of the comparison string. If the
lengths are different, the shorter field is padded. Character
strings are padded with blanks, hexadecimal strings with
zeros.

start Specifies the starting position of the comparison field in the
logical record.

end Specifies the ending position of the comparison field in the
logical record.

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

(

start

*
+integer

:

–
end

)

6-30 Oracle9i Database Utilities

Specifying Field Conditions
Comparing Fields to BLANKS
The BLANKS parameter makes it possible to determine if a field of unknown length

is blank.

For example, use the following clause to load a blank field as null:

full_fieldname ... NULLIF column_name =BLANKS

The BLANKS parameter recognizes only blanks, not tabs. It can be used in place of a

literal string in any field comparison. The condition is true whenever the column is

entirely blank.

The BLANKS parameter also works for fixed-length fields. Using it is the same as

specifying an appropriately sized literal string of blanks. For example, the following

specifications are equivalent:

fixed_field CHAR(2) NULLIF fixed_field =BLANKS
fixed_field CHAR(2) NULLIF fixed_field =" "

full_fieldname full_fieldname is the full name of a field specified using
dot notation. If the field col2 is an attribute of a column object
col1 , when referring to col2 in one of the directives, you
must use the notation col1 .col2 . The column name and the
field name referencing or naming the same entity can be
different, because the column name never includes the full
name of the entity (no dot notation).

operator A comparison operator for either equal or not equal.

char_string A string of characters enclosed in single or double quotation
marks that is compared to the comparison field. If the
comparison is true, the current record is inserted into the table.

X’hex_string ’ A string of hexadecimal digits, where each pair of digits
corresponds to one byte in the field. It is enclosed in single or
double quotation marks. If the comparison is true, the current
record is inserted into the table.

BLANKS Allows you to test a field to see if it consists entirely of blanks.
BLANKS is required when you are loading delimited data and
you cannot predict the length of the field, or when you use a
multibyte character set that has multiple blanks.

Table 6–4 (Cont.) Parameters for the Field Condition Clause

Parameter Description
Field List Reference 6-31

Using the WHEN, NULLIF, and DEFAULTIF Clauses
There can be more than one blank in a multibyte character set. It is a good idea to

use the BLANKS parameter with these character sets instead of specifying a string of

blank characters.

The character string will match only a specific sequence of blank characters, while

the BLANKS parameter will match combinations of different blank characters. For

more information on multibyte character sets, see Multibyte (Asian) Character Sets

on page 5-17.

Comparing Fields to Literals
When a data field is compared to a literal string that is shorter than the data field,

the string is padded. Character strings are padded with blanks, for example:

NULLIF (1:4)=" "

This example compares the data in position 1:4 with 4 blanks. If position 1:4

contains 4 blanks, then the clause evaluates as true.

Hexadecimal strings are padded with hexadecimal zeros, as in the following clause:

NULLIF (1:4)=X’FF’

This clause compares position 1:4 to hexadecimal ’FF000000’.

Using the WHEN, NULLIF, and DEFAULTIF Clauses
The following information applies to scalar fields. For nonscalar fields (column

objects, LOBs, and collections), the WHEN, NULLIF, and DEFAULTIF clauses are

processed differently because nonscalar fields are more complex.

The results of a WHEN, NULLIF, or DEFAULTIF clause can be different depending on

whether the clause specifies a field name or a position.

If the WHEN, NULLIF, or DEFAULTIF clause specifies a field name, SQL*Loader

compares the clause to the evaluated value of the field. The evaluated value takes

trimmed whitespace into consideration. See Trimming Whitespace on page 6-42 for

information about trimming blanks and tabs.

If the WHEN, NULLIF, or DEFAULTIF clause specifies a position, SQL*Loader

compares the clause to the original logical record in the datafile. No whitespace

trimming is done on the logical record in that case.

Different results are more likely if the field has whitespace that is trimmed, or if the

WHEN, NULLIF, or DEFAULTIF clause contains blanks or tabs or uses the BLANKS
6-32 Oracle9i Database Utilities

Using the WHEN, NULLIF, and DEFAULTIF Clauses
parameter. If you require the same results for a field specified by name and for the

same field specified by position, use the PRESERVE BLANKS option. The PRESERVE
BLANKS option instructs SQL*Loader not to trim whitespace when it evaluates the

values of the fields.

The results of a WHEN, NULLIF, or DEFAULTIF clause are also affected by the order

in which SQL*Loader operates, as described in the following steps. SQL*Loader

performs these steps in order, but it does not always perform all of them. Once a

field is set, any remaining steps in the process are ignored. For example, if the field

is set in step 5, SQL*Loader does not move on to step 6.

1. SQL*Loader evaluates the value of each field for the input record and trims any

whitespace that should be trimmed (according to existing guidelines for

trimming blanks and tabs).

2. For each record, SQL*Loader evaluates any WHEN clauses for the table.

3. If the record satisfies the WHEN clauses for the table, or no WHEN clauses are

specified, SQL*Loader checks each field for a NULLIF clause.

4. If a NULLIF clause exists, SQL*Loader evaluates it.

5. If the NULLIF clause is satisfied, SQL*Loader sets the field to NULL.

6. If the NULLIF clause is not satisfied, or if there is no NULLIF clause,

SQL*Loader checks the length of the field from field evaluation. If the field has

a length of 0 from field evaluation (for example, it was a null field, or

whitespace trimming resulted in a null field), SQL*Loader sets the field to

NULL. In this case, any DEFAULTIF clause specified for the field is not

evaluated.

7. If any specified NULLIF clause is false or there is no NULLIF clause, and if the

field does not have a length of 0 from field evaluation, SQL*Loader checks the

field for a DEFAULTIF clause.

8. If a DEFAULTIF clause exists, SQL*Loader evaluates it.

9. If the DEFAULTIF clause is satisfied, then the field is set to 0 if the field in the

datafile is a numeric field. It is set to NULL if the field is not a numeric field. The

following fields are numeric fields and will be set to 0 if they satisfy the

DEFAULTIF clause:

■ BYTEINT

■ SMALLINT

■ INTEGER
Field List Reference 6-33

Using the WHEN, NULLIF, and DEFAULTIF Clauses
■ FLOAT

■ DOUBLE

■ ZONED

■ (packed) DECIMAL

■ Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, and ZONED)

10. If the DEFAULTIF clause is not satisfied, or if there is no DEFAULTIF clause,

SQL*Loader sets the field with the evaluated value from step 1.

The order in which SQL*Loader operates could cause results that you do not expect.

For example, the DEFAULTIF clause may look like it is setting a numeric field to

NULL rather than to 0.

Example 6–2 through Example 6–5 clarify the results for different situations. In the

examples, a blank or space is indicated with a period (.). Assume that col1 and

col2 are VARCHAR2(5) columns in the database.

Example 6–2 DEFAULTIF Clause Is Not Evaluated

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) CHAR INTEGER EXTERNAL DEFAULTIF col1 = ’aname’)

The datafile contains:

aname...

In Example 6–2, col1 for the row evaluates to aname. col2 evaluates to NULLwith

a length of 0 (it is "..." but the trailing blanks are trimmed for a positional field).

When SQL*Loader determines the final loaded value for col2 , it finds no WHEN
clause and no NULLIF clause. It then checks the length of the field, which is 0 from

field evaluation. Therefore, SQL*Loader sets the final value for col2 to NULL. The

DEFAULTIF clause is not evaluated, and the row is loaded as aname for col1 and

NULL for col2 .

Example 6–3 DEFAULTIF Clause Is Evaluated

The control file specifies:

.

.

.

6-34 Oracle9i Database Utilities

Using the WHEN, NULLIF, and DEFAULTIF Clauses
PRESERVE BLANKS
.
.
.
(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF col1 = ’aname’

The datafile contains:

aname...

In Example 6–3, col1 for the row again evaluates to ’aname’. col2 evaluates to

’... ’ because trailing blanks are not trimmed when PRESERVE BLANKS is
specified.

When SQL*Loader determines the final loaded value for col2 , it finds no WHEN
clause and no NULLIF clause. It then checks the length of the field from field

evaluation, which is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause, which evaluates to true

because col1 is ’aname’, which is the same as ’aname’.

Because col2 is a numeric field, SQL*Loader sets the final value for col2 to ’0’.

The row is loaded as ’aname’ for col1 and as ’0’ for col2 .

Example 6–4 DEFAULTIF Clause Specifies a Position

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF (1:5) = BLANKS)

The datafile contains:

.....123

In Example 6–4, col1 for the row evaluates to NULL with a length of 0 (it is
but the trailing blanks are trimmed). col2 evaluates to 123 .

When SQL*Loader sets the final loaded value for col2 , it finds no WHEN clause and

no NULLIF clause. It then checks the length of the field from field evaluation, which

is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. It compares (1:5) which is

..... to BLANKS, which evaluates to true. Therefore, because col2 is a numeric

field (integer EXTERNAL is numeric), SQL*Loader sets the final value for col2 to

0. The row is loaded as NULL for col1 and 0 for col2 .
Field List Reference 6-35

Loading Data Across Different Platforms
Example 6–5 DEFAULTIF Clause Specifies a Field Name

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION(6:8) INTEGER EXTERNAL DEFAULTIF col1 = BLANKS)

The datafile contains:

.....123

In Example 6–5, col1 for the row evaluates to NULL with a length of 0 (it is ,

but the trailing blanks are trimmed). col2 evaluates to 123 .

When SQL*Loader determines the final value for col2 , it finds no WHEN clause and

no NULLIF clause. It then checks the length of the field from field evaluation, which

is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. As part of the evaluation, it

checks to see that col1 is NULLfrom field evaluation. It is NULL, so the DEFAULTIF
clause evaluates to false. Therefore, SQL*Loader sets the final value for col2 to

123 , its original value from field evaluation. The row is loaded as NULL for col1
and 123 for col2 .

Loading Data Across Different Platforms
When a datafile created on one platform is to be loaded on a different platform, the

data must be written in a form that the target system can read. For example, if the

source system has a native, floating-point representation that uses 16 bytes, and the

target system’s floating-point numbers are 12 bytes, the target system cannot

directly read data generated on the source system.

The best solution is to load data across an Oracle Net database link, taking

advantage of the automatic conversion of datatypes. This is the recommended

approach, whenever feasible, and means that SQL*Loader must be run on the

source system.

Problems with interplatform loads typically occur with native datatypes. In some

situations, it is possible to avoid problems by lengthening a field by padding it with

zeros, or to read only part of the field to shorten it (for example, when an 8-byte

integer is to be read on a system that uses 4-byte integers, or the reverse). Note,

however, that incompatible datatype implementation may prevent this.

If you cannot use an Oracle Net database link and the datafile must be accessed by

SQL*Loader running on the target system, it is advisable to use only the portable

SQL*Loader datatypes (for example, CHAR, DATE, VARCHARC, and numeric
6-36 Oracle9i Database Utilities

Byte Ordering
EXTERNAL). Datafiles written using these datatypes may be longer than those

written with native datatypes. They may take more time to load, but they transport

more readily across platforms.

If you know in advance that the byte ordering schemes or native integer lengths

differ between the platform on which the input data will be created and the

platform on which SQL*loader will be run, then investigate the possible use of the

appropriate technique to indicate the byte order of the data or the length of the

native integer. Possible techniques for indicating the byte order are to use the

BYTEORDER parameter or to place a byte-order mark (BOM) in the file. Both

methods are described in Byte Ordering on page 6-37. It may then be possible to

eliminate the incompatibilities and achieve a successful cross-platform data load. If

the byte order is different from the SQL*Loader default, then you must indicate a

byte order.

Byte Ordering

SQL*Loader can load data from a datafile that was created on a system whose byte

ordering is different from the byte ordering on the system where SQL*Loader is

running, even if the datafile contains certain nonportable datatypes.

By default, SQL*Loader uses the byte order of the system where it is running as the

byte order for all datafiles. For example, on a Sun Solaris system, SQL*Loader uses

big endian byte order. On an Intel or an Intel-compatible PC, SQL*Loader uses little

endian byte order.

Byte order affects the results when data is written and read an even number of bytes

at a time (typically 2 bytes, 4 bytes, or 8 bytes). The following are some examples of

this:

■ The 2-byte integer value 1 is written as 0x0001 on a big endian system and as

0x0100 on a little endian system.

■ The 4-byte integer 66051 is written as 0x00010203 on a big endian system and as

0x03020100 on a little endian system.

Note: The information in this section is only applicable if you are

planning to create input data on a system that has a different

byte-ordering scheme than the system on which SQL*Loader will

be run. Otherwise, you can skip this section.
Field List Reference 6-37

Byte Ordering
Byte order also affects character data in the UTF16 character set if it is written and

read as 2-byte entities. For example, the character ’a’ (0x61 in ASCII) is written as

0x0061 in UTF16 on a big endian system, but as 0x6100 on a little endian system.

All Oracle-supported character sets, except UTF16, are written one byte at a time.

So, even for multibyte character sets such as UTF8, the characters are written and

read the same way on all systems, regardless of the byte order of the system.

Therefore, data in the UTF16 character set is nonportable because it is byte-order

dependent. Data in all other Oracle-supported character sets is portable.

Byte order in a datafile is only an issue if the datafile that contains the

byte-order-dependent data is created on a system that has a different byte order

from the system on which SQL*Loader is running. If SQL*Loader knows the byte

order of the data, it swaps the bytes as necessary to ensure that the data is loaded

correctly in the target database. Byte swapping means that data in big endian

format is converted to little endian format, or the reverse.

To indicate byte order of the data to SQL*Loader, you can use the BYTEORDER
parameter, or you can place a byte-order mark (BOM) in the file. If you do not use

one of these techniques, SQL*Loader will not correctly load the data into the

datafile.

Specifying Byte Order
To specify the byte order of data in the input datafiles, use the following syntax in

the SQL*Loader control file:

The BYTEORDER parameter has the following characteristics:

■ BYTEORDER is placed after the LENGTH parameter in the SQL*Loader control

file.

■ It is possible to specify a different byte order for different datafiles. However,

the BYTEORDER specification before the INFILE parameters applies to the

entire list of primary datafiles.

See Also: Case Study 11: Loading Data in the Unicode Character

Set on page 10-47 for an example of how SQL*Loader handles byte

swapping

BYTEORDER
BIG

LITTLE

ENDIAN
6-38 Oracle9i Database Utilities

Byte Ordering
■ The BYTEORDER specification for the primary datafiles is also used as the

default for LOBFILEs and SDFs. To override this default, specify BYTEORDER
with the LOBFILE or SDF specification.

■ The BYTEORDER parameter is not applicable to data contained within the

control file itself.

■ The BYTEORDER parameter applies to the following:

– Binary INTEGER and SMALLINT data

– Binary lengths in varying-length fields (that is, for the VARCHAR,
VARGRAPHIC, VARRAW, and LONG VARRAW datatypes)

– Character data for datafiles in the UTF16 character set

– FLOATand DOUBLEdatatypes, if the system where the data was written has

a compatible floating-point representation with that on the system where

SQL*Loader is running

■ The BYTEORDER parameter does not apply to any of the following:

– Raw datatypes (RAW, VARRAW, or VARRAWC)

– Graphic datatypes (GRAPHIC, VARGRAPHIC, or GRAPHIC EXTERNAL)

– Character data for datafiles in any character set other than UTF16

– ZONED or (packed) DECIMAL datatypes

Using Byte Order Marks (BOMs)
Datafiles that use a Unicode encoding (UTF-16 or UTF-8) may contain a byte-order

mark (BOM) in the first few bytes of the file. For a datafile that uses the character set

UTF16, the value 0xFEFF in the first two bytes of the file is the BOM indicating that

the file contains big endian data. A value of 0xFFFE is the BOM indicating that the

file contains little endian data.

If the first primary datafile uses the UTF16 character set and it also begins with a

BOM, that mark is read and interpreted to determine the byte order for all primary

datafiles. SQL*Loader reads and interprets the BOM, skips it, and begins processing

data with the byte immediately after the BOM. The BOM setting overrides any

BYTEORDERspecification for the first primary datafile. BOMs in datafiles other than

the first primary datafile are read and used for checking for byte-order conflicts

only. They do not change the byte-order setting that SQL*Loader uses in processing

the datafile.
Field List Reference 6-39

Byte Ordering
In summary, the precedence of the byte-order indicators for the first primary

datafile is as follows:

■ BOM in the first primary datafile, if the datafile uses a Unicode character set

that is byte-order dependent (UTF16) and a BOM is present

■ BYTEORDER parameter value, if specified before the INFILE parameters

■ The byte order of the system where SQL*Loader is running

For a datafile that uses a UTF8 character set, a BOM of 0xEFBBBF in the first 3 bytes

indicates that the file contains UTF8 data. It does not indicate the byte order of the

data, because data in UTF8 is not byte-order dependent. If SQL*Loader detects a

UTF8 BOM, it skips it but does not change any byte-order settings for processing

the datafiles.

SQL*Loader first establishes a byte-order setting for the first primary datafile using

the precedence order just defined. This byte-order setting is used for all primary

datafiles. If another primary datafile uses the character set UTF16 and also contains

a BOM, the BOM value is compared to the byte-order setting established for the first

primary datafile. If the BOM value matches the byte-order setting of the first

primary datafile, SQL*Loader skips the BOM, and uses that byte-order setting to

begin processing data with the byte immediately after the BOM. If the BOM value

does not match the byte-order setting established for the first primary datafile, then

SQL*Loader issues an error message and stops processing.

If any LOBFILEs or secondary datafiles are specified in the control file, SQL*Loader

establishes a byte-order setting for each LOBFILE and secondary datafile (SDF)

when it is ready to process the file. The default byte-order setting for LOBFILEs and

SDFs is the byte-order setting established for the first primary datafile. This is

overridden if the BYTEORDER parameter is specified with a LOBFILE or SDF. In

either case, if the LOBFILE or SDF uses the UTF16 character set and contains a

BOM, the BOM value is compared to the byte-order setting for the file. If the BOM

value matches the byte-order setting for the file, SQL*Loader skips the BOM, and

uses that byte-order setting to begin processing data with the byte immediately

after the BOM. If the BOM value does not match, then SQL*Loader issues an error

message and stops processing.

In summary, the precedence of the byte-order indicators for LOBFILEs and SDFs is

as follows:

■ BYTEORDER parameter value specified with the LOBFILE or SDF

■ The byte-order setting established for the first primary datafile
6-40 Oracle9i Database Utilities

Loading All-Blank Fields
Suppressing Checks for BOMs
A datafile in a Unicode character set may contain binary data that matches the BOM

in the first bytes of the file. For example the integer(2) value 0xFEFF = 65279

decimal matches the big endian BOM in UTF16. In that case, you can tell

SQL*Loader to read the first bytes of the datafile as data and not check for a BOM

by specifying the BYTEORDERMARK parameter with the value NOCHECK. The syntax

for the BYTEORDERMARK parameter is:

BYTEORDERMARK NOCHECK indicates that SQL*Loader should not check for a BOM

and should read all the data in the datafile as data.

BYTEORDERMARK CHECK tells SQL*Loader to check for a BOM. This is the default

behavior for a datafile in a Unicode character set. But this specification may be used

in the control file for clarification. It is an error to specify BYTEORDERMARK CHECK
for a datafile that uses a non-Unicode character set.

The BYTEORDERMARK parameter has the following characteristics:

■ It is placed after the optional BYTEORDER parameter in the SQL*Loader control

file.

■ It applies to the syntax specification for primary datafiles, as well as to

LOBFILEs and secondary datafiles (SDFs).

■ It is possible to specify a different BYTEORDERMARKvalue for different datafiles;

however, the BYTEORDERMARK specification before the INFILE parameters

applies to the entire list of primary datafiles.

■ The BYTEORDERMARK specification for the primary datafiles is also used as the

default for LOBFILEs and SDFs, except that the value CHECK is ignored in this

case if the LOBFILE or SDF uses a non-Unicode character set. This default

setting for LOBFILEs and secondary datafiles can be overridden by specifying

BYTEORDERMARK with the LOBFILE or SDF specification.

Loading All-Blank Fields
Fields that are numeric or totally blank cause the record to be rejected. To load one

of these fields as NULL, use the NULLIF clause with the BLANKS parameter.

BYTEORDERMARK
CHECK

NOCHECK
Field List Reference 6-41

Trimming Whitespace
If an all-blank CHAR field is surrounded by enclosure delimiters, then the blanks

within the enclosures are loaded. Otherwise, the field is loaded as NULL.

A DATE field that consists entirely of blanks is loaded as a NULL field.

Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line

feeds) constitute whitespace. Leading whitespace occurs at the beginning of a field.

Trailing whitespace occurs at the end of a field. Depending on how the field is

specified, whitespace may or may not be included when the field is inserted into the

database. This is illustrated in Figure 6–1 where two CHAR fields are defined for a

data record.

The field specifications are contained in the control file. The control file CHAR
specification is not the same as the database CHARspecification. A data field defined

as CHARin the control file merely tells SQL*Loader how to create the row insert. The

data could then be inserted into a CHAR, VARCHAR2, NCHAR, NVARCHAR, or even a

NUMBER or DATE column in the database, with the Oracle database server handling

any necessary conversions.

By default, SQL*Loader removes trailing spaces from CHARdata before passing it to

the database. So, in Figure 6–1, both field 1 and field 2 are passed to the database as

3-byte fields. However, when the data is inserted into the table, there is a difference.

See Also:

■ Case Study 6: Loading Data Using the Direct Path Load

Method on page 10-24 for an example of how to load all-blank

fields as NULL with the NULLIF clause

■ Trimming Whitespace on page 6-42

■ Preserving Whitespace on page 6-49
6-42 Oracle9i Database Utilities

Trimming Whitespace
Figure 6–1 Example of Field Conversion

Column 1 is defined in the database as a fixed-length CHAR column of length 5. So

the data (aaa) is left-justified in that column, which remains 5 bytes wide. The extra

space on the right is padded with blanks. Column 2, however, is defined as a

varying-length field with a maximum length of 5 bytes. The data for that column

(bbb) is left-justified as well, but the length remains 3 bytes.

Table 6–5 summarizes when and how whitespace is removed from input data fields

when PRESERVE BLANKS is not specified. See Preserving Whitespace on page 6-49

for details on how to prevent whitespace trimming.

DATAFILE

ROW
INSERT

DATABASE

SQL*Loader

SERVER

Field 1

aaa bbb

Column 1 Column 2

Table

CHAR (5) VARCHAR (5)Column Datatypes

CHAR (5) CHAR (5)Control File Specifications

a a a _ _ b b b

a a a b b b

Field 2
Field List Reference 6-43

Trimming Whitespace
The rest of this section discusses the following topics with regard to trimming

whitespace:

■ Datatypes for Which Whitespace Can Be Trimmed

■ Field Length Specifications for Datatypes for Which Whitespace Can Be

Trimmed

■ Relative Positioning of Fields

■ Leading Whitespace

■ Trailing Whitespace

■ Enclosed Fields

Datatypes for Which Whitespace Can Be Trimmed
The information in this section applies only to fields specified with one of the

character-data datatypes:

Table 6–5 Behavior Summary for Trimming Whitespace

Specification Data Result

Leading
Whitespace
Present 1

1 When an all-blank field is trimmed, its value is NULL.

Trailing
Whitespace
Present 1

Predetermined size __aa__ __aa Yes No

Terminated __aa__, __aa__ Yes Yes2

2 Except for fields that are terminated by whitespace.

Enclosed "__aa__" __aa__ Yes Yes

Terminated and
enclosed

"__aa__", __aa__ Yes Yes

Optional enclosure
(present)

"__aa__", __aa__ Yes Yes

Optional enclosure
(absent)

__aa__, aa__ No Yes

Previous field
terminated by
whitespace

__aa__ aa3

3 Presence of trailing whitespace depends on the current field’s specification, as shown by the
other entries in the table.

No 3
6-44 Oracle9i Database Utilities

Trimming Whitespace
■ CHAR datatype

■ Datetime and interval datatypes

■ Numeric EXTERNAL datatypes:

– INTEGER EXTERNAL

– FLOAT EXTERNAL

– (packed) DECIMAL EXTERNAL

– ZONED (decimal) EXTERNAL

Field Length Specifications for Datatypes for Which Whitespace Can Be Trimmed
There are two ways to specify field length. If a field has a constant length that is

defined in the control file with a position specification or the datatype and length,

then it has a predetermined size. If a field’s length is not known in advance, but

depends on indicators in the record, then the field is delimited, using either

enclosure or termination delimiters.

If a position specification with start and end values is defined for a field that also

has enclosure or termination delimiters defined, only the position specification has

any effect. The enclosure and termination delimiters are ignored.

Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and

ending position, or with a length, as in the following examples:

loc POSITION(19:31)
loc CHAR(14)

In the second case, even though the exact position of the field is not specified, the

length of the field is predetermined.

Delimited Fields
Delimiters are characters that demarcate field boundaries.

Note: Although VARCHAR and VARCHARC fields also contain

character data, these fields are never trimmed. These fields include

all whitespace that is part of the field in the datafile.
Field List Reference 6-45

Trimming Whitespace
Enclosure delimiters surround a field, like the quotation marks in the following

example, where "__" represents blanks or tabs:

"__aa__"

Termination delimiters signal the end of a field, like the comma in the following

example:

__aa__,

Delimiters are specified with the control clauses TERMINATED BY and ENCLOSED
BY, as shown in the following example:

loc TERMINATED BY "." OPTIONALLY ENCLOSED BY ’|’

Relative Positioning of Fields
This section describes how SQL*Loader determines the starting position of a field in

the following situations:

■ No Start Position Specified for a Field

■ Previous Field Terminated by a Delimiter

■ Previous Field Has Both Enclosure and Termination Delimiters

No Start Position Specified for a Field
When a starting position is not specified for a field, it begins immediately after the

end of the previous field. Figure 6–2 illustrates this situation when the previous

field (Field 1) has a predetermined size.

Figure 6–2 Relative Positioning After a Fixed Field

Previous Field Terminated by a Delimiter
If the previous field (Field 1) is terminated by a delimiter, then the next field begins

immediately after the delimiter, as shown in Figure 6–3.

Field 1 CHAR(9)

a a a a b b b b ,

Field 2 TERMINATED BY ","
6-46 Oracle9i Database Utilities

Trimming Whitespace
Figure 6–3 Relative Positioning After a Delimited Field

Previous Field Has Both Enclosure and Termination Delimiters
When a field is specified with both enclosure delimiters and a termination delimiter,

then the next field starts after the termination delimiter, as shown in Figure 6–4. If a

nonwhitespace character is found after the enclosure delimiter, but before the

terminator, then SQL*Loader generates an error.

Figure 6–4 Relative Positioning After Enclosure Delimiters

Leading Whitespace
In Figure 6–4, both fields are stored with leading whitespace. Fields do not include

leading whitespace in the following cases:

■ When the previous field is terminated by whitespace, and no starting position is

specified for the current field

■ When optional enclosure delimiters are specified for the field, and the enclosure

delimiters are not present

These cases are illustrated in the following sections.

Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all whitespace after the

field acts as the delimiter. The next field starts at the next nonwhitespace character.

Figure 6–5 illustrates this case.

a a a a , b b b b ,

Field 2 TERMINATED BY ","Field 1 TERMINATED BY ","

" a a a a " , b b b b ,

Field 2 TERMINATED BY ","
Field 1 TERMINATED BY ","

ENCLOSED BY ' " '
Field List Reference 6-47

Trimming Whitespace
Figure 6–5 Fields Terminated by Whitespace

This situation occurs when the previous field is explicitly specified with the

TERMINATED BY WHITESPACEclause, as shown in the example. It also occurs when

you use the global FIELDS TERMINATED BY WHITESPACE clause.

Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure

delimiters are specified but not present.

Whenever optional enclosure delimiters are specified, SQL*Loader scans forward,

looking for the first enclosure delimiter. If an enclosure delimiter is not found,

SQL*Loader skips over whitespace, eliminating it from the field. The first

nonwhitespace character signals the start of the field. This situation is shown in

Field 2 in Figure 6–6. (In Field 1 the whitespace is included because SQL*Loader

found enclosure delimiters for the field.)

Figure 6–6 Fields Terminated by Optional Enclosure Delimiters

Unlike the case when the previous field is TERMINATED BY WHITESPACE, this

specification removes leading whitespace even when a starting position is specified

for the current field.

Note: If enclosure delimiters are present, leading whitespace after

the initial enclosure delimiter is kept, but whitespace before this

delimiter is discarded. See the first quotation mark in Field 1,

Figure 6–6.

a a a a b b b b

Field 2 TERMINATED
BY WHITESPACE

Field 1 TERMINATED
BY WHITESPACE

" a a a a " , b b b b ,

Field 2 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY ' " '

Field 1 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY ' " '
6-48 Oracle9i Database Utilities

Preserving Whitespace
Trailing Whitespace
Trailing whitespace is always trimmed from character-data fields that have a

predetermined size. These are the only fields for which trailing whitespace is

always trimmed.

Enclosed Fields
If a field is enclosed, or terminated and enclosed, like the first field shown in

Figure 6–6, then any whitespace outside the enclosure delimiters is not part of the

field. Any whitespace between the enclosure delimiters belongs to the field,

whether it is leading or trailing whitespace.

Preserving Whitespace
To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields,

you specify PRESERVE BLANKS in the control file. Whitespace trimming is

described in Trimming Whitespace on page 6-42.

PRESERVE BLANKS Option
The PRESERVE BLANKS option:

■ Retains leading whitespace when optional enclosure delimiters are not present

■ Leaves trailing whitespace intact when fields are specified with a

predetermined size

For example, consider the following field, where underscores represent blanks:

__aa__,

If this field is loaded with the following control clause, then both the leading

whitespace and the trailing whitespace are retained if PRESERVE BLANKS is
specified. Otherwise, the leading whitespace is trimmed.

TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’

Note: The word BLANKS is not optional. Both words must be

specified.
Field List Reference 6-49

Applying SQL Operators to Fields
Terminated by Whitespace
When the previous field is terminated by whitespace, then PRESERVE BLANKSdoes

not preserve the space at the beginning of the next field, unless that field is specified

with a POSITION clause that includes some of the whitespace. Otherwise,

SQL*Loader scans past all whitespace at the end of the previous field until it finds a

nonblank, nontab character.

Applying SQL Operators to Fields
A wide variety of SQL operators can be applied to field data with the SQL string.

This string can contain any combination of SQL expressions that are recognized by

the Oracle database server as valid for the VALUES clause of an INSERT statement.

In general, any SQL function that returns a single value that is compatible with the

target column’s datatype can be used. SQL strings can be applied to simple scalar

column types as well as to user-defined complex types such as column object and

collections. See the information about expressions in the Oracle9i SQL Reference.

The column name and the name of the column in the SQL string must match

exactly, including the quotation marks, as in the following example of specifying

the control file:

LOAD DATA
INFILE *
APPEND INTO TABLE XXX
("Last" position(1:7) char "UPPER(:\"Last\")"
 FIRST position(8:15) char "UPPER(:FIRST)"
)
BEGINDATA
Phil Locke
Jason Durbin

The following requirements and restrictions apply when you are using SQL strings:

■ The SQL string appears after any other specifications for a given column.

■ The SQL string must be enclosed in double quotation marks.

■ To enclose a column name in quotation marks within a SQL string, you must

use escape characters.

In the preceding example, Last is enclosed in double quotation marks to

preserve the mixed case, and the double quotation marks necessitate the use of

the backslash (escape) character.
6-50 Oracle9i Database Utilities

Applying SQL Operators to Fields
■ If the SQL string contains a column name that references a column object

attribute, then the full field name must be used and it must be enclosed in

quotation marks.

■ The SQL string is evaluated after any NULLIF or DEFAULTIF clauses, but

before a date mask.

■ If the Oracle database server does not recognize the string, the load terminates

in error. If the string is recognized, but causes a database error, the row that

caused the error is rejected.

■ SQL strings are required when using the EXPRESSION parameter in a field

specification.

■ If the SQL string contains a bind variable, the bind variable cannot be longer

than 4000 bytes or the record will be rejected.

■ The SQL string cannot reference fields that are loaded using OID, SID , REF, or

BFILE . Also, it cannot reference filler fields.

■ In direct path mode, a SQL string cannot reference a VARRAY, nested table, or

LOB column. This also includes a VARRAY, nested table, or LOB column that is

an attribute of a column object.

■ The SQL string cannot be used on RECNUM, SEQUENCE, CONSTANT, or SYSDATE
fields.

■ The SQL string cannot be used on LOBs, BFILE s, XML columns, or a file that is

an element of a collection.

■ In direct path mode, the final result that is returned after evaluation of the

expression in the SQL string must be a scalar datatype. That is, the expression

may not return an object or collection datatype when performing a direct path

load.
Field List Reference 6-51

Applying SQL Operators to Fields
Referencing Fields
To refer to fields in the record, precede the field name with a colon (:). Field values

from the current record are substituted. A field name preceded by a colon (:) in a

SQL string is also referred to as a bind variable. The following example illustrates

how a reference is made to both the current field and to other fields in the control

file:

LOAD DATA
INFILE *
APPEND INTO TABLE YYY
(
 field1 POSITION(1:6) CHAR "LOWER(:field1)"
 field2 CHAR TERMINATED BY ’,’
 NULLIF ((1) = ’a’) DEFAULTIF ((1)= ’b’)
 "RTRIM(:field2)"
 field3 CHAR(7) "TRANSLATE(:field3, ’:field1’, ’:1’)",
 field4 COLUMN OBJECT
 (
 attr1 CHAR(3) "UPPER(":\"FIELD4.ATTR3\")",
 attr2 CHAR(2),
 attr3 CHAR(3) ":\"FIELD4.ATTR1\" + 1"
),
 field5 EXPRESSION "MYFUNC(:FIELD4, SYSDATE)"
)
BEGINDATA
ABCDEF1234511 ,:field1500YYabc
abcDEF67890 ,:field2600ZZghl

Note the following about the preceding example:

■ Only the :field1 that is not in single quotation marks is interpreted as a bind

variable; ’:field1’ and ’:1’ are text literals that are passed unchanged to

the TRANSLATE function. For more information on the use of quotation marks

inside quoted strings, see Specifying Filenames and Object Names on page 5-5.

■ For each input record read, the value of the field referenced by the bind variable

will be substituted for the bind variable. For example, the value ABCDEF in the

first record is mapped to the first field :field1 . This value is then passed as an

argument to the LOWER function.

■ When a bind variable is a reference to an attribute of a column object, the full

field name must be in uppercase and enclosed in quotation marks. For instance,

:\"FIELD4.ATTR1\" and :\"FIELD4.ATTR3\" .
6-52 Oracle9i Database Utilities

Applying SQL Operators to Fields
■ A bind variable in a SQL string need not reference the current field. In the

preceding example, the bind variable in the SQL string for field FIELD4.ATTR1
references field FIELD4.ATTR3 . The field FIELD4.ATTR1 is still mapped to

the values 500 and 600 in the input records, but the final values stored in its

corresponding columns are ABC and GHL.

■ field5 is not mapped to any field in the input record. The value that is stored

in the target column is the result of executing the MYFUNC PL/SQL function,

which takes two arguments. The use of the EXPRESSION parameter requires

that a SQL string be used to compute the final value of the column because no

input data is mapped to the field.

Common Uses of SQL Operators in Field Specifications
SQL operators are commonly used for the following tasks:

■ Loading external data with an implied decimal point:

 field1 POSITION(1:9) DECIMAL EXTERNAL(8) ":field1/1000"

■ Truncating fields that could be too long:

 field1 CHAR TERMINATED BY "," "SUBSTR(:field1, 1, 10)"

Combinations of SQL Operators
Multiple operators can also be combined, as in the following examples:

field1 POSITION(*+3) INTEGER EXTERNAL
 "TRUNC(RPAD(:field1,6,’0’), -2)"
field1 POSITION(1:8) INTEGER EXTERNAL
 "TRANSLATE(RTRIM(:field1),’N/A’, ’0’)"
field1 CHAR(10)
 "NVL(LTRIM(RTRIM(:field1)), ’unknown’)"

Using SQL Strings with a Date Mask
When a SQL string is used with a date mask, the date mask is evaluated after the

SQL string. Consider a field specified as follows:

field1 DATE "dd-mon-yy" "RTRIM(:field1)"

SQL*Loader internally generates and inserts the following:

TO_DATE(RTRIM(<field1_value>), ’dd-mon-yyyy’)
Field List Reference 6-53

Using SQL*Loader to Generate Data for Input
Note that when using the DATEfield datatype, it is not possible to have a SQL string

without a date mask. This is because SQL*Loader assumes that the first quoted

string it finds after the DATE parameter is a date mask. For instance, the following

field specification would result in an error (ORA-01821: date format not

recognized):

field1 DATE "RTRIM(TO_DATE(:field1, ’dd-mon-yyyy’))"

In this case, a simple workaround is to use the CHAR datatype.

Interpreting Formatted Fields
It is possible to use the TO_CHAR operator to store formatted dates and numbers.

For example:

field1 ... "TO_CHAR(:field1, ’$09999.99’)"

This example could store numeric input data in formatted form, where field1 is a

character column in the database. This field would be stored with the formatting

characters (dollar sign, period, and so on) already in place.

You have even more flexibility, however, if you store such values as numeric

quantities or dates. You can then apply arithmetic functions to the values in the

database, and still select formatted values for your reports.

The SQL string is used in Case Study 7: Extracting Data from a Formatted Report on

page 10-28 to load data from a formatted report.

Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to

generate the data stored in the database record, rather than reading it from a

datafile. The following parameters are described:

■ CONSTANT Parameter

■ EXPRESSION Parameter

■ RECNUM Parameter

■ SYSDATE Parameter

■ SEQUENCE Parameter
6-54 Oracle9i Database Utilities

Using SQL*Loader to Generate Data for Input
Loading Data Without Files
It is possible to use SQL*Loader to generate data by specifying only sequences,

record numbers, system dates, constants, and SQL string expressions as field

specifications.

SQL*Loader inserts as many records as are specified by the LOAD statement. The

SKIP parameter is not permitted in this situation.

SQL*Loader is optimized for this case. Whenever SQL*Loader detects that only
generated specifications are used, it ignores any specified datafile—no read I/O is

performed.

In addition, no memory is required for a bind array. If there are any WHEN clauses in

the control file, SQL*Loader assumes that data evaluation is necessary, and input

records are read.

Setting a Column to a Constant Value
This is the simplest form of generated data. It does not vary during the load or

between loads.

CONSTANT Parameter
To set a column to a constant value, use CONSTANT followed by a value:

CONSTANT value

CONSTANT data is interpreted by SQL*Loader as character input. It is converted, as

necessary, to the database column type.

You may enclose the value within quotation marks, and you must do so if it

contains whitespace or reserved words. Be sure to specify a legal value for the target

column. If the value is bad, every record is rejected.

Numeric values larger than 2^32 - 1 (4,294,967,295) must be enclosed in quotation

marks.

Note: Do not use the CONSTANTparameter to set a column to null.

To set a column to null, do not specify that column at all. Oracle

automatically sets that column to null when loading the record. The

combination of CONSTANT and a value is a complete column

specification.
Field List Reference 6-55

Using SQL*Loader to Generate Data for Input
Setting a Column to an Expression Value
Use the EXPRESSION parameter after a column name to set that column to the

value returned by a SQL operator or specially written PL/SQL function. The

operator or function is indicated in a SQL string that follows the EXPRESSION
parameter. Any arbitrary expression may be used in this context provided that any

parameters required for the operator or function are correctly specified and that the

result returned by the operator or function is compatible with the datatype of the

column being loaded.

EXPRESSION Parameter
The combination of column name, EXPRESSION parameter, and a SQL string is a

complete field specification.

column_name EXPRESSION "SQL string"

Setting a Column to the Datafile Record Number
Use the RECNUMparameter after a column name to set that column to the number of

the logical record from which that record was loaded. Records are counted

sequentially from the beginning of the first datafile, starting with record 1. RECNUM
is incremented as each logical record is assembled. Thus it increments for records

that are discarded, skipped, rejected, or loaded. If you use the option SKIP=10 , the

first record loaded has a RECNUM of 11.

RECNUM Parameter
The combination of column name and RECNUM is a complete column specification.

column_name RECNUM

Setting a Column to the Current Date
A column specified with SYSDATE gets the current system date, as defined by the

SQL language SYSDATEparameter. See the section on the DATEdatatype in Oracle9i
SQL Reference.

SYSDATE Parameter
The combination of column name and the SYSDATE parameter is a complete

column specification.

column_name SYSDATE
6-56 Oracle9i Database Utilities

Using SQL*Loader to Generate Data for Input
The database column must be of type CHAR or DATE. If the column is of type CHAR,
then the date is loaded in the form ’dd-mon-yy.’ After the load, it can be loaded

only in that form. If the system date is loaded into a DATE column, then it can be

loaded in a variety of forms that include the time and the date.

A new system date/time is used for each array of records inserted in a conventional

path load and for each block of records loaded during a direct path load.

Setting a Column to a Unique Sequence Number
The SEQUENCE parameter ensures a unique value for a particular column.

SEQUENCE increments for each record that is loaded or rejected. It does not

increment for records that are discarded or skipped.

SEQUENCE Parameter
The combination of column name and the SEQUENCE parameter is a complete

column specification.

Table 6–6 describes the parameters used for column specification.

Table 6–6 Parameters Used for Column Specification

Parameter Description

column_name The name of the column in the database to which to

assign the sequence

SEQUENCE Use the SEQUENCE parameter to specify the value for a

column

COUNT The sequence starts with the number of records already

in the table plus the increment

MAX The sequence starts with the current maximum value for

the column plus the increment

integer Specifies the specific sequence number to begin with

column name SEQUENCE (

COUNT

MAX

integer

, incr
)

Field List Reference 6-57

Using SQL*Loader to Generate Data for Input
If a record is rejected (that is, it has a format error or causes an Oracle error), the

generated sequence numbers are not reshuffled to mask this. If four rows are

assigned sequence numbers 10, 12, 14, and 16 in a particular column, and the row

with 12 is rejected, the three rows inserted are numbered 10, 14, and 16, not 10, 12,

and 14. This allows the sequence of inserts to be preserved despite data errors.

When you correct the rejected data and reinsert it, you can manually set the

columns to agree with the sequence.

Case Study 3: Loading a Delimited, Free-Format File on page 10-11 provides an

example of the SEQUENCE parameter.

Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record, rather

than for each table insert, the same sequence number can be used when inserting

data into multiple tables. This is frequently useful.

Sometimes, however, you might want to generate different sequence numbers for

each INTO TABLE clause. For example, your data format might define three logical

records in every input record. In that case, you can use three INTO TABLE clauses,

each of which inserts a different part of the record into the same table. When you

use SEQUENCE(MAX), SQL*Loader will use the maximum from each table, which

can lead to inconsistencies in sequence numbers.

To generate sequence numbers for these records, you must generate unique

numbers for each of the three inserts. Use the number of table-inserts per record as

the sequence increment and start the sequence numbers for each insert with

successive numbers.

Example: Generating Different Sequence Numbers for Each Insert
Suppose you want to load the following department names into the dept table.

Each input record contains three department names, and you want to generate the

department numbers automatically.

Accounting Personnel Manufacturing

incr The value that the sequence number is to increment after

a record is loaded or rejected. This is optional. The

default is 1.

Table 6–6 (Cont.) Parameters Used for Column Specification

Parameter Description
6-58 Oracle9i Database Utilities

Using SQL*Loader to Generate Data for Input
Shipping Purchasing Maintenance
...

You could use the following control file entries to generate unique department

numbers:

INTO TABLE dept
(deptno SEQUENCE(1, 3),
 dname POSITION(1:14) CHAR)
INTO TABLE dept
(deptno SEQUENCE(2, 3),
 dname POSITION(16:29) CHAR)
INTO TABLE dept
(deptno SEQUENCE(3, 3),
 dname POSITION(31:44) CHAR)

The first INTO TABLE clause generates department number 1, the second number 2,

and the third number 3. They all use 3 as the sequence increment (the number of

department names in each record). This control file loads Accounting as department

number 1, Personnel as 2, and Manufacturing as 3.

The sequence numbers are then incremented for the next record, so Shipping loads

as 4, Purchasing as 5, and so on.
Field List Reference 6-59

Using SQL*Loader to Generate Data for Input
6-60 Oracle9i Database Utilities

Loading Objects, LOBs, and Colle
7

Loading Objects, LOBs, and Collections

This chapter discusses the following topics:

■ Loading Column Objects

■ Loading Object Tables

■ Loading REF Columns

■ Loading LOBs

■ Loading Collections (Nested Tables and VARRAYs)

■ Dynamic Versus Static SDF Specifications

■ Loading a Parent Table Separately from Its Child Table

Loading Column Objects
Column objects in the control file are described in terms of their attributes. If the

object type on which the column object is based is declared to be nonfinal, then the

column object in the control file may be described in terms of the attributes, both

derived and declared, of any subtype derived from the base object type. In the

datafile, the data corresponding to each of the attributes of a column object is in a

data field similar to that corresponding to a simple relational column.
ctions 7-1

Loading Column Objects
The following sections show examples of loading column objects:

■ Loading Column Objects in Stream Record Format

■ Loading Column Objects in Variable Record Format

■ Loading Nested Column Objects

■ Loading Column Objects with a Derived Subtype

■ Specifying Null Values for Objects

■ Loading Column Objects with User-Defined Constructors

Loading Column Objects in Stream Record Format
Example 7–1 shows a case in which the data is in predetermined size fields. The

newline character marks the end of a physical record. You can also mark the end of

a physical record by using a custom record separator in the operating system

file-processing clause (os_file_proc_clause).

Example 7–1 Loading Column Objects in Stream Record Format

Control File Contents
LOAD DATA
INFILE ’sample.dat’
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR,

Note: With SQL*Loader support for complex datatypes like

column-objects, the possibility arises that two identical field names

could exist in the control file, one corresponding to a column, the

other corresponding to a column object’s attribute. Certain clauses

can refer to fields (for example, WHEN, NULLIF, DEFAULTIF, SID ,

OID, REF, BFILE , and so on), causing a naming conflict if

identically named fields exist in the control file.

Therefore, if you use clauses that refer to fields, you must specify

the full name. For example, if field fld1 is specified to be a

COLUMN OBJECT and it contains field fld2 , when you specify

fld2 in a clause such as NULLIF, you must use the full field name

fld1.fld2 .
7-2 Oracle9i Database Utilities

Loading Column Objects
1 dept_mgr COLUMN OBJECT
 (name POSITION(17:33) CHAR,
 age POSITION(35:37) INTEGER EXTERNAL,
 emp_id POSITION(40:46) INTEGER EXTERNAL))

Datafile (sample.dat)
101 Mathematics Johny Quest 30 1024
237 Physics Albert Einstein 65 0000

Note:

1. This type of column object specification can be applied recursively to describe

nested column objects.

Loading Column Objects in Variable Record Format
Example 7–2 shows a case in which the data is in delimited fields.

Example 7–2 Loading Column Objects in Variable Record Format

Control File Contents
LOAD DATA
1 INFILE ’sample.dat’ "var 6"
INTO TABLE departments
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
2 (dept_no
 dept_name,
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(5),
 emp_id INTEGER EXTERNAL(5)))

Datafile (sample.dat)
3 000034 101,Mathematics,Johny Q.,30,1024,
 000039 237,Physics,"Albert Einstein",65,0000,

Notes
1. The "var" string includes the number of bytes in the length field at the

beginning of each record (in this example, the number is 6). If no value is

specified, the default is 5 bytes. The maximum size of a variable record is

2^32-1. Specifying larger values will result in an error.
Loading Objects, LOBs, and Collections 7-3

Loading Column Objects
2. Although no positional specifications are given, the general syntax remains the

same (the column object’s name followed by the list of its attributes enclosed in

parentheses). Also note that an omitted type specification defaults to CHAR of

length 255.

3. The first six bytes (italicized) specify the length of the forthcoming record.

These length specifications include the newline characters, which are ignored

thanks to the terminators after the emp_id field.

Loading Nested Column Objects
Example 7–3 shows a control file describing nested column objects (one column

object nested in another column object).

Example 7–3 Loading Nested Column Objects

Control File Contents
LOAD DATA
INFILE `sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ’,' OPTIONALLY ENCLOSED BY ’"’
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(7),
1 em_contact COLUMN OBJECT
 (name CHAR(30),
 phone_num CHAR(20))))

Datafile (sample.dat)
101,Mathematics,Johny Q.,30,1024,"Barbie",650-251-0010,
237,Physics,"Albert Einstein",65,0000,Wife Einstein,654-3210,

Notes
1. This entry specifies a column object nested within a column object.

Loading Column Objects with a Derived Subtype
Example 7–4 shows a case in which a nonfinal base object type has been extended to

create a new derived subtype. Although the column object in the table definition is
7-4 Oracle9i Database Utilities

Loading Column Objects
declared to be of the base object type, SQL*Loader allows any subtype to be loaded

into the column object, provided that the subtype is derived from the base object

type.

Example 7–4 Loading Column Objects with a Subtype

Object Type Definitions
CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5));

CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 person person_type);

Control File Contents
LOAD DATA
INFILE ’sample.dat’
INTO TABLE personnel
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
1 person COLUMN OBJECT TREAT AS employee_type
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
2 empid INTEGER EXTERNAL(5)))

Datafile (sample.dat)
101,Mathematics,Johny Q.,301189453,10249,
237,Physics,"Albert Einstein",128606590,10030,

Notes
1. The TREAT AS clause indicates that SQL*Loader should treat the column object

person as if it were declared to be of the derived type employee_type ,

instead of its actual declared type, person_type .
Loading Objects, LOBs, and Collections 7-5

Loading Column Objects
2. The empid attribute is allowed here because it is an attribute of the employee_
type . If the TREAT AS clause had not been specified, this attribute would have

resulted in an error, because it is not an attribute of the column’s declared type.

Specifying Null Values for Objects
Specifying null values for nonscalar datatypes is somewhat more complex than for

scalar datatypes. An object can have a subset of its attributes be null, it can have all

of its attributes be null (an attributively null object), or it can be null itself (an

atomically null object).

Specifying Attribute Nulls
In fields corresponding to column objects, you can use the NULLIF clause to specify

the field conditions under which a particular attribute should be initialized to NULL.

Example 7–5 demonstrates this.

Example 7–5 Specifying Attribute Nulls Using the NULLIF Clause

Control File Contents
LOAD DATA
INFILE ’sample.dat’
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR NULLIF dept_name=BLANKS,

dept_mgr COLUMN OBJECT
1 (name POSITION(17:33) CHAR NULLIF dept_mgr.name=BLANKS,
1 age POSITION(35:37) INTEGER EXTERNAL
 NULLIF dept_mgr.age=BLANKS,
1 emp_id POSITION(40:46) INTEGER EXTERNAL
 NULLIF dept_mgr.emp_id=BLANKS))

Datafile (sample.dat)
2 101 Johny Quest 1024
 237 Physics Albert Einstein 65 0000

Notes
1. The NULLIF clause corresponding to each attribute states the condition under

which the attribute value should be NULL.

