
Oracle9 i

Application Developer’s Guide - Large Objects (LOBs)

Release 2 (9.2)

March 2002

Part No. A96591-01

Oracle9i Application Developer’s Guide - Large Objects (LOBs), Release 2 (9.2)

Part No. A96591-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Authors: Eric Paapanen, Shelley Higgins, Susan Kotsovolos, Den Raphaely

Contributing Authors: K. Akiyama, Geeta Arora, S. Banerjee, Yujie Cao, T. H. Chang, E. Chong, S. Das,
C. Freiwald, C. Iyer, M. Jagannath, R. Krishnan, M. Krishnaprasad, S. Lari, Li-Sen Liu, D. Mullen,V.
Nimani, A. Roy, S. Shah, A. Shivarudraiah, J. Srinivasan, R. Toohey, Anh-Tuan Tran, G. Viswana, A.
Yalamanchi

Contributors: J. Balaji, D. Cruceanu, M. Chien, G. Edmiston, M. Fry, J. Kalogeropoulos, V. Karra, P.
Manavazhi, S. Muthulingam, R. Ratnam, C. Shay, A. Shehade, E. Shirk, Jan Syssauw, S. Vedala, E. Wan,
J. Yang

Graphics: Valerie Moore, Charles Keller

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Gist, Oracle Store, Oracle7, Oracle8, Oracle8i, Oracle9i, PL/SQL,
Pro*C, Pro*C/C++, Pro*COBOL, and SQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xxxi

Preface .. xxxiii

Audience ... xxxiv
Organization... xxxiv
Related Documents... xxxvii
Conventions.. xxxix
Documentation Accessibility ... xlii

What’s New with Large Objects (LOBs)? ... xlv

LOB Features Introduced with Oracle9i, Release 2 (9.2).. xlv
LOB Features Introduced with Oracle9i, Release 1 (9.0.1)... xlvii
LOB Features Introduced with Oracle8i Release 2 (8.1.6)... xlix
LOB Features Introduced with Oracle8i, Release 8.1.5 .. l

1 Introduction to LOBs

Why Use LOBs?... 1-2
Unstructured Data.. 1-2
LOB Datatype Helps Support Internet Applications .. 1-3
Using XML, LOBs, and Oracle Text (interMedia Text)... 1-3

Why Not Use LONGs? ... 1-4
LONG-to-LOB Migration API.. 1-5
SQL Semantics Support for LOBs ... 1-5
Partitioned Index-Organized Tables and LOBs .. 1-6
iii

Extensible Indexing on LOBs ... 1-6
Function-Based Indexing on LOBs.. 1-7
XML Documents Can be Stored in XMLType Columns as CLOBs... 1-8
Compatibility and Migration Issues ... 1-8
Examples in This Guide .. 1-9

2 Basic LOB Components

The LOB Datatype .. 2-2
Internal LOBs... 2-2
External LOBs (BFILEs).. 2-2
Internal LOBs Use Copy Semantics, External LOBs Use Reference Semantics 2-3

Varying-Width Character Data ... 2-4
Using DBMS_LOB.LOADFROMFILE and Functions that Access OCI................................ 2-4

LOB Value and Locators .. 2-5
Inline storage of the LOB value .. 2-5
LOB Locators ... 2-5
Setting the LOB Column/Attribute to Contain a Locator .. 2-6
Accessing a LOB Through a Locator.. 2-7

Creating Tables that Contain LOBs ... 2-8
Initializing Internal LOBs to NULL or Empty.. 2-8
Initializing LOBs Example Using Table Multimedia_tab ... 2-10
Initializing Internal LOB Columns to a Value.. 2-10
Initializing External LOBs to NULL or a File Name.. 2-10

3 LOB Support in Different Programmatic Environments

Eight Programmatic Environments Operate on LOBs ... 3-2
Comparing the LOB Interfaces... 3-3
Using PL/SQL (DBMS_LOB Package) To Work With LOBs .. 3-6

Provide a LOB Locator Before Invoking the DBMS_LOB Routine 3-6
PL/SQL - LOB Guidelines... 3-7
PL/SQL Functions and Procedures that Operate on LOBs.. 3-8
PL/SQL Functions/Procedures To Modify BLOB, CLOB, and NCLOB Values 3-8
PL/SQL Functions/Procedures To Read or Examine Internal and External

LOB Values .. 3-9
PL/SQL Functions/Procedures To Operate on Temporary LOBs.. 3-9
iv

PL/SQL Read-Only Functions/Procedures for BFILEs ... 3-10
PL/SQL Functions/Procedures To Open and Close Internal and External LOBs 3-10

Using C (OCI) To Work With LOBs... 3-10
Set CSID Parameter To OCI_UCS2ID to Read/Write in UCS2 ... 3-11
Offset and Amount Parameters: Fixed-Width Versus Varying-Width,

Character or Byte .. 3-11
OCILobLoadFromFile: Specify Amount Parameter to be Less than Length of BFILE..... 3-13
OCILobRead: Specify Amount Parameter to be 4 gigabytes - 1 .. 3-13
OCI LOB Examples... 3-13
Further Information About OCI... 3-13
OCI Functions that Operate on BLOBs, BLOBs, NCLOBs, and BFILEs 3-14
OCI Functions To Modify Internal LOB (BLOB, CLOB, and NCLOB) Values.................. 3-14
OCI Functions To Read or Examine Internal LOB and External LOB (BFILE) Values 3-15
OCI Functions For Temporary LOBs... 3-15
OCI Read-Only Functions For BFILEs... 3-15
OCI LOB Locator Functions.. 3-16
OCI LOB-Buffering Functions .. 3-16
OCI Functions To Open and Close Internal and External LOBs ... 3-16
OCI Example — Is the LOB Open: main() and seeIfLOBIsOpen .. 3-17

Using C++ (OCCI) To Work With LOBs... 3-22
Distinct Classes for Each LOB Type... 3-23
Offset and Amount Parameters: Fixed-Width Versus Varying-Width,

Character or Byte .. 3-24
Loading from Files with OCCIClob.copy() and OCCIBlob.copy(): Amount Parameter . 3-25
OCCIClob.read(), OCCIBlob.read(), and OCCIBfile.read():Amount Parameter 3-25
Further Information About OCCI .. 3-26
OCCI Methods that Operate on BLOBs, BLOBs, NCLOBs, and BFILEs 3-26
OCCI Methods To Modify Internal LOB (BLOB, CLOB, and NCLOB) Values 3-26
OCCI Methods To Read or Examine Internal LOB and BFILE Values............................... 3-27
OCCI Read-Only Methods For BFILEs ... 3-27
Other OCCI LOB Methods .. 3-27
OCCI Methods To Open and Close Internal and External LOBs .. 3-28

Using C/C++ (Pro*C) To Work with LOBs ... 3-29
First Provide an Allocated Input Locator Pointer that Represents LOB 3-29
Pro*C/C++ Statements that Operate on BLOBs, CLOBs, NCLOBs, and BFILEs 3-29
Pro*C/C++ Embedded SQL Statements To Modify Internal LOB Values 3-30
v

Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and

External LOB Values .. 3-30
Pro*C/C++ Embedded SQL Statements For Temporary LOBs... 3-31
Pro*C/C++ Embedded SQL Statements For BFILEs... 3-31
Pro*C/C++ Embedded SQL Statements For LOB Locators ... 3-31
Pro*C/C++ Embedded SQL Statements For LOB Buffering ... 3-32
Pro*C/C++ Embedded SQL Statements To Open and Close Internal

and External LOBs .. 3-32
Using COBOL (Pro*COBOL) to Work with LOBs ... 3-33

First Provide an Allocated Input Locator Pointer that Represents LOB 3-33
Pro*COBOL Statements that Operate on BLOBs, CLOBs, NCLOBs, and BFILEs 3-33
Pro*COBOL Embedded SQL Statements To Modify Internal LOB Values 3-34
Pro*COBOL Embedded SQL Statements To Read or Examine Internal

and External LOB Values... 3-35
Pro*COBOL Embedded SQL Statements For Temporary LOBs.. 3-35
Pro*COBOL Embedded SQL Statements For BFILEs.. 3-35
Pro*COBOL Embedded SQL Statements For LOB Locators .. 3-35
Pro*COBOL Embedded SQL Statements For LOB Buffering .. 3-36
Pro*COBOL Embedded SQL Statements To Open and Close Internal LOBs

and BFILEs... 3-36
Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs 3-37

OO4O Syntax Reference .. 3-37
OraBlob, OraClob, and OraBfile Object Interfaces Encapsulate Locators.......................... 3-38
Example of OraBlob and OraBfile .. 3-38
OO4O Methods and Properties to Access Data Stored in LOBs.. 3-39
OO4O Methods To Modify BLOB, CLOB, and NCLOB Values .. 3-41
OO4O Methods To Read or Examine Internal and External LOB Values.......................... 3-42
OO4O Methods To Open and Close External LOBs (BFILEs) ... 3-42
OO4O Methods For Internal LOB-Buffering .. 3-43
OO4O Properties For Operating on LOBs .. 3-43
OO4O Read-Only Methods For External Lobs (BFILEs) .. 3-43
OO4O Properties For Operating on External LOBs (BFILEs) .. 3-44

Using Java (JDBC) To Work with LOBs.. 3-45
Changing Internal Persistent LOBs Using Java.. 3-45
Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java 3-45
Calling DBMS_LOB Package From Java (JDBC).. 3-46
vi

Referencing LOBs Using Java (JDBC).. 3-46
JDBC Syntax References and Further Information.. 3-46
JDBC Methods for Operating on LOBs ... 3-46
JDBC oracle.sql.BLOB Methods To Modify BLOB Values ... 3-48
JDBC oracle.sql.BLOB Methods To Read or Examine BLOB Values 3-48
JDBC oracle.sql.BLOB Methods and Properties for BLOB-Buffering 3-49
JDBC oracle.sql.CLOB Methods To Modify CLOB Values .. 3-49
JDBC oracle.sql.CLOB Methods To Read or Examine CLOB Value 3-49
JDBC oracle.sql.CLOB Methods and Properties for CLOB-Buffering 3-50
JDBC oracle.sql.BFILE Methods To Read or Examine External LOB (BFILE) Values...... 3-50
JDBC oracle.sql.BFILE Methods and Properties for BFILE-Buffering 3-51
JDBC: OracleBlob and OracleClob Do Not Work in Oracle8i 8.1.x and

Higher Releases... 3-51
JDBC Temporary LOB APIs .. 3-51
JDBC: Opening and Closing LOBs... 3-52
JDBC: Opening and Closing BLOBs .. 3-53
JDBC: Opening and Closing CLOBs.. 3-54
JDBC: Opening and Closing BFILEs.. 3-56
Trimming LOBs using JDBC... 3-60
JDBC: New LOB Streaming APIs ... 3-61
New CLOB Streaming APIs .. 3-62
New BFILE Streaming APIs.. 3-63
JDBC and Empty LOBs .. 3-68

OLEDB (Oracle Provider for OLEDB — OraOLEDB) ... 3-70

4 Managing LOBs

Rules for using Directory Objects and BFILEs ... 4-1
DBA Actions Required Prior to Working with LOBs .. 4-2

Set Maximum Number of Open BFILEs ... 4-2
Using SQL DML for Basic Operations on LOBs .. 4-2
Changing Tablespace Storage for a LOB... 4-3

Managing Temporary LOBs.. 4-5
Using SQL*Loader to Load LOBs .. 4-5

LOBFILES... 4-5
Inline versus Out-of-Line LOBs .. 4-6
vii

Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL*Loader 4-7
SQL*Loader Performance: Loading Into Internal LOBs ... 4-7

Loading Inline LOB Data .. 4-8
Loading Inline LOB Data in Predetermined Size Fields ... 4-8
Loading Inline LOB Data in Delimited Fields .. 4-9
Loading Inline LOB Data in Length-Value Pair Fields ... 4-9

Loading Out-Of-Line LOB Data .. 4-10
Loading One LOB Per File... 4-11
Loading Out-of-Line LOB Data in Predetermined Size Fields .. 4-12
Loading Out-of-Line LOB Data in Delimited Fields ... 4-13
Loading Out-of-Line LOB Data in Length-Value Pair Fields... 4-14

SQL*Loader LOB Loading Tips ... 4-15
LOB Restrictions ... 4-16

5 Large Objects: Advanced Topics

Introducing Large Objects: Advanced Topics ... 5-1
Read Consistent Locators .. 5-1

A Selected Locator Becomes a Read Consistent Locator .. 5-2
Updating LOBs and Read-Consistency ... 5-2
Updating LOBs Via Updated Locators.. 5-5
Example of Updating a LOB Using SQL DML and DBMS_LOB .. 5-6
Example of Using One Locator to Update the Same LOB Value... 5-8
Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable....................... 5-10
LOB Locators Cannot Span Transactions.. 5-12
Example of Locator Not Spanning a Transaction .. 5-13

LOB Locators and Transaction Boundaries .. 5-14
Transaction IDs: Reading and Writing to a LOB Using Locators.. 5-15
Non-Serializable Example: Selecting the Locator with No Current Transaction.............. 5-15
Non-Serializable Example: Selecting the Locator within a Transaction............................. 5-16

LOBs in the Object Cache ... 5-17
LOB Buffering Subsystem .. 5-18

Advantages of LOB Buffering... 5-18
Guidelines for Using LOB Buffering.. 5-19
LOB Buffering Usage Notes .. 5-21
Flushing the LOB Buffer ... 5-22
viii

Flushing the Updated LOB ... 5-23
Using Buffer-Enabled Locators... 5-24
Saving Locator State to Avoid a Reselect .. 5-25
OCI Example of LOB Buffering .. 5-25

Creating a Varray Containing References to LOBs .. 5-28
LOBs in Partitioned Index-Organized Tables ... 5-29

Example of LOB Columns in Partitioned Index-Organized Tables 5-29
Restrictions for LOBs in Partitioned Index-Organized Tables .. 5-31

Range Partitioned Index-Organized Table LOB Restrictions .. 5-31
Hash Partitioned Index-Organized Table LOB Restrictions .. 5-31

6 Frequently Asked Questions about LOBs

Converting Data Types to LOB Data Types... 6-2
Can I Insert or Update Any Length Data Into a LOB Column? .. 6-2
Does COPY LONG to LOB Work if Data is > 64K?... 6-2

General.. 6-3
How Do I Determine if the LOB Column with a Trigger is Being Updated?...................... 6-3
Reading and Loading LOB Data: What Should Amount Parameter Size Be?..................... 6-3
Is LOB Data Lost After a Crash?... 6-5

Index-Organized Tables (IOTs) and LOBs... 6-5
Is Inline Storage Allowed for LOBs in Index-Organized Tables? ... 6-5

Initializing LOB Locators .. 6-6
When Do I Use EMPTY_BLOB() and EMPTY_CLOB()? .. 6-6
How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java? 6-7

JDBC, JPublisher and LOBs ... 6-7
How Do I Insert a Row With Empty LOB Locator into Table Using JDBC? 6-7
How Do I setData to EMPTY_BLOB() Using JPublisher? .. 6-8
JDBC: Do OracleBlob and OracleClob Work in 8.1.x? .. 6-8
How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?.. 6-9
Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB? 6-9
What Does DBMS_LOB.ERASE Do? ... 6-10
Can I Use putChars()?.. 6-10
Manipulating CLOB CharSetId in JDBC... 6-11
Why is Inserting into BLOBs Slower than into LONG Raws? ... 6-11
Why Do I Get an ORA-03127 Error with LobLength on a LONG Column? 6-11
ix

How Do I Create a CLOB Object in a Java Program?.. 6-12
How do I Load a 1MB File into a CLOB Column?... 6-13
How Do We Improve BLOB and CLOB Performance When Using

JDBC Driver To Load?.. 6-13
LOB Indexing... 6-16

Is LOB Index Created in Same Tablespace as LOB Data?... 6-16
Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column? .. 6-16
Which Views Can I Query to Find Out About a LOB Index? .. 6-17

LOB Storage and Space Issues ... 6-17
What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN ROW?............ 6-17
What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?.................... 6-18
When Should I Specify DISABLE STORAGE IN ROW?... 6-19
Do <4K BLOBs Go Into the Same Segment as Table Data,

>4K BLOBs Go Into a Specified Segment? .. 6-19
Is 4K LOB Stored Inline?.. 6-19
How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or

EMPTY_BLOB() Instead of NULL? Are Extra Data Blocks Used For This? 6-20
Storing CLOBs Inline: DISABLING STORAGE and Space Used .. 6-21
Should I Include a LOB Storage Clause When Creating Tables With

Varray Columns? .. 6-21
LONG to LOB Migration... 6-23

How Can We Migrate LONGs to LOBs, If Our Application Cannot Go Down?.............. 6-23
Converting Between Different LOB Types .. 6-24

Is Implicit LOB Conversion Between Different LOB Types Allowed?............................... 6-24
Performance ... 6-24

What Can We Do To Improve the Poor LOB Loading Performance When Using

Veritas File System on Disk Arrays, UNIX, and Oracle? .. 6-24
Is There a Difference in Performance When Using DBMS_LOB.SUBSTR

Versus DBMS_LOB.READ?... 6-26
Are There Any White Papers or Guidelines on Tuning LOB Performance? 6-26
When Should I Use Chunks Over Reading the Whole Thing? .. 6-26
Is Inlining the LOB a Good Idea and If So When? ... 6-27
How Can I Store LOBs >4Gb in the Database? .. 6-27
Why is Performance Affected When Temporary LOBs are Created

in a Called Routine?.. 6-27
PL/SQL .. 6-30
x

UPLOAD_AS_BLOB .. 6-30

7 Modeling and Design

Selecting a Datatype... 7-2
LOBs Compared to LONG and LONG RAW Types... 7-2
Character Set Conversions: Varying-Width and Multi-byte Fixed-Width

Character Data .. 7-3
Selecting a Table Architecture.. 7-4
LOB Storage ... 7-4

Where are NULL Values in a LOB Column Stored? ... 7-4
Defining Tablespace and Storage Characteristics for Internal LOBs 7-5
LOB Storage Characteristics for LOB Column or Attribute ... 7-6
TABLESPACE and LOB Index ... 7-7
PCTVERSION ... 7-7
CACHE / NOCACHE / CACHE READS.. 7-8
LOGGING / NOLOGGING ... 7-9
CHUNK.. 7-10
ENABLE | DISABLE STORAGE IN ROW ... 7-11
Guidelines for ENABLE or DISABLE STORAGE IN ROW ... 7-11

How to Create Gigabyte LOBs ... 7-12
Example 1: Creating a Tablespace and Table to Store Gigabyte LOBs............................... 7-13
Example 2: Creating a Tablespace and Table to Store Gigabyte LOBs............................... 7-13

LOB Locators and Transaction Boundaries.. 7-14
Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs.. 7-14

Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs 7-14
Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion 7-15
4,000 Byte Limit On Results of SQL Operator .. 7-16
Binds of More Than 4,000 Bytes: Restrictions... 7-16
Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE... 7-16
Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported 7-18
Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes............... 7-18
Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE 7-19

OPEN, CLOSE, and ISOPEN Interfaces for Internal LOBs.. 7-22
Example 1: Correct Use of OPEN/CLOSE Calls to LOBs in a Transaction 7-23
Example 2: Incorrect Use of OPEN/CLOSE Calls to a LOB in a Transaction 7-24
xi

LOBs in Index Organized Tables (IOT).. 7-24
Example of Index Organized Table (IOT) with LOB Columns.. 7-25

Manipulating LOBs in Partitioned Tables ... 7-26
Creating and Partitioning a Table Containing LOB Data ... 7-28
Creating an Index on a Table Containing LOB Columns ... 7-30
Exchanging Partitions Containing LOB Data ... 7-30
Adding Partitions to Tables Containing LOB Data ... 7-31
Moving Partitions Containing LOBs.. 7-31
Splitting Partitions Containing LOBs .. 7-31

Indexing a LOB Column.. 7-32
Functional Indexes on LOB Columns .. 7-32

SQL Semantics Support for LOBs ... 7-33
Improved LOB Usability: Accessing LOBs Using SQL “Character” Functions 7-33
SQL and PL/SQL VARCHAR2 Functions/Operators Now Allowed for CLOBs............ 7-34
PL/SQL Relational Operators Now Allowed for LOBs.. 7-34
SQL and PL/SQL CHAR to CLOB Conversion Functions... 7-34
Non-Supported SQL Functionality for LOBs ... 7-35
Using SQL Functions and Operators for VARCHAR2s on CLOBs..................................... 7-35
UNICODE Support for VARCHAR2 and CLOB ... 7-38
SQL Features Where LOBs Cannot be Used... 7-39

How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs ... 7-40
Defining CHAR Buffer on CLOB ... 7-40
Accepting CLOBs in VARCHAR2 Operators/Functions ... 7-40
Returning CLOB Values from SQL Functions/Operators ... 7-41
IS [NOT] NULL in VARCHAR2s and CLOBs.. 7-43

SQL RAW Type and BLOBs .. 7-43
SQL DML Changes For LOBs... 7-43
SQL Functions/Operators for VARCHAR2s/RAWs and CLOBs/BLOBs 7-44
PL/SQL Statements and Variables: New Semantics Changes .. 7-45

Implicit Conversions Between CLOB and VARCHAR2... 7-45
PL/SQL Example 1: Prior Release SQL Interface for a

CLOB/VARCHAR2 Application ... 7-46
PL/SQL Example 2: Accessing CLOB Data When Treated as VARCHAR2s.................... 7-46
PL/SQL Example 3: Defining a CLOB Variable on a VARCHAR2 7-46
Explicit Conversion Functions.. 7-47
VARCHAR2 and CLOB in PL/SQL Built-in Functions.. 7-47
xii

PL/SQL Example 4: CLOB Variables in PL/SQL.. 7-48
PL/SQL Example 5: Change in Locator-Data Linkage ... 7-48
PL/SQL Example 6: Freeing Temporary LOBs Automatically and Manually 7-49

PL/SQL CLOB Comparison Rules... 7-50
Interacting with SQL and PL/SQL in OCI and Java Interfaces ... 7-50
Performance Attributes When Using SQL Semantics with LOBs .. 7-51

Inserting More than 4K Bytes Data Into LOB Columns.. 7-51
Temporary LOB Creation/Deallocation ... 7-51
Performance Measurement ... 7-52

User-Defined Aggregates and LOBs ... 7-53
UDAGs: DDL Support ... 7-54
UDAGs: DML and Query Support .. 7-54

8 Migrating From LONGs to LOBs

Introducing LONG-to-LOB Migration ... 8-2
Using the LONG-to-LOB API Results in an Easy Migration ... 8-2

Guidelines for Using LONG-to-LOB API ... 8-3
Using ALTER TABLE... 8-3
LONG-to-LOB API and OCI ... 8-3
LONG-to-LOB API and PL/SQL ... 8-5

Migrating Existing Tables from LONG to LOB .. 8-6
Migrating LONGs to LOBs: Using ALTER TABLE to Change

LONG Column to LOB Types .. 8-6
LONG-to-LOB Migration Limitations.. 8-10

LONGs, LOBs, and NULLs... 8-11
Using LONG-to-LOB API with OCI ... 8-12

Guidelines for Using LONG-to-LOB API for LOBs with OCI... 8-13
Using OCI Functions to Perform INSERT or UPDATE on LOBs 8-13
Using OCI Functions to Perform FETCH on LOBs... 8-14

Using SQL and PL/SQL to Access LONGs and LOBs ... 8-16
Using SQL and PL/SQL to Access LOBs.. 8-16
Implicit Assignment and Parameter Passing ... 8-17
Explicit Conversion Functions.. 8-18
VARCHAR2 and CLOB in PL/SQL Built-In Functions ... 8-19
PL/SQL and C Binds from OCI ... 8-20
xiii

Calling PL/SQL and C Procedures from SQL or PL/SQL... 8-21
Applications Requiring Changes When Converting From LONGs to LOBs 8-22

Overloading with Anchored Types .. 8-22
Implicit Conversion of NUMBER, DATE, ROW_ID, BINARY_INTEGER,
and PLS_INTEGER to LOB is Not Supported 8-23
No Implicit Conversions of BLOB to VARCHAR2, CHAR, or CLOB to RAW

or LONG RAW 8-23
Using utldtree.sql to Determine Where Your Application Needs Change............................ 8-23
Examples of Converting from LONG to LOB Using Table Multimedia_tab........................ 8-24

Converting LONG to LOB Example 1: More than 4K Binds and Simple INSERTs.......... 8-25
Converting LONG to LOB Example 2: Piecewise INSERT with Polling............................ 8-26
Converting LONG to LOB Example 3: Piecewise INSERT with Callback 8-27
Converting LONG to LOB Example 4: Array insert.. 8-29
Converting LONG to LOB Example 5: Simple Fetch .. 8-31
Converting LONG to LOB Example 6: Piecewise Fetch with Polling................................. 8-31
Converting LONG to LOB Example 7: Piecewise Fetch with Callback.............................. 8-32
Converting LONG to LOB Example 8: Array Fetch .. 8-34
Converting LONG to LOB Example 9: Using PL/SQL in INSERT, UPDATE

and SELECT... 8-36
Converting LONG to LOB Example 10: Assignments and Parameter Passing

in PL/SQL.. 8-36
Converting LONG to LOB Example 11: CLOBs in PL/SQL Built-In Functions 8-37
Converting LONG to LOB Example 12: Using PL/SQL Binds from OCI on LOBs 8-37
Converting LONG to LOB Example 13: Calling PL/SQL and C Procedures

from PL/SQL... 8-39
Summary of New Functionality Associated with the LONG-to-LOB API............................ 8-40

OCI Functions.. 8-40
SQL Statements ... 8-40
PL/SQL Interface.. 8-40

Compatibility and Migration ... 8-41
Performance ... 8-42
Frequently Asked Questions (FAQs): LONG to LOB Migration .. 8-42

Moving From LOBs Back to LONGs ... 8-42
Is CREATE VIEW Needed?... 8-43
Are OCI LOB Routines Obsolete? .. 8-43
PL/SQL Issues... 8-43
xiv

Retrieving an Entire Image if Less Than 32K ... 8-44
Triggers in LONGs and LOBs... 8-44

9 LOBS: Best Practices

Using SQL*Loader.. 9-2
Loading XML Documents Into LOBs With SQL*Loader.. 9-2

LOB Performance Guidelines .. 9-5
General Performance Guidelines ... 9-5
Temporary LOB Performance Guidelines .. 9-7

Moving Data to LOBs in a Threaded Environment ... 9-9
Incorrect procedure .. 9-9
The Correct Procedure ... 9-10

Migrating from LONGs to LOBs ... 9-10

10 Internal Persistent LOBs

Use Case Model: Internal Persistent LOBs Operations .. 10-2
Creating a Table Containing One or More LOB Columns ... 10-5

SQL: Create a Table Containing One or More LOB Columns ... 10-7
Creating a Table Containing an Object Type with a LOB Attribute 10-10

SQL: Creating a Table Containing an Object Type with a LOB Attribute 10-11
Creating a Nested Table Containing a LOB... 10-13

SQL: Creating a Nested Table Containing a LOB.. 10-14
Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()...................................... 10-16

SQL: Inserting a Value Using EMPTY_CLOB() / EMPTY_BLOB() 10-19
Inserting a Row by Selecting a LOB From Another Table.. 10-20

SQL: Inserting a Row by Selecting a LOB from Another Table... 10-22
Inserting a Row by Initializing a LOB Locator Bind Variable... 10-23

PL/SQL (DBMS_LOB Package): Inserting a Row by Initializing a LOB Locator Bind

Variable .. 10-25
C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable............................ 10-26
COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable .. 10-28
C/C++ (ProC/C++): Inserting a Row by Initializing a LOB Locator Bind Variable...... 10-29
Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind Variable 10-30
Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable 10-30

Loading a LOB with Data From a BFILE.. 10-32
xv

PL/SQL (DBMS_LOB Package): Loading a LOB with Data from a BFILE...................... 10-35
C (OCI): Loading a LOB with Data from a BFILE.. 10-36
COBOL (Pro*COBOL): Loading a LOB with Data from a BFILE 10-38
Visual Basic (OO4O): Loading a LOB with Data from a BFILE... 10-39
Java (JDBC): Loading a LOB with Data from a BFILE .. 10-40