2. The age attribute of the dept_mgr value is null. The dept_name value is also

null.
7-6 Oracle9i Database Utilities

Loading Column Objects
Specifying Atomic Nulls
To specify in the control file the condition under which a particular object should

take a null value (atomic null), you must follow that object’s name with a NULLIF
clause based on a logical combination of any of the mapped fields (for example, in

Example 7–5, the named mapped fields would be dept_no , dept_name , name,

age , emp_id , but dept_mgr would not be a named mapped field because it does

not correspond (is not mapped) to any field in the datafile).

Although the preceding is workable, it is not ideal when the condition under which

an object should take the value of null is independent of any of the mapped fields. In

such situations, you can use filler fields.

You can map a filler field to the field in the datafile (indicating if a particular object

is atomically null or not) and use the filler field in the field condition of the NULLIF
clause of the particular object. This is shown in Example 7–6.

Example 7–6 Loading Data Using Filler Fields

Control File Contents
LOAD DATA
INFILE ’sample.dat’
INTO TABLE departments_v2
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 is_null FILLER CHAR,
2 dept_mgr COLUMN OBJECT NULLIF is_null=BLANKS
 (name CHAR(30) NULLIF dept_mgr.name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF dept_mgr.age=BLANKS,
 emp_id INTEGER EXTERNAL(7)
 NULLIF dept_mgr.emp_id=BLANKS,
 em_contact COLUMN OBJECT NULLIF is_null2=BLANKS
 (name CHAR(30)
 NULLIF dept_mgr.em_contact.name=BLANKS,
 phone_num CHAR(20)
 NULLIF dept_mgr.em_contact.phone_num=BLANKS)),
1 is_null2 FILLER CHAR)

Datafile (sample.dat)
101,Mathematics,n,Johny Q.,,1024,"Barbie",608-251-0010,,
237,Physics,,"Albert Einstein",65,0000,,650-654-3210,n,
Loading Objects, LOBs, and Collections 7-7

Loading Column Objects
Notes
1. The filler field (datafile mapped; no corresponding column) is of type CHAR

(because it is a delimited field, the CHAR defaults to CHAR(255)). Note that the

NULLIF clause is not applicable to the filler field itself.

2. Gets the value of null (atomic null) if the is_null field is blank.

Loading Column Objects with User-Defined Constructors
The Oracle9i database server automatically supplies a default constructor for every

object type. This constructor requires that all attributes of the type be specified as

arguments in a call to the constructor. When a new instance of the object is created,

its attributes take on the corresponding values in the argument list. This constructor

is known as the attribute-value constructor. SQL*Loader uses the attribute-value

constructor by default when loading column objects.

It is possible to override the attribute-value constructor by creating one or more

user-defined constructors. When you create a user-defined constructor, you must

supply a type body that performs the user-defined logic whenever a new instance

of the object is created. A user-defined constructor may have the same argument list

as the attribute-value constructor but differ in the logic that its type body

implements.

When the argument list of a user-defined constructor function matches the

argument list of the attribute-value constructor, there is a difference in behavior

between conventional and direct path SQL*Loader. Conventional path mode results

in a call to the user-defined constructor. Direct path mode results in a call to the

attribute-value constructor. Example 7–7 illustrates this difference.

Example 7–7 Loading a Column Object with a User-Defined Constructor That
Matches the Attribute-Value Constructor

Object Type Definitions
CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that looks like an attribute-value constructor
 CONSTRUCTOR FUNCTION

See Also: Specifying Filler Fields on page 6-6
7-8 Oracle9i Database Utilities

Loading Column Objects
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT AS
 -- This UDC makes sure that the name attribute is in uppercase.
 BEGIN
 SELF.name := UPPER(name);
 SELF.ssn := ssn;
 SELF.empid := empid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

Control File Contents
LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 employee COLUMN OBJECT
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
 empid INTEGER EXTERNAL(5)))

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,10249,
 237,Physics,"Albert Einstein",128606590,10030,

Notes
1. When this control file is run in conventional path mode, the name fields, Johny

Q. and Albert Einstein , are both loaded in uppercase. This is because the

user-defined constructor is called in this mode. In contrast, when this control

file is run in direct path mode, the name fields are loaded exactly as they appear
Loading Objects, LOBs, and Collections 7-9

Loading Column Objects
in the input data. This is because the attribute-value constructor is called in this

mode.

It is possible to create a user-defined constructor whose argument list does not

match that of the attribute-value constructor. In this case, both conventional and

direct path modes will result in a call to the attribute-value constructor. Consider

the definitions in Example 7–8.

Example 7–8 Loading a Column Object with a User-Defined Constructor That Does
Not Match the Attribute-Value Constructor

Object Type Definitions
CREATE SEQUENCE employee_ids
 START WITH 1000
 INCREMENT BY 1;

 CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that does not look like an attribute-value
 -- constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT AS
 -- This UDC makes sure that the name attribute is in lowercase and
 -- assigns the employee identifier based on a sequence.
 nextid NUMBER;
 stmt VARCHAR2(64);
 BEGIN

 stmt := ’SELECT employee_ids.nextval FROM DUAL’;
 EXECUTE IMMEDIATE stmt INTO nextid;

 SELF.name := LOWER(name);
 SELF.ssn := ssn;
 SELF.empid := nextid;
7-10 Oracle9i Database Utilities

Loading Column Objects
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

If the control file described in Example 7–7 is used with these definitions, then the

name fields are loaded exactly as they appear in the input data (that is, in mixed

case). This is because the attribute-value constructor is called in both conventional

and direct path modes.

It is still possible to load this table using conventional path mode by explicitly

making reference to the user-defined constructor in a SQL expression. Example 7–9

shows how this can be done.

Example 7–9 Loading a Column Object with a User-Defined Constructor That Does
Not Match the Attribute-Value Constructor by Using a SQL Expression

Control File Contents
LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 name BOUNDFILLER CHAR,
 ssn BOUNDFILLER INTEGER EXTERNAL(9),
 employee EXPRESSION "employee_type(:NAME, :SSN)")

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,
 237,Physics,"Albert Einstein",128606590,

Notes
1. The employee column object is now loaded using a SQL expression. This

expression invokes the user-defined constructor with the correct number of

arguments. The name fields, Johny Q. and Albert Einstein , will both be

loaded in lowercase. In addition, the employee identifiers for each row’s

employee column object will have taken their values from the employee_ids
sequence.
Loading Objects, LOBs, and Collections 7-11

Loading Object Tables
If the control file in Example 7–9 is used in direct path mode, the following error is

reported:

SQL*Loader-951: Error calling once/load initialization
ORA-26052: Unsupported type 121 for SQL expression on column EMPLOYEE.

Loading Object Tables
The control file syntax required to load an object table is nearly identical to that

used to load a typical relational table. Example 7–10 demonstrates loading an object

table with primary key object identifiers (OIDs).

Example 7–10 Loading an Object Table with Primary Key OIDs

Control File Contents
LOAD DATA
INFILE ’sample.dat’
DISCARDFILE ’sample.dsc’
BADFILE ’sample.bad’
REPLACE
INTO TABLE employees
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5))

Datafile (sample.dat)
Johny Quest, 18, 007,
Speed Racer, 16, 000,

By looking only at the preceding control file you might not be able to determine if

the table being loaded was an object table with system-generated OIDs (real OIDs),

an object table with primary key OIDs, or a relational table.

You may want to load data that already contains real OIDs and to specify that

instead of generating new OIDs, the existing OIDs in the datafile should be used. To

do this, you would follow the INTO TABLE clause with the OID clause:

OID (fieldname)

In this clause, fieldname is the name of one of the fields (typically a filler field)

from the field specification list that is mapped to a data field that contains the real

OIDs. SQL*Loader assumes that the OIDs provided are in the correct format and
7-12 Oracle9i Database Utilities

Loading Object Tables
that they preserve OID global uniqueness. Therefore, to ensure uniqueness, you

should use the Oracle OID generator to generate the OIDs to be loaded.

The OID clause can only be used for system-generated OIDs, not primary key OIDs.

Example 7–11 demonstrates loading real OIDs with the row-objects.

Example 7–11 Loading OIDs

Control File Contents
 LOAD DATA
 INFILE ’sample.dat’
 INTO TABLE employees_v2
1 OID (s_oid)
 FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5),
2 s_oid FILLER CHAR(32))

Datafile (sample.dat)
3 Johny Quest, 18, 007, 21E978406D3E41FCE03400400B403BC3,
 Speed Racer, 16, 000, 21E978406D4441FCE03400400B403BC3,

Notes
1. The OID clause specifies that the s_oid loader field contains the OID. The

parentheses are required.

2. If s_oid does not contain a valid hexadecimal number, the particular record is

rejected.

3. The OID in the datafile is a character string and is interpreted as a 32-digit

hexadecimal number. The 32-digit hexadecimal number is later converted into a

16-byte RAW and stored in the object table.

Loading Object Tables with a Subtype
If an object table’s row object is based on a nonfinal type, SQL*Loader allows for

any derived subtype to be loaded into the object table. As previously mentioned,

the syntax required to load an object table with a derived subtype is almost

identical to that used for a typical relational table. However, in this case, the actual

subtype to be used must be named, so that SQL*Loader can determine if it is a valid

subtype for the object table. This concept is illustrated in Example 7–12.
Loading Objects, LOBs, and Collections 7-13

Loading Object Tables
Example 7–12 Loading an Object Table with a Subtype

Object Type Definitions
CREATE TYPE employees_type AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3),
 emp_id NUMBER(5)) not final;

CREATE TYPE hourly_emps_type UNDER employees_type
 (hours NUMBER(3));

CREATE TABLE employees_v3 of employees_type;

Control File Contents
 LOAD DATA

 INFILE ’sample.dat’
 INTO TABLE employees_v3
1 TREAT AS hourly_emps_type
 FIELDS TERMINATED BY ’,’
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(5),
2 hours INTEGER EXTERNAL(2))

Datafile (sample.dat)
 Johny Quest, 18, 007, 32,
 Speed Racer, 16, 000, 20,

Notes
1. The TREAT AS clause indicates that SQL*Loader should treat the object table as

if it were declared to be of type hourly_emps_type , instead of its actual

declared type, employee_type .

2. The hours attribute is allowed here because it is an attribute of the hourly_
emps_type . If the TREAT ASclause had not been specified, this attribute would

have resulted in an error, because it is not an attribute of the object table’s

declared type.
7-14 Oracle9i Database Utilities

Loading REF Columns
Loading REF Columns
SQL*Loader can load real REF columns (REFs containing real OIDs of the

referenced objects), primary key REF columns, and unscoped REF columns that

allow primary keys.

Real REF Columns
SQL*Loader assumes, when loading real REF columns, that the actual OIDs from

which the REF columns are to be constructed are in the datafile with the rest of the

data. The description of the field corresponding to a REF column consists of the

column name followed by the REF clause.

The REF clause takes as arguments the table name and an OID. Note that the

arguments can be specified either as constants or dynamically (using filler fields).

See ref_spec on page A-7 for the appropriate syntax. Example 7–13 demonstrates

real REF loading.

Example 7–13 Loading Real REF Columns

Control File Contents
LOAD DATA
INFILE ‘sample.dat’
INTO TABLE departments_alt_v2
FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 dept_mgr REF(t_name, s_oid),
 s_oid FILLER CHAR(32),
 t_name FILLER CHAR(30))

Datafile (sample.dat)
22345, QuestWorld, 21E978406D3E41FCE03400400B403BC3, EMPLOYEES_V2,
23423, Geography, 21E978406D4441FCE03400400B403BC3, EMPLOYEES_V2,

Notes
1. If the specified table does not exist, the record is rejected. The dept_mgr field

itself does not map to any field in the datafile.
Loading Objects, LOBs, and Collections 7-15

Loading REF Columns
Primary Key REF Columns
To load a primary key REF column, the SQL*Loader control-file field description

must provide the column name followed by a REF clause. The REF clause takes for

arguments a comma-separated list of field names and constant values. The first

argument is the table name, followed by arguments that specify the primary key

OID on which the REF column to be loaded is based. See ref_spec on page A-7 for

the appropriate syntax.

SQL*Loader assumes that the ordering of the arguments matches the relative

ordering of the columns making up the primary key OID in the referenced table.

Example 7–14 demonstrates loading primary key REF columns.

Example 7–14 Loading Primary Key REF Columns

Control File Contents
LOAD DATA
INFILE ‘sample.dat’
INTO TABLE departments_alt
FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr REF(CONSTANT ‘EMPLOYEES’, emp_id),
 emp_id FILLER CHAR(32))

Datafile (sample.dat)
22345, QuestWorld, 007,
23423, Geography, 000,

Unscoped REF Columns That Allow Primary Keys
An unscoped REF column that allows primary keys can reference both

system-generated and primary key REFs. The syntax for loading into such a REF
column is the same as if you were loading into a real REF column or into a primary

key REF column. See Example 7–13, "Loading Real REF Columns" and

Example 7–14, "Loading Primary Key REF Columns".

The following restrictions apply when loading into an unscoped REF column that

allows primary keys:

■ Only one type of REF can be referenced by this column during a single-table

load, either system-generated or primary key, but not both. If you try to
7-16 Oracle9i Database Utilities

Loading REF Columns
reference both types, the data row will be rejected with an error message

indicating that the referenced table name is invalid.

■ If you are loading unscoped primary key REFs to this column, only one object

table can be referenced during a single-table load. That is, if you want to load

unscoped primary key REFs, some pointing to object table X and some pointing

to object table Y, you would have to do one of the following:

– perform two single-table loads

– perform a single load using multiple INTO TABLE clauses for which the

WHEN clause keys off some aspect of the data, such as the object table name

for the unscoped primary key REF. For example:

LOAD DATA
INFILE ’data.dat’

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no=’0’
)

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK2"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no=’0’
)

If you do not use either of these methods, the data row will be rejected with an

error message indicating that the referenced table name is invalid.

■ Unscoped primary key REFs in collections are not supported by SQL*Loader.

■ If you are loading system-generated REFs into this REF column, any limitations

described in Real REF Columns on page 7-15 also apply here.
Loading Objects, LOBs, and Collections 7-17

Loading LOBs
■ If you are loading primary key REFs into this REF column, any limitations

described in Primary Key REF Columns on page 7-16 also apply here.

Loading LOBs
A LOB is a large object type. SQL*Loader supports the following types of LOBs:

■ BLOB: an internal LOB containing unstructured binary data

■ CLOB: an internal LOB containing character data

■ NCLOB: an internal LOB containing characters from a national character set

■ BFILE : a BLOB stored outside of the database tablespaces in a server-side

operating system file

LOBs can be column datatypes, and with the exception of the NCLOB, they can be an

object’s attribute datatypes. LOBs can have an actual value, they can be null, or they

can be "empty."

XML columns are columns declared to be of type SYS.XMLTYPE. SQL*Loader treats

XML columns as if they were CLOBs. All of the methods described in the following

sections for loading LOB data from the primary datafile or from LOBFILEs are

applicable to loading XML columns.

Because LOBs can be quite large, SQL*Loader is able to load LOB data from either a

primary datafile (in line with the rest of the data) or from LOBFILEs. This section

addresses the following topics:

■ Loading LOB Data from a Primary Datafile

■ Loading LOB Data from an External LOBFILE (BFILE)

■ Loading LOB Data from LOBFILEs

Note: For an unscoped REF column that allows primary keys,

SQL*Loader takes the first valid object table parsed (either from the

REF directive or from the data rows) and uses that object table’s

OID type to determine the REF type that can be referenced in that

single-table load.

Note: You cannot specify a SQL string for LOB fields. This is true

even if you specify LOBFILE_spec .
7-18 Oracle9i Database Utilities

Loading LOBs
Loading LOB Data from a Primary Datafile
To load internal LOBs (BLOBs, CLOBs, and NCLOBs) or XML columns from a primary

datafile, you can use the following standard SQL*Loader formats:

■ Predetermined size fields

■ Delimited fields

■ Length-value pair fields

Each of these formats is described in the following sections.

LOB Data in Predetermined Size Fields
This is a very fast and conceptually simple format in which to load LOBs, as shown

in Example 7–15.

To load LOBs using this format, you should use either CHAR or RAW as the loading

datatype.

Example 7–15 Loading LOB Data in Predetermined Size Fields

Control File Contents
LOAD DATA
INFILE ’sample.dat’ "fix 501"
INTO TABLE person_table
 (name POSITION(01:21) CHAR,
1 "RESUME" POSITION(23:500) CHAR DEFAULTIF "RESUME"=BLANKS)

Datafile (sample.dat)
Johny Quest Johny Quest
 500 Oracle Parkway
 jquest@us.oracle.com ...

Notes
1. If the data field containing the resume is empty, the result is an empty LOB

rather than a null LOB. The opposite would occur if the NULLIF clause were

Note: Because the LOBs you are loading may not be of equal size,

you can use whitespace to pad the LOB data to make the LOBs all

of equal length within a particular data field.
Loading Objects, LOBs, and Collections 7-19

Loading LOBs
used instead of the DEFAULTIF clause. You can use SQL*Loader datatypes

other than CHAR to load LOBs. For example, when loading BLOBs, you would

probably want to use the RAW datatype.

LOB Data in Delimited Fields
This format handles LOBs of different sizes within the same column (datafile field)

without a problem. However, this added flexibility can affect performance, because

SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should

consider the character set of the datafile. When the character set of the datafile is

different than that of the control file, you can specify the delimiters in hexadecimal

notation (that is, X’hexadecimal string ’). If the delimiters are specified in

hexadecimal notation, the specification must consist of characters that are valid in

the character set of the input datafile. In contrast, if hexadecimal notation is not

used, the delimiter specification is considered to be in the client’s (that is, the

control file’s) character set. In this case, the delimiter is converted into the datafile's

character set before SQL*Loader searches for the delimiter in the datafile.

Note the following:

■ Stutter syntax is supported with string delimiters (that is, the closing enclosure

delimiter can be stuttered).

■ Leading whitespaces in the initial multicharacter enclosure delimiter are not

allowed.

■ If a field is terminated by WHITESPACE, the leading whitespaces are trimmed.

Example 7–16 shows an example of loading LOB data in delimited fields.

Example 7–16 Loading LOB Data in Delimited Fields

Control File Contents
LOAD DATA
INFILE ’sample.dat’ "str ’|’"
INTO TABLE person_table
FIELDS TERMINATED BY ’,’
 (name CHAR(25),
1 "RESUME" CHAR(507) ENCLOSED BY ’<startlob>’ AND ’<endlob>’)

Datafile (sample.dat)
Johny Quest,<startlob> Johny Quest
7-20 Oracle9i Database Utilities

Loading LOBs
 500 Oracle Parkway
 jquest@us.oracle.com ... <endlob>
2 |Speed Racer,

Notes
1. <startlob> and <endlob> are the enclosure strings. With the default

byte-length semantics, the maximum length for a LOB that can be read using

CHAR(507) is 507 bytes. If character-length semantics were used, the

maximum would be 507 characters. See Character-Length Semantics on

page 5-22.

2. If the record separator ’|’ had been placed right after <endlob> and followed

with the newline character, the newline would have been interpreted as part of

the next record. An alternative would be to make the newline part of the record

separator (for example, ’|\n’ or, in hexadecimal notation, X’7C0A’).

LOB Data in Length-Value Pair Fields
You can use VARCHAR, VARCHARC, or VARRAW datatypes to load LOB data

organized in length-value pair fields. This method of loading provides better

performance than using delimited fields, but can reduce flexibility (for example,

you must know the LOB length for each LOB before loading). Example 7–17

demonstrates loading LOB data in length-value pair fields.

Example 7–17 Loading LOB Data in Length-Value Pair Fields

Control File Contents
 LOAD DATA
1 INFILE ’sample.dat’ "str ’<endrec>\n’"
 INTO TABLE person_table
 FIELDS TERMINATED BY ’,’
 (name CHAR(25),
2 "RESUME" VARCHARC(3,500))

Datafile (sample.dat)
 Johny Quest,479 Johny Quest
 500 Oracle Parkway
 jquest@us.oracle.com
 ... <endrec>
3 Speed Racer,000<endrec>
Loading Objects, LOBs, and Collections 7-21

Loading LOBs
Notes
1. If the backslash escape character is not supported, the string used as a record

separator in the example could be expressed in hexadecimal notation.

2. "RESUME" is a field that corresponds to a CLOB column. In the control file, it is a

VARCHARC, whose length field is 3 bytes long and whose maximum size is 500

bytes (with byte-length semantics). If character-length semantics were used, the

length would be 3 characters and the maximum size would be 500 characters.

See Character-Length Semantics on page 5-22.

3. The length subfield of the VARCHARC is 0 (the value subfield is empty).

Consequently, the LOB instance is initialized to empty.

Loading LOB Data from an External LOBFILE (BFILE)
The BFILE datatype stores unstructured binary data in operating system files

outside the database. A BFILE column or attribute stores a file locator that points to

the external file containing the data. The file to be loaded as a BFILE does not have

to exist at the time of loading; it can be created later. SQL*Loader assumes that the

necessary directory objects have already been created (a logical alias name for a

physical directory on the server's file system). For more information, see the Oracle9i
Application Developer’s Guide - Large Objects (LOBs).

A control file field corresponding to a BFILE column consists of a column name

followed by the BFILE clause. The BFILE clause takes as arguments a DIRECTORY

OBJECT (the server_directory alias) name followed by a BFILE name. Both

arguments can be provided as string constants, or they can be dynamically loaded

through some other field. See the Oracle9i SQL Reference for more information.

In the next two examples of loading BFILE s, Example 7–18 has only the filename

specified dynamically, while Example 7–19 demonstrates specifying both the BFILE
and the DIRECTORY OBJECT dynamically.

Example 7–18 Loading Data Using BFILEs: Only Filename Specified Dynamically

Control File Contents
LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ’,’
 (pl_id CHAR(3),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
7-22 Oracle9i Database Utilities

Loading LOBs
1 pl_pict BFILE(CONSTANT "scott_dir1", fname))

Datafile (sample.dat)
1,Mercury,mercury.jpeg,
2,Venus,venus.jpeg,
3,Earth,earth.jpeg,

Notes
1. The directory name is quoted; therefore, the string is used as is and is not

capitalized.

Example 7–19 Loading Data Using BFILEs: Filename and Directory Name Specified
Dynamically

Control File Contents
LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
 (pl_id NUMBER(4),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
1 dname FILLER CHAR(20),
 pl_pict BFILE(dname, fname))

Datafile (sample.dat)
1, Mercury, mercury.jpeg, scott_dir1,
2, Venus, venus.jpeg, scott_dir1,
3, Earth, earth.jpeg, scott_dir2,

Notes
1. dname is mapped to the datafile field containing the directory name

corresponding to the file being loaded.

Loading LOB Data from LOBFILEs
LOB data can be lengthy enough so that it makes sense to load it from a LOBFILE

instead of from a primary datafile. In LOBFILEs, LOB data instances are still

considered to be in fields (predetermined size, delimited, length-value), but these

fields are not organized into records (the concept of a record does not exist within
Loading Objects, LOBs, and Collections 7-23

Loading LOBs
LOBFILEs). Therefore, the processing overhead of dealing with records is avoided.

This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader

reads LOBFILEs in 64 KB chunks.

 In LOBFILEs the data can be in any of the following types of fields:

■ A single LOB field into which the entire contents of a file can be read

■ Predetermined size fields (fixed-length fields)

■ Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a LOBFILE.

■ Length-value pair fields (variable-length fields)—to load data from this type of

field, use the VARRAW, VARCHAR, or VARCHARC SQL*Loader datatypes

See Examples of Loading LOB Data from LOBFILEs on page 7-24 for examples of

using each of these field types. All of the previously mentioned field types can be

used to load XML columns.

See lobfile_spec on page A-8 for LOBFILE syntax.

Dynamic Versus Static LOBFILE Specifications
You can specify LOBFILEs either statically (the name of the file is specified in the

control file) or dynamically (a FILLER field is used as the source of the filename). In

either case, if the LOBFILE is not terminated by EOF, then when the end of the

LOBFILE is reached, the file is closed and further attempts to read data from that

file produce results equivalent to reading data from an empty field.

However, if you have a LOBFILE that is terminated by EOF, then the entire file is

always returned on each attempt to read data from that file.

You should not specify the same LOBFILE as the source of two different fields. If

you do so, typically, the two fields will read the data independently.

Examples of Loading LOB Data from LOBFILEs
This section contains examples of loading data from different types of fields in

LOBFILEs.

One LOB per File In Example 7–20, each LOBFILE is the source of a single LOB. To

load LOB data that is organized in this way, you follow the column or field name

with the LOBFILE datatype specifications.
7-24 Oracle9i Database Utilities

Loading LOBs
Example 7–20 Loading LOB DATA with One LOB per LOBFILE

Control File Contents
LOAD DATA
INFILE ’sample.dat’
 INTO TABLE person_table
 FIELDS TERMINATED BY ’,’
 (name CHAR(20),
1 ext_fname FILLER CHAR(40),
2 "RESUME" LOBFILE(ext_fname) TERMINATED BY EOF)

Datafile (sample.dat)
Johny Quest,jqresume.txt,
Speed Racer,’/private/sracer/srresume.txt’,

Secondary Datafile (jqresume.txt)
 Johny Quest
 500 Oracle Parkway
 ...

Secondary Datafile (srresume.txt)
 Speed Racer
 400 Oracle Parkway
 ...

Notes
1. The filler field is mapped to the 40-byte data field, which is read using the

SQL*Loader CHAR datatype. This assumes the use of default byte-length

semantics. If character-length semantics were used, the field would be mapped

to a 40-character data field.

2. SQL*Loader gets the LOBFILE name from the ext_fname filler field. It then

loads the data from the LOBFILE (using the CHAR datatype) from the first byte

to the EOF character. If no existing LOBFILE is specified, the "RESUME" field is

initialized to empty.

Predetermined Size LOBs In Example 7–21, you specify the size of the LOBs to be

loaded into a particular column in the control file. During the load, SQL*Loader

assumes that any LOB data loaded into that particular column is of the specified

size. The predetermined size of the fields allows the data-parser to perform

optimally. However, it is often difficult to guarantee that all LOBs are the same size.
Loading Objects, LOBs, and Collections 7-25

Loading LOBs
Example 7–21 Loading LOB Data Using Predetermined Size LOBs

Control File Contents
LOAD DATA
INFILE ’sample.dat’
INTO TABLE person_table
FIELDS TERMINATED BY ’,’
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT ’/usr/private/jquest/jqresume.txt’)
 CHAR(2000))

Datafile (sample.dat)
Johny Quest,
Speed Racer,

Secondary Datafile (jqresume.txt)
 Johny Quest
 500 Oracle Parkway
 ...
 Speed Racer
 400 Oracle Parkway
 ...

Notes
1. This entry specifies that SQL*Loader load 2000 bytes of data from the

jqresume.txt LOBFILE, using the CHAR datatype, starting with the byte

following the byte loaded last during the current loading session. This assumes

the use of the default byte-length semantics. If character-length semantics were

used, SQL*Loader would load 2000 characters of data, starting from the first

character after the last-loaded character. See Character-Length Semantics on

page 5-22.

Delimited LOBs In Example 7–22, the LOB data instances in the LOBFILE are

delimited. In this format, loading different size LOBs into the same column is not a

problem. However, this added flexibility can affect performance, because

SQL*Loader must scan through the data, looking for the delimiter string.

Example 7–22 Loading LOB Data Using Delimited LOBs

Control File Contents
LOAD DATA
7-26 Oracle9i Database Utilities

Loading LOBs
INFILE ’sample.dat’
INTO TABLE person_table
FIELDS TERMINATED BY ’,’
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT ’jqresume’) CHAR(2000)
 TERMINATED BY "<endlob>\n")

Datafile (sample.dat)
Johny Quest,
Speed Racer,

Secondary Datafile (jqresume.txt)
 Johny Quest
 500 Oracle Parkway
 ... <endlob>
 Speed Racer
 400 Oracle Parkway
 ... <endlob>

Notes
1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader knows

what to expect as the maximum length of the field, which can result in memory

usage optimization. If you choose to specify a maximum length, you should be sure
not to underestimate its value. The TERMINATED BYclause specifies the string that

terminates the LOBs. Alternatively, you could use the ENCLOSED BYclause. The

ENCLOSED BY clause allows a bit more flexibility as to the relative positioning

of the LOBs in the LOBFILE (the LOBs in the LOBFILE need not be sequential).

Length-Value Pair Specified LOBs In Example 7–23 each LOB in the LOBFILE is

preceded by its length. You could use VARCHAR, VARCHARC, or VARRAW datatypes

to load LOB data organized in this way.

This method of loading can provide better performance over delimited LOBs, but at

the expense of some flexibility (for example, you must know the LOB length for

each LOB before loading).

Example 7–23 Loading LOB Data Using Length-Value Pair Specified LOBs

Control File Contents
LOAD DATA
INFILE ’sample.dat’
Loading Objects, LOBs, and Collections 7-27

Loading LOBs
INTO TABLE person_table
FIELDS TERMINATED BY ’,’

(name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT ’jqresume’) VARCHARC(4,2000))

Datafile (sample.dat)
Johny Quest,
Speed Racer,

Secondary Datafile (jqresume.txt)
2 0501Johny Quest
 500 Oracle Parkway
 ...
3 0000

Notes
1. The entry VARCHARC(4,2000) tells SQL*Loader that the LOBs in the LOBFILE

are in length-value pair format and that the first 4 bytes should be interpreted

as the length. The value of 2000 tells SQL*Loader that the maximum size of the

field is 2000 bytes. This assumes the use of the default byte-length semantics. If

character-length semantics were used, the first 4 characters would be

interpreted as the length in characters. The maximum size of the field would be

2000 characters. See Character-Length Semantics on page 5-22.

2. The entry 0501 preceding Johny Quest tells SQL*Loader that the LOB

consists of the next 501 characters.

3. This entry specifies an empty (not null) LOB.

Considerations When Loading LOBs from LOBFILEs
Keep in mind the following when you load data using LOBFILEs:

■ Only LOBs and XML columns can be loaded from LOBFILEs.

■ The failure to load a particular LOB does not result in the rejection of the record

containing that LOB. Instead, you will have a record that contains an empty

LOB. In the case of an XML column, a null value will be inserted if there is a

failure loading the LOB.

■ It is not necessary to specify the maximum length of a field corresponding to a

LOB type column; nevertheless, if a maximum length is specified, SQL*Loader

uses it as a hint to optimize memory usage. Therefore, it is important that the

maximum length specification does not understate the true maximum length.
7-28 Oracle9i Database Utilities

Loading Collections (Nested Tables and VARRAYs)
■ You cannot supply a position specification (pos_spec) when loading data from

a LOBFILE.

■ NULLIF or DEFAULTIF field conditions cannot be based on fields read from

LOBFILEs.

■ If a nonexistent LOBFILE is specified as a data source for a particular field, that

field is initialized to empty. If the concept of empty does not apply to the

particular field type, the field is initialized to null.

■ Table-level delimiters are not inherited by fields that are read from a LOBFILE.

■ When loading an XML column or referencing a LOB column in a SQL expression

in conventional path mode, SQL*Loader must process the LOB data as a

temporary LOB. To ensure the best load performance possible in these cases,

refer to the guidelines concerning temporary LOB performance in Oracle9i
Application Developer’s Guide - Large Objects (LOBs).

Loading Collections (Nested Tables and VARRAYs)
Like LOBs, collections can be loaded either from a primary datafile (data inline) or

from secondary datafiles (data out of line). See Secondary Datafiles (SDFs) on

page 7-31 for details about SDFs.

When you load collection data, a mechanism must exist by which SQL*Loader can

tell when the data belonging to a particular collection instance has ended. You can

achieve this in two ways:

■ To specify the number of rows or elements that are to be loaded into each

nested table or VARRAY instance, use the DDL COUNT function. The value

specified for COUNT must either be a number or a character string containing a

number, and it must be previously described in the control file before the

COUNT clause itself. This positional dependency is specific to the COUNT clause.

COUNT(0) or COUNT(cnt_field) , where cnt_field is 0 for the current row,

results in a empty collection (not null), unless overridden by a NULLIF clause.

See count_spec on page A-12.

■ Use the TERMINATED BY and ENCLOSED BY clauses to specify a unique

collection delimiter. This method cannot be used if an SDF clause is used.

In the control file, collections are described similarly to column objects. See Loading

Column Objects on page 7-1. There are some differences:

■ Collection descriptions employ the two mechanisms discussed in the preceding

list.
Loading Objects, LOBs, and Collections 7-29

Loading Collections (Nested Tables and VARRAYs)
■ Collection descriptions can include a secondary datafile (SDF) specification.

■ A NULLIF or DEFAULTIF clause cannot refer to a field in an SDF unless the

clause is on a field in the same SDF.

■ Clauses that take field names as arguments cannot use a field name that is in a

collection unless the DDL specification is for a field in the same collection.

■ The field list must contain only one nonfiller field and any number of filler

fields. If the VARRAY is a VARRAY of column objects, then the attributes of each

column object will be in a nested field list.

Restrictions in Nested Tables and VARRAYs
The following restrictions exist for nested tables and VARRAYs:

■ A field_list cannot contain a collection_fld_spec .

■ A col_obj_spec nested within a VARRAY cannot contain a collection_
fld_spec .

■ The column_name specified as part of the field_list must be the same as

the column_name preceding the VARRAY parameter.

Example 7–24 demonstrates loading a VARRAY and a nested table.

Example 7–24 Loading a VARRAY and a Nested Table

Control File Contents
 LOAD DATA
 INFILE ‘sample.dat’ “str ‘\n’ ”
 INTO TABLE dept
 REPLACE
 FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
 (
 dept_no CHAR(3),
 dname CHAR(25) NULLIF dname=BLANKS,
1 emps VARRAY TERMINATED BY ':'
 (
 emps COLUMN OBJECT
 (
 name CHAR(30),
 age INTEGER EXTERNAL(3),
2 emp_id CHAR(7) NULLIF emps.emps.emp_id=BLANKS
)
),
7-30 Oracle9i Database Utilities

Loading Collections (Nested Tables and VARRAYs)
3 proj_cnt FILLER CHAR(3),
4 projects NESTED TABLE SDF (CONSTANT "pr.txt" "fix 57") COUNT (proj_cnt)
 (
 projects COLUMN OBJECT
 (
 project_id POSITION (1:5) INTEGER EXTERNAL(5),
 project_name POSITION (7:30) CHAR
 NULLIF projects.projects.project_name = BLANKS
)
)
)

Datafile (sample.dat)
 101,MATH,"Napier",28,2828,"Euclid", 123,9999:0
 210,"Topological Transforms",:2

Secondary Datafile (SDF) (pr.txt)
21034 Topological Transforms
77777 Impossible Proof

Notes
1. The TERMINATED BYclause specifies the VARRAYinstance terminator (note that

no COUNT clause is used).

2. Full name field references (using dot notation) resolve the field name conflict

created by the presence of this filler field.

3. proj_cnt is a filler field used as an argument to the COUNT clause.

4. This entry specifies the following:

– An SDF called pr .txt as the source of data. It also specifies a fixed-record

format within the SDF.

– If COUNT is 0, then the collection is initialized to empty. Another way to

initialize a collection to empty is to use a DEFAULTIF clause. The main field

name corresponding to the nested table field description is the same as the

field name of its nested nonfiller-field, specifically, the name of the column

object field description.

Secondary Datafiles (SDFs)
Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary

datafiles, SDFs are a collection of records, and each record is made up of fields. The
Loading Objects, LOBs, and Collections 7-31

Loading Collections (Nested Tables and VARRAYs)
SDFs are specified on a per control-file-field basis. They are useful when you load

large nested tables and VARRAYs.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by

either the file specification string, or a FILLER field that is mapped to a data field

containing one or more file specification strings.

As for a primary datafile, the following can be specified for each SDF:

■ The record format (fixed, stream, or variable). Also, if stream record format is

used, you can specify the record separator.

■ The record size.

■ The character set for an SDF can be specified using the CHARACTERSET clause

(see Handling Different Character Encoding Schemes on page 5-16).

■ A default delimiter (using the delimiter specification) for the fields that inherit a

particular SDF specification (all member fields or attributes of the collection that

contain the SDF specification, with exception of the fields containing their own

LOBFILE specification).

Also note the following with regard to SDFs:

■ If a nonexistent SDF is specified as a data source for a particular field, that field

is initialized to empty. If the concept of empty does not apply to the particular

field type, the field is initialized to null.

■ Table-level delimiters are not inherited by fields that are read from an SDF.

■ To load SDFs larger than 64 KB, you must use the READSIZE parameter to

specify a larger physical record size. You can specify the READSIZE parameter

either from the command line or as part of an OPTIONS clause.

Note: Only a collection_fld_spec can name an SDF as its

data source.

See Also:

■ READSIZE (read buffer size) on page 4-10

■ OPTIONS Clause on page 5-4

■ sdf_spec on page A-11
7-32 Oracle9i Database Utilities

Loading a Parent Table Separately from Its Child Table
Dynamic Versus Static SDF Specifications
You can specify SDFs either statically (you specify the actual name of the file) or

dynamically (you use a FILLER field as the source of the filename). In either case,

when the EOF of an SDF is reached, the file is closed and further attempts at

reading data from that particular file produce results equivalent to reading data

from an empty field.

In a dynamic secondary file specification, this behavior is slightly different.

Whenever the specification changes to reference a new file, the old file is closed, and

the data is read from the beginning of the newly referenced file.

The dynamic switching of the data source files has a resetting effect. For example,

when SQL*Loader switches from the current file to a previously opened file, the

previously opened file is reopened, and the data is read from the beginning of the

file.

You should not specify the same SDF as the source of two different fields. If you do

so, typically, the two fields will read the data independently.

Loading a Parent Table Separately from Its Child Table
When you load a table that contains a nested table column, it may be possible to

load the parent table separately from the child table. You can load the parent and

child tables independently if the SIDs (system-generated or user-defined) are

already known at the time of the load (that is, the SIDs are in the datafile with the

data).

Example 7–25 and Example 7–26 illustrate how to load parent and child tables with

user-provided SIDs.

Example 7–25 Loading a Parent Table with User-Provided SIDs

Control File Contents
 LOAD DATA
 INFILE ‘sample.dat’ “str ‘|\n’ ”
 INTO TABLE dept
 FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘”’
 TRAILING NULLCOLS
 (dept_no CHAR(3),
 dname CHAR(20) NULLIF dname=BLANKS ,
 mysid FILLER CHAR(32),
1 projects SID(mysid))
Loading Objects, LOBs, and Collections 7-33

Loading a Parent Table Separately from Its Child Table
Datafile (sample.dat)
101,Math,21E978407D4441FCE03400400B403BC3,|
210,”Topology”,21E978408D4441FCE03400400B403BC3,|

Notes
1. mysid is a filler field that is mapped to a datafile field containing the actual

set-ids and is supplied as an argument to the SID clause.

Example 7–26 Loading a Child Table (the Nested Table Storage Table) with
User-Provided SIDs

Control File Contents
 LOAD DATA
 INFILE ‘sample.dat’
 INTO TABLE dept
 FIELDS TERMINATED BY ‘,’ OPTIONALLY ENCLOSED BY ‘"’
 TRAILING NULLCOLS
1 SID(sidsrc)
 (project_id INTEGER EXTERNAL(5),
 project_name CHAR(20) NULLIF project_name=BLANKS,
 sidsrc FILLER CHAR(32))

Datafile (sample.dat)
21034, "Topological Transforms", 21E978407D4441FCE03400400B403BC3,
77777, "Impossible Proof", 21E978408D4441FCE03400400B403BC3,

Notes
1. The table-level SID clause tells SQL*Loader that it is loading the storage table

for nested tables. sidsrc is the filler field name that is the source of the real

set-ids.

Memory Issues When Loading VARRAY Columns
The following list describes some issues to keep in mind when you load VARRAY
columns:

■ VARRAYs are created in the client’s memory before they are loaded into the

database. Each element of a VARRAY requires 4 bytes of client memory before it

can be loaded into the database. Therefore, when you load a VARRAY with a

thousand elements, you will require at least 4000 bytes of client memory for

each VARRAY instance before you can load the VARRAYs into the database. In
7-34 Oracle9i Database Utilities

Loading a Parent Table Separately from Its Child Table
many cases, SQL*Loader requires two to three times that amount of memory to

successfully construct and load a VARRAY.

■ The BINDSIZE parameter specifies the amount of memory allocated by

SQL*Loader for loading records. Given the value specified for BINDSIZE ,

SQL*Loader takes into consideration the size of each field being loaded, and

determines the number of rows it can load in one transaction. The larger the

number of rows, the fewer transactions, resulting in better performance.

But if the amount of memory on your system is limited, then at the expense of

performance, you can specify a lower value for ROWS than SQL*Loader

calculated.

■ Loading very large VARRAYs or a large number of smaller VARRAYs could cause

you to run out of memory during the load. If this happens, specify a smaller

value for BINDSIZE or ROWS and retry the load.
Loading Objects, LOBs, and Collections 7-35

Loading a Parent Table Separately from Its Child Table
7-36 Oracle9i Database Utilities

SQL*Loader Log File Refe
8

SQL*Loader Log File Reference

When SQL*Loader begins execution, it creates a log file. The log file contains a

detailed summary of the load.

Most of the log file entries are records of successful SQL*Loader execution.

However, errors can also cause log file entries. For example, errors found during

parsing of the control file appear in the log file.

This chapter describes the following sections of a SQL*Loader log file:

■ Header Information

■ Global Information

■ Table Information

■ Datafile Information

■ Table Load Information

■ Summary Statistics

■ Additional Summary Statistics for Direct Path Loads and Multithreading

■ Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

Header Information
The Header Section contains the following entries:

■ Date of the run

■ Software version number

For example:

SQL*Loader: Release 9.2.0.1.0 - Production on Wed Feb 27 11:07:28 2002
rence 8-1

Global Information
(c) Copyright 2002 Oracle Corporation. All rights reserved.

Global Information
The Global Information Section contains the following entries:

■ Names of all input/output files

■ Echo of command-line arguments

■ Continuation character specification

If the data is in the control file, then the datafile is shown as "*".

For example:

Control File: LOAD.CTL
Data File: LOAD.DAT
 Bad File: LOAD.BAD
 Discard File: LOAD.DSC

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65536 bytes
Continuation: 1:1 = ’*’, in current physical record
Path used: Conventional

Table Information
The Table Information Section provides the following entries for each table loaded:

■ Table name

■ Load conditions, if any. That is, whether all records were loaded or only those

meeting criteria specified in the WHEN clause.

■ INSERT, APPEND, or REPLACE specification

■ The following column information:

– Column name

– If found in a datafile, the position, length, delimiter, and datatype. See

Column Information on page 8-3 for a description of these columns.
8-2 Oracle9i Database Utilities

Table Information
– If specified, RECNUM, SEQUENCE, CONSTANT, or EXPRESSION

– If specified, DEFAULTIF or NULLIF

For example:

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
-------------------------------------- --- ---- ---- ---------
 empno 1:4 4 CHARACTER
 ename 6:15 10 CHARACTER
 job 17:25 9 CHARACTER
 mgr 27:30 4 CHARACTER
 sal 32:39 8 CHARACTER
 comm 41:48 8 CHARACTER
 deptno 50:51 2 CHARACTER

Column empno is NULL if empno = BLANKS
Column mgr is NULL if mgr = BLANKS
Column sal is NULL if sal = BLANKS
Column comm is NULL if comm = BLANKS
Column deptno is NULL if deptno = BLANKS

Column Information
This section contains a more detailed description of the column information that is

provided in the Table Information Section of the SQL*Loader log file.

Position
The following are the possibilities for the Position column:

■ If a position is specified, the position values are in bytes, starting with byte

position 1, regardless of whether byte-length semantics or character-length

semantics are used.

■ If both a start and end position are specified, they are separated by a colon.

■ If only a start position is specified, then only that position is displayed.

■ If no start or end position is specified, then FIRST is displayed for the first field

and NEXT is displayed for other fields.

■ If the start position is derived from other information, then DERIVED is

displayed.
SQL*Loader Log File Reference 8-3

Datafile Information
Length
The length, in bytes, is displayed under the heading Len. It gives the maximum

size of the field, including the size of any embedded length fields. The size will be

different with byte-length semantics versus character-length semantics. For

example, for VARCHAR (2,10) with byte-length semantics, the length is 2 (the size

of the length field) plus 10 (maximum size of the field itself), which equals 12 bytes.

For VARCHAR (2,10) with character-length semantics, the length is calculated

using the maximum size, in bytes, of a character in the datafile character set.

For fields that do not have a specified maximum length, an asterisk (*) is written in

the Length column.

Delimiter
The delimiters are displayed under the headings, Term (for terminated by) and

Encl (for enclosed by). If the delimiter is optional, it is preceded by O and is

displayed within parentheses.

Datatype
The datatype is displayed as specified in the control file.

If the SQL*Loader control file contains any directives for loading datetime and

interval datatypes, then the log file contains the parameter DATE, DATETIME, or

INTERVAL under the Datatype heading. If applicable, the parameter DATE,

DATETIME, or INTERVAL is followed by the corresponding mask. For example:

Table emp, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
-------------------------------------- --- ---- ---- ---------
 col1 NEXT * DATETIME HH.MI.SSXFF AM

Datafile Information
The Datafile Information Section appears only for datafiles with data errors, and

provides the following entries:

■ SQL*Loader and Oracle data record errors

■ Records discarded

For example:

Record 2: Rejected - Error on table EMP.
8-4 Oracle9i Database Utilities

Summary Statistics
ORA-00001: unique constraint < name> violated
Record 8: Rejected - Error on table emp, column deptno.
ORA-01722: invalid number
Record 3: Rejected - Error on table proj, column projno.
ORA-01722: invalid number

Table Load Information
The Table Load Information Section provides the following entries for each table

that was loaded:

■ Number of rows loaded

■ Number of rows that qualified for loading but were rejected due to data errors

■ Number of rows that were discarded because they did not meet the specified

criteria for the WHEN clause

■ Number of rows whose relevant fields were all null

■ Date cache statistics, if applicable

For example:

Table EMP:
25000 Rows successfully loaded.
2 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Date Cache:
 Max Size: 2000
 Entries: 1000
 Hits: 11000
 Misses: 0

Summary Statistics
The Summary Statistics Section displays the following data:

■ Amount of space used:

See Also: Specifying a Value for the Date Cache on page 9-22 for

information on how you can improve performance by adjusting the

maximum size of the date cache
SQL*Loader Log File Reference 8-5

Summary Statistics
– For bind array (what was actually used, based on what was specified by

BINDSIZE)

– For other overhead (always required, independent of BINDSIZE)

■ Cumulative load statistics. That is, for all datafiles, the number of records that

were:

– Skipped

– Read

– Rejected

– Discarded

■ Beginning and ending time of run

■ Total elapsed time

■ Total CPU time (includes all file I/O but may not include background Oracle

CPU time)

For example:

Space allocated for bind array: 65336 bytes (64 rows)
Space allocated for memory less bind array: 6470 bytes

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Wed Feb 27 10:46:53 1990
Run ended on Wed Feb 27 10:47:17 1990

Elapsed time was: 00:00:15.62
CPU time was: 00:00:07.76

Oracle Statistics That Are Logged
The statistics that are reported to the log file vary, depending on the load type.

■ For conventional loads and direct loads of a nonpartitioned table, statistics

reporting is unchanged from Oracle7.

■ For direct loads of a partitioned table, a per-partition statistics section is

provided after the table-level statistics section.
8-6 Oracle9i Database Utilities

Additional Summary Statistics for Direct Path Loads and Multithreading
■ For a single-partition load, the partition name will be included in the table-level

statistics section.

Information About Single-Partition Loads
The following information is logged when a single partition is loaded:

■ The table column description includes the partition name.

■ Error messages include the partition name.

■ Statistics listings include the partition name.

Statistics for Loading a Table
The following statistics are logged when a table is loaded:

■ Direct path load of a partitioned table reports per-partition statistics.

■ Conventional path load cannot report per-partition statistics.

■ For loading a nonpartitioned table, statistics are unchanged from Oracle7.

For conventional loads and direct loads of a nonpartitioned table, statistics

reporting is unchanged from Oracle7.

If you request logging, but media recovery is not enabled, the load is not logged.

Additional Summary Statistics for Direct Path Loads and Multithreading
For direct path loads, the log contains the following additional data (the numbers in

your log file will be different):

Column array rows: 20000
Stream buffer bytes: 256000

See Specifying the Number of Column Array Rows and Size of Stream Buffers on

page 9-21 for information about the origin of these statistics.

Direct path loads on multiple-CPU systems have the option of using

multithreading. If multithreading is enabled (the default behavior), the following

additional statistics are logged (the numbers in your log will be different):

Total stream buffers loaded by SQL*Loader main thread: 102
Total stream buffers loaded by SQL*Loader load thread: 200

See Optimizing Direct Path Loads on Multiple-CPU Systems on page 9-23 for more

information about multithreading.
SQL*Loader Log File Reference 8-7

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY
Log File Created When EXTERNAL_TABLE=GENERATE_ONLY
When you use the external tables feature, you can place all of the SQL commands

needed to do the load, as described in the control file, in the SQL*Loader log file. To

do this, set the EXTERNAL_TABLE parameter to GENERATE_ONLY. The actual load

can be done later without the use of SQL*Loader by executing these statements in

SQL*Plus.

To generate an example of the log file created when using EXTERNAL_
TABLE=GENERATE_ONLY, execute the following command for case study 1 (Case

Study 1: Loading Variable-Length Data on page 10-5):

sqlldr scott/tiger ulcase1 EXTERNAL_TABLE=GENERATE_ONLY

The resulting log file looks as follows:

SQL*Loader: Release 9.2.0.1.0 - Production on Wed Feb 27 11:07:28 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Control File: ulcase1.ctl
Data File: ulcase1.ctl
 Bad File: ulcase1.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation: none specified
Path used: External Table

Table DEPT, loaded from every logical record.
Insert option in effect for this table: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
DEPTNO FIRST * , O(") CHARACTER
DNAME NEXT * , O(") CHARACTER
LOC NEXT * , O(") CHARACTER

CREATE DIRECTORY statements needed for files
--
8-8 Oracle9i Database Utilities

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY
CREATE DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000 AS
’/private/adestore/krich/.ade/view_storage/krich_dev/rdbms/demo’

CREATE TABLE statement for external table:
--
CREATE TABLE "SYS_SQLLDR_X_EXT_DEPT"
(
 DEPTNO NUMBER(2),
 DNAME VARCHAR2(14),
 LOC VARCHAR2(13)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE ’SYS_SQLLDR_XT_TMPDIR_00000’:’ulcase1.bad’
 LOGFILE ’ulcase1.log_xt’
 READSIZE 1048576
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’ LDRTRIM
 REJECT ROWS WITH ALL NULL FIELDS
 (
 DEPTNO CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’,
 DNAME CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’,
 LOC CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’
)
)
 location
 (
 ’ulcase1.ctl’
)
)REJECT LIMIT UNLIMITED

INSERT statements used to load internal tables:
--
INSERT /*+ append */ INTO DEPT
(

SQL*Loader Log File Reference 8-9

Log File Created When EXTERNAL_TABLE=GENERATE_ONLY
 DEPTNO,
 DNAME,
 LOC
)
SELECT
 DEPTNO,
 DNAME,
 LOC
FROM "SYS_SQLLDR_X_EXT_DEPT"

statements to cleanup objects created by previous statements:
--
DROP TABLE "SYS_SQLLDR_X_EXT_DEPT"
DROP DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000

Run began on Wed Feb 27 11:07:28 2002
Run ended on Wed Feb 27 11:07:34 2002

Elapsed time was: 00:00:06.13
CPU time was: 00:00:00.20

See Also:

■ EXTERNAL_TABLE on page 4-7

■ Part III, "External Tables"
8-10 Oracle9i Database Utilities

Conventional and Direct Path L
9

Conventional and Direct Path Loads

This chapter describes SQL*Loader’s conventional and direct path load methods.

The following topics are covered:

■ Data Loading Methods

■ Conventional Path Load

■ Direct Path Load

■ Using Direct Path Load

■ Optimizing Performance of Direct Path Loads

■ Optimizing Direct Path Loads on Multiple-CPU Systems

■ Avoiding Index Maintenance

■ Direct Loads, Integrity Constraints, and Triggers

■ Parallel Data Loading Models

■ General Performance Improvement Hints

For an example of using the direct path load method, see Case Study 6: Loading

Data Using the Direct Path Load Method on page 10-24. The other cases use the

conventional path load method.

Data Loading Methods
SQL*Loader provides two methods for loading data:

■ Conventional Path Load

■ Direct Path Load
oads 9-1

Data Loading Methods
A conventional path load executes SQL INSERT statements to populate tables in an

Oracle database. A direct path load eliminates much of the Oracle database

overhead by formatting Oracle data blocks and writing the data blocks directly to

the database files. A direct load does not compete with other users for database

resources, so it can usually load data at near disk speed. Considerations inherent to

direct path loads, such as restrictions, security, and backup implications, are

discussed in this chapter.

The tables to be loaded must already exist in the database. SQL*Loader never

creates tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:

■ You must have INSERT privileges on the table to be loaded.

■ You must have DELETE privileges on the table to be loaded, when using the

REPLACE or TRUNCATE option to empty old data from the table before loading

the new data in its place.

Figure 9–1 shows how conventional and direct path loads perform database writes.
9-2 Oracle9i Database Utilities

Data Loading Methods
Figure 9–1 Database Writes on SQL*Loader Direct Path and Conventional Path

RecordWrite Database
Block

SQL*Loader

Database

Oracle Server

Direct
Path

SQL*Loader

Conventional
Path

User Processes

Generate SQL
Commands

Generate SQL
Commands

SQL Command Processing

Space Management

Get new extents
Adjust high-water mark

Find partial blocks
Fill partial blocks

Buffer Cache Management
- Manage queues
- Resolve contention Buffer cache

Read Database
Blocks

Write Database
Blocks
Conventional and Direct Path Loads 9-3

Conventional Path Load
Conventional Path Load
Conventional path load (the default) uses the SQL INSERT statement and a bind

array buffer to load data into database tables. This method is used by all Oracle

tools and applications.

When SQL*Loader performs a conventional path load, it competes equally with all

other processes for buffer resources. This can slow the load significantly. Extra

overhead is added as SQL commands are generated, passed to Oracle, and

executed.

The Oracle database server looks for partially filled blocks and attempts to fill them

on each insert. Although appropriate during normal use, this can slow bulk loads

dramatically.

Conventional Path Load of a Single Partition
By definition, a conventional path load uses SQL INSERT statements. During a

conventional path load of a single partition, SQL*Loader uses the

partition-extended syntax of the INSERT statement, which has the following form:

INSERT INTO TABLE T PARTITION (P) VALUES ...

The SQL layer of the Oracle kernel determines if the row being inserted maps to the

specified partition. If the row does not map to the partition, the row is rejected, and

the SQL*Loader log file records an appropriate error message.

When to Use a Conventional Path Load
If load speed is most important to you, you should use direct path load because it is

faster than conventional path load. However, certain restrictions on direct path

loads may require you to use a conventional path load. You should use a

conventional path load in the following situations:

■ When accessing an indexed table concurrently with the load, or when applying

inserts or updates to a nonindexed table concurrently with the load

To use a direct path load (with the exception of parallel loads), SQL*Loader

must have exclusive write access to the table and exclusive read/write access to

any indexes.

■ When loading data into a clustered table

A direct path load does not support loading of clustered tables.

See Also: Discontinued Conventional Path Loads on page 5-24
9-4 Oracle9i Database Utilities

Direct Path Load
■ When loading a relatively small number of rows into a large indexed table

During a direct path load, the existing index is copied when it is merged with

the new index keys. If the existing index is very large and the number of new

keys is very small, then the index copy time can offset the time saved by a direct

path load.

■ When loading a relatively small number of rows into a large table with

referential and column-check integrity constraints

Because these constraints cannot be applied to rows loaded on the direct path,

they are disabled for the duration of the load. Then they are applied to the

whole table when the load completes. The costs could outweigh the savings for

a very large table and a small number of new rows.

■ When loading records and you want to ensure that a record is rejected under

any of the following circumstances:

– If the record, upon insertion, causes an Oracle error

– If the record is formatted incorrectly, so that SQL*Loader cannot find field

boundaries

– If the record violates a constraint or tries to make a unique index

non-unique

Direct Path Load
Instead of filling a bind array buffer and passing it to the Oracle database server

with a SQL INSERT statement, a direct path load uses the direct path API to pass

the data to be loaded to the load engine in the server. The load engine builds a

column array structure from the data passed to it.

The direct path load engine uses the column array structure to format Oracle data

blocks and build index keys. The newly formatted database blocks are written

directly to the database (multiple blocks per I/O request using asynchronous writes

if the host platform supports asynchronous I/O).

Internally, multiple buffers are used for the formatted blocks. While one buffer is

being filled, one or more buffers are being written if asynchronous I/O is available

on the host platform. Overlapping computation with I/O increases load

performance.

See Also: Discontinued Direct Path Loads on page 5-24
Conventional and Direct Path Loads 9-5

Direct Path Load
Data Conversion During Direct Path Loads
During a direct path load, data conversion occurs on the client side rather than on

the server side. This means that NLS parameters in the initialization parameter file

(server-side language handle) will not be used. To override this behavior, you can

specify a format mask in the SQL*Loader control file which is equivalent to the

setting of the NLS parameter in the initialization parameter file, or set the

appropriate environment variable. For example, to specify a date format for a field,

you can either set the date format in the SQL*Loader control file as shown in

Example 9–1 or set an NLS_DATE_FORMAT environment variable as shown in

Example 9–2.

Example 9–1 Setting the Date Format in the SQL*Loader Control File

LOAD DATA
INFILE ’data.dat’
INSERT INTO TABLE emp
FIELDS TERMINATED BY "|"
(
EMPNO NUMBER(4) NOT NULL,
ENAME CHAR(10),
JOB CHAR(9),
MGR NUMBER(4),
HIREDATE DATE ’YYYYMMDD’,
SAL NUMBER(7,2),
COMM NUMBER(7,2),
DEPTNO NUMBER(2)
)

Example 9–2 Setting an NLS_DATE_FORMAT Environment Variable

On UNIX bourne or korn shell:

% NLS_DATE_FORMAT=’YYYYMMDD’
% export NLS_DATE_FORMAT

On UNIX csh:

%setenv NLS_DATE_FORMAT=’YYYYMMDD’

Direct Path Load of a Partitioned or Subpartitioned Table
When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows

and maintains indexes (which can also be partitioned). Note that a direct path load
9-6 Oracle9i Database Utilities

Direct Path Load
of a partitioned or subpartitioned table can be quite resource-intensive for tables

with many partitions or subpartitions.

Direct Path Load of a Single Partition or Subpartition
When loading a single partition of a partitioned or subpartitioned table,

SQL*Loader partitions the rows and rejects any rows that do not map to the

partition or subpartition specified in the SQL*Loader control file. Local index

partitions that correspond to the data partition or subpartition being loaded are

maintained by SQL*Loader. Global indexes are not maintained on single partition

or subpartition direct path loads. During a direct path load of a single partition,

SQL*Loader uses the partition-extended syntax of the LOAD statement, which has

either of the following forms:

LOAD INTO TABLE T PARTITION (P) VALUES ...

LOAD INTO TABLE T SUBPARTITION (P) VALUES ...

While you are loading a partition of a partitioned or subpartitioned table, you are

also allowed to perform DML operations on, and direct path loads of, other

partitions in the table.

Although a direct path load minimizes database processing, several calls to the

Oracle database server are required at the beginning and end of the load to initialize

and finish the load, respectively. Also, certain DML locks are required during load

initialization and are released when the load completes. The following operations

occur during the load: index keys are built and put into a sort, and space

management routines are used to get new extents when needed and to adjust the

upper boundary (high-water mark) for a data savepoint. See Using Data Saves to

Protect Against Data Loss on page 9-13 for information on adjusting the upper

boundary.

Note: If you are performing a direct path load into multiple

partitions and a space error occurs, the load is rolled back to the last

commit point. If there was no commit point, then the entire load is

rolled back. This ensures that no data encountered after the space

error is written out to a different partition.

You can use the ROWS parameter to specify the frequency of the

commit points. If the ROWS parameter is not specified, the entire

load is rolled back.
Conventional and Direct Path Loads 9-7

Direct Path Load
Advantages of a Direct Path Load
A direct path load is faster than the conventional path for the following reasons:

■ Partial blocks are not used, so no reads are needed to find them, and fewer

writes are performed.

■ SQL*Loader need not execute any SQL INSERT statements; therefore, the

processing load on the Oracle database is reduced.

■ A direct path load calls on Oracle to lock tables and indexes at the start of the

load and releases them when the load is finished. A conventional path load calls

Oracle once for each array of rows to process a SQL INSERT statement.

■ A direct path load uses multiblock asynchronous I/O for writes to the database

files.

■ During a direct path load, processes perform their own write I/O, instead of

using Oracle’s buffer cache. This minimizes contention with other Oracle users.

■ The sorted indexes option available during direct path loads allows you to

presort data using high-performance sort routines that are native to your

system or installation.

■ When a table to be loaded is empty, the presorting option eliminates the sort

and merge phases of index-building. The index is filled in as data arrives.

■ Protection against instance failure does not require redo log file entries during

direct path loads. Therefore, no time is required to log the load when:

– Oracle is operating in NOARCHIVELOG mode

– The UNRECOVERABLE parameter is set to Y

– The object being loaded has the NOLOG attribute set

See Instance Recovery and Direct Path Loads on page 9-15.

Restrictions on Using Direct Path Loads
The following conditions must be satisfied for you to use the direct path load

method:

■ Tables are not clustered.

■ Tables to be loaded do not have any active transactions pending.
9-8 Oracle9i Database Utilities

Direct Path Load
To check for this condition, use the Oracle Enterprise Manager command

MONITOR TABLE to find the object ID for the tables you want to load. Then use

the command MONITOR LOCK to see if there are any locks on the tables.

■ For versions of the Oracle database server prior to 9i, you can only perform a

SQL*Loader direct path load when the client and server are the same version.

This also means that you cannot perform a direct path load of Oracle9i data into

a database of an earlier version. For example, you cannot use direct path load to

load data from a release 9.0.1 database into a release 8.1.7 database.

However, beginning with Oracle9i, you can perform a SQL*Loader direct path

load between different versions as long as both the client and server are version

9i or later. For example, you can perform a direct path load from a release 9.0.1

database into a release 9.2 database.

The following features are not available with direct path load.

■ Loading VARRAYs

■ Loading a parent table together with a child table

■ Loading BFILE columns

Restrictions on a Direct Path Load of a Single Partition
In addition to the previously listed restrictions, loading a single partition has the

following restrictions:

■ The table that the partition is a member of cannot have any global indexes

defined on it.

■ Enabled referential and check constraints on the table that the partition is a

member of are not allowed.

■ Enabled triggers are not allowed.

When to Use a Direct Path Load
If none of the previous restrictions apply, you should use a direct path load when:

■ You have a large amount of data to load quickly. A direct path load can quickly

load and index large amounts of data. It can also load data into either an empty

or nonempty table.

■ You want to load data in parallel for maximum performance. See Parallel Data

Loading Models on page 9-30.
Conventional and Direct Path Loads 9-9

Using Direct Path Load
Integrity Constraints
All integrity constraints are enforced during direct path loads, although not

necessarily at the same time. NOT NULL constraints are enforced during the load.

Records that fail these constraints are rejected.

UNIQUE constraints are enforced both during and after the load. A record that

violates a UNIQUE constraint is not rejected (the record is not available in memory

when the constraint violation is detected).

Integrity constraints that depend on other rows or tables, such as referential

constraints, are disabled before the direct path load and must be reenabled

afterwards. If REENABLE is specified, SQL*Loader can reenable them automatically

at the end of the load. When the constraints are reenabled, the entire table is

checked. Any rows that fail this check are reported in the specified error log. See

Direct Loads, Integrity Constraints, and Triggers on page 9-25.

Field Defaults on the Direct Path
Default column specifications defined in the database are not available when you

use direct path loading. Fields for which default values are desired must be

specified with the DEFAULTIF clause. If a DEFAULTIF clause is not specified and

the field is NULL, then a null value is inserted into the database.

Loading into Synonyms
You can load data into a synonym for a table during a direct path load, but the

synonym must point directly to a table. It cannot be a synonym for a view, or a

synonym for another synonym.

Using Direct Path Load
This section explains how to use the SQL*Loader direct path load method.

Setting Up for Direct Path Loads
To prepare the database for direct path loads, you must run the setup script,

catldr .sql , to create the necessary views. You need only run this script once for

each database you plan to do direct loads to. You can run this script during

database installation if you know then that you will be doing direct loads.
9-10 Oracle9i Database Utilities

Using Direct Path Load
Specifying a Direct Path Load
To start SQL*Loader in direct path load mode, set the DIRECT parameter to true
on the command line or in the parameter file, if used, in the format:

DIRECT=true

Building Indexes
You can improve performance of direct path loads by using temporary storage.

After each block is formatted, the new index keys are put in a sort (temporary)

segment. The old index and the new keys are merged at load finish time to create

the new index. The old index, sort (temporary) segment, and new index segment all

require storage until the merge is complete. Then the old index and temporary

segment are removed.

During a conventional path load, every time a row is inserted the index is updated.

This method does not require temporary storage space, but it does add processing

time.

Improving Performance
To improve performance on systems with limited memory, use the SINGLEROW
parameter. For more information, see SINGLEROW Option on page 5-38.

See Also:

■ Case Study 6: Loading Data Using the Direct Path Load

Method on page 10-24

■ Optimizing Performance of Direct Path Loads on page 9-17 for

information about parameters you can use to optimize

performance of direct path loads

■ Optimizing Direct Path Loads on Multiple-CPU Systems on

page 9-23 if you are doing a direct path load on a multiple-CPU

system or across systems

Note: If, during a direct load, you have specified that the data is to

be presorted and the existing index is empty, a temporary segment

is not required, and no merge occurs—the keys are put directly into

the index. See Optimizing Performance of Direct Path Loads on

page 9-17 for more information.
Conventional and Direct Path Loads 9-11

Using Direct Path Load
When multiple indexes are built, the temporary segments corresponding to each

index exist simultaneously, in addition to the old indexes. The new keys are then

merged with the old indexes, one index at a time. As each new index is created, the

old index and the corresponding temporary segment are removed.

Temporary Segment Storage Requirements
To estimate the amount of temporary segment space needed for storing the new

index keys (in bytes), use the following formula:

1.3 * key_storage

In this formula, key storage is defined as follows:

key_storage = (number_of_rows) *
 (10 + sum_of_column_sizes + number_of_columns)

The columns included in this formula are the columns in the index. There is one

length byte per column, and 10 bytes per row are used for a ROWID and additional

overhead.

The constant 1.3 reflects the average amount of extra space needed for sorting. This

value is appropriate for most randomly ordered data. If the data arrives in exactly

opposite order, twice the key-storage space is required for sorting, and the value of

this constant would be 2.0. That is the worst case.

If the data is fully sorted, only enough space to store the index entries is required,

and the value of this constant would be 1.0. See Presorting Data for Faster Indexing

on page 9-18 for more information.

Indexes Left in an Unusable State
SQL*Loader leaves indexes in an Index Unusable state when the data segment

being loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in an Index Unusable state

returns an error. The following conditions cause a direct path load to leave an index

or a partition of a partitioned index in an Index Unusable state:

■ SQL*Loader runs out of space for the index and cannot update the index.

■ The data is not in the order specified by the SORTED INDEXES clause.

See Also: Oracle9i Database Administrator’s Guide for information

on how to estimate index size and set storage parameters
9-12 Oracle9i Database Utilities

Using Direct Path Load
■ There is an instance failure, or the Oracle shadow process fails while building

the index.

■ There are duplicate keys in a unique index.

■ Data savepoints are being used, and the load fails or is terminated by a

keyboard interrupt after a data savepoint occurred.

To determine if an index is in an Index Unusable state, you can execute a simple

query:

SELECT INDEX_NAME, STATUS
 FROM USER_INDEXES
 WHERE TABLE_NAME = ’tablename’ ;

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES
instead of USER_INDEXES.

To determine if an index partition is in an unusable state, you can execute the

following query:

SELECT INDEX_NAME,
 PARTITION_NAME,
 STATUS FROM USER_IND_PARTITIONS
 WHERE STATUS != ’ VALID’;

If you are not the owner of the table, then search ALL_IND_PARTITIONS and DBA_
IND_PARTITIONS instead of USER_IND_PARTITIONS.

Using Data Saves to Protect Against Data Loss
You can use data saves to protect against loss of data due to instance failure. All

data loaded up to the last savepoint is protected against instance failure. To

continue the load after an instance failure, determine how many rows from the

input file were processed before the failure, then use the SKIP parameter to skip

those processed rows.

If there were any indexes on the table, drop them before continuing the load, then

re-create them after the load. See Data Recovery During Direct Path Loads on

page 9-15 for more information on media and instance recovery.
Conventional and Direct Path Loads 9-13

Using Direct Path Load
Using the ROWS Parameter
The ROWS parameter determines when data saves occur during a direct path load.

The value you specify for ROWS is the number of rows you want SQL*Loader to

read from the input file before saving inserts in the database.

The number of rows you specify for a data save is an approximate number. Direct

loads always act on full data buffers that match the format of Oracle database

blocks. So, the actual number of data rows saved is rounded up to a multiple of the

number of rows in a database block.

SQL*Loader always reads the number of rows needed to fill a database block.

Discarded and rejected records are then removed, and the remaining records are

inserted into the database. The actual number of rows inserted before a save is the

value you specify, rounded up to the number of rows in a database block, minus the

number of discarded and rejected records.

A data save is an expensive operation. The value for ROWS should be set high

enough so that a data save occurs once every 15 minutes or longer. The intent is to

provide an upper boundary (high-water mark) on the amount of work that is lost

when an instance failure occurs during a long-running direct path load. Setting the

value of ROWS to a small number adversely affects performance.

Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit. A

direct load data save is similar to a conventional load commit, but it is not identical.

The similarities are as follows:

■ A data save will make the rows visible to other users.

■ Rows cannot be rolled back after a data save.

The major difference is that in a direct path load data save, the indexes will be

unusable (in Index Unusable state) until the load completes.

Note: Indexes are not protected by a data save, because

SQL*Loader does not build indexes until after data loading

completes. (The only time indexes are built during the load is when

presorted data is loaded into an empty table, but these indexes are

also unprotected.)
9-14 Oracle9i Database Utilities

Using Direct Path Load
Data Recovery During Direct Path Loads
SQL*Loader provides full support for data recovery when using the direct path

load method. There are two main types of recovery:

■ Media recovery - recovery from the loss of a database file. You must be

operating in ARCHIVELOG mode to recover after you lose a database file.

■ Instance recovery - recovery from a system failure in which in-memory data

was changed but lost due to the failure before it was written to disk. The Oracle

database server can always recover from instance failures, even when redo logs

are not archived

Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode),

SQL*Loader logs loaded data when using the direct path, making media recovery

possible. If redo log archiving is not enabled (you are operating in NOARCHIVELOG
mode), then media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same

method that you use to recover data loaded with the conventional path:

1. Restore the most recent backup of the affected database file.

2. Recover the tablespace using the RECOVER command.

Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to the

last data save will automatically be present in the database files if the instance is

restarted. Changes do not need to be recorded in the redo log file to make instance

recovery possible.

If an instance failure occurs, the indexes being built may be left in an Index

Unusable state. Indexes that are Unusable must be rebuilt before you can use the

table or partition. See Indexes Left in an Unusable State on page 9-12 for

information on how to determine if an index has been left in Index Unusable state.

See Also: Oracle9i Database Administrator’s Guide for more

information about recovery

See Also: Oracle9i User-Managed Backup and Recovery Guide for

more information on the RECOVER command
Conventional and Direct Path Loads 9-15

Using Direct Path Load
Loading LONG Data Fields
Data that is longer than SQL*Loader’s maximum buffer size can be loaded on the

direct path by using LOBs. You can improve performance when doing this by using

a large streamsize value.

You could also load data that is longer than the maximum buffer size by using the

PIECED parameter, as described in the next section, but Oracle Corporation highly

recommends that you use LOBs instead.

Loading Data As PIECED
The PIECED parameter can be used to load data in sections, if the data is in the last

column of the logical record.

Declaring a column as PIECED informs the direct path loader that a LONG field

might be split across multiple physical records (pieces). In such cases, SQL*Loader

processes each piece of the LONG field as it is found in the physical record. All the

pieces are read before the record is processed. SQL*Loader makes no attempt to

materialize the LONG field before storing it; however, all the pieces are read before

the record is processed.

The following restrictions apply when you declare a column as PIECED:

■ This option is only valid on the direct path.

■ Only one field per table may be PIECED.

■ The PIECED field must be the last field in the logical record.

■ The PIECED field may not be used in any WHEN, NULLIF, or DEFAULTIF
clauses.

■ The PIECED field’s region in the logical record must not overlap with any other

field’s region.

■ The PIECED corresponding database column may not be part of the index.

■ It may not be possible to load a rejected record from the bad file if it contains a

PIECED field.

See Also:

■ Loading LOBs on page 7-18

■ Specifying the Number of Column Array Rows and Size of

Stream Buffers on page 9-21
9-16 Oracle9i Database Utilities

Optimizing Performance of Direct Path Loads
For example, a PIECED field could span 3 records. SQL*Loader loads the piece

from the first record and then reuses the buffer for the second buffer. After

loading the second piece, the buffer is reused for the third record. If an error is

then discovered, only the third record is placed in the bad file because the first

two records no longer exist in the buffer. As a result, the record in the bad file

would not be valid.

Optimizing Performance of Direct Path Loads
You can control the time and temporary storage used during direct path loads.

To minimize time:

■ Preallocate storage space

■ Presort the data

■ Perform infrequent data saves

■ Minimize use of the redo log

■ Specify the number of column array rows and the size of the stream buffer

■ Specify a date cache value

To minimize space:

■ When sorting data before the load, sort data on the index that requires the most

temporary storage space

■ Avoid index maintenance during the load

Preallocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process

takes time. For faster loads into a new table, allocate the required extents when the

table is created.

To calculate the space required by a table, see the information about managing

database files in the Oracle9i Database Administrator’s Guide. Then use the INITIAL
or MINEXTENTS clause in the SQL CREATE TABLE statement to allocate the

required space.

Another approach is to size extents large enough so that extent allocation is

infrequent.
Conventional and Direct Path Loads 9-17

Optimizing Performance of Direct Path Loads
Presorting Data for Faster Indexing
You can improve the performance of direct path loads by presorting your data on

indexed columns. Presorting minimizes temporary storage requirements during the

load. Presorting also allows you to take advantage of high-performance sorting

routines that are optimized for your operating system or application.

If the data is presorted and the existing index is not empty, then presorting

minimizes the amount of temporary segment space needed for the new keys. The

sort routine appends each new key to the key list.

Instead of requiring extra space for sorting, only space for the keys is needed. To

calculate the amount of storage needed, use a sort factor of 1.0 instead of 1.3. For

more information on estimating storage requirements, see Temporary Segment

Storage Requirements on page 9-12.

If presorting is specified and the existing index is empty, then maximum efficiency

is achieved. The new keys are simply inserted into the index. Instead of having a

temporary segment and new index existing simultaneously with the empty, old

index, only the new index exists. So, temporary storage is not required, and time is

saved.

SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

This clause is allowed only for direct path loads. See Case Study 6: Loading Data

Using the Direct Path Load Method on page 10-24 for an example.

Generally, you specify only one index in the SORTED INDEXES clause, because data

that is sorted for one index is not usually in the right order for another index. When

the data is in the same order for multiple indexes, however, all indexes can be

specified at once.

All indexes listed in the SORTED INDEXES clause must be created before you start

the direct path load.

Unsorted Data
If you specify an index in the SORTED INDEXES clause, and the data is not sorted

for that index, then the index is left in an Index Unusable state at the end of the

load. The data is present, but any attempt to use the index results in an error. Any

index that is left in an Index Unusable state must be rebuilt after the load.
9-18 Oracle9i Database Utilities

Optimizing Performance of Direct Path Loads
Multiple-Column Indexes
If you specify a multiple-column index in the SORTED INDEXES clause, the data

should be sorted so that it is ordered first on the first column in the index, next on

the second column in the index, and so on.

For example, if the first column of the index is city, and the second column is last

name; then the data should be ordered by name within each city, as in the following

list:

Albuquerque Adams
Albuquerque Hartstein
Albuquerque Klein
... ...
Boston Andrews
Boston Bobrowski
Boston Heigham
... ...

Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data

based on the index that requires the most temporary segment space. For example, if

the primary key is one numeric column, and the secondary key consists of three text

columns, then you can minimize both sort time and storage requirements by

presorting on the secondary key.

To determine the index that requires the most storage space, use the following

procedure:

1. For each index, add up the widths of all columns in that index.

2. For a single-table load, pick the index with the largest overall width.

3. For each table in a multiple-table load, identify the index with the largest

overall width for each table. If the same number of rows are to be loaded into

each table, then again pick the index with the largest overall width. Usually, the

same number of rows are loaded into each table.

4. If a different number of rows are to be loaded into the indexed tables in a

multiple-table load, then multiply the width of each index identified in step 3

by the number of rows that are to be loaded into that index, and pick the index

with the largest result.
Conventional and Direct Path Loads 9-19

Optimizing Performance of Direct Path Loads
Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the

performance of a direct path load. Because direct path loads can be many times

faster than conventional loads, the value of ROWS should be considerably higher for

a direct load than it would be for a conventional load.

During a data save, loading stops until all of SQL*Loader’s buffers are successfully

written. You should select the largest value for ROWSthat is consistent with safety. It

is a good idea to determine the average time to load a row by loading a few

thousand rows. Then you can use that value to select a good value for ROWS.

For example, if you can load 20,000 rows per minute, and you do not want to repeat

more than 10 minutes of work after an interruption, then set ROWS to be 200,000

(20,000 rows/minute * 10 minutes).

Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log.

There are three ways to do this. You can disable archiving, you can specify that the

load is UNRECOVERABLE, or you can set the NOLOG attribute of the objects being

loaded. This section discusses all methods.

Disabling Archiving
If archiving is disabled, direct path loads do not generate full image redo. Use the

ARCHIVELOG and NOARCHIVELOG parameters to set the archiving mode. See the

Oracle9i Database Administrator’s Guide for more information about archiving.

Specifying the UNRECOVERABLE Parameter
To save time and space in the redo log file, use the UNRECOVERABLE parameter

when you load data. An UNRECOVERABLE load does not record loaded data in the

redo log file; instead, it generates invalidation redo.

The UNRECOVERABLE parameter applies to all objects loaded during the load

session (both data and index segments). Therefore, media recovery is disabled for

the loaded table, although database changes by other users may continue to be

logged.

Note: Because the data load is not logged, you may want to make

a backup of the data after loading.
9-20 Oracle9i Database Utilities

Optimizing Performance of Direct Path Loads
If media recovery becomes necessary on data that was loaded with the

UNRECOVERABLE parameter, the data blocks that were loaded are marked as

logically corrupted.

To recover the data, drop and re-create the data. It is a good idea to do backups

immediately after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE.

Setting the NOLOG Attribute
If a data or index segment has the NOLOG attribute set, then full image redo logging

is disabled for that segment (invalidation redo is generated.) Use of the NOLOG
attribute allows a finer degree of control over the objects that are not logged.

Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before

the stream buffer is built. The STREAMSIZEparameter specifies the size (in bytes) of

the data stream sent from the client to the server.

Use the COLUMNARRAYROWS parameter to specify a value for the number of column

array rows.

Use the STREAMSIZE parameter to specify the size for direct path stream buffers.

The optimal values for these parameters vary, depending on the system, input

datatypes, and Oracle column datatypes used. When you are using optimal values

for your particular configuration, the elapsed time in the SQL*Loader log file

should go down.

To see a list of default values for these and other parameters, invoke SQL*Loader

without any parameters, as described in Invoking SQL*Loader on page 4-1.

It can be particularly useful to specify the number of column array rows and size of

the steam buffer when you perform direct path loads on multiple-CPU systems. See

Optimizing Direct Path Loads on Multiple-CPU Systems on page 9-23 for more

information.

Note: You should monitor process paging activity, because if

paging becomes excessive, performance can be significantly

degraded. You may need to lower the values for READSIZE,

STREAMSIZE, and COLUMNARRAYROWS to avoid excessive paging.
Conventional and Direct Path Loads 9-21

Optimizing Performance of Direct Path Loads
Specifying a Value for the Date Cache
If you are performing a direct path load in which the same date or timestamp

values are loaded many times, a large percentage of total load time can end up

being used for converting date and timestamp data. This is especially true if

multiple date columns are being loaded. In such a case, it may be possible to

improve performance by using the SQL*Loader date cache.

The date cache reduces the number of date conversions done when many duplicate

values are present in the input data. It allows you to specify the number of unique

dates anticipated during the load.

The date cache is enabled by default. To completely disable the date cache, set it to

0.

The default date cache size is 1000 elements. If the default is used and the number

of unique input values loaded exceeds 1000, then the date cache is automatically

disabled for that table. This prevents excessive and unnecessary lookup times that

could affect performance. However, if instead of using the default, you specify a

nonzero value for the date cache and it is exceeded, the date cache is not disabled.

Instead, any input data that exceeded the maximum is explicitly converted using

the appropriate conversion routines.

The date cache can be associated with only one table. No date cache sharing can

take place across tables. A date cache is created for a table only if all of the following

conditions are true:

■ The DATE_CACHE parameter is not set to 0

■ One or more date values, timestamp values, or both are being loaded that

require datatype conversion in order to be stored in the table

■ The load is a direct path load

Date cache statistics are written to the log file. You can use those statistics to

improve direct path load performance as follows:

■ If the number of cache entries is less than the cache size and there are no cache

misses, then the cache size could safely be set to a smaller value.

■ If the number of cache hits (entries for which there are duplicate values) is small

and the number of cache misses is large, then the cache size should be

increased. Be aware that if the cache size is increased too much, it may cause

other problems such as excessive paging or too much memory usage.

■ If most of the input date values are unique, the date cache will not enhance

performance and therefore should not be used.
9-22 Oracle9i Database Utilities

Optimizing Direct Path Loads on Multiple-CPU Systems
If increasing the cache size does not improve performance, revert to the default

behavior or set the cache size to 0. The overall performance improvement also

depends on the datatypes of the other columns being loaded. Improvement will be

greater for cases in which the total number of date columns loaded is large

compared to other types of data loaded.

Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, SQL*Loader

uses multithreading by default. A multiple-CPU system in this case is defined as a

single system that has two or more CPUs.

Multithreaded loading means that, when possible, conversion of the column arrays

to stream buffers and stream buffer loading are performed in parallel. This

optimization works best when:

■ Column arrays are large enough to generate multiple direct path stream buffers

for loads

■ Data conversions are required from input field datatypes to Oracle column

datatypes

The conversions are performed in parallel with stream buffer loading.

The status of this process is recorded in the SQL*Loader log file, as shown in the

following sample portion of a log:

Total stream buffers loaded by SQL*Loader main thread: 47
Total stream buffers loaded by SQL*Loader load thread: 180
Column array rows: 1000
Stream buffer bytes: 256000

Note: Date cache statistics are not written to the SQL*Loader log

file if the cache was active by default and disabled because the

maximum was exceeded.

See Also:

■ DATE_CACHE on page 4-5

■ Table Load Information on page 8-5 for an example of how date

cache statistics are presented in the SQL*Loader log file
Conventional and Direct Path Loads 9-23

Avoiding Index Maintenance
In this example, the SQL*Loader load thread has offloaded the SQL*Loader main

thread, allowing the main thread to build the next stream buffer while the load

thread loads the current stream on the server.

The goal is to have the load thread perform as many stream buffer loads as possible.

This can be accomplished by increasing the number of column array rows,

decreasing the stream buffer size, or both. You can monitor the elapsed time in the

SQL*Loader log file to determine whether your changes are having the desired

effect. See Specifying the Number of Column Array Rows and Size of Stream

Buffers on page 9-21 for more information.

On single-CPU systems, optimization is turned off by default. When the server is on

another system, performance may improve if you manually turn on multithreading.

To turn the multithreading option on or off, use the MULTITHREADINGparameter at

the SQL*Loader command line or specify it in your SQL*Loader control file.

Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all

existing indexes for a table.

To avoid index maintenance, use one of the following methods:

■ Drop the indexes prior to the beginning of the load.

■ Mark selected indexes or index partitions as Index Unusable prior to the

beginning of the load and use the SKIP_UNUSABLE_INDEXES parameter.

■ Use the SKIP_INDEX_MAINTENANCE parameter (direct path only, use with

caution).

By avoiding index maintenance, you minimize the amount of space required during

a direct path load, in the following ways:

■ You can build indexes one at a time, reducing the amount of sort (temporary)

segment space that would otherwise be needed for each index.

■ Only one index segment exists when an index is built, instead of the three

segments that temporarily exist when the new keys are merged into the old

index to make the new index.

Avoiding index maintenance is quite reasonable when the number of rows to be

loaded is large compared to the size of the table. But if relatively few rows are

See Also: Oracle Call Interface Programmer’s Guide for more

information about the concepts of direct path loading
9-24 Oracle9i Database Utilities

Direct Loads, Integrity Constraints, and Triggers
added to a large table, then the time required to resort the indexes may be excessive.

In such cases, it is usually better to use the conventional path load method, or to use

the SINGLEROW parameter of SQL*Loader. For more information, see SINGLEROW

Option on page 5-38.

Direct Loads, Integrity Constraints, and Triggers
With the conventional path load method, arrays of rows are inserted with standard

SQL INSERT statements—integrity constraints and insert triggers are automatically

applied. But when you load data with the direct path, SQL*Loader disables some

integrity constraints and all database triggers. This section discusses the

implications of using direct path loads with respect to these features.

Integrity Constraints
During a direct path load, some integrity constraints are automatically disabled.

Others are not. For a description of the constraints, see the information on

maintaining data integrity in the Oracle9i Application Developer’s Guide -
Fundamentals.

Enabled Constraints
The constraints that remain in force are:

■ NOT NULL

■ UNIQUE

■ PRIMARY KEY (unique-constraints on not-null columns)

NOT NULLconstraints are checked at column array build time. Any row that violates

the NOT NULL constraint is rejected.

UNIQUE constraints are verified when indexes are rebuilt at the end of the load. The

index will be left in an Index Unusable state if a violation of a UNIQUE constraint is

detected. See Indexes Left in an Unusable State on page 9-12.

Disabled Constraints
During a direct path load, the following constraints are automatically disabled by

default:

■ CHECK constraints

■ Referential constraints (FOREIGN KEY)
Conventional and Direct Path Loads 9-25

Direct Loads, Integrity Constraints, and Triggers
You can override the disabling of CHECK constraints by specifying the EVALUATE_
CHECK_CONSTRAINTS clause. SQL*Loader will then evaluate CHECK constraints

during a direct path load. Any row that violates the CHECK constraint is rejected.

Reenable Constraints
When the load completes, the integrity constraints will be reenabled automatically

if the REENABLE clause is specified. The syntax for the REENABLE clause is as

follows:

The optional parameter DISABLED_CONSTRAINTS is provided for readability. If

the EXCEPTIONS clause is included, the table must already exist, and you must be

able to insert into it. This table contains the ROWIDs of all rows that violated one of

the integrity constraints. It also contains the name of the constraint that was

violated. See Oracle9i SQL Reference for instructions on how to create an exceptions

table.

The SQL*Loader log file describes the constraints that were disabled, the ones that

were reenabled, and what error, if any, prevented reenabling or validating of each

constraint. It also contains the name of the exceptions table specified for each

loaded table.

If the REENABLE clause is not used, then the constraints must be reenabled

manually, at which time all rows in the table are verified. If the Oracle database

server finds any errors in the new data, error messages are produced. The names of

violated constraints and the ROWIDs of the bad data are placed in an exceptions

table, if one is specified.

If the REENABLE clause is used, SQL*Loader automatically reenables the constraint

and then verifies all new rows. If no errors are found in the new data, SQL*Loader

automatically marks the constraint as validated. If any errors are found in the new

data, error messages are written to the log file and SQL*Loader marks the status of

the constraint as ENABLE NOVALIDATE. The names of violated constraints and the

ROWIDs of the bad data are placed in an exceptions table, if one is specified.

EVALUATE_CHECK_CONSTRAINTS REENABLE DISABLED_CONSTRAINTS

EXCEPTIONS table WHEN field_condition
9-26 Oracle9i Database Utilities

Direct Loads, Integrity Constraints, and Triggers
Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins. After the rows

are loaded and indexes rebuilt, any triggers that were disabled are automatically

reenabled. The log file lists all triggers that were disabled for the load. There should

not be any errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table

when they are enabled. As a result, insert triggers do not fire for any rows loaded on

the direct path. When using the direct path, the application must ensure that any

behavior associated with insert triggers is carried out for the new rows.

Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints. Most

of these application insert triggers are simple enough that they can be replaced with

Oracle’s automatic integrity constraints.

When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle’s automatic integrity

constraints. For example, if an integrity check is implemented with a table lookup in

Note: Normally, when a table constraint is left in an ENABLE
NOVALIDATE state, new data can be inserted into the table but no

new invalid data may be inserted. However, SQL*Loader direct

path load does not enforce this rule. Thus, if subsequent direct path

loads are performed with invalid data, the invalid data will be

inserted but the same error reporting and exception table

processing as described previously will take place. In this scenario

the exception table may contain duplicate entries if it is not cleared

out before each load. Duplicate entries can easily be filtered out by

performing a query such as the following:

SELECT UNIQUE * FROM exceptions_table;

Note: Because referential integrity must be reverified for the entire

table, performance may be improved by using the conventional

path, instead of the direct path, when a small number of rows are to

be loaded into a very large table.
Conventional and Direct Path Loads 9-27

Direct Loads, Integrity Constraints, and Triggers
an insert trigger, then automatic check constraints cannot be used, because the

automatic constraints can only reference constants and columns in the current row.

This section describes two methods for duplicating the effects of such a trigger.

Preparation
Before either method can be used, the table must be prepared. Use the following

general guidelines to prepare the table:

1. Before the load, add a 1-byte or 1-character column to the table that marks rows

as "old data" or "new data."

2. Let the value of null for this column signify "old data," because null columns do

not take up space.

3. When loading, flag all loaded rows as "new data" with SQL*Loader’s

CONSTANT parameter.

After following this procedure, all newly loaded rows are identified, making it

possible to operate on the new data without affecting the old rows.

Using an Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an insert

trigger. This method is the simplest. It can be used whenever the insert trigger does

not raise any exceptions.

1. Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of " new.column_name" to

" old .column_name" .

2. Replace the current update trigger, if it exists, with the new one.

3. Update the table, changing the "new data" flag to null, thereby firing the update

trigger.

4. Restore the original update trigger, if there was one.

Depending on the behavior of the trigger, it may be necessary to have exclusive

update access to the table during this operation, so that other users do not

inadvertently apply the trigger to rows they modify.

Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate

its effects. Raising an exception would prevent the row from being inserted into the
9-28 Oracle9i Database Utilities

Direct Loads, Integrity Constraints, and Triggers
table. To duplicate that effect with an update trigger, it is necessary to mark the

loaded row for deletion.

The "new data" column cannot be used as a delete flag, because an update trigger

cannot modify the columns that caused it to fire. So another column must be added

to the table. This column marks the row for deletion. A null value means the row is

valid. Whenever the insert trigger would raise an exception, the update trigger can

mark the row as invalid by setting a flag in the additional column.

In summary, when an insert trigger can raise an exception condition, its effects can

be duplicated by an update trigger, provided:

■ Two columns (which are usually null) are added to the table

■ The table can be updated exclusively (if necessary)

Using a Stored Procedure
The following procedure always works, but it is more complex to implement. It can

be used when the insert trigger raises exceptions. It does not require a second

additional column; and, because it does not replace the update trigger, it can be

used without exclusive access to the table.

1. Do the following to create a stored procedure that duplicates the effects of the

insert trigger:

a. Declare a cursor for the table, selecting all new rows.

b. Open the cursor and fetch rows, one at a time, in a processing loop.

c. Perform the operations contained in the insert trigger.

d. If the operations succeed, change the "new data" flag to null.

e. If the operations fail, change the "new data" flag to "bad data."

2. Execute the stored procedure using an administration tool such as SQL*Plus.

3. After running the procedure, check the table for any rows marked "bad data."

4. Update or remove the bad rows.

5. Reenable the insert trigger.

See Also: PL/SQL User’s Guide and Reference for more information

about cursor management
Conventional and Direct Path Loads 9-29

Parallel Data Loading Models
Permanently Disabled Triggers and Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable

triggers and constraints. If a competing process is enabling triggers or constraints at

the same time that SQL*Loader is trying to disable them for that table, then

SQL*Loader may not be able to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts

to reenable disabled triggers and constraints before exiting. However, the same

table-locking problem that made it impossible for SQL*Loader to continue may also

have made it impossible for SQL*Loader to finish enabling triggers and constraints.

In such cases, triggers and constraints will remain disabled until they are manually

enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to

make sure that no applications are running that could enable triggers or constraints

for the table while the direct load is in progress.

If a direct load is aborted due to failure to acquire the proper locks, carefully check

the log. It will show every trigger and constraint that was disabled, and each

attempt to reenable them. Any triggers or constraints that were not reenabled by

SQL*Loader should be manually enabled with the ENABLE clause of the ALTER
TABLE statement described in Oracle9i SQL Reference.

Increasing Performance with Concurrent Conventional Path Loads
If triggers or integrity constraints pose a problem, but you want faster loading, you

should consider using concurrent conventional path loads. That is, use multiple

load sessions executing concurrently on a multiple-CPU system. Split the input

datafiles into separate files on logical record boundaries, and then load each such

input datafile with a conventional path load session. The resulting load has the

following attributes:

■ It is faster than a single conventional load on a multiple-CPU system, but

probably not as fast as a direct load.

■ Triggers fire, integrity constraints are applied to the loaded rows, and indexes

are maintained using the standard DML execution logic.

Parallel Data Loading Models
This section discusses three basic models of concurrency that you can use to

minimize the elapsed time required for data loading:
9-30 Oracle9i Database Utilities

Parallel Data Loading Models
■ Concurrent conventional path loads

■ Intersegment concurrency with the direct path load method

■ Intrasegment concurrency with the direct path load method

Concurrent Conventional Path Loads
Using multiple conventional path load sessions executing concurrently is discussed

in Increasing Performance with Concurrent Conventional Path Loads on page 9-30.

You can use this technique to load the same or different objects concurrently with

no restrictions.

Intersegment Concurrency with Direct Path
Intersegment concurrency can be used for concurrent loading of different objects.

You can apply this technique to concurrent direct path loading of different tables, or

to concurrent direct path loading of different partitions of the same table.

When you direct path load a single partition, consider the following items:

■ Local indexes can be maintained by the load.

■ Global indexes cannot be maintained by the load.

■ Referential integrity and CHECK constraints must be disabled.

■ Triggers must be disabled.

■ The input data should be partitioned (otherwise many records will be rejected,

which adversely affects performance).

Intrasegment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load

into the same table, or into the same partition of a partitioned table. Multiple

SQL*Loader sessions improve the performance of a direct path load given the

available resources on your system.

This method of data loading is enabled by setting both the DIRECT and the

PARALLEL parameters to true , and is often referred to as a parallel direct path

load.

It is important to realize that parallelism is user managed. Setting the PARALLEL
parameter to true only allows multiple concurrent direct path load sessions.
Conventional and Direct Path Loads 9-31

Parallel Data Loading Models
Restrictions on Parallel Direct Path Loads
The following restrictions are enforced on parallel direct path loads:

■ Neither local or global indexes can be maintained by the load.

■ Referential integrity and CHECK constraints must be disabled.

■ Triggers must be disabled.

■ Rows can only be appended. REPLACE, TRUNCATE, and INSERT cannot be used

(this is due to the individual loads not being coordinated). If you must truncate

a table before a parallel load, you must do it manually.

If a parallel direct path load is being applied to a single partition, you should

partition the data first (otherwise, the overhead of record rejection due to a partition

mismatch slows down the load).

Initiating Multiple SQL*Loader Sessions
Each SQL*Loader session takes a different datafile as input. In all sessions executing

a direct load on the same table, you must set PARALLEL to true . The syntax is:

PARALLEL can be specified on the command line or in a parameter file. It can also

be specified in the control file with the OPTIONS clause.

For example, to invoke three SQL*Loader direct path load sessions on the same

table, you would execute the following commands at the operating system prompt:

sqlldr USERID=scott/tiger CONTROL=load1.ctl DIRECT=TRUE PARALLEL=true
sqlldr USERID=scott/tiger CONTROL=load2.ctl DIRECT=TRUE PARALLEL=true
sqlldr USERID=scott/tiger CONTROL=load3.ctl DIRECT=TRUE PARALLEL=true

The previous commands must be executed in separate sessions, or if permitted on

your operating system, as separate background jobs. Note the use of multiple

control files. This allows you to be flexible in specifying the files to use for the direct

path load.

PARALLEL =
TRUE

FALSE
9-32 Oracle9i Database Utilities

Parallel Data Loading Models
When you perform a parallel load, SQL*Loader creates temporary segments for

each concurrent session and then merges the segments upon completion. The

segment created from the merge is then added to the existing segment in the

database above the segment’s high-water mark. The last extent used of each

segment for each loader session is trimmed of any free space before being combined

with the other extents of the SQL*Loader session.

Parameters for Parallel Direct Path Loads
When you perform parallel direct path loads, there are options available for

specifying attributes of the temporary segment to be allocated by the loader.

Specifying Temporary Segments
To allow for maximum I/O throughput, Oracle Corporation recommends that each

concurrent direct path load session use files located on different disks. Use the FILE
parameter of the OPTIONS clause to specify the filename of any valid datafile in the

tablespace of the object (table or partition) being loaded.

For example:

LOAD DATA
INFILE ’load1.dat’
INSERT INTO TABLE emp
OPTIONS(FILE=’/dat/data1.dat’)
(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS
...

You could also specify the FILE parameter on the command line of each concurrent

SQL*Loader session, but then it would apply globally to all objects being loaded

with that session.

Using the FILE Parameter The FILE parameter in the Oracle database server has the

following restrictions for parallel direct path loads:

Note: Indexes are not maintained during a parallel load. Any

indexes must be created or re-created manually after the load

completes. You can use the parallel index creation or parallel index

rebuild feature to speed the building of large indexes after a

parallel load.
Conventional and Direct Path Loads 9-33

Parallel Data Loading Models
■ For nonpartitioned tables: The specified file must be in the tablespace of the

table being loaded.

■ For partitioned tables, single-partition load: The specified file must be in the

tablespace of the partition being loaded.

■ For partitioned tables, full-table load: The specified file must be in the

tablespace of all partitions being loaded; that is, all partitions must be in the

same tablespace.

Using the STORAGE Parameter You can use the STORAGE parameter to specify the

storage attributes of the temporary segments allocated for a parallel direct path

load. If the STORAGE parameter is not used, the storage attributes of the segment

containing the object (table, partition) being loaded are used. Also, when the

STORAGE parameter is not specified, SQL*Loader uses a default of 2 KB for

EXTENTS.

OPTIONS(STORAGE=(MINEXTENTS n1 MAXEXTENTS n2 INITIAL n3[K|M]
NEXT n4[K|M] PCTINCREASE n5)

For example, the following STORAGE clause could be used:

OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

You can use the STORAGE parameter only in the control file, and not on the

command line. Use of the STORAGE parameter to specify anything other than

PCTINCREASEof 0, and INITIAL or NEXTvalues is strongly discouraged (and may

be silently ignored in the future).

Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is

complete.

Because each SQL*Loader session can attempt to reenable constraints on a table

after a direct path load, there is a danger that one session may attempt to reenable a

constraint before another session is finished loading data. In this case, the first

session to complete the load will be unable to enable the constraint because the

remaining sessions possess share locks on the table.

Because there is a danger that some constraints might not be reenabled after a direct

path load, you should check the status of the constraint after completing the load to

ensure that it was enabled properly.
9-34 Oracle9i Database Utilities

General Performance Improvement Hints
PRIMARY KEY and UNIQUE KEY Constraints
PRIMARY KEY and UNIQUE KEY constraints create indexes on a table when they are

enabled, and subsequently can take a significantly long time to enable after a direct

path loading session if the table is very large. You should consider enabling these

constraints manually after a load (and not specifying the automatic enable feature).

This allows you to manually create the required indexes in parallel to save time

before enabling the constraint.

General Performance Improvement Hints
If you have control over the format of the data to be loaded, you can use the

following hints to improve load performance:

■ Make logical record processing efficient.

– Use one-to-one mapping of physical records to logical records (avoid

continueif, concatenate).

– Make it easy for the software to identify physical record boundaries. Use

the file processing option string "FIX nnn" or "VAR" . If you use the

default (stream mode) on most platforms (for example, UNIX and NT) the

loader must scan each physical record for the record terminator (newline

character).

■ Make field setting efficient. Field setting is the process of mapping fields in the

datafile to their corresponding columns in the table being loaded. The mapping

function is controlled by the description of the fields in the control file. Field

setting (along with data conversion) is the biggest consumer of CPU cycles for

most loads.

– Avoid delimited fields; use positional fields. If you use delimited fields, the

loader must scan the input data to find the delimiters. If you use positional

fields, field setting becomes simple pointer arithmetic (very fast).

– Do not trim whitespace if you do not need to (use PRESERVE BLANKS).

■ Make conversions efficient. SQL*Loader performs character set conversion and

datatype conversion for you. Of course, the quickest conversion is no

conversion.

– Use single-byte character sets if you can.

See Also: Oracle9i Database Performance Guide and Reference
Conventional and Direct Path Loads 9-35

General Performance Improvement Hints
– Avoid character set conversions if you can. The loader supports four

character sets:

* Client character set (NLS_LANG of the client sqlldr process)

* Datafile character set (usually the same as the client character set)

* Database server character set

* Database server national character set

Performance is optimized if all character sets are the same. For direct path

loads, it is best if the datafile character set and the database server character

set are the same. If the character sets are the same, character set conversion

buffers are not allocated.

■ Use direct path loads.

■ Use the SORTED INDEXES clause.

■ Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be

evaluated on each column that has a clause associated with it for every row

loaded.

■ Use parallel direct path loads and parallel index creation when you can.