Loading an Internal Persistent BLOB with Binary Data from a BFILE................................ 10-43
PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB

with BFILE Data.. 10-45
Loading an Internal Persistent CLOB with BFILE Data.. 10-47

PL/SQL (DBMS_LOB Package): Loading an Internal Persistent CLOB with

BFILE Data ... 10-49
Open: Checking If a LOB Is Open... 10-53

PL/SQL (DBMS_LOB Package): Checking if a LOB is Open... 10-54
C (OCI): Checking if a LOB is Open .. 10-55
COBOL (Pro*COBOL): Checking if a LOB is Open... 10-56
C/C++ (ProC/C++): Checking if a LOB is Open... 10-58
Java (JDBC): Checking if a LOB is Open ... 10-59

LONG to LOB Migration Using the LONG-to-LOB API.. 10-62
C (OCI): LONG to LOB Migration ... 10-63

LONG to LOB Copying, Using the TO_LOB Operator... 10-66
SQL: Copying LONGs to LOBs Using TO_LOB Operator ... 10-67

Checking Out a LOB .. 10-71
PL/SQL (DBMS_LOB Package): Checking Out a LOB... 10-73
C (OCI): Checking Out a LOB... 10-74
COBOL (Pro*COBOL): Checking Out a LOB ... 10-76
C/C++ (ProC/C++): Checking Out a LOB... 10-78
Visual Basic (OO4O): Checking Out a LOB .. 10-80
Java (JDBC): Checking Out a LOB.. 10-80

Checking In a LOB.. 10-83
PL/SQL (DBMS_LOB Package): Checking in a LOB .. 10-85
C (OCI): Checking in a LOB .. 10-86
COBOL (Pro*COBOL): Checking in a LOB... 10-89
C/C++ (ProC/C++): Checking in a LOB .. 10-92
Visual Basic (OO4O): Checking in a LOB ... 10-94
Java (JDBC): Checking in a LOB ... 10-95

Displaying LOB Data ... 10-98
xvi

PL/SQL (DBMS_LOB Package): Displaying LOB Data.. 10-100
C (OCI): Displaying LOB Data ... 10-101
COBOL (Pro*COBOL): Displaying LOB Data.. 10-103
C/C++ (ProC/C++): Displaying LOB Data ... 10-105
Visual Basic (OO4O): Displaying LOB Data... 10-106
Java (JDBC): Displaying LOB Data .. 10-107

Reading Data from a LOB ... 10-109
PL/SQL (DBMS_LOB Package): Reading Data from a LOB.. 10-112
C (OCI): Reading Data from a LOB ... 10-113
COBOL (Pro*COBOL): Reading Data from a LOB.. 10-115
 C/C++ (Pro*C/C++): Reading Data from a LOB ... 10-116
Visual Basic (OO4O): Reading Data from a LOB... 10-118
Java (JDBC): Reading Data from a LOB .. 10-118

Reading a Portion of the LOB (substr) ... 10-120
PL/SQL (DBMS_LOB Package): Reading a Portion of the LOB (substr) 10-122
COBOL (Pro*COBOL): Reading a Portion of the LOB (substr) 10-123
C/C++ (Pro*C/C++): Reading a Portion of the LOB (substr) ... 10-124
Visual Basic (OO4O): Reading a Portion of the LOB (substr) .. 10-125
Java (JDBC): Reading a Portion of the LOB (substr).. 10-126

Comparing All or Part of Two LOBs ... 10-128
PL/SQL (DBMS_LOB Package): Comparing All or Part of Two LOBs 10-130
COBOL (Pro*COBOL): Comparing All or Part of Two LOBs.. 10-130
C/C++ (Pro*C/C++): Comparing All or Part of Two LOBs.. 10-132
Visual Basic (OO4O): Comparing All or Part of Two LOBs... 10-133
Java (JDBC): Comparing All or Part of Two LOBs .. 10-134

Patterns: Checking for Patterns in the LOB (instr)... 10-137
PL/SQL (DBMS_LOB Package): Checking for Pattern in the LOB (instr) 10-139
 COBOL (Pro*COBOL): Checking for Patterns in the LOB (instr) 10-139
C/C++ (Pro*C/C++): Checking for Patterns in the LOB (instr)...................................... 10-141
Java (JDBC): Checking for Patterns in the LOB (instr) .. 10-142

Length: Determining the Length of a LOB .. 10-144
PL/SQL (DBMS_LOB Package): Determining the Length of a LOB 10-146
C (OCI): Determining the Length of a LOB .. 10-146
COBOL (Pro*COBOL): Determining the Length of a LOB .. 10-148
C/C++ (Pro*C/C++): Determining the Length of a LOB... 10-149
xvii

Visual Basic (OO4O): Determining the Length of a LOB... 10-150
Java (JDBC): Determining the Length of a LOB .. 10-150

Copying All or Part of One LOB to Another LOB... 10-153
PL/SQL (DBMS_LOB Package): Copying All or Part of One LOB to Another LOB... 10-155
C (OCI): Copying All or Part of One LOB to Another LOB .. 10-156
COBOL (Pro*COBOL): Copying All or Part of One LOB to Another LOB................... 10-158
C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB 10-160
Visual Basic (OO4O): Copying All or Part of One LOB to Another LOB...................... 10-161
Java (JDBC): Copying All or Part of One LOB to Another LOB 10-162

Copying a LOB Locator... 10-164
PL/SQL (DBMS_LOB Package): Copying a LOB Locator... 10-166
C (OCI): Copying a LOB Locator... 10-166
COBOL (Pro*COBOL): Copying a LOB Locator ... 10-168
C/C++ (Pro*C/C++): Copying a LOB Locator ... 10-169
Visual Basic (OO4O: Copying a LOB Locator ... 10-170
Java (JDBC): Copying a LOB Locator ... 10-170

Equality: Checking If One LOB Locator Is Equal to Another ... 10-173
C (OCI): Checking If One LOB Locator Is Equal to Another... 10-174
C/C++ (Pro*C/C++): Checking If One LOB Locator Is Equal to Another 10-176
Java (JDBC): Checking If One LOB Locator Is Equal to Another 10-177

Initialized Locator: Checking If a LOB Locator Is Initialized... 10-180
C (OCI): Checking If a LOB Locator Is Initialized .. 10-181
C/C++ (Pro*C/C++): Checking If a LOB Locator Is Initialized 10-183

Character Set ID: Determining Character Set ID... 10-185
C (OCI): Determining Character Set ID.. 10-187

Character Set Form: Determining Character Set Form ... 10-189
C (OCI): Determining Character Set Form... 10-190

Appending One LOB to Another.. 10-193
PL/SQL (DBMS_LOB Package): Appending One LOB to Another............................... 10-195
C (OCI): Appending One LOB to Another .. 10-196
COBOL (Pro*COBOL): Appending One LOB to Another... 10-198
C/C++ (Pro*C/C++): Appending One LOB to Another ... 10-199
Visual Basic (OO4O): Appending One LOB to Another.. 10-200
Java (JDBC): Appending One LOB to Another ... 10-201

Append-Writing to the End of a LOB .. 10-203
xviii

PL/SQL (DBMS_LOB Package): Writing to the End of (Appending to) a LOB 10-205
C (OCI): Writing to the End of (Appending to) a LOB ... 10-206
COBOL (Pro*COBOL): Writing to the End of (Appending to) a LOB............................ 10-208
C/C++ (Pro*C/C++): Writing to the End of (Appending to) a LOB.............................. 10-209
Java (JDBC): Writing to the End of (Append-Write to) a LOB... 10-210

Writing Data to a LOB.. 10-212
PL/SQL (DBMS_LOB Package): Writing Data to a LOB.. 10-215
C (OCI): Writing Data to a LOB.. 10-217
COBOL (Pro*COBOL): Writing Data to a LOB.. 10-220
C/C++ (Pro*C/C++): Writing Data to a LOB .. 10-222
Visual Basic (OO4O):Writing Data to a LOB.. 10-225
Java (JDBC): Writing Data to a LOB .. 10-226

Trimming LOB Data ... 10-229
PL/SQL (DBMS_LOB Package): Trimming LOB Data ... 10-231
C (OCI): Trimming LOB Data... 10-232
COBOL (Pro*COBOL): Trimming LOB Data ... 10-233
C/C++ (Pro*C/C++): Trimming LOB Data ... 10-234
Visual Basic (OO4O): Trimming LOB Data .. 10-236
Java (JDBC): Trimming LOB Data.. 10-236

Erasing Part of a LOB ... 10-241
PL/SQL (DBMS_LOB Package): Erasing Part of a LOB ... 10-243
C (OCI): Erasing Part of a LOB... 10-244
COBOL (Pro*COBOL): Erasing Part of a LOB ... 10-245
C/C++ (Pro*C/C++): Erasing Part of a LOB.. 10-246
Visual Basic (OO4O): Erasing Part of a LOB .. 10-247
Java (JDBC): Erasing Part of a LOB.. 10-248

Enabling LOB Buffering ... 10-251
C (OCI): Enabling LOB Buffering... 10-253
COBOL (Pro*COBOL): Enabling LOB Buffering ... 10-253
C/C++ (Pro*C/C++): Enabling LOB Buffering ... 10-255
Visual Basic (OO4O): Enabling LOB Buffering .. 10-256

Flushing the Buffer... 10-257
C (OCI): Flushing the Buffer ... 10-259
COBOL (Pro*COBOL): Flushing the Buffer.. 10-259
C/C++ (Pro*C/C++): Flushing the Buffer.. 10-261
xix

Visual Basic (OO4O): Flushing the Buffer.. 10-262
Disabling LOB Buffering ... 10-263

C (OCI): Disabling LOB Buffering... 10-265
COBOL (Pro*COBOL): Disabling LOB Buffering ... 10-267
C/C++ (Pro*C/C++): Disabling LOB Buffering ... 10-269
Visual Basic (OO4O): Disabling LOB Buffering .. 10-270

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() ... 10-271
SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB().................................. 10-273

Updating a Row by Selecting a LOB From Another Table .. 10-275
SQL: Update a Row by Selecting a LOB From Another Table.. 10-276

Updating by Initializing a LOB Locator Bind Variable.. 10-277
PL/SQL: Updating by Initializing a LOB Locator Bind Variable................................... 10-279
C (OCI): Updating by Initializing a LOB Locator Bind Variable.................................... 10-279
COBOL (Pro*COBOL): Updating by Initializing a LOB Locator Bind Variable 10-281
C/C++ (Pro*C/C++): Updating by Initializing a LOB Locator Bind Variable 10-282
Visual Basic (OO4O): Updating by Initializing a LOB Locator Bind Variable 10-283
Java (JDBC): Updating by Initializing a LOB Locator Bind Variable............................. 10-284

Deleting the Row of a Table Containing a LOB .. 10-286
SQL: Delete a LOB ... 10-287

11 Temporary LOBs

Use Case Model: Internal Temporary LOBs .. 11-1
Programmatic Environments .. 11-4

Locators .. 11-4
Temporary LOB Locators Can be IN Values .. 11-4
Can You Use the Same Functions for Temporary and Internal Persistent LOBs? 11-5
DBMS_LOB.createtemporary() Parameter is a Hint.. 11-5
Temporary LOB Data is Stored in Temporary Tablespace... 11-5
Lifetime and Duration of Temporary LOBs.. 11-5
Memory Handling .. 11-6
Locators and Semantics.. 11-7

Features Specific to Temporary LOBs ... 11-7
Security Issues with Temporary LOBs .. 11-10
NOCOPY Restrictions .. 11-10
Managing Temporary LOBs.. 11-10
xx

Using JDBC and Temporary LOBs .. 11-11
Creating a Temporary LOB ... 11-13

PL/SQL (DBMS_LOB Package): Creating a Temporary LOB ... 11-15
C (OCI): Creating a Temporary LOB ... 11-16
COBOL (Pro*COBOL): Creating a Temporary LOB .. 11-18
C/C++ (Pro*C/C++): Creating a Temporary LOB ... 11-19
Java (JDBC): Creating a Temporary BLOB ... 11-20
Java (JDBC): Creating a Temporary CLOB ... 11-21

Checking If a LOB is Temporary ... 11-23
PL/SQL (DBMS_LOB Package): Checking If a LOB is Temporary 11-24
C (OCI): Checking If a LOB is Temporary ... 11-25
COBOL (Pro*COBOL): Checking If a LOB is Temporary ... 11-26
C/C++ (Pro*C/C++): Checking If a LOB is Temporary .. 11-27
Java (JDBC): Checking if a BLOB is Temporary... 11-28
Java (JDBC): Checking if a CLOB is Temporary .. 11-29

Freeing a Temporary LOB ... 11-31
PL/SQL (DBMS_LOB Package): Freeing a Temporary LOB ... 11-32
C (OCI): Freeing a Temporary LOB .. 11-33
COBOL (Pro*COBOL): Freeing a Temporary LOB .. 11-34
C/C++ (Pro*C/C++): Freeing a Temporary LOB.. 11-35
Java (JDBC): Freeing a Temporary BLOB ... 11-36
Java (JDBC): Freeing a Temporary CLOB ... 11-37
Java (JDBC): Creating and Freeing a Temporary CLOB Using TemporaryClob.java.... 11-38

Loading a Temporary LOB with Data from a BFILE.. 11-39
PL/SQL (DBMS_LOB Package): Loading a Temporary LOB with Data from a BFILE. 11-41
C (OCI): Loading a Temporary LOB with Data from a BFILE... 11-42
COBOL (Pro*COBOL): Loading a Temporary LOB with Data from a BFILE................. 11-44
C/C++ (Pro*C/C++): Loading a Temporary LOB with Data from a BFILE 11-46

Loading a Temporary BLOB with Binary Data from a BFILE.. 11-48
PL/SQL (DBMS_LOB Package): Loading a Temporary BLOB with BFILE data............ 11-50

Loading a Temporary CLOB/NCLOB with Character Data from a File............................... 11-52
PL/SQL (DBMS_LOB Package): Loading a Temporary CLOB/NCLOB

with BFILE Data.. 11-54
Determining If a Temporary LOB Is Open .. 11-57

PL/SQL: Determining if a Temporary LOB is Open... 11-58
C (OCI) Determining if a Temporary LOB is Open .. 11-59
xxi

COBOL (Pro*COBOL): Determining if a Temporary LOB is Open 11-60
C/C++ (Pro*C/C++): Determining if a Temporary LOB is Open 11-62

Displaying Temporary LOB Data .. 11-64
PL/SQL (DBMS_LOB Package): Displaying Temporary LOB Data................................. 11-66
C (OCI): Displaying Temporary LOB Data .. 11-67
COBOL (Pro*COBOL): Displaying Temporary LOB Data ... 11-70
C/C++ (Pro*C/C++): Displaying Temporary LOB Data ... 11-72

Reading Data from a Temporary LOB .. 11-74
PL/SQL (DBMS_LOB Package): Reading Data from a Temporary LOB......................... 11-76
C (OCI): Reading Data from a Temporary LOB .. 11-77
COBOL (Pro*COBOL): Reading Data from a Temporary LOB .. 11-80
C/C++ (Pro*C/C++): Reading Data from a Temporary LOB ... 11-82

Reading Portion of Temporary LOB (Substr) .. 11-85
PL/SQL (DBMS_LOB Package): Reading a Portion of Temporary LOB (substr)........... 11-87
COBOL (Pro*COBOL): Reading a Portion of Temporary LOB (substr) 11-87
C/C++ (Pro*C/C++): Reading a Portion of Temporary LOB (substr) 11-89

Comparing All or Part of Two Temporary LOBs .. 11-92
PL/SQL (DBMS_LOB Package): Comparing All or Part of Two Temporary LOBs....... 11-94
COBOL (Pro*COBOL): Comparing All or Part of Two Temporary LOBs 11-95
C/C++ (Pro*C/C++): Comparing All or Part of Two Temporary LOBs 11-97

Determining If a Pattern Exists in a Temporary LOB (instr) .. 11-99
PL/SQL (DBMS_LOB Package): Determining If a Pattern Exists in a

Temporary LOB ... 11-101
COBOL (Pro*COBOL): Determining If a Pattern Exists in a Temporary LOB (instr) . 11-101
C/C++ (Pro*C/C++): Determining If a Pattern Exists in a Temporary LOB (instr) ... 11-104

Finding the Length of a Temporary LOB .. 11-106
PL/SQL (DBMS_LOB Package): Finding the Length of a Temporary LOB 11-108
C (OCI): Finding the Length of a Temporary LOB .. 11-108
COBOL (Pro*COBOL): Finding the Length of a Temporary LOB 11-110
C/C++ (Pro*C/C++): Finding the Length of a Temporary LOB.................................... 11-112

Copying All or Part of One Temporary LOB to Another ... 11-115
PL/SQL (DBMS_LOB Package): Copying All or Part of One Temporary LOB........... 11-117
C (OCI): Copying All or Part of One Temporary LOB to Another 11-118
COBOL (Pro*COBOL): Copying All or Part of One Temporary LOB to Another 11-121
C/C++ (Pro*C/C++): Copying All or Part of One Temporary LOB to Another 11-123

Copying a LOB Locator for a Temporary LOB ... 11-125
xxii

PL/SQL (DBMS_LOB Package): Copying a LOB Locator for a Temporary LOB......... 11-127
C (OCI): Copying a LOB Locator for a Temporary LOB ... 11-128
COBOL (Pro*COBOL): Copying a LOB Locator for a Temporary LOB 11-130
C/C++ (Pro*C/C++): Copying a LOB Locator for a Temporary LOB........................... 11-132

Is One Temporary LOB Locator Equal to Another ... 11-135
C (OCI): Is One LOB Locator for a Temporary LOB Equal to Another 11-136
C/C++ (Pro*C/C++): Is One LOB Locator for a Temporary LOB Equal to Another . 11-138

Determining if a LOB Locator for a Temporary LOB Is Initialized 11-140
C (OCI): Determining If a LOB Locator for a Temporary LOB Is Initialized 11-141
C/C++ (Pro*C/C++): Determining If a LOB Locator Is Initialized 11-142

Finding Character Set ID of a Temporary LOB... 11-144
C (OCI): Finding Character Set ID of a Temporary LOB ... 11-145

Finding Character Set Form of a Temporary LOB .. 11-147
C (OCI): Finding Character Set Form of a Temporary LOB... 11-148

Appending One Temporary LOB to Another.. 11-150
PL/SQL (DBMS_LOB Package): Appending One Temporary LOB to Another........... 11-152
C (OCI): Appending One Temporary LOB to Another .. 11-152
COBOL (Pro*COBOL): Appending One Temporary LOB to Another........................... 11-155
C/C++ (Pro*C/C++): Appending One Temporary LOB to Another 11-157

Write-Appending to a Temporary LOB .. 11-160
PL/SQL (DBMS_LOB Package): Writing-Appending to a Temporary LOB................. 11-162
C (OCI): Writing-Appending to a Temporary LOB .. 11-162
COBOL (Pro*COBOL): Write-Appending to a Temporary LOB 11-164
C/C++ (Pro*C/C++): Write-Appending to a Temporary LOB....................................... 11-166

Writing Data to a Temporary LOB ... 11-168
PL/SQL (DBMS_LOB Package): Writing Data to a Temporary LOB............................. 11-171
C (OCI): Writing Data to a Temporary LOB... 11-171
COBOL (Pro*COBOL): Writing Data to a Temporary LOB ... 11-174
C/C++ (Pro*C/C++): Writing Data to a Temporary LOB ... 11-176

Trimming Temporary LOB Data .. 11-179
PL/SQL (DBMS_LOB Package): Trimming Temporary LOB Data 11-181
C (OCI): Trimming Temporary LOB Data .. 11-181
COBOL (Pro*COBOL): Trimming Temporary LOB Data ... 11-184
C/C++ (Pro*C/C++): Trimming Temporary LOB Data... 11-185

Erasing Part of a Temporary LOB .. 11-188
xxiii

PL/SQL (DBMS_LOB Package): Erasing Part of a Temporary LOB 11-190
(OCI): Erasing Part of a Temporary LOB ... 11-190
COBOL (Pro*COBOL): Erasing Part of a Temporary LOB.. 11-193
C/C++ (Pro*C/C++): Erasing Part of a Temporary LOB.. 11-195

Enabling LOB Buffering for a Temporary LOB ... 11-197
C (OCI): Enabling LOB Buffering for a Temporary LOB... 11-199
COBOL (Pro*COBOL): Enabling LOB Buffering for a Temporary LOB 11-200
C/C++ (Pro*C/C++): Enabling LOB Buffering for a Temporary LOB 11-202

Flushing Buffer for a Temporary LOB ... 11-204
C (OCI): Flushing Buffer for a Temporary LOB.. 11-205
COBOL (Pro*COBOL): Flushing Buffer for a Temporary LOB 11-207
C/C++ (Pro*C/C++): Flushing Buffer for a Temporary LOB .. 11-209

Disabling LOB Buffering for a Temporary LOB.. 11-211
C (OCI): Disabling LOB Buffering... 11-213
COBOL (Pro*COBOL): Disabling LOB Buffering for a Temporary LOB 11-215
C/C++ (Pro*C/C++): Disabling LOB Buffering for a Temporary LOB 11-216

12 External LOBs (BFILEs)

Use Case Model: External LOBs (BFILEs) .. 12-2
Accessing External LOBs (BFILEs) .. 12-4
Directory Object .. 12-4

Initializing a BFILE Locator... 12-4
How to Associate Operating System Files with Database Records 12-5
BFILENAME() and Initialization.. 12-6
DIRECTORY Name Specification... 12-7

BFILE Security ... 12-7
Ownership and Privileges ... 12-7
Read Permission on Directory Object .. 12-8
SQL DDL for BFILE Security... 12-8
SQL DML for BFILE Security.. 12-9
Catalog Views on Directories.. 12-9
Guidelines for DIRECTORY Usage.. 12-9
BFILEs in Shared Server (Multi-Threaded Server — MTS) Mode..................................... 12-10
External LOB (BFILE) Locators... 12-11

Creating a Table Containing One or More BFILE Columns... 12-13
xxiv

SQL: Creating a Table Containing One or More BFILE Columns..................................... 12-14
Creating a Table of an Object Type with a BFILE Attribute .. 12-17

SQL: Creating a Table of an Object Type with a BFILE Attribute..................................... 12-18
Creating a Table with a Nested Table Containing a BFILE .. 12-20

SQL: Creating a Table with a Nested Table Containing a BFILE 12-21
INSERT a Row Using BFILENAME() ... 12-22

SQL: Inserting a Row by means of BFILENAME().. 12-25
C (OCI): Inserting a Row by means of BFILENAME().. 12-25
COBOL (Pro*COBOL): Inserting a Row by means of BFILENAME() 12-26
C/C++ (Pro*C/C++): Inserting a Row by means of BFILENAME() 12-27
Visual Basic (OO4O): Inserting a Row by means of BFILENAME() 12-28
Java (JDBC): Inserting a Row by means of BFILENAME() ... 12-29

INSERT a BFILE Row by Selecting a BFILE From Another Table .. 12-31
SQL: Inserting a Row Containing a BFILE by Selecting a BFILE From Another Table . 12-32

Inserting a Row With BFILE by Initializing a BFILE Locator.. 12-33
PL/SQL: Inserting a Row Containing a BFILE by Initializing a BFILE Locator 12-35
C (OCI): Inserting a Row Containing a BFILE by Initializing a BFILE Locator 12-36
C/C++ (Pro*C/C++): Inserting a Row Containing a BFILE by Initializing a

BFILE Locator.. 12-38
Java (JDBC): Inserting a Row Containing a BFILE by Initializing a BFILE Locator 12-39

Loading Data Into External LOB (BFILE) .. 12-42
Loading Data Into BFILES: File Name Only is Specified Dynamically............................ 12-44
Loading Data into BFILES: File Name and DIRECTORY Object

Dynamically Specified ... 12-44
Loading a LOB with BFILE Data ... 12-46

PL/SQL (DBMS_LOB Package): Loading a LOB with BFILE Data 12-49
C (OCI): Loading a LOB with BFILE Data .. 12-49
COBOL (Pro*COBOL): Loading a LOB with BFILE Data .. 12-51
C/C++ (Pro*C/C++): Loading a LOB with BFILE Data... 12-53
Visual Basic (OO4O): Loading a LOB with BFILE Data .. 12-54

Loading a BLOB with BFILE Data... 12-55
PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB with

BFILE Data... 12-57
Loading a CLOB with BFILE Data .. 12-59

PL/SQL (DBMS_LOB Package): Loading a CLOB/NCLOB with BFILE Data............... 12-61
Ways to Open a BFILE ... 12-63
xxv

Recommendation: Use OPEN to Open BFILE.. 12-64
Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES 12-64

Opening a BFILE with FILEOPEN .. 12-65
PL/SQL: Opening a BFILE with FILEOPEN.. 12-67
C (OCI): Opening a BFILE with FILEOPEN ... 12-67
Visual Basic (OO4O): Opening a BFILE with FILEOPEN .. 12-68
Java (JDBC): Opening a BFILE with FILEOPEN .. 12-68

Opening a BFILE with OPEN ... 12-70
PL/SQL: Opening a BFILE with OPEN .. 12-72
C (OCI): Opening a BFILE with OPEN.. 12-72
COBOL (Pro*COBOL): Opening a BFILE with OPEN .. 12-73
C/C++ (Pro*C/C++): Opening a BFILE with OPEN .. 12-74
Visual Basic (OO4O) Opening a BFILE with OPEN... 12-75
Java (JDBC): Opening a BFILE with OPEN .. 12-76

Ways to See If a BFILE is Open .. 12-78
Recommendation: Use OPEN to Open BFILE.. 12-78
Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES 12-78

Checking If the BFILE is Open with FILEISOPEN.. 12-80
PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with FILEISOPEN..... 12-81
C (OCI): Checking If the BFILE is Open with FILEISOPEN... 12-82
Visual Basic (OO4O): Checking If the BFILE is Open with FILEISOPEN........................ 12-84
Java (JDBC): Checking If the BFILE is Open with FILEISOPEN 12-84

Checking If a BFILE is Open Using ISOPEN.. 12-86
PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with ISOPEN 12-88
C (OCI): Checking If the BFILE is Open with ISOPEN... 12-88
COBOL (Pro*COBOL): Checking If the BFILE is Open with ISOPEN 12-90
C/C++ (Pro*C/C++): Checking If the BFILE is Open with ISOPEN................................ 12-91
Visual Basic (OO4O): Checking If the BFILE is Open with ISOPEN 12-92
Java (JDBC): Checking If the BFILE is Open with ISOPEN ... 12-93

Displaying BFILE Data .. 12-96
PL/SQL: Displaying BFILE Data.. 12-98
C (OCI): Displaying BFILE Data... 12-98
COBOL (Pro*COBOL): Displaying BFILE Data ... 12-101
C/C++ (Pro*C/C++): Displaying BFILE Data ... 12-103
Visual Basic (OO4O): Displaying BFILE Data .. 12-104
xxvi

Java (JDBC): Displaying BFILE Data .. 12-105
Reading Data from a BFILE .. 12-108

PL/SQL (DBMS_LOB Package): Reading Data from a BFILE... 12-111
C (OCI): Reading Data from a BFILE... 12-111
COBOL (Pro*COBOL): Reading Data from a BFILE .. 12-113
C/C++ (Pro*C/C++): Reading Data from a BFILE .. 12-114
Visual Basic (OO4O): Reading Data from a BFILE ... 12-115
Java (JDBC): Reading Data from a BFILE .. 12-116

Reading a Portion of BFILE Data (substr).. 12-119
PL/SQL (DBMS_LOB Package): Reading a Portion of BFILE Data (substr) 12-121
COBOL (Pro*COBOL): Reading a Portion of BFILE Data (substr) 12-121
C/C++ (Pro*C/C++): Reading a Portion of BFILE Data (substr) 12-123
Visual Basic (OO4O): Reading a Portion of BFILE Data (substr) 12-124
Java (JDBC): Reading a Portion of BFILE Data (substr) ... 12-124

Comparing All or Parts of Two BFILES.. 12-127
PL/SQL (DBMS_LOB Package): Comparing All or Parts of Two BFILES..................... 12-129
COBOL (Pro*COBOL): Comparing All or Parts of Two BFILES 12-130
C/C++ (Pro*C/C++): Comparing All or Parts of Two BFILES 12-132
Visual Basic (OO4O): Comparing All or Parts of Two BFILES 12-133
Java (JDBC): Comparing All or Parts of Two BFILES .. 12-134

Checking If a Pattern Exists (instr) in the BFILE .. 12-137
PL/SQL (DBMS_LOB Package): Checking If a Pattern Exists (instr) in the BFILE 12-139
COBOL (Pro*COBOL): Checking If a Pattern Exists (instr) in the BFILE 12-139
C/C++ (Pro*C/C++): Checking If a Pattern Exists (instr) in the BFILE 12-141
Java (JDBC): Checking If a Pattern Exists (instr) in the BFILE .. 12-143

Checking If the BFILE Exists .. 12-145
PL/SQL (DBMS_LOB Package): Checking If the BFILE Exists 12-147
C (OCI): Checking If the BFILE Exists ... 12-147
COBOL (Pro*COBOL): Checking If the BFILE Exists .. 12-149
C/C++ (Pro*C/C++): Checking If the BFILE Exists ... 12-150
Visual Basic (OO4O): Checking If the BFILE Exists ... 12-151
Java (JDBC): Checking If the BFILE Exists ... 12-152

Getting the Length of a BFILE.. 12-154
PL/SQL (DBMS_LOB Package): Getting the Length of a BFILE..................................... 12-156
C (OCI): Getting the Length of a BFILE .. 12-156
xxvii

COBOL (Pro*COBOL): Getting the Length of a BFILE ... 12-158
C/C++ (Pro*C/C++): Getting the Length of a BFILE ... 12-159
Visual Basic (OO4O): Getting the Length of a BFILE .. 12-160
Java (JDBC): Getting the Length of a BFILE .. 12-161

Copying a LOB Locator for a BFILE ... 12-164
PL/SQL: Copying a LOB Locator for a BFILE .. 12-166
C (OCI): Copying a LOB Locator for a BFILE.. 12-166
COBOL (Pro*COBOL): Copying a LOB Locator for a BFILE ... 12-168
C/C++ (Pro*C/C++): Copying a LOB Locator for a BFILE ... 12-169
Java (JDBC): Copying a LOB Locator for a BFILE ... 12-170

Determining If a LOB Locator for a BFILE Is Initialized... 12-172
C (OCI): Determining If a LOB Locator for a BFILE Is Initialized.................................. 12-174
C/C++ (Pro*C/C++): Determining If a LOB Locator for a BFILE Is Initialized 12-175

Determining If One LOB Locator for a BFILE Is Equal to Another................................... 12-177
C (OCI): Determining If One LOB Locator for a BFILE Is Equal to Another................ 12-179
C/C++ (Pro*C/C++): Determining If One BFILE LOB Locator Is Equal

to Another ... 12-181
Java (JDBC): Determining If One LOB Locator for a BFILE Is Equal to Another 12-182

Getting DIRECTORY Alias and Filename.. 12-184
PL/SQL (DBMS_LOB Package): Getting Directory Alias and Filename 12-186
C (OCI): Getting Directory Alias and Filename .. 12-186
COBOL (Pro*COBOL): Getting Directory Alias and Filename 12-188
C/C++ (Pro*C/C++): Getting Directory Alias and Filename .. 12-189
Visual Basic (OO4O): Getting Directory Alias and Filename.. 12-190
Java (JDBC): Getting Directory Alias and Filename ... 12-191

Updating a BFILE Using BFILENAME() ... 12-193
SQL: Updating a BFILE by means of BFILENAME() ... 12-195

Updating a BFILE by Selecting a BFILE From Another Table .. 12-196
SQL: Updating a BFILE by Selecting a BFILE From Another Table 12-197

Updating a BFILE by Initializing a BFILE Locator.. 12-198
PL/SQL: Updating a BFILE by Initializing a BFILE Locator .. 12-200
C (OCI): Updating a BFILE by Initializing a BFILE Locator ... 12-201
COBOL (Pro*COBOL): Updating a BFILE by Initializing a BFILE Locator 12-202
C/C++ (Pro*C/C++): Updating a BFILE by Initializing a BFILE Locator 12-203
Visual Basic (OO4O): Updating a BFILE by Initializing a BFILE Locator 12-204
Java (JDBC): Updating a BFILE by Initializing a BFILE Locator 12-206
xxviii

Closing a BFILE with FILECLOSE .. 12-208
PL/SQL (DBMS_LOB Package): Closing a BFile with FILECLOSE 12-210
C (OCI): Closing a BFile with FILECLOSE ... 12-210
Visual Basic (OO4O): Closing a BFile with FILECLOSE... 12-211
Java (JDBC): Closing a BFile with FILECLOSE ... 12-211

Closing a BFILE with CLOSE... 12-214
PL/SQL (DBMS_LOB Package): Closing a BFile with CLOSE.. 12-216
C (OCI): Closing a BFile with CLOSE.. 12-216
COBOL (Pro*COBOL): Closing a BFILE with CLOSE ... 12-217
C/C++ (Pro*C/C++): Closing a BFile with CLOSE ... 12-218
Visual Basic (OO4O): Closing a BFile with CLOSE .. 12-219
Java (JDBC): Closing a BFile with CLOSE .. 12-220

Closing All Open BFILEs with FILECLOSEALL ... 12-222
PL/SQL (DBMS_LOB Package): Closing All Open BFiles ... 12-224
C (OCI): Closing All Open BFiles... 12-224
COBOL (Pro*COBOL): Closing All Open BFiles ... 12-225
C/C++ (Pro*C/C++): Closing All Open BFiles .. 12-227
Visual Basic (OO4O): Closing All Open BFiles ... 12-228
Java (JDBC): Closing All Open BFiles with FILECLOSEALL .. 12-228

Deleting the Row of a Table Containing a BFILE .. 12-231
SQL: Deleting a Row from a Table... 12-232

13 Using OraOLEDB to Manipulate LOBs

Introducing OLE DB .. 13-2
OraOLEDB: OLE DB and Oracle Large Object (LOB) Support ... 13-2
Rowset Object.. 13-2

Manipulating LOBs Using ADO Recordsets and OLE DB Rowsets 13-3
ADO Recordsets and LOBs ... 13-3
OLE DB Rowsets and LOBs .. 13-4

Manipulating LOBs Using OraOLEDB Commands .. 13-4
ADO and LOBs Example 1: Inserting LOB Data From a File .. 13-4

14 LOBs Case Studies

Building a Multimedia Repository ... 14-2
How this Application Uses LOBs... 14-4
xxix

Populating the Repository... 14-4
Example 1: Inserting a Word document into a BLOB Column using PL/SQL 14-5
Searching the Repository ... 14-6
How the Index Was Built on Table sam_emp, resume Column.. 14-7
MyServletCtx Servlet.. 14-7
Retrieving Data from the Repository... 14-10
Summary.. 14-12

Building a LOB-Based Web Site: First Steps ... 14-13

A Unified Modeling Language Diagrams

Use Case Diagrams ... A-2
State Diagrams... A-7

B The Multimedia Schema

A Typical Multimedia Application ... B-2
The Multimedia Schema ... B-3
Table Multimedia_Tab ... B-5
Script for Creating the Multimedia Schema.. B-7

Index
xxx

Send Us Your Comments

Oracle9 i Application Developer’s Guide - Large Objects (LOBs), Release 2 (9.2)

Part No. A96591-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xxxi

xxxii

Preface

This Guide describes Oracle9i application development features that deal with Large
Objects (LOBs). The information applies to all platforms, and does not include

system-specific information.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documents

■ Conventions

■ Documentation Accessibility

Feature Coverage and Availability
Oracle9i Application Developer’s Guide - Large Objects (LOBs) contains

information that describes the features and functionality of Oracle9i and Oracle9i
Enterprise Edition products. Oracle9i and Oracle9i Enterprise Edition have the same

basic features; however, several advanced features are available only with the

Enterprise Edition, and some of these are optional. To use the Partitioning

functionality, select the Partitioning option.

Note: From this release, in Oracle9i Enterprise Edition, you no

longer need to select the Objects options to install the Objects and

functionality.
xxxiii

What You Need To Use LOBs
Although there are no special system restrictions when dealing with LOBs:

Audience
The Oracle9i Application Developer’s Guide - Large Objects (LOBs) is intended for

programmers developing new applications that use LOBs, as well as those who

have already implemented this technology and now wish to take advantage of new

features.

The increasing importance of multimedia data as well as unstructured data has led

to this topic being presented as an independent volume within the Oracle

Application Developers documentation set.

Organization
Oracle9i Application Developer’s Guide - Large Objects (LOBs) contains thirteen

chapters organized into two volumes. A brief summary of what you will find in

each chapter follows:

Oracle9i Application Developer’s Guide - Large Objects (LOBs) Volume 1

Chapter 1, "Introduction to LOBs"
Chapter 1 describes the need for unstructured data and the advantages of using

LOBs. It discusses the use of LOBs to promote internationalization by way of CLOBS,
and the advantages of using LOBs over LONGs. Chapter 1 also describes the LOB

demo file and where to find the supplied LOB sample scripts.

Chapter 2, "Basic LOB Components"
Chapter 2 describes the LOB datatype, including internal persistent and temporary

LOBs and external LOBs, (BFILEs). The need to initialize LOBs to NULL or Empty

is described. The LOB locator and how to use it is also discussed.

See Also: The following sections in Chapter 4, "Managing LOBs":

■ "LOB Restrictions" on page 4-16

■ "Removed Restrictions" on page -xlvi

■ "Restrictions for LOBs in Partitioned Index-Organized Tables"

on page 5-31
xxxiv

Chapter 3, "LOB Support in Different Programmatic Environments"
Chapter 3 describes the eight programmatic environments used to operate on LOBs

and includes a listing of their available LOB-related methods or procedures:

■ PL/SQL by means of the DBMS_LOB package as described in Oracle9i Supplied
PL/SQL Packages and Types Reference.

■ C by means of Oracle Call Interface (OCI) described in the Oracle Call Interface
Programmer’s Guide

■ C++ by means of Oracle C++ Call Interface (OCCI) described in the Oracle C++
Call Interface Programmer’s Guide

■ C/C++ by means of Pro*C/C++ precompiler as described in the Pro*C/C++
Precompiler Programmer’s Guide

■ COBOL by means of Pro*COBOL precompiler as described in the Pro*COBOL
Precompiler Programmer’s Guide

■ Visual Basic by means of Oracle Objects For OLE (OO4O) as described in its

accompanying online documentation.

■ Java by means of the JDBC Application Programmers Interface (API) as

described in the Oracle9i JDBC Developer’s Guide and Reference.

■ OLEDB by means of OraOLEDB, as described in the Oracle Provider for OLE DB
User’s Guide at http://otn.oracle.com/tech/nt/ole_db

Chapter 4, "Managing LOBs"
Chapter 4 describes how to use SQL*Loader, DBA actions required prior to working

with LOBs, and LOB restrictions.

Chapter 5, "Large Objects: Advanced Topics"
Chapter 5 covers advanced topics that touch on all the other chapters. Specifically, it

focuses on read consistent locators, the LOB buffering subsystem, LOBs in the object

cache, and using Partitioned Index-Organized Tables with LOBs.

Chapter 6, "Frequently Asked Questions about LOBs"
Chapter 6 includes a list of LOB-related questions and answers received from users.

Chapter 7, "Modeling and Design"
Chapter 7 covers issues related to selecting a datatype and includes a comparison of

LONG and LONG RAW properties. Table architecture design criteria are discussed
xxxv

and include tablespace and storage issues, reference versus copy semantics,

index-organized tables, and partitioned tables. This chapter also describes using

SQL semantics for LOBs, and indexing a LOB column.

Chapter 8, "Migrating From LONGs to LOBs"
This chapter describes what you need to know when migrating from LONGs to

LOBs using the LONG API for LOBs. This API ensures that when you change your

LONG columns to LOBs, your existing applications will require few changes, if any.

Chapter 9, "LOBS: Best Practices"
This chapter describes guidelines for using SQL*Loader to load LOBs, as well as

LOB and temporary LOB performance guidelines.

Chapter 10, "Internal Persistent LOBs"
The basic operations concerning internal persistent LOBs are discussed, along with

pertinent issues in the context of the scenario outlined in Chapter 9. We introduce

the Unified Modeling Language (UML) notation with a special emphasis on use
cases. Specifically, each basic operation is described as a use case. A full description

of UML is beyond the scope of this book, but the small set of conventions used in

this book appears later in the Preface. Wherever possible, we provide the same

example in each programmatic environment.

Oracle9i Application Developer’s Guide - Large Objects (LOBs) Volume 2

Chapter 11, "Temporary LOBs"
This chapter follows the same pattern as Chapter 10 but here focuses on temporary

LOBs. New JDBC APIs in this release for Temporary LOBs include Creating a

Temporary LOB, Checking if the BLOB/CLOB is temporary, and Freeing a

Temporary BLOB/CLOB, comparing and trimming temporary LOBs. Visual Basic

(OO4O) examples for temporary LOBs are not provided in this release but will be

available in a future release.

Chapter 12, "External LOBs (BFILEs)"
This chapter focuses on external LOBs, also known as BFILEs. The same treatment is

provided here as in Chapters 10 and 11, namely, every operation is treated as a use

case, and you will find matching code examples in the available programmatic

environments.
xxxvi

Chapter 13, "Using OraOLEDB to Manipulate LOBs"
This chapter describes how to manipulate LOBs using ADO Recordsets and

OraOLEDB.

Chapter 14, "LOBs Case Studies"
This chapter describes how to build a multimedia repository using LOBs. It also

includes some first steps to consider when building a LOB based Web site.

Appendix A, "Unified Modeling Language Diagrams"
This appendix explains how to use the Universal Modeling Language (UML) syntax

used in the use case diagrams in Chapters 10, 11, and 12.

Appendix B, "The Multimedia Schema"
This provides a sample multimedia case study and solution. It includes the design

of the multimedia application architecture in the form of table Multimedia_tab
and associated objects, types, and references.

Related Documents
For more information, see the following manuals:

■ Oracle9i Supplied PL/SQL Packages and Types Reference: Use this to learn PL/SQL

and to get a complete description of this high-level programming language,

which is Oracle Corporation’s procedural extension to SQL.

■ Oracle Call Interface Programmer’s Guide: Describes Oracle Call Interface (OCI).

You can use OCI to build third-generation language (3GL) applications in C or

C++ that access Oracle Server.

■ Oracle C++ Call Interface Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide: Oracle Corporation also provides the

Pro* series of precompilers, which allow you to embed SQL and PL/SQL in

your application programs.

■ Pro*COBOL Precompiler Programmer’s Guide: The Pro*COBOL precompiler

allows you to embed SQL and PL/SQL in your COBOL programs for access to

Oracle Server.

■ Programmer’s Guide to the Oracle Precompilers and Pro*Fortran Supplement to the
Oracle Precompilers Guide: Use these manuals for Fortran precompiler

programming to access Oracle Server.
xxxvii

■ SQL*Module for Ada Programmer’s Guide: This is a standalone manual for use

when programming in Ada to access Oracle Server.

■ Java: Oracle9i offers the opportunity of working with Java in the database. The

Oracle Java documentation set includes the following:

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i Java Developer’s Guide

■ Oracle9i JPublisher User’s Guide

■ Oracle9i Java Stored Procedures Developer’s Guide.

Multimedia

You can access Oracle’s development environment for multimedia technology in a

number of different ways.

■ To build self-contained applications that integrate with the database, you can

learn about how to use Oracle’s extensibility framework in Oracle9i Data
Cartridge Developer’s Guide

■ To utilize Oracle’s interMedia applications, refer to the following:

■ Oracle interMedia User’s Guide and Reference.

■ Oracle interMedia Java Classes User’s Guide and Reference

■ Using Oracle8i with the Web

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide

■ Oracle interMedia User’s Guide and Reference

Basic References

■ For SQL information, see the Oracle9i SQL Reference and Oracle9i Database
Administrator’s Guide

■ For information about Oracle XML SQL with LOB data, refer to Oracle9i
Replication. LOBs

■ For basic Oracle concepts, see Oracle9i Database Concepts.

■ Oracle9i Utilities
xxxviii

How to Order this Manual
In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.
xxxix

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.
xl

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name
xli

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example
xlii

evaluates nor makes any representations regarding the accessibility of these Web

sites.
xliii

xliv

What’s New with Large Objects (LOBs)?

This section describes the new features in the following releases:

■ LOB Features Introduced with Oracle9i, Release 2 (9.2)

■ LOB Features Introduced with Oracle9i, Release 1 (9.0.1)

■ LOB Features Introduced with Oracle8i Release 2 (8.1.6)

■ LOB Features Introduced with Oracle8i, Release 8.1.5

LOB Features Introduced with Oracle9 i, Release 2 (9.2)
This release introduces new PL/SQL APIs with improved features for loading

binary and character data from LOBs:

■ DBMS_LOB.LOADBLOBFROMFILE

This API allows you to load binary large objects from operating system files

into internal persistent LOBs, temporary LOBs, and external LOBs (BFILES).

See Also:

■ "Loading an Internal Persistent BLOB with Binary Data from a

BFILE" on page 10-43

■ "Loading a Temporary BLOB with Binary Data from a BFILE"

on page 11-48

■ "Loading a BLOB with BFILE Data" on page 12-55
xlv

■ DBMS_LOB.LOADCLOBFROMFILE

This API allows you to load character large objects from operating system files

into internal persistent LOBs, temporary LOBs, and external LOBs (BFILES).

This API performs the proper character set conversions from the BFILE data

character set to the destination CLOB/NCLOB character set.

Removed Restrictions
The following restrictions are removed in Oracle9i Release 2.

■ Trigger restriction removed

There is now DML BEFORE ROWTrigger :new support for LOBs. This means

that triggers on LOBs follow the same rules as triggers on any other type of

column.

■ Locally managed tablespaces restriction removed

You can now create LOB columns in locally managed tablespaces.

■ LOBs in AUTO segment-managed tablespaces restriction removed

You can now store LOBs in AUTO segment-managed tablespaces.

■ NCLOB parameters

NCLOB parameters are now allowed as attributes in object types.

■ Partitioned Index Organized Tables

Partitioned Index Organized Tables (PIOT) are now supported.

■ Client-side PL/SQL DBMS_LOB procedures

Client-side PL/SQL DBMS_LOB procedures are now supported.

See Also:

■ "Loading an Internal Persistent CLOB with BFILE Data" on

page 10-47

■ "Loading a Temporary CLOB/NCLOB with Character Data

from a File" on page 11-52

■ "Loading a CLOB with BFILE Data" on page 12-59
xlvi

■ PL/SQL trigger body

Prior to Release 9.2, in a PL/SQL trigger body of an BEFORE ROW DML trigger,

you could read the :old value of the LOB, but you could not read the :new
value.

■ Trigger support

In releases prior to 9.2, if a view with a LOB column has an INSTEAD OF

TRIGGER, then you cannot specify a string INSERT/UPDATE into the LOB

column. This restriction is removed in release 9.2. For example:

CREATE TABLE t(a LONG);
CREATE VIEW v AS SELECT * FROM t;
CREATE TRIGGER trig INSTEAD OF insert on v....;
ALTER TABLE t MODIFY (a CLOB);
INSERT INTO v VALUES ('abc'); /* works now */

LOB Features Introduced with Oracle9 i, Release 1 (9.0.1)
The following sections describe the new features in Oracle9i Large Objects (LOBs):

■ LONG-to-LOB Migration API

To assist you in migrating to LOBs, Oracle now supports the LONG API for

LOBs. This API ensures that when you change your LONG columns to LOBs,

your existing applications will require few changes, if any. When possible,

change your existing applications to use LOBs instead of LONGs because of the

added benefits that LOBs provide.

■ Using SQL Semantics with LOBs

In this release, for the first time, you can access (internal persistent) LOBs using

SQL VARCHAR2 semantics, such as SQL string operators and functions. By

providing you with an SQL interface, which you are familiar with, accessing

LOB data can be greatly facilitated. These semantics are recommended when

using small-sized LOBs (~ 10-100KB).

See Also: Chapter 8, "Migrating From LONGs to LOBs"

See Also: Chapter 7, "Modeling and Design"
xlvii

■ Using Oracle C++ Call Interface (OCCI) with LOBs

Oracle C++ Call Interface (OCCI) is a new C++ API for manipulating data in an

Oracle database. OCCI is organized as an easy-to-use collection of C++ classes

which enable a C++ program to connect to a database, execute SQL statements,

insert/update values in database tables, retrieve results of a query, execute

stored procedures in the database, and access metadata of database schema

objects. OCCI API provides advantages over JDBC and ODBC.

■ New JDBC LOB Functionality

The following are new JDBC LOB-related functionality:

■ Temporary LOB APIs: create temporary LOBs and destroy temporary LOBs

■ Trim APIs: trim the LOBs to the specified length

■ Open and Close APIs: open and close LOBs explicitly

■ New Streaming APIs: read and write LOBs as Java streams from the

specified offset.

■ Empty LOB instances can now be created with JDBC. The instances do not

require database round trips

■ Support for LOBs in Partitioned Index-Organized Tables

Oracle9i introduces support for LOB, VARRAY columns stored as LOBs, and

BFILEs in partitioned index-organized tables. The behavior of LOB columns in

See Also:

■ Chapter 3, "LOB Support in Different Programmatic

Environments"

■ Chapter 10, "Internal Persistent LOBs"

See Also:

■ Chapter 3, "LOB Support in Different Programmatic

Environments"

■ Chapter 10, "Internal Persistent LOBs"

■ Chapter 11, "Temporary LOBs"

■ Chapter 12, "External LOBs (BFILEs)"
xlviii

these tables is similar to that of LOB columns in conventional (heap-organized)

partitioned tables, except for a few minor differences.

■ Using OLEDB and LOBs (new to this manual)

OLE DB is an open specification for accessing various types of data from

different stores in a uniform way. OLEDB supports the following functions for

these LOB types:

■ Persistent LOBs: READ/WRITE through the rowset.

■ BFILEs: READ-ONLY through the rowset.

LOB Features Introduced with Oracle8 i Release 2 (8.1.6)

New LOB features introduced in Oracle8i, Release 2 (8.1.6) were:

■ CACHE READS

A CACHE READS option for LOB columns.

■ 4,000 byte restriction removed

The 4,000 byte restriction for bind variables binding to an internal LOB was

removed.

■ Binding More Than 4,000 Bytes of Data

From Oracle8i Release 2 (8.1.6) and higher, Oracle supports binding more than

4,000 bytes of data to internal LOB columns in INSERT and UPDATE

statements.

If a table has LONG and LOB columns, you can bind more than 4,000 bytes of

data for either the LONG column or the LOB columns, but not both in the same

statement.

See Also: Chapter 5, "Large Objects: Advanced Topics"

See Also: Chapter 13, "Using OraOLEDB to Manipulate LOBs"

Note: There was no change in LOB functionality between Oracle8i
Release 2 (8.1.6) and Oracle8i Release 3 (8.1.7).
xlix

LOB Features Introduced with Oracle8i, Release 8.1.5
New LOB features included in the Oracle8i, Release 8.1.5 are:

■ Temporary LOBs

■ Varying width CLOB and NCLOB support

■ Support for LOBs in partitioned tables

■ New API for LOBs (open /close /isopen , writeappend , getchunksize)

■ Support for LOBs in non-partitioned index-organized tables

■ Copying the value of a LONG to a LOB
l

Introduction to
1

Introduction to LOBs

This chapter discusses the following topics:

■ Why Use LOBs?

■ Why Not Use LONGs?

■ LONG-to-LOB Migration API

■ SQL Semantics Support for LOBs

■ Partitioned Index-Organized Tables and LOBs

■ Extensible Indexing on LOBs

■ Function-Based Indexing on LOBs

■ XML Documents Can be Stored in XMLType Columns as CLOBs

■ Compatibility and Migration Issues

■ Examples in This Guide
LOBs 1-1

Why Use LOBs?
Why Use LOBs?
As applications evolve to encompass increasingly richer semantics, they encounter

the need to deal with the following kinds of data:

■ Simple structured data

■ Complex structured data

■ Semi-structured data

■ Unstructured data

Traditionally, the Relational model has been very successful at dealing with simple

structured data -- the kind which can be fit into simple tables. Oracle has added

Object-Relational features so that applications can deal with complex structured

data -- collections, references, user-defined types and so on. Our queuing

technologies, such as Advanced Queueing, deal with Messages and other

semi-structured data.

LOBs are designed to support the last kind of data — unstructured data.

Unstructured Data

Unstructured Data Cannot be Decomposed Into Standard Components
Unstructured data cannot be decomposed into standard components. Data about an

Employee can be ’structured’ into a Name (probably a character string), an

identification (likely a number), a Salary and so on. But if you are given a Photo,

you find that the data really consists of a long stream of 0s and 1s. These 0s and 1s

are used to switch pixels on or off so that you will see the Photo on a display, but

they can’t be broken down into any finer structure in terms of database storage.

Unstructured Data is Large
Also interesting is that unstructured data such as text, graphic images, still video

clips, full motion video, and sound waveforms tend to be large -- a typical employee

record may be a few hundred bytes, but even small amounts of multimedia data

can be thousands of times larger.

Unstructured Data in System Files Need Accessing from the Database
Finally, some multimedia data may reside on operating system files, and it is

desirable to access them from the database.
1-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Why Use LOBs?
LOB Datatype Helps Support Internet Applications
With the growth of the internet and content-rich applications, it has become

imperative that the database support a datatype that fulfills the following:

■ Can store unstructured data

■ Is optimized for large amounts of such data

■ Provides a uniform way of accessing large unstructured data within the

database or outside

Two Type of LOBs Supported
Oracle supports the following two types of LOBs

■ Those stored in the database either in-line in the table or in a separate segment

or tablespace, such as BLOB, CLOB, and NCLOB.

■ Those stored as operating system files, such as BFILEs.

Using XML, LOBs, and Oracle Text (interMedia Text)

Use CLOBs or BFILEs to Store Unstructured Data
CLOBs can store large amounts of character data and are useful for storing

unstructured XML documents. Also useful for storing multimedia data, BFILEs

which are external file references can also be used. In this case the XML is stored

and managed outside the RDBMS, but can be used in queries on the server.

Oracle Text (interMedia Text) Indexing Supports Searching Content in XML
Elements
You can create Oracle Text (interMedia Text) indexes on CLOB columns and perform

queries on XML.

See Also:

■ Oracle9i XML Developer’s Kits Guide - XDK

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide
Introduction to LOBs 1-3

Why Not Use LONGs?
LOBS Enable Oracle Text (inter MEDIA Text)
While LOBs provide the infrastructure in the database to store multimedia data,

Oracle8i and Oracle9i also provide developers with additional functionality for the

most commonly used multimedia types. The multimedia types include text, image,

locator, audio, and video data.

Oracle8i introduced the interMedia bundle, that supports text data, spatial location,

images, audio, and video data. You can access interMedia objects using SQL queries,

manipulate their contents (such as, trim an image), read and write their content, and

convert data from one format to another.

interMedia in turn uses Oracle’s infrastructure to define object types, methods, and

LOBs necessary to represent these specialized types of data in the database. Oracle

interMedia provide a predefined set of objects and operations that facilitate application

development.

See also http://otn.oracle.com/products/text

Why Not Use LONGs?
 In Oracle7, most applications storing large amounts of unstructured data used the

LONG or LONG RAW data type.

Oracle8i and Oracle9i’s support for LOB data types is preferred over support for

LONG and LONG RAWs in Oracle7 in the following ways:

■ LOB Capacity: With Oracle8 and Oracle8i, LOBs can store up to 4GB of data.

This doubles the 2GB of data that LONG and LONG RAW data types could

store.

■ Number of LOB columns in a table: An Oracle8, Oracle8i, or Oracle9i table can

have multiple LOB columns. Each LOB column in the same table can be of a

different type. In Oracle7 Release 7.3 and higher, tables are limited to a single

LONG or LONG RAW column.