■ Be aware of the effect on performance when you have large values for both the

CONCATENATE clause and the COLUMNARRAYROWS clause. See Using

CONCATENATE to Assemble Logical Records on page 5-27.

Additionally, the performance tips provided in Performance Hints When Using

External Tables on page 11-6 also apply to SQL*Loader.
9-36 Oracle9i Database Utilities

SQL*Loader Case St
10

 SQL*Loader Case Studies

The case studies in this chapter illustrate some of the features of SQL*Loader. These

case studies start simply and progress in complexity.

This chapter contains the following sections:

■ The Case Studies

■ Case Study Files

■ Tables Used in the Case Studies

■ Checking the Results of a Load

■ References and Notes

■ Case Study 1: Loading Variable-Length Data

■ Case Study 2: Loading Fixed-Format Fields

■ Case Study 3: Loading a Delimited, Free-Format File

■ Case Study 4: Loading Combined Physical Records

■ Case Study 5: Loading Data into Multiple Tables

■ Case Study 6: Loading Data Using the Direct Path Load Method

■ Case Study 7: Extracting Data from a Formatted Report

Note: The commands used in this chapter, such as sqlldr, are

UNIX-specific invocations. Refer to your Oracle operating

system-specific documentation for information about the correct

commands to use on your operating system.
udies 10-1

The Case Studies
■ Case Study 8: Loading Partitioned Tables

■ Case Study 9: Loading LOBFILEs (CLOBs)

■ Case Study 10: Loading REF Fields and VARRAYs

■ Case Study 11: Loading Data in the Unicode Character Set

The Case Studies
This chapter contains the following case studies:

■ Case Study 1: Loading Variable-Length Data on page 10-5: Loads stream format

records in which the fields are terminated by commas and may be enclosed by

quotation marks. The data is found at the end of the control file.

■ Case Study 2: Loading Fixed-Format Fields on page 10-8: Loads data from a

separate datafile.

■ Case Study 3: Loading a Delimited, Free-Format File on page 10-11: Loads data

from stream format records with delimited fields and sequence numbers. The

data is found at the end of the control file.

■ Case Study 4: Loading Combined Physical Records on page 10-14: Combines

multiple physical records into one logical record corresponding to one database

row.

■ Case Study 5: Loading Data into Multiple Tables on page 10-18: Loads data into

multiple tables in one run.

■ Case Study 6: Loading Data Using the Direct Path Load Method on page 10-24:

Loads data using the direct path load method.

■ Case Study 7: Extracting Data from a Formatted Report on page 10-28: Extracts

data from a formatted report.

■ Case Study 8: Loading Partitioned Tables on page 10-34: Loads partitioned

tables.

■ Case Study 9: Loading LOBFILEs (CLOBs) on page 10-38: Adds a CLOB column

called resume to the table emp, uses a FILLER field (res_file), and loads

multiple LOBFILEs into the emp table.

■ Case Study 10: Loading REF Fields and VARRAYs on page 10-43: Loads a

customer table that has a primary key as its OID and stores order items in a

VARRAY. Loads an order table that has a reference to the customer table and the

order items in a VARRAY.
10-2 Oracle9i Database Utilities

Case Study Files
■ Case Study 11: Loading Data in the Unicode Character Set on page 10-47: Loads

data in the Unicode character set, UTF16, in little endian byte order. This case

study uses character-length semantics.

Case Study Files
The distribution media for SQL*Loader contains files for each case:

■ Control files (for example, ulcase5.ctl)

■ Datafiles (for example, ulcase5.dat)

■ Setup files (for example, ulcase5.sql)

If the sample data for the case study is contained in the control file, then there will

be no .dat file for that case.

If there are no special setup steps for a case study, there may be no .sql file for that

case. Starting (setup) and ending (cleanup) scripts are denoted by an S or E after the

case number.

Table 10–1 lists the files associated with each case.

Table 10–1 Case Studies and Their Related Files

Case .ctl .dat .sql

1 Yes No Yes

2 Yes Yes No

3 Yes No Yes

4 Yes Yes Yes

5 Yes Yes Yes

6 Yes Yes Yes

7 Yes Yes Yes (S, E)

8 Yes Yes Yes

9 Yes Yes Yes

10 Yes No Yes

11 Yes Yes Yes
SQL*Loader Case Studies 10-3

Tables Used in the Case Studies
Tables Used in the Case Studies
The case studies are based upon the standard Oracle demonstration database tables,

empand dept , owned by scott /tiger . (In some case studies, additional columns

have been added.)

Contents of Table emp
(empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2))

Contents of Table dept
(deptno NUMBER(2) NOT NULL,
 dname VARCHAR2(14),
 loc VARCHAR2(13))

Checking the Results of a Load
To check the results of a load, start SQL*Plus and perform a select operation from

the table that was loaded in the case study. This is done, as follows:

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, use the SELECT statement to select all rows from the table

that the case study loaded. For example, if the table emp was loaded, enter:

SQL> SELECT * FROM emp;

Note: The actual names of the case study files are operating

system-dependent. See your Oracle operating system-specific

documentation for the exact names.
10-4 Oracle9i Database Utilities

Case Study 1: Loading Variable-Length Data
The contents of each row in the emp table will be displayed.

References and Notes
The summary at the beginning of each case study directs you to the sections of this

guide that discuss the SQL*Loader feature being demonstrated.

In the control file fragment and log file listing shown for each case study, the

numbers that appear to the left are not actually in the file; they are keyed to the

numbered notes following the listing. Do not use these numbers when you write

your control files.

Case Study 1: Loading Variable-Length Data
Case 1 demonstrates:

■ A simple control file identifying one table and three columns to be loaded.

■ Including data to be loaded from the control file itself, so there is no separate

datafile. See Identifying Data in the Control File with BEGINDATA on

page 5-10.

■ Loading data in stream format, with both types of delimited fields: terminated

and enclosed. See Field Length Specifications for Datatypes for Which

Whitespace Can Be Trimmed on page 6-45.

Control File for Case Study 1
The control file is ulcase1 .ctl :

1) LOAD DATA
2) INFILE *
3) INTO TABLE dept
4) FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
5) (deptno, dname, loc)
6) BEGINDATA
 12,RESEARCH,"SARATOGA"
 10,"ACCOUNTING",CLEVELAND
 11,"ART",SALEM
 13,FINANCE,"BOSTON"
 21,"SALES",PHILA.
 22,"SALES",ROCHESTER
 42,"INT’L","SAN FRAN"
SQL*Loader Case Studies 10-5

Case Study 1: Loading Variable-Length Data
Notes:

1. The LOAD DATA statement is required at the beginning of the control file.

2. INFILE * specifies that the data is found in the control file and not in an

external file.

3. The INTO TABLE statement is required to identify the table to be loaded (dept)

into. By default, SQL*Loader requires the table to be empty before it inserts any

records.

4. FIELDS TERMINATED BY specifies that the data is terminated by commas, but

may also be enclosed by quotation marks. Datatypes for all fields default to

CHAR.

5. The names of columns to load are enclosed in parentheses. Because no datatype

or length is specified, the default is type CHAR with a maximum length of 255.

6. BEGINDATA specifies the beginning of the data.

Running Case Study 1
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase1

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase1.ctl LOG=ulcase1.log

SQL*Loader loads the dept table, creates the log file, and returns you to the

system prompt. You can check the log file to see the results of running the case

study.
10-6 Oracle9i Database Utilities

Case Study 1: Loading Variable-Length Data
Log File for Case Study 1
The following shows a portion of the log file:

Control File: ulcase1.ctl
Data File: ulcase1.ctl
 Bad File: ulcase1.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

Table DEPT, loaded from every logical record.
Insert option in effect for this table: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
1) DEPTNO FIRST * , O(") CHARACTER

DNAME NEXT * , O(") CHARACTER
2) LOC NEXT * , O(") CHARACTER

Table DEPT:
 7 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 49536 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Wed Feb 27 14:10:13 2002
Run ended on Wed Feb 27 14:10:14 2002
SQL*Loader Case Studies 10-7

Case Study 2: Loading Fixed-Format Fields
Elapsed time was: 00:00:01.53
CPU time was: 00:00:00.20

Notes:

1. Position and length for each field are determined for each record, based on

delimiters in the input file.

2. The notation O(") signifies optional enclosure by quotation marks.

Case Study 2: Loading Fixed-Format Fields
Case 2 demonstrates:

■ A separate datafile. See Specifying Datafiles on page 5-7.

■ Data conversions. See Datatype Conversions on page 6-22.

In this case, the field positions and datatypes are specified explicitly.

Control File for Case Study 2
The control file is ulcase2 .ctl .

1) LOAD DATA
2) INFILE ’ulcase2.dat’
3) INTO TABLE emp
4) (empno POSITION(01:04) INTEGER EXTERNAL,
 ename POSITION(06:15) CHAR,
 job POSITION(17:25) CHAR,
 mgr POSITION(27:30) INTEGER EXTERNAL,
 sal POSITION(32:39) DECIMAL EXTERNAL,
 comm POSITION(41:48) DECIMAL EXTERNAL,
5) deptno POSITION(50:51) INTEGER EXTERNAL)

Notes:

1. The LOAD DATA statement is required at the beginning of the control file.

2. The name of the file containing data follows the INFILE parameter.

3. The INTO TABLE statement is required to identify the table to be loaded into.

4. Lines 4 and 5 identify a column name and the location of the data in the datafile

to be loaded into that column. empno, ename, job , and so on are names of

columns in table emp. The datatypes (INTEGER EXTERNAL, CHAR, DECIMAL
10-8 Oracle9i Database Utilities

Case Study 2: Loading Fixed-Format Fields
EXTERNAL) identify the datatype of data fields in the file, not of corresponding

columns in the emp table.

5. Note that the set of column specifications is enclosed in parentheses.

Datafile for Case Study 2
The following are a few sample data lines from the file ulcase2.dat . Blank fields

are set to null automatically.

7782 CLARK MANAGER 7839 2572.50 10
7839 KING PRESIDENT 5500.00 10
7934 MILLER CLERK 7782 920.00 10
7566 JONES MANAGER 7839 3123.75 20
7499 ALLEN SALESMAN 7698 1600.00 300.00 30
7654 MARTIN SALESMAN 7698 1312.50 1400.00 30
7658 CHAN ANALYST 7566 3450.00 20
7654 MARTIN SALESMAN 7698 1312.50 1400.00 30

Running Case Study 2
Take the following steps to run the case study. If you have already run case study 1,

you can skip to step 3 because the ulcase1 .sql script handles both case 1 and case

2.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase1

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase2.ctl LOG=ulcase2.log

SQL*Loader loads the table, creates the log file, and returns you to the system

prompt. You can check the log file to see the results of running the case study.
SQL*Loader Case Studies 10-9

Case Study 2: Loading Fixed-Format Fields
Records loaded in this example from the emp table contain department

numbers. Unless the dept table is loaded first, referential integrity checking

rejects these records (if referential integrity constraints are enabled for the emp
table).

Log File for Case Study 2
The following shows a portion of the log file:

Control File: ulcase2.ctl
Data File: ulcase2.dat
 Bad File: ulcase2.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 17:25 9 CHARACTER
MGR 27:30 4 CHARACTER
SAL 32:39 8 CHARACTER
COMM 41:48 8 CHARACTER
DEPTNO 50:51 2 CHARACTER

Table EMP:
 7 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 3840 bytes(64 rows)
10-10 Oracle9i Database Utilities

Case Study 3: Loading a Delimited, Free-Format File
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Wed Feb 27 14:17:39 2002
Run ended on Wed Feb 27 14:17:39 2002

Elapsed time was: 00:00:00.81
CPU time was: 00:00:00.15

Case Study 3: Loading a Delimited, Free-Format File
Case 3 demonstrates:

■ Loading data (enclosed and terminated) in stream format. See Delimited Fields

on page 6-45.

■ Loading dates using the datatype DATE. See Datetime and Interval Datatypes

on page 6-16.

■ Using SEQUENCE numbers to generate unique keys for loaded data. See Setting

a Column to a Unique Sequence Number on page 6-57.

■ Using APPENDto indicate that the table need not be empty before inserting new

records. See Table-Specific Loading Method on page 5-32.

■ Using Comments in the control file set off by two hyphens. See Comments in

the Control File on page 5-4.

Control File for Case Study 3
This control file loads the same table as in case 2, but it loads three additional

columns (hiredate , projno , and loadseq). The demonstration table emp does

not have columns projno and loadseq . To test this control file, add these columns

to the emp table with the command:

ALTER TABLE emp ADD (projno NUMBER, loadseq NUMBER);

The data is in a different format than in case 2. Some data is enclosed in quotation

marks, some is set off by commas, and the values for deptno and projno are

separated by a colon.
SQL*Loader Case Studies 10-11

Case Study 3: Loading a Delimited, Free-Format File
1) -- Variable-length, delimited, and enclosed data format
 LOAD DATA
2) INFILE *
3) APPEND
 INTO TABLE emp
4) FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’
 (empno, ename, job, mgr,
5) hiredate DATE(20) "DD-Month-YYYY",
 sal, comm, deptno CHAR TERMINATED BY ’:’,
 projno,
6) loadseq SEQUENCE(MAX,1))
7) BEGINDATA
8) 7782, "Clark", "Manager", 7839, 09-June-1981, 2572.50,, 10:101
 7839, "King", "President", , 17-November-1981,5500.00,,10:102
 7934, "Miller", "Clerk", 7782, 23-January-1982, 920.00,, 10:102
 7566, "Jones", "Manager", 7839, 02-April-1981, 3123.75,, 20:101
 7499, "Allen", "Salesman", 7698, 20-February-1981, 1600.00,

(same line continued) 300.00, 30:103
 7654, "Martin", "Salesman", 7698, 28-September-1981, 1312.50,

(same line continued) 1400.00, 3:103
 7658, "Chan", "Analyst", 7566, 03-May-1982, 3450,, 20:101

Notes:

1. Comments may appear anywhere in the command lines of the file, but they

should not appear in data. They are preceded with two hyphens that may

appear anywhere on a line.

2. INFILE * specifies that the data is found at the end of the control file.

3. APPEND specifies that the data can be loaded even if the table already contains

rows. That is, the table need not be empty.

4. The default terminator for the data fields is a comma, and some fields may be

enclosed by double quotation marks (").

5. The data to be loaded into column hiredate appears in the format

DD-Month-YYYY. The length of the date field is specified to have a maximum

of 20. The maximum length is in bytes, with default byte-length semantics. If

character-length semantics were used instead, the length would be in

characters. If a length is not specified, then the length depends on the length of

the date mask.

6. The SEQUENCEfunction generates a unique value in the column loadseq . This

function finds the current maximum value in column loadseq and adds the

increment (1) to it to obtain the value for loadseq for each row inserted.
10-12 Oracle9i Database Utilities

Case Study 3: Loading a Delimited, Free-Format File
7. BEGINDATA specifies the end of the control information and the beginning of

the data.

8. Although each physical record equals one logical record, the fields vary in

length, so that some records are longer than others. Note also that several rows

have null values for comm.

Running Case Study 3
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase3

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase3.ctl LOG=ulcase3.log

SQL*Loader loads the table, creates the log file, and returns you to the system

prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 3
The following shows a portion of the log file:

Control File: ulcase3.ctl
Data File: ulcase3.ctl
 Bad File: ulcase3.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
SQL*Loader Case Studies 10-13

Case Study 4: Loading Combined Physical Records
Continuation: none specified
Path used: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: APPEND

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO FIRST * , O(") CHARACTER
ENAME NEXT * , O(") CHARACTER
JOB NEXT * , O(") CHARACTER
MGR NEXT * , O(") CHARACTER
HIREDATE NEXT 20 , O(") DATE DD-Month-YYYY
SAL NEXT * , O(") CHARACTER
COMM NEXT * , O(") CHARACTER
DEPTNO NEXT * : O(") CHARACTER
PROJNO NEXT * , O(") CHARACTER
LOADSEQ SEQUENCE (MAX, 1)

Table EMP:
 7 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.
Space allocated for bind array: 134976 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Wed Feb 27 14:25:29 2002
Run ended on Wed Feb 27 14:25:30 2002

Elapsed time was: 00:00:00.81
CPU time was: 00:00:00.15

Case Study 4: Loading Combined Physical Records
Case 4 demonstrates:
10-14 Oracle9i Database Utilities

Case Study 4: Loading Combined Physical Records
■ Combining multiple physical records to form one logical record with

CONTINUEIF; see Using CONTINUEIF to Assemble Logical Records on

page 5-27.

■ Inserting negative numbers.

■ Indicating with REPLACE that the table should be emptied before the new data

is inserted; see Table-Specific Loading Method on page 5-32.

■ Specifying a discard file in the control file using DISCARDFILE; see Specifying

the Discard File on page 5-14.

■ Specifying a maximum number of discards using DISCARDMAX; see Specifying

the Discard File on page 5-14.

■ Rejecting records due to duplicate values in a unique index or due to invalid

data values; see Criteria for Rejected Records on page 5-13.

Control File for Case Study 4
The control file is ulcase4 .ctl :

 LOAD DATA
 INFILE ’ulcase4.dat’
1) DISCARDFILE ’ulcase4.dsc’
2) DISCARDMAX 999
3) REPLACE
4) CONTINUEIF THIS (1) = ’*’
 INTO TABLE emp
 (empno POSITION(1:4) INTEGER EXTERNAL,
 ename POSITION(6:15) CHAR,
 job POSITION(17:25) CHAR,
 mgr POSITION(27:30) INTEGER EXTERNAL,
 sal POSITION(32:39) DECIMAL EXTERNAL,
 comm POSITION(41:48) DECIMAL EXTERNAL,
 deptno POSITION(50:51) INTEGER EXTERNAL,
 hiredate POSITION(52:60) INTEGER EXTERNAL)

Notes:

1. DISCARDFILE specifies a discard file named ulcase4 .dsc .

2. DISCARDMAX specifies a maximum of 999 discards allowed before terminating

the run (for all practical purposes, this allows all discards).

3. REPLACE specifies that if there is data in the table being loaded, then

SQL*Loader should delete that data before loading new data.
SQL*Loader Case Studies 10-15

Case Study 4: Loading Combined Physical Records
4. CONTINUEIF THIS specifies that if an asterisk is found in column 1 of the

current record, then the next physical record after that record should be

appended to it from the logical record. Note that column 1 in each physical

record should then contain either an asterisk or a nondata value.

Datafile for Case Study 4
The datafile for this case, ulcase4 .dat , looks as follows. Asterisks are in the first

position and, though not visible, a newline character is in position 20. Note that

clark ’s commission is -10, and SQL*Loader loads the value, converting it to a

negative number.

*7782 CLARK
MANAGER 7839 2572.50 -10 25 12-NOV-85
*7839 KING
PRESIDENT 5500.00 25 05-APR-83
*7934 MILLER
CLERK 7782 920.00 25 08-MAY-80
*7566 JONES
MANAGER 7839 3123.75 25 17-JUL-85
*7499 ALLEN
SALESMAN 7698 1600.00 300.00 25 3-JUN-84
*7654 MARTIN
SALESMAN 7698 1312.50 1400.00 25 21-DEC-85
*7658 CHAN
ANALYST 7566 3450.00 25 16-FEB-84
* CHEN
ANALYST 7566 3450.00 25 16-FEB-84
*7658 CHIN
ANALYST 7566 3450.00 25 16-FEB-84

Rejected Records
The last two records are rejected, given two assumptions. If a unique index is

created on column empno, then the record for chin will be rejected because his

empno is identical to chan ’s. If empno is defined as NOT NULL, then chen ’s record

will be rejected because it has no value for empno.

Running Case Study 4
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:
10-16 Oracle9i Database Utilities

Case Study 4: Loading Combined Physical Records
sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase4

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase4.ctl LOG=ulcase4.log

SQL*Loader loads the table, creates the log file, and returns you to the system

prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 4
The following is a portion of the log file:

Control File: ulcase4.ctl
Data File: ulcase4.dat
 Bad File: ulcase4.bad
 Discard File: ulcase4.dis
 (Allow 999 discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: 1:1 = 0X2a(character ’*’), in current physical record
Path used: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 17:25 9 CHARACTER
MGR 27:30 4 CHARACTER
SAL 32:39 8 CHARACTER
COMM 41:48 8 CHARACTER
SQL*Loader Case Studies 10-17

Case Study 5: Loading Data into Multiple Tables
DEPTNO 50:51 2 CHARACTER
HIREDATE 52:60 9 CHARACTER

Record 8: Rejected - Error on table EMP.
ORA-01400: cannot insert NULL into ("SCOTT"."EMP"."EMPNO")

Record 9: Rejected - Error on table EMP.
ORA-00001: unique constraint (SCOTT.EMPIX) violated

Table EMP:
 7 Rows successfully loaded.
 2 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 4608 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 9
Total logical records rejected: 2
Total logical records discarded: 0

Run began on Wed Feb 27 14:28:53 2002
Run ended on Wed Feb 27 14:28:54 2002

Elapsed time was: 00:00:00.91
CPU time was: 00:00:00.13

Bad File for Case Study 4
The bad file, shown in the following display, lists records 8 and 9 for the reasons

stated earlier. (The discard file is not created.)

* CHEN ANALYST
 7566 3450.00 25 16-FEB-84
*7658 CHIN ANALYST
 7566 3450.00 25 16-FEB-84

Case Study 5: Loading Data into Multiple Tables
Case 5 demonstrates:
10-18 Oracle9i Database Utilities

Case Study 5: Loading Data into Multiple Tables
■ Loading multiple tables. See Loading Data into Multiple Tables on page 5-43.

■ Using SQL*Loader to break down repeating groups in a flat file and to load the

data into normalized tables. In this way, one file record may generate multiple

database rows.

■ Deriving multiple logical records from each physical record. See Benefits of

Using Multiple INTO TABLE Clauses on page 5-39.

■ Using a WHEN clause. See Loading Records Based on a Condition on page 5-35.

■ Loading the same field (empno) into multiple tables.

Control File for Case Study 5
The control file is ulcase5.ctl .

-- Loads EMP records from first 23 characters
 -- Creates and loads PROJ records for each PROJNO listed
 -- for each employee
 LOAD DATA
 INFILE ’ulcase5.dat’
 BADFILE ’ulcase5.bad’
 DISCARDFILE ’ulcase5.dsc’
1) REPLACE
2) INTO TABLE emp
 (empno POSITION(1:4) INTEGER EXTERNAL,
 ename POSITION(6:15) CHAR,
 deptno POSITION(17:18) CHAR,
 mgr POSITION(20:23) INTEGER EXTERNAL)
2) INTO TABLE proj
 -- PROJ has two columns, both not null: EMPNO and PROJNO
3) WHEN projno != ’ ’
 (empno POSITION(1:4) INTEGER EXTERNAL,
3) projno POSITION(25:27) INTEGER EXTERNAL) -- 1st proj
2) INTO TABLE proj
4) WHEN projno != ’ ’
 (empno POSITION(1:4) INTEGER EXTERNAL,
4) projno POSITION(29:31 INTEGER EXTERNAL) -- 2nd proj

2) INTO TABLE proj
5) WHEN projno != ’ ’
 (empno POSITION(1:4) INTEGER EXTERNAL,
5) projno POSITION(33:35) INTEGER EXTERNAL) -- 3rd proj

Notes:
SQL*Loader Case Studies 10-19

Case Study 5: Loading Data into Multiple Tables
1. REPLACE specifies that if there is data in the tables to be loaded (emp and

proj), SQL*loader should delete the data before loading new rows.

2. Multiple INTO TABLE clauses load two tables, emp and proj . The same set of

records is processed three times, using different combinations of columns each

time to load table proj .

3. WHEN loads only rows with nonblank project numbers. When projno is

defined as columns 25...27, rows are inserted into proj only if there is a value

in those columns.

4. When projno is defined as columns 29...31, rows are inserted into proj only if

there is a value in those columns.

5. When projno is defined as columns 33...35, rows are inserted into proj only if

there is a value in those columns.

Datafile for Case Study 5
1234 BAKER 10 9999 101 102 103
1234 JOKER 10 9999 777 888 999
2664 YOUNG 20 2893 425 abc 102
5321 OTOOLE 10 9999 321 55 40
2134 FARMER 20 4555 236 456
2414 LITTLE 20 5634 236 456 40
6542 LEE 10 4532 102 321 14
2849 EDDS xx 4555 294 40
4532 PERKINS 10 9999 40
1244 HUNT 11 3452 665 133 456
123 DOOLITTLE 12 9940 132
1453 MACDONALD 25 5532 200

Running Case Study 5
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase5
10-20 Oracle9i Database Utilities

Case Study 5: Loading Data into Multiple Tables
This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase5.ctl LOG=ulcase5.log

SQL*Loader loads the tables, creates the log file, and returns you to the system

prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 5
The following is a portion of the log file:

Control File: ulcase5.ctl
Data File: ulcase5.dat
 Bad File: ulcase5.bad
 Discard File: ulcase5.dis
 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
DEPTNO 17:18 2 CHARACTER
MGR 20:23 4 CHARACTER

Table PROJ, loaded when PROJNO != 0X202020(character ’ ’)
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO 1:4 4 CHARACTER
PROJNO 25:27 3 CHARACTER
SQL*Loader Case Studies 10-21

Case Study 5: Loading Data into Multiple Tables
Table PROJ, loaded when PROJNO != 0X202020(character ’ ’)
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO 1:4 4 CHARACTER
PROJNO 29:31 3 CHARACTER

Table PROJ, loaded when PROJNO != 0X202020(character ’ ’)
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO 1:4 4 CHARACTER
PROJNO 33:35 3 CHARACTER

1) Record 2: Rejected - Error on table EMP.
1) ORA-00001: unique constraint (SCOTT.EMPIX) violated

1) Record 8: Rejected - Error on table EMP, column DEPTNO.
1) ORA-01722: invalid number

1) Record 3: Rejected - Error on table PROJ, column PROJNO.
1) ORA-01722: invalid number

Table EMP:
2) 9 Rows successfully loaded.
2) 3 Rows not loaded due to data errors.
2) 0 Rows not loaded because all WHEN clauses were failed.
2) 0 Rows not loaded because all fields were null.

Table PROJ:
3) 7 Rows successfully loaded.
3) 2 Rows not loaded due to data errors.
3) 3 Rows not loaded because all WHEN clauses were failed.
3) 0 Rows not loaded because all fields were null.

Table PROJ:
4) 7 Rows successfully loaded.
4) 3 Rows not loaded due to data errors.
4) 2 Rows not loaded because all WHEN clauses were failed.
4) 0 Rows not loaded because all fields were null.
10-22 Oracle9i Database Utilities

Case Study 5: Loading Data into Multiple Tables
Table PROJ:
5) 6 Rows successfully loaded.
5) 3 Rows not loaded due to data errors.
5) 3 Rows not loaded because all WHEN clauses were failed.
5) 0 Rows not loaded because all fields were null.

Space allocated for bind array: 4096 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 12
Total logical records rejected: 3
Total logical records discarded: 0

Run began on Wed Feb 27 14:34:33 2002
Run ended on Wed Feb 27 14:34:34 2002

Elapsed time was: 00:00:01.00
CPU time was: 00:00:00.22

Notes:

1. Errors are not encountered in the same order as the physical records due to

buffering (array batch). The bad file and discard file contain records in the same

order as they appear in the log file.

2. Of the 12 logical records for input, three rows were rejected (rows for joker ,

young , and edds). No data was loaded for any of the rejected records.

3. Of the 9 records that met the WHENclause criteria, two (joker and young) were

rejected due to data errors.

4. Of the 10 records that met the WHEN clause criteria, three (joker , young , and

edds) were rejected due to data errors.

5. Of the 9 records that met the WHEN clause criteria, three (joker , young , and

edds) were rejected due to data errors.

Loaded Tables for Case Study 5
The following are sample SQL queries and their results:

SQL> SELECT empno, ename, mgr, deptno FROM emp;
SQL*Loader Case Studies 10-23

Case Study 6: Loading Data Using the Direct Path Load Method
EMPNO ENAME MGR DEPTNO
------ ------ ------ ------
1234 BAKER 9999 10
5321 OTOOLE 9999 10
2134 FARMER 4555 20
2414 LITTLE 5634 20
6542 LEE 4532 10
4532 PERKINS 9999 10
1244 HUNT 3452 11
123 DOOLITTLE 9940 12
1453 MACDONALD 5532 25

SQL> SELECT * from PROJ order by EMPNO;

EMPNO PROJNO
------ ------
123 132
1234 101
1234 103
1234 102
1244 665
1244 456
1244 133
1453 200
2134 236
2134 456
2414 236
2414 456
2414 40
4532 40
5321 321
5321 40
5321 55
6542 102
6542 14
6542 321

Case Study 6: Loading Data Using the Direct Path Load Method
This case study loads the emp table using the direct path load method and

concurrently builds all indexes. It illustrates the following functions:

■ Use of the direct path load method to load and index data. See Chapter 9.
10-24 Oracle9i Database Utilities

Case Study 6: Loading Data Using the Direct Path Load Method
■ How to specify the indexes for which the data is presorted. See Presorting Data

for Faster Indexing on page 9-18.

■ The NULLIF clause. See Using the WHEN, NULLIF, and DEFAULTIF Clauses

on page 6-32.

■ Loading all-blank numeric fields as NULL. See Loading All-Blank Fields on

page 6-41.

In this example, field positions and datatypes are specified explicitly.

Control File for Case Study 6
The control file is ulcase6.ctl .

 LOAD DATA
 INFILE ’ulcase6.dat’
 REPLACE
 INTO TABLE emp
1) SORTED INDEXES (empix)
2) (empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS,
 ename POSITION(06:15) CHAR,
 job POSITION(17:25) CHAR,
 mgr POSITION(27:30) INTEGER EXTERNAL NULLIF mgr=BLANKS,
 sal POSITION(32:39) DECIMAL EXTERNAL NULLIF sal=BLANKS,
 comm POSITION(41:48) DECIMAL EXTERNAL NULLIF comm=BLANKS,
 deptno POSITION(50:51) INTEGER EXTERNAL NULLIF deptno=BLANKS)

Notes:

1. The SORTED INDEXES statement identifies the indexes on which the data is

sorted. This statement indicates that the datafile is sorted on the columns in the

empix index. It allows SQL*Loader to optimize index creation by eliminating

the sort phase for this data when using the direct path load method.

2. The NULLIF...BLANKS clause specifies that the column should be loaded as

NULL if the field in the datafile consists of all blanks. For more information,

refer to Using the WHEN, NULLIF, and DEFAULTIF Clauses on page 6-32.

Datafile for Case Study 6
7499 ALLEN SALESMAN 7698 1600.00 300.00 30
7566 JONES MANAGER 7839 3123.75 20
7654 MARTIN SALESMAN 7698 1312.50 1400.00 30
7658 CHAN ANALYST 7566 3450.00 20
7782 CLARK MANAGER 7839 2572.50 10
SQL*Loader Case Studies 10-25

Case Study 6: Loading Data Using the Direct Path Load Method
7839 KING PRESIDENT 5500.00 10
7934 MILLER CLERK 7782 920.00 10

Running Case Study 6
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase6

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows.

Be sure to specify DIRECT=true. Otherwise, conventional path is used as the

default, which will result in failure of the case study.

sqlldr USERID=scott/tiger CONTROL=ulcase6.ctl LOG=ulcase6.log DIRECT=true

SQL*Loader loads the emp table using the direct path load method, creates the

log file, and returns you to the system prompt. You can check the log file to see

the results of running the case study.

Log File for Case Study 6
The following is a portion of the log file:

Control File: ulcase6.ctl
Data File: ulcase6.dat
 Bad File: ulcase6.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation: none specified
10-26 Oracle9i Database Utilities

Case Study 6: Loading Data Using the Direct Path Load Method
Path used: Direct

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 17:25 9 CHARACTER
MGR 27:30 4 CHARACTER
 NULL if MGR = BLANKS
SAL 32:39 8 CHARACTER
 NULL if SAL = BLANKS
COMM 41:48 8 CHARACTER
 NULL if COMM = BLANKS
DEPTNO 50:51 2 CHARACTER
 NULL if EMPNO = BLANKS

The following index(es) on table EMP were processed:
index SCOTT.EMPIX loaded successfully with 7 keys

Table EMP:
 7 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.
Bind array size not used in direct path.
Column array rows : 5000
Stream buffer bytes: 256000
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0
Total stream buffers loaded by SQL*Loader main thread: 2
Total stream buffers loaded by SQL*Loader load thread: 0

Run began on Wed Feb 27 13:21:29 2002
Run ended on Wed Feb 27 13:21:32 2002

Elapsed time was: 00:00:02.96
CPU time was: 00:00:00.22
SQL*Loader Case Studies 10-27

Case Study 7: Extracting Data from a Formatted Report
Case Study 7: Extracting Data from a Formatted Report
In this case study, SQL*Loader string-processing functions extract data from a

formatted report. This example creates a trigger that uses the last value of

unspecified fields. This case illustrates the following:

■ Use of SQL*Loader with an INSERT trigger. See Oracle9i Application Developer’s
Guide - Fundamentals for more information on database triggers.

■ Use of the SQL string to manipulate data; see Applying SQL Operators to Fields

on page 6-50.

■ Different initial and trailing delimiters. See Specifying Delimiters on page 6-24.

■ Use of SYSDATE; see Setting a Column to the Current Date on page 6-56.

■ Use of the TRAILING NULLCOLS clause; see TRAILING NULLCOLS Clause on

page 5-37.

■ Ambiguous field length warnings; see Conflicting Native Datatype Field

Lengths on page 6-21 and Conflicting Field Lengths for Character Datatypes on

page 6-28.

■ Use of a discard file. See Specifying the Discard File in the Control File on

page 5-14.

Creating a BEFORE INSERT Trigger
In this case study, a BEFORE INSERT trigger is required to fill in the department

number, job name, and manager’s number when these fields are not present on a

data line. When values are present, they should be saved in a global variable. When

values are not present, the global variables are used.

The INSERT trigger and the global variables package are created when you execute

the ulcase7s .sql script.

The package defining the global variables looks as follows:

CREATE OR REPLACE PACKAGE uldemo7 AS -- Global Package Variables
 last_deptno NUMBER(2);
 last_job VARCHAR2(9);
 last_mgr NUMBER(4);
 END uldemo7;
/

The definition of the INSERT trigger looks as follows:

CREATE OR REPLACE TRIGGER uldemo7_emp_insert
10-28 Oracle9i Database Utilities

Case Study 7: Extracting Data from a Formatted Report
 BEFORE INSERT ON emp
 FOR EACH ROW
BEGIN
 IF :new.deptno IS NOT NULL THEN
 uldemo7.last_deptno := :new.deptno; -- save value for later
 ELSE
 :new.deptno := uldemo7.last_deptno; -- use last valid value
 END IF;
 IF :new.job IS NOT NULL THEN
 uldemo7.last_job := :new.job;
 ELSE
 :new.job := uldemo7.last_job;
 END IF;
 IF :new.mgr IS NOT NULL THEN
 uldemo7.last_mgr := :new.mgr;
 ELSE
 :new.mgr := uldemo7.last_mgr;
 END IF;
END;
/

Be sure to execute the ulcase7e .sql script to drop the INSERT trigger and the

global variables package before continuing with the rest of the case studies. See

Running Case Study 7 on page 10-31.

Control File for Case Study 7
The control file is ulcase7.ctl .

 LOAD DATA
 INFILE ’ulcase7.dat’
 DISCARDFILE ’ulcase7.dis’
 APPEND
 INTO TABLE emp
1) WHEN (57) = ’.’
2) TRAILING NULLCOLS
3) (hiredate SYSDATE,
4) deptno POSITION(1:2) INTEGER EXTERNAL(3)
5) NULLIF deptno=BLANKS,

Note: The FOR EACH ROW clause is important. If it was not

specified, the INSERT trigger would only execute once for each

array of inserts, because SQL*Loader uses the array interface.
SQL*Loader Case Studies 10-29

Case Study 7: Extracting Data from a Formatted Report
 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
6) NULLIF job=BLANKS "UPPER(:job)",
7) mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
8) "TO_NUMBER(:sal,’$99,999.99’)",
9) comm INTEGER EXTERNAL ENCLOSED BY ’(’ AND ’%’
 ":comm * 100"
)

Notes:

1. The decimal point in column 57 (the salary field) identifies a line with data on it.

All other lines in the report are discarded.

2. The TRAILING NULLCOLS clause causes SQL*Loader to treat any fields that are

missing at the end of a record as null. Because the commission field is not

present for every record, this clause says to load a null commission instead of

rejecting the record when only seven fields are found instead of the expected

eight.

3. Employee’s hire date is filled in using the current system date.

4. This specification generates a warning message because the specified length

does not agree with the length determined by the field’s position. The specified

length (3) is used. See Log File for Case Study 7 on page 10-32. The length is in

bytes with the default byte-length semantics. If character-length semantics were

used instead, this length would be in characters.

5. Because the report only shows department number, job, and manager when the

value changes, these fields may be blank. This control file causes them to be

loaded as null, and an insert trigger fills in the last valid value.

6. The SQL string changes the job name to uppercase letters.

7. It is necessary to specify starting position here. If the job field and the manager

field were both blank, then the job field’s TERMINATED BY WHITESPACE clause

would cause SQL*Loader to scan forward to the employee name field. Without

the POSITION clause, the employee name field would be mistakenly

interpreted as the manager field.
10-30 Oracle9i Database Utilities

Case Study 7: Extracting Data from a Formatted Report
8. Here, the SQL string translates the field from a formatted character string into a

number. The numeric value takes less space and can be printed with a variety of

formatting options.

9. In this case, different initial and trailing delimiters pick the numeric value out of

a formatted field. The SQL string then converts the value to its stored form.

Datafile for Case Study 7
The following listing of the report shows the data to be loaded:

 Today’s Newly Hired Employees

Dept Job Manager MgrNo Emp Name EmpNo Salary/Commission
---- -------- -------- ----- -------- ----- -----------------
20 Salesman Blake 7698 Shepard 8061 $1,600.00 (3%)
 Falstaff 8066 $1,250.00 (5%)
 Major 8064 $1,250.00 (14%)

30 Clerk Scott 7788 Conrad 8062 $1,100.00
 Ford 7369 DeSilva 8063 $800.00
 Manager King 7839 Provo 8065 $2,975.00

Running Case Study 7
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase7s

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase7.ctl LOG=ulcase7.log
SQL*Loader Case Studies 10-31

Case Study 7: Extracting Data from a Formatted Report
SQL*Loader extracts data from the report, creates the log file, and returns you

to the system prompt. You can check the log file to see the results of running the

case study.

4. After running this case study, you must drop the insert triggers and

global-variable package before you can continue with the rest of the case

studies. To do this, execute the ulcase7e.sql script as follows:

SQL> @ulcase7e

Log File for Case Study 7
The following is a portion of the log file:

1) SQL*Loader-307: Warning: conflicting lengths 2 and 3 specified for column
DEPTNO
 table EMP
 Control File: ulcase7.ctl
 Data File: ulcase7.dat
 Bad File: ulcase7.bad
 Discard File: ulcase7.dis
 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

Table EMP, loaded when 57:57 = 0X2e(character ’.’)
Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
HIREDATE SYSDATE
DEPTNO 1:2 3 CHARACTER
 NULL if DEPTNO = BLANKS
JOB 7:14 8 WHT CHARACTER
 NULL if JOB = BLANKS
 SQL string for column : "UPPER(:job)"
MGR 28:31 4 WHT CHARACTER
 NULL if MGR = BLANKS
ENAME 34:41 8 WHT CHARACTER
10-32 Oracle9i Database Utilities

Case Study 7: Extracting Data from a Formatted Report
 SQL string for column : "UPPER(:ename)"
EMPNO NEXT * WHT CHARACTER
SAL 51 * WHT CHARACTER
 SQL string for column : "TO_NUMBER(:sal,’$99,999.99’)"
COMM NEXT * (CHARACTER
 %
 SQL string for column : ":comm * 100"

2) Record 1: Discarded - failed all WHEN clauses.
 Record 2: Discarded - failed all WHEN clauses.
 Record 3: Discarded - failed all WHEN clauses.
 Record 4: Discarded - failed all WHEN clauses.
 Record 5: Discarded - failed all WHEN clauses.
 Record 6: Discarded - failed all WHEN clauses.
 Record 10: Discarded - failed all WHEN clauses.

Table EMP:
 6 Rows successfully loaded.
 0 Rows not loaded due to data errors.
2) 7 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 51584 bytes(64 rows)
Read buffer bytes: 1048576

 Total logical records skipped: 0
 Total logical records read: 13
 Total logical records rejected: 0
2) Total logical records discarded: 7

Run began on Wed Feb 27 14:54:03 2002
Run ended on Wed Feb 27 14:54:04 2002

Elapsed time was: 00:00:00.99
CPU time was: 00:00:00.21

Notes:

1. A warning is generated by the difference between the specified length and the

length derived from the position specification.

2. There are six header lines at the top of the report: 3 of them contain text and 3 of

them are blank. All of them are rejected, as is the blank separator line in the

middle.
SQL*Loader Case Studies 10-33

Case Study 8: Loading Partitioned Tables
Case Study 8: Loading Partitioned Tables
Case 8 demonstrates:

■ Partitioning of data. See Oracle9i Database Concepts for more information on

partitioned data concepts.

■ Explicitly defined field positions and datatypes.

■ Loading using the fixed record length option. See Input Data and Datafiles on

page 3-4.

Control File for Case Study 8
The control file is ulcase8 .ctl . It loads the lineitem table with fixed-length

records, partitioning the data according to shipment date.

LOAD DATA
1) INFILE ’ulcase8.dat’ "fix 129"
BADFILE ’ulcase8.bad’
TRUNCATE
INTO TABLE lineitem
PARTITION (ship_q1)
2) (l_orderkey position (1:6) char,
 l_partkey position (7:11) char,
 l_suppkey position (12:15) char,
 l_linenumber position (16:16) char,
 l_quantity position (17:18) char,
 l_extendedprice position (19:26) char,
 l_discount position (27:29) char,
 l_tax position (30:32) char,
 l_returnflag position (33:33) char,
 l_linestatus position (34:34) char,
 l_shipdate position (35:43) char,
 l_commitdate position (44:52) char,
 l_receiptdate position (53:61) char,
 l_shipinstruct position (62:78) char,
 l_shipmode position (79:85) char,
 l_comment position (86:128) char)

Notes:

1. Specifies that each record in the datafile is of fixed length (129 bytes in this

example).
10-34 Oracle9i Database Utilities

Case Study 8: Loading Partitioned Tables
2. Identifies the column name and location of the data in the datafile to be loaded

into each column.

Table Creation
In order to partition the data, the lineitem table is created using four partitions

according to the shipment date:

create table lineitem
(l_orderkey number,
l_partkey number,
l_suppkey number,
l_linenumber number,
l_quantity number,
l_extendedprice number,
l_discount number,
l_tax number,
l_returnflag char,
l_linestatus char,
l_shipdate date,
l_commitdate date,
l_receiptdate date,
l_shipinstruct char(17),
l_shipmode char(7),
l_comment char(43))
partition by range (l_shipdate)
(
partition ship_q1 values less than (TO_DATE(’01-APR-1996’, ’DD-MON-YYYY’))
tablespace p01,
partition ship_q2 values less than (TO_DATE(’01-JUL-1996’, ’DD-MON-YYYY’))
tablespace p02,
partition ship_q3 values less than (TO_DATE(’01-OCT-1996’, ’DD-MON-YYYY’))
tablespace p03,
partition ship_q4 values less than (TO_DATE(’01-JAN-1997’, ’DD-MON-YYYY’))
tablespace p04
)

Datafile for Case Study 8
The datafile for this case, ulcase8.dat , looks as follows. Each record is 128 bytes

in length. Five blanks precede each record in the file.

 1 151978511724386.60 7.04.0NO09-SEP-6412-FEB-9622-MAR-96DELIVER IN
PERSONTRUCK iPBw4mMm7w7kQ zNPL i261OPP
 1 2731 73223658958.28.09.06NO12-FEB-9628-FEB-9620-APR-96TAKE BACK RETURN
SQL*Loader Case Studies 10-35

Case Study 8: Loading Partitioned Tables
MAIL 5wM04SNyl0AnghCP2nx lAi
 1 3370 3713 810210.96 .1.02NO29-MAR-9605-MAR-9631-JAN-96TAKE BACK RETURN
REG AIRSQC2C 5PNCy4mM
 1 5214 46542831197.88.09.06NO21-APR-9630-MAR-9616-MAY-96NONE
AIR Om0L65CSAwSj5k6k
 1 6564 6763246897.92.07.02NO30-MAY-9607-FEB-9603-FEB-96DELIVER IN
PERSONMAIL CB0SnyOL PQ32B70wB75k 6Aw10m0wh
 1 7403 160524 31329.6 .1.04NO30-JUN-9614-MAR-9601 APR-96NONE
FOB C2gOQj OB6RLk1BS15 igN
 2 8819 82012441659.44 0.08NO05-AUG-9609-FEB-9711-MAR-97COLLECT COD
AIR O52M70MRgRNnmm476mNm
 3 9451 721230 41113.5.05.01AF05-SEP-9629-DEC-9318-FEB-94TAKE BACK RETURN
FOB 6wQnO0Llg6y
 3 9717 1834440788.44.07.03RF09-NOV-9623-DEC-9315-FEB-94TAKE BACK RETURN
SHIP LhiA7wygz0k4g4zRhMLBAM
 3 9844 1955 6 8066.64.04.01RF28-DEC-9615-DEC-9314-FEB-94TAKE BACK RETURN
REG AIR6nmBmjQkgiCyzCQBkxPPOx5j4hB 0lRywgniP1297

Running Case Study 8
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase8

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase8.ctl LOG=ulcase8.log

SQL*Loader partitions and loads the data, creates the log file, and returns you

to the system prompt. You can check the log file to see the results of running the

case study.
10-36 Oracle9i Database Utilities

Case Study 8: Loading Partitioned Tables
Log File for Case Study 8
The following shows a portion of the log file:

Control File: ulcase8.ctl
Data File: ulcase8.dat
 File processing option string: "fix 129"
 Bad File: ulcase8.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

Table LINEITEM, partition SHIP_Q1, loaded from every logical record.
Insert option in effect for this partition: TRUNCATE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
L_ORDERKEY 1:6 6 CHARACTER
L_PARTKEY 7:11 5 CHARACTER
L_SUPPKEY 12:15 4 CHARACTER
L_LINENUMBER 16:16 1 CHARACTER
L_QUANTITY 17:18 2 CHARACTER
L_EXTENDEDPRICE 19:26 8 CHARACTER
L_DISCOUNT 27:29 3 CHARACTER
L_TAX 30:32 3 CHARACTER
L_RETURNFLAG 33:33 1 CHARACTER
L_LINESTATUS 34:34 1 CHARACTER
L_SHIPDATE 35:43 9 CHARACTER
L_COMMITDATE 44:52 9 CHARACTER
L_RECEIPTDATE 53:61 9 CHARACTER
L_SHIPINSTRUCT 62:78 17 CHARACTER
L_SHIPMODE 79:85 7 CHARACTER
L_COMMENT 86:128 43 CHARACTER

Record 4: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 5: Rejected - Error on table LINEITEM, partition SHIP_Q1.
SQL*Loader Case Studies 10-37

Case Study 9: Loading LOBFILEs (CLOBs)
ORA-14401: inserted partition key is outside specified partition

Record 6: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 7: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 8: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 9: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Record 10: Rejected - Error on table LINEITEM, partition SHIP_Q1.
ORA-14401: inserted partition key is outside specified partition

Table LINEITEM, partition SHIP_Q1:
 3 Rows successfully loaded.
 7 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 11008 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 10
Total logical records rejected: 7
Total logical records discarded: 0

Run began on Wed Feb 27 15:02:28 2002
Run ended on Wed Feb 27 15:02:29 2002

Elapsed time was: 00:00:01.37
CPU time was: 00:00:00.20

Case Study 9: Loading LOBFILEs (CLOBs)
Case 9 demonstrates:

■ Adding a CLOB column called resume to the table emp
10-38 Oracle9i Database Utilities

Case Study 9: Loading LOBFILEs (CLOBs)
■ Using a filler field (res_file)

■ Loading multiple LOBFILEs into the emp table

Control File for Case Study 9
The control file is ulcase9.ctl . It loads new records into emp, including a resume

for each employee. Each resume is contained in a separate file.

LOAD DATA
INFILE *
INTO TABLE emp
REPLACE
FIELDS TERMINATED BY ’,’
(empno INTEGER EXTERNAL,
 ename CHAR,
 job CHAR,
 mgr INTEGER EXTERNAL,
 sal DECIMAL EXTERNAL,
 comm DECIMAL EXTERNAL,
 deptno INTEGER EXTERNAL,
1) res_file FILLER CHAR,
2) "RESUME" LOBFILE (res_file) TERMINATED BY EOF NULLIF res_file = ’NONE’
)
BEGINDATA
7782,CLARK,MANAGER,7839,2572.50,,10,ulcase91.dat
7839,KING,PRESIDENT,,5500.00,,10,ulcase92.dat
7934,MILLER,CLERK,7782,920.00,,10,ulcase93.dat
7566,JONES,MANAGER,7839,3123.75,,20,ulcase94.dat
7499,ALLEN,SALESMAN,7698,1600.00,300.00,30,ulcase95.dat
7654,MARTIN,SALESMAN,7698,1312.50,1400.00,30,ulcase96.dat
7658,CHAN,ANALYST,7566,3450.00,,20,NONE

Notes:

1. This is a filler field. The filler field is assigned values from the data field to

which it is mapped. See Specifying Filler Fields on page 6-6 for more

information.

2. The resume column is loaded as a CLOB. The LOBFILE function specifies the

field name in which the name of the file that contains data for the LOB field is

provided. See Loading LOB Data from LOBFILEs on page 7-23 for more

information.
SQL*Loader Case Studies 10-39

Case Study 9: Loading LOBFILEs (CLOBs)
Datafiles for Case Study 9
>>ulcase91.dat<<
 Resume for Mary Clark

Career Objective: Manage a sales team with consistent record-breaking
 performance.
Education: BA Business University of Iowa 1992
Experience: 1992-1994 - Sales Support at MicroSales Inc.
 Won "Best Sales Support" award in 1993 and 1994
 1994-Present - Sales Manager at MicroSales Inc.
 Most sales in mid-South division for 2 years

>>ulcase92.dat<<

 Resume for Monica King
Career Objective: President of large computer services company
Education: BA English Literature Bennington, 1985
Experience: 1985-1986 - Mailroom at New World Services
 1986-1987 - Secretary for sales management at
 New World Services
 1988-1989 - Sales support at New World Services
 1990-1992 - Salesman at New World Services
 1993-1994 - Sales Manager at New World Services
 1995 - Vice President of Sales and Marketing at
 New World Services
 1996-Present - President of New World Services

>>ulcase93.dat<<

 Resume for Dan Miller

Career Objective: Work as a sales support specialist for a services
 company
Education: Plainview High School, 1996
Experience: 1996 - Present: Mail room clerk at New World Services

>>ulcase94.dat<<

 Resume for Alyson Jones

Career Objective: Work in senior sales management for a vibrant and
 growing company
Education: BA Philosophy Howard Univerity 1993
Experience: 1993 - Sales Support for New World Services
10-40 Oracle9i Database Utilities

Case Study 9: Loading LOBFILEs (CLOBs)
 1994-1995 - Salesman for New World Services. Led in
 US sales in both 1994 and 1995.
 1996 - present - Sales Manager New World Services. My
 sales team has beat its quota by at least 15% each
 year.