■ Random piece-wise access: LOBs support random access to data, but LONGs

support only sequential access.

LOB Columns

Note: LOBs can also be object attributes.
1-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

SQL Semantics Support for LOBs
LOB (BLOB, CLOB, NCLOB, or BFILE) column types store values or references,

called locators. Locators specify the location of large objects.

LOB Columns Do Not Only Store Locators! In LOB columns, the LOB locator is stored

in-line in the row. Depending on the user-specified SQL data definition language

(DDL) storage parameters, Oracle9i can store small LOBs, less than approximately

4K in-line in the table. Once the LOB grows bigger than approximately 4K Oracle9i
moves the LOB out of the table into a different segment and possibly even into a

different tablespace. Hence, Oracle9i sometimes stores LOB data, not just LOB

locators, in-line in the row.

BLOB, CLOB, and NCLOB data is stored out-of-line inside the database. BFILE data

is stored in operating system files outside the database. Oracle9i provides

programmatic interfaces and PL/SQL support for access to and operation on LOBs.

LONG-to-LOB Migration API
Oracle9i supports LONG as well as LOB datatypes. When possible, change your

existing applications to use LOBs instead of LONGs because of the added benefits

that LOBs provide.

LONG-to-LOB migration allows you to easily migrate your existing applications

that access LONG columns, to use LOB columns. The migration has two parts:

■ Data migration

■ Application migration

SQL Semantics Support for LOBs
In this release, for the first time, you can access LOBs using SQL VARCHAR2

semantics, such as SQL string operators and functions.

By providing you with an SQL interface, which you are familiar with, accessing

LOB data can be greatly facilitated. You can benefit from this added functionality in

the following two cases:

See Also:

■ See Chapter 7, "Modeling and Design", "LOBs Compared to

LONG and LONG RAW Types" on page 7-2.

■ Chapter 8, "Migrating From LONGs to LOBs"
Introduction to LOBs 1-5

Partitioned Index-Organized Tables and LOBs
■ When using small-sized LOBs (~ 10-100K) to store data and you need to access

the LOB data in SQL queries, the syntax is the same as that of VARCHAR2’s.

■ When you have just migrated your LONG columns to LOBs. In this release, you

can take advantage of an easier migration process using the LONG-to-LOB

migration API described in Chapter 8, "Migrating From LONGs to LOBs".

Partitioned Index-Organized Tables and LOBs
Oracle9i introduces support for LOB, VARRAY columns stored as LOBs, and BFILEs

in partitioned index-organized tables. The behavior of LOB columns in these tables

is similar to that of LOB columns in conventional (heap-organized) partitioned

tables, except for the following differences:

■ Tablespace mapping

■ Inline as opposed to out-of-line LOBs

LOB columns are supported only in range partitioned index-organized tables.

Extensible Indexing on LOBs
Oracle provides an extensible server which provides ’extensible indexing’. This

allows you to define new index types as required. This is based on the concept of

cooperative indexing where a data cartridge and Oracle9i build and maintain

indexes for data types such as text and spatial for example, for On-line-Analytical

Processing (OLAP).

The cartridge is responsible for defining the index structure, maintaining the index

content during load and update operations, and searching the index during query

processing. The index structure can be stored in Oracle as heap-organized, or an

index-organized table, or externally as an operating system file.

To this end, Oracle introduces the concept of an indextype. The purpose of an

indextype is to enable efficient search and retrieval functions for complex domains

such as text, spatial, image, and OLAP by means of a data cartridge. An indextype

is analogous to the sorted or bit-mapped index types that are built-in within the

Oracle Server. The difference is that an indextype is implemented by the data

See Also: Chapter 7, "Modeling and Design", "SQL Semantics

Support for LOBs".

See Also: Chapter 5, "Large Objects: Advanced Topics", "LOBs in

Partitioned Index-Organized Tables".
1-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Function-Based Indexing on LOBs
cartridge developer, whereas the Oracle kernel implements built-in indexes. Once a

new indextype has been implemented by a data cartridge developer, end users of

the data cartridge can use it just as they would built-in indextypes.

When the database system handles the physical storage of domain indexes, data

cartridges

■ Define the format and content of an index. This enables cartridges to define an

index structure that can accommodate a complex data object.

■ Build, delete, and update a domain index. The cartridge handles building and

maintaining the index structures. Note that this is a significant departure from

the medicine indexing features provided for simple SQL data types. Also, since

an index is modeled as a collection of tuples, in-place updating is directly

supported.

■ Access and interpret the content of an index. This capability enables the data

cartridge to become an integral component of query processing. That is, the

content-related clauses for database queries are handled by the data cartridge.

By supporting extensible indexes, Oracle9i significantly reduces the effort needed to

develop high-performance solutions that access complex datatypes such as LOBs.

Extensible Optimizer
The extensible optimizer functionality allows authors of user-defined functions and

indexes to create statistics collection, selectivity, and cost functions. This

information is used by the optimizer in choosing a query plan. The cost-based

optimizer is thus extended to use the user-supplied information; the rule-based

optimizer is unchanged.

Extensible indexing functionality allows you to define new operators, index types,

and domain indexes. For such user-defined operators and domain indexes, the

extensible optimizer functionality will allow users to control the three main

components used by the optimizer to select an execution plan: statistics, selectivity,
and cost.

Function-Based Indexing on LOBs
A function-based index is an index built on an expression. It extends your indexing

capabilities beyond indexing on a column. A function-based index increases the

variety of ways in which you can access data.

See Also: Oracle9i Data Cartridge Developer’s Guide
Introduction to LOBs 1-7

XML Documents Can be Stored in XMLType Columns as CLOBs
Function-based indexes cannot currently be built on nested tables. However, you

can now build function-based indexes on LOB columns and varrays.

XML Documents Can be Stored in XMLType Columns as CLOBs
Composed XML documents can be stored in CLOBs. XMLType columns use CLOBs

for storage.

Compatibility and Migration Issues
The following LOB related compatibility and migration issues are described in

detail in Oracle9i Database Migration :

■ “Varying Width Character Sets for CLOBs or NCLOBs”, under "Datatypes,

Compatibility and Interpretability Issues”.

■ Downgrading with CACHE READs Defined: See "Downgrading to an Older

Version 8 Release", under "Remove Incompatibilities", "Datatypes",

"Discontinue Use of Cache Reads Specified for LOBs".

■ Downgrading — Removing LOB Columns from Partitioned Table: See the

chapter, "Downgrading to an Older Version 8 Release", under "Remove

Incompatibilities", "Datatypes", "Remove LOB Columns from Partitioned

Tables".

■ Downgrading — LOBs and Varrays in Index Organized Tales: See

"Downgrading to an Older Version 8 Release", under "Remove

Incompatibilities, "Schema Objects", "Discontinue Use of LOBs and Varrays in

Index Organized Tables".

■ Downgrading —Varying Width Character Sets for CLOBs or NCLOBs: See the

chapter, "Downgrading to an Older Version 8 Release", under "Remove

Incompatibilities", under "Datatypes", "Remove CLOBs and NCLOBs from

Tables in Database with Varying-Width Character Set".

■ Downgrading — Partitoned Index Organized Tables (PIOTs) (on LOBs): See the

chapter, "Removing Oracle9i Incompatibilities".

See Also: Oracle9i Application Developer’s Guide - Fundamentals for more
information about using function-based indexing.

See Also: Oracle9i XML Developer’s Kits Guide - XDK, Chapter 5,for
information about XMLType, and how XML is stored in LOBs.
1-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples in This Guide
■ Downgrading — Functional Indexes on LOBs: See the chapter, "Removing

Oracle9i Incompatibilities".

■ Downgrading — LONG to LOB data and application migration: See the

chapter, "Removing Oracle9i Incompatibilities".

Examples in This Guide
Examples in this guide use the following sample schemas:

■ Product Media (PM) sample schema

■ Multimedia sample schema - deprecated

The Multimedia schema is deprecated and is not supplied with Oracle9i sample

schemas. The Product Media schema replaces the Multimedia schema as the sample

schema for most LOB examples.

Examples in Chapter 10, Chapter 11, and Chapter 12 of this guide have been

migrated to the PM schema. Most other examples have not been migrated and still

use the Multimedia schema. Appendix B, "The Multimedia Schema" is included in

this guide to provide a context for these examples.

The Product Media sample schema provides tables and sample data that are suited

for illustrating LOB database features. Much of this data is unstructured as LOB

APIs are designed to handle large unstructured data. "Unstructured Data" is

described earlier in this chapter.

The examples in this guide that are based on the PM schema use the Print_media
sample table.

See Also: For further details on the Product Media sample

schema, you must refer to Oracle9i Sample Schemas.
Introduction to LOBs 1-9

Examples in This Guide
1-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Basic LOB Compo
2

Basic LOB Components

This chapter discusses the following topics:

■ The LOB Datatype

■ Varying-Width Character Data

■ LOB Value and Locators

■ Creating Tables that Contain LOBs
nents 2-1

The LOB Datatype
The LOB Datatype
Oracle9i regards LOBs as being of two kinds depending on their location with

regard to the database — internal LOBs and external LOBs, also referred to as

BFILEs (binary files). Note that when we discuss some aspect of working with

LOBs without specifying whether the LOB is internal or external, the characteristic

under discussion pertains to both internal and external LOBs.

Internal LOBs
Internal LOBs, as their name suggests, are stored inside database tablespaces in a

way that optimizes space and provides efficient access. Internal LOBs use copy

semantics and participate in the transactional model of the server. You can recover

internal LOBs in the event of transaction or media failure, and any changes to a

internal LOB value can be committed or rolled back. In other words, all the ACID1

properties that pertain to using database objects pertain to using internal LOBs.

Internal LOB Datatypes
There are three SQL datatypes for defining instances of internal LOBs:

■ BLOB, a LOB whose value is composed of unstructured binary (“raw”) data.

■ CLOB, a LOB whose value is composed of character data that corresponds to the

database character set defined for the Oracle9i database.

■ NCLOB, a LOB whose value is composed of character data that corresponds to

the national character set defined for the Oracle9i database.

Internal LOBs are divided into persistent and temporary LOBs.

External LOBs (BFILEs)
External LOBs (BFILES) are large binary data objects stored in operating system files

outside database tablespaces. These files use reference semantics. Apart from

conventional secondary storage devices such as hard disks, BFILEs may also be

located on tertiary block storage devices such as CD-ROMs, PhotoCDs and DVDs.

The BFILE datatype allows read-only byte stream access to large files on the file

system of the database server.

1 ACID = Access Control Information Directory. This is the attribute that determines who
has what type of access and to what directory data. It contains a set of rules for structural
and content access items. For more information see the Oracle Internet Directory
Administrators Guide.
2-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

The LOB Datatype
Oracle can access BFILE s provided the underlying server operating system

supports stream-mode access to these operating system (OS) files.

External LOB Datatypes
There is one datatype, BFILE, for declaring instances of external SQL LOBs.

■ BFILE , a LOB whose value is composed of binary (“raw”) data, and is stored

outside the database tablespaces in a server-side operating system file.

Internal LOBs Use Copy Semantics, External LOBs Use Reference Semantics
■ Copy semantics: Both LOB locator and value are copied

■ Reference semantics: Only LOB locator is copied

Copy Semantics
Internal LOBs, namely BLOBs, CLOBs, NCLOBs, whether persistent or temporary,

use copy semantics.

When you insert or update a LOB with a LOB from another row in the same table,

the LOB value is copied so that each row has a different copy of the LOB value.

Internal LOBs have copy semantics so that if the LOB in the row of the table is copied

to another LOB, in a different row or perhaps in the same row but in a different

column, then the actual LOB value is copied, not just the LOB locator. This means in

this case that there will be two different LOB locators and two copies of the LOB

value.

Reference Semantics
External LOBs (BFILEs) use reference semantics. When the BFILE in the row of the

table is copied to another BFILE, only the BFILE locator is copied, not the actual

BFILE data, that is, not the actual operating system file.

Note:

■ External LOBs do not participate in transactions. Any support

for integrity and durability must be provided by the

underlying file system as governed by the operating system.
Basic LOB Components 2-3

Varying-Width Character Data
Varying-Width Character Data
■ You can create the following LOB tables:

■ Containing CLOB/NCLOB columns even if you use a varying-width

CHAR/NCHAR database character set

■ Containing a type that has a CLOB attribute irrespective of whether you use

a varying-width CHAR database character set

■ You cannot create the following tables:

■ With NCLOBs as attributes of object types

Using DBMS_LOB.LOADFROMFILE and Functions that Access OCI
In using the OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

from one character set to another. However, no implicit translation is ever

performed from binary data to a character set. When you use the loadfromfile

operation to populate a CLOB or NCLOB, you are populating the LOB with binary

data from the BFILE. In that case, you will need to perform character set

conversions on the BFILE data before executing loadfromfile.

However, we recommend that you use the sql*loader instead of loadfromfile to load

data into a clob/nclob because the sql*loader will take care of all necessary

character set conversions.

Converting Between Client Character Set and UCS-2
There are APIs in cartridge service that can convert between client character set and

UCS-2:

■ OCIUnicodeToCharSet()

■ OCICharSetToUnicode()

See Also:

■ "Loading an Internal Persistent CLOB with BFILE Data" on

page 10-47

■ "Loading a Temporary CLOB/NCLOB with Character Data

from a File" on page 11-52

■ "Loading a CLOB with BFILE Data" on page 12-59
2-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Value and Locators
LOB Value and Locators

Inline storage of the LOB value
Data stored in a LOB is termed the LOB’s value. The value of an internal LOB may or

may not be stored inline with the other row data. If you do not set DISABLE
STORAGE IN ROW and the internal LOB value is less than approximately 4,000

bytes, then the value is stored inline; otherwise it is stored outside the row. Since

LOBs are intended to be large objects, inline storage will only be relevant if your

application mixes small and large LOBs.

As mentioned in Chapter 7, "Modeling and Design", "ENABLE | DISABLE

STORAGE IN ROW" on page 7-11, the LOBvalue is automatically moved out of the

row once it extends beyond approximately 4,000 bytes.

LOB Locators
Regardless of where the value of the internal LOB is stored, a locator is stored in the

row. You can think of a LOB locator as a pointer to the actual location of the LOB
value. A LOB locator is a locator to an internal LOB while a BFILE locator is a locator

to an external LOB. When the term locator is used without an identifying prefix term,

it refers to both LOB locators and BFILE locators.

■ Internal LOB Locators. For internal LOBs, the LOB column stores a locator to

the LOB’s value which is stored in a database tablespace. Each LOB
column/attribute for a given row has its own distinct LOB locator and also a

distinct copy of the LOB value stored in the database tablespace.

■ External LOB Locators. For external LOBs (BFILEs), the LOB column stores a

BFILE locator to the external operating system file. Each BFILE

column/attribute for a given row has its own BFILE locator. However, two

See Also:

■ Chapter 3, "LOB Support in Different Programmatic

Environments":

■ "Offset and Amount Parameters: Fixed-Width Versus

Varying-Width, Character or Byte For DBMS_LOB Package" on

page 3-7

■ "Offset and Amount Parameters: Fixed-Width Versus

Varying-Width, Character or Byte" on page 3-11
Basic LOB Components 2-5

LOB Value and Locators
different rows can contain a BFILE locator that points to the same operating

system file.

Setting the LOB Column/Attribute to Contain a Locator

Internal LOBs
Before you can start writing data to an internal LOB using the supported

programmatic environment interfaces1 (PL/SQL, OCI, OCCI, Pro*C/C++,

Pro*COBOL, Visual Basic, Java, or OLEDB), the LOB column/attribute must be

made non-null, that is, it must contain a locator. You can accomplish this by

initializing the internal LOB to empty in an INSERT/UPDATE statement using the

functions EMPTY_BLOB() for BLOBs or EMPTY_CLOB() for CLOBs and NCLOBs.

External LOBs
Before you can start accessing the external LOB (BFILE) value using the supported

programmatic environment interfaces, the BFILE column/attribute must be made

non-null. You can initialize the BFILE column to point to an external operating

system file by using the BFILENAME() function.

Invoking the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not

raise an exception. However, using a LOB locator that was set to empty to access or

manipulate the LOB value in any PL/SQL DBMS_LOB or OCI routine will raise an

exception.

Valid places where empty LOBlocators may be used include the VALUESclause of an

INSERT statement and the SET clause of an UPDATE statement.

The following INSERT statement:

– Populates story with the character string ’JFK interview’,

1 Note: You could use SQL to populate a LOB column with data even if it contained NULL,
for example, unless its a LOB attribute. However, you cannot use the supported
programmatic environment interfaces on a NULL LOB!

See Also: "Inserting a LOB Value using EMPTY_CLOB() or

EMPTY_BLOB()" in Chapter 10, "Internal Persistent LOBs".

See Also: "INSERT a Row Using BFILENAME()" in Chapter 12,

"External LOBs (BFILEs)".
2-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Value and Locators
– Sets flsub, frame and sound to an empty value,

– Sets photo to NULL, and

– Initializes music to point to the file ’JFK_interview’ located under the logical

directory ’AUDIO_DIR’ (see the CREATE DIRECTORY statement in Oracle9i
Database Reference.).

See Appendix B, "The Multimedia Schema", for the definition of table

Multimedia_tab.

INSERT INTO Multimedia_tab VALUES (101, ’JFK interview’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL,
 BFILENAME(’AUDIO_DIR’, ’JFK_interview’), NULL);

Similarly, the LOB attributes for the Map_typ column in Multimedia_tab can be

initialized to NULL or set to empty as shown in the following.

INSERT INTO Multimedia_tab
 VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(),
 EMPTY_BLOB(), NULL, NULL, NULL,
 Map_typ(’Moon Mountain’, 23, 34, 45, 56, EMPTY_BLOB(), NULL));

Accessing a LOB Through a Locator

SELECTing a LOB
Performing a SELECT on a LOB returns the locator instead of the LOB value. In the

following PL/SQL fragment you select the LOB locator for story and place it in the

PL/SQL locator variable Image1 defined in the program block. When you use

PL/SQL DBMS_LOB functions to manipulate the LOB value, you refer to the LOB
using the locator.

DECLARE
Image1 CLOB;
ImageNum INTEGER := 101;

Note: Character strings are inserted using the default character set

for the instance.

Note: You cannot initialize a LOB object attribute with a literal.
Basic LOB Components 2-7

Creating Tables that Contain LOBs
BEGIN
SELECT story INTO Image1 FROM Multimedia_tab

WHERE clip_id = ImageNum;
DBMS_OUTPUT.PUT_LINE(’Size of the Image is: ’ ||
DBMS_LOB.GETLENGTH(Image1));
/* more LOB routines */

END;

In the case of OCI, locators are mapped to locator pointers which are used to

manipulate the LOB value. The OCI LOB interface is described Chapter 3, "LOB

Support in Different Programmatic Environments" and in the Oracle Call Interface
Programmer’s Guide.

Using LOB locators and transaction boundaries, and read consistent locators are

described in Chapter 5, "Large Objects: Advanced Topics".

Creating Tables that Contain LOBs
When creating tables that contain LOBs use the guidelines described in the

following sections:

■ Initializing Internal LOBs to NULL or Empty

■ Initializing Internal LOB Columns to a Value

■ Initializing External LOBs to NULL or a File Name

■ Defining tablespace and storage characteristics. See Chapter 7, "Modeling and

Design", "Defining Tablespace and Storage Characteristics for Internal LOBs".

Initializing Internal LOBs to NULL or Empty
You can set an internal LOB — that is, a LOB column in a table, or a LOB attribute in

an object type defined by you— to be NULL or empty:

■ Setting an Internal LOB to NULL: A LOB set to NULL has no locator. A NULL

value is stored in the row in the table, not a locator. This is the same process as

for all other datatypes.

■ Setting an Internal LOB to Empty: By contrast, an empty LOB stored in a table is a

LOB of zero length that has a locator. So, if you SELECT from an empty LOB
column or attribute, you get back a locator which you can use to populate the

LOB with data using supported programmatic environments, such as OCI or

PL/SQL(DBMS_LOB). See Chapter 3, "LOB Support in Different Programmatic

Environments".
2-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating Tables that Contain LOBs
These options are discussed in more detail in the following.

As discussed in the following, an external LOB(BFILE) can be initialized to NULLor

to a filename.

Setting an Internal LOB to NULL
You may want to set the internal LOB value to NULL upon inserting the row in cases

where you do not have the LOB data at the time of the INSERT or if you want to

issue a SELECT statement at some later time such as:

 SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NOT NULL;

because you want to see all the voice-over segments that have been recorded, or

 SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NULL;

if you wish to establish which segments still have to be recorded.

Note that you cannot call OCI or DBMS_LOB functions on a NULL LOB, so you

must then issue an SQL UPDATE statement to reset the null LOB column — to

EMPTY_BLOB() or EMPTY_CLOB() or to a value (for example, ’Denzel Washington’)

for internal LOBs, or to a filename for external LOBs.

The point is that you cannot make a function call from the supported programmatic

environments on a LOB that is NULL. These functions only work with a locator, and

if the LOB column is NULL, there is no locator in the row.

Setting an Internal LOB to Empty
If you do not want to set an internal LOBcolumn to NULL, you can set the LOBvalue

to empty using the function EMPTY_BLOB () or EMPTY_CLOB() in the INSERT
statement:

INSERT INTO a_table VALUES (EMPTY_BLOB());

Even better is to use the returning clause (thereby eliminating a round trip that is

necessary for the subsequent SELECT), and then immediately call OCI or the

PL/SQL DBMS_LOB functions to populate the LOB with data.

DECLARE
 Lob_loc BLOB;
BEGIN
 INSERT INTO a_table VALUES (EMPTY_BLOB()) RETURNING blob_col INTO Lob_loc;
 /* Now use the locator Lob_loc to populate the BLOB with data */
END;
Basic LOB Components 2-9

Creating Tables that Contain LOBs
Initializing LOBs Example Using Table Multimedia_tab
You can initialize the LOBs in Multimedia_tab by using the following INSERT
statement:

INSERT INTO Multimedia_tab VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of story, flsub, frame and sound to an empty value, and sets photo,
and music to NULL.

Initializing Internal LOB Columns to a Value
Alternatively, LOBcolumns, but not LOBattributes, may be initialized to a value.

Which is to say — internal LOBattributes differ from internal LOBcolumns in that

LOB attributes may not be initialized to a value other than NULL or empty.

Note that you can initialize the LOB column to a value that contains more than 4K

data.

Initializing External LOBs to NULL or a File Name
An external LOB (BFILE) can be initialized to NULL or to a filename using the

BFILENAME() function.

See Also: Chapter 7, "Modeling and Design"

See Also: Chapter 12, "External LOBs (BFILEs)", "Directory

Object" — "Initializing a BFILE Locator".
2-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Support in Different Programmatic Environm
3

LOB Support in Different Programmatic

Environments

This chapter discusses the following topics:

■ Eight Programmatic Environments Operate on LOBs

■ Comparing the LOB Interfaces

■ Using PL/SQL (DBMS_LOB Package) To Work With LOBs

■ Using C (OCI) To Work With LOBs

■ Using C++ (OCCI) To Work With LOBs

■ Using C/C++ (Pro*C) To Work with LOBs

■ Using COBOL (Pro*COBOL) to Work with LOBs

■ Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs

■ Using Java (JDBC) To Work with LOBsUsing Java (JDBC) To Work with LOBs

■ OLEDB (Oracle Provider for OLEDB — OraOLEDB)
ents 3-1

Eight Programmatic Environments Operate on LOBs
Eight Programmatic Environments Operate on LOBs
Table 3–1 lists the eight programmatic environments (languages) that support LOB
functionality. Chapter 10, Chapter 11, and Chapter 12 cover the supported LOB

functions in terms of use cases. Examples are provided in each programmatic

environment for most LOB use cases.

Table 3–1 LOBs’ Eight Programmatic Environments

Language
Precompiler or
Interface Program Syntax Reference In This Chapter See...

PL/SQL DBMS_LOB
Package

Oracle9i Supplied PL/SQL Packages and
Types Reference

"Using PL/SQL (DBMS_LOB
Package) To Work With LOBs" on
page 3-6.

C Oracle Call
Interface for C
(OCI)

Oracle Call Interface Programmer’s Guide "Using C (OCI) To Work With
LOBs" on page 3-10.

C++ Oracle Call
Interface for C++
(OCCI)

Oracle C++ Call Interface Programmer’s
Guide

"Using C++ (OCCI) To Work With
LOBs" on page 3-22.

C/C++ Pro*C/C++
Precompiler

Pro*C/C++ Precompiler Programmer’s
Guide

"Using C/C++ (Pro*C) To Work
with LOBs" on page 3-29.

COBOL Pro*COBOL
Precompiler

Pro*COBOL Precompiler Programmer’s
Guide

"Using COBOL (Pro*COBOL) to
Work with LOBs" on page 3-33.

Visual Basic Oracle Objects For
OLE (OO4O)

Oracle Objects for OLE (OO4O) is a
Windows-based product included with
Oracle9i Client for Windows NT.

There are no manuals for this product,
only online help. Online help is
available through the Application
Development submenu of the Oracle9i
installation.

"Using Visual Basic (Oracle Objects
for OLE (OO4O)) to Work with
LOBs" on page 3-37."

Java JDBC Application
Programmatic
Interface (API)

Oracle9i SQLJ Developer’s Guide and
Reference and Oracle9i JDBC Developer’s
Guide and Reference.

"Using Java (JDBC) To Work with
LOBs" on page 3-45.

OLEDB OraOLEDB, an
OLE DB provider
for Oracle.

Oracle Provider for OLE DB
Developer’s Guide
3-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing the LOB Interfaces
Comparing the LOB Interfaces
Table 3–2 and Table 3–3compare the eight LOB programmatic interfaces by listing

their functions and methods used to operate on LOBs. The tables are split in two

simply to accommodate all eight interfaces. The interfaces’ functionality, with

regards LOBs, is described in the following sections.

Table 3–2 Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)

(ociap.h)

C++ (OCCI)

(occiData.h). Also for
OCCIClob and OCCIBfile
classes.