>>ulcase95.dat<<

 Resume for David Allen

Career Objective: Senior Sales man for agressive Services company
Education: BS Business Administration, Weber State 1994
Experience: 1993-1994 - Sales Support New World Services
 1994-present - Salesman at New World Service. Won sales
 award for exceeding sales quota by over 20%
 in 1995, 1996.

>>ulcase96.dat<<

 Resume for Tom Martin

Career Objective: Salesman for a computing service company
Education: 1988 - BA Mathematics, University of the North
Experience: 1988-1992 Sales Support, New World Services
 1993-present Salesman New World Services

Running Case Study 9
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase9

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase9.ctl LOG=ulcase9.log
SQL*Loader Case Studies 10-41

Case Study 9: Loading LOBFILEs (CLOBs)
SQL*Loader loads the emp table, creates the log file, and returns you to the

system prompt. You can check the log file to see the results of running the case

study.

Log File for Case Study 9
The following shows a portion of the log file:

Control File: ulcase9.ctl
Data File: ulcase9.ctl
 Bad File: ulcase9.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
EMPNO FIRST * , CHARACTER
ENAME NEXT * , CHARACTER
JOB NEXT * , CHARACTER
MGR NEXT * , CHARACTER
SAL NEXT * , CHARACTER
COMM NEXT * , CHARACTER
DEPTNO NEXT * , CHARACTER
RES_FILE NEXT * , CHARACTER
 (FILLER FIELD)
"RESUME" DERIVED * EOF CHARACTER
 Dynamic LOBFILE. Filename in field RES_FILE
 NULL if RES_FILE = 0X4e4f4e45(character ’NONE’)

Table EMP:
 7 Rows successfully loaded.
 0 Rows not loaded due to data errors.
10-42 Oracle9i Database Utilities

Case Study 10: Loading REF Fields and VARRAYs
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 132096 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Wed Feb 27 15:06:49 2002
Run ended on Wed Feb 27 15:06:50 2002

Elapsed time was: 00:00:01.01
CPU time was: 00:00:00.20

Case Study 10: Loading REF Fields and VARRAYs
Case 10 demonstrates:

■ Loading a customer table that has a primary key as its OID and stores order

items in a VARRAY.

■ Loading an order table that has a reference to the customer table and the order

items in a VARRAY.

Control File for Case Study 10
LOAD DATA
INFILE *
CONTINUEIF THIS (1) = ’*’
INTO TABLE customers
REPLACE
FIELDS TERMINATED BY ","
(

Note: Case study 10 requires that the COMPATIBILITY parameter

be set to 8.1.0 or higher in your initialization parameter file.

Otherwise, the table cannot be properly created and you will

receive an error message. For more information on setting the

COMPATIBILITY parameter, see Oracle9i Database Migration.
SQL*Loader Case Studies 10-43

Case Study 10: Loading REF Fields and VARRAYs
 CUST_NO CHAR,
 NAME CHAR,
 ADDR CHAR
)
INTO TABLE orders
REPLACE
FIELDS TERMINATED BY ","
(
 order_no CHAR,
1) cust_no FILLER CHAR,
2) cust REF (CONSTANT ’CUSTOMERS’, cust_no),
1) item_list_count FILLER CHAR,
3) item_list VARRAY COUNT (item_list_count)
 (
4) item_list COLUMN OBJECT
 (
5) item CHAR,
 cnt CHAR,
 price CHAR
)
)
)
6) BEGINDATA
*00001,Spacely Sprockets,15 Space Way,
*00101,00001,2,
*Sprocket clips, 10000, .01,
*Sprocket cleaner, 10, 14.00
*00002,Cogswell Cogs,12 Cogswell Lane,
*00100,00002,4,
*one quarter inch cogs,1000,.02,
*one half inch cog, 150, .04,
*one inch cog, 75, .10,
*Custom coffee mugs, 10, 2.50

Notes:

1. This is a FILLER field. The FILLER field is assigned values from the data field

to which it is mapped. See Specifying Filler Fields on page 6-6 for more

information.

2. This field is created as a REF field. See Loading REF Columns on page 7-15 for

more information.

3. item_list is stored in a VARRAY.
10-44 Oracle9i Database Utilities

Case Study 10: Loading REF Fields and VARRAYs
4. The second occurrence of item_list identifies the datatype of each element of

the VARRAY. Here, the datatype is a COLUMN OBJECT.

5. This list shows all attributes of the column object that are loaded for the

VARRAY. The list is enclosed in parentheses. See Loading Column Objects on

page 7-1 for more information.

6. The data is contained in the control file and is preceded by the BEGINDATA
parameter.

Running Case Study 10
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase10

This prepares and populates tables for the case study and then returns you to

the system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase10.ctl LOG=ulcase10.log

SQL*Loader loads the data, creates the log file, and returns you to the system

prompt. You can check the log file to see the results of running the case study.

Log File for Case Study 10
The following shows a portion of the log file:

Control File: ulcase10.ctl
Data File: ulcase10.ctl
 Bad File: ulcase10.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
SQL*Loader Case Studies 10-45

Case Study 10: Loading REF Fields and VARRAYs
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: 1:1 = 0X2a(character ’*’), in current physical record
Path used: Conventional

Table CUSTOMERS, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
CUST_NO FIRST * , CHARACTER
NAME NEXT * , CHARACTER
ADDR NEXT * , CHARACTER

Table ORDERS, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
ORDER_NO NEXT * , CHARACTER
CUST_NO NEXT * , CHARACTER
 (FILLER FIELD)
CUST DERIVED REF
 Arguments are:
 CONSTANT ’CUSTOMERS’
 CUST_NO
ITEM_LIST_COUNT NEXT * , CHARACTER
 (FILLER FIELD)
ITEM_LIST DERIVED * VARRAY
 Count for VARRAY
 ITEM_LIST_COUNT

*** Fields in ITEM_LIST
ITEM_LIST DERIVED * COLUMN OBJECT

*** Fields in ITEM_LIST.ITEM_LIST
ITEM FIRST * , CHARACTER
CNT NEXT * , CHARACTER
PRICE NEXT * , CHARACTER
*** End of fields in ITEM_LIST.ITEM_LIST

*** End of fields in ITEM_LIST
10-46 Oracle9i Database Utilities

Case Study 11: Loading Data in the Unicode Character Set
Table CUSTOMERS:
 2 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Table ORDERS:
 2 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 149120 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 2
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Wed Feb 27 14:05:29 2002
Run ended on Wed Feb 27 14:05:31 2002

Elapsed time was: 00:00:02.07
CPU time was: 00:00:00.20

Case Study 11: Loading Data in the Unicode Character Set
In this case study, SQL*Loader loads data from a datafile in a Unicode character set.

This case study parallels case study 3, except that it uses the character set UTF16

and a maximum length is specified for the empno and deptno fields. The data must

be in a separate datafile because the CHARACTERSETkeyword is specified. This case

study demonstrates the following:

■ Using SQL*Loader to load data in the Unicode character set, UTF16.

■ Using SQL*Loader to load data in a fixed-width multibyte character set.

■ Using character-length semantics.

■ Using SQL*Loader to load data in little endian byte order. SQL*Loader checks

the byte order of the system on which it is running. If necessary, SQL*Loader
SQL*Loader Case Studies 10-47

Case Study 11: Loading Data in the Unicode Character Set
swaps the byte order of the data to ensure that any byte-order-dependent data

is correctly loaded.

Control File for Case Study 11
The control file is ulcase11 .ctl .

LOAD DATA
1) CHARACTERSET UTF16
2) BYTEORDER LITTLE
INFILE ulcase11.dat
REPLACE

INTO TABLE emp
3) FIELDS TERMINATED BY X’002c’ OPTIONALLY ENCLOSED BY X’0022’
4) (empno INTEGER EXTERNAL (5), ename, job, mgr,
 hiredate DATE(20) "DD-Month-YYYY",
 sal, comm,
5) deptno CHAR(5) TERMINATED BY ":",
 projno,
 loadseq SEQUENCE(MAX,1))

Notes:

1. The character set specified with the CHARACTERSET keyword is UTF16.

SQL*Loader will convert the data from the UTF16 character set to the datafile

character set. This line also tells SQL*Loader to use character-length semantics

for the load.

2. BYTEORDER LITTLE tells SQL*Loader that the data in the datafile is in little

endian byte order. SQL*Loader checks the byte order of the system on which it

is running to determine if any byte-swapping is necessary. In this example, all

the character data in UTF16 is byte-order dependent.

3. The TERMINATED BY and OPTIONALLY ENCLOSED BY clauses both specify

hexadecimal strings. The X’002c’ is the encoding for a comma (,) in UTF-16

big endian format. The X’0022’ is the encoding for a double quotation mark

(") in big endian format. Because the datafile is in little endian format,

SQL*Loader swaps the bytes before checking for a match.

If these clauses were specified as character strings instead of hexadecimal

strings, SQL*Loader would convert the strings to the datafile character set

(UTF16) and byte-swap as needed before checking for a match.
10-48 Oracle9i Database Utilities

Case Study 11: Loading Data in the Unicode Character Set
4. Because character-length semantics are used, the maximum length for the

empno, hiredate , and deptno fields is interpreted as characters, not bytes.

5. The TERMINATED BY clause for the deptno field is specified using the

character string ":". SQL*Loader converts the string to the datafile character set

(UTF16) and byte-swaps as needed before checking for a match.

Datafile for Case Study 11
7782, "Clark", "Manager", 7839, 09-June-1981, 2572.50,, 10:101
7839, "King", "President", , 17-November-1981, 5500.00,, 10:102
7934, "Miller", "Clerk", 7782, 23-January-1982, 920.00,, 10:102
7566, "Jones", "Manager", 7839, 02-April-1981, 3123.75,, 20:101
7499, "Allen", "Salesman", 7698, 20-February-1981, 1600.00, 300.00, 30:103
7654, "Martin", "Salesman", 7698, 28-September-1981, 1312.50, 1400.00, 30:103
7658, "Chan", "Analyst", 7566, 03-May-1982, 3450,, 20:101

Running Case Study 11
Take the following steps to run the case study.

1. Start SQL*Plus as scott/tiger by entering the following at the system

prompt:

sqlplus scott/tiger

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for this case study, as follows:

SQL> @ulcase11

This prepares the table emp for the case study and then returns you to the

system prompt.

3. At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott/tiger CONTROL=ulcase11.ctl LOG=ulcase11.log

See Also:

■ Handling Different Character Encoding Schemes on page 5-16

■ Byte Ordering on page 6-37
SQL*Loader Case Studies 10-49

Case Study 11: Loading Data in the Unicode Character Set
SQL*Loader loads the table emp, creates the log file, and returns you to the

system prompt. You can check the log file to see the results of running the case

study.

Log File for Case Study 11
The following shows a portion of the log file for case study 11:

Control File: ulcase11.ctl
Character Set utf16 specified for all input.
1) Using character length semantics.
2) Byteorder little endian specified.
Processing datafile as little endian.
3) SQL*Loader running on a big endian platform. Swapping bytes where needed.

Data File: ulcase11.dat
 Bad File: ulcase11.bad
 Discard File: none specified

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 256000 bytes
Continuation: none specified
Path used: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------------------
4) EMPNO FIRST 10 , O(") CHARACTER
ENAME NEXT * , O(") CHARACTER
JOB NEXT * , O(") CHARACTER
MGR NEXT * , O(") CHARACTER
4) HIREDATE NEXT 40 , O(") DATE DD-Month-YYYY
SAL NEXT * , O(") CHARACTER
COMM NEXT * , O(") CHARACTER
DEPTNO NEXT 10 : O(") CHARACTER
4) PROJNO NEXT * , O(") CHARACTER
LOADSEQ SEQUENCE (MAX, 1)
10-50 Oracle9i Database Utilities

Case Study 11: Loading Data in the Unicode Character Set
Table EMP:
 7 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 104768 bytes(64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Wed Feb 27 16:33:47 2002
Run ended on Wed Feb 27 16:33:49 2002

Elapsed time was: 00:00:01.74
CPU time was: 00:00:00.20

Notes:

1. SQL*Loader used character-length semantics for this load. This is the default if

the character set is UTF16. This means that length checking for the maximum

sizes is in characters (see item number 4 in this list).

2. BYTEORDER LITTLEwas specified in the control file. This tells SQL*Loader that

the byte order for the UTF16 character data in the datafile is little endian.

3. This message only appears when SQL*Loader is running on a system with the

opposite byte order (in this case, big endian) from the datafile’s byte order. It

indicates that SQL*Loader detected that the byte order of the datafile is

opposite from the byte order of the system on which SQL*Loader is running.

Therefore, SQL*Loader had to byte-swap any byte-order-dependent data (in

this case, all the UTF16 character data).

4. The maximum lengths under the len heading are in bytes even though

character-length semantics were used. However, the maximum lengths are

adjusted based on the maximum size, in bytes, of a character in UTF16. All

characters in UTF16 are 2 bytes. Therefore, the sizes given for empno and

projno (5) are multiplied by 2, resulting in a maximum size of 10 bytes.

Similarly, the hiredate maximum size (20) is multiplied by 2, resulting in a

maximum size of 40 bytes.
SQL*Loader Case Studies 10-51

Case Study 11: Loading Data in the Unicode Character Set
Loaded Tables for Case Study 11
To see the results of this execution of SQL*Loader, execute the following query at

the SQL prompt:

SQL> SELECT * FROM emp;

The results of the query look as follows (the formatting may be slightly different on

your display):

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO PROJNO LOADSEQ
------ ------ --------- ----- --------- -------- ----- ------- ------ --------
 7782 Clark Manager 7839 09-JUN-81 2572.50 10 101 1

 7839 King President 17-NOV-81 5500.00 10 102 2

 7934 Miller Clerk 7782 23-JAN-82 920.00 10 102 3

 7566 Jones Manager 7839 02-APR-81 3123.75 20 101 4

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO PROJNO LOADSEQ
------ ------ --------- ----- --------- -------- ----- ------- ------ --------

 7499 Allen Salesman 7698 20-FEB-81 1600.00 300 30 103 5

 7654 Martin Salesman 7698 28-SEP-81 1312.50 1400 30 103 6

 7658 Chan Analyst 7566 03-MAY-82 3450.00 20 101 7

7 rows selected.

The output for the table is displayed in the character set US7ASCII, which is the

normal default character set when the NLS_LANG parameter is not defined.

SQL*Loader converts the output from the database character set, which normally

defaults to WE8DEC, to the character set specified for your session by the NLS_
LANG parameter.
10-52 Oracle9i Database Utilities

Part III

 External Tables

The chapters in this section describe the use of external tables.

Chapter 11, "External Tables Concepts"

This chapter describes basic concepts about external tables.

Chapter 12, "External Tables Access Parameters"

This chapter describes the access parameters used to interface with the external

tables API.

External Tables Conc
11

 External Tables Concepts

The Oracle9i external tables feature is a complement to existing SQL*Loader

functionality. It allows you to access data in external sources as if it were in a table

in the database.

External tables are read-only. No data manipulation language (DML) operations or

index creation is allowed on an external table. Therefore, SQL*Loader may be the

better choice in data loading situations that require additional indexing of the

staging table. See Behavior Differences Between SQL*Loader and External Tables on

page 11-7 for more information on how load behavior differs between SQL*Loader

and external tables.

To use the external tables feature, you must have some knowledge of the file format

and record format of the datafiles on your platform. You must also know enough

about SQL to be able to create an external table and perform queries against it.

This chapter discusses the following topics:

■ The Access Driver

■ External Table Restrictions

■ Location of Datafiles and Output Files

■ Using External Tables to Load Data

■ Parallel Access to External Tables

■ Performance Hints When Using External Tables

■ Behavior Differences Between SQL*Loader and External Tables
epts 11-1

The Access Driver
The Access Driver
An external table describes how the external table layer must present the data to the

server. The access driver and the external table layer transform the data in the

datafile to match the external table definition.

When you create an external table of a particular type, you provide access

parameters that describe the external data source. If you do not specify a type for

the external table, then the ORACLE_LOADER type is used as a default. For a

description of the access parameters for the ORACLE_LOADER type, see Chapter 12.

The description of the data in the data source is separate from the definition of the

external table. This means that:

■ The source file can contain more or fewer fields than there are columns in the

external table

■ The datatypes for fields in the data source can be different from the columns in

the external table

The access driver ensures that data from the data source is processed so that it

matches the definition of the external table.

In the following example, a traditional table named emp is defined along with an

external table named emp_load .

CREATE TABLE emp (emp_no CHAR(6), last_name CHAR(25), first_name CHAR(20), middle_initial
CHAR(1));

CREATE TABLE emp_load (employee_number CHAR(5), employee_last_name CHAR(20),
 employee_first_name CHAR(15), employee_middle_name CHAR(15))
ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS FIXED 62 FIELDS (employee_number INTEGER(2),
 employee_dob CHAR(20),
 employee_last_name CHAR(18),
 employee_first_name CHAR(11),
 employee_middle_name CHAR(11)))
 LOCATION ('foo.dat'));

INSERT INTO emp (emp_no, first_name, middle_initial, last_name)
(SELECT employee_number, employee_first_name,
 substr(employee_middle_name, 1, 1),
 employee_last_name
FROM emp_load);

 Note the following in the preceding example:
11-2 Oracle9i Database Utilities

Location of Datafiles and Output Files
■ The employee_number field in the datafile is converted to a character string

for the employee_number field in the external table.

■ The datafile contains an employee_dob field that is not loaded into any field in

the table.

■ The substr function is used on the employee_middle_name column in the

external table to generate the value for middle_initial in table emp.

External Table Restrictions
This section lists what external tables does not do and also describes some

processing restrictions.

■ An external table does not describe any data that is stored in the database.

■ An external table does not describe how data is stored in the external source.

This is the function of the access parameters.

■ An external table is a read-only source. You cannot perform insert operations

into an external table, nor can you update records in an external table.

■ Column processing - external tables can return a different number of rows

depending on what columns are queried. To minimize the amount of data

conversion and data handling required to execute a query, the external tables

access driver only processes columns that are referenced in the query. This

means that a row that is rejected because a column in the row causes a datatype

conversion error will not get rejected in a different query if the query does not

reference that column.

■ Handling of byte-order marks during a load - in an external table load for

which the datafile character set is UTF8 or UTF16, it is not possible to suppress

checking for byte-order marks. Suppression of byte-order mark checking is only

necessary if the beginning of the datafile contains binary data that matches the

byte-order mark encoding. (It is possible to suppress byte-order mark checking

with SQL*Loader loads.) Note that checking for a byte-order mark does not

mean that a byte-order mark must be present in the datafile. If no byte-order

mark is present, the byte order of the server platform is used.

Location of Datafiles and Output Files
The access driver runs inside of the database server. This is different from

SQL*Loader, which is a client program that sends the data to be loaded over to the

server. This difference has the following implications:
External Tables Concepts 11-3

Location of Datafiles and Output Files
■ The server must have access to any files to be loaded by the access driver.

■ The server must create and write the files created by the access driver: log file,

bad file, and discard file.

The access driver does not allow you to specify random names for a file. This is

because the server may have access to files that you do not, and allowing you to

read this data would affect security. Similarly, you cannot specify a location for an

output file, because the server could overwrite a file that you might not normally

have privileges to delete.

Instead, you are required to specify directory objects as the locations from which to

read files and write files. A directory object maps a name to a directory name on the

file system. For example, the following statement creates a directory object named

load_src .

create directory load_src as '/usr/apps/datafiles';

Directory objects can be created by DBAs or by any user with the CREATE ANY
DIRECTORY privilege. After a directory is created, the user creating the directory

object needs to grant READor WRITEpermission on the directory to other users. For

example, to allow the server to read files on behalf of user scott in the directory

named by load_src , the user who created the directory object must execute the

following command:

GRANT READ ON DIRECTORY load_src TO scott;

The name of the directory object can appear in the following places in a CREATE
TABLE...ORGANIZATION EXTERNAL statement:

■ The default directory clause, which specifies the default directory to use for all

input and output files that do not explicitly name a directory object.

■ The LOCATION clause, which lists all of the datafiles for the external table. The

files are named in the form directory:file . The directory portion is

optional. If it is missing, the default directory is used as the directory for the file.

■ The access parameters where output files are named. The files are named in the

form directory:file . The directory portion is optional. If it is missing,

the default directory is used as the directory for the file. Syntax in the access

parameters allows you to indicate that a particular output file should not be

created. This is useful if you do not care about the output files or if you do not

have write access to any directory objects.

The SYS user is the only user that can own directory objects, but the SYS user can

grant other users the privilege to create directory objects. Note that READ or WRITE
11-4 Oracle9i Database Utilities

Using External Tables to Load Data
permission to a directory object only means that the Oracle database server will

read or write that file on your behalf. You are not given direct access to those files

outside of the Oracle database server unless you have the appropriate operating

system privileges. Similarly, the Oracle database server requires permission from

the operating system to read and write files in the directories.

Using External Tables to Load Data
The main use for external tables is as a row source for loading data into a real table

in the database. After you create an external table, you can issue a CREATE TABLE
AS SELECT or INSERT INTO... AS SELECT statement using the external table

as the source of the SELECT clause. Remember that external tables are read-only, so

you cannot insert into them or update records in them.

When the external table is accessed through a SQL statement, the fields of the

external table can be used just like any other field in a normal table. In particular,

the fields can be used as arguments for any SQL built-in function, PL/SQL function,

or Java function. This allows you to manipulate the data from the external source.

Although external tables cannot contain a column object, you can use constructor

functions to build a column object from attributes in the external table. For example,

assume a table in the database is defined as follows:

CREATE TYPE student_type AS object (
student_no CHAR(5),
name CHAR(20))
/

CREATE TABLE roster (
 student student_type,
 grade CHAR(2));

Also assume there is an external table defined as follows:

CREATE TABLE roster_data (
 student_no CHAR(5),
 name CHAR(20),
 grade CHAR(2))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ',')
 LOCATION ('foo.dat'));

To load table roster from roster_data , you would specify something similar to

the following:
External Tables Concepts 11-5

Parallel Access to External Tables
INSERT INTO roster (student, grade)
 (SELECT student_type(student_no, name), grade FROM roster_data);

Parallel Access to External Tables
To enable external table support of parallel processing on the datafiles, use the

PARALLEL clause when you create the external table. The access driver attempts to

divide large datafiles into chunks that can be processed separately.

The following file, record, and data characteristics make it impossible for a file to be

processed in parallel:

■ Sequential data sources (such as a tape drive or pipe)

■ Data in any multibyte character set whose character boundaries cannot be

determined starting at an arbitrary byte in the middle of a string

This restriction does not apply to any datafile with a fixed number of bytes per

record.

■ Records with the VAR format

Performance Hints When Using External Tables
When you monitor performance, the most important measurement is the elapsed

time for a load. Other important measurements are CPU usage, memory usage, and

I/O rates.

You can alter performance by increasing or decreasing the degree of parallelism.

The degree of parallelism indicates the number of access drivers that can be started

to process the datafiles. The degree of parallelism allows you to choose on a scale

between slower load with little resource usage and faster load with all resources

utilized. The access driver cannot automatically tune itself, because it cannot

determine how many resources you want to dedicate to the access driver.

Performance can also sometimes be increased with use of date cache functionality.

By using the date cache to specify the number of unique dates anticipated during

the load, you can reduce the number of date conversions done when many

duplicate date or timestamp values are present in the input data. The date cache

functionality provided by external tables is identical to the date cache functionality

provided by SQL*Loader. See Specifying a Value for the Date Cache on page 9-22

for a detailed description.

In addition to changing the degree of parallelism and using the date cache to

improve performance, consider the following information:
11-6 Oracle9i Database Utilities

Behavior Differences Between SQL*Loader and External Tables
■ Fixed-length records are processed faster than records terminated by a string.

■ Fixed-length fields are processed faster than delimited fields.

■ Single-byte character sets are the fastest to process.

■ Fixed-width character sets are faster to process than varying-width character

sets.

■ Byte-length semantics for varying-width character sets are faster to process than

character-length semantics.

■ Single-character delimiters for record terminators and field delimiters are faster

to process than multicharacter delimiters.

■ Having the character set in the datafile match the character set of the database is

faster than a character set conversion.

■ Having datatypes in the datafile match the datatypes in the database is faster

than datatype conversion.

■ Not writing rejected rows to a reject file is faster because of the reduced

overhead of not writing the rows.

■ Condition clauses (including WHEN, NULLIF, and DEFAULTIF) slow down

processing.

The access driver takes advantage of multithreading to streamline the work as

much as possible.

Behavior Differences Between SQL*Loader and External Tables
This section describes important differences between loading data with external

tables as opposed to loading data with SQL*Loader conventional and direct path

loads.

Multiple Primary Input Datafiles
If there are multiple primary input datafiles with SQL*Loader loads, a bad file and a

discard file are created for each input datafile. With external table loads, there is

only one bad file and one discard file for all input datafiles. If parallel access drivers

are used for the external table load, each access driver has its own bad file and

discard file.
External Tables Concepts 11-7

Behavior Differences Between SQL*Loader and External Tables
Syntax and Datatypes
The following are not supported with external table loads:

■ Use of CONTINUEIF or CONCATENATE to combine multiple physical records

into a single logical record.

■ Loading of the following SQL*Loader datatypes: GRAPHIC, GRAPHIC
EXTERNAL, and VARGRAPHIC

■ Use of the following database column types: CLOBs, NCLOBs, BLOBs, LONGs,

nested tables, VARRAYs, REFs, primary key REFs, and SID s

Rejected Rows
With SQL*Loader, if the SEQUENCE parameter is used and there are rejected rows,

the rejected row still updates the sequence number value. With external tables, if the

SEQUENCE parameter is used, rejected rows do not update the sequence number

value. For example, suppose you load 5 rows with sequence numbers beginning

with 1 and incrementing by 1. In SQL*Loader, if rows 2 and 4 are rejected, the

successfully loaded rows are assigned the sequence numbers 1, 3, and 5. In an

external table load, the successfully loaded rows are assigned the sequence numbers

1, 2, and 3.

Byte-Order Marks
With SQL*Loader, if a primary datafile uses a Unicode character set (UTF8 or

UTF16) and it also contains a byte-order mark (BOM), then the byte-order mark is

written at the beginning of the corresponding bad and discard files. With external

table loads, the byte-order mark is not written at the beginning of the bad and

discard files.

Default Character Sets and Date Masks
For fields in a datafile, it is the client’s NLS environment that determines the default

character set and date masks. For fields in external tables, it is the server’s NLS

environment that determines the default character set and date masks.
11-8 Oracle9i Database Utilities

External Tables Access Pa
12

External Tables Access Parameters

The access parameters described in this chapter provide the interface to the external

table access driver. You specify access parameters when you create the external

table. This chapter describes the syntax for the access parameters for the default

access driver.

To use the information in this chapter, you must have some knowledge of the file

format and record format (including character sets and field datatypes) of the

datafiles on your platform. You must also know enough about SQL to be able to

create an external table and perform queries against it.

You may find it helpful to use the EXTERNAL_TABLE=GENERATE_ONLY parameter

in SQL*Loader to get the proper access parameters for a given SQL*Loader control

file. When you specify GENERATE_ONLY, all the SQL statements needed to do the

load using external tables, as described in the control file, are placed in the

SQL*Loader log file. These SQL statements can be edited and customized. The

actual load can be done later without the use of SQL*Loader by executing these

statements in SQL*Plus.

See Also:

■ EXTERNAL_TABLE on page 4-7

■ Log File Created When EXTERNAL_TABLE=GENERATE_

ONLY on page 8-8
rameters 12-1

access_parameters Clause
access_parameters Clause
The access parameters clause contains comments, record formatting, and field

formatting information. The syntax for the access_parameters clause is as

follows:

comments
Comments are lines that begin with two dashes followed by text. Comments must

be placed before any access parameters, for example:

--This is a comment
--This is another comment
RECORDS DELIMITED BY NEWLINE

All text to the right of the double hyphen is ignored, until the end of the line.

record_format_info
The record_format_info clause contains information about the record, such as

its format, the character set of the data, and what rules are used to exclude records

from being loaded. The record_format_info clause is optional. For a full

description of the syntax, see record_format_info Clause on page 12-3.

Notes:

■ It is sometimes difficult to describe syntax without using other

syntax that is not documented until later in the chapter. If it is

not clear what some syntax is supposed to do, you might want

to skip ahead and read about that particular element.

■ Many examples in this chapter show a CREATE
TABLE...ORGANIZATION EXTERNAL statement followed by

a sample of contents of the datafile for the external table. These

contents are not part of the CREATE TABLE statement, but are

shown to help complete the example.

comments record_format_info field_definitions
12-2 Oracle9i Database Utilities

record_format_info Clause
field_definitions
The field_definitions clause is used to describe the fields in the datafile. If a

datafile field has the same name as a column in the external table, then the data

from the field is used for that column. For a full description of the syntax, see field_

definitions Clause on page 12-15.

record_format_info Clause
The record_format_info clause contains information about the record, such as

its format, the character set of the data, and what rules are used to exclude records

from being loaded. The record_format_info clause is optional. If the clause is

not specified, the default value is RECORDS DELIMITED BY NEWLINE. The syntax

for the record_format_info clause is as follows:
External Tables Access Parameters 12-3

record_format_info Clause
FIXED length
The FIXED clause is used to identify the records as all having a fixed size of length

bytes. The size specified for FIXED records must include any record termination

characters, such as newlines. Compared to other record types, fixed-length fields in

fixed-length records are the easiest field and record formats for the access driver to

process.

RECORDS

FIXED

VARIABLE
integer

DELIMITED BY
NEWLINE

string

CHARACTERSET string

DATA IS
LITTLE

BIG
ENDIAN

BYTE ORDER MARK
CHECK

NOCHECK

STRING SIZES ARE IN
BYTES

CHARACTERS

LOAD WHEN condition_spec

NOBADFILE

BADFILE
directory object name :

filename

NODISCARDFILE

DISCARDFILE
directory object name :

filename

NOLOGFILE

LOGFILE
directory object name :

filename

READSIZE

DATE_CACHE

SKIP

integer
12-4 Oracle9i Database Utilities

record_format_info Clause
The following is an example of using FIXED records. It assumes there is a 1-byte

newline character at the end of each record in the datafile. It is followed by a sample

of the datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS FIXED 20 FIELDS (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('foo.dat'));

Alvin Tolliver1976
KennethBaer 1963
Mary Dube 1973

VARIABLE size
The VARIABLE clause is used to indicate that the records have a variable length and

that each record is preceded by a character string containing a number with the

count of bytes for the record. The length of the character string containing the count

field is the size argument that follows the VARIABLE parameter. Note that size

indicates a count of bytes, not characters. The count at the beginning of the record

must include any record termination characters, but it does not include the size of

the count field itself. The number of bytes in the record termination characters can

vary depending on how the file is created and on what platform it is created.

The following is an example of using VARIABLE records. It assumes there is a

1-byte newline character at the end of each record in the datafile. It is followed by a

sample of the datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS VARIABLE 2 FIELDS TERMINATED BY ','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('foo.dat'));

21Alvin,Tolliver,1976,
19Kenneth,Baer,1963,
16Mary,Dube,1973,
External Tables Access Parameters 12-5

record_format_info Clause
DELIMITED BY
The DELIMITED BY clause is used to indicate the characters that identify the end of

a record.

If DELIMITED BY NEWLINE is specified, then the actual value used is

platform-specific. On UNIX platforms, NEWLINE is assumed to be "\n ". On

Windows NT, NEWLINE is assumed to be "\r\n ".

If DELIMITED BY string is specified, string can either be text or a series of

hexadecimal digits. If it is text, then the text is converted to the character set of the

datafile and the result is used for identifying record boundaries. See string on

page 12-11.

If the following conditions are true, then you must use hexadecimal digits to

identify the delimiter:

■ The character set of the access parameters is different from the character set of

the datafile

■ Some characters in the delimiter string cannot be translated into the character

set of the datafile

The hexadecimal digits are converted into bytes, and there is no character set

translation performed on the hexadecimal string.

If the end of the file is found before the record terminator, the access driver proceeds

as if a terminator was found, and all unprocessed data up to the end of the file is

considered part of the record.

The following is an example of using DELIMITED BY records.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS DELIMITED BY '|' FIELDS TERMINATED BY ','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('foo.dat'));

Caution: Do not include any binary data, including binary counts

for VARCHAR and VARRAW, in a record that has delimiters. Doing so

could cause errors or corruption, because the binary data will be

interpreted as characters during the search for the delimiter.
12-6 Oracle9i Database Utilities

record_format_info Clause
Alvin,Tolliver,1976|Kenneth,Baer,1963|Mary,Dube,1973

CHARACTERSET
The CHARACTERSETstring clause identifies the character set of the datafile. If a

character set is not specified, the data is assumed to be in the default character set

for the database. See string on page 12-11.

DATA IS...ENDIAN
The DATA IS...ENDIAN clause indicates the endianness of data whose byte order

may vary depending on the platform that generated the datafile. Fields of the

following types are affected by this clause:

■ INTEGER

■ UNSIGNED INTEGER

■ FLOAT

■ DOUBLE

■ VARCHAR(numeric count only)

■ VARRAW(numeric count only)

■ Any character datatype in the UTF16 character set

■ Any string specified by RECORDS DELIMITED BYstring and in the UTF16

character set

Common platforms that generate little endian data include Windows 98 and

Windows NT. Big endian platforms include Sun Solaris and IBM MVS. If the DATA
IS...ENDIAN clause is not specified, then the data is assumed to have the same

endianness as the platform where the access driver is running. UTF16 datafiles may

have a mark at the beginning of the file indicating the endianness of the data. This

mark will override the DATA IS...ENDIAN clause.

Note: Client-side NLS settings have no effect on the character set

used for the database.

See Also: Oracle9i Database Globalization Support Guide for a listing

of Oracle-supported character sets
External Tables Access Parameters 12-7

record_format_info Clause
BYTE ORDER MARK (CHECK | NOCHECK)
The BYTE ORDER MARK clause is used to specify whether or not the datafile should

be checked for the presence of a byte-order mark (BOM).

BYTE ORDER MARK NOCHECK indicates that the datafile should not be checked for a

BOM and that all the data in the datafile should be read as data.

BYTE ORDER MARK CHECK indicates that the datafile should be checked for a BOM.

This is the default behavior for a datafile in a Unicode character set.

The following are examples of some possible scenarios:

■ If the data is specified as being little or big endian and CHECK is specified and it

is determined that the specified endianness does not match the datafile, then an

error is returned. For example, suppose you specify the following:

DATA IS LITTLE ENDIAN
BYTE ORDER MARK CHECK

If the BOM is checked in the Unicode datafile and the data is actually big

endian, an error is returned because you specified little endian.

■ If a BOM is not found and no endianness is specified with the DATA
IS...ENDIAN parameter, then the endianness of the platform is used.

■ If BYTE ORDER MARK NOCHECK is specified and the DATA IS...ENDIAN
parameter specified an endianness, then that value is used. Otherwise, the

endianness of the platform is used.

STRING SIZES ARE IN
The STRING SIZES ARE IN clause is used to indicate whether the lengths specified

for character strings are in bytes or characters. If not specified, the access driver uses

the mode that the database uses. Character types with embedded lengths (such as

VARCHAR) are also affected by this clause. If this clause is specified, the embedded

lengths are a character count, not a byte count. Specifying STRING SIZES ARE IN
CHARACTERS is needed only when loading multibyte character sets, such as UTF16.

LOAD WHEN
The LOAD WHENcondition_spec clause is used to identify the records that

should be passed to the database. The evaluation method varies:

See Also: Byte Ordering on page 6-37
12-8 Oracle9i Database Utilities

record_format_info Clause
■ If the condition_spec references a field in the record, the clause is evaluated

only after all fields have been parsed from the record, but before any NULLIF or

DEFAULTIF clauses have been evaluated.

■ If the condition specification only references ranges (and no field names), then

the clause is evaluated before the fields are parsed. This is useful for cases

where the records in the file that are not to be loaded cannot be parsed into the

current record definition without errors.

See condition_spec on page 12-12.

The following are some examples of using LOAD WHEN:

LOAD WHEN (empid != BLANKS)
LOAD WHEN ((dept_id = "SPORTING GOODS" OR dept_id = "SHOES") AND total_sales != 0)

BADFILE | NOBADFILE
The BADFILE clause names the file to which records are written when they cannot

be loaded because of errors. For example, a record was written to the bad file

because a field in the datafile could not be converted to the datatype of a column in

the external table. Records that fail the LOAD WHEN clause are not written to the bad

file but are written to the discard file instead. Also, any errors in using a record from

an external table (such as a constraint violation when using INSERT INTO...AS
SELECT... from an external table) will not cause the record to be written into the

bad file.

The purpose of the bad file is to have one file where all rejected data can be

examined and fixed so that it can be loaded. If you do not intend to fix the data,

then you can use the NOBADFILE option to prevent creation of a bad file, even if

there are bad records.

If you specify BADFILE, you must specify a filename or you will receive an error.

If neither BADFILE nor NOBADFILE is specified, the default is to create a bad file if

at least one record is rejected. The name of the file will be the table name followed

by _%p.

See [directory object name:] filename on page 12-12.

DISCARDFILE | NODISCARDFILE
The DISCARDFILE clause names the file to which records are written that fail the

condition in the LOAD WHEN clause. The discard file is created when the first record

to be discarded is encountered. If the same external table is accessed multiple times,
External Tables Access Parameters 12-9

record_format_info Clause
then the discard file is rewritten each time. If there is no need to save the discarded

records in a separate file, then use NODISCARDFILE.

If you specify DISCARDFILE, you must specify a filename or you will receive an

error.

If neither DISCARDFILE nor NODISCARDFILE is specified, the default is to create a

discard file if at least one record fails the LOAD WHEN clause. The name of the file

will be the table name followed by _%p.

See [directory object name:] filename on page 12-12.

LOG FILE | NOLOGFILE
The LOGFILE clause names the file that contains messages generated by the

external tables utility while it was accessing data in the datafile. If a log file already

exists by the same name, the access driver reopens that log file and appends new

log information to the end. This is different from bad files and discard files, which

overwrite any existing file. NOLOGFILE is used to prevent creation of a log file.

If you specify LOGFILE, you must specify a filename or you will receive an error.

If neither LOGFILE nor NOLOGFILE is specified, the default is to create a log file.

The name of the file will be the table name followed by _%p.

See [directory object name:] filename on page 12-12.

SKIP
Skips the specified number of records in the datafile before loading. SKIP can be

specified only when nonparallel access is being made to the data.

READSIZE
The READSIZE parameter specifies the size of the read buffer. The size of the read

buffer is a limit on the size of the largest record the access driver can handle. The

size is specified with an integer indicating the number of bytes. The default value is

512KB (524288 bytes). You must specify a larger value if any of the records in the

datafile are larger than 512KB. There is no limit on how large READSIZE can be, but

practically, it is limited by the largest amount of memory that can be allocated by

the access driver. Also, note that multiple buffers are allocated, so the amount of

memory available for allocation is also another limit.
12-10 Oracle9i Database Utilities

record_format_info Clause
DATE_CACHE
By default, the date cache feature is enabled (for 1000 elements). To completely

disable the date cache feature, set it to 0.

DATE_CACHE specifies the date cache size (in entries). For example, DATE_
CACHE=5000 specifies that each date cache created can contain a maximum of 5000

unique date entries. Every table has its own date cache, if one is needed. A date

cache is created only if at least one date or timestamp value is loaded that requires

datatype conversion in order to be stored in the table.

The date cache feature is only available for direct path loads. It is enabled by

default. The default date cache size is 1000 elements. If the default size is used and

the number of unique input values loaded exceeds 1000, then the date cache feature

is automatically disabled for that table. However, if you override the default and

specify a nonzero date cache size and that size is exceeded, then the cache is not

disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log

file to tune the size of the cache for future similar loads.

string
A string is a quoted series of characters or hexadecimal digits. There must be an

even number of hexadecimal digits. All text will be converted to the character set of

the datafile. Hexadecimal digits are converted into their binary translation, and the

translation is treated as a character string. The access driver does not translate that

string, but assumes it is in the character set of the datafile. The syntax for a string
is as follows:

See Also: Specifying a Value for the Date Cache on page 9-22

" text "

’ text ’

" hex digit hex digit "

’ hex digit hex digit ’
External Tables Access Parameters 12-11

record_format_info Clause
condition_spec
The condition_spec is an expression that evaluates to either true or false. It

specifies one or more conditions that are joined by Boolean operators. The

conditions and Boolean operators are evaluated from left to right. (Boolean

operators are applied after the conditions are evaluated.) Parentheses can be used to

override the default order of evaluation of Boolean operators. The evaluation of

condition_spec clauses slows record processing, so these clauses should be used

sparingly. The syntax for condition_spec is as follows:

Note that if the condition specification contains any conditions that reference field

names, then the condition specifications are evaluated only after all fields have been

found in the record and after blank trimming has been done. It is not useful to

compare a field to BLANKS if blanks have been trimmed from the field.

The following are some examples of using condition_spec :

empid = BLANKS OR last_name = BLANKS
(dept_id = SPORTING GOODS OR dept_id = SHOES) AND total_sales != 0

[directory object name:] filename
This clause is used to specify the name of an output file (BADFILE, DISCARDFILE,
or LOGFILE). The directory object name is the name of a directory object where the

user accessing the external table has privileges to write. If the directory object name

is omitted, then the value specified for the DEFAULT DIRECTORY clause in the

CREATE TABLE AS EXTERNAL statement is used.

The filename parameter is the name of the file to create in the directory object.

The access driver does some symbol substitution to help make filenames unique in

See Also: condition on page 12-13

condition

condition_spec
AND

OR
condition_spec

(

condition

condition_spec
AND

OR
condition_spec

)

12-12 Oracle9i Database Utilities

record_format_info Clause
parallel loads. The symbol substitutions supported for UNIX and Windows NT are

as follows (other platforms may have different symbols):

■ %p is replaced by the process ID of the current process. For example, if the

process ID of the access driver is 12345 , then exttab_%p.log becomes

exttab_12345.log.

■ %a is replaced by the agent number of the current process. The agent number is

the unique number assigned to each parallel process accessing the external

table. This number is padded to the left with zeros to fill three characters. For

example, if the third parallel agent is creating a file and bad_data_%a.bad
was specified as the filename, then the agent would create a file named bad_
data_003.bad.

■ %%is replaced by %. If there is a need to have a percent sign in the filename, then

this symbol substitution is used.

If the % character is encountered followed by anything other than one of the

preceding characters, then an error is returned.

If %p or %a is not used to create unique filenames for output files and an external

table is being accessed in parallel, then there may be problems with corrupted

output files or with agents not being able to write to the files.

If you specify BADFILE (or DISCARDFILE or LOGFILE), you must specify a

filename for it or you will receive an error. However, if you do not specify BADFILE
(or DISCARDFILE or LOGFILE), then the access driver uses the name of the table

followed by _%p as the name of the file. If no extension is supplied for the file, a

default extension will be used. For bad files, the default extension is .bad; for

discard files, the default is .dsc; and for log files, the default is .log .

condition
A condition compares a range of bytes or a field from the record against a

constant string. The source of the comparison can be either a field in the record or a

byte range in the record. The comparison is done on a byte-by-byte basis. If a string

is specified as the target of the comparison, it will be translated into the character

set of the datafile. If the field has a noncharacter datatype, no datatype conversion is

performed on either the field value or the string. The syntax for a condition is as

follows:
External Tables Access Parameters 12-13

record_format_info Clause
range start : range end
This clause describes a range of bytes or characters in the record to use for a

condition. The value used for the STRING SIZES ARE clause determines whether

range refers to bytes or characters. The range start and range end are byte or

character offsets into the record. The range start must be less than or equal to the

range end . Finding ranges of characters is faster for data in fixed-width character

sets than it is for data in varying-width character sets. If the range refers to parts of

the record that do not exist, then the record is rejected when an attempt is made to

reference the range.

If a field is NULL, then any comparison of that field to any value other than NULL
will return FALSE.

The following are some examples of using condition :

empid != BLANKS
10:13 = 0x00000830
PRODUCT_COUNT = "MISSING"

Note: The datafile should not mix binary data (including

datatypes with binary counts, such as VARCHAR) and character data

that is in a varying-width character set or more than one byte wide.

In these cases, the access driver may not find the correct start for

the field, because it treats the binary data as character data when

trying to find the start.

FIELDNAME

range start : range end

=

!=

string

BLANKS

NULL

(
FIELDNAME

range start : range end

=

!=

string

BLANKS

NULL

)

12-14 Oracle9i Database Utilities

field_definitions Clause
field_definitions Clause
The field_definitions clause names the fields in the datafile and specifies how

to find them in records.

If the field_definitions clause is omitted, then:

■ The fields are assumed to be delimited by ','

■ The fields are assumed to be character type

■ The maximum length of the field is assumed to be 255

■ The order of the fields in the datafile is the order in which the fields were

defined in the external table

■ No blanks are trimmed from the field

The following is an example of an external table created without any access

parameters. It is followed by a sample of the datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir LOCATION ('foo.dat'));

Alvin,Tolliver,1976
Kenneth,Baer,1963

The syntax for the field_definitions clause is as follows:

delim_spec Clause
The delim_spec clause is used to identify how all fields are terminated in the

record. The delim_spec specified for all fields can be overridden for a particular

field as part of the field_list clause. For a full description of the syntax, see

delim_spec on page 12-16.

FIELDS
delim_spec trim_spec MISSING FIELD VALUES ARE NULL

REJECT ROWS WITH ALL NULL FIELDS field_list
External Tables Access Parameters 12-15

field_definitions Clause
trim_spec Clause
The trim_spec clause specifies the type of whitespace trimming to be performed

by default on all character fields. The trim_spec clause specified for all fields can

be overridden for individual fields by specifying a trim_spec clause for those

fields. For a full description of the syntax, see trim_spec on page 12-19.

MISSING FIELD VALUES ARE NULL
MISSING FIELD VALUES ARE NULL indicates that if there is not enough data in

a record for all fields, then those fields with missing data values are set to NULL. For

a full description of the syntax, see MISSING FIELD VALUES ARE NULL on

page 12-20.

REJECT ROWS WITH ALL NULL FIELDS
REJECT ROWS WITH ALL NULL FIELDS indicates that a row will not be loaded

into the external table if all referenced fields in the row are null. If this parameter is

not specified, the default value is to accept rows with all null fields. The setting of

this parameter is written to the log file either as "reject rows with all null fields" or

as "rows with all null fields are accepted."

field_list Clause
The field_list clause identifies the fields in the datafile and their datatypes. For

a full description of the syntax, see field_list on page 12-21.

delim_spec
The delim_spec clause is used to find the end (and if ENCLOSED BY is specified,

the start) of a field. Its syntax is as follows:

If ENCLOSED BY is specified, the access driver starts at the current position in the

record and skips over all whitespace looking for the first delimiter. All whitespace

between the current position and the first delimiter is ignored. Next, the access

driver looks for the second enclosure delimiter (or looks for the first one again if a

ENCLOSED BY string
AND string

TERMINATED BY
string

WHITESPACE

OPTIONALLY
ENCLOSED BY string

AND string
12-16 Oracle9i Database Utilities

field_definitions Clause
second one is not specified). Everything between those two delimiters is considered

part of the field.

If TERMINATED BYstring is specified with the ENCLOSED BY clause, then the

terminator string must immediately follow the second enclosure delimiter. Any

whitespace between the second enclosure delimiter and the terminating delimiter is

skipped. If anything other than whitespace is found between the two delimiters,

then the row is rejected for being incorrectly formatted.

If TERMINATED BY is specified without the ENCLOSED BY clause, then everything

between the current position in the record and the next occurrence of the

termination string is considered part of the field.

If OPTIONALLY is specified, then TERMINATED BY must also be specified. The

OPTIONALLY parameter means the ENCLOSED BY delimiters can either both be

present or both be absent. The terminating delimiter must be present regardless of

whether the ENCLOSED BY delimiters are present. If OPTIONALLY is specified, then

the access driver skips over all whitespace, looking for the first nonblank character.

Once the first nonblank character is found, the access driver checks to see if the

current position contains the first enclosure delimiter. If it does, then the access

driver finds the second enclosure string and everything between the first and

second enclosure delimiters is considered part of the field. The terminating

delimiter must immediately follow the second enclosure delimiter (with optional

whitespace allowed between the second enclosure delimiter and the terminating

delimiter). If the first enclosure string is not found at the first nonblank character,

then the access driver looks for the terminating delimiter. In this case, all characters

from the beginning (including the leading blanks) to the terminating delimiter are

considered part of the field.

After the delimiters have been found, the current position in the record is set to

after the last delimiter for the field. If TERMINATED BY WHITESPACE was specified,

then the current position in the record is set to after all whitespace following the

field.

A missing terminator for the last field in the record is not an error. The access driver

proceeds as if the terminator was found. It is an error if the second enclosure

delimiter is missing.

The string used for the second enclosure can be included in the data field by

including the second enclosure twice. For example, if a field is enclosed by single

quotation marks, a data field could contain a single quotation mark by doing

something like the following:

'I don''t like green eggs and ham'
External Tables Access Parameters 12-17

field_definitions Clause
There is no way to quote a terminator string in the field data without using

enclosing delimiters. Because the field parser does not look for the terminating

delimiter until after it has found the enclosing delimiters, the field can contain the

terminating delimiter.

In general, specifying single characters for the strings is faster than multiple

characters. Also, searching data in fixed-width character sets is usually faster than

searching data in varying-width character sets.

The following are some examples of using delim_spec :

TERMINATED BY "|"
ENCLOSED BY "\" TERMINATED BY ","
ENCLOSED BY "START MESSAGE" AND "END MESSAGE"

Example: External Table with Terminating Delimiters
The following is an example of an external table that uses terminating delimiters. It

is followed by a sample of the datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY WHITESPACE)
 LOCATION ('foo.dat'));

Alvin Tolliver 1976
Kenneth Baer 1963
Mary Dube 1973

Example: External Table with Enclosure and Terminator Delimiters
The following is an example of an external table that uses both enclosure and

terminator delimiters. Remember that all whitespace between a terminating string

and the first enclosure string is ignored, as is all whitespace between a second

enclosing delimiter and the terminator. The example is followed by a sample of the

datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY "," ENCLOSED BY "(" AND ")")
 LOCATION ('foo.dat'));

(Alvin) , (Tolliver),(1976)
(Kenneth), (Baer) ,(1963)
(Mary),(Dube) , (1973)
12-18 Oracle9i Database Utilities

field_definitions Clause
Example: External Table with Optional Enclosure Delimiters
The following is an example of an external table that uses optional enclosure

delimiters. Note that LRTRIM is used to trim leading and trailing blanks from fields.