Pro*C/C++ and
Pro*COBOL

DBMS_LOB.COMPARE N/A N/A N/A

DBMS_LOB.INSTR N/A N/A N/A

DBMS_LOB.SUBSTR N/A N/A N/A

DBMS_LOB.APPEND OCILob.Append OCCIBlob.append() APPEND
N/A [use PL/SQL assign
operator]

OCILob.Assign ASSIGN

N/A OCILob.CharSetForm OCCIClob.getCharsetForm
(CLOB only)

N/A

N/A OCILob.CharSetId OCCIClob.getCharsetId()

(CLOB only)

N/A

DBMS_LOB.CLOSE OCILob.Close OCCIBlob.close() CLOSE
N/A N/A OCCIClob.closeStream() N/A

DBMS_LOB.COPY OCILob.Copy OCCIBlob.copy() COPY
N/A OCILob.DisableBuffering N/A DISABLE BUFFERING
N/A OCILob.EnableBuffering N/A ENABLE BUFFERING
DBMS_LOB.ERASE OCILob.Erase N/A ERASE
DBMS_LOB.FILECLOSE OCILob.FileClose OCCIClob.close() CLOSE
DBMS_LOB.FILECLOSEALL OCILob.FileCloseAll N/A FILE CLOSE ALL
DBMS_LOB.FILEEXISTS OCILob.FileExists OCCIBfile.fileExists() DESCRIBE [FILEEXISTS]
DBMS_LOB.GETCHUNKSIZE OCILob.GetChunkSize OCCIBlob.getChunkSize() DESCRIBE [CHUNKSIZE]
DBMS_LOB.FILEGETNAME OCILob.FileGetName OCCIBfile.getFileName() and

OCCIBfile.getDirAlias()
DESCRIBE [DIRECTORY,
FILENAME]

DBMS_LOB.FILEISOPEN OCILob.FileIsOpen OCCIBfile.isOpen() DESCRIBE [ISOPEN]
DBMS_LOB.FILEOPEN OCILob.FileOpen OCCIBfile.open() OPEN
N/A (use BFILENAME
operator)

OCILob.FileSetName OCCIBfile.setName() FILE SET

N/A OCILob.FlushBuffer N/A FLUSH BUFFER
DBMS_LOB.GETLENGTH OCILob.GetLength OCCIBlob.length() DESCRIBE [LENGTH]
LOB Support in Different Programmatic Environments 3-3

Comparing the LOB Interfaces
N/A OCILob.IsEqual use operator = ()=/!= N/A

DBMS_LOB.ISOPEN OCILob.IsOpen OCCIBlob.isOpen() DESCRIBE [ISOPEN]
DBMS_LOB.LOADFROMFILE OCILob.LoadFromFile Use the overloadedcopy()

method.
LOAD FROM FILE

N/A OCILob.LocatorIsInit OCCIClob.isinitialized() N/A

DBMS_LOB.OPEN OCILob.Open OCCIBlob.open OPEN
DBMS_LOB.READ OCILob.Read OCCIBlob.read READ
DBMS_LOB.TRIM OCILob.Trim OCCIBlob.trim TRIM
DBMS_LOB.WRITE OCILob.Write OCCIBlob.write WRITEORALOB.
DBMS_LOB.WRITEAPPEND OCILob.WriteAppend N/A WRITE APPEND
DBMS_
LOB.CREATETEMPORARY

OCILob.CreateTemporary N/A N/A

DBMS_LOB.FREETEMPORARY OCILob.FreeTemporary N/A N/A

DBMS_LOB.ISTEMPORARY OCILob.IsTemporary N/A N/A

OCILob.LocatorAssign use operator = () or copy
constructor

N/A

Table 3–3 Comparing the LOB Interfaces, 2 of 2
PL/SQL: DBMS_LOB
(dbmslob.sql) Visual Basic (OO4O) Java (JDBC OLEDB
DBMS_LOB.COMPARE ORALOB.Compare Use DBMS_LOB. N/A

DBMS_LOB.INSTR ORALOB.Matchpos position N/A

DBMS_LOB.SUBSTR N/A getBytes for BLOBs or BFILEs

getSubString for CLOBs

N/A

DBMS_LOB.APPEND ORALOB.Append Use length and then
putBytes or PutString

N/A

N/A [use PL/SQL assign
operator]

ORALOB.Clone N/A [use equal sign] N/A

N/A N/A N/A N/A

N/A N/A N/A N/A

DBMS_LOB.CLOSE N/A use DBMS_LOB. N/A

DBMS_LOB.COPY ORALOB.Copy Use read and write N/A

N/A ORALOB.DisableBuffering N/A N/A

N/A ORALOB.EnableBuffering N/A N/A

Table 3–2 Comparing the LOB Interfaces, 1 of 2 (Cont.)

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)

(ociap.h)

C++ (OCCI)

(occiData.h). Also for
OCCIClob and OCCIBfile
classes.

Pro*C/C++ and
Pro*COBOL
3-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing the LOB Interfaces
DBMS_LOB.ERASE ORALOB.Erase Use DBMS_LOB. N/A

DBMS_LOB.FILECLOSE ORABFILE.Close closeFile N/A

DBMS_LOB.FILECLOSEALL ORABFILE.CloseAll Use DBMS_LOB. N/A

DBMS_LOB.FILEEXISTS ORABFILE.Exist fileExists N/A

DBMS_LOB.GETCHUNKSIZE N/A getChunkSize N/A

DBMS_LOB.FILEGETNAME ORABFILE.

DirectoryName

ORABFILE.

FileName

getDirAlias

getName

N/A

DBMS_LOB.FILEISOPEN ORABFILE.IsOpen Use DBMS_LOB.ISOPEN N/A

DBMS_LOB.FILEOPEN ORABFILE.Open openFile N/A

N/A (use BFILENAME
operator)

DirectoryName

FileName

Use BFILENAME N/A

N/A ORALOB.FlushBuffer N/A N/A

DBMS_LOB.GETLENGTH ORALOB.Size length N/A

N/A N/A equals N/A

DBMS_LOB.ISOPEN ORALOB.IsOpen use DBMS_LOB. IsOpen N/A

DBMS_LOB.LOADFROMFILE ORALOB.

CopyFromBfile

Use read and then write N/A

DBMS_LOB.OPEN ORALOB.open Use DBMS_LOB. N/A

DBMS_LOB.READ ORALOB.Read BLOB or BFILE: getBytes
and getBinaryStream

CLOB: getString and
getSubString and
getCharacterStream

IRowset::GetData and
ISequentialStream::Read

DBMS_LOB.TRIM ORALOB.Trim Use DBMS_LOB. N/A

DBMS_LOB.WRITE ORALOB.Write BLOB or BFILE: putBytes
and
getBinaryOutputStream

CLOB: putString and
getCharacterOutputStream

IRowsetChange::SetData

and

ISequentialStream::Write

DBMS_LOB.WRITEAPPEND N/A Use length and then
putString or putBytes

N/A

Table 3–3 Comparing the LOB Interfaces, 2 of 2 (Cont.)
PL/SQL: DBMS_LOB
(dbmslob.sql) Visual Basic (OO4O) Java (JDBC OLEDB
LOB Support in Different Programmatic Environments 3-5

Using PL/SQL (DBMS_LOB Package) To Work With LOBs
Using PL/SQL (DBMS_LOB Package) To Work With LOBs
The PL/SQL DBMS_LOB package can be used for the following operations:

■ Internal persistent LOBs and Temporary LOBs: Read and modify operations,

either entirely or in a piece-wise manner.

■ BFILEs: Read operations

Provide a LOB Locator Before Invoking the DBMS_LOB Routine
As described in more detail in the following, DBMS_LOB routines work based on

LOB locators. For the successful completion of DBMS_LOB routines, you must

provide an input locator representing a LOB that exists in the database tablespaces

or external file system, before you invoke the routine.

■ Internal LOBs: First use SQL to define tables that contain LOB columns, and

subsequently you can use SQL to initialize or populate the locators in these LOB
columns.

■ External LOBs: Define a DIRECTORY object that maps to a valid physical

directory containing the external LOBs that you intend to access. These files

must exist, and have READ permission for Oracle Server to process. If your

operating system uses case-sensitive path names, specify the directory in the

correct case. See Chapter 12, "External LOBs (BFILEs)", "Directory Object" on

page 12-4 for more information.

DBMS_
LOB.CREATETEMPORARY

N/A N/A N/A

DBMS_
LOB.FREETEMPORARY

N/A N/A N/A

DBMS_LOB.ISTEMPORARY N/A N/A N/A

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed documentation, including parameters, parameter types,

return values, and example code.

Table 3–3 Comparing the LOB Interfaces, 2 of 2 (Cont.)
PL/SQL: DBMS_LOB
(dbmslob.sql) Visual Basic (OO4O) Java (JDBC OLEDB
3-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using PL/SQL (DBMS_LOB Package) To Work With LOBs
Once the LOBs are defined and created, you may then SELECT a LOB locator into a

local PL/SQL LOB variable and use this variable as an input parameter to DBMS_
LOB for access to the LOB value.

Examples provided with each DBMS_LOBroutine will illustrate this in the following

sections.

PL/SQL - LOB Guidelines

Client PL/SQL Procedures Cannot Call DBMS_LOB Routines
Client-side PL/SQL procedures cannot call DBMS_LOB package routines.

However, you can use server-side PL/SQL procedures or anonymous blocks in

Pro*C/C++ to call DBMS_LOB package routines.

Offset and Amount Parameters: Fixed-Width Versus Varying-Width, Character or
Byte For DBMS_LOB Package
For DBMS_LOB package, for example, for both fixed and varying-width character sets,

the following rules apply:

■ CLOBs and NCLOBs: Offset and amount parameters are always in characters

■ BLOBs and BFILES: Offset and amount parameters are always in bytes

DBMS_LOB.LOADFROMFILE: Amount Parameter Value
When using DBMS_LOB.LOADFROMFILE, you cannot specify an amount parameter

value larger than the size of the BFILE. (Although you can specify the LOBMAXSIZE
constant for the amount parameter value to load the entire BFILE.)

DBMS_LOB.READ: Amount Parameter Can be Larger than Data Size
When using DBMS_LOB.READ, the amount parameter can be larger than the size of

the data. In PL/SQL, the amount should be less than or equal to the size of the

buffer, and the buffer size is limited to 32K.
LOB Support in Different Programmatic Environments 3-7

Using PL/SQL (DBMS_LOB Package) To Work With LOBs
PL/SQL Functions and Procedures that Operate on LOBs
PL/SQL functions and procedures that operate on BLOBs, CLOBs, NCLOBs, and

BFILEs are summarized in the following:

■ To modify internal LOB values, see Table 3–4

■ To read or examine LOB values, see Table 3–5

■ To create, free, or check on temporary LOBs, see Table 3–6

■ For read-only functions on external LOBs (BFILEs), see Table 3–7

■ To open or close a LOB, or check if LOB is open, see Table 3–8

PL/SQL Functions/Procedures To Modify BLOB, CLOB, and NCLOB Values

See Also:

■ "Loading an Internal Persistent BLOB with Binary Data from a

BFILE" and "Loading an Internal Persistent CLOB with BFILE

Data" in Chapter 10

■ "Loading a Temporary BLOB with Binary Data from a BFILE"

and "Loading a Temporary CLOB/NCLOB with Character

Data from a File" in Chapter 11

■ "Loading a BLOB with BFILE Data" and "Loading a CLOB with

BFILE Data" in Chapter 12

Table 3–4 PL/SQL: DBMS_LOB Procedures to Modify BLOB, CLOB, and NCLOB Values

Function/Procedure Description

APPEND() Appends the LOB value to another LOB

COPY() Copies all or part of a LOB to another LOB

ERASE() Erases part of a LOB, starting at a specified offset

LOADFROMFILE() Load BFILE data into an internal LOB

LOADCLOBFROMFILE() Load character data from a file into a LOB

LOADBLOBFROMFILE() Load binary data from a file into a LOB
3-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using PL/SQL (DBMS_LOB Package) To Work With LOBs
PL/SQL Functions/Procedures To Read or Examine Internal and External
LOB Values

PL/SQL Functions/Procedures To Operate on Temporary LOBs

TRIM() Trims the LOB value to the specified shorter length

WRITE() Writes data to the LOB at a specified offset

WRITEAPPEND() Writes data to the end of the LOB

Table 3–5 PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External LOB values

Function/Procedure Description

COMPARE() Compares the value of two LOBs

GETCHUNKSIZE() Gets the chunk size used when reading and writing. This only works on
internal LOBs and does not apply to external LOBs (BFILEs).

GETLENGTH() Gets the length of the LOB value

INSTR() Returns the matching position of the nth occurrence of the pattern in the LOB

READ() Reads data from the LOB starting at the specified offset

SUBSTR() Returns part of the LOB value starting at the specified offset

Table 3–6 PL/SQL: DBMS_LOB Procedures to Operate on Temporary LOBs

Function/Procedure Description

CREATETEMPORARY() Creates a temporary LOB

ISTEMPORARY() Checks if a LOB locator refers to a temporary LOB

FREETEMPORARY() Frees a temporary LOB

Table 3–4 PL/SQL: DBMS_LOB Procedures to Modify BLOB, CLOB, and NCLOB Values

Function/Procedure Description
LOB Support in Different Programmatic Environments 3-9

Using C (OCI) To Work With LOBs
PL/SQL Read-Only Functions/Procedures for BFILEs

PL/SQL Functions/Procedures To Open and Close Internal and External LOBs

These procedures are described in detail for specific LOB operations, such as,

INSERT a row containing a LOB, in these chapters:

■ Chapter 10, "Internal Persistent LOBs"

■ Chapter 11, "Temporary LOBs"

■ Chapter 12, "External LOBs (BFILEs)"

You can access many of the PL/SQL LOB example scripts from these chapters, at

$ORACLE_HOME/rdbms/demo/lobs/plsql .

Using C (OCI) To Work With LOBs
Oracle Call Interface (OCI) can be used to make changes to an entire internal LOB,

or to pieces of the beginning, middle or end of it through OCI, as follows:

■ For reading from internal and external LOBs (BFILEs)

Table 3–7 PL/SQL: DBMS_LOB Read-Only Procedures for BFILEs

Function/Procedure Description

FILECLOSE() Closes the file. Use CLOSE() instead.

FILECLOSEALL() Closes all previously opened files

FILEEXISTS() Checks if the file exists on the server

FILEGETNAME() Gets the directory alias and file name

FILEISOPEN() Checks if the file was opened using the input BFILE locators. Use
ISOPEN() instead.

FILEOPEN() Opens a file. Use OPEN() instead.

Table 3–8 PL/SQL: DBMS_LOB Procedures to Open and Close Internal and External LOBs

Function/Procedure Description

OPEN() Opens a LOB

ISOPEN() Sees if a LOB is open

CLOSE() Closes a LOB
3-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C (OCI) To Work With LOBs
■ For writing to internal LOBs

OCI also includes functions that you can use to:

■ Access data stored in internal LOBs (BLOBs, CLOBs, NCLOBs) and external LOBs

(BFILE s)

■ Modify internal LOBs (BLOBs, CLOBs, NCLOBs

These functions are listed in the following tables, and are discussed in greater detail

later in this section.

Set CSID Parameter To OCI_UCS2ID to Read/Write in UCS2
If you want to read or write data in 2 byte unicode (UCS2) format, set the csid
(character set ID) parameter in OCILobRead and OCILobWrite to OCI_UCS2ID.

The csid parameter indicates the character set id for the buffer parameter. You can

set the csid parameter to any character set ID. If the csid parameter is set, it will

override the NLS_LANG environment variable.

Offset and Amount Parameters: Fixed-Width Versus Varying-Width,
Character or Byte

Fixed Width Character Set Rules
In OCI, for fixed-width client-side character sets, the following rules apply:

■ CLOBs and NCLOBs: offset and amount parameters are always in characters

■ BLOBs and BFILES: offset and amount parameters are always in bytes

Varying-Width Character Set Rules
The following rules apply only to varying-width client-side character sets:

See Also:

■ Oracle Call Interface Programmer’s Guide for detailed

documentation, including parameters, parameter types, return

values, and example code.

■ Oracle9i Database Globalization Support Guide for detailed

information about implementing applications in different

languages.
LOB Support in Different Programmatic Environments 3-11

Using C (OCI) To Work With LOBs
■ Offset parameter: Regardless of whether the client-side character set is

varying-width, the offset parameter is always as follows:

■ CLOBs and NCLOBs: in characters

■ BLOBs and BFILE s: in bytes

■ Amount parameter: The amount parameter is always as follows:

■ When referring to a server-side LOB: in characters

■ When referring to a client-side buffer: in bytes

■ OCILobFileGetLength : Regardless of whether the client-side character set is

varying-width, the output length is as follows:

■ CLOBs and NCLOBs: in characters

■ BLOBs and BFILE s: in bytes

■ OCILobRead : With client-side character set of varying-width, CLOBs and

NCLOBs:

■ I nput amount is in characters. Input amount refers to the number of

characters to read from the server-side CLOB or NCLOB.

■ Output amount is in bytes. Output amount indicates how many bytes were

read into the buffer 'bufp '.

■ OCILobWrite : With client-side character set of varying-width, CLOBs and

NCLOBs:

■ Input amount is in bytes. Input amount refers to the number of bytes of

data in the input buffer 'bufp '.

■ Output amount is in characters. Output amount refers to the number of

characters written into the server-side CLOB or NCLOB.

Other Operations
For all other LOB operations, irrespective of the client-side character set, the amount
parameter is in characters for CLOBs and NCLOBs. These include OCILobCopy ,

OCILobErase , OCILobLoadFromFile , and OCILobTrim . All these operations

refer to the amount of LOB data on the server.

See also: Oracle9i Database Globalization Support Guide
3-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C (OCI) To Work With LOBs
NCLOBs
NCLOBs parameters are allowed in methods.

OCILobLoadFromFile: Specify Amount Parameter to be Less than Length of BFILE
When using OCILobLoadFromFile you cannot specify amount larger than the

length of the BFILE.

OCILobRead: Specify Amount Parameter to be 4 gigabytes - 1
In OCILobRead, you can specify amount = 4 gigabytes-1, and it will read to the end

of the LOB.

OCI LOB Examples
Further OCI examples are provided in:

■ Chapter 10, "Internal Persistent LOBs"

■ Chapter 11, "Temporary LOBs"

■ Chapter 12, "External LOBs (BFILEs)".

You can access most of the OCI LOB example scripts from your Oracle9i
distribution software at $ORACLE_HOME/rdbms/demo/lobs/oci.

There are further example OCI scripts:

■ For UNIX systems at:

■ /ORACLE_HOME/rdbms/demo/demolb.c

■ /ORACLE_HOME/rdbms/demo/demolb2.c

■ /ORACLE_HOME/rdbms/demo/demolbs.c

■ For Windows NT at:

■ \ORACLE_HOME\Oci\Samples\demolb.c,....

See also Appendix B, “OCI Demonstration Programs” in Oracle Call Interface
Programmer’s Guide, for further OCI demonstration script listings.

Further Information About OCI
For further information and features of OCI, refer to the OTN Web site,

http://otn.oracle.com/ for OCI features and FAQs.
LOB Support in Different Programmatic Environments 3-13

Using C (OCI) To Work With LOBs
OCI Functions that Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
OCI functions that operate on BLOBs, CLOBs, NCLOBs, and BFILEs are as follows:

■ To modify internal LOBs, see Table 3–9

■ To read or examine LOB values, see Table 3–10

■ To create or free temporary LOB, or check if Temporary LOB exists, see

Table 3–11

■ For read only functions on external LOBs (BFILEs), see Table 3–12

■ To operate on LOB locators, see Table 3–13

■ For LOB buffering, see Table 3–14

■ To open and close LOBs, see Table 3–15

OCI Functions To Modify Internal LOB (BLOB, CLOB, and NCLOB) Values

Table 3–9 OCI Functions To Modify Internal LOB (BLOB, CLOB, and NCLOB) Values

Function/Procedure Description

OCILobAppend() Appends LOB value to another LOB.

OCILobCopy() Copies all or part of a LOB to another LOB.

OCILobErase() Erases part of a LOB, starting at a specified offset.

OCILobLoadFromFile() Loads BFILE data into an internal LOB.

OCILobTrim() Truncates a LOB.

OCILobWrite() Writes data from a buffer into a LOB, overwriting existing data .

OCILobWriteAppend() Writes data from a buffer to the end of the LOB.
3-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C (OCI) To Work With LOBs
OCI Functions To Read or Examine Internal LOB and External LOB (BFILE) Values

OCI Functions For Temporary LOBs

OCI Read-Only Functions For BFILEs

Table 3–10 OCI Functions To Read or Examine internal LOB and external LOB (BFILE) Values

Function/Procedure Description

OCILobGetChunkSize() Gets the Chunk size used when reading and writing. This works on internal
LOBs and does not apply to external LOBs (BFILEs).

OCILobGetLength() Returns the length of a LOB or a BFILE .

OCILobRead() Reads a specified portion of a non-null LOB or a BFILE into a buffer.

Table 3–11 OCI Functions for Temporary LOBs

Function/Procedure Description

OCILobCreateTemporary() Creates a temporary LOB

OCILobIsTemporary() Sees if a temporary LOB exists

OCILobFreeTemporary() Frees a temporary LOB

Table 3–12 OCI Read-Only Functions for BFILES

Function/Procedure Description

OCILobFileClose() Closes an open BFILE .

OCILobFileCloseAll() Closes all open BFILE s.

OCILobFileExists() Checks whether a BFILE exists.

OCILobFileGetName() Returns the name of a BFILE .

OCILobFileIsOpen() Checks whether a BFILE is open.

OCILobFileOpen() Opens a BFILE .
LOB Support in Different Programmatic Environments 3-15

Using C (OCI) To Work With LOBs
OCI LOB Locator Functions

OCI LOB-Buffering Functions

OCI Functions To Open and Close Internal and External LOBs

Table 3–13 OCI LOB-Locator Functions

Function/Procedure Description

OCILobAssign() Assigns one LOB locator to another.

OCILobCharSetForm() Returns the character set form of a LOB.

OCILobCharSetId() Returns the character set ID of a LOB.

OCILobFileSetName() Sets the name of a BFILE in a locator.

OCILobIsEqual() Checks whether two LOB locators refer to the same LOB.

OCILobLocatorIsInit() Checks whether a LOB locator is initialized.

Table 3–14 OCI LOB-Buffering Functions

Function/Procedure Description

OCILobDisableBuffering() Disables the buffering subsystem use.

OCILobEnableBuffering() Uses the LOB buffering subsystem for subsequent reads and writes of LOB data.

OCILobFlushBuffer() Flushes changes made to the LOB buffering subsystem to the database (server)

Table 3–15 OCI Functions To Open and Close Internal and External LOBs

Function/Procedure Description

OCILobOpen() Opens a LOB

OCILobIsOpen() Sees if a LOB is open

OCILobClose() Closes a LOB
3-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C (OCI) To Work With LOBs
OCI Example — Is the LOB Open: main() and seeIfLOBIsOpen
To work with the OCI examples in the remainder of the book, you can use a main()

like the following. Here, it is used with seeIfLOBIsOpen as an example.

int main(char *argv, int argc)
{
 /* Declare OCI Handles to be used */
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *Lob_loc;

 /* Create and Initialize an OCI Environment: */
 (void) OCIEnvCreate(&envhp, (ub4)OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *))0,
 (size_t) 0, (dvoid **) 0);

 /* Allocate error handle: */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 /* Allocate server contexts: */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 /* Allocate service context: */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

 /* Attach to the Oracle database: */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);

 /* Set the server context attribute in the service context: */
 (void) OCIAttrSet ((dvoid *) svchp, OCI_HTYPE_SVCCTX,
 (dvoid *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);

 /* Allocate the session handle: */
 (void) OCIHandleAlloc((dvoid *) envhp,
LOB Support in Different Programmatic Environments 3-17

Using C (OCI) To Work With LOBs
 (dvoid **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 /* Set the username in the session handle:*/
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4)4,
 (ub4) OCI_ATTR_USERNAME, errhp);
 /* Set the password in the session handle: */
 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4) 4,
 (ub4) OCI_ATTR_PASSWORD, errhp);

 /* Authenticate and begin the session: */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));

 /* Set the session attribute in the service context: */
 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);

 /* ------- At this point a valid session has been created -----------*/
 printf ("user session created \n");

 /* Allocate a statement handle: */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /* ============= Sample procedure call begins here ===================*/

 printf ("calling seeIfLOBIsOpen...\n");
 seeIfLOBIsOpen(envhp, errhp, svchp, stmthp);

 return 0;
}

void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
3-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C (OCI) To Work With LOBs
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

/* Select the locator into a locator variable */

sb4 select_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT Frame FROM Multimedia_tab WHERE Clip_ID=1";
 OCIDefine *defnp1;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
LOB Support in Different Programmatic Environments 3-19

Using C (OCI) To Work With LOBs
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);
}

void seeIfLOBIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 int isOpen;

 /* allocate locator resources */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

 /* Select the locator */
 (void)select_frame_locator(Lob_loc, errhp, svchp, stmthp);

 /* See if the LOB is Open */
 checkerr (errhp, OCILobIsOpen(svchp, errhp, Lob_loc, &isOpen));

 if (isOpen)
 {
 printf(" Lob is Open\n");
 /* ... Processing given that the LOB has already been Opened */
 }
 else
 {
 printf(" Lob is not Open\n");
 /* ... Processing given that the LOB has not been Opened */
 }

 /* Free resources held by the locators*/
3-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C (OCI) To Work With LOBs
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);
 return;
}

LOB Support in Different Programmatic Environments 3-21

Using C++ (OCCI) To Work With LOBs
Using C++ (OCCI) To Work With LOBs
Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle

database. OCCI is organized as an easy-to-use collection of C++ classes which

enable a C++ program to connect to a database, execute SQL statements,

insert/update values in database tables, retrieve results of a query, execute stored

procedures in the database, and access metadata of database schema objects. OCCI

also provides a seamless interface to manipulate objects of user-defined types as

C++ class instances.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI

together to build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

■ OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the

functionality of OCI that JDBC does not provide.

■ OCCI provides compiled performance. With compiled programs, the source code

is already written as “close to the machine” as possible. Since JDBC is an

interpreted API, it cannot provide the performance of a compiled API. With an

interpreted program, performance degrades as each line of code must be

interpreted individually into code that is close to the machine.

■ OCCI provides memory management with smart pointers. You do not have to

be concerned about managing memory for OCCI objects. This results in robust

higher performance application code.

■ Navigational access of OCCI enables you to intuitively access objects and call

methods. Changes to objects persist without need to write corresponding SQL

statements. If you use the client side cache, the navigational interface performs

better than the object interface.

■ With respect to ODBC, the OCCI API is simpler to use. Since ODBC is built on

the C language, OCCI has all the advantages C++ provides over C. Moreover,

ODBC has a reputation as being difficult to learn. The OCCI, by contrast, is

designed for ease of use.

You can use Oracle C++ Call Interface (OCCI) to make changes to an entire internal

LOB, or to pieces of the beginning, middle, or end of it, as follows:

■ For reading from internal and external LOBs (BFILEs)

■ For writing to internal LOBs
3-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C++ (OCCI) To Work With LOBs
Distinct Classes for Each LOB Type
Unlike OCI which uses a common API for operations on BLOBs, CLOBs, and

BFILEs, OCCI has distinct classes for each LOB types, as follows:

■ OCCIClob Class to access and modify data stored in internal CLOBs and

NCLOBs

■ OCCIBlob Class to access and modify data stored in internal BLOBs

■ OCCIBfile Class to access and read data stored in external LOBs (BFILEs)

OCCIClob Class
The OCCIClob driver implements a CLOB object using an SQL locator(CLOB).
This means that a CLOB object contains a logical pointer to the SQL CLOB data

rather than the data itself.

The CLOB interface provides methods for getting the length of an SQL CLOB

(Character Large Object) value, for materializing a CLOB value on the client, and

getting a substring. Methods in the interfaces ResultSet statement such as

getClob() and setClob() allow you to access SQL CLOB values.

OCCIBlob Class
Methods in the OCCIResultSet and OCCIStatement interfaces, such as

getBlob() and setBlob() , allow you to access SQL BLOB values. The

OCCIBlob interface provides methods for getting the length of a SQL BLOB value,

for materializing a BLOB value on the client, and for extracting a part of the BLOB.

These methods are listed in the following tables.

See Also:

■ Oracle C++ Call Interface Programmer’s Guide for detailed

documentation, including parameters, parameter types, return

values, and example code.

■ Oracle9i Database Globalization Support Guide for detailed

information about implementing applications in different

languages.
LOB Support in Different Programmatic Environments 3-23

Using C++ (OCCI) To Work With LOBs
Offset and Amount Parameters: Fixed-Width Versus Varying-Width,
Character or Byte

Fixed Width Character Set Rules
In OCCI, for fixed-width client-side character sets, the following rules apply:

■ OCCIClob: offset and amount parameters are always in characters

■ OCCIBlob: offset and amount parameters are always in bytes

■ OCCIBfile: offset and amount parameters are always in bytes

Varying-Width Character Set Rules
The following rules apply only to varying-width client-side character sets:

■ Offset parameter: Regardless of whether the client-side character set is

varying-width, the offset parameter is always as follows:

■ OCCIClob() : in characters

■ OCCIBlob() : in bytes

■ OCCIBfile(): in bytes

■ Amount parameter: The amount parameter is always as follows:

■ OCCIClob : in characters, when referring to a server-side LOB

■ OCCIBlob : in bytes, when referring to a client-side buffer

■ OCCIBfile : in bytes, when referring to a client-side buffer

■ length() : Regardless of whether the client-side character set is varying-width,

the output length is as follows:

■ OCCIClob.length() : in characters

■ OCCIBlob.length() : in bytes

■ OCCIBfile.length() : in bytes

■ OCCIClob.read() and OCCIBlob.read() : With client-side character set of

varying-width, CLOBs and NCLOBs:

■ I nput amount is in characters. Input amount refers to the number of

characters to read from the server-side CLOB or NCLOB.