The example is followed by a sample of the datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '(' and ')'
 LRTRIM)
 LOCATION ('foo.dat'));

Alvin , Tolliver , 1976
(Kenneth), (Baer), (1963)
(Mary), Dube , (1973)

trim_spec
The trim_spec clause is used to specify that spaces should be trimmed from the

beginning of a text field, the end of a text field, or both. Spaces include blanks and

other nonprinting characters such as tabs, line feeds, and carriage returns. The

syntax for the trim_spec clause is as follows:

NOTRIM indicates that no characters will be trimmed from the field.

LRTRIM, LTRIM, and RTRIM are used to indicate that characters should be trimmed

from the field. LRTRIM means that both leading and trailing spaces are trimmed.

LTRIM means that leading spaces will be trimmed. RTRIMmeans trailing spaces are

trimmed.

LDRTRIM is used to provide compatibility with SQL*Loader trim features. It is the

same as NOTRIM except in the following cases:

■ If the field is not a delimited field, then spaces will be trimmed from the right.

LRTRIM

NOTRIM

LTRIM

RTRIM

LDRTRIM
External Tables Access Parameters 12-19

field_definitions Clause
■ If the field is a delimited field with OPTIONALLY ENCLOSED BY specified, and

the optional enclosures are missing for a particular instance, then spaces will be

trimmed from the left.

The default is LDRTRIM. Specifying NOTRIM yields the fastest performance.

The trim_spec clause can be specified before the field list to set the default

trimming for all fields. If trim_spec is omitted before the field list, then LDRTRIM
is the default trim setting. The default trimming can be overridden for an individual

field as part of the datatype_spec .

If trimming is specified for a field that is all spaces, then the field will be set to

NULL.

In the following example, all data is fixed-length; however, the character data will

not be loaded with leading spaces. The example is followed by a sample of the

datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20),
year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS LTRIM)
 LOCATION ('foo.dat'));

Alvin, Tolliver,1976
Kenneth, Baer, 1963
Mary, Dube, 1973

MISSING FIELD VALUES ARE NULL
MISSING FIELD VALUES ARE NULL indicates that if there is not enough data in

a record for all fields, then those fields with missing data values are set to NULL. If

MISSING FIELD VALUES ARE NULL is not specified, and there is not enough

data in the record for all fields, then the row is rejected.

In the following example, the second record is stored with a NULL set for the year_
of_birth column, even though the data for the year of birth is missing from the

datafile. If the MISSING FIELD VALUES ARE NULL clause was omitted from the

access parameters, then the second row would be rejected because it did not have a

value for the year_of_birth column. The example is followed by a sample of the

datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ","
 MISSING FIELD VALUES ARE NULL)
12-20 Oracle9i Database Utilities

field_definitions Clause
 LOCATION ('foo.dat'));

Alvin,Tolliver,1976
Baer,Kenneth
Mary,Dube,1973

field_list
The field_list clause identifies the fields in the datafile and their datatypes.

Evaluation criteria for the field_list clause are as follows:

■ If no datatype is specified for a field, it is assumed to be CHAR(1) for a

nondelimited field, and CHAR(255) for a delimited field.

■ If no field list is specified, then the fields in the datafile are assumed to be in the

same order as the fields in the external table. The datatype for all fields is

CHAR(255) .

■ If no field list is specified and no delim_spec clause is specified, then the

fields in the datafile are assumed to be in the same order as fields in the external

table. All fields are assumed to be CHAR(255) and terminated by a comma.

This example shows the definition for an external table with no field_list and a

delim_spec . It is followed by a sample of the datafile that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY "|")
 LOCATION ('foo.dat'));

Alvin|Tolliver|1976
Kenneth|Baer|1963
Mary|Dube|1973

The syntax for the field_list clause is as follows:

(field_name
pos_spec datatype_spec init_spec

,

)

External Tables Access Parameters 12-21

field_definitions Clause
field_name
The field_name is a string identifying the name of a field in the datafile. If the

string is not within quotation marks, the name is uppercased when matching field

names with column names in the external table.

If field_name matches the name of a column in the external table that is

referenced in the query, then the field value is used for the value of that external

table column. If the name does not match any referenced name in the external table,

then the field is not loaded but can be used for clause evaluation (for example WHEN
or NULLIF).

pos_spec
The pos_spec clause indicates the position of the column within the record. For a

full description of the syntax, see pos_spec Clause on page 12-22.

datatype_spec
The datatype_spec clause indicates the datatype of the field. If datatype_spec
is omitted, the access driver assumes the datatype is CHAR(255) . For a full

description of the syntax, see datatype_spec Clause on page 12-24.

init_spec
The init_spec clause indicates when a field is NULL or has a default value. For a

full description of the syntax, see init_spec Clause on page 12-31.

pos_spec Clause
The pos_spec clause indicates the position of the column within the record. The

setting of the STRING SIZES ARE IN clause determines whether pos_spec refers

to byte positions or character positions. Using character positions with

varying-width character sets takes significantly longer than using character

positions with fixed-width character sets. Binary and multibyte character data

should not be present in the same datafile when pos_spec is used for character

positions. If they are, then the results are unpredictable. The syntax for the pos_
spec clause is as follows:
12-22 Oracle9i Database Utilities

field_definitions Clause
start
The start parameter is the number of bytes or characters from the beginning of

the record to where the field begins. It positions the start of the field at an absolute

spot in the record rather than relative to the position of the previous field.

*
The * parameter indicates that the field begins at the first byte or character after the

end of the previous field. This is useful if you have a varying-length field followed

by a fixed-length field. This option cannot be used for the first field in the record.

increment
The increment parameter positions the start of the field at a fixed number of bytes

or characters from the end of the previous field. Use *-increment to indicate that

the start of the field starts before the current position in the record (this is a costly

operation for multibyte character sets). Use *+increment to move the start after

the current position.

end
The end parameter indicates the absolute byte or character offset into the record for

the last byte of the field. If start is specified along with end , then end cannot be

less than start . If * or increment is specified along with end , and the start

evaluates to an offset larger than the end for a particular record, then that record

will be rejected.

length
The length parameter indicates that the end of the field is a fixed number of bytes

or characters from the start. It is useful for fixed-length fields when the start is

specified with * .

The following example shows various ways of using pos_spec . It is followed by a

sample of the datafile that can be used to load it.

POSITION
(

start

*

+

–
increment

:

–

end

length
)

External Tables Access Parameters 12-23

field_definitions Clause
CREATE TABLE emp_load (first_name CHAR(15),
 last_name CHAR(20),
 year_of_birth INT,
 phone CHAR(12),
 area_code CHAR(3),
 exchange CHAR(3),
 extension CHAR(4))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS RTRIM
 (first_name (1:15) CHAR(15),
 last_name (*:+20),
 year_of_birth (36:39),
 phone (40:52),
 area_code (*-12: +3),
 exchange (*+1: +3),
 extension (*+1: +4)))
 LOCATION ('foo.dat'));

Alvin Tolliver 1976415-922-1982
Kenneth Baer 1963212-341-7912
Mary Dube 1973309-672-2341

datatype_spec Clause
The datatype_spec clause is used to describe the datatype of a field in the

datafile if the datatype is different than the default. The datatype of the field can be

different than the datatype of a corresponding column in the external table. The

access driver handles the necessary conversions. The syntax for the datatype_
spec clause is as follows:
12-24 Oracle9i Database Utilities

field_definitions Clause
If the number of bytes or characters in any field is 0, then the field is assumed to be

NULL. The optional DEFAULTIF clause specifies when the field is set to its default

value. Also, the optional NULLIF clause specifies other conditions for when the

column associated with the field is set to NULL. If the DEFAULTIF or NULLIF clause

is true , then the actions of those clauses override whatever values are read from

the datafile.

See Also: init_spec Clause on page 12-31 for more information

about NULLIF and DEFAULTIF

UNSIGNED
INTEGER

EXTERNAL (len) delim_spec

DECIMAL

ZONED

EXTERNAL
(len) delim_spec

(precision
, scale

)

ORACLE_DATE

ORACLE_NUMBER
COUNTED

FLOAT
EXTERNAL (len) delim_spec

DOUBLE

RAW
(len)

CHAR
(len) delim_spec trim_spec date_format_spec

VARCHAR

VARRAW

VARCHARC

VARRAWC

(
length_of_length ,

max_len)
External Tables Access Parameters 12-25

field_definitions Clause
[UNSIGNED] INTEGER [EXTERNAL] [(len)]
This clause defines a field as an integer. If EXTERNAL is specified, the number is a

character string. If EXTERNAL is not specified, the number is a binary field. The

valid values for len in binary integer fields are 1, 2, 4, and 8. If len is omitted for

binary integers, the default value is whatever the value of sizeof(int) is on the

platform where the access driver is running. Use of the DATA IS {BIG | LITTLE}
ENDIAN clause may cause the data to be byte-swapped before it is stored.

If EXTERNAL is specified, then the value of len is the number of bytes or characters

in the number (depending on the setting of the STRING SIZES ARE IN BYTESor

CHARACTERS clause). If no length is specified, the default value is 255.

DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
The DECIMAL clause is used to indicate that the field is a packed decimal number.

The ZONED clause is used to indicate that the field is a zoned decimal number. The

precision field indicates the number of digits in the number. The scale field is

used to specify the location of the decimal point in the number. It is the number of

digits to the right of the decimal point. If scale is omitted, a value of 0 is assumed.

Note that there are different encoding formats of zoned decimal numbers

depending on whether the character set being used is EBCDIC-based or

ASCII-based. If the language of the source data is EBCDIC, then the zoned decimal

numbers in that file must match the EBCDIC encoding. If the language is

ASCII-based, then the numbers must match the ASCII encoding.

If the EXTERNAL parameter is specified, then the data field is a character string

whose length matches the precision of the field.

ORACLE_DATE
ORACLE_DATE is a field containing a date in the Oracle binary date format. This is

the format used by the DTYDAT datatype in OCI programs. The field is a fixed

length of 7.

ORACLE_NUMBER
ORACLE_NUMBER is a field containing a number in the Oracle number format. The

field is a fixed length (the maximum size of an Oracle number field) unless

COUNTEDis specified, in which case the first byte of the field contains the number of

bytes in the rest of the field.
12-26 Oracle9i Database Utilities

field_definitions Clause
ORACLE_NUMBER is a fixed-length 22-byte field. The length of an ORACLE_NUMBER
COUNTED field is one for the count byte, plus the number of bytes specified in the

count byte.

DOUBLE [EXTERNAL]
The DOUBLE clause indicates that the field is the same format as the C language

DOUBLE datatype on the platform where the access driver is executing. Use of the

DATA IS {BIG | LITTLE} ENDIAN clause may cause the data to be byte-swapped

before it is stored. This datatype may not be portable between certain platforms.

If the EXTERNAL parameter is specified, then the field is a character string whose

maximum length is 255.

FLOAT [EXTERNAL]
The FLOAT clause indicates that the field is the same format as the C language

FLOAT datatype on the platform where the access driver is executing. Use of the

DATA IS {BIG | LITTLE} ENDIAN clause may cause the data to be byte-swapped

before it is stored. This datatype may not be portable between certain platforms.

If the EXTERNAL parameter is specified, then the field is a character string whose

maximum length is 255.

RAW
The RAWclause is used to indicate that the source data is binary data. The len for

RAW fields is always in number of bytes. When a RAW field is loaded in a character

column, the data that is written into the column is the hexadecimal representation

of the bytes in the RAW field.

CHAR
The CHAR clause is used to indicate that a field is a character datatype. The length

(len) for CHARfields specifies the largest number of bytes or characters in the field.

The len is in bytes or characters, depending on the setting of the STRING SIZES
ARE IN clause.

If no length is specified for a field of datatype CHAR, then the size of the field is

assumed to be 1, unless the field is delimited:

■ For a delimited CHAR field, if a length is specified, that length is used as a

maximum.
External Tables Access Parameters 12-27

field_definitions Clause
■ For a delimited CHAR field for which no length is specified, the default is 255

bytes.

■ For a delimited CHAR field that is greater than 255 bytes, you must specify a

maximum length. Otherwise you will receive an error stating that the field in

the datafile exceeds maximum length.

The date_format_spec clause is used to indicate that the field contains a date or

time in the specified format.

The following example shows the use of the CHAR clause. It is followed by a sample

of the datafile that can be used to load it.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 hire_date CHAR(10),
 resume_file CHAR(500))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ","
 (first_name,
 last_name,
 hire_date CHAR(10) DATE_FORMAT DATE MASK "mm/dd/yyyy",
 resume_file))
 LOCATION ('foo.dat'));

Alvin,Tolliver,12/2/1995,tolliver_resume.ps
Kenneth,Baer,6/6/1997,KB_resume.ps
Mary,Dube,1/18/2000,dube_resume.ps

date_format_spec
The date_format_spec clause is used to indicate that a character string field

contains date data, time data, or both, in a specific format. This information is used

only when a character field is converted to a date or time datatype and only when a

character string field is mapped into a date column. The syntax for the date_
format_spec clause is as follows:
12-28 Oracle9i Database Utilities

field_definitions Clause
DATE The DATE clause indicates that the string contains a date.

MASK The MASKclause is used to override the default globalization format mask

for the datatype. If a date mask is not specified, then the NLS session’s setting (not
the client settings) for the appropriate globalization parameter for the datatype is

used.

■ NLS_DATE_FORMAT for DATE datatypes

■ NLS_TIME_FORMAT for TIME datatypes

■ NLS_TIMESTAMP_FORMAT for TIMESTAMP datatypes

■ NLS_TIME_WITH_TIMEZONE_FORMAT for TIME WITH TIME ZONE datatypes

■ NLS_TIMESTAMP_WITH_TIMEZONE_FORMAT for TIMESTAMP WITH TIME
ZONE datatypes

TIME The TIME clause indicates that a field contains a formatted time string.

TIMESTAMP The TIMESTAMP clause indicates that a field contains a formatted

timestamp.

INTERVAL The INTERVAL clause indicates that a field contains a formatted interval.

The type of interval can be either YEAR TO MONTH or DAY TO SECOND.

VARCHAR and VARRAW
The VARCHAR datatype has a binary count field followed by character data. The

value in the binary count field is either the number of bytes in the field or the

number of characters. See STRING SIZES ARE IN on page 12-8 for information on

how to specify whether the count is interpreted as a count of characters or count of

bytes.

DATE_FORMAT

DATE

TIME

TIMESTAMP

WITH TIMEZONE MASK " date/time mask "

INTERVAL
YEAR_TO_MONTH

DAY_TO_SECOND
External Tables Access Parameters 12-29

field_definitions Clause
The VARRAWdatatype has a binary count field followed by binary data. The value in

the binary count field is the number of bytes of binary data. The data in the VARRAW
field is not affected by the DATA IS…ENDIAN clause.

The optional length_of_length field in the specification is the number of bytes

in the count field. Valid values for length_of_length for VARCHAR are 1, 2, 4,

and 8. If length_of_length is not specified, a value of 2 is used. The count field

has the same endianness as specified by the DATA IS…ENDIAN clause.

The max_len field is used to indicate the largest size of any instance of the field in

the datafile. For VARRAW fields, max_len is number of bytes. For VARCHAR fields,

max_len is either number of characters or number of bytes depending on the

STRING SIZES ARE IN clause.

The following example shows various uses of VARCHAR and VARRAW.The binary

values for the count bytes and value for raw data are shown in the datafile in italics,

with 2 characters per binary byte.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW(2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHAR(2,12),
 last_name VARCHAR(2,20),
 resume VARCHAR(4,10000),
 picture VARRAW(4,100000)))
 LOCATION ('foo.dat'));

0005 Alvin 0008 Tolliver 0000001D Alvin Tolliver’s Resume etc. 0000001013f4690a30bc29d7e40023ab4599ffff

VARCHARC and VARRAWC
The VARCHARC datatype has a character count field followed by character data. The

value in the count field is either the number of bytes in the field or the number of

characters. See STRING SIZES ARE IN on page 12-8 for information on how to

specify whether the count is interpreted as a count of characters or count of bytes.

The optional length_of_length is either the number of bytes or the number of

characters in the count field for VARCHARC, depending on whether lengths are

being interpreted as characters or bytes.
12-30 Oracle9i Database Utilities

field_definitions Clause
The maximum value for length_of_lengths for VARCHARC is 10 if string sizes

are in characters, and 20 if string sizes are in bytes. The default value for length_
of_length is 5.

The VARRAWC datatype has a character count field followed by binary data. The

value in the count field is the number of bytes of binary data. The length_of_
length is the number of bytes in the count field.

The max_len field is used to indicate the largest size of any instance of the field in

the datafile. For VARRAWCfields, max_len is number of bytes. For VARCHARCfields,

max_len is either number of characters or number of bytes depending on the

STRING SIZES ARE IN clause.

The following example shows various uses of VARCHARC and VARRAWC. The length

of the picture field is 0, which means the field is set to NULL.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('foo.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

init_spec Clause
The init_spec clause is used to specify when a field should be set to NULL or

when it should be set to a default value. The syntax for the init_spec clause is as

follows:

DEFAULTIF

NULLIF
condition_spec
External Tables Access Parameters 12-31

field_definitions Clause
Only one NULLIF clause and only one DEFAULTIF clause can be specified for any

field. These clauses behave as follows:

■ If NULLIF condition_spec is specified and it evaluates to true , the field is

set to NULL.

■ If DEFAULTIF condition_spec is specified and it evaluates to true , the

value of the field is set to a default value. The default value depends on the

datatype of the field, as follows:

– For a character datatype, the default value is an empty string.

– For a numeric datatype, the default value is a 0.

– For a date datatype, the default value is NULL.

■ If a NULLIF clause and a DEFAULTIF clause are both specified for a field, then

the NULLIF clause is evaluated first and the DEFAULTIF clause is evaluated

only if the NULLIF clause evaluates to false .
12-32 Oracle9i Database Utilities

Part IV

 Other Utilities

This section contains the following chapters:

Chapter 13, "DBVERIFY: Offline Database Verification Utility"

This chapter describes how to use the offline database verification utility,

DBVERIFY.

Chapter 14, "DBNEWID Utility"

This chapter describes how to use the DBNEWID utility to change the name or ID,

or both, for a database.

Chapter 15, "Using the Metadata API"

This chapter describes the Metadata API, which you can use to extract and

manipulate complete representations of the metadata for database objects.

DBVERIFY: Offline Database Verification
13

DBVERIFY: Offline Database Verification

Utility

DBVERIFY is an external command-line utility that performs a physical data

structure integrity check on an offline database. It can be used against backup files

and online files (or pieces of files). You use DBVERIFY primarily when you need to

ensure that a backup database (or datafile) is valid before it is restored or as a

diagnostic aid when you have encountered data corruption problems.

Because DBVERIFY can be run against an offline database, integrity checks are

significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks).

Because DBVERIFY is only for use with datafiles, it will not work against control

files or redo logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you

specify disk blocks of a single datafile for checking. With the second interface, you

specify a segment for checking. The following sections provide descriptions of these

interfaces:

■ Using DBVERIFY to Validate Disk Blocks of a Single Datafile

■ Using DBVERIFY to Validate a Segment

Note: The command used to invoke DBVERIFY is dependent on

your operating system (for example, on Sun/Sequent systems, the

command is dbv). See your Oracle operating system-specific

documentation.
 Utility 13-1

Using DBVERIFY to Validate Disk Blocks of a Single Datafile
Using DBVERIFY to Validate Disk Blocks of a Single Datafile
In this mode, DBVERIFY scans one or more disk blocks of a single datafile and

performs page checks.

Syntax
The syntax for DBVERIFYwhen you want to validate disk blocks of a single datafile

is as follows:

Parameters
Descriptions of the parameters are as follows:

Parameter Description

FILE The name of the database file to verify.

START The starting block address to verify. Specify block addresses in
Oracle blocks (as opposed to operating system blocks). If you do
not specify START, DBVERIFY defaults to the first block in the
file.

END The ending block address to verify. If you do not specify END,
DBVERIFY defaults to the last block in the file.

dbv

FILE = filename

START

END
= block_address

BLOCKSIZE = integer

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename
13-2 Oracle9i Database Utilities

Using DBVERIFY to Validate Disk Blocks of a Single Datafile
Command-Line Interface
The following example shows a sample use of the command-line interface to this

mode of DBVERIFY.

% dbv FILE=t_db1.dbf FEEDBACK=100

Sample DBVERIFY Output
The following example is sample output of verification for the file t_db1.dbf.
The feedback parameter has been given the value 100 to display one period (.) for

every 100 pages processed:

% dbv FILE=t_db1.dbf FEEDBACK=100

DBVERIFY: Release 9.2.0.1.0 - Production on Wed Feb 27 13:55:26 2002

(c) Copyright 2002 Oracle Corporation. All rights reserved.

DBVERIFY - Verification starting : FILE = t_db1.dbf

..

DBVERIFY - Verification complete

BLOCKSIZE BLOCKSIZE is required only if the file to be verified does not
have a block size of 2 KB. If the file does not have block size of 2
KB and you do not specify BLOCKSIZE, you will receive the
error DBV-00103.

LOGFILE Specifies the file to which logging information should be
written. The default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in
the form of a single period (.) for n number of pages verified
during the DBVERIFY run. If n = 0, there is no progress display.

HELP Provides online help.

PARFILE Specifies the name of the parameter file to use. You can store
various values for DBVERIFY parameters in flat files. This
allows you to customize parameter files to handle different types
of datafiles and to perform specific types of integrity checks on
datafiles.

Parameter Description
DBVERIFY: Offline Database Verification Utility 13-3

Using DBVERIFY to Validate a Segment
Total Pages Examined : 9216
Total Pages Processed (Data) : 2044
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 733
Total Pages Failing (Index): 0
Total Pages Empty : 5686
Total Pages Marked Corrupt : 0

Total Pages Influx : 0

Notes:

■ Pages = Blocks

■ Total Pages Examined = number of blocks in the file

■ Total Pages Processed = number of blocks that were verified (formatted

blocks)

■ Total Pages Failing (Data) = number of blocks that failed the data block

checking routine

■ Total Pages Failing (Index) = number of blocks that failed the index block

checking routine

■ Total Pages Marked Corrupt = number of blocks for which the cache header

is invalid, thereby making it impossible for DBVERIFY to identify the block

type

■ Total Pages Influx = number of blocks that are being read and written to at

the same time. If the database is open when DBVERIFY is run, DBVERIFY

reads blocks multiple times to get a consistent image. But because the

database is open, there may be blocks that are being read and written to at

the same time (INFLUX). DBVERIFY cannot get a consistent image of pages

that are in flux.

Using DBVERIFY to Validate a Segment
In this mode, DBVERIFY allows you to specify a table segment or index segment for

verification. It checks to make sure that a row chain pointer is within the segment

being verified.
13-4 Oracle9i Database Utilities

Using DBVERIFY to Validate a Segment
This mode requires that you specify a segment (data or index) to be validated. It

also requires that you log on to the database with SYSDBA privileges, because

information about the segment must be retrieved from the database.

During this mode, the segment is locked. If the specified segment is an index, the

parent table is locked. Note that some indexes, such as IOTs, do not have parent

tables.

Syntax
The syntax for DBVERIFY when you want to validate a segment is as follows:

Parameters
Descriptions of the parameters are as follows:

Parameter Description

USERID Specifies your username and password.

SEGMENT_ID Specifies the segment that you want to verify. You can identify
the tsn , segfile , and segblock by joining and querying the
appropriate data dictionary tables, for example, USER_TABLES
and USER_SEGMENTS.

LOGFILE Specifies the file to which logging information should be
written. The default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in
the form of a single period (.) for n number of pages verified
during the DBVERIFY run. If n = 0, there is no progress display.

HELP Provides online help.

dbv

USERID = username/password

SEGMENT_ID = tsn.segfile.segblock

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename
DBVERIFY: Offline Database Verification Utility 13-5

Using DBVERIFY to Validate a Segment
Command-Line Interface
The following example shows a sample use of the command-line interface to this

mode of DBVERIFY.

dbv USERID= username / password SEGMENT_ID=tsn . segfile . segblock

PARFILE Specifies the name of the parameter file to use. You can store
various values for DBVERIFY parameters in flat files. This
allows you to customize parameter files to handle different types
of datafiles and to perform specific types of integrity checks on
datafiles.

Parameter Description
13-6 Oracle9i Database Utilities

DBNEWID
14

DBNEWID Utility

DBNEWID is a database utility that can change the internal database identifier

(DBID) and the database name (DBNAME) for an operational database.

This chapter contains the following sections:

■ What Is the DBNEWID Utility?

■ Ramifications of Changing the DBID and DBNAME

■ Changing the DBID and DBNAME of a Database

■ DBNEWID Syntax

What Is the DBNEWID Utility?
Prior to the introduction of the DBNEWID utility, you could manually create a copy

of a database and give it a new database name (DBNAME) by re-creating the

control file. However, you could not give the database a new identifier (DBID). The

DBID is an internal, unique identifier for a database. Because Recovery Manager

(RMAN) distinguishes databases by DBID, you could not register a seed database

and a manually copied database together in the same RMAN repository. The

DBNEWID utility solves this problem by allowing you to change any of the

following:

■ Only the DBID of a database

■ Only the DBNAME of a database

■ Both the DBNAME and DBID of a database
 Utility 14-1

Ramifications of Changing the DBID and DBNAME
Ramifications of Changing the DBID and DBNAME
Changing the DBID of a database is a serious procedure. When the DBID of a

database is changed, all previous backups and archived logs of the database become

unusable. After you change the DBID, you must open the database with the

RESETLOGS option, which re-creates the online redo logs and resets their sequence

to 1 (see the Oracle9i Database Administrator’s Guide). Consequently, you should

make a backup of the whole database immediately after changing the DBID.

Changing the DBNAME without changing the DBID does not require you to open

with the RESETLOGS option, so database backups and archived logs are not

invalidated. However, changing the DBNAME does have consequences. You must

change the DB_NAME initialization parameter after a database name change to

reflect the new name. Also, you may have to re-create the Oracle password file. If

you restore an old backup of the control file (before the name change), then you

should use the initialization parameter file and password file from before the

database name change.

Changing the DBID and DBNAME of a Database
This section contains these topics:

■ Changing the DBID and Database Name

■ Changing Only the Database Name

■ Troubleshooting a DBID Change Operation

■ Troubleshooting a Database Name Change Operation

Changing the DBID and Database Name
The following steps describe how to change the DBID of a database. Optionally, you

can change the database name as well.

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut

down consistently prior to mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Invoke the DBNEWID utility on the command line, specifying a valid user with

the SYSDBA privilege. For example:
14-2 Oracle9i Database Utilities

Changing the DBID and DBNAME of a Database
% nid TARGET=SYS/oracle@test_db

To change the database name in addition to the DBID, specify the DBNAME
parameter. This example changes the name to test_db2 :

% nid TARGET=SYS/oracle@test DBNAME=test_db2

The DBNEWID utility performs validations in the headers of the datafiles and

control files before attempting I/O to the files. If validation is successful, then

DBNEWID prompts you to confirm the operation (unless you specify a log file,

in which case it does not prompt), changes the DBID for each datafile (including

offline normal and read-only datafiles), and then exits. The database is left

mounted but is not yet usable. For example:

DBNEWID: Release 9.2.0.1.0

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to database TEST_DB (DBID=3942195360)

Control Files in database:
 /oracle/dbs/cf1.f
 /oracle/dbs/cf2.f

Change database id of database SOLARIS? (Y/[N]) => y

Proceeding with operation
 Datafile /oracle/dbs/tbs_01.f - changed
 Datafile /oracle/dbs/tbs_02.f - changed
 Datafile /oracle/dbs/tbs_11.f - changed
 Datafile /oracle/dbs/tbs_12.f - changed
 Datafile /oracle/dbs/tbs_21.f - changed

New DBID for database TEST_DB is 3942196782.
All previous backups and archived redo logs for this database are unusable
Proceed to shutdown database and open with RESETLOGS option.
DBNEWID - Database changed.

If validation is not successful, then DBNEWID terminates and leaves the target

database intact. You can open the database, fix the error, and then either resume

the DBNEWID operation or continue using the database without changing its

DBID.

4. After DBNEWID successfully changes the DBID, shut down the database:
DBNEWID Utility 14-3

Changing the DBID and DBNAME of a Database
SHUTDOWN IMMEDIATE

5. Mount the database. For example:

STARTUP MOUNT

6. Open the database in RESETLOGS mode and resume normal use. For example:

ALTER DATABASE OPEN RESETLOGS;

Make a new database backup. Because you reset the online redo logs, the old

backups and archived logs are no longer usable in the current incarnation of the

database.

Changing Only the Database Name
The following steps describe how to change the database name without changing

the DBID.

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut

down consistently prior to mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Invoke the utility on the command line, specifying a valid user with the

SYSDBA privilege. You must specify both the DBNAME and SETNAME
parameters. This example changes the name to test_db2 :

% nid TARGET=SYS/oracle@test_db DBNAME=test_db2 SETNAME=YES

DBNEWID performs validations in the headers of the control files (not the

datafiles) before attempting I/O to the files. If validation is successful, then

DBNEWID prompts for confirmation, changes the database name in the control

files, and exits. After DBNEWID completes successfully, the database is left

mounted but is not yet usable.

DBNEWID: Release 9.2.0.1.0

(c) Copyright 2002 Oracle Corporation. All rights reserved.

Connected to database TEST_DB (DBID=3942196782)
14-4 Oracle9i Database Utilities

Changing the DBID and DBNAME of a Database
Control Files in database:
 /oracle/dbs/cf1.f
 /oracle/dbs/cf2.f

Change database name of database TEST_DB to TEST_DB2? (Y/[N]) => Y

Proceeding with operation

Database name changed from TEST_DB to TEST_DB2 - database needs to be
shutdown.
Modify parameter file and generate a new password file before restarting.

DBNEWID - Successfully changed database name

If validation is not successful, then DBNEWID terminates and leaves the target

database intact. You can open the database, fix the error, and then either resume

the DBNEWID operation or continue using the database without changing the

database name.

4. Shut down the database. For example:

SHUTDOWN IMMEDIATE

5. Set the DB_NAME initialization parameter in the initialization parameter file to

the new database name.

6. Create a new password file.

7. Start up the database and resume normal use. For example:

STARTUP

Troubleshooting a DBID Change Operation
If the DBNEWID utility succeeds in its validation stage but detects an error while

changing the DBID, then the utility stops and leaves the database in the middle of

the change. In this case, you cannot open the database until the DBNEWID

operation is either completed or reverted. DBNEWID displays messages indicating

the status of the operation.

Before continuing or reverting, fix the underlying cause of the error. Sometimes the

only solution is to restore the whole database from a recent backup and perform

recovery to the point in time before DBNEWID was started. This underscores the

importance of having a recent backup available before running DBNEWID.
DBNEWID Utility 14-5

Changing the DBID and DBNAME of a Database
If you choose to continue the DBID change operation rather than revert it, reexecute

your original command. The DBNEWID utility resumes and attempts to continue

the change until all datafiles and control files have the new DBID. At this point, the

database is left mounted. You should shut it down and then mount it again prior to

opening it with the RESETLOGS option.

If you choose to revert a DBNEWID operation, and if the reversion succeeds, then

DBNEWID reverts all performed changes and leaves the database in a mounted

state.

To revert a stalled DBID change operation, run the DBNEWID utility again,

specifying the REVERT keyword. For example:

% nid TARGET=SYS/oracle REVERT=YES LOGFILE=$HOME/nid.log

Troubleshooting a Database Name Change Operation
If you specify that only the database name should be changed (and not the DBID),

then the validation process is the same as for a DBID change except that DBNEWID

checks only the control files. It does not read the datafiles. If the validation

encounters a problem, then the database is left mounted.

It is possible for validation to succeed, but for the actual database name change to

fail. The possible failure scenarios depend on how many control files are in the

database, as follows:

■ If you have one or more control files and DBNEWID fails on the first control

file, then the database name is not changed in the control file. You can either try

the operation again or open the database and resume normal database use.

■ If you have more than one control file and DBNEWID fails on the second

control file or on any one thereafter, then some control files will have the old

DBNAME and some will have the new DBNAME. In this case, you must either

manually copy the first changed control file to all CONTROL_FILESlocations, or

revert by copying the unchanged control files to all CONTROL_FILES locations.
14-6 Oracle9i Database Utilities

DBNEWID Syntax
DBNEWID Syntax
The following diagrams show the syntax for the DBNEWID utility.

Parameters
Table 14–1 describes the parameters in the DBNEWID syntax.

nid TARGET =
username

/
password @ service_name

REVERT =
YES

NO

DBNAME = new_db_name

SETNAME =
YES

NO

LOGFILE = logfile

APPEND =
YES

NO HELP =
YES

NO
DBNEWID Utility 14-7

DBNEWID Syntax
Restrictions and Usage Notes
The DBNEWID utility has the following restrictions:

■ The utility is available only on the UNIX and Windows NT operating systems.

■ The nid executable file should be owned and run by the Oracle owner because

it needs direct access to the datafiles and control files. If another user runs the

utility, then set the user ID to the owner of the datafiles and control files.

■ The DBNEWID utility must access the datafiles of the database directly through

a local connection. Although DBNEWID can accept a net service name, it

cannot change the DBID of a nonlocal database.

■ To change the DBID of a database, the database must be mounted and must

have been shut down consistently prior to mounting. In the case of an Oracle

Real Application Clusters database, the database must be mounted in

NOPARALLEL mode.

Table 14–1 Parameters for the DBNEWID Utility

Parameter Description

TARGET Specifies the username and password used to connect to the database. The user
must have the SYSDBAprivilege. If you are using operating system authentication,
then you can connect with the slash (/). If the $ORACLE_HOME and $ORACLE_SID
variables are not set correctly in the environment, then you can specify a secure
(IPC or BEQ) service to connect to the target database. A target database must be
specified in all invocations of the DBNEWID utility.

REVERT Specify YES to indicate that a failed change of DBID should be reverted (default is
NO). The utility signals an error if no change DBID operation is in progress on the
target database. A successfully completed change of DBID cannot be reverted.
REVERT=YES is only valid when a DBID change failed.

DBNAME=new_db_name Changes the database name of the database. You can change the DBID and the
DBNAME of a database at the same time. To change only the DBNAME, also
specify the SETNAME parameter.

SETNAME Specify YES to indicate that DBNEWID should change the database name of the
database but should not change the DBID (default is NO). When you specify
SETNAME=YES, the utility only writes to the target database control files.

LOGFILE=logfile Specifies that DBNEWID should write its messages to the specified file. By default
the utility overwrites the previous log. If you specify a log file, then DBNEWID
does not prompt for confirmation.

APPEND Specify YES to append log output to the existing log file (default is NO).

HELP Specify YES to print a list of the DBNEWID syntax options (default is NO).
14-8 Oracle9i Database Utilities

DBNEWID Syntax
■ You must open the database with the RESETLOGS option after changing the

DBID. Note that you do not have to open with the RESETLOGS option after

changing only the database name.

■ No other process should be running against the database when DBNEWID is

executing. If another session shuts down and starts the database, then

DBNEWID aborts.

■ All online datafiles should be consistent without needing recovery.

■ Normal offline datafiles should be accessible and writable. If this is not the case,

you must drop these files before invoking the DBNEWID utility.

■ All read-only tablespaces must be accessible and made writable at the operating

system level prior to invoking DBNEWID. If these tablespaces cannot be made

writable (for example, they are on a CD-ROM), then you must unplug the

tablespaces using the transportable tablespace feature and then plug them back

in the database before invoking the DBNEWID utility (see the Oracle9i Database
Administrator’s Guide).

■ You can only specify REVERT when changing only the DBID.

Examples of Using DBNEWID

Changing Only the DBID
The following example connects with operating system authentication and changes

only the DBID:

% nid TARGET=/

Changing the DBID and Database Name
The following example connects as user SYS and changes the DBID and also

changes the database name to test2 :

% nid TARGET=SYS/oracle@test1 DBNAME=test2

Changing Only the Database Name
The following example connects as user SYSTEM and changes only the database

name, and also specifies a log file for the output:

% nid TARGET=SYSTEM/manager@test2 DBNAME=test3 SETNAME=YES LOGFILE=dbid.out
DBNEWID Utility 14-9

DBNEWID Syntax
14-10 Oracle9i Database Utilities

Using the Metada
15

Using the Metadata API

This chapter describes the Metadata application programming interface (API),

which you can use to extract and manipulate complete representations of the

metadata for database objects. The following topics are discussed in this chapter:

■ Introduction to the Metadata API

■ How Is the Metadata API Implemented?

■ DBMS_METADATA Programmatic Interface

■ DBMS_METADATA Browsing Interface

■ Metadata API Example
ta API 15-1

Introduction to the Metadata API
Introduction to the Metadata API
The Metadata API provides a centralized, simple, and flexible means for

performing the following tasks:

■ Extracting complete definitions of database objects (metadata) as either XML or

creation DDL

■ Transforming the metadata through industry-standard XSLT (Extensible

Stylesheet Language Transformation).

■ Generating SQL DDL to re-create the database objects

The Metadata API is available as of Oracle9i release 9.0.1, whenever the instance is

operational. It is not available in Oracle Lite.

Previous Methods Used to Extract Metadata
An object’s metadata is distributed in normalized fashion across the database

dictionary. In prior releases, you first had to understand how and where your

object’s metadata was represented in the dictionary, then you had to issue multiple

queries to extract the object’s full representation. Once the metadata was extracted,

you would typically perform the following tasks:

1. Transform it in some way, such as changing the object’s tablespace, changing a

column datatype, changing an object’s owner, and so on.

2. Convert it to SQL DDL text for execution on the source or some other database.

Before Oracle9i release 9.0.1, there was no assistance for either of these steps.

Metadata API Components
Underlying the Metadata API is an object model of the Oracle database dictionary

consisting of a series of user-defined types (UDTs) and corresponding object views.

The UDTs provide the aggregation of each object class’s metadata, and the object

views map the UDTs’ attributes onto the appropriate base relational tables in the

dictionary. The Metadata API generates queries against these object views to

retrieve aggregated database object definitions.

The results of these queries are converted into XML documents by the XML SQL

Utility (XSU), which was also introduced in Oracle9i release 9.0.1. When the caller

requests DDL output, the Metadata API uses the appropriate implementation of the

Oracle server’s integral XML parser and XSL processor to convert the XML

documents into creation DDL.
15-2 Oracle9i Database Utilities

Introduction to the Metadata API
Metadata API Features
The Metadata API has the following features:

■ Provides a powerful PL/SQL interface for detailed programmatic control or

casual browsing.

■ Supports retrieval of complete, aggregated database definitions for all

dictionary objects that can be created with a SQL CREATE statement. For a full

list of object types, see the DBMS_METADATAchapter in Oracle9i Supplied PL/SQL
Packages and Types Reference.

■ Provides only complete representations of objects.

■ Provides database object metadata in an XML format that is easily

transformable through XSLT by downstream processes.

■ Provides complete Oracle-specific creation DDL for all supported objects.

■ Provides flexible object selection. Can return multiple objects per query.

■ Supports daisy-chained transforms where the output of the first becomes the

input to the second and so on.

■ Supports customization of DDL output through object type-specific transform

parameters.

Internet Computing
The Metadata API uses two internet standards, XML and XSLT, for encoding and

transforming object metadata. Use of an industry-standard format for metadata

encoding (rather than a proprietary format) allows you to use standard tools to

parse and transform the output.

There is currently no industry-standard XML model for database metadata, so the

Metadata API uses a model optimized for generating Oracle DDL. Document

element names are derived directly from attributes of the UDTs in the Oracle

database dictionary model. As standard models emerge, the Metadata API will

support the ability to plug them in. Older documents can be converted to alternate

models with XSLT.

Note: Subsetting of object attributes is not supported in this

release except through XSLT transformation.
Using the Metadata API 15-3

How Is the Metadata API Implemented?
How Is the Metadata API Implemented?
The Metadata API is implemented using the PL/SQL DBMS_METADATA package.

The DBMS_METADATA package allows you to retrieve metadata from the database

dictionary. It provides a flexible and extensible means for object selection. You can

use DBMS_METADATA to extract database object metadata in XML and DDL.

The DBMS_METADATA package has two types of interface:

■ DBMS_METADATA Programmatic Interface

■ DBMS_METADATA Browsing Interface

DBMS_METADATA and Security
The object views of the Oracle metadata model implement security as follows:

■ Nonprivileged users can see the metadata of only their own objects.

■ SYS and users with SELECT_CATALOG_ROLE can see all objects.

■ Nonprivileged users can also retrieve object and system privileges granted to

them or by them to others. This also includes privileges granted to PUBLIC.

■ If callers request objects they are not privileged to retrieve, no exception is

raised; the object is simply not retrieved.

■ If nonprivileged users are granted some form of access to an object in someone

else’s schema, they will be able to retrieve the grant specification through the

Metadata API, but not the object’s actual metadata.

DBMS_METADATA Programmatic Interface
The DBMS_METADATA programmatic interface is for fine-grained, detailed control:

■ The following procedures are provided: OPEN, SET_FILTER, SET_PARSE_
ITEM, SET_COUNT, ADD_TRANSFORM, SET_TRANSFORM_PARAM, FETCH_xxx,

CLOSE

■ Metadata is expressed as XML. This allows industry-standard metadata

transformations using XSLT.

Note: A description of the types and public interface defined by

the Metadata API is in the following location:

$ORACLE_HOME/rdbms/admin/dbmsmeta.sql
15-4 Oracle9i Database Utilities

DBMS_METADATA Programmatic Interface
■ You can ask DBMS_METADATA to return metadata as DDL. The API uses XSL

scripts internally to transparently perform the conversion.

■ You can invoke an XSL script, using either the Oracle XML parser or some

third-party tool, to do an offline conversion of the XML representation.

Table 15–1 lists the procedures provided by the DBMS_METADATA programmatic

interface and provides a brief description of each one. For more detailed

descriptions, including syntax, see Oracle9i Supplied PL/SQL Packages and Types
Reference.

Table 15–1 Procedures for the DBMS_METADATA Programmatic Interface

PL/SQL Procedure Description

DBMS_METADATA.OPEN() Specifies type of object to be retrieved, version of its metadata, and
object model. Return value is an opaque context handle for the set of
objects to be used in subsequent calls.

BMS_METADATA.SET_FILTER() Specifies restrictions on objects to be retrieved, such as, object name or
schema. Allows specification of base objects for dependent objects
such as indexes and triggers.

DBMS_METADATA.SET_COUNT() Specifies number of objects to be retrieved in a single FETCH_xxx call.
By default, each call to FETCH_xxx returns one object.

DBMS_METADATA.GET_QUERY() Returns text of query (or queries) used by FETCH_xxx. This text is
provided to assist in debugging.

DBMS_METADATA.SET_PARSE_
ITEM()

Enables output parsing and specifies an object attribute to be parsed
and returned. This frees the caller from having to parse SQL DDL for
key attributes.

DBMS_METADATA.ADD_
TRANSFORM()

Specifies a transform that FETCH_xxx applies to the XML
representation of retrieved objects. You can add more than one
transform. By default (with no transforms added), objects are returned
as XML documents. Call the ADD_TRANSFORMprocedure to specify an
XSLT script to transform the returned documents. If ’DDL’ is specified,
the objects’ creation DDL is returned from subsequent FETCH_xxx
calls. The ADD_TRANSFORM procedure returns an opaque transform
handle different from that returned by OPEN.
Using the Metadata API 15-5

DBMS_METADATA Programmatic Interface
Using the DBMS_METADATA.FETCH_XML Procedure
Figure 15–1 illustrates the steps in DBMS_METADATA.FETCH_XML() usage:

1. Open the object type using the DBMS_METADATA.OPEN() procedure. Object

types that you can open include, but are not limited to, tables, indexes, types,

packages, and synonyms.

2. Specify which objects to retrieve using the DBMS_METADATA.SET_
FILTER() procedure.

3. Fetch the metadata of each qualifying object as an XML document using the

DBMS_METADATA.FETCH_XML() procedure. The XML is processed; for

example, it might be streamed to an export file.

4. If the result of this operation is NULL, then call the DBMS_
METADATA.CLOSE()procedure.

DBMS_METADATA.SET_
TRANSFORM_PARAM()

Specifies parameters to the XSLT stylesheet identified by the transform_
handle returned from the ADD_TRANSFORM procedure.

For the DDL transform, these parameters alter the form of the DDL.
For example, constraints may be requested as column constraints or
ALTER TABLE statements.

DBMS_METADATA.FETCH_xxx() The FETCH_xxx routines return metadata for objects meeting the
criteria established by the OPEN, SET_FILTER, SET_COUNT, and ADD_
TRANSFORM procedures .

FETCH_XML and FETCH_DDL return the metadata as XML and SQL
DDL, respectively. The FETCH_CLOB routines return either XML or
DDL as denoted by the transforms specified.

The types used by these routines are described in Oracle9i Supplied
PL/SQL Packages and Types Reference.

DBMS_METADATA.CLOSE() Invalidates the handle returned by the OPEN procedure and cleans up
the associated state.

Table 15–1 (Cont.) Procedures for the DBMS_METADATA Programmatic Interface

PL/SQL Procedure Description
15-6 Oracle9i Database Utilities

DBMS_METADATA Programmatic Interface
Figure 15–1 Using DBMS_METADATA.FETCH_XML()

Using the DBMS_METADATA.FETCH_DDL Procedure
Figure 15–2 illustrates the steps in DBMS_METADATA.FETCH_DDL() usage:

1. Open the object type using the DBMS_METADATA.OPEN()procedure. Object

types that you can open include, but are not limited to, tables, indexes, types,

packages, and synonyms.

2. Specify which objects to retrieve using the DBMS_METADATA.SET_
FILTER() procedure.

3. Specify what transforms are to be invoked on the output. Use the DBMS_
METADATA.ADD_TRANSFORM() procedure to add a transform. The last

transform added must be the "DDL" transform.

4. Use the DBMS_METADATA.SET_TRANSFORM_PARAM()procedure to customize

the DDL. For example, you could use it to exclude storage clauses on table

definitions. Transform parameters are specific to the object type chosen.

Object Type
Input

.open()

.set_filter()

Object types
include:

• TABLE
• INDEX
• TYPE
• PACKAGE
• SYNONYM, ...

.fetch_xml() .close()if null

Process XML;
for example,
streamed to
export file

XML

DBMS_METADATA: fetch_xml()
Using the Metadata API 15-7

DBMS_METADATA Programmatic Interface
5. Fetch the DDL using the DBMS_METADATA.FETCH_DDL()procedure. An

example of the DDL processing is re-creating objects in another schema or

database.

6. If the result of this operation is NULL, then call the DBMS_
METADATA.CLOSE()procedure.
15-8 Oracle9i Database Utilities

DBMS_METADATA Programmatic Interface
Figure 15–2 Using DBMS_METADATA.FETCH_DDL()

Performance Tips for the Programmatic Interface of the Metadata API
This section describes how to enhance performance when using the programmatic

interface of the Metadata API.

1. Fetch all of one type of object before fetching the next. For example, if you are

retrieving the definitions of all objects in your schema, first fetch all the tables,

then all the indexes, then all the triggers, and so on. This will be much faster

Process DDL.
For example,
re-create object
in another schema
or database

Object Type
Input

.open()

.set_filter()

Specific to object
type

*set_transform_
param
affects how DDLs
look

For example:
_storage
_tablespace

.add_transform()

.fetch_ddl() .close()if null

DDL

set_transform_
param()

Object types
include:

• TABLE
• INDEX
• TYPE
• PACKAGE
• SYNONYM, ...

DBMS_METADATA: fetch_ddl()
Using the Metadata API 15-9

DBMS_METADATA Browsing Interface
than nesting OPENcontexts; that is, fetch one table then all of its indexes, grants,

and triggers, then the next table and all of its indexes, grants, and triggers, and

so on. The Metadata API Example on page 15-11 reflects this second, less

efficient means, but its purpose is to demonstrate most of the programmatic

calls, which are best shown by this method.

2. Use the SET_COUNT procedure to retrieve more than one object at a time. This

minimizes server round trips and eliminates many redundant function calls.

3. Use the procedure rather than function form of FETCH_CLOB. The procedure

form returns the output CLOB by reference through the IN OUT NOCOPY
specifier. The function form returns the output CLOB by value requiring an

extra LOB copy.

4. When writing a PL/SQL package that calls the Metadata API, declare LOB

variables and objects that contain LOBs (such as SYS.KU$_DDLS) at package

scope rather than within individual functions. This eliminates the creation and

deletion of LOB duration structures upon function entrance and exit, which are

very expensive operations.

DBMS_METADATA Browsing Interface
The DBMS_METADATA browsing interface is for casual use within SQL clients such

as SQL*Plus. It is provided by the GET_xxx , GET_DEPENDENT_xxx, and GET_
GRANTED_xxx functions.

■ The GET_DDL and GET_XML functions return metadata for a single named

object. For example, the following query will show the DDL for all tables in the

current user’s schema:

SQL> SELECT dbms_metadata.get_ddl(’TABLE’, table_name) FROM user_tables;

■ The GET_DEPENDENT_XML, GET_DEPENDENT_DDL, GET_GRANTED_XML, and

GET_GRANTED_DDL functions return metadata for one or more dependent or

granted objects.

Table 15–2 lists the procedures provided by the DBMS_METADATA browsing

interface and provides a brief description of each one. For more detailed

descriptions, including syntax, see Oracle9i Supplied PL/SQL Packages and Types
Reference.

See Also: Oracle9i Application Developer’s Guide - Large Objects (LOBs)
15-10 Oracle9i Database Utilities

Metadata API Example
Example: Using the DBMS_METADATA Browsing Interface
The following SQL*Plus query will display the creation DDL for all tables in the

current user’s schema. To generate complete, uninterrupted output, set the

PAGESIZE to 0 and set LONG to some large number, as shown, before executing

your query.

SQL> SET PAGESIZE 0
SQL> SET LONG 90000
SQL> SELECT dbms_metadata.get_ddl(’TABLE’, table_name) FROM user_tables;

Metadata API Example
The detailed Metadata API programming example in this section, PAYROLL_DEMO,
retrieves the DDL for all tables in the MDDEMO schema that start with 'PAYROLL'. It

then fetches the DDL for grants, indexes, and triggers defined on those tables. This

script can be found in the file rdbms/demo/mddemo.sql in your Oracle home

directory.

mddemo.sql
-- This script demonstrates how to use the Metadata API. It first
-- establishes a schema (MDDEMO) and some payroll users, then creates three
-- payroll-like tables within it along with associated indexes, triggers
-- and grants.

Table 15–2 Procedures for the DBMS_METADATA Browsing Interface

PL/SQL Procedure Name Description

DBMS_METADATA.GET_xxx() Provides a way to return metadata for a single object. Each GET_
xxx call consists of an OPEN procedure, one or two SET_
FILTER calls, optionally an ADD_TRANSFORM procedure, a
FETCH_xxx call, and a CLOSE procedure.

The object_type parameter has the same semantics as in the OPEN
procedure . schema and name are used for filtering.

If a transform is specified, session-level transform flags are
inherited.

DBMS_METADATA.GET_DEPENDENT_
xxx()

Returns the metadata for one or more dependent objects,
specified as XML or DDL.

DBMS_METADATA.GET_GRANTED_
xxx()

Returns the metadata for one or more granted objects, specified
as XML or DDL.
Using the Metadata API 15-11

Metadata API Example
-- It then creates a package PAYROLL_DEMO that shows common usage of the
-- Metadata API. The procedure GET_PAYROLL_TABLES retrieves the DDL for the
-- two tables in this schema that start with ’PAYROLL’ then for each one,
-- retrieves the DDL for its associate dependent objects; indexes, grants
-- and triggers. All the DDL is written to a table named "MDDEMO"."DDL".

-- First, Install the demo. cd to rdbms/demo:
-- > sqlplus system/manager
-- SQL> @mddemo

-- Then, run it.
-- > sqlplus mddemo/mddemo
-- SQL> set long 40000
-- SQL> set pages 0
-- SQL> call payroll_demo.get_payroll_tables();
-- SQL> select ddl from DDL order by seqno;

Rem Set up schema for demo pkg. PAYROLL_DEMO.

connect system/manager
drop user mddemo cascade;
drop user mddemo_clerk cascade;
drop user mddemo_mgr cascade;

create user mddemo identified by mddemo;
GRANT resource, connect, create session
 , create table
 , create procedure
 , create sequence
 , create trigger
 , create view
 , create synonym
 , alter session
TO mddemo;

create user mddemo_clerk identified by clerk;
create user mddemo_mgr identified by mgr;

connect mddemo/mddemo

Rem Create some payroll-like tables...

create table payroll_emps
(lastname varchar2(60) not null,
 firstname varchar2(20) not null,
15-12 Oracle9i Database Utilities

Metadata API Example
 mi varchar2(2),
 suffix varchar2(10),
 DOB date not null,
 badge_no number(6) primary key,
 exempt varchar(1) not null,
 salary number (9,2),
 hourly_rate number (7,2)
)
/
create table payroll_timecards
 badge_no number(6) references payroll_emps (badge_no),
 week number(2),
job_id number(5),
hours_worked number(4,2)
)
/
-- This is a dummy table used only to show that tables NOT starting with
-- ’PAYROLL’ are NOT retrieved by payroll_demo.get_payroll_tables

create table audit_trail
(action_time DATE,
lastname VARCHAR2(60),
action LONG
)
/

Rem Then, create some grants...

grant update (salary,hourly_rate) on payroll_emps to mddemo_clerk;
grant ALL on payroll_emps to mddemo_mgr with grant option;

grant insert,update on payroll_timecards to mddemo_clerk;
grant ALL on payroll_timecards to mddemo_mgr with grant option;

Rem Then, create some indexes...

create index i_payroll_emps_name on payroll_emps(lastname);
create index i_payroll_emps_dob on payroll_emps(DOB);

create index i_payroll_timecards_badge on payroll_timecards(badge_no);

Rem Then, create some triggers (and required procedure)...

create or replace procedure check_sal(salary in number) as
begin
Using the Metadata API 15-13

Metadata API Example
 return; -- Fairly loose security here...
end;
/

create or replace trigger salary_trigger before insert or update of salary on
payroll_emps
for each row when (new.salary > 150000)
call check_sal(:new.salary)
/

create or replace trigger hourly_trigger before update of hourly_rate on
payroll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/

--
-- Set up a table to hold the generated DDL
--
CREATE TABLE ddl (ddl CLOB, seqno NUMBER);

Rem Finally, create the PAYROLL_DEMO package itself.

CREATE OR REPLACE PACKAGE payroll_demo AS

 PROCEDURE get_payroll_tables;
END;
/
CREATE OR REPLACE PACKAGE BODY payroll_demo AS

-- GET_PAYROLL_TABLES: Fetch DDL for payroll tables and their dependent objects

PROCEDURE get_payroll_tables IS

tableOpenHandle NUMBER;
depObjOpenHandle NUMBER;
tableTransHandle NUMBER;
indexTransHandle NUMBER;
schemaName VARCHAR2(30);
tableName VARCHAR2(30);
tableDDLs sys.ku$_ddls;
tableDDL sys.ku$_ddl;
parsedItems sys.ku$_parsed_items;
depObjDDL CLOB;
seqNo NUMBER := 1;
15-14 Oracle9i Database Utilities

Metadata API Example
TYPE obj_array_t IS VARRAY(3) OF VARCHAR2(30);

-- Load this array with the dependent object classes to be retrieved...
obj_array obj_array_t := obj_array_t(’OBJECT_GRANT’, ’INDEX’, ’TRIGGER’);

BEGIN

-- Open a handle for tables in the current schema.
 tableOpenHandle := dbms_metadata.open(’TABLE’);

-- Tell mdAPI to retrieve one table at a time. This call is not actually
-- necessary since 1 is the default... just showing the call.
 dbms_metadata.set_count(tableOpenHandle, 1);

-- Retrieve tables whose name starts with ’PAYROLL’. When the filter is
-- ’NAME_EXPR’, the filter value string must include the SQL operator. This
-- gives the caller flexibility to use LIKE, IN, NOT IN, subqueries, etc.
 dbms_metadata.set_filter(tableOpenHandle, ’NAME_EXPR’, ’LIKE ’’PAYROLL%’’’);

-- Tell the mdAPI to parse out each table’s schema and name separately so we
-- can use them to set up the calls to retrieve its dependent objects.
 dbms_metadata.set_parse_item(tableOpenHandle, ’SCHEMA’);
 dbms_metadata.set_parse_item(tableOpenHandle, ’NAME’);

-- Add the DDL transform so we get SQL creation DDL
 tableTransHandle := dbms_metadata.add_transform(tableOpenHandle, ’DDL’);

-- Tell the XSL stylesheet we don’t want physical storage information (storage,
-- tablespace, etc), and that we want a SQL terminator on each DDL. Notice that
-- these calls use the transform handle, not the open handle.
 dbms_metadata.set_transform_param(tableTransHandle,
 ’SEGMENT_ATTRIBUTES’, FALSE);
 dbms_metadata.set_transform_param(tableTransHandle,
 ’SQLTERMINATOR’, TRUE);

-- Ready to start fetching tables. We use the FETCH_DDL interface (rather than
-- FETCH_XML or FETCH_CLOB). This interface returns a SYS.KU$_DDLS; a table of
-- SYS.KU$_DDL objects. This is a table because some object types return
-- multiple DDL statements (like types / pkgs which have create header and
-- body statements). Each KU$_DDL has a CLOB containing the ’CREATE foo’
-- statement plus a nested table of the parse items specified. In our case,
-- we asked for two parse items; Schema and Name. (NOTE: See admin/dbmsmeta.sql
-- for a more detailed description of these types)
Using the Metadata API 15-15

Metadata API Example
 LOOP
 tableDDLs := dbms_metadata.fetch_ddl(tableOpenHandle);
 EXIT WHEN tableDDLs IS NULL; -- Get out when no more payroll tables

-- In our case, we know there is only one row in tableDDLs (a KU$_DDLS tbl obj)
-- for the current table. Sometimes tables have multiple DDL statements;
-- eg, if constraints are applied as ALTER TABLE statements, but we didn’t ask
-- for that option. So, rather than writing code to loop through tableDDLs,
-- we’ll just work with the 1st row.
--
-- First, write the CREATE TABLE text to our output table then retrieve the
-- parsed schema and table names.
 tableDDL := tableDDLs(1);
 INSERT INTO ddl VALUES(tableDDL.ddltext, seqNo);
 seqNo := seqNo + 1;
 parsedItems := tableDDL.parsedItems;

-- Must check the name of the returned parse items as ordering isn’t guaranteed
 FOR i IN 1..2 LOOP
 IF parsedItems(i).item = ’SCHEMA’
 THEN
 schemaName := parsedItems(i).value;
 ELSE
 tableName := parsedItems(i).value;
 END IF;
 END LOOP;

-- Now, we want to retrieve all the dependent objects defined on the current
-- table: indexes, triggers and grants. Since all ’dependent’ object types
-- have BASE_OBJECT_NAME and BASE_OBJECT_SCHEMA in common as filter criteria,
-- we’ll set up a loop to get all objects of the 3 types, just changing the
-- OPEN context in each pass through the loop. Transform parameters are
-- different for each object type, so we’ll only use one that’s common to all;
-- SQLTERMINATOR.

 FOR i IN 1..3 LOOP
 depObjOpenHandle := dbms_metadata.open(obj_array(i));
 dbms_metadata.set_filter(depObjOpenHandle,’BASE_OBJECT_SCHEMA’,
 schemaName);
 dbms_metadata.set_filter(depObjOpenHandle,’BASE_OBJECT_NAME’,tableName);

-- Add the DDL transform and say we want a SQL terminator
 indexTransHandle := dbms_metadata.add_transform(depObjOpenHandle, ’DDL’);
 dbms_metadata.set_transform_param(indexTransHandle,
 ’SQLTERMINATOR’, TRUE);
15-16 Oracle9i Database Utilities

Metadata API Example
-- Retrieve dependent object DDLs as CLOBs and write them to table DDL.
 LOOP
 depObjDDL := dbms_metadata.fetch_clob(depObjOpenHandle);
 EXIT WHEN depObjDDL IS NULL;
 INSERT INTO ddl VALUES(depObjDDL, seqNo);
 seqNo := seqNo + 1;
 END LOOP;

-- Free resources allocated for current dependent object stream.
 dbms_metadata.close(depObjOpenHandle);

 END LOOP; -- End of fetch dependent objects loop

 END LOOP; -- End of fetch table loop

-- Free resources allocated for table stream and close output file.
 dbms_metadata.close(tableOpenHandle);
 RETURN;

END; -- of procedure get_payroll_tables

END payroll_demo;
/

PAYROLL_DEMO Output
This is the output obtained from executing the procedure, mddemo.payroll_
demo.get_payroll_tables . The output is obtained by executing the following

query as user mddemo:

SQL> SELECT ddl FROM ddl ORDER BY seqno;

CREATE TABLE "MDDEMO"."PAYROLL_EMPS"
 ("LASTNAME" VARCHAR2(60) NOT NULL ENABLE,
 "FIRSTNAME" VARCHAR2(20) NOT NULL ENABLE,
 "MI" VARCHAR2(2),
 "SUFFIX" VARCHAR2(10),
 "DOB" DATE NOT NULL ENABLE,
 "BADGE_NO" NUMBER(6,0),
 "EXEMPT" VARCHAR2(1) NOT NULL ENABLE,
 "SALARY" NUMBER(9,2),
 "HOURLY_RATE" NUMBER(7,2),
 PRIMARY KEY ("BADGE_NO") ENABLE
) ;
Using the Metadata API 15-17

Metadata API Example
 GRANT UPDATE ("SALARY") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT UPDATE ("HOURLY_RATE") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_DOB" ON "MDDEMO"."PAYROLL_EMPS" ("DOB")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_NAME" ON "MDDEMO"."PAYROLL_EMPS" ("LASTNAME")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE OR REPLACE TRIGGER hourly_trigger before update of hourly_rate on payroll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/
ALTER TRIGGER "MDDEMO"."HOURLY_TRIGGER" ENABLE;

 CREATE OR REPLACE TRIGGER salary_trigger before insert or update of salary on payroll_emps
for each row
WHEN (new.salary > 150000) CALL check_sal(:new.salary)
/
ALTER TRIGGER "MDDEMO"."SALARY_TRIGGER" ENABLE;

CREATE TABLE "MDDEMO"."PAYROLL_TIMECARDS"
 ("BADGE_NO" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" NUMBER(5,0),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("BADGE_NO")
 REFERENCES "MDDEMO"."PAYROLL_EMPS" ("BADGE_NO") ENABLE
) ;
15-18 Oracle9i Database Utilities

Metadata API Example
 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_TIMECARDS_BADGE" ON "MDDEMO"."PAYROLL_TIMECARDS" ("BADGE_NO")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;
Using the Metadata API 15-19

Metadata API Example
15-20 Oracle9i Database Utilities

Part V

 Appendixes

This section contains the following appendixes:

Appendix A, "SQL*Loader Syntax Diagrams"

This appendix provides diagrams of the SQL*Loader syntax.

Appendix B, "DB2/DXT User Notes"

This appendix describes differences between the data definition language syntax of

SQL*Loader and DB2 Load Utility control files.

Appendix C, "Backus-Naur Form Syntax"

This appendix explains the symbols and conventions of the BNF variant used in

text descriptions of the syntax diagrams.

SQL*Loader Syntax Diag
A

SQL*Loader Syntax Diagrams

The SQL*Loader DDL diagrams (sometimes called railroad diagrams) use standard

SQL syntax notation. For more information about the syntax notation used in this

appendix, see the PL/SQL User’s Guide and Reference and the Oracle9i SQL Reference.

The following diagrams of DDL syntax are shown with certain clauses collapsed

(such as pos_spec). These diagrams are expanded and explained further along in

the appendix.

Options Clause

Load Statement

OPTIONS (options)

UNRECOVERABLE

RECOVERABLE LOAD

CONTINUE_LOAD

DATA CHARACTERSET char_set_name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN
rams A-1

infile_clause

BYTEORDERMARK
CHECK

NOCHECK

infile_clause READSIZE size READBUFFERS integer

INSERT

APPEND

REPLACE

TRUNCATE

concatenate_clause PRESERVE BLANKS
into_table_clause

BEGINDATA

INFILE

INDDN

*

input_filename

os_file_proc_clause

BADFILE filename

BADDN

DISCARDFILE

DISCARDDN
filename

DISCARDS

DISCARDMAX
integer
A-2 Oracle9i Database Utilities

os_file_proc_clause

concatenate_clause

into_table_clause

"

var

fix

str

’string’

X’hex_string

integer

"

CONCATENATE
integer

(integer)

CONTINUEIF

THIS

NEXT PRESERVE (
pos_spec

LAST
PRESERVE (operator

str

X’hex_str’

)

INTO TABLE name

(
PARTITION name

SUBPARTITION name
)

INSERT

REPLACE

TRUNCATE

APPEND
SQL*Loader Syntax Diagrams A-3

SORTED
INDEXES

(name) SINGLEROW

INSERT

REPLACE

TRUNCATE

APPEND

OPTIONS (FILE=database_filename)

EVALUATE_CHECK_CONSTRAINTS REENABLE DISABLED_CONSTRAINTS

EXCEPTIONS table WHEN field_condition

OID_spec

SID_spec FIELDS
delim_spec

TRAILING
NULLCOLS

TREAT AS typename

SKIP n
field_list
A-4 Oracle9i Database Utilities

field_condition

delim_spec

full_fieldname

termination_spec

enclosure_spec

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec

full_fieldname

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’
SQL*Loader Syntax Diagrams A-5

oid_spec

sid_spec

field_list

OID (fieldname)

SID (
fieldname

CONSTANT SID_val
)

(column_name

d_gen_fld_spec

scalar_fld_spec

col_obj_fld_spec

collection_fld_spec

filler_fld_spec

,

)

A-6 Oracle9i Database Utilities

d_gen_fld_spec

 ref_spec

init_spec

bfile_spec

RECNUM

SYSDATE

CONSTANT val

SEQUENCE (

COUNT

MAX

integer

, incr
)

REF_spec

SID_spec

BFILE_spec

init_spec

EXPRESSION " sql string "

REF (
fieldname

CONSTANT val

,

)

NULLIF

DEFAULTIF
field_condition

AND

BFILE (
fieldname

CONSTANT val
,

fieldname

CONSTANT val
)

SQL*Loader Syntax Diagrams A-7

filler_fld_spec

scalar_fld_spec

lobfile_spec

FILLER

BOUNDFILLER

pos_spec datatype_spec PIECED

LOBFILE_spec

POSITION pos_spec
datatype_spec PIECED

init_spec " sql_string "

LOBFILE (
fieldname

CONSTANT filename

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK
)

A-8 Oracle9i Database Utilities

pos_spec

datatype_spec
The syntax for datatype_spec is as follows:

(

start

*
+integer

:

–
end

)

SQL*Loader Syntax Diagrams A-9

delim_spec

INTEGER

(length)

SIGNED

UNSIGNED

EXTERNAL
(length) delim_spec

FLOAT
EXTERNAL

(length) delim_spec

DECIMAL

ZONED

EXTERNAL
(length) delim_spec

(precision
, scale

)

DOUBLE

BYTEINT

SMALLINT

SIGNED

UNSIGNED

RAW
(length)

GRAPHIC
EXTERNAL (graphic_char_length)

VARGRAPHIC

VARCHAR

(max_length)

CHAR
(length) delim_spec

VARCHARC (length_of_length
, max_size_bytes

)

VARRAWC (length_of_length
, max_size_bytes

)

LONG
VARRAW (

max_bytes
)

DATE
EXTERNAL (length) "mask" delim_spec

TIME

TIMESTAMP

WITH
LOCAL

TIME ZONE "mask"

INTERVAL

YEAR TO MONTH

DAY TO SECOND
A-10 Oracle9i Database Utilities

col_obj_fld_spec

collection_fld_spec

nested_table_spec

varray_spec

sdf_spec

COLUMN OBJECT
TREAT AS typename init_spec

field_list
sql_string_spec

nested_table_spec

varray_spec

NESTED TABLE
SDF_spec count_spec

delim_spec
field_list

VARRAY
SDF_spec count_spec

delim_spec

init_spec
field_list

SDF (

field_name

CONSTANT filename os_file_proc_clause READSIZE size

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
SQL*Loader Syntax Diagrams A-11

count_spec

BYTEORDER
BIG

LITTLE

ENDIAN
BYTEORDERMARK

CHECK

NOCHECK
)

COUNT (
fieldname

CONSTANT positive_integer
)

A-12 Oracle9i Database Utilities

DB2/DXT User N
B

DB2/DXT User Notes

This appendix describes differences between SQL*Loader DDL syntax and DB2

Load Utility/DXT control file syntax. The topics discussed include:

■ Using the DB2 RESUME Option

■ Inclusions for Compatibility

■ Restrictions

■ SQL*Loader Syntax with DB2-Compatible Statements

Using the DB2 RESUME Option
If the tables you are loading already contain data, you have three choices (shown in

Table B–1) for the disposition of that data.

The DB2 syntax for the RESUME clause is as follows:

RESUME { YES | NO [REPLACE] }

Table B–1 DB2 Functions and Equivalent SQL*Loader Options

DB2 SQL*Loader Options Result

RESUME NO or no
RESUME clause

INSERT Data is loaded only if the table is
empty. Otherwise an error is
returned.

RESUME YES APPEND New data is appended to
existing data in the table, if any.

RESUME NO REPLACE REPLACE New data replaces existing table
data, if any.
otes B-1

Inclusions for Compatibility
Instead of the DB2 syntax for RESUME, you may prefer to use the equivalent

SQL*Loader options.

In SQL*Loader, you can use one RESUME clause to apply to all loaded tables by

placing the RESUME clause before any INTO TABLE clauses. Alternatively, you can

specify your RESUME options on a table-by-table basis by putting a RESUME clause

after the INTO TABLEspecification. The RESUMEoption following a table name will

override one placed earlier in the file. The earlier RESUME applies to all tables that

do not have their own RESUME clause.

Inclusions for Compatibility
The IBM DB2 Load Utility contains certain elements that SQL*Loader does not use.

In DB2, sorted indexes are created using external files, and specifications for these

external files may be included in the load statement. For compatibility with the DB2

loader, SQL*Loader parses these options, but ignores them if they have no meaning

for the Oracle database server. The syntactical elements described in the following

section are allowed, but ignored, by SQL*Loader.

LOG Statement
This statement is included for compatibility with DB2. It is parsed but ignored by

SQL*Loader. (This LOG option has nothing to do with the log file that SQL*Loader

writes.) DB2 uses the log file for error recovery, and it may or may not be written.

SQL*Loader relies on Oracle’s automatic logging, which may or may not be enabled

as a warm start option.

[LOG { YES | NO }]

WORKDDN Statement
This statement is included for compatibility with DB2. It is parsed but ignored by

SQL*Loader. In DB2, this statement specifies a temporary file for sorting.

[WORKDDN filename]

SORTDEVT and SORTNUM Statements
SORTDEVTand SORTNUMare included for compatibility with DB2. These statements

are parsed but ignored by SQL*Loader. In DB2, these statements specify the number

and type of temporary data sets for sorting.

[SORTDEVT device_type]
B-2 Oracle9i Database Utilities

Restrictions
[SORTNUM n]

DISCARD Specification
Multiple file handling requires that the discard clauses (DISCARDDN and

DISCARDS) be in a different place in the control file—next to the datafile

specification. However, when you are loading a single DB2-compatible file, these

clauses can be in their old position—between the RESUME and RECLEN clauses.

Note that while the DB2 Load Utility DISCARDS option zero (0) means no

maximum number of discards, for SQL*Loader, option zero means to stop on the

first discard.

Restrictions
Some aspects of the DB2 loader are not duplicated by SQL*Loader. For example,

SQL*Loader does not load data from SQL/DS files or from DB2 UNLOAD files.

SQL*Loader gives an error upon encountering the DB2 Load Utility commands

described in the following sections.

FORMAT Statement
The DB2 FORMAT statement must not be present in a control file to be processed by

SQL*Loader. The DB2 loader will load DB2 UNLOAD format, SQL/DS format, and

DB2 Load Utility format files. SQL*Loader does not support these formats. If the

FORMAT statement is present in the command file, SQL*Loader will stop with an

error. (IBM does not document the format of these files, so SQL*Loader cannot read

them.)

FORMAT { UNLOAD | SQL/DS }

PART Statement
The PART statement is included for compatibility with DB2. There is no Oracle

concept that corresponds to a DB2 partitioned table.

In SQL*Loader, the entire table is read. A warning indicates that partitioned tables

are not supported, and that the entire table has been loaded.

[PART n]
DB2/DXT User Notes B-3

SQL*Loader Syntax with DB2-Compatible Statements
SQL/DS Option
The option SQL/DS=tablename must not be used in the WHEN clause. SQL*Loader does

not support the SQL/DS internal format. If the SQL/DS option appears in this statement,

SQL*Loader will terminate with an error.

DBCS Graphic Strings
Because the Oracle database server does not support the double-byte character set

(DBCS), graphic strings of the form G’**’ are not permitted.

SQL*Loader Syntax with DB2-Compatible Statements
In the following listing, DB2-compatible statements are in bold type:

OPTIONS (options)
{ LOAD | CONTINUE_LOAD } [DATA]
[CHARACTERSET character_set_name]
[{ INFILE | INDDN } { filename | * }]
[” OS-dependent file processing options string ”]
[{ BADFILE | BADDN } filename]
[{ DISCARDFILE | DISCARDDN } filename]
[{ DISCARDS | DISCARDMAX } n]]
[{ INFILE | INDDN }] ...
[APPEND | REPLACE | INSERT |
RESUME [(] { YES | NO [REPLACE] } [)]]
[LOG { YES | NO }]
[WORKDDN filename]
[SORTDEVT device_type]
[SORTNUM n]
[{ CONCATENATE [(] n [)] |
CONTINUEIF { [THIS | NEXT]
[(] (start [{ : | - } end]) | LAST }
operator { ’ char_str ’ | X’ hex_str ’ } [)] }]
[PRESERVE BLANKS]
INTO TABLE tablename
[CHARACTERSET character_set_name]
[SORTED [INDEXES] (index_name [, index_name ...])]
[PART n]
[APPEND | REPLACE | INSERT |
RESUME [(] { YES | NO [REPLACE] } [)]]
[REENABLE [DISABLED_CONSTRAINTS] [EXCEPTIONS table_name]]
[WHEN field_condition [AND field_condition ...]]
[FIELDS [delimiter_spec]]
B-4 Oracle9i Database Utilities

SQL*Loader Syntax with DB2-Compatible Statements
[TRAILING [NULLCOLS]]
[SKIP n]
(. column_name
{ [RECNUM
| SYSDATE | CONSTANT value
| SEQUENCE ({ n | MAX | COUNT } [, increment])
| [[POSITION ({ start [{:|-} end] | * [+ n] })]
[datatype_spec]
[NULLIF field_condition]
[DEFAULTIF field_condition]
[” sql string ”]]] }
[, column_name] ...)
[INTO TABLE] ... [BEGINDATA]
[BEGINDATA]
DB2/DXT User Notes B-5

SQL*Loader Syntax with DB2-Compatible Statements
B-6 Oracle9i Database Utilities

Backus-Naur Form Sy
C

Backus-Naur Form Syntax

Each graphic syntax diagram in this book is followed by a link to a text description

of the graphic. The text descriptions are a simple variant of Backus-Naur Form

(BNF) syntax that includes the symbols and conventions explained in Table C–1.

Table C–1 Symbols and Conventions for Backus-Naur Form Syntax

 Symbol or
Convention Meaning

 [] Brackets enclose one or more optional items.

 { } Braces enclose two or more items, one of which is required.

 | A vertical bar separates alternatives within brackets or braces.

 ... Ellipsis points show that the preceding syntactic element can be
repeated.

 delimiters Delimiters other than brackets, braces, vertical bars, and ellipses
must be entered as shown.

boldface Words appearing in boldface are keywords. They must be typed
as shown. (Keywords are case-sensitive in some, but not all,
operating systems.) Words that are not in boldface are
placeholders for which you must substitute a name or value.
ntax C-1

C-2 Oracle9i Database Utilities

Index

A
access privileges

Export, 1-5

Import, 2-5

Advanced Queuing

exporting advanced queue tables, 1-58

importing advanced queue tables, 2-61

aliases

directory

exporting, 1-57

importing, 2-59

analyzer statistics, 2-68

ANYDATA type

effect on table-mode import, 2-13

APPEND parameter

for SQL*Loader utility, 5-38

append to table

example, 10-11

SQL*Loader, 5-33

archiving

disabling

effect on direct path loads, 9-20

arrays

committing after insert, 2-19

atomic null, 7-7

attributes

null, 7-6

attribute-value constructor, 7-8

attribute-value constructors

overriding, 7-8

B
backslash escape character, 5-6

backups

restoring dropped snapshots

Import, 2-64

Backus-Naur Form syntax

See syntax diagrams

bad files

specifying for SQL*Loader, 5-11

BAD parameter

for SQL*Loader command line, 4-3

BADDN parameter

for SQL*Loader utility, 5-12

BADFILE parameter

for SQL*Loader utility, 5-12

BEGINDATA parameter

for SQL*Loader control file, 5-10

BFILE columns

exporting, 1-57

importing, 2-59

BFILE datatype, 7-22

big endian data

external tables, 12-7

bind arrays

determining size of for SQL*Loader, 5-45

minimizing SQL*Loader memory

requirements, 5-49

minimum requirements, 5-44

size with multiple SQL*Loader INTO TABLE

statements, 5-50

specifying maximum size, 4-4

specifying number of rows, 4-12

SQL*Loader performance implications, 5-44
Index-1

BINDSIZE parameter

for SQL*Loader command line, 4-4, 5-45

blanks

loading fields consisting of blanks, 6-41

SQL*Loader BLANKS parameter for field

comparison, 6-31

trailing, 6-27

trimming, 6-42

external tables, 12-19

whitespace, 6-42

BLANKS parameter

for SQL*Loader utility, 6-31

BNF

See syntax diagrams

bound fillers, 6-6

BUFFER parameter

for Export utility, 1-16

for Import utility, 2-18

buffers

calculating for export, 1-17

space required by

VARCHAR data in SQL*Loader, 6-13

specifying with SQL*Loader BINDSIZE

parameter, 5-45

byte order, 6-37

big endian, 6-37

little endian, 6-37

specifying in SQL*Loader control file, 6-38

byte order marks, 6-39

precedence

for first primary datafile, 6-39

for LOBFILEs and SDFs, 6-40

suppressing checks for, 6-41

BYTEINT datatype, 6-10

BYTEORDER parameter

for SQL*Loader utility, 6-38

BYTEORDERMARK parameter

for SQL*Loader utility, 6-41

C
cached sequence numbers

Export, 1-56

case studies

SQL*Loader, 10-1

SQL*Loader filenames, 10-4

See also SQL*Loader

catalog.sql script

preparing database for Export, 1-3

preparing database for Import, 2-5

catexp.sql script

preparing database for Export, 1-3

preparing database for Import, 2-5

catldr.sql script

preparing for direct path loads, 9-10

changing a database ID, 14-2

changing a database name, 14-4

CHAR columns

version 6 export files, 2-71

CHAR datatype

delimited form and SQL*Loader, 6-24

reference

SQL*Loader, 6-15

character datatypes

conflicting fields, 6-28

character fields

delimiters and SQL*Loader, 6-15, 6-24

determining length for SQL*Loader, 6-28

SQL*Loader datatypes, 6-15

character sets

conversion

during Export/Import, 1-54, 2-54

eight-bit to seven-bit conversions

Export/Import, 1-54, 2-55

identifying for external tables, 12-7

multibyte

SQL*Loader, 5-17

single-byte

Export/Import, 1-54, 2-55

SQL*Loader control file, 5-21

SQL*Loader conversion between, 5-16

Unicode, 5-17, 10-47

version 6 conversions

Import/Export, 2-56

character strings

external tables

specifying bytes or characters, 12-8

SQL*Loader, 6-32

character-length semantics, 5-22

CHARACTERSET parameter
Index-2

for SQL*Loader utility, 5-20

CHARSET parameter

for Import utility, 2-18

check constraints

overriding disabling of, 9-26

CLOBs

example, 10-38

collections, 3-13

loading, 7-29

column array rows

specifying number of, 9-21

column objects

loading, 7-1

with user-defined constructors, 7-8

COLUMNARRAYROWS parameter

for SQL*Loader command line, 4-4

columns

exporting LONG datatypes, 1-56

loading REF columns, 7-15

naming

SQL*Loader, 6-5

objects

loading nested column objects, 7-4

stream record format, 7-2

variable record format, 7-3

reordering before Import, 2-8

setting to a constant value with

SQL*Loader, 6-55

setting to a unique sequence number with

SQL*Loader, 6-57

setting to an expression value with

SQL*Loader, 6-56

setting to null with SQL*Loader, 6-55

setting to the current date with

SQL*Loader, 6-56

setting to the datafile record number with

SQL*Loader, 6-56

specifying

SQL*Loader, 6-5

specifying as PIECED

SQL*Loader, 9-16

using SQL*Loader, 6-56

command-line parameters

Export, 1-13

Import, 2-14

specifying in SQL*Loader control file, 5-4

SQL*Loader, 4-1

comments

in Export parameter file, 1-7

in Import parameter file, 2-12

in SQL*Loader control file, 10-12

with external tables, 12-2

COMMIT parameter

for Import utility, 2-19

COMPILE parameter

for Import utility, 2-19

completion messages

Export, 1-49

Import, 2-46

COMPRESS parameter

for Export utility, 1-17

CONCATENATE parameter

for SQL*Loader utility, 5-27

concurrent conventional path loads, 9-30

connect strings

Oracle Net, 1-53

CONSISTENT parameter

for Export utility, 1-18

nested tables and, 1-18

partitioned table and, 1-18

consolidating

extents, 1-17

CONSTANT parameter

SQL*Loader, 6-55

constraints

automatic integrity and SQL*Loader, 9-27

direct path load, 9-25

disabling referential constraints, 2-8

enabling

after a parallel direct path load, 9-34

enforced on a direct load, 9-25

failed

Import, 2-48

load method, 9-10

preventing Import errors due to uniqueness

constraints, 2-19

CONSTRAINTS parameter

for Export utility, 1-20

for Import utility, 2-20

constructors
Index-3

attribute-value, 7-8

overriding, 7-8

user-defined, 7-8

loading column objects with, 7-8

CONTINUEIF parameter

example, 10-15

for SQL*Loader utility, 5-27

control files

character sets, 5-21

creating

guidelines, 3-3

data definition language syntax, 5-2

specifying data, 5-10

specifying SQL*Loader discard file, 5-14

CONTROL parameter

for SQL*Loader command line, 4-4

conventional path Export

compared to direct path, 1-50

conventional path loads

behavior when discontinued, 5-24

compared to direct path loads, 9-9

concurrent, 9-31

of a single partition, 9-4

SQL*Loader bind array, 5-44

when to use, 9-4

conversion of character sets

during Export/Import, 1-54

effect of character set sorting on, 1-54

conversion of data

during direct path loads, 9-6

conversion of input characters, 5-19

CREATE SESSION privilege

Export, 1-4

Import, 2-5

CREATE USER command

Import, 2-71

creating

tables

manually, 2-8

D
data

delimiter marks in data and SQL*Loader, 6-26

distinguishing different input formats for

SQL*Loader, 5-39

distinguishing different input row object

subtypes, 5-39, 5-41

exporting, 1-27

formatted data and SQL*Loader, 10-28

generating unique values with

SQL*Loader, 6-57

including in control files, 5-10

loading data contained in the SQL*Loader

control file, 6-55

loading in sections

SQL*Loader, 9-16

loading into more than one table

SQL*Loader, 5-39

maximum length of delimited data for

SQL*Loader, 6-27

moving between operating systems using

SQL*Loader, 6-36

saving in a direct path load, 9-13

saving rows

SQL*Loader, 9-20

unsorted

SQL*Loader, 9-18

values optimized for SQL*Loader

performance, 6-55

data conversion

direct path load, 9-6

data fields

specifying the SQL*Loader datatype, 6-7

DATA parameter

for SQL*Loader command line, 4-5

data path loads

direct and conventional, 9-1

data recovery

direct path load

SQL*Loader, 9-15

database ID (DBID)

changing, 14-2

database identifier

changing, 14-2

database migration

partitioning of, 1-60

database name (DBNAME)

changing, 14-4

database objects
Index-4

exporting LONG columns, 1-56

extracting metadata of, 15-1

databases

changing the database ID, 14-2

changing the name, 14-4

exporting entire, 1-23

full import, 2-22

privileges for exporting, 1-4

reducing fragmentation, 2-53

reusing existing datafiles

Import, 2-20

datafiles

preventing overwrite during import, 2-20

reusing during import, 2-20

specifying, 4-5

specifying buffering for SQL*Loader, 5-11

specifying for SQL*Loader, 5-7

specifying format for SQL*Loader, 5-11

DATAFILES parameter

for Import utility, 2-20

datatypes

BFILE

Export, 1-57

Import, 2-59

BYTEINT, 6-10

CHAR, 6-15

conflicting character datatype fields, 6-28

converting SQL*Loader, 6-22

DATE, 6-16

datetime, 6-16

DECIMAL, 6-11

default in SQL*Loader, 6-7

describing for external table fields, 12-24

determining character field lengths for

SQL*Loader, 6-28

determining DATE length, 6-29

DOUBLE, 6-10

FLOAT, 6-10

GRAPHIC, 6-18

GRAPHIC EXTERNAL, 6-19

identifying for external tables, 12-21

INTEGER (n), 6-8

interval, 6-16

length-value, 6-7

LONG

Export, 1-56

Import, 2-61

LONG VARRAW, 6-14

native

conflicting length specifications in

SQL*Loader, 6-21

nonportable, 6-8

nonscalar, 7-6

NUMBER

SQL*Loader, 6-23

numeric EXTERNAL, 6-19

portable, 6-14

RAW, 6-20

SMALLINT, 6-9

specifying the SQL*Loader datatype of a data

field, 6-7

value, 6-7

VARCHAR, 6-13

VARCHAR2

SQL*Loader, 6-23

VARCHARC, 6-20

VARGRAPHIC, 6-12

VARRAW, 6-14

VARRAWC, 6-21

ZONED, 6-10

date cache

DATE_CACHE parameter, 4-5

external tables, 11-6

date cache feature

SQL*Loader, 9-22

DATE datatype

delimited form and SQL*Loader, 6-24

determining length, 6-29

mask

SQL*Loader, 6-29

SQL*Loader, 6-16

DATE_CACHE parameter

for SQL*Loader utility, 4-5

datetime datatypes, 6-16

DB2 load utility

placement of statements

DISCARDDN, B-3

DISCARDS, B-3

restricted capabilities of SQL*Loader, B-3

RESUME parameter, 5-33
Index-5

SQL*Loader compatibility

ignored statements, B-2

DBA role

EXP_FULL_DATABASE role, 1-4

DBCS (DB2 double-byte character set)

not supported by Oracle, B-4

DBID (database identifier)