■ Output amount is in bytes. Output amount indicates how many bytes were

read into the OCCI buffer parameter, 'buffer '.
3-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C++ (OCCI) To Work With LOBs
■ OCCIClob.write() and OCCIBlob.write() : With client-side character

set of varying-width, CLOBs and NCLOBs:

■ Input amount is in bytes. Input amount refers to the number of bytes of

data in the OCCI input buffer, 'buffer ’.

■ Output amount is in characters. Output amount refers to the number of

characters written into the server-side CLOB or NCLOB.

OffSet and Amount Parameters for Other OCCI Operations
For all other OCCI LOB operations, irrespective of the client-side character set, the

amount parameter is in characters for CLOBs and NCLOBs. These include the

following:

■ OCCIClob.copy()

■ OCCIClob.erase()

■ OCCIClob.trim()

■ For LoadFromFile functionality, overloaded OCCICLob.copy()

All these operations refer to the amount of LOB data on the server.

NCLOBs
■ NCLOBs parameters are allowed in methods

■ NCLOBs parameters are not allowed as attributes in object types

Loading from Files with OCCIClob.copy() and OCCIBlob.copy(): Amount Parameter
The LoadFromFile functionality in OCCI is provided though the

OCCIClob.copy() and OCCIBlob.copy() methods. These take an OCCIBfile

argument.

You cannot specify amounts larger than the length of the BFILE. You must specify

an amount parameter less than length of the BFILE.

OCCIClob.read(), OCCIBlob.read(), and OCCIBfile.read():Amount Parameter
When reading in OCCIClobs, OCCIBlobs, and OCCIBfiles, specify the amount = 4

gigabytes-1, and it will read to the end of the LOB.

See also: Oracle9i Database Globalization Support Guide
LOB Support in Different Programmatic Environments 3-25

Using C++ (OCCI) To Work With LOBs
Further Information About OCCI

OCCI Methods that Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
OCCI methods that operate on BLOBs, CLOBs, NCLOBs, and BFILEs are as follows:

■ To modify internal LOBs, see Table 3–16

■ To read or examine LOB values, see Table 3–17

■ For read only methods on external LOBs (BFILEs), see Table 3–18

■ Other LOB OCCI methods are described in Table 3–19

■ To open and close LOBs, see Table 3–20

OCCI Methods To Modify Internal LOB (BLOB, CLOB, and NCLOB) Values

See Also:

■ Oracle C++ Call Interface Programmer’s Guide

■ http://www.oracle.com/ search for articles and product

information featruring OCCI.

Table 3–16 OCCI Clob and OCCIBlob Methods To Modify Internal LOB (BLOB, CLOB, and NCLOB)
Values

Function/Procedure Description

OCCIBlob.append() Appends CLOB or BLOB value to another LOB.

OCCIBlob.copy() Copies all or part of a CLOB or BLOB to another LOB.

OCCIBlob.copy() Loads BFILE data into an internal LOB.

OCCIBlob.trim() Truncates a CLOB or BLOB .

OCCIBlob.write() Writes data from a buffer into a LOB, overwriting existing data .
3-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C++ (OCCI) To Work With LOBs
OCCI Methods To Read or Examine Internal LOB and BFILE Values

OCCI Read-Only Methods For BFILEs

Other OCCI LOB Methods

Table 3–17 OCCI Blob/OCCIClob/OCCIBfile Methods To Read or Examine internal LOB and external LOB
(BFILE) Values

Function/Procedure Description

OCCIBlob.getChunkSize() Gets the Chunk size used when reading and writing. This works on
internal LOBs and does not apply to external LOBs (BFILEs).

OCCIBlob.length() Returns the length of a LOB or a BFILE .

OCCIBlob.read() Reads a specified portion of a non-null LOB or a BFILE into a buffer.

Table 3–18 OCCI Read-Only Methods For BFILES

Function/Procedure Description

OCCIBfile.close() Closes an open BFILE .

OCCIBfile.fileExists() Checks whether a BFILE exists.

OCCIBfile.getFileName() Returns the name of a BFILE .

OCCIBfile.getDirAlias() Gets the directory alias.

OCCIBfile.isOpen() Checks whether a BFILE is open.

OCCIBfile.open() Opens a BFILE .

Table 3–19 Other OCCI LOB Methods

Methods Description

OCCIClob/Blob/Bfile.= Assigns one LOB locator to another. Use = or the copy constructor.

OCCIClob.getCharSetForm() Returns the character set form of a LOB.

OCCIClob.getCharSetId() Returns the character set ID of a LOB.

OCCIBfile.setName() Sets the name of a BFILE .

OCCIClob/Blob/Bfile.IsEqual() Checks whether two LOB refer to the same LOB.

OCCIClob/Blob/Bfile.isInitialized() Checks whether a LOB is initialized.
LOB Support in Different Programmatic Environments 3-27

Using C++ (OCCI) To Work With LOBs
OCCI Methods To Open and Close Internal and External LOBs

Table 3–20 OCCI Methods To Open and Close Internal and External LOBs

Function/Procedure Description

OCCIClob/Blob/Bfile.Open() Opens a LOB

OCCIClob/Blob/Bfile.IsOpen() Sees if a LOB is open

OCCIClob/Blob/Bfile.Close() Closes a LOB
3-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C/C++ (Pro*C) To Work with LOBs
Using C/C++ (Pro*C) To Work with LOBs
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of a LOB by using embedded SQL. You can access both internal and

external LOBs for read purposes, and you can write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs,

NCLOBs, and BFILE s. These statements are listed in the following tables, and are

discussed in greater detail later in the chapter.

First Provide an Allocated Input Locator Pointer that Represents LOB
Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers

which are then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the

following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the

database tablespaces or external file system before you execute the statement.

2. SELECT a LOB locator into a LOB locator pointer variable

3. Use this variable in the embedded SQL LOB statement to access and

manipulate the LOB value

Examples provided with each embedded SQL LOB statement are illustrated in:

■ Chapter 10, "Internal Persistent LOBs"

■ Chapter 11, "Temporary LOBs"

■ Chapter 12, "External LOBs (BFILEs)".

You can access these Pro*C/C++ LOB example scripts from $ORACLE_

HOME/rdbms/demo/lobs/.

Pro*C/C++ Statements that Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
Pro*C statements that operate on BLOBs, CLOBs, and NCLOBs are listed in the

following tables:

■ To modify internal LOBs, see Table 3–21

See Also: Pro*C/C++ Precompiler Programmer’s Guide for detailed

documentation, including syntax, host variables, host variable

types and example code.
LOB Support in Different Programmatic Environments 3-29

Using C/C++ (Pro*C) To Work with LOBs
■ To read or examine LOB values, see Table 3–22

■ To create or free temporary LOB, or check if Temporary LOB exists, see

Table 3–23

■ To operate close and ’see if file exists’ functions on BFILEs, see Table 3–24

■ To operate on LOB locators, see Table 3–25

■ For LOB buffering, see Table 3–26

■ To open or close LOBs or BFILEs, see Table 3–27

Pro*C/C++ Embedded SQL Statements To Modify Internal LOB Values

Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External
LOB Values

Table 3–21 Pro*C/C++: Embedded SQL Statements To Modify Internal LOB (BLOB, CLOB, and NCLOB)
Values

Statement Description

APPEND Appends a LOB value to another LOB.

COPY Copies all or a part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROM FILE Loads BFILE data into an internal LOB at a specified offset.

TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset.

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

Table 3–22 Pro*C/C++: Embedded SQL Statements To Read or Examine Internal and External LOB
Values

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing. This works for internal LOBs only. It
does not apply to external LOBs (BFILEs).

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE .

READ reads a specified portion of a non-null LOB or a BFILE into a buffer.
3-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using C/C++ (Pro*C) To Work with LOBs
Pro*C/C++ Embedded SQL Statements For Temporary LOBs

Pro*C/C++ Embedded SQL Statements For BFILEs

Pro*C/C++ Embedded SQL Statements For LOB Locators

Table 3–23 Pro*C/C++: Embedded SQL Statements For Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY Frees a temporary LOB.

Table 3–24 Pro*C/C++: Embedded SQL Statements For BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILE s.

DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE
[DIRECTORY,FILENAME]

Returns the directory alias and/or filename of a BFILE .

Table 3–25 Pro*C/C++ Embedded SQL Statements for LOB Locators

Statement Description

ASSIGN Assigns one LOB locator to another.

FILE SET Sets the directory alias and filename of a BFILE in a locator.
LOB Support in Different Programmatic Environments 3-31

Using C/C++ (Pro*C) To Work with LOBs
Pro*C/C++ Embedded SQL Statements For LOB Buffering

Pro*C/C++ Embedded SQL Statements To Open and Close Internal
and External LOBs

Table 3–26 Pro*C/C++ Embedded SQL Statements for LOB Buffering

Statement Description

DISABLE BUFFERING Disables the use of the buffering subsystem.

ENABLE BUFFERING Uses the LOB buffering subsystem for subsequent reads and writes of LOB data.

FLUSH BUFFER Flushes changes made to the LOB buffering subsystem to the database (server)

Table 3–27 Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs and External LOBs
(BFILEs)

Statement Description

OPEN Opens a LOB or BFILE.

DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.

CLOSE Closes a LOB or BFILE.
3-32 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using COBOL (Pro*COBOL) to Work with LOBs
Using COBOL (Pro*COBOL) to Work with LOBs
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of it by using embedded SQL. You can access both internal and

external LOBs for read purposes, and you can also write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs,

NCLOBs, and BFILE s. These statements are listed in the following tables, and are

discussed in greater detail later in the manual.

First Provide an Allocated Input Locator Pointer that Represents LOB
Unlike locators in PL/SQL, locators in Pro*COBOL are mapped to locator pointers

which are then used to refer to the LOB or BFILE value. For the successful

completion of an embedded SQL LOB statement you must perform the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the

database tablespaces or external file system before you execute the statement.

2. SELECT a LOB locator into a LOB locator pointer variable

3. Use this variable in an embedded SQL LOB statement to access and manipulate

the LOB value.

Examples provided with each embedded SQL LOB statement are illustrated in:

■ Chapter 10, "Internal Persistent LOBs"

■ Chapter 11, "Temporary LOBs"

■ Chapter 12, "External LOBs (BFILEs)".

You can access these Pro*COBOL LOB example scripts from $ORACLE_

HOME/rdbms/demo/lobs/.

Where the Pro*COBOL interface does not supply the required functionality, you can

call OCI using C. Such an example is not provided here because such programs are

operating system dependent.

Pro*COBOL Statements that Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
The following Pro*COBOL statements operate on BLOBs, CLOBs, NCLOBs, and

BFILEs:

See Also: Pro*COBOL Precompiler Programmer’s Guide for detailed

documentation, including syntax, host variables, host variable

types, and example code.
LOB Support in Different Programmatic Environments 3-33

Using COBOL (Pro*COBOL) to Work with LOBs
■ To modify internal LOBs, see Table 3–28

■ To read or examine internal and external LOB values, see Table 3–29

■ To create or free temporary LOB, or check LOB locator, see Table 3–30

■ To operate close and ’see if file exists’ functions on BFILEs, see Table 3–31

■ To operate on LOB locators, see Table 3–32

■ For LOB buffering, see Table 3–33

■ To open or close internal LOBs or BFILEs, see Table 3–34

Pro*COBOL Embedded SQL Statements To Modify Internal LOB Values

Table 3–28 Pro*COBOL Embedded SQL Statements To Modify BLOB, CLOB, and NCLOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

COPY Copies all or part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROM FILE Loads BFILE data into an internal LOB at a specified offset.

TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.
3-34 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using COBOL (Pro*COBOL) to Work with LOBs
Pro*COBOL Embedded SQL Statements To Read or Examine Internal
and External LOB Values

Pro*COBOL Embedded SQL Statements For Temporary LOBs

Pro*COBOL Embedded SQL Statements For BFILEs

Pro*COBOL Embedded SQL Statements For LOB Locators

Table 3–29 Pro*COBOL Embedded SQL Statements To Read or Examine Internal and External LOB
Values

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing.

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE .

READ Reads a specified portion of a non-null LOB or a BFILE into a buffer.

Table 3–30 Pro*COBOL Embedded SQL Statements For Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY Frees a temporary LOB.

Table 3–31 Pro*COBOL Embedded SQL Statements For BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILE s.

DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE [DIRECTORY,
FILENAME]

Returns the directory alias and/or filename of a BFILE .

Table 3–32 Pro*COBOL Embedded SQL Statements For LOB Locators Statements

Statement Description

ASSIGN Assigns one LOB locator to another.

FILE SET Sets the directory alias and filename of a BFILE in a locator.
LOB Support in Different Programmatic Environments 3-35

Using COBOL (Pro*COBOL) to Work with LOBs
Pro*COBOL Embedded SQL Statements For LOB Buffering

Pro*COBOL Embedded SQL Statements To Open and Close Internal LOBs
and BFILEs

Table 3–33 Pro*COBOL Embedded SQL Statements For LOB Buffering

Statement Description

DISABLE BUFFERING Disables the use of the buffering subsystem.

ENABLE BUFFERING Uses the LOB buffering subsystem for subsequent reads and writes of LOB data.

FLUSH BUFFER Flushes changes made to the LOB buffering subsystem to the database (server)

Table 3–34 Pro*COBOL Embedded SQL Statements To Open and CLose Internal LOBs and BFILEs

Statement Description

OPEN Opens a LOB or BFILE.

DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.

CLOSE Closes a LOB or BFILE.
3-36 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
Oracle Objects for OLE (OO4O) is a collection of programmable COM objects that

simplifies the development of applications designed to communicate with

an Oracle database. OO4O offers high performance database access. It also provides

easy access to features unique to Oracle, yet otherwise cumbersome or inefficient to

use from other ODBC or OLE DB-based components, such as ADO.

You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of it, with the Oracle Objects for OLE (OO4O) API, by using one of

the following objects interfaces:

■ OraBlob : To provide methods for performing operations on BLOB datatypes

in the database

■ OraClob : To provide methods for performing operations on CLOB datatypes

in the database

■ OraBFile : To provide methods for performing operations on BFILE data

stored in operating system files.

OO4O Syntax Reference

Syntax
The OO4O syntax reference and further information is viewed from the OO4O

online help. Oracle Objects for OLE (OO4O), a Windows-based product included

with Oracle9i Client for Windows NT, has no manuals, only online help.

Its online help is available through the Application Development submenu of the

Oracle9i installation. To view specific methods and properties from the Help Topics

menu, select the Contents tab > OO4O Automation Server > Methods or Properties.

Further Information
For further information about OO4O, refer to the following Web site:

■ http://otn.oracle.com Select Products > Internet Tools > Programmer. Scroll

down to “Oracle Objects for OLE”. At the bottom of the page is a list of useful

articles for using the interfaces.

Note: OracleBlob and OracleClob have been deprecated and no

longer work!
LOB Support in Different Programmatic Environments 3-37

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
■ http://www.oracle.com/ Search for articles on OO4O or Oracle Objects for

OLE.

OraBlob, OraClob, and OraBfile Object Interfaces Encapsulate Locators
These interfaces encapsulate LOB locators, so you do not deal directly with locators,

but instead, can use methods and properties provided to perform operations and

get state information.

OraBlob and OraClob Objects Are Retrieved as Part of Dynaset and Represent
LOB Locators
When OraBlob and OraClob objects are retrieved as a part of a dynaset, these

objects represent LOB locators of the dynaset current row. If the dynaset current

row changes due to a move operation, the OraBlob and OraClob objects

represent the LOB locator for the new current row.

Use the Clone Method to Retain Locator Independent of the Dynaset Move
To retain the LOB locator of the OraBlob and OraClob object independent of the

dynaset move operation, use the Clone method. This method returns the OraBlob
and OraClob object. You can also use these objects as PL/SQL bind parameters.

Example of OraBlob and OraBfile
The following example shows usage of OraBlob and OraBfile. Functions and

examples are explained in greater detail in Chapters 10 and 12.

Dim OraDyn as OraDynaset, OraSound1 as OraBLOB, OraSoundClone as OraBlob,
OraMyBfile as OraBFile

OraConnection.BeginTrans
set OraDyn = OraDb.CreateDynaset("select * from Multimedia_tab order by clip_
id", ORADYN_DEFAULT)
set OraSound1 = OraDyn.Fields("Sound").value
set OraSoundClone = OraSound1

OraParameters.Add "id", 1,ORAPARAM_INPUT
OraParameters.Add "mybfile", Empty,ORAPARAM_OUTPUT
OraParameters("mybfile").ServerType = ORATYPE_BFILE

OraDatabase.ExecuteSQL ("begin GetBFile(:id, :mybfile ") end")

Set OraMyBFile = OraParameters("mybfile").value
3-38 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
’Go to Next row
OraDyn.MoveNext

OraDyn.Edit
’Lets update OraSound1 data with that from the BFILE
OraSound1. CopyFromBFile OraMyBFile
OraDyn.Update

OraDyn.MoveNext
’Go to Next row
OraDyn.Edit
’Lets update OraSound1 by appending with LOB data from 1st row represenetd by
’OraSoundClone
OraSound1.Append OraSoundClone
OraDyn.Update

OraConnection.CommitTrans

In the preceding example:

OraSound1 — represents the locator for the current row in the dynaset

OraSoundClone — represents the locator for the 1st row.

A change in the current row (say a OraDyn.MoveNext) means the following:

OraSound1 — will represent the locator for the 2nd row

OraSoundClone — will represent the locator in the 1st row. OraSoundClone only

refers the locator for the 1st row irrespective of any OraDyn row navigation).

OraMyBFile — refers to the locator obtained from an PL/SQL “OUT” parameter

as a result of executing a PL/SQL procedure, either by doing an

OraDatabase .ExecuteSQL .

OO4O Methods and Properties to Access Data Stored in LOBs
Oracle Objects for OLE (OO4O) includes methods and properties that you can use

to access data stored in BLOBs, CLOBs, NCLOBs, and BFILE s. These methods and

Note: A LOB obtained by executing SQL is only valid for the

duration of the transaction. For this reason, “BEGINTRANS” and

“COMMITTRANS” are used to specify the duration of the

transaction.
LOB Support in Different Programmatic Environments 3-39

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
properties are listed in the following tables, and are discussed in greater detail in

the following chapters:

■ Chapter 10, "Internal Persistent LOBs"

■ Chapter 12, "External LOBs (BFILEs)".

You can also access OO4O LOB example scripts at $ORACLE_

HOME/rdbms/demo/lobs.

The following OO4O methods and properties operate on BLOBs, CLOBs, NCLOBs,

and BFILEs:

■ To modify internal LOBs, see Table 3–35

■ To read or examine internal and external LOB values, see Table 3–36

■ To open and close BFILEs, see Table 3–37

■ For LOB buffering, see Table 3–38

■ Properties such as to see if LOB is NULL, or to get or set polling amount, see

Table 3–39

■ For read-only BFILE methods, see Table 3–40

■ For BFILE properties, see Table 3–41

See Also: The OO4O online help for detailed information

including parameters, parameter types, return values, and example

code. Oracle Objects for OLE (OO4O), a Windows-based product

included with Oracle9i Client for Windows NT, has no manuals,

only online help. The OO4O online help is available through the

Application Development submenu of the Oracle9i installation.
3-40 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
OO4O Methods To Modify BLOB, CLOB, and NCLOB Values

Table 3–35 OO4O Methods To Modify BLOB, CLOB, and NCLOB Values

Methods Description

OraBlob.Append

OraClob.Append

Appends BLOB value to another LOB.

Appends CLOB or NCLOB value to another LOB.

OraBlob.Copy

OraClob.Copy

Copies a portion of a BLOB into another LOB

Copies a portion of a CLOB or NCLOB into another LOB

OraBlob.Erase

OraClob.Erase

Erases part of a BLOB, starting at a specified offset

Erases part of a CLOB or NCLOB , starting at a specified offset

OraBlob.CopyFromBFile

OraClob.CopyFromBFile

Loads BFILE data into an internal BLOB

Loads BFILE data into an internal CLOB or NCLOB

OraBlob.Trim

OraClob.Trim

Truncates a BLOB

Truncates a CLOB or NCLOB

OraBlob.CopyFromFile

OraClob.CopyFromFile

Writes data from a file to a BLOB

Writes data from a file to a CLOB or NCLOB

OraBlob.Write

OraClob.Write

Writes data to the BLOB

Writes data to the CLOB or NCLOB
LOB Support in Different Programmatic Environments 3-41

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
OO4O Methods To Read or Examine Internal and External LOB Values

OO4O Methods To Open and Close External LOBs (BFILEs)

 and Close

Table 3–36 OO4O Methods To Read or Examine Internal and External LOB Values

Function/Procedure Description

OraBlob.Read

OraClob.Read

OraBFile.Read

Reads a specified portion of a non-null BLOB into a buffer

Reads a specified portion of a non-null CLOB into a buffer

Reads a specified portion of a non-null BFILE into a buffer

OraBlob.CopyToFile

OraClob.CopyToFile

Reads a specified portion of a non-null BLOB to a file

Reads a specified portion of a non-null CLOB to a file

Table 3–37 OO4O Methods To Open and Close External LOBs (BFILEs)

Method Description

OraBFile.Open Opens BFILE .

OraBFile.Close Closes BFILE .
3-42 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
OO4O Methods For Internal LOB-Buffering

OO4O Properties For Operating on LOBs

OO4O Read-Only Methods For External Lobs (BFILEs)

Table 3–38 OO4O Methods For Internal LOB-Buffering

Method Description

OraBlob.FlushBuffer

OraClob.FlushBuffer

Flushes changes made to the BLOB buffering subsystem to the database

Flushes changes made to the CLOB buffering subsystem to the database

OraBlob.EnableBuffering

OraClob.EnableBuffering

Enables buffering of BLOB operations

Enables buffering of CLOB operations

OraBlob.DisableBuffering

OraClob.DisableBuffering

Disables buffering of BLOB operations

Disables buffering of CLOB operations

Table 3–39 OO4O Properties for Operating on LOBs

Property Description

IsNull (Read) Indicates when a LOB is Null

PollingAmount(Read/Write) Gets/Sets total amount for Read/Write polling operation

Offset(Read/Write) Gets/Sets offset for Read/Write operation. By default, it is set to 1.

Status(Read) Returns the polling status.Possible values are

■ ORALOB_NEED_DATA There is more data to be read or written

■ ORALOB_NO_DATA There is no more data to be read or written

■ ORALOB_SUCCESS LOB data read/written successfully

Size(Read) Returns the length of the LOB data

Table 3–40 OO4O Read-Only Methods For External LOBs (BFILEs)

Methods Description

OraBFile.Close Closes an open BFILE

OraBFile.CloseAll Closes all open BFILE s

OraBFile.Open Opens a BFILE

OraBFile.IsOpen Determines if a BFILE is open
LOB Support in Different Programmatic Environments 3-43

Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
OO4O Properties For Operating on External LOBs (BFILEs)

Table 3–41 OO4O Properties For Operating on External LOBs (BFILEs)

Property Description

OraBFile.DirectoryName Gets/Sets the server side directory alias name.

OraBFile.FileName(Read/Write) Gets/Sets the server side filename.

OraBFile.Exists Checks whether a BFILE exists.
3-44 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
Using Java (JDBC) To Work with LOBs
You can perform the following tasks on LOBs with Java (JDBC):

■ Changing Internal Persistent LOBs Using Java

■ Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java

■ Calling DBMS_LOB Package From Java (JDBC)

■ Referencing LOBs Using Java (JDBC)

Changing Internal Persistent LOBs Using Java
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of an internal LOB in Java by means of the JDBC API using the

objects:

■ oracle .sql .BLOB

■ oracle .sql .CLOB

These objects also implement java .sql .Blob and java .sql .Clob interfaces

according to the JDBC 2.0 specification. With this implementation, an

oracle .sql .BLOB can be used wherever a java.sql.Blob i s expected and an

oracle.sql.CLOB can be used wherever a java .sql .Clob is expected.

Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java
With JDBC you can use Java to read both internal persistent LOBs and external LOBs

(BFILEs).

BLOB, CLOB, and BFILE Classes
■ BLOB and CLOB Classes. In JDBC theses classes provide methods for

performing operations on large objects in the database including BLOB and

CLOB data types.

■ BFILE Class. In JDBC this class provides methods for performing operations on

BFILE data in the database.

The BLOB, CLOB, and BFILE classes encapsulate LOB locators, so you do not

deal with locators but instead use methods and properties provided to perform

operations and get state information.
LOB Support in Different Programmatic Environments 3-45

Using Java (JDBC) To Work with LOBs
Calling DBMS_LOB Package From Java (JDBC)
Any LOBfunctionality not provided by these classes can be accessed by a call to the

PL/SQL DBMS_LOB package. This technique is used repeatedly in the examples

throughout this manual.

Referencing LOBs Using Java (JDBC)
You can get a reference to any of the preceding LOBs in the following two ways:

■ As a column of an OracleResultSet

■ As an “OUT” type PL/SQL parameter from an OraclePreparedStatement

Using OracleResultSet: BLOB and CLOB Objects Retrieved Represent LOB
Locators of Current Row
When BLOB and CLOB objects are retrieved as a part of an OracleResultSet ,

these objects represent LOB locators of the currently selected row.

If the current row changes due to a move operation, for example, rset .next (), the

retrieved locator still refers to the original LOB row.

To retrieve the locator for the most current row, you must call getXXXX () on the

OracleResultSet each time a move operation is made, where XXXX is a BLOB,

CLOB or BFILE .

JDBC Syntax References and Further Information
For further JDBC syntax and information about using JDBC with LOBs:

JDBC Methods for Operating on LOBs
The following JDBC methods operate on BLOBs, CLOBs, and BFILEs:

■ BLOBs:

See:

■ Oracle9i JDBC Developer’s Guide and Reference for detailed
documentation, including parameters, parameter types, return values,
and example code.

■ Oracle9i SQLJ Developer’s Guide and Reference

■ http://otn.oracle.com/

■ http://www.oracle.com/
3-46 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
■ To modify BLOB values, see Table 3–42

■ To read or examine BLOB values, see Table 3–43

■ For BLOB buffering, see Table 3–44

■ Temporary BLOBs: Creating, checking if LOB is open, and freeing. See

Table 3–52

■ Opening, closing, and checking if BLOB is open, see Table 3–52

■ Trimming BLOBs, see Table 3–55

■ BLOB streaming API, see Table 3–57

■ CLOBs:

■ To read or examine CLOB values, see Table 3–46

■ For CLOB buffering, see Table 3–47

■ To modify CLOBs, see Table 3–57

■ Temporary CLOBs:

■ Opening, closing, and checking if CLOB is open, see Table 3–53

■ Trimming CLOBs, see Table 3–56

■ CLOB streaming API, see Table 3–58

■ BFILEs:

■ To read or examine BFILEs, see Table 3–48

■ For BFILE buffering, see Table 3–49

■ Opening, closing, and checking if CLOB is open, see Table 3–54

■ BFILE streaming API, see Table 3–59
LOB Support in Different Programmatic Environments 3-47

Using Java (JDBC) To Work with LOBs
JDBC oracle.sql.BLOB Methods To Modify BLOB Values

Table 3–42 DBC oracle.sql.BLOB Methods To Modify BLOB Values

JDBC oracle.sql.BLOB Methods To Read or Examine BLOB Values

Table 3–43 DBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

Method Description

int putBytes(long, byte[]) Inserts the byte array into the LOB, starting at the
given offset

Method Description

byte[] getBytes(long, int) Gets the contents of the LOB as an array of bytes,
given an offset

long position(byte[],long) Finds the given byte array within the LOB, given an
offset

long position(Blob,long) Finds the given BLOB within the LOB

public boolean equals(java.lang.Object) Compares this LOB with another. Compares the LOB
locators.

public long length() Returns the length of the LOB

public int getChunkSize() Returns the ChunkSize of the LOB
3-48 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
JDBC oracle.sql.BLOB Methods and Properties for BLOB-Buffering

Table 3–44 JDBC oracle.sql.BLOB Methods and Properties for BLOB-Buffering

JDBC oracle.sql.CLOB Methods To Modify CLOB Values

Table 3–45 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

JDBC oracle.sql.CLOB Methods To Read or Examine CLOB Value

Method Description

public java.io.InputStream getBinaryStream()) Streams the LOB as a binary stream

public java.io.OutputStream getBinaryOutputStream() Writes to LOB as a binary stream

Method Description

int putString(long, java.lang.String) Inserts the string into the LOB, starting at the
given offset

int putChars(long, char[]) Inserts the character array into the LOB, starting
at the given offset

Table 3–46 JDBC oracle.sql.CLOB Methods To Read or Examine CLOB Values

Method Description

java.lang.String getSubString(long, int) Returns a substring of the LOB as a string

int getChars(long, int, char[]) Reads a subset of the LOB into a character array

long position(java.lang.String, long) Finds the given String within the LOB, given an offset

long position(oracle.jdbc2.Clob, long) Finds the given CLOB within the LOB, given an offset

boolean equals(java.lang.Object) Compares this LOB with another

long length() Returns the length of the LOB

int getChunkSize() Returns the ChunkSize of the LOB
LOB Support in Different Programmatic Environments 3-49

Using Java (JDBC) To Work with LOBs
JDBC oracle.sql.CLOB Methods and Properties for CLOB-Buffering

JDBC oracle.sql.BFILE Methods To Read or Examine External LOB (BFILE) Values

Table 3–47 JDBC oracle.sql.CLOB Methods and Properties for CLOB-Buffering

Method Description

java.io.InputStream getAsciiStream() Reads the LOB as an ASCII stream

java.io.OutputStream getAsciiOutputStream() Writes to the LOB from an ASCII stream

java.io.Reader getCharacterStream() Reads the LOB as a character stream

java.io.Writer getCharacterOutputStream() Writes to LOB from a character stream

Table 3–48 JDBC oracle.sql.BFILE Methods To Read or Examine External LOB (BFILE) Values

Method Description

byte[] getBytes(long, int) Gets the contents of the BFILE as an array of bytes,
given an offset

int getBytes(long, int, byte[]) Reads a subset of the BFILE into a byte array

long position(oracle.sql.BFILE, long) Finds the first appearance of the given BFILE contents
within the LOB, from the given offset

long position(byte[], long) Finds the first appearance of the given byte array
within the BFILE, from the given offset

boolean equals(java.lang.Object) Compares this BFILE with another. Compares
locator bytes.

long length() Returns the length of the BFILE

boolean fileExists() Checks if the operating system (OS) file referenced by
this BFILE exists

public void openFile() Opens the OS file referenced by this BFILE

public void closeFile() Closes the OS file referenced by this BFILE

public boolean isFileOpen() Checks if this BFILE is already open

public java.lang.String getDirAlias() Gets the directory alias for this BFILE

public java.lang.String getName() Gets the file name referenced by this BFILE
3-50 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
JDBC oracle.sql.BFILE Methods and Properties for BFILE-Buffering

JDBC: OracleBlob and OracleClob Do Not Work in Oracle8i 8.1.x and
Higher Releases

OracleBlob and OracleClob were Oracle specific functions used in JDBC 8.0.x

drivers to access LOB data. In Oracle8i Releases 8.1.x and higher, OracleBlob and

OracleClob are deprecated.

If you use OracleBlob or OracleClob to access LOB data, you will receive the

following typical error message, for example, when attempting to manipulate LOBs

with Oracle8i Release 8.1.5 JDBC Thin Driver:

"Dumping lobs java.sql.SQLException: ORA-03115: unsupported network datatype or
representation etc."

See Oracle9i JDBC Developer’s Guide and Reference for a description of these

non-supported functions and alternative and improved JDBC methods.

For further ideas on working with LOBs with Java, refer to the LOB examples

shipped with Oracle9i or see http://www.oracle.com/.

JDBC Temporary LOB APIs
Oracle9i JDBC drivers contain APIs to create and close temporary LOBs. These APIs

can replace prior releases’ workaround of using the following procedures from the

DBMS_LOB PL/SQL package:

■ DBMS_LOB.createTemporary()

■ DBMS_LOB.isTemporary()

■ DBMS_LOB.freeTemporary()

Table 3–49 JDBC oracle.sql.BFILE Methods and Properties for BFILE-Buffering

Method Description

public java.io.InputStream getBinaryStream() Reads the BFILE as a binary stream
LOB Support in Different Programmatic Environments 3-51

Using Java (JDBC) To Work with LOBs
JDBC: Opening and Closing LOBs
oracle.sql.CLOB class is the Oracle JDBC driver's implementation of standard

JDBC java.sql.Clob interface. Table 3–51 lists the new Oracle extension APIs in

oracle.sql.CLOB for accessing temporary CLOBs.

Table 3–50 JDBC: Temporary BLOB APIs

Methods Description

public static BLOB createTemporary(Connection conn, boolean cache, int duration)
throws SQLException

Creates a temporary BLOB

public static boolean isTemporary(BLOB blob) throws SQLException Checks if the specified BLOB locator
refers to a temporary BLOB

public boolean isTemporary() throws SQLException Checks if the current BLOB locator
refers to a temporary BLOB

public static void freeTemporary(BLOB temp_blob) throws SQLException Frees the specified temporary BLOB

public void freeTemporary() throws SQLException Frees the temporary BLOB

Table 3–51 JDBC: Temporary CLOB APIs

Methods Description

public static CLOB createTemporary(Connection conn, boolean cache, int duration)
throws SQLException

Creates a temporary CLOB

public static boolean isTemporary(CLOB clob) throws SQLException Checks if the specified CLOB locator
refers to a temporary CLOB

public boolean isTemporary() throws SQLException Checks if the current CLOB locator
refers to a temporary CLOB

public static void freeTemporary(CLOB temp_clob) throws SQLException Frees the specified temporary CLOB

public void freeTemporary() throws SQLException Frees the temporary CLOB

See Also: Chapter 11, "Temporary LOBs"
3-52 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
Oracle9i JDBC drivers contain APIs to explicitly open and close LOBs. These APIs

replace previous techniques that use DBMS_LOB.open() and DBMS_
LOB.close() .

JDBC: Opening and Closing BLOBs
oracle.sql.BLOB class is the Oracle JDBC driver's implementation of standard

JDBC java.sql.Blob interface. Table 3–52 lists the Oracle extension APIs in

oracle.sql.BLOB that open and close BLOBs. These are new for this release.

Opening the BLOB
To open a BLOB, your JDBC application can use the open method as defined in

oracle.sql.BLOB class as follows:

/**
 * Open a BLOB in the indicated mode. Valid modes include MODE_READONLY,
 * and MODE_READWRITE. It is an error to open the same LOB twice.
 */
public void open (int mode) throws SQLException

Possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWRITE

Each call to open opens the BLOB. For example:

BLOB blob = ...
blob.open (BLOB.MODE_READWRITE);

Table 3–52 JDBC: Opening and Closing BLOBs

Methods Description

public void open(int mode) throws SQLException Opens the BLOB

public boolean isOpen() throws SQLException Sees if the BLOB is open

public void close() throws SQLException Closes the BLOB
LOB Support in Different Programmatic Environments 3-53

Using Java (JDBC) To Work with LOBs
Checking If the BLOB is Opened
To see if a BLOB is opened, your JDBC application can use the isOpen method

defined in oracle.sql.BLOB. The return boolean value indicates whether the BLOB

has been previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the BLOB is opened.
 * @return true if the LOB is opened.
 */
 public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();

Closing the BLOB
To close a BLOB, your JDBC application can use the close method defined in

oracle.sql.BLOB . The close API is defined as follows:

/**
 * Close a previously opened BLOB.
 */
public void close () throws SQLException

The usage example is:

BLOB blob = ...
// close the BLOB
blob.close ();

JDBC: Opening and Closing CLOBs
Class, oracle.sql.CLOB , is the Oracle JDBC driver's implementation of the

standard JDBC java.sql.Clob interface. Table 3–53 lists the new Oracle

extension APIs in oracle.sql.CLOB to open and close CLOBs.
3-54 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
 Opening the CLOB
To open a CLOB, your JDBC application can use the open method defined in

oracle.sql.CLOB class as follows:

/**
 * Open a CLOB in the indicated mode. Valid modes include MODE_READONLY,
 * and MODE_READWRITE. It is an error to open the same LOB twice.
 */
public void open (int mode) throws SQLException

The possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWRITE

Each call to open opens the CLOB. For example,

CLOB clob = ...
clob.open (CLOB.MODE_READWRITE);

Checking if the CLOB is Open
To see if a CLOB is opened, your JDBC application can use the isOpen method

defined in oracle.sql.CLOB. The return boolean value indicates whether the CLOB

has been previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the CLOB is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

CLOB clob = ...

Table 3–53 JDBC: Opening and Closing CLOBs

 Methods Description

public void open(int mode) throws SQLException Open the CLOB

public boolean isOpen() throws SQLExceptio See if the CLOB is opened

public void close() throws SQLException Close the CLOB
LOB Support in Different Programmatic Environments 3-55

Using Java (JDBC) To Work with LOBs
 // See if the CLOB is opened
 boolean isOpen = clob.isOpen ();

Closing the CLOB
To close a CLOB, the JDBC application can use the close method defined in

oracle.sql.CLOB . The close API is defined as follows:

/**
* Close a previously opened CLOB.
*/
public void close () throws SQLException

The usage example is:

CLOB clob = ...
// close the CLOB
clob.close ();

JDBC: Opening and Closing BFILEs
oracle.sql.BFILE class wraps the database BFILE object. Table 3–54 lists the

new Oracle extension APIs in oracle.sql.BFILE for opening and closing

BFILEs.

Opening BFILEs
To open a BFILE, your JDBC application can use the OPEN method defined in

oracle.sql.BFILE class as follows:

/**
 * Open a external LOB in the readonly mode. It is an error
 * to open the same LOB twice.

Table 3–54 JDBC API Extensions for Opening and Closing BFILEs

Methods Description

public void open() throws SQLException Opens the BFILE

public void open(int mode) throws SQLException Opens the BFILE

public boolean isOpen() throws SQLException Checks if the BFILE is open

public void close() throws SQLException Closes the BFILE
3-56 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
 */
public void open () throws SQLException

/**
 * Open a external LOB in the indicated mode. Valid modes include
 * MODE_READONLY only. It is an error to open the same
 * LOB twice.
 */
public void open (int mode) throws SQLException

The only possible value of the mode parameter is:

public static final int MODE_READONLY

Each call to open opens the BFILE. For example,

BFILE bfile = ...
bfile.open ();

Checking if the BFILE is Open
To see if a BFILE is opened, your JDBC application can use the ISOPEN method

defined in oracle.sql.BFILE . The return boolean value indicates whether the

BFILE has been previously opened or not. The ISOPEN method is defined as

follows:

/**
 * Check whether the BFILE is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

BFILE bfile = ...
// See if the BFILE is opened
boolean isOpen = bfile.isOpen ();

Closing the BFILE
To close a BFILE, your JDBC application can use the CLOSE method defined in

oracle.sql.BFILE . The CLOSE API is defined as follows:

/**
 * Close a previously opened BFILE.
LOB Support in Different Programmatic Environments 3-57

Using Java (JDBC) To Work with LOBs
*/
public void close () throws SQLException

The usage example is --

BFILE bfile = ...
// close the BFILE
bfile.close ();

Usage Example (OpenCloseLob.java)

/*
 * This sample shows how to open/close BLOB and CLOB.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;

class OpenCloseLob
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 String url = "jdbc:oracle:oci8:@";
 try {
 String url1 = System.getProperty("JDBC_URL");
 if (url1 != null)
 url = url1;
 } catch (Exception e) {
 // If there is any security exception, ignore it
 // and use the default
 }

 // Connect to the database
 Connection conn =
 DriverManager.getConnection (url, "scott", "tiger");
 // It's faster when auto commit is off
 conn.setAutoCommit (false);
3-58 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
 }

// Create a table containing a BLOB and a CLOB
stmt.execute ("create table basic_lob_table (x varchar2 (30), b blob, c clob)");

// Populate the table
stmt.execute (

"insert into basic_lob_table values"
+ " ('one', '010101010101010101010101010101', 'onetwothreefour')");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Open the lobs
 System.out.println ("Open the lobs");
 blob.open (BLOB.MODE_READWRITE);
 clob.open (CLOB.MODE_READWRITE);

 // Check if the lobs are opened
 System.out.println ("blob.isOpen()="+blob.isOpen());
 System.out.println ("clob.isOpen()="+clob.isOpen());

 // Close the lobs
 System.out.println ("Close the lobs");
 blob.close ();
 clob.close ();

 // Check if the lobs are opened
 System.out.println ("blob.isOpen()="+blob.isOpen());
LOB Support in Different Programmatic Environments 3-59

Using Java (JDBC) To Work with LOBs
 System.out.println ("clob.isOpen()="+clob.isOpen());
 }

 // Close the ResultSet
 rset.close ();

 // Close the Statement
 stmt.close ();

 // Close the connection
 conn.close ();
 }
}

Trimming LOBs using JDBC
Oracle9i JDBC drivers contain APIs to trim internal LOBs. These APIs replace

previous techniques that used DBMS_LOB.trim() .

JDBC: Trimming BLOBs
oracle.sql.BLOB class is Oracle JDBC driver's implementation of the standard

JDBC java.sql.Blob interface. Table 3–55 lists the new Oracle extension API in

oracle.sql.BLOB that trims BLOBs.

The trim API is defined as follows:

/**
* Trim the value of the BLOB to the length you specify in the newlen parameter.

 * @param newlen the new length of the BLOB.
 */
public void trim (long newlen) throws SQLException

The newlen parameter specifies the new length of the BLOB.

Table 3–55 JDBC: Trimming BLOBs

Methods Description

public void trim(long newlen) throws SQLException Trims the BLOB
3-60 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
JDBC: Trimming CLOBs
oracle.sql.CLOB class is the Oracle JDBC driver's implementation of standard

JDBC java.sql.Clob interface. Table 3–56 lists the new Oracle extension API in

oracle.sql.CLOB that trims CLOBs.

The trim API is defined as follows:

/**
* Trim the value of the CLOB to the length you specify in the newlen parameter.

 * @param newlen the new length of the CLOB.
 */
public void trim (long newlen) throws SQLException

The newlen parameter specifies the new length of the CLOB.

JDBC: New LOB Streaming APIs
Oracle9i JDBC drivers contains the new LOB streaming APIs to read from/write to

a LOB at the requested position from a Java stream. In prior releases, LOB streaming

APIs did not specify the offset.

New JDBC BLOB Streaming APIs
oracle.sql.BLOB class is the Oracle JDBC driver's implementation of standard

JDBC java.sql.Blob interface. Table 3–57 lists the new Oracle extension APIs in

oracle.sql.BLOB that manipulate the BLOB content from the requested position.

Table 3–56 JDBC: Trimming CLOBs

Methods Description

public void trim(long newlen) throws SQLException Trims the CLOB

See: Chapter 10, "Internal Persistent LOBs" "Java (JDBC):

Trimming LOB Data" on page 10-236, for an example.

Table 3–57 JDBC: New BLOB Streaming APIs

Methods Description

public java.io.OutputStream getBinaryOutputStream (long pos) throws SQLException Writes to the BLOB from a stream

 public java.io.InputStream getBinaryStream(long pos) throws SQLException Reads from the BLOB as a stream
LOB Support in Different Programmatic Environments 3-61

Using Java (JDBC) To Work with LOBs
These APIs are defined as follows:

/**
 * Write to the BLOB from a stream at the requested position.
 *
 * @param pos is the position data to be put.
 * @return a output stream to write data to the BLOB
 */
public java.io.OutputStream getBinaryOutputStream(long pos) throws SQLException

/**
 * Read from the BLOB as a stream at the requested position.
 *
 * @param pos is the position data to be read.
 * @return a output stream to write data to the BLOB
 */
public java.io.InputStream getBinaryStream(long pos) throws SQLException

New CLOB Streaming APIs
oracle.sql.CLOB class is the Oracle JDBC driver's implementation of standard

JDBC java.sql.Clob interface. Table 3–58 lists the new Oracle extension APIs in

oracle.sql.CLOB that manipulate the CLOB content from the requested position.

These APIs are defined as follows:

/**
 * Write to the CLOB from a stream at the requested position.
 * @param pos is the position data to be put.

Table 3–58 JDBC: New CLOB Streaming APIs

Methods Description

public java.io.OutputStream getAsciiOutputStream (long pos) throws SQLException Writes to the CLOB from an ASCII
stream

public java.io.Writer getCharacterOutputStream(long pos) throws SQLException Writes to the CLOB from a character
stream

public java.io.InputStream getAsciiStream(long pos) throws SQLException Reads from the CLOB as an ASCII
stream

public java.io.Reader getCharacterStream(long pos) throws SQLException Reads from the CLOB as a character
stream
3-62 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
 * @return a output stream to write data to the CLOB
 */
public java.io.OutputStream getAsciiOutputStream(long pos) throws
SQLException

/**
 * Write to the CLOB from a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.Writer getCharacterOutputStream(long pos) throws SQLException

 /**
 * Read from the CLOB as a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.InputStream getAsciiStream(long pos) throws SQLException

 /**
 * Read from the CLOB as a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.Reader getCharacterStream(long pos) throws SQLException

New BFILE Streaming APIs
oracle.sql.BFILE class wraps the database BFILEs. Table 3–59 lists the new

Oracle extension APIs in oracle.sql.BFILE that reads BFILE content from the

requested position.

These APIs are defined as follows:

/**
 * Read from the BLOB as a stream at the requested position.
 *
 * @param pos is the position data to be read.

Table 3–59 JDBC: New BFILE Streaming APIs

Methods Description

public java.io.InputStream getBinaryStream(long pos) throws SQLException Reads from the BFILE as a stream
LOB Support in Different Programmatic Environments 3-63

Using Java (JDBC) To Work with LOBs
 * @return a output stream to write data to the BLOB
 */
public java.io.InputStream getBinaryStream(long pos) throws SQLException

JDBC BFILE Streaming Example (NewStreamLob.java)

/*
 * This sample shows how to read/write BLOB and CLOB as streams.
 */

import java.io.*;

// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;

class NewStreamLob
{
 public static void main (String args []) throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 String url = "jdbc:oracle:oci8:@";
 try {
 String url1 = System.getProperty("JDBC_URL");
 if (url1 != null)
 url = url1;
 } catch (Exception e) {
 // If there is any security exception, ignore it
 // and use the default
 }

Note: Some of the Java code strings (in quotes) in the example

should appear on one line, but instead, they wrap to the next lines.

For example, the stmt.execute lines. Be aware of this if you are

using this code and ensure that the strings appear on one line.
3-64 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
 // Connect to the database
 Connection conn =
 DriverManager.getConnection (url, "scott", "tiger");
 // It's faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
 }

 // Create a table containing a BLOB and a CLOB
 stmt.execute (

"create table basic_lob_table"
+ "(x varchar2 (30), b blob, c clob)");

 // Populate the table
 stmt.execute (

 "insert into basic_lob_table values"
+ "('one', '010101010101010101010101010101', 'onetwothreefour')");

 System.out.println ("Dumping lobs");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Print the lob contents
 dumpBlob (conn, blob, 1);
 dumpClob (conn, clob, 1);

 // Change the lob contents
 fillClob (conn, clob, 11, 50);
 fillBlob (conn, blob, 11, 50);
LOB Support in Different Programmatic Environments 3-65

Using Java (JDBC) To Work with LOBs
 }
 rset.close ();

 System.out.println ("Dumping lobs again");

 rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Print the lobs contents
 dumpBlob (conn, blob, 11);
 dumpClob (conn, clob, 11);
 }
 // Close all resources
 rset.close();
 stmt.close();
 conn.close();
 }

 // Utility function to dump Clob contents
 static void dumpClob (Connection conn, CLOB clob, long offset)
 throws Exception
 {
 // get character stream to retrieve clob data
 Reader instream = clob.getCharacterStream(offset);

 // create temporary buffer for read
 char[] buffer = new char[10];

 // length of characters read
 int length = 0;

 // fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " chars: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]);
 System.out.println();
 }
3-66 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
 // Close input stream
 instream.close();
 }

 // Utility function to dump Blob contents
 static void dumpBlob (Connection conn, BLOB blob, long offset)
 throws Exception
 {
 // Get binary output stream to retrieve blob data
 InputStream instream = blob.getBinaryStream(offset);
 // Create temporary buffer for read
 byte[] buffer = new byte[10];
 // length of bytes read
 int length = 0;
 // Fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " bytes: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]+" ");
 System.out.println();
 }

 // Close input stream
 instream.close();
 }

 // Utility function to put data in a Clob
 static void fillClob (Connection conn, CLOB clob, long offset, long length)
 throws Exception
 {
 Writer outstream = clob.getCharacterOutputStream(offset);

 int i = 0;
 int chunk = 10;

 while (i < length)
 {
 outstream.write("aaaaaaaaaa", 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
LOB Support in Different Programmatic Environments 3-67

Using Java (JDBC) To Work with LOBs
 outstream.close();
 }

 // Utility function to put data in a Blob
 static void fillBlob (Connection conn, BLOB blob, long offset, long length)
 throws Exception
 {
 OutputStream outstream = blob.getBinaryOutputStream(offset);

 int i = 0;
 int chunk = 10;

 byte [] data = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

 while (i < length)
 {
 outstream.write(data, 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();
 }
}

JDBC and Empty LOBs
An empty BLOB can be created from the following API from oracle.sql.BLOB :

public static BLOB empty_lob () throws SQLException

Similarly, the following API from oracle.sql.CLOB creates a empty CLOB:

public static CLOB empty_lob () throws SQLException

Empty LOB instances are created by JDBC drivers without making database round

trips. Empty LOBs can be used in the following cases:

■ “set” APIs of PreparedStatement

■ “update” APIs of updatable result set

■ attribute value of STRUCTs

■ element value of ARRAYs
3-68 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using Java (JDBC) To Work with LOBs
JDBC applications cannot read or write to empty LOBs created from the preceding

APIs. An ORA-17098 “Invalid empty lob operation” results if your application

attempts to read/write to an empty LOB.

Note: Empty LOBs are special marker LOBs but not real LOB

values.
LOB Support in Different Programmatic Environments 3-69

OLEDB (Oracle Provider for OLEDB — OraOLEDB)
OLEDB (Oracle Provider for OLEDB — OraOLEDB)
Oracle Provider for OLE DB (OraOLEDB) offers high performance and efficient

access to Oracle data for OLE DB and ADO developers. Developers programming

with Visual Basic, C++, or any COM client can use OraOLEDB to access Oracle

databases.

OraOLEDB is an OLE DB provider for Oracle. It offers high performance and

efficient access to Oracle data including LOBs, and also allows updates to certain

LOB types.

The following LOB types are supported by OraOLEDB:

■ For Persistent LOBs. READ/WRITE through the rowset.

■ For BFILEs. READ-ONLY through the rowset.

■ Temporary LOBs are not supported through the rowset.

See Also:

■ Chapter 13, "Using OraOLEDB to Manipulate LOBs"

■ The Oracle Provider for OLE DB User’s Guide at:

http://otn.oracle.com/.
3-70 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Managing
4

Managing LOBs

This chapter describes the following topics:

■ Rules for using Directory Objects and BFILEs

■ DBA Actions Required Prior to Working with LOBs

■ Managing Temporary LOBs

■ Using SQL*Loader to Load LOBs

■ Inline versus Out-of-Line LOBs

■ Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL*Loader

■ Loading Inline LOB Data

■ Loading Out-Of-Line LOB Data

■ SQL*Loader LOB Loading Tips

■ LOB Restrictions

Rules for using Directory Objects and BFILEs
When creating a directory object or BFILEs, ensure that the following conditions are

met:

■ The operating system file must not be a symbolic or hard link.

■ The operating system directory path named in the Oracle DIRECTORY object

must be an existing OS directory path.

■ The operating system directory path named in the Oracle DIRECTORY object

should not contain any symbolic links in its components.
LOBs 4-1

DBA Actions Required Prior to Working with LOBs
DBA Actions Required Prior to Working with LOBs
This section describes actions that you or your database administrator must take

prior to working with LOBs.

Set Maximum Number of Open BFILEs
A limited number of BFILE s can be open simultaneously in each session. The

initialization parameter, SESSION_MAX_OPEN_FILESdefines an upper limit on the

number of simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10

files at the same time in each session if the default value is utilized. If you want to

alter this limit, the database administrator can change the value of this parameter in

the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files reaches the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session. To close all open files, use

the DBMS_LOB.FILECLOSEALL call.

Using SQL DML for Basic Operations on LOBs
SQL Data Manipulation Language (DML) includes basic operations, such as,

INSERT, UPDATE, DELETE — that let you make changes to the entire value of

internal LOBs within Oracle RDBMS.

■ Internal LOBs: To work with parts of internal LOBs, you will need to use one of

the interfaces described in Chapter 3, "LOB Support in Different Programmatic

Environments", that have been developed to handle more complex

requirements. Alternatively, you can perform string operations on CLOBs using

SQL VARCHAR2 functions.

For use case examples refer to the following sections in Chapter 10, "Internal

Persistent LOBs":

■ INSERT:

* "Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()" on

page 10-16

See Also: Chapter 7, "Modeling and Design"
4-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

DBA Actions Required Prior to Working with LOBs
* "Inserting a Row by Selecting a LOB From Another Table" on

page 10-20

* "Inserting a Row by Initializing a LOB Locator Bind Variable" on

page 10-23

■ UPDATE:

* "Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()" on

page 10-271

* "Updating a Row by Selecting a LOB From Another Table" on page 10-275

* "Updating by Initializing a LOB Locator Bind Variable" on page 10-277

■ DELETE:

* "Deleting the Row of a Table Containing a LOB" on page 10-286

■ External LOBs (BFILEs): Oracle8i supports read-only operations on external

LOBs. See Chapter 12, "External LOBs (BFILEs)":

■ INSERT:

* "INSERT a Row Using BFILENAME()" on page 12-22

* "INSERT a BFILE Row by Selecting a BFILE From Another Table" on

page 12-31

* "Inserting a Row With BFILE by Initializing a BFILE Locator" on

page 12-33

■ UPDATE: You can use the following methods to UPDATE or ’write to’ a BFILE:

* "Updating a BFILE Using BFILENAME()" on page 12-193

* "Updating a BFILE by Selecting a BFILE From Another Table" on page 12-196

* "Updating a BFILE by Initializing a BFILE Locator" on page 12-198

■ DELETE:

* "Deleting the Row of a Table Containing a BFILE" on page 12-231

Changing Tablespace Storage for a LOB
It is possible to change the default storage for a LOB after the table has been created.
Managing LOBs 4-3

DBA Actions Required Prior to Working with LOBs
Oracle8 Release 8.0.4.3
To move the CLOB column from tablespace A to tablespace B, in Oracle8 release

8.0.4.3, requires the following statement:

ALTER TABLE test lob(test) STORE AS (tablespace tools);

However, this returns the following error message:

ORA-02210: no options specified for ALTER TABLE

Oracle8 i and Oracle9 i
■ Using ALTER TABLE... MODIFY: You can change LOB tablespace storage as

follows:

ALTER TABLE test MODIFY
 LOB (lob1)
 STORAGE (
 NEXT 4M
 MAXEXTENTS 100
 PCTINCREASE 50

)

■ Using ALTER TABLE... MOVE: You can also use the MOVE clause of the

ALTER TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
 TABLESPACE tbs1
 LOB (lob1, lob2)
 STORE AS (
 TABLESPACE tbs2
 DISABLE STORAGE IN ROW);

Note:

■ The ALTER TABLE syntax for modifying an existing LOB

column uses the MODIFY LOB clause, not the LOB...STORE
AS clause. The LOB...STORE AS clause is only for newly

added LOB columns.

■ There are two kinds of LOB storage clauses: LOB_storage_
clause and modify_LOB_storage_clause . In the ALTER
TABLE MODIFY LOBstatement, you can only specify modify_
LOB_storage_clause .
4-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using SQL*Loader to Load LOBs
Managing Temporary LOBs
Management and security issues of temporary LOBs are discussed in Chapter 11,

"Temporary LOBs",

■ Managing Temporary LOBs on page 11-10

■ Security Issues with Temporary LOBs on page 11-10

Using SQL*Loader to Load LOBs
You can use SQL*Loader to bulk load LOBs. See “Loading LOBs” in Oracle9i
Database Utilities for details on using SQL*Loader control file data definition

language (DDL) to load LOB types.