changing, 14-2

DBMS_METADATA package, 15-4

browsing interface, 15-10

programmatic interface, 15-4

security, 15-4

using to implement Metadata API, 15-4

DBNAME

changing, 14-4

DBNEWID utility, 14-1

changing a database ID, 14-2

changing a database name, 14-4

examples, 14-9

restrictions, 14-8

reverting a stalled change operation, 14-6

syntax, 14-7

troubleshooting a database ID change, 14-5

troubleshooting a database name change, 14-6

DBVERIFY utility

output, 13-3

restrictions, 13-1

syntax, 13-2

validating a segment, 13-4

validating disk blocks, 13-2

DECIMAL datatype, 6-11

EXTERNAL format

SQL*Loader, 6-19

DEFAULT column values

Oracle version 6 export files, 2-71

DEFAULTIF parameter

SQL*Loader, 6-29

DELETE ANY TABLE privilege

SQL*Loader, 5-34

DELETE CASCADE

effect on loading nonempty tables, 5-34

SQL*Loader, 5-34

DELETE privilege

SQL*Loader, 5-33

delimited data

maximum length for SQL*Loader, 6-27

delimited fields

field length, 6-28

delimited LOBs, 7-26

delimiters

in external tables, 12-6

initial and trailing example, 10-28

loading trailing blanks, 6-27

marks in data and SQL*Loader, 6-26

specifying for external tables, 12-16

specifying for SQL*Loader, 5-36, 6-24

SQL*Loader enclosure, 6-45

SQL*Loader field specifications, 6-45

termination, 6-46

DESTROY parameter

for Import utility, 2-20

DIRECT parameter

for Export utility, 1-20

direct path Export, 1-50, 1-52

compared to conventional path, 1-50

effect of EXEMPT ACCESS POLICY

privilege, 1-52

performance issues, 1-53

security considerations, 1-52

direct path load

advantages, 9-8

behavior when discontinued, 5-24

choosing sort order

SQL*Loader, 9-19

compared to conventional path load, 9-9

concurrent, 9-31

conditions for use, 9-8

data saves, 9-13, 9-20

DIRECT command-line parameter

SQL*Loader, 9-11

dropping indexes, 9-24

effect of disabling archiving, 9-20

effect of PRIMARY KEY constraints, 9-35

effect of UNIQUE KEY constraints, 9-35

example, 10-24

field defaults, 9-10

improper sorting

SQL*Loader, 9-18

indexes, 9-11

instance recovery, 9-15
Index-6

intersegment concurrency, 9-31

intrasegment concurrency, 9-31

loading into synonyms, 9-10

location of data conversion, 9-6

media recovery, 9-15

optimizing on multiple-CPU systems, 9-23

partitioned load

SQL*Loader, 9-30

performance, 9-11, 9-17

preallocating storage, 9-17

presorting data, 9-18

recovery, 9-15

ROWS command-line parameter, 9-14

setting up, 9-10

specifying, 9-11

specifying number of rows to be read, 4-12

SQL*Loader data loading method, 3-12

table insert triggers, 9-27

temporary segment storage requirements, 9-12

triggers, 9-25

using, 9-9, 9-10

version requirements, 9-9

directory aliases

exporting, 1-57

importing, 2-59

discard files

DB2 load utility, B-3

SQL*Loader, 5-14

example, 10-15

specifying a maximum, 5-15

DISCARD parameter

for SQL*Loader command-line, 4-6

DISCARDDN parameter

in DB2 control file, B-3

discarded SQL*Loader records, 3-10

causes, 5-15

discard file, 5-14

limiting, 5-16

DISCARDMAX parameter

for SQL*Loader command-line, 4-6

DISCARDS parameter

in DB2 control file, B-3

discontinued loads, 5-24

continuing, 5-26

conventional path behavior, 5-24

direct path behavior, 5-24

DOUBLE datatype, 6-10

dropped snapshots

Import, 2-64

dump files

maximum size, 1-21

E
EBCDIC character set

Import, 2-55

eight-bit character set support, 1-54, 2-55

enclosed fields

specified with enclosure delimiters and

SQL*Loader, 6-25

whitespace, 6-49

enclosure delimiters, 6-24

SQL*Loader, 6-25, 6-45

errors

caused by tab characters in SQL*Loader

data, 6-4

export log file, 1-23

generated by DB2 load utility, B-3

Import, 2-45

Import resource errors, 2-49

LONG data, 2-48

nonrecoverable

Export, 1-49

Import, 2-46

object creation, 2-48

Import parameter IGNORE, 2-23

recoverable

Export, 1-48

Import, 2-46

row errors during import, 2-47

warning

Export, 1-48

Import, 2-46

ERRORS parameter

for SQL*Loader command line, 4-6

escape character

quoted strings, 5-6

usage in Export, 1-29

usage in Import, 2-30

EVALUATE_CHECK_CONSTRAINTS
Index-7

clause, 9-26

exit codes

Export, 1-49

Import, 2-47

SQL*Loader, 4-16

EXP_FULL_DATABASE role

assigning in Export, 1-4

expdat.dmp

Export output file, 1-20

Export

BUFFER parameter, 1-16

COMPRESS parameter, 1-17

CONSISTENT parameter, 1-18

CONSTRAINTS parameter, 1-20

conventional path, 1-50

conversion of character sets, 1-54

creating

necessary privileges, 1-4

necessary views, 1-4

creating version 7 export files, 1-62

database optimizer statistics, 1-27

DIRECT parameter, 1-20

direct path, 1-50

displaying online help, 1-23

eight-bit versus seven-bit character sets, 1-54

example sessions, 1-32

full database mode, 1-33

partition-level, 1-41

table mode, 1-38

user mode, 1-36

exit codes, 1-49

exporting an entire database, 1-23

exporting indexes, 1-23

exporting sequence numbers, 1-56

exporting synonyms, 1-58

exporting to another operating system, 1-26,

2-25

FEEDBACK parameter, 1-20

FILE parameter, 1-20

FILESIZE parameter, 1-21

FLASHBACK_SCN parameter, 1-22

FLASHBACK_TIME parameter, 1-22

full database mode

example, 1-33

FULL parameter, 1-23

GRANTS parameter, 1-23

HELP parameter, 1-23

INDEXES parameter, 1-23

interactive method, 1-43

invoking, 1-5

log files

specifying, 1-23

LOG parameter, 1-23

logging error messages, 1-23

LONG columns, 1-56

modes

objects exported by each, 1-8

network issues, 1-53

OBJECT_CONSISTENT parameter, 1-24

online help, 1-13

OWNER parameter, 1-24

parameter conflicts, 1-32

parameter file, 1-24

maximum size, 1-7

parameters, 1-13

PARFILE parameter, 1-24

partitioning a database migration, 1-60

QUERY parameter, 1-24

RECORDLENGTH parameter, 1-26

redirecting output to a log file, 1-48

remote operation, 1-53, 2-54

restrictions based on privileges, 1-5

RESUMABLE parameter, 1-26

RESUMABLE_NAME parameter, 1-26

RESUMABLE_TIMEOUT parameter, 1-27

ROWS parameter, 1-27

sequence numbers, 1-56

STATISTICS parameter, 1-27

storage requirements, 1-4

table mode

example session, 1-38

table name restrictions, 1-30

TABLES parameter, 1-28

TABLESPACES parameter, 1-30

transferring export files across a network, 1-53

TRANSPORT_TABLESPACE parameter, 1-31

TRIGGERS parameter, 1-31

TTS_FULL_CHECK parameter, 1-31

user access privileges, 1-4

user mode
Index-8

example session, 1-36

specifying, 1-24

USERID parameter, 1-31

VOLSIZE parameter, 1-32

export file

importing the entire file, 2-22

listing contents before importing, 2-27

specifying, 1-20

Export messages

completion, 1-49

nonrecoverable, 1-49

warning, 1-48

exporting

from read-only databases, 1-60

EXPRESSION parameter

SQL*Loader, 6-56

extents

consolidating, 1-17

importing consolidated, 2-66

external files

exporting, 1-57

external LOBs (BFILEs), 7-22

EXTERNAL parameter

SQL*Loader, 6-20

EXTERNAL SQL*Loader datatypes, 6-19

DECIMAL, 6-19

FLOAT, 6-19

GRAPHIC, 6-19

numeric, 6-19

determining length, 6-28

ZONED, 6-19

external tables

access parameters, 12-1

big endian data, 12-7

datatypes, 12-24

date cache feature, 11-6

delimiters, 12-6

describing datatype of a field, 12-24

differences in load behavior from

SQL*Loader, 11-7

field_definitions clause, 12-3, 12-15

fixed-length records, 12-4

identifying character sets, 12-7

identifying datatypes, 12-21

improving performance when using, 11-6

date cache feature, 11-6

little endian data, 12-7

record_format_info clause, 12-2, 12-3

restrictions, 11-3

setting a field to a default value, 12-31

setting a field to null, 12-31

skipping records when loading data, 12-10

specifying delimiters, 12-16

specifying load conditions, 12-8

trimming blanks, 12-19

using comments, 12-2

using constructor functions with, 11-5

using to load data, 11-5

variable-length records, 12-5

F
fatal errors

See nonrecoverable errors

features, new, xliii

FEEDBACK parameter

for Export utility, 1-20

for Import utility, 2-21

field conditions

specifying for SQL*Loader, 6-29

field length

SQL*Loader specifications, 6-45

field location

SQL*Loader, 6-3

fields

character data length and SQL*Loader, 6-28

comparing to literals with SQL*Loader, 6-32

delimited

determining length, 6-28

SQL*Loader, 6-24

enclosed and SQL*Loader, 6-25

loading all blanks, 6-41

predetermined size

length, 6-28

SQL*Loader, 6-45

relative positioning and SQL*Loader, 6-46

specified with a termination delimiter and

SQL*Loader, 6-25

specified with enclosure delimiters and

SQL*Loader, 6-25
Index-9

specifying default delimiters for

SQL*Loader, 5-36

specifying for SQL*Loader, 6-5

SQL*Loader delimited

specifications, 6-45

terminated and SQL*Loader, 6-25

FIELDS clause

SQL*Loader, 5-36

terminated by whitespace, 6-48

FILE parameter

for Export utility, 1-20

for Import utility, 2-21

for SQL*Loader utility, 9-33

filenames

quotation marks, 5-6

specifying multiple SQL*Loader, 5-9

SQL*Loader, 5-5

SQL*Loader bad file, 5-11

FILESIZE parameter

for Export utility, 1-21

for Import utility, 2-21

FILLER field

example, 10-39

using as argument to init_spec, 6-6

fine-grained access support

Export, 1-59

Import, 2-56

fixed record length

example, 10-34

fixed-format records, 3-4

fixed-length records

external tables, 12-4

FLASHBACK_SCN parameter

for Export utility, 1-22

FLASHBACK_TIME parameter

for Export utility, 1-22

FLOAT datatype, 6-9

EXTERNAL format

SQL*Loader, 6-19

FLOAT EXTERNAL data values

SQL*Loader, 6-20

foreign function libraries

exporting, 1-56

importing, 2-60

FORMAT statement in DB2

not allowed by SQL*Loader, B-3

formats

SQL*Loader input records and, 5-40

formatting errors

SQL*Loader, 5-12

fragmentation

reducing, 2-53

FROMUSER parameter

for Import utility, 2-22

FTP

using to transport Export files, 1-53

full database mode

Export, 1-8

Import, 2-22

specifying with FULL, 1-23

FULL parameter

for Export utility, 1-23

for Import utility, 2-22

G
globalization

SQL*Loader, 5-16

grants

exporting, 1-23

importing, 2-7, 2-23

GRANTS parameter

for Export utility, 1-23

for Import utility, 2-22

GRAPHIC datatype

EXTERNAL format in SQL*Loader, 6-19

H
HELP parameter

for Export utility, 1-13, 1-23

for Import utility, 2-23

hexadecimal strings

SQL*Loader, 6-32

I
IGNORE parameter

for Import utility, 2-23

IMP_FULL_DATABASE role, 2-5
Index-10

Import

BUFFER parameter, 2-18

catexp.sql script

preparing the database, 2-5

character set conversion, 2-55

character sets, 2-55

CHARSET parameter, 2-18

COMMIT parameter, 2-19

committing after array insert, 2-19

compatibility with other versions, 2-3

COMPILE parameter, 2-19

consolidated extents, 2-66

CONSTRAINTS parameter, 2-20

controlling size of rollback segments, 2-19

conversion of version 6 CHAR columns to

VARCHAR2, 2-71

creating an index-creation SQL script, 2-24

database optimizer statistics, 2-28

DATAFILES parameter, 2-20

DESTROY parameter, 2-20

disabling referential constraints, 2-8

displaying online help, 2-23

dropping a tablespace, 2-67

errors importing database objects, 2-48

example sessions, 2-34

all tables from one user to another, 2-37

selected tables for specific user, 2-35

tables exported by another user, 2-36

using partition-level import, 2-38

exit codes, 2-47

export file

importing the entire file, 2-22

listing contents before import, 2-27

failed integrity constraints, 2-48

FEEDBACK parameter, 2-21

FILE parameter, 2-21

FILESIZE parameter, 2-21

FROMUSER parameter, 2-22

FULL parameter, 2-22

globalization considerations, 2-54

grants

specifying for import, 2-22

GRANTS parameter, 2-22

HELP parameter, 2-23

IGNORE parameter, 2-23

importing grants, 2-22

importing objects into other schemas, 2-7

importing rows, 2-27

importing tables, 2-29

INDEXES parameter, 2-24

INDEXFILE parameter, 2-24

INSERT errors, 2-48

interactive method, 2-44

invalid data, 2-48

invoking, 2-10

at the command line, 2-10

interactively, 2-10

with a parameter file, 2-11

length of Oracle version 6 export file DEFAULT

columns, 2-71

LOG parameter, 2-25

LONG columns, 2-61

manually creating tables before import, 2-8

manually ordering tables, 2-9

message log file, 2-46

modes, 2-13

NLS_LANG environment variable, 2-55

object creation errors, 2-23

OPTIMAL storage parameter, 2-66

parameter file, 2-25

maximum size, 2-11

parameters, 2-14

PARFILE parameter, 2-25

partition-level, 2-49

pattern matching of table names, 2-29

preparing the database, 2-5

preserving size of initial extent, 2-66

read-only tablespaces, 2-66

RECORDLENGTH parameter, 2-25

records

specifying length, 2-25

redirecting output to a log file, 2-46

reducing database fragmentation, 2-53

refresh error, 2-63

reorganizing tablespace during, 2-67

resource errors, 2-49

restrictions

importing into own schema, 2-6

RESUMABLE parameter, 2-26

RESUMABLE_NAME parameter, 2-26
Index-11

RESUMABLE_TIMEOUT parameter, 2-26

reusing existing datafiles, 2-20

rows

specifying for import, 2-27

ROWS parameter, 2-27

schema objects, 2-7

sequences, 2-49

SHOW parameter, 2-27

single-byte character sets, 2-55

SKIP_UNUSABLE_INDEXES parameter, 2-27

snapshot master table, 2-63

snapshots, 2-63

restoring dropped, 2-64

specifying by user, 2-22

specifying index creation commands, 2-24

specifying the export file, 2-21

STATISTICS parameter, 2-27

storage parameters

overriding, 2-66

stored functions, 2-60

stored packages, 2-60

stored procedures, 2-60

STREAMS_CONFIGURATION parameter, 2-28

STREAMS_INSTANTIATION parameter, 2-28

system objects, 2-7

table name restrictions, 2-31

table objects

import order, 2-3

table-level, 2-49

TABLES parameter, 2-29

TABLESPACES parameter, 2-31

TOID_NOVALIDATE parameter, 2-31

TOUSER parameter, 2-32

TRANSPORT_TABLESPACE parameter, 2-33

TTS_OWNER parameter, 2-33

types of errors during, 2-47

uniqueness constraints

preventing import errors, 2-19

user definitions, 2-71

USERID parameter, 2-33

using Oracle version 6 files, 2-71

VOLSIZE parameter, 2-34

warning messages, 2-46

index options

SORTED INDEXES with SQL*Loader, 5-38

SQL*Loader SINGLEROW parameter, 5-38

Index Unusable state

indexes left in Index Unusable state, 5-26, 9-12

indexes

creating manually, 2-24

direct path load

left in direct load state, 9-12

dropping

SQL*Loader, 9-24

estimating storage requirements, 9-12

exporting, 1-23

importing, 2-24

index-creation commands

Import, 2-24

left in unusable state, 5-26, 9-18

multiple-column

SQL*Loader, 9-19

presorting data

SQL*Loader, 9-18

skipping maintenance, 4-14, 9-24

skipping unusable, 2-27, 4-14, 9-24

SQL*Loader, 5-38

state after discontinued load, 5-26

unique, 2-24

INDEXES parameter

for Export utility, 1-23

for Import utility, 2-24

INDEXFILE parameter

for Import utility, 2-24

INFILE parameter

for SQL*Loader utility, 5-7

insert errors

Import, 2-48

specifying, 4-6

INSERT into table

SQL*Loader, 5-33

instance affinity

Export, 1-55

instance recovery, 9-15

INTEGER datatype, 6-8

EXTERNAL format, 6-19

integrity constraints

disabled during direct path load, 9-25

enabled during direct path load, 9-25

failed on Import, 2-48
Index-12

load method, 9-10

interactive method

Export, 1-43

Import, 2-44

internal LOBs

loading, 7-19

interrupted loads, 5-24

interval datatypes, 6-16

INTO TABLE statement

effect on bind array size, 5-50

multiple statements with SQL*Loader, 5-39

SQL*Loader, 5-31

column names, 6-5

discards, 5-15

invalid data

Import, 2-48

invalid objects

warning messages during import, 2-46

invoking

Export, 1-5

as SYSDBA, 1-7

at the command line, 1-5

direct path, 1-52

interactively, 1-6

with a parameter file, 1-6

Import, 2-10

as SYSDBA, 2-12

at the command line, 2-10

interactively, 2-10

with a parameter file, 2-11

K
key values

generating with SQL*Loader, 6-57

L
leading whitespace

definition, 6-44

trimming and SQL*Loader, 6-47

length indicator

determining size, 5-47

length subfield

VARCHAR DATA

SQL*Loader, 6-13

length-value datatypes, 6-7

length-value pair specified LOBs, 7-27

libraries

foreign function

exporting, 1-56

importing, 2-60

little endian data

external tables, 12-7

LOAD parameter

for SQL*Loader command line, 4-9

loading

collections, 7-29

column objects, 7-1

in variable record format, 7-3

with a derived subtype, 7-4

with user-defined constructors, 7-8

combined physical records, 10-14

datafiles containing tabs

SQL*Loader, 6-4

delimited, free-format files, 10-11

external table data

skipping records, 12-10

specifying conditions, 12-7, 12-12

fixed-length data, 10-8

LOBs, 7-18

negative numbers, 10-15

nested column objects, 7-4

object tables, 7-12

object tables with a subtype, 7-13

REF columns, 7-15

subpartitioned tables, 9-6

tables, 9-6

variable-length data, 10-5

XML columns, 7-18

LOB data, 3-9

compression during export, 1-18

Export, 1-56

in delimited fields, 7-20

in length-value pair fields, 7-21

in predetermined size fields, 7-19

LOB read buffer

size of, 4-11

LOBFILEs, 3-9, 7-18, 7-23

example, 10-38
Index-13

LOBs

loading, 7-18

log files

after a discontinued load, 5-26

example, 10-26, 10-32

Export, 1-23, 1-48

Import, 2-25, 2-46

specifying for SQL*Loader, 4-9

SQL*Loader, 3-11

SQL*Loader datafile information, 8-4

SQL*Loader global information, 8-2

SQL*Loader header Information, 8-1

SQL*Loader summary statistics, 8-5

SQL*Loader table information, 8-2

SQL*Loader table load information, 8-5

LOG parameter

for Export utility, 1-23

for Import utility, 2-25

for SQL*Loader command line, 4-9

logical records

consolidating multiple physical records using

SQL*Loader, 5-27

LONG data

C language datatype LONG FLOAT, 6-10

exporting, 1-56

importing, 2-61

LONG VARRAW datatype, 6-14

M
master tables

snapshots

Import, 2-63

materialized views, 2-63

media recovery

direct path load, 9-15

messages

Export

completion, 1-49

nonrecoverable, 1-49

warning, 1-48

Import

completion, 2-46

nonrecoverable, 2-46

warning, 2-46

Metadata API, 15-2

browsing interface, 15-10

enhancing performance, 15-9

implementation, 15-4

programmatic interface, 15-4

programming example, 15-11

missing data columns

SQL*Loader, 5-37

multibyte character sets

blanks with SQL*Loader, 6-32

SQL*Loader, 5-17

multiple-column indexes

SQL*Loader, 9-19

multiple-CPU systems

optimizing direct path loads, 9-23

multiple-table load

generating unique sequence numbers using

SQL*Loader, 6-58

SQL*Loader control file specification, 5-39

multithreading

on multiple-CPU systems, 9-23

MULTITHREADING parameter

for SQL*Loader command line, 4-9

N
native datatypes

conflicting length specifications

SQL*Loader, 6-21

negative numbers

loading, 10-15

nested column objects

loading, 7-4

nested tables

exporting, 1-58

consistency and, 1-18

importing, 2-58

networks

Import and, 2-54

transporting export files across, 1-53

new features, xliii

NLS_LANG environment variable, 2-55

Export, 1-54

Import, 2-55

NOLOG attribute, 9-21
Index-14

nonrecoverable errors

Export, 1-49

Import, 2-46

nonscalar datatypes, 7-6

normalizing data during a load

SQL*Loader, 10-19

NOT NULL constraint

load method, 9-10

null data

missing columns at end of record during

load, 5-37

unspecified columns and SQL*Loader, 6-5

NULL values

objects, 7-6

NULLIF clause

SQL*Loader, 6-29, 6-41

NULLIF...BLANKS clause

example, 10-25

SQL*Loader, 6-31

nulls

atomic, 7-7

attribute, 7-6

NUMBER datatype

SQL*Loader, 6-23

numeric EXTERNAL datatypes

delimited form and SQL*Loader, 6-24

determining length, 6-28

SQL*Loader, 6-19

O
object identifiers, 7-12

importing, 2-56

object names

SQL*Loader, 5-5

object support, 3-15

object tables

loading, 7-12

with a subtype

loading, 7-13

object type definitions

exporting, 1-57

OBJECT_CONSISTENT parameter

for Export utility, 1-24

objects, 3-13

considerations for importing, 2-56

creation errors, 2-48

ignoring existing objects during import, 2-23

import creation errors, 2-23

loading nested column objects, 7-4

NULL values, 7-6

stream record format, 7-2

variable record format, 7-3

offline bitmapped tablespaces

exporting, 1-56

OID. See object identifiers

online help

Export, 1-13

Import, 2-14

operating systems

moving data to different systems using

SQL*Loader, 6-36

OPTIMAL storage parameter

for Import utility, 2-66

optimizer statistics, 2-68

optimizing

direct path loads, 9-17

SQL*Loader input file processing, 5-11

OPTIONALLY ENCLOSED BY clause

SQL*Loader, 6-46

OPTIONS parameter

for parallel loads, 5-34

for SQL*Loader utility, 5-4

Oracle Advanced Queuing. See Advanced Queuing

Oracle Net

using to export over a network, 1-53

Oracle version 6

exporting database objects, 2-71

OWNER parameter

for Export utility, 1-24

P
padding of literal strings

SQL*Loader, 6-32

parallel loads, 9-30

restrictions on direct path, 9-32

PARALLEL parameter, 9-32

for SQL*Loader command line, 4-10

parameter files
Index-15

Export, 1-24

comments in, 1-7

maximum size, 1-7

Import, 2-25

comments in, 2-12

maximum size, 2-11

SQL*Loader, 4-10

PARFILE parameter

for Export command line, 1-24

for Import command line, 2-25

for SQL*Loader command line, 4-10

PART statement in DB2

not allowed by SQL*Loader, B-3

partitioned loads

concurrent conventional path loads, 9-30

SQL*Loader, 9-30

partitioned tables

example, 10-34

export consistency and, 1-18

exporting, 1-12

importing, 2-35, 2-50

in DB2

no Oracle equivalent, B-3

loading, 9-6

partitioning a database migration, 1-60

advantages of, 1-60, 2-69

disadvantages of, 1-60, 2-69

procedure during export, 1-61

procedure during import, 2-69

partition-level Export, 1-12

example session, 1-41

partition-level Import, 2-49

specifying, 1-28

pattern matching

table names during import, 2-29

performance

Import, 2-19

improving when using integrity

constraints, 9-30

issues when using external tables, 11-6

optimizing for direct path loads, 9-17

optimizing reading of SQL*Loader data

files, 5-11

PIECED parameter

SQL*Loader, 9-16

POSITION parameter

using with data containing tabs, 6-4

with multiple SQL*Loader INTO TABLE

clauses, 5-41, 6-3, 6-4

predetermined size fields

SQL*Loader, 6-45

predetermined size LOBs, 7-25

prerequisites

SQL*Loader, 9-2

PRESERVE BLANKS option

SQL*Loader, 6-49

PRESERVE parameter, 5-29

preserving

whitespace, 6-49

presorting

data for a direct path load

example, 10-25

PRIMARY KEY constraints

effect on direct path load, 9-35

primary key OIDs

example, 7-12, 10-43

primary key REF columns, 7-16

privileges

EXEMPT ACCESS POLICY

effect on direct path export, 1-52

required for Export, 1-4

required for Import, 2-5

required for SQL*Loader, 9-2

Q
QUERY parameter

for Export utility, 1-24

restrictions, 1-25

quotation marks

escaping, 5-6

filenames, 5-6

SQL string, 5-5

table names and, 1-29, 2-31

use with database object names, 5-5

R
RAW datatype

SQL*Loader, 6-20
Index-16

read-consistent export, 1-18

read-only databases

exporting from, 1-60

read-only tablespaces

Import, 2-66

READSIZE parameter

for SQL*Loader command line, 4-10

effect on LOBs, 4-11

maximum size, 4-11

real REF columns, 7-15

RECNUM parameter

use with SQL*Loader SKIP parameter, 6-56

RECORDLENGTH parameter

for Export utility, 1-26

for Import utility, 2-25

records

consolidating into a single logical record

SQL*Loader, 5-27

discarded by SQL*Loader, 3-10, 5-14

DISCARDMAX command-line parameter, 4-6

distinguishing different formats for

SQL*Loader, 5-40

extracting multiple logical records using

SQL*Loader, 5-39

fixed format, 3-4

missing data columns during load, 5-37

rejected by SQL*Loader, 3-10, 5-12

setting column to record number with

SQL*Loader, 6-56

specifying how to load, 4-9

specifying length for export, 1-26

specifying length for import, 2-25

stream record format, 3-6

recoverable errors

flagged as warnings in Export, 1-48

flagged as warnings in Import, 2-46

recovery

direct path load

SQL*Loader, 9-15

replacing rows, 5-33

redo logs

direct path load, 9-15

instance and media recovery

SQL*Loader, 9-15

minimizing use during direct path loads, 9-20

saving space

direct path load, 9-20

REF columns, 7-15

loading, 7-15

primary key, 7-16

real, 7-15

REF data

importing, 2-59

REF fields

example, 10-43

referential integrity constraints

disabling for import, 2-8

SQL*Loader, 9-25

refresh error

snapshots

Import, 2-63

reject files

specifying for SQL*Loader, 5-11

rejected records

SQL*Loader, 3-10, 5-12

relative field positioning

where a field starts and SQL*Loader, 6-46

with multiple SQL*Loader INTO TABLE

clauses, 5-40

remote operation

Export/Import, 1-53, 2-54

REPLACE table

example, 10-15

replacing a table using SQL*Loader, 5-33

resource errors

Import, 2-49

RESOURCE role, 2-6

restrictions

DB2 load utility, B-3

importing into another user’s schema, 2-7

table names in Export parameter file, 1-30

table names in Import parameter file, 2-31

RESUMABLE parameter

for Export utility, 1-26

for Import utility, 2-26

for SQL*Loader utility, 4-11

resumable space allocation

enabling and disabling, 1-26, 2-26, 4-11

RESUMABLE_NAME parameter

for Export utility, 1-26
Index-17

for Import utility, 2-26

for SQL*Loader utility, 4-12

RESUMABLE_TIMEOUT parameter

for Export utility, 1-27

for Import utility, 2-26

for SQL*Loader utility, 4-12

RESUME parameter

for DB2, 5-33, B-1

roles

EXP_FULL_DATABASE, 1-5

IMP_FULL_DATABASE, 2-5

RESOURCE, 2-6

rollback segments

controlling size during import, 2-19

effects of CONSISTENT Export parameter, 1-18

row errors

Import, 2-48

rows

choosing which to load using SQL*Loader, 5-35

exporting, 1-27

specifying for import, 2-27

specifying number to insert before save

SQL*Loader, 9-14

updates to existing rows with SQL*Loader, 5-34

ROWS parameter

for Export utility, 1-27

for Import utility, 2-27

for SQL*Loader command line, 4-12

performance issues

SQL*Loader, 9-20

using to specify when data saves occur, 9-14

S
schemas

specifying for Export, 1-28

scientific notation for FLOAT EXTERNAL, 6-20

script files

running before Export, 1-3

running before Import, 2-5

SDFs. See secondary datafiles

secondary datafiles, 3-9, 7-31

security considerations

direct path export, 1-52

segments

temporary

FILE parameter in SQL*Loader, 9-33

sequence numbers

cached, 1-56

exporting, 1-56

for multiple tables and SQL*Loader, 6-58

generated by SQL*Loader SEQUENCE

clause, 6-57, 10-11

generated, not read and SQL*Loader, 6-5

setting column to a unique number with

SQL*Loader, 6-57

SEQUENCE parameter

SQL*Loader, 6-57

short records with missing data

SQL*Loader, 5-37

SHORTINT datatype

C language, 6-9

SHOW parameter

for Import utility, 2-27

SILENT parameter

for SQL*Loader command line, 4-12

single-byte character sets

Import, 2-55

SINGLEROW parameter, 5-38, 9-25

single-table loads

continuing, 5-26

SKIP parameter

effect on SQL*Loader RECNUM

specification, 6-56

for SQL*Loader command line, 4-13

SKIP_INDEX_MAINTENANCE parameter

for SQL*Loader command line, 4-14, 9-24

SKIP_UNUSABLE_INDEXES parameter

for Import utility, 2-27

for SQL*Loader command line, 4-14, 9-24

skipping index maintenance, 4-14, 9-24

skipping unusable indexes, 4-14, 9-24

SMALLINT datatype, 6-9

snapshot log

Import, 2-63

snapshots, 2-64

importing, 2-63

master table

Import, 2-63

restoring dropped
Index-18

Import, 2-64

SORTED INDEXES clause

direct path loads, 5-38

example, 10-25

SQL*Loader, 9-18

sorting

multiple-column indexes

SQL*Loader, 9-19

optimum sort order

SQL*Loader, 9-19

presorting in direct path load, 9-18

SORTED INDEXES clause

SQL*Loader, 9-18

SQL operators

applying to fields, 6-50

SQL strings

applying SQL operators to fields, 6-50

example, 10-28

quotation marks, 5-5

SQL*Loader

appending rows to tables, 5-33

BAD command-line parameter, 4-3

bad file, 4-3

BADDN parameter, 5-12

BADFILE parameter, 5-12

bind arrays and performance, 5-44

BINDSIZE command-line parameter, 4-4, 5-45

case studies, 10-2

direct path load, 10-24

extracting data from a formatted

report, 10-28

loading combined physical records, 10-14

loading data in Unicode character set, 10-47

loading data into multiple tables, 10-18

loading delimited, free-format files, 10-11

loading fixed-length data, 10-8

loading LOBFILEs (CLOBs), 10-38

loading partitioned tables, 10-34

loading REF fields, 10-43

loading variable-length data, 10-5

loading VARRAYs, 10-43

choosing which rows to load, 5-35

COLUMNARRAYROWS command-line

parameter, 4-4

command-line parameters, 4-1

CONCATENATE parameter, 5-27

CONTINUEIF parameter, 5-27

continuing single-table loads, 5-26

CONTROL command-line parameter, 4-4

conventional path loads, 9-4

DATA command-line parameter, 4-5

data conversion, 3-9

data definition language

syntax diagrams, A-1

datatype specifications, 3-9

DATE_CACHE command-line parameter, 4-5

DIRECT command-line parameter, 9-11

direct path method, 3-12

using date cache feature to improve

performance, 9-22

DISCARD command-line parameter, 4-6

discarded records, 3-10

DISCARDFILE parameter, 5-14

DISCARDMAX command-line parameter, 4-6

DISCARDMAX parameter, 5-16

DISCARDS parameter, 5-16

errors caused by tabs, 6-4

ERRORS command-line parameter, 4-6

example sessions, 10-2

exclusive access, 9-30

FILE command-line parameter, 4-9

filenames, 5-5

globalization technology, 5-16

index options, 5-38

inserting rows into tables, 5-33

INTO TABLE statement, 5-31

LOAD command-line parameter, 4-9

load methods, 9-1

loading column objects, 7-1

loading data across different platforms, 6-36

loading data contained in the control file, 6-55

loading object tables, 7-12

LOG command-line parameter, 4-9

log file datafile information, 8-4

log file entries, 8-1

log file global information, 8-2

log file header information, 8-1

log file summary statistics, 8-5

log file table information, 8-2

log file table load information, 8-5
Index-19

log files, 3-11

methods of loading data, 3-11

multiple INTO TABLE statements, 5-39

MULTITHREADING command-line

parameter, 4-9

object names, 5-5

parallel data loading, 9-30, 9-31, 9-35

PARFILE command-line parameter, 4-10

READSIZE command-line parameter, 4-10

maximum size, 4-11

rejected records, 3-10

replacing rows in tables, 5-33

required privileges, 9-2

RESUMABLE parameter, 4-11

RESUMABLE_NAME parameter, 4-12

RESUMABLE_TIMEOUT parameter, 4-12

ROWS command-line parameter, 4-12

SILENT command-line parameter, 4-12

SINGLEROW parameter, 5-38

SKIP_INDEX_MAINTENANCE command-line

parameter, 4-14

SKIP_UNUSABLE_INDEXES command-line

parameter, 4-14

SORTED INDEXES during direct path

loads, 5-38

specifying columns, 6-5

specifying datafiles, 5-7

specifying field conditions, 6-29

specifying fields, 6-5

specifying more than one datafile, 5-9

STREAMSIZE command-line parameter, 4-15

suppressing messages, 4-12

updating rows, 5-34

USERID command-line parameter, 4-15

SQL/DS option (DB2 file format)

not supported by SQL*Loader, B-4

statistics

analyzer, 2-68

database optimizer

specifying for Export, 1-27

optimizer, 2-68

specifying for Import, 2-28

STATISTICS parameter

for Export utility, 1-27

for Import utility, 2-27

STORAGE parameter, 9-34

storage parameters, 2-65

estimating export requirements, 1-4

OPTIMAL parameter, 2-66

overriding

Import, 2-66

preallocating

direct path load, 9-17

temporary for a direct path load, 9-12

stored functions

importing, 2-60

effect of COMPILE parameter, 2-60

stored packages

importing, 2-60

effect of COMPILE parameter, 2-60

stored procedures

direct path load, 9-29

importing, 2-60

effect of COMPILE parameter, 2-60

stream buffer

specifying size for direct path, 9-21

stream record format, 3-6

loading column objects in, 7-2

STREAMS_CONFIGURATION parameter

for Import utility, 2-28

STREAMS_INSTANTIATION parameter

for Import utility, 2-28

STREAMSIZE parameter

for SQL*Loader command line, 4-15

string comparisons

SQL*Loader, 6-32

subpartitioned tables

loading, 9-6

synonyms

direct path load, 9-10

exporting, 1-58

syntax diagrams

SQL*Loader, A-1

symbols used in BNF variant, C-1

SYSDATE datatype

example, 10-28

SYSDATE parameter

SQL*Loader, 6-56

system objects

importing, 2-7
Index-20

system triggers

effect on import, 2-9

testing, 2-9

T
table mode export, 1-8

table names

preserving case sensitivity, 1-29

table-level Export, 1-12

table-level Import, 2-49

table-mode Export

specifying, 1-28

table-mode Import

examples, 2-35

tables

Advanced Queuing

exporting, 1-58

importing, 2-61

appending rows with SQL*Loader, 5-33

defining before Import, 2-8

definitions

creating before Import, 2-8

exclusive access during direct path loads

SQL*Loader, 9-30

external, 11-1

importing, 2-29

insert triggers

direct path load in SQL*Loader, 9-27

inserting rows using SQL*Loader, 5-33

loading data into more than one table using

SQL*Loader, 5-39

loading object tables, 7-12

maintaining consistency during Export, 1-18

manually ordering for Import, 2-9

master table

Import, 2-63

name restrictions

Export, 1-30

Import, 2-29, 2-31

nested

exporting, 1-58

importing, 2-58

objects

order of import, 2-3

partitioned, 1-12

partitioned in DB2

no Oracle equivalent, B-3

replacing rows using SQL*Loader, 5-33

specifying for export, 1-28

specifying table-mode Export, 1-28

SQL*Loader method for individual tables, 5-32

truncating

SQL*Loader, 5-34

updating existing rows using SQL*Loader, 5-34

See also external tables

TABLES parameter

for Export utility, 1-28

for Import utility, 2-29

tablespace mode export, 1-8

tablespaces

dropping during import, 2-67

exporting a set of, 1-59

metadata

transporting, 2-33

moving from one database to another, 2-64

read-only

Import, 2-66

reorganizing

Import, 2-67

TABLESPACES parameter

for Export utility, 1-30

for Import utility, 2-31

tabs

loading datafiles containing tabs, 6-4

trimming, 6-42

whitespace, 6-42

temporary segments, 9-33

FILE parameter

SQL*Loader, 9-33

temporary storage in a direct path load, 9-12

TERMINATED BY

SQL*Loader, 6-25

WHITESPACE

SQL*Loader, 6-25

TERMINATED BY clause

with OPTIONALLY ENCLOSED BY, 6-46

terminated fields

specified with a delimiter, 6-46

specified with delimiters and SQL*Loader, 6-25
Index-21

time

SQL*Loader datatypes for, 6-16

TOID_NOVALIDATE parameter

for Import utility, 2-31

TOUSER parameter

for Import utility, 2-32

trailing blanks

loading with delimiters, 6-27

TRAILING NULLCOLS parameter

example, 10-28

for SQL*Loader utility, 5-3, 5-37

trailing whitespace

trimming, 6-49

TRANSPORT_TABLESPACE parameter

for Export utility, 1-31

for Import utility, 2-33

transportable tablespaces, 1-59, 2-64

triggers

database insert, 9-27

permanently disabled, 9-30

replacing with integrity constraints, 9-27

schema and database

effect on Import, 2-9

system

testing, 2-9

update

SQL*Loader, 9-28

TRIGGERS parameter

for Export utility, 1-31

trimming

summary, 6-43

trailing whitespace

SQL*Loader, 6-49

TTS_FULL_CHECK parameter

for Export utility, 1-31

TTS_OWNERS parameter

for Import utility, 2-33

U
UNIQUE KEY constraints

effect on direct path load, 9-35

unique values

generating with SQL*Loader, 6-57

uniqueness constraints

preventing errors during import, 2-19

UNLOAD statement (DB2 file format)

not supported by SQL*Loader, B-3

UNRECOVERABLE parameter

SQL*Loader, 9-20

unsorted data

direct path load

SQL*Loader, 9-18

updating

rows in a table

SQL*Loader, 5-34

user definitions

importing, 2-71

user mode export, 1-8

specifying, 1-24

USER_SEGMENTS view

Export and, 1-4

user-defined constructors, 7-8

loading column objects with, 7-8

USERID parameter

for Export utility, 1-31

for Import utility, 2-33

for SQL*Loader command line, 4-15

V
value datatypes, 6-7

VARCHAR datatype

SQL*Loader, 6-13

VARCHAR2 datatype, 2-71

SQL*Loader, 6-23

VARCHARC datatype

SQL*Loader, 6-20

VARGRAPHIC datatype

SQL*Loader, 6-12

variable records, 3-5

format, 7-3

variable-length records

external tables, 12-5

VARRAW datatype, 6-14

VARRAWC datatype, 6-21

VARRAY columns

memory issues when loading, 7-34

VOLSIZE parameter

for Export utility, 1-32
Index-22

for Import utility, 2-34

W
WHEN clause

example, 10-19

SQL*Loader, 5-35, 6-29

SQL*Loader discards resulting from, 5-15

whitespace

included in a field, 6-47

leading, 6-44

preserving, 6-49

terminating a field, 6-24, 6-47

trimming, 6-42

WHITESPACE parameter

SQL*Loader, 6-25

X
XML columns

loading, 7-18

treatment by SQL*Loader, 7-18

Z
ZONED datatype, 6-10

EXTERNAL format

SQL*Loader, 6-19
Index-23

Index-24

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	What’s New in Database Utilities?
	Oracle9i Utilities New Features for Release 9.2
	Oracle9i Utilities New Features for Release 9.0.1
	Oracle8i Utilities New Features

	Part I� Export and Import
	1 Export
	What Is the Export Utility?
	Before Using Export
	Running catexp.sql or catalog.sql
	Ensuring Sufficient Disk Space
	Verifying Access Privileges

	Invoking Export
	Command-Line Entries
	Interactive Export Prompts
	Parameter Files
	Invoking Export As SYSDBA

	Export Modes
	Table-Level and Partition-Level Export
	Table-Level Export
	Partition-Level Export

	Processing Restrictions

	Getting Online Help
	Export Parameters
	BUFFER
	Example: Calculating Buffer Size

	COMPRESS
	CONSISTENT
	CONSTRAINTS
	DIRECT
	FEEDBACK
	FILE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	GRANTS
	HELP
	INDEXES
	LOG
	OBJECT_CONSISTENT
	OWNER
	PARFILE
	QUERY
	Restrictions

	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	STATISTICS
	TABLES
	Table Name Restrictions

	TABLESPACES
	TRANSPORT_TABLESPACE
	TRIGGERS
	TTS_FULL_CHECK
	USERID (username/password)
	VOLSIZE
	Parameter Interactions

	Example Export Sessions
	Example Export Session in Full Database Mode
	Example Export Session in User Mode
	Example Export Sessions in Table Mode
	Example 1: DBA Exporting Tables for Two Users
	Example 2: User Exports Tables That He Owns
	Example 3: Using Pattern Matching to Export Various Tables

	Example Export Session Using Partition-Level Export
	Example 1: Exporting a Table Without Specifying a Partition
	Example 2: Exporting a Table with a Specified Partition
	Example 3: Exporting a Composite Partition

	Using the Interactive Method
	Restrictions

	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Nonrecoverable Error Messages
	Completion Messages

	Exit Codes for Inspection and Display
	Conventional Path Export Versus Direct Path Export
	Invoking a Direct Path Export
	Security Considerations for Direct Path Exports
	Performance Issues for Direct Path Exports

	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Oracle Net

	Character Set and Globalization Support Considerations
	Character Set Conversion
	Effect of Character Set Sorting Order on Conversions
	Multibyte Character Sets and Export and Import

	Instance Affinity and Export
	Considerations When Exporting Database Objects
	Exporting Sequences
	Exporting LONG and LOB Datatypes
	Exporting Foreign Function Libraries
	Exporting Offline Bitmapped Tablespaces
	Exporting Directory Aliases
	Exporting BFILE Columns and Attributes
	External Tables
	Exporting Object Type Definitions
	Exporting Nested Tables
	Exporting Advanced Queue (AQ) Tables
	Exporting Synonyms
	Possible Export Errors Related to Java Synonyms

	Support for Fine-Grained Access Control

	Transportable Tablespaces
	Exporting from a Read-Only Database
	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Using Different Releases and Versions of Export
	Restrictions When Using Different Releases and Versions of Export and Import
	Examples of Using Different Releases of Export and Import
	Creating Oracle Release 8.0 Export Files from an Oracle9i Database
	Possible Errors When Using Different Releases and Versions
	EXP-24
	EXP-23
	EXP-37

	2 Import
	What Is the Import Utility?
	Table Objects: Order of Import

	Before Using Import
	Running catexp.sql or catalog.sql
	Verifying Access Privileges
	Importing Objects into Your Own Schema
	Importing Grants
	Importing Objects into Other Schemas
	Importing System Objects

	Importing into Existing Tables
	Manually Creating Tables Before Importing Data
	Disabling Referential Constraints
	Manually Ordering the Import

	Effect of Schema and Database Triggers on Import Operations
	Invoking Import
	Command-Line Entries
	Interactive Import Prompts
	Parameter Files
	Invoking Import As SYSDBA

	Import Modes
	Getting Online Help
	Import Parameters
	BUFFER
	CHARSET
	COMMIT
	COMPILE
	CONSTRAINTS
	DATAFILES
	DESTROY
	FEEDBACK
	FILE
	FILESIZE
	FROMUSER
	FULL
	GRANTS
	HELP
	IGNORE
	 INDEXES
	INDEXFILE
	LOG
	PARFILE
	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	SHOW
	SKIP_UNUSABLE_INDEXES
	STATISTICS
	STREAMS_CONFIGURATION
	STREAMS_INSTANTIATION
	TABLES
	Table Name Restrictions

	TABLESPACES
	TOID_NOVALIDATE
	TOUSER
	TRANSPORT_TABLESPACE
	TTS_OWNERS
	USERID (username/password)
	VOLSIZE

	Example Import Sessions
	Example Import of Selected Tables for a Specific User
	Example Import of Tables Exported by Another User
	Example Import of Tables from One User to Another
	Example Import Session Using Partition-Level Import
	Example 1: A Partition-Level Import
	Example 2: A Partition-Level Import of a Composite Partitioned Table
	Example 3: Repartitioning a Table on a Different Column

	Example Import of Using Pattern Matching to Import Various Tables

	Using the Interactive Method
	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Nonrecoverable Error Messages
	Completion Messages

	Exit Codes for Inspection and Display
	Error Handling During an Import
	Row Errors
	Failed Integrity Constraints
	Invalid Data

	Errors Importing Database Objects
	Object Already Exists
	Sequences
	Resource Errors
	Domain Index Metadata

	Table-Level and Partition-Level Import
	Guidelines for Using Table-Level Import
	Guidelines for Using Partition-Level Import
	Migrating Data Across Partitions and Tables

	Controlling Index Creation and Maintenance
	Delaying Index Creation
	Index Creation and Maintenance Controls
	Example of Postponing Index Maintenance

	Reducing Database Fragmentation
	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Oracle Net

	Character Set and Globalization Support Considerations
	Character Set Conversion
	User Data
	Data Definition Language (DDL)

	Import and Single-Byte Character Sets
	Import and Multibyte Character Sets

	Considerations When Importing Database Objects
	Importing Object Identifiers
	Importing Existing Object Tables and Tables That Contain Object Types
	Importing Nested Tables
	Importing REF Data
	Importing BFILE Columns and Directory Aliases
	Importing Foreign Function Libraries
	Importing Stored Procedures, Functions, and Packages
	Importing Java Objects
	Importing External Tables
	Importing Advanced Queue (AQ) Tables
	Importing LONG Columns
	Importing Views
	Importing Partitioned Tables
	Support for Fine-Grained Access Control

	Materialized Views and Snapshots
	Snapshot Log
	Snapshots
	Importing a Snapshot
	Importing a Snapshot into a Different Schema

	Transportable Tablespaces
	Storage Parameters
	The OPTIMAL Parameter
	Storage Parameters for OID Indexes and LOB Columns
	Overriding Storage Parameters
	The Export COMPRESS Parameter
	Read-Only Tablespaces

	Dropping a Tablespace
	Reorganizing Tablespaces
	Importing Statistics
	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Using Export Files from a Previous Oracle Release
	Using Oracle Version 7 Export Files
	Check Constraints on DATE Columns

	Using Oracle Version 6 Export Files
	User Privileges
	CHAR Columns
	Status of Integrity Constraints
	Length of Default Column Values

	Using Oracle Version 5 Export Files
	Restrictions When Using Different Releases and Versions of Export and Import
	The CHARSET Parameter

	Part II� SQL*Loader
	3 SQL*Loader Concepts
	SQL*Loader Features
	SQL*Loader Control File
	Input Data and Datafiles
	Fixed Record Format
	Variable Record Format
	Stream Record Format
	Logical Records
	Data Fields

	LOBFILEs and Secondary Datafiles (SDFs)
	Data Conversion and Datatype Specification
	Discarded and Rejected Records
	The Bad File
	SQL*Loader Rejects
	Oracle Rejects

	The Discard File

	Log File and Logging Information
	Conventional Path Loads, Direct Path Loads, and External Table Loads
	Conventional Path Loads
	Direct Path Loads
	Parallel Direct Path

	External Table Loads

	Loading Objects, Collections, and LOBs
	Supported Object Types
	column-objects
	row objects

	Supported Collection Types
	Nested Tables
	VARRAYs

	Supported LOB Types

	Partitioned Object Support
	Application Development: Direct Path Load API

	4 SQL*Loader Command-Line Reference
	Invoking SQL*Loader
	Specifying Parameters in the Control File

	Command-Line Parameters
	BAD (bad file)
	BINDSIZE (maximum size)
	COLUMNARRAYROWS
	CONTROL (control file)
	DATA (datafile)
	DATE_CACHE
	DIRECT (data path)
	DISCARD (filename)
	DISCARDMAX (integer)
	ERRORS (errors to allow)
	EXTERNAL_TABLE
	Restrictions When Using EXTERNAL_TABLE

	FILE (file to load into)
	LOAD (records to load)
	LOG (log file)
	MULTITHREADING
	PARALLEL (parallel load)
	PARFILE (parameter file)
	READSIZE (read buffer size)
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS (rows per commit)
	SILENT (feedback mode)
	SKIP (records to skip)
	SKIP_INDEX_MAINTENANCE
	SKIP_UNUSABLE_INDEXES
	STREAMSIZE
	USERID (username/password)

	Exit Codes for Inspection and Display

	5 SQL*Loader Control File Reference
	Control File Contents
	Comments in the Control File

	Specifying Command-Line Parameters in the Control File
	OPTIONS Clause

	Specifying Filenames and Object Names
	Filenames That Conflict with SQL and SQL*Loader Reserved Words
	Specifying SQL Strings
	Operating System Considerations
	Specifying a Complete Path
	Backslash Escape Character
	Nonportable Strings
	Escaping the Backslash
	Escape Character Is Sometimes Disallowed

	Specifying Datafiles
	Examples of INFILE Syntax
	Specifying Multiple Datafiles

	Identifying Data in the Control File with BEGINDATA
	Specifying Datafile Format and Buffering
	Specifying the Bad File
	Examples of Specifying a Bad File Name
	How Bad Files Are Handled with LOBFILEs and SDFs
	Criteria for Rejected Records

	Specifying the Discard File
	Specifying the Discard File in the Control File
	Specifying the Discard File from the Command Line
	Examples of Specifying a Discard File Name
	Criteria for Discarded Records
	How Discard Files Are Handled with LOBFILEs and SDFs
	Limiting the Number of Discarded Records

	Handling Different Character Encoding Schemes
	Multibyte (Asian) Character Sets
	Unicode Character Sets
	Database Character Sets
	Datafile Character Sets
	Input Character Conversion
	CHARACTERSET Parameter
	Control File Character Set
	Character-Length Semantics

	Interrupted Loads
	Discontinued Conventional Path Loads
	Discontinued Direct Path Loads
	Load Discontinued Because of Space Errors
	Load Discontinued Because Maximum Number of Errors Exceeded
	Load Discontinued Because of Fatal Errors
	Load Discontinued Because a Control+C Was Issued

	Status of Tables and Indexes After an Interrupted Load
	Using the Log File to Determine Load Status
	Continuing Single-Table Loads

	Assembling Logical Records from Physical Records
	Using CONCATENATE to Assemble Logical Records
	Using CONTINUEIF to Assemble Logical Records

	Loading Logical Records into Tables
	Specifying Table Names
	INTO TABLE Clause

	Table-Specific Loading Method
	Loading Data into Empty Tables
	Loading Data into Nonempty Tables

	Table-Specific OPTIONS Parameter
	Loading Records Based on a Condition
	Using the WHEN Clause with LOBFILEs and SDFs

	Specifying Default Data Delimiters
	fields_spec
	termination_spec
	enclosure_spec

	Handling Short Records with Missing Data
	TRAILING NULLCOLS Clause

	Index Options
	SORTED INDEXES Clause
	SINGLEROW Option

	Benefits of Using Multiple INTO TABLE Clauses
	Extracting Multiple Logical Records
	Relative Positioning Based on Delimiters

	Distinguishing Different Input Record Formats
	Relative Positioning Based on the POSITION Parameter

	Distinguishing Different Input Row Object Subtypes
	Loading Data into Multiple Tables
	Summary

	Bind Arrays and Conventional Path Loads
	Size Requirements for Bind Arrays
	Performance Implications of Bind Arrays
	Specifying Number of Rows Versus Size of Bind Array
	Calculations to Determine Bind Array Size
	Determining the Size of the Length Indicator
	Calculating the Size of Field Buffers

	Minimizing Memory Requirements for Bind Arrays
	Calculating Bind Array Size for Multiple INTO TABLE Clauses

	6 Field List Reference
	Field List Contents
	Specifying the Position of a Data Field
	Using POSITION with Data Containing Tabs
	Using POSITION with Multiple Table Loads
	Examples of Using POSITION

	Specifying Columns and Fields
	Specifying Filler Fields
	Specifying the Datatype of a Data Field

	SQL*Loader Datatypes
	Nonportable Datatypes
	INTEGER(n)
	SMALLINT
	FLOAT
	DOUBLE
	BYTEINT
	ZONED
	DECIMAL
	VARGRAPHIC
	VARCHAR
	VARRAW
	LONG VARRAW

	Portable Datatypes
	CHAR
	Datetime and Interval Datatypes
	GRAPHIC
	GRAPHIC EXTERNAL
	Numeric EXTERNAL
	RAW
	VARCHARC
	VARRAWC
	Conflicting Native Datatype Field Lengths
	Field Lengths for Length-Value Datatypes

	Datatype Conversions
	Datatype Conversions for Datetime and Interval Datatypes
	Specifying Delimiters
	TERMINATED Fields
	ENCLOSED Fields
	Delimiter Marks in the Data
	Maximum Length of Delimited Data
	Loading Trailing Blanks with Delimiters

	Conflicting Field Lengths for Character Datatypes
	Predetermined Size Fields
	Delimited Fields
	Date Field Masks

	Specifying Field Conditions
	Comparing Fields to BLANKS
	Comparing Fields to Literals

	Using the WHEN, NULLIF, and DEFAULTIF Clauses
	Loading Data Across Different Platforms
	Byte Ordering
	Specifying Byte Order
	Using Byte Order Marks (BOMs)
	Suppressing Checks for BOMs

	Loading All-Blank Fields
	Trimming Whitespace
	Datatypes for Which Whitespace Can Be Trimmed
	Field Length Specifications for Datatypes for Which Whitespace Can Be Trimmed
	Predetermined Size Fields
	Delimited Fields

	Relative Positioning of Fields
	No Start Position Specified for a Field
	Previous Field Terminated by a Delimiter
	Previous Field Has Both Enclosure and Termination Delimiters

	Leading Whitespace
	Previous Field Terminated by Whitespace�
	Optional Enclosure Delimiters

	Trailing Whitespace
	Enclosed Fields

	Preserving Whitespace
	PRESERVE BLANKS Option
	Terminated by Whitespace

	Applying SQL Operators to Fields
	Referencing Fields
	Common Uses of SQL Operators in Field Specifications
	Combinations of SQL Operators
	Using SQL Strings with a Date Mask
	Interpreting Formatted Fields

	Using SQL*Loader to Generate Data for Input
	Loading Data Without Files
	Setting a Column to a Constant Value
	CONSTANT Parameter

	Setting a Column to an Expression Value
	EXPRESSION Parameter

	Setting a Column to the Datafile Record Number
	RECNUM Parameter

	Setting a Column to the Current Date
	SYSDATE Parameter

	Setting a Column to a Unique Sequence Number
	SEQUENCE Parameter

	Generating Sequence Numbers for Multiple Tables
	Example: Generating Different Sequence Numbers for Each Insert

	7 Loading Objects, LOBs, and Collections
	Loading Column Objects
	Loading Column Objects in Stream Record Format
	Loading Column Objects in Variable Record Format
	Loading Nested Column Objects
	Loading Column Objects with a Derived Subtype
	Specifying Null Values for Objects
	Specifying Attribute Nulls
	Specifying Atomic Nulls

	Loading Column Objects with User-Defined Constructors

	Loading Object Tables
	Loading Object Tables with a Subtype

	Loading REF Columns
	Real REF Columns
	Primary Key REF Columns
	Unscoped REF Columns That Allow Primary Keys

	Loading LOBs
	Loading LOB Data from a Primary Datafile
	LOB Data in Predetermined Size Fields
	LOB Data in Delimited Fields
	LOB Data in Length-Value Pair Fields

	Loading LOB Data from an External LOBFILE (BFILE)
	Loading LOB Data from LOBFILEs
	Dynamic Versus Static LOBFILE Specifications
	Examples of Loading LOB Data from LOBFILEs
	Considerations When Loading LOBs from LOBFILEs

	Loading Collections (Nested Tables and VARRAYs)
	Restrictions in Nested Tables and VARRAYs
	Secondary Datafiles (SDFs)

	Dynamic Versus Static SDF Specifications
	Loading a Parent Table Separately from Its Child Table
	Memory Issues When Loading VARRAY Columns

	8 SQL*Loader Log File Reference
	Header Information
	Global Information
	Table Information
	Column Information
	Position
	Length
	Delimiter
	Datatype

	Datafile Information
	Table Load Information
	Summary Statistics
	Oracle Statistics That Are Logged
	Information About Single-Partition Loads
	Statistics for Loading a Table

	Additional Summary Statistics for Direct Path Loads and Multithreading
	Log File Created When EXTERNAL_TABLE=GENERATE_ONLY

	9 Conventional and Direct Path Loads
	Data Loading Methods
	Conventional Path Load
	Conventional Path Load of a Single Partition
	When to Use a Conventional Path Load

	Direct Path Load
	Data Conversion During Direct Path Loads
	Direct Path Load of a Partitioned or Subpartitioned Table
	Direct Path Load of a Single Partition or Subpartition
	Advantages of a Direct Path Load
	Restrictions on Using Direct Path Loads
	Restrictions on a Direct Path Load of a Single Partition
	When to Use a Direct Path Load
	Integrity Constraints
	Field Defaults on the Direct Path
	Loading into Synonyms

	Using Direct Path Load
	Setting Up for Direct Path Loads
	Specifying a Direct Path Load
	Building Indexes
	Improving Performance
	Temporary Segment Storage Requirements

	Indexes Left in an Unusable State
	Using Data Saves to Protect Against Data Loss
	Using the ROWS Parameter
	Data Save Versus Commit

	Data Recovery During Direct Path Loads
	Media Recovery and Direct Path Loads
	Instance Recovery and Direct Path Loads

	Loading LONG Data Fields
	Loading Data As PIECED

	Optimizing Performance of Direct Path Loads
	Preallocating Storage for Faster Loading
	Presorting Data for Faster Indexing
	SORTED INDEXES Clause
	Unsorted Data
	Multiple-Column Indexes
	Choosing the Best Sort Order

	Infrequent Data Saves
	Minimizing Use of the Redo Log
	Disabling Archiving
	Specifying the UNRECOVERABLE Parameter
	Setting the NOLOG Attribute

	Specifying the Number of Column Array Rows and Size of Stream Buffers
	Specifying a Value for the Date Cache

	Optimizing Direct Path Loads on Multiple-CPU Systems
	Avoiding Index Maintenance
	Direct Loads, Integrity Constraints, and Triggers
	Integrity Constraints
	Enabled Constraints
	Disabled Constraints
	Reenable Constraints

	Database Insert Triggers
	Replacing Insert Triggers with Integrity Constraints
	When Automatic Constraints Cannot Be Used
	Preparation
	Using an Update Trigger
	Duplicating the Effects of Exception Conditions
	Using a Stored Procedure

	Permanently Disabled Triggers and Constraints
	Increasing Performance with Concurrent Conventional Path Loads

	Parallel Data Loading Models
	Concurrent Conventional Path Loads
	Intersegment Concurrency with Direct Path
	Intrasegment Concurrency with Direct Path
	Restrictions on Parallel Direct Path Loads
	Initiating Multiple SQL*Loader Sessions
	Parameters for Parallel Direct Path Loads
	Specifying Temporary Segments

	Enabling Constraints After a Parallel Direct Path Load
	PRIMARY KEY and UNIQUE KEY Constraints

	General Performance Improvement Hints

	10 SQL*Loader Case Studies
	The Case Studies
	Case Study Files
	Tables Used in the Case Studies
	Contents of Table emp
	Contents of Table dept

	Checking the Results of a Load
	References and Notes
	Case Study 1: Loading Variable-Length Data
	Control File for Case Study 1
	Running Case Study 1
	Log File for Case Study 1

	Case Study 2: Loading Fixed-Format Fields
	Control File for Case Study 2
	Datafile for Case Study 2
	Running Case Study 2
	Log File for Case Study 2

	Case Study 3: Loading a Delimited, Free-Format File
	Control File for Case Study 3
	Running Case Study 3
	Log File for Case Study 3

	Case Study 4: Loading Combined Physical Records
	Control File for Case Study 4
	Datafile for Case Study 4
	Rejected Records

	Running Case Study 4
	Log File for Case Study 4
	Bad File for Case Study 4

	Case Study 5: Loading Data into Multiple Tables
	Control File for Case Study 5
	Datafile for Case Study 5
	Running Case Study 5
	Log File for Case Study 5
	Loaded Tables for Case Study 5

	Case Study 6: Loading Data Using the Direct Path Load Method
	Control File for Case Study 6
	Datafile for Case Study 6
	Running Case Study 6
	Log File for Case Study 6

	Case Study 7: Extracting Data from a Formatted Report
	Creating a BEFORE INSERT Trigger
	Control File for Case Study 7
	Datafile for Case Study 7
	Running Case Study 7
	Log File for Case Study 7

	Case Study 8: Loading Partitioned Tables
	Control File for Case Study 8
	Table Creation
	Datafile for Case Study 8
	Running Case Study 8
	Log File for Case Study 8

	Case Study 9: Loading LOBFILEs (CLOBs)
	Control File for Case Study 9
	Datafiles for Case Study 9
	Running Case Study 9
	Log File for Case Study 9

	Case Study 10: Loading REF Fields and VARRAYs
	Control File for Case Study 10
	Running Case Study 10
	Log File for Case Study 10

	Case Study 11: Loading Data in the Unicode Character Set
	Control File for Case Study 11
	Datafile for Case Study 11
	Running Case Study 11
	Log File for Case Study 11
	Loaded Tables for Case Study 11

	Part III� External Tables
	11 External Tables Concepts
	The Access Driver
	External Table Restrictions
	Location of Datafiles and Output Files
	Using External Tables to Load Data
	Parallel Access to External Tables
	Performance Hints When Using External Tables
	Behavior Differences Between SQL*Loader and External Tables
	Multiple Primary Input Datafiles
	Syntax and Datatypes
	Rejected Rows
	Byte-Order Marks
	Default Character Sets and Date Masks

	12 External Tables Access Parameters
	access_parameters Clause
	record_format_info Clause
	FIXED length
	VARIABLE size
	DELIMITED BY
	CHARACTERSET
	DATA IS...ENDIAN
	BYTE ORDER MARK (CHECK | NOCHECK)
	STRING SIZES ARE IN
	LOAD WHEN
	BADFILE | NOBADFILE
	DISCARDFILE | NODISCARDFILE
	LOG FILE | NOLOGFILE
	SKIP
	READSIZE
	DATE_CACHE
	string
	condition_spec
	[directory object name:] filename
	condition
	range start : range end

	field_definitions Clause
	delim_spec
	Example: External Table with Terminating Delimiters
	Example: External Table with Enclosure and Terminator Delimiters
	Example: External Table with Optional Enclosure Delimiters

	trim_spec
	MISSING FIELD VALUES ARE NULL
	field_list
	pos_spec Clause
	start
	*
	increment
	end
	length

	datatype_spec Clause
	[UNSIGNED] INTEGER [EXTERNAL] [(len)]
	DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
	ORACLE_DATE
	ORACLE_NUMBER
	DOUBLE [EXTERNAL]
	FLOAT [EXTERNAL]
	RAW
	CHAR
	date_format_spec
	VARCHAR and VARRAW
	VARCHARC and VARRAWC

	init_spec Clause

	Part IV� Other Utilities
	13 DBVERIFY: Offline Database Verification Utility
	Using DBVERIFY to Validate Disk Blocks of a Single Datafile
	Syntax
	Parameters
	Command-Line Interface
	Sample DBVERIFY Output

	Using DBVERIFY to Validate a Segment
	Syntax
	Parameters
	Command-Line Interface

	14 DBNEWID Utility
	What Is the DBNEWID Utility?
	Ramifications of Changing the DBID and DBNAME
	Changing the DBID and DBNAME of a Database
	Changing the DBID and Database Name
	Changing Only the Database Name
	Troubleshooting a DBID Change Operation
	Troubleshooting a Database Name Change Operation

	DBNEWID Syntax
	Parameters
	Restrictions and Usage Notes
	Examples of Using DBNEWID
	Changing Only the DBID
	Changing the DBID and Database Name
	Changing Only the Database Name

	15 Using the Metadata API
	Introduction to the Metadata API
	Previous Methods Used to Extract Metadata
	Metadata API Components
	Metadata API Features
	Internet Computing

	How Is the Metadata API Implemented?
	DBMS_METADATA and Security

	DBMS_METADATA Programmatic Interface
	Using the DBMS_METADATA.FETCH_XML Procedure
	Using the DBMS_METADATA.FETCH_DDL Procedure
	Performance Tips for the Programmatic Interface of the Metadata API

	DBMS_METADATA Browsing Interface
	Example: Using the DBMS_METADATA Browsing Interface

	Metadata API Example
	mddemo.sql
	PAYROLL_DEMO Output

	Part V� Appendixes
	A SQL*Loader Syntax Diagrams
	B DB2/DXT User Notes
	Using the DB2 RESUME Option
	Inclusions for Compatibility
	LOG Statement
	WORKDDN Statement
	SORTDEVT and SORTNUM Statements
	DISCARD Specification

	Restrictions
	FORMAT Statement
	PART Statement
	SQL/DS Option
	DBCS Graphic Strings

	SQL*Loader Syntax with DB2-Compatible Statements

	C Backus-Naur Form Syntax
	Index