Data loaded into LOBs can be lengthy and it is likely that you will want to have the

data out- of-line from the rest of the data. LOBFILES provide a method to separate

lengthy data.

LOBFILES
LOBFILES are simple datafiles that facilitate LOB loading. LOBFILEs are

distinguished from primary datafiles in that in LOBFILEs there is no concept of a

record. In LOBFILEs the data is of any of the following types:

■ Predetermined size fields (fixed length fields)

■ Delimited fields, for example, TERMINATED BY or ENCLOSED BY

■ Length-Value pair fields (variable length fields) -- VARRAW, VARCHAR, or

VARCHARC loader datatypes are used for loading from this type of fields.

■ A single LOB field into which the entire contents of a file can be read.

Note: The clause PRESERVE BLANKS is not applicable to fields

read from a LOBFILE.

Note: A field read from a LOBFILE cannot be used as an

argument to a clause (for example, the NULLIF clause).
Managing LOBs 4-5

Inline versus Out-of-Line LOBs
Inline versus Out-of-Line LOBs
Inline LOBs are LOBs whose value comes from the primary data file.

Out-of-Line LOBs are LOBs whose value comes from LOBFILEs.
4-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL*Loader
Loading InLine and Out-Of-Line Data into Internal LOBs Using
SQL*Loader

The following sections describe procedures for loading differently formatted inline

and out-of-line data into internal LOBs:

■ Loading InLine LOB Data

■ Loading Inline LOB Data in Predetermined Size Fields

■ Loading Inline LOB Data in Delimited Fields

■ Loading Inline LOB Data in Length-Value Pair Fields

■ Loading Out-Of-Line LOB Data

■ Loading One LOB Per File

■ Loading Out-of-Line LOB Data in Predetermined Size Fields

■ Loading Out-of-Line LOB Data in Delimited Fields

■ Loading Out-of-Line LOB Data in Length-Value Pair Fields

Other topics discussed are

■ SQL*Loader LOB Loading Tips

SQL*Loader Performance: Loading Into Internal LOBs
See Table 4–1, "SQL*Loader Performance: Loading Data Into Internal LOBs" for the

relative performance when using the preceding methods of loading data into

internal LOBs.

Table 4–1 SQL*Loader Performance: Loading Data Into Internal LOBs

Loading Method For In-Line or Out-Of-Line Data Relative Performance

In Predetermined Size Fields Highest

In Delimited Fields Slower

In Length Value-Pair Fields High

One LOB Per File High

See Also: Chapter 9, "LOBS: Best Practices"
Managing LOBs 4-7

Loading Inline LOB Data
Loading Inline LOB Data
■ Loading Inline LOB Data in Predetermined Size Fields

■ Loading Inline LOB Data in Delimited Fields

■ Loading Inline LOB Data in Length-Value Pair Fields

Loading Inline LOB Data in Predetermined Size Fields
This is a very fast and simple way to load LOBs. Unfortunately, the LOBs to be

loaded are not usually the same size.

To load LOBs using this format, use either CHARor RAWas the loading datatype. For

example:

Control File
LOAD DATA
INFILE ’sample.dat’ "fix 21"
INTO TABLE Multimedia_tab
 APPEND
 (Clip_ID POSITION(1:3) INTEGER EXTERNAL,
 Story POSITION(5:20) CHAR DEFAULTIF Story=BLANKS)

Data File (sample.dat)
007 Once upon a time

If the datafield containing the story is empty, then an empty LOB instead of a NULL

LOB is produced. A NULL LOB is produced only if the NULLIF clause is used

instead of the DEFAULTIF clause. You can use loader datatypes other than CHAR to
load LOBs. Use the RAW datatype when loading BLOBs.

Note: A possible work-around is to pad LOB data with white

space to make all LOBs the same length within the particular

datafield; for information on trimming of trailing white spaces see

“Trimming of Blanks and Tabs” in Oracle9i Database Utilities.

Note: One space separates the Clip_ID,(O07) from the

beginning of the story. The story is 15 bytes long.
4-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading Inline LOB Data
Loading Inline LOB Data in Delimited Fields
Loading different size LOBs in the same column (that is, datafile field) is not a

problem. The trade-off for this added flexibility is performance. Loading in this

format is somewhat slower because the loader has to scan through the data, looking

for the delimiter string. For example:

Control File
LOAD DATA
INFILE ’sample1.dat’ "str ’<endrec>\n’"
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID CHAR(3),
 Story CHAR(507) ENCLOSED BY ’<startlob>’ AND ’<endlob>’
)

Data File (sample1.dat)
007, <startlob> Once upon a time,The end. ’<endlob>’ ’<endrec>’
008, <startlob> Once upon another timeThe end. ’<endlob>’ ’<endrec>’

Loading Inline LOB Data in Length-Value Pair Fields
You could use VARCHAR (see Oracle9i Database Utilities), VARCHARC, or VARRAW
datatypes to load LOB data organized in this way. Note that this method of loading

produces better performance over the previous method, however, it removes some

of the flexibility, that is, it requires you to know the LOB length for each LOB before

loading. For example:

Control File
LOAD DATA
INFILE ’sample2.dat’ "str ’<endrec>\r\n’"
INTO TABLE Multimedia_tab
APPEND
FIELDS TERMINATED BY ’,’

Note: You can specify both NULLIF and DEFAULTIF for the same

field, although NULLIF has a higher ’priority’ than DEFAULTIF.
Managing LOBs 4-9

Loading Out-Of-Line LOB Data
(
Clip_ID INTEGER EXTERNAL (3),
 Story VARCHARC (3, 500)
)

Data File (sample2.dat)
007,041 Once upon a time... The end. <endrec>
008,000 <endrec>

Loading Out-Of-Line LOB Data
This section describes the following topics:

■ Loading One LOB Per File

■ Loading Out-of-Line LOB Data in Predetermined Size Fields

■ Loading Out-of-Line LOB Data in Delimited Fields

■ Loading Out-of-Line LOB Data in Length-Value Pair Fields

As mentioned earlier, LOBdata can be so large that it is reasonable to want to load it

from secondary datafile(s).

Note:

■ Story is a field corresponding to a CLOBcolumn. In the control

file, it is described as a VARCHARC (3, 500) whose length field is

3 bytes long and maximum size is 500 bytes. This tells the

Loader that it can find the length of the LOB data in the first 3

bytes.

■ The length subfield of the VARCHARC is 0 (that is, the value

subfield is empty); consequently, the LOB instance is initialized

to empty.

■ Make sure the last character of the last line of the preceding

data file is a line feed.

■ When loading a data stream where a record is terminated by a

newline (as on Unix platforms), or a carriage-return and

newline (as on Windows platforms), you must specify \n (for

Unix) or \r\n (for Windows) to ensure that these characters are

not interpreted as the start of the next record.
4-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading Out-Of-Line LOB Data
In LOBFILEs, LOB data instances are still thought to be in fields (predetermined

size, delimited, length-value), but these fields are not organized into records (the

concept of a record does not exist within LOBFILES); thus, the processing overhead

of dealing with records is avoided. This type of organization of data is ideal for LOB
loading.

Loading One LOB Per File
Each LOBFILE contains a single LOB. For example:

Control File
LOAD DATA
INFILE ’sample3.dat’
INTO TABLE Multimedia_tab
REPLACE
FIELDS TERMINATED BY ’,’
(
 Clip_ID INTEGER EXTERNAL(5),
 ext_FileName FILLER CHAR(40),
 Story LOBFILE(ext_FileName) TERMINATED BY EOF
)

Data File (sample3.dat)
007,FirstStory.txt,
008,/tmp/SecondStory.txt,

Secondary Data File (FirstStory.txt)
Once upon a time ...
The end.

Secondary Data File (SecondStory.txt)
Once upon another time
The end.
Managing LOBs 4-11

Loading Out-Of-Line LOB Data
Loading Out-of-Line LOB Data in Predetermined Size Fields
In the control file, the size of the LOBs to be loaded into a particular column is

specified. During the load, any LOB data loaded into that column is assumed to be

the specified size. The predetermined size of the fields allows the dataparser to

perform very well. Unfortunately, it is often hard to guarantee that all the LOBs are

the same size. For example:

Control File
LOAD DATA
INFILE ’sample4.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
 Clip_ID INTEGER EXTERNAL(5),
 Story LOBFILE (CONSTANT ’FirstStory1.txt’) CHAR(32)
)

Data File (sample4.dat)
007,
008,

Secondary Data File (FirstStory1.txt)
Once upon the time ...
The end,
Upon another time ...
The end,

Note:

■ STORY tells the Loader that it can find the LOB data in the file

whose name is stored in the ext_FileName field.

■ TERMINATED BY EOF tells the Loader that the LOB will span

the entire file.

■ SQL*Plus users: Viewing CLOB data using the SQL*Plus long
parameter displays only the first 80 characters of the CLOB

because the default value of the long parameter is 80.

■ See also Oracle9i Database Utilities
4-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading Out-Of-Line LOB Data
Loading Out-of-Line LOB Data in Delimited Fields
LOB data instances in LOBFILE files are delimited. In this format, loading different

size LOBs into the same column is not a problem. The trade-off for this added

flexibility is performance. Loading in this format is somewhat slower because the

loader has to scan through the data, looking for the delimiter string. For example:

Control File
LOAD DATA
INFILE ’sample5.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(Clip_ID INTEGER EXTERNAL(5),
Story LOBFILE (CONSTANT ’FirstStory2.txt’) CHAR(2000)
TERMINATED BY "<endlob>\n")

Windows users: Terminate the control file using:

TERMINATED BY "<endlob>\r\n")

Data File (sample5.dat)
007,
008,

Secondary Data File (FirstStory2.txt)
Once upon a time...
The end.<endlob>
Once upon another time...
The end.<endlob>

Note: SQL *Loader loads 2000 bytes of data from the

FirstStory.txt LOBFILE , using CHAR datatype, starting with

the byte following the byte loaded last during the current loading

session.
Managing LOBs 4-13

Loading Out-Of-Line LOB Data
Loading Out-of-Line LOB Data in Length-Value Pair Fields
Each LOB in the LOBFILE is preceded by its length. You can use VARCHAR (see

Oracle8 Utilities), VARCHARC, or VARRAW datatypes to load LOB data organized in

this way. The controllable syntax for loading length-value pair specified LOBs is

quite simple.

Note that this method of loading performs better than the previous one, but at the

same time it takes some of the flexibility away, that is, it requires that you know the

length of each LOB before loading. For example:

Control File
LOAD DATA
INFILE ’sample6.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID INTEGER EXTERNAL(5),
Story LOBFILE (CONSTANT ’FirstStory3.txt’) VARCHARC(4,2000)
)

Data File (sample6.dat)
007,
008,

Secondary Data File (FirstStory3.txt)
0031
Once upon a time ... The end.
0000

Note:

■ The TERMINATED BYclause specifies the string that terminates

the LOBs.

■ When loading a data stream where a record is terminated by a

newline (as on Unix platforms), or a carriage-return and

newline (as on Windows platforms), you must specify \n (for

Unix) or \r\n (for Windows) to ensure that these characters are

not interpreted as the start of the next record.
4-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

SQL*Loader LOB Loading Tips
SQL*Loader LOB Loading Tips
■ For SQL*Loader conventional path loads, failure to load a particular LOB does

not result in the rejection of the record containing that LOB; instead, the record

ends up containing an empty LOB.

For SQL*Loader direct-path loads, the LOB could be empty or truncated. LOBs

are sent in pieces to the server for loading. If there is an error, the LOB piece

with the error is discarded and the rest of that LOB is not loaded. In other

words, if the entire LOB with the error is contained in the first piece, then that

LOB column will either be empty or truncated.

■ When loading from LOBFILEs specify the maximum length of the field

corresponding to a LOB-type column. If the maximum length is specified, it is

taken as a hint to help optimize memory usage. It is important that the

maximum length specification does not underestimate the true maximum

length.

■ When using SQL*Loader direct-path load, loading LOBs can take up substantial

memory. If the message "SQL*Loader 700 (out of memory)” appears when

loading LOBs, internal code is probably batching up more rows in each load call

that which can be supported by your operating system and process memory. A

workaround is to use the ROWS option to read a smaller number of rows in

each data save.

■ Yo can also use the Direct Path API to load LOBs.

Note: VARCHARC(4,2000) tells the loader that the LOBs in the

LOBFILE are in length-value pair format and that the first four

bytes should be interpreted as length. The max_length part (that

is, 2000) gives the hint to the loader as to the maximum size of the

field.

■ 0031 tells the loader that the next 31 bytes belong to the

specified LOB.

■ 0000 results in an empty LOB (not a NULL LOB).

See Also:

■ Oracle9i Database Utilities Chapters 7 and 9.

■ Chapter 9, "LOBS: Best Practices", Using SQL*Loader.
Managing LOBs 4-15

LOB Restrictions
LOB Restrictions
This section provides details on LOB restrictions.

LOB columns are subject to the following restrictions:

■ Distributed LOBs are not supported. Therefore, you cannot use a remote locator

in SELECT or WHERE clauses of queries or in functions of the DBMS_LOB
package.

The following syntax is not supported for LOBs:

SELECT lobcol FROM table1@remote_site;
INSERT INTO lobtable SELECT type1.lobattr FROM
 table1@remote_site;
SELECT DBMS_LOB.getlength(lobcol) FROM table1@remote_site;

(This statement produces error: ORA-22992 cannot use LOB locators selected

from remote tables.)

However, you can use a remote locator in others parts of queries that reference

LOBs. The following syntax is supported on remote LOB columns:

CREATE TABLE t AS SELECT * FROM table1@remote_site;
INSERT INTO t SELECT * FROM table1@remote_site;
UPDATE t SET lobcol = (SELECT lobcol FROM table1@remote_site);
INSERT INTO table1@remote_site ...
UPDATE table1@remote_site ...
DELETE FROM table1@remote_site ...

For the first three types of statement, which contain subqueries, only standalone

LOB columns are allowed in the select list. SQL functions or DBMS_LOBAPIs on

LOBs are not supported. For example, the following statement is supported:

See Also:

■ "What’s New with Large Objects (LOBs)?" on page xlv for

restrictions removed in a given release.

■ Chapter 5, "Large Objects: Advanced Topics", "Restrictions for

LOBs in Partitioned Index-Organized Tables" on page 5-31.

■ Chapter 8, "Migrating From LONGs to LOBs" under

"LONG-to-LOB Migration Limitations" on page 8-10, describes

LONG to LOB migration limitations for clustered tables,

replication, triggers, domain indexes, and functional indexes.
4-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Restrictions
CREATE TABLE AS SELECT clob_col FROM tab@dbs2;

However, the following statement is not supported:

CREATE TABLE AS SELECT dbms_lob.substr(clob_col) from tab@dbs2;

■ Clusters cannot contain LOBs, either as key or non-key columns. This produces

error, ORA-02335: invalid datatype for cluster column .

■ You cannot create a VARRAY of LOBs. This produces error, ORA-02348:
cannot create VARRAY column with embedded LOB .

■ You cannot specify LOB columns in the ORDER BY clause of a query, or in the

GROUP BY clause of a query or in an aggregate function. This produces error,

ORA-00932: inconsistent datatypes .

■ You cannot specify a LOB column in a SELECT... DISTINCT or SELECT...
UNIQUE statement or in a join. However, you can specify a LOB attribute of an

object type column in a SELECT... DISTINCT statement or in a query that uses

the UNION or MINUS set operator if the column’s object type has a MAP or

ORDER function defined on it.

■ You cannot specify an NCLOB as an attribute of an object type when creating a

table. However, you can specify NCLOB parameters in methods.

■ You cannot specify LOB columns in ANALYZE... COMPUTE or ANALYZE...
ESTIMATE statements.

■ You cannot define an UPDATE DML trigger on a LOB column.

■ You cannot specify a LOB as a primary key column.

■ You cannot specify a LOB column as part of an index key. However, you can

specify a LOB column in the function of a function-based index or in the

indextype specification of a domain index. In addition, Oracle Text lets you

define an index on a CLOB column.

■ In an INSERT or UPDATE operation, you can bind data of any size to a LOB

column, but you cannot bind data to a LOB attribute of an object type. In an

INSERT... AS SELECT operation, you can bind up to 4000 bytes of data to LOB

columns.

See Also: See Oracle9i Data Cartridge Developer’s Guide for more

information about defining triggers on domain indexes
Managing LOBs 4-17

LOB Restrictions
■ If a table has both LONG and LOB columns, you cannot bind more than 4000

bytes of data to both the LONG and LOB columns in the same SQL statement.

However, you can bind more than 4000 bytes of data to either the LONG or the

LOB column.

■ First Extent of Any LOB Segment Must be At Least 3 Blocks. The first extent (or

initial extent) of a LOB segment requires at least 3 blocks. This restriction has

existed since LOBs were implemented in Oracle Release 8.0.

The first extent of any segment requires at least 2 blocks (if FREELIST GROUPS

was 0). That is, the initial extent size of the segment should be at least 2 blocks.

LOBs segments are different because they need at least 3 blocks in the first extent.

If you try to create a LOB segment in a permanent dictionary managed

tablespace with initial = 2 blocks, it will still work because it is possible for

segments in permanent dictionary managed tablespaces to override tablespaces'

default storage setting.

But if uniform locally managed tablespaces or dictionary managed tablespaces

of the temporary type, or locally managed temporary tablespaces have an

extent size of 2 blocks, LOB segments cannot be created in these tablespaces.

This is because in these tablespace types, extent sizes are fixed and tablespaces’

default storage setting is not ignored.

You will get a message on trying to create the LOB segment: ORA-3237 "initial

extent of specified size cannot be allocated". You could be confused by this

error, especially if your tablespace has lots of free space.

■ BFILEs in Shared Server (Multi-Threaded Server — MTS) Mode. Oracle9i does

not support session migration for BFILE s in Shared Server (Multi-Threaded

Server — MTS) mode. This implies that operations on open BFILE s can persist

beyond the end of a call to a shared server. In shared server sessions, BFILE
operations will be bound to one shared server, they cannot migrate from one

server to another. This restriction will be removed in a forthcoming release.

See Also:

■ Chapter 7, "Modeling and Design", "SQL Semantics Support for

LOBs" on page 7-33.

■ The “Keywords and Parameters” section of individual SQL

statements in Oracle9i SQL Reference for additional semantics

for the use of LOBs
4-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Restrictions
Other general LOB restrictions include the following:

■ LOBs are only supported in range partitioned index-organized tables. See

"Partitioned Index-Organized Tables and LOBs" on page 1-6 for more

information.

■ Client PL/SQL procedures cannot call DBMS_LOB routines. See "PL/SQL -

LOB Guidelines" on page 3-7 for more information.

■ When using DBMS_LOB.LOADFROMFILE, you cannot specify an amount
parameter value larger than the size of the BFILE. See "PL/SQL - LOB

Guidelines" on page 3-7 for more information.

■ When using DBMS_LOB.READ, the amount parameter can be larger than the

size of the data. See "PL/SQL - LOB Guidelines" on page 3-7 for more

information.

■ A field read from a LOBFILE cannot be used as an argument to a clause. See

"LOBFILES" on page 4-5 for more information.

Notes:

■ Oracle8i Release 2 (8.1.6) and higher support the CACHE READS
setting for LOBs. If you have such LOBs and you downgrade to

an earlier release, Oracle generates a warning and converts the

LOBs from CACHE READS to CACHE LOGGING. You can

subsequently alter the LOBs to either NOCACHE LOGGING or

NOCACHE NOLOGGING. For more information see Chapter 7,

"Modeling and Design", Chapter , "CACHE / NOCACHE /

CACHE READS" on page 7-8. For a table on which you have

defined a DML trigger, if you use OCI functions or DBMS_LOB
routines to change the value of a LOB column or the LOB

attribute of an object type column, Oracle does not fire the

DML trigger.

See Also:

■ "SQL*Loader LOB Loading Tips" on page 4-15.

■ Chapter 5, "Large Objects: Advanced Topics", "Restrictions for

LOBs in Partitioned Index-Organized Tables" on page 5-31.
Managing LOBs 4-19

LOB Restrictions
4-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Large Objects: Advanced T
5

Large Objects: Advanced Topics

This chapter contains the following sections:

■ Introducing Large Objects: Advanced Topics

■ Read Consistent Locators

■ LOB Locators and Transaction Boundaries

■ LOBs in the Object Cache

■ LOB Buffering Subsystem

■ Creating a Varray Containing References to LOBs

■ LOBs in Partitioned Index-Organized Tables

■ Restrictions for LOBs in Partitioned Index-Organized Tables

Note: Examples in this chapter are based on the multimedia schema and table
Multimedia_tab described in Appendix B, "The Multimedia Schema".

Introducing Large Objects: Advanced Topics
The material in this chapter is a supplement and elaboration of the use cases

described in the following chapters.You will probably find the topics discussed here

to be more relevant once you have explored the use cases.

Read Consistent Locators
Oracle provides the same read consistency mechanisms for LOBs as for all other

database reads and updates of scalar quantities. Refer to Oracle9i Database Concepts
for general information about read consistency. Read consistency has some special
opics 5-1

Read Consistent Locators
applications to LOB locators that you must understand. These applications are

described in the following sections.

A Selected Locator Becomes a Read Consistent Locator
A SELECTed locator, regardless of the existence of the FOR UPDATE clause, becomes

a read consistent locator, and remains a read consistent locator until the LOB value is

updated through that locator. A read consistent locator contains the snapshot

environment as of the point in time of the SELECT.

This has some complex implications. Let us say that you have created a read

consistent locator (L1) by way of a SELECT operation. In reading the value of the

internal LOB through L1, note the following:

■ The LOB is read as of the point in time of the SELECT statement even if the

SELECT statement includes a FOR UPDATE.

■ If the LOB value is updated through a different locator (L2) in the same

transaction, L1 does not see L2's updates.

■ L1 will not see committed updates made to the LOB through another transaction.

■ If the read consistent locator L1 is copied to another locator L2 (for example, by

a PL/SQL assignment of two locator variables — L2:= L1), then L2 becomes a

read consistent locator along with L1 and any data read is read as of the point
in time of the SELECT for L1.

Clearly you can utilize the existence of multiple locators to access different

transformations of the LOB value. However, in taking this course, you must be

careful to keep track of the different values accessed by different locators.

Updating LOBs and Read-Consistency
Read consistent locators provide the same LOB value regardless of when the

SELECT occurs.

The following example demonstrates the relationship between read-consistency and

updating in a simple example. Using Multimedia_tab, as defined in

Appendix B, "The Multimedia Schema", and PL/SQL, three CLOBs are created as

potential locators:

■ clob_selected

■ clob_update

■ clob_copied
5-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Read Consistent Locators
Observe these progressions in the code, from times t1 through t6:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_selected.

■ In the second operation (at t2), the value in story is associated with the locator

clob_updated. Since there has been no change in the value of story between t1 and

t2, both clob_selected and clob_updated are read consistent locators that effectively

have the same value even though they reflect snapshots taken at different

moments in time.

■ The third operation (at t3) copies the value in clob_selected to clob_copied. At this

juncture, all three locators see the same value. The example demonstrates this

with a series of DBMS_LOB.READ() calls.

■ At time t4, the program utilizes DBMS_LOB.WRITE() to alter the value in clob_
updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ() of the value through clob_selected (at t5) reveals

that it is a read consistent locator, continuing to refer to the same value as of the

time of its SELECT.

■ Likewise, a DBMS_LOB.READ() of the value through clob_copied (at t6) reveals

that it is a read consistent locator, continuing to refer to the same value as clob_
selected.

Example
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
Large Objects: Advanced Topics 5-3

Read Consistent Locators
 SELECT story INTO clob_selected
 FROM Multimedia_tab
 WHERE clip_id = 1;

 -- At time t2:
 SELECT story INTO clob_updated
 FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 -- At time t3:
 clob_copied := clob_selected;
 -- After the assignment, both the clob_copied and the
 -- clob_selecte d have the same snapshot as of the point in time
 -- of the SELECT into clob_selected

 -- Reading from the clob_selected and the clob_copied will
 -- return the same LOB value . clob_updated also sees the same
 -- LOB value as of its select:
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t4:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
5-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Read Consistent Locators
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t5:
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t6:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

Updating LOBs Via Updated Locators
When you update the value of the internal LOB through the LOB locator (L1), L1

(that is, the locator itself) is updated to contain the current snapshot environment as
of the point in time after the operation was completed on the LOB value through locator

L1. L1 is then termed an updated locator. This operation allows you to see your own

changes to the LOB value on the next read through the same locator, L1.

Any committed updates made by a different transaction are seen by L1 only if your

transaction is a read-committed transaction and if you use L1 to update the LOB
value after the other transaction committed.

Note: The snapshot environment in the locator is not updated if

the locator is used to merely read the LOB value. It is only updated

when you modify the LOB value through the locator using the

PL/SQL DBMS_LOB package or the OCI LOB APIs.

Note: When you update an internal LOB’s value, the modification

is always made to the most current LOB value.
Large Objects: Advanced Topics 5-5

Read Consistent Locators
Updating the value of the internal LOB through any of the available methods, such

as OCI LOB APIs or PL/SQL DBMS_LOB package, updates the LOB value and then
reselects the locator that refers to the new LOB value.

Note that updating the LOBvalue through SQL is merely an UPDATEstatement. It is

up to you to do the reselect of the LOB locator or use the RETURNING clause in the

UPDATE statement so that the locator can see the changes made by the UPDATE
statement. Unless you reselect the LOB locator or use the RETURNING clause, you

may think you are reading the latest value when this is not the case. For this reason

you should avoid mixing SQL DML with OCI and DBMS_LOB piecewise
operations.

Example of Updating a LOB Using SQL DML and DBMS_LOB
Using table Multimedia_tab as defined previously, a CLOB locator is created:

■ clob_selected .

Note the following progressions in the following example PL/SQL (DBMS_LOB)

code, from times t1 through t3:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_selected.

■ In the second operation (at t2), the value in story is modified through the SQL
UPDATE statement, bypassing the clob_selected locator. The locator still sees the

value of the LOB as of the point in time of the original SELECT. In other words,

the locator does not see the update made using the SQL UPDATEstatement. This

is illustrated by the subsequent DBMS_LOB.READ() call.

■ The third operation (at t3) re-selects the LOB value into the locator clob_selected.

The locator is thus updated with the latest snapshot environment which allows

the locator to see the change made by the previous SQL UPDATE statement.

Therefore, in the next DBMS_LOB.READ(), an error is returned because the LOB
value is empty, that is, it does not contain any data.

Example
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE

See Also: PL/SQL User’s Guide and Reference
5-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Read Consistent Locators
 num_var INTEGER;
 clob_selected CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT story INTO clob_selected
 FROM Multimedia_tab
 WHERE clip_id = 1;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 UPDATE Multimedia_tab SET story = empty_clob()
 WHERE clip_id = 1;
 -- although the most current current LOB value is now empty,
 -- clob_selected still sees the LOB value as of the point
 -- in time of the SELECT

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 SELECT story INTO clob_selected FROM Multimedia_tab WHERE
 clip_id = 1;
 -- the SELECT allows clob_selected to see the most current
 -- LOB value

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 -- ERROR: ORA-01403: no data found
END;
/

Large Objects: Advanced Topics 5-7

Read Consistent Locators
Example of Using One Locator to Update the Same LOB Value

Using table Multimedia_tab as defined previously, two CLOBs are created as potential

locators:

■ clob_updated

■ clob_copied

Note these progressions in the following example PL/SQL (DBMS_LOB) code at

times t1 through t5:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At

this juncture, both locators see the same value. The example demonstrates this

with a series of DBMS_LOB.READ() calls.

■ At this juncture (at t3), the program utilizes DBMS_LOB.WRITE() to alter the

value in clob_updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ() of the value through clob_copied (at t4) reveals

that it still sees the value of the LOB as of the point in time of the assignment

from clob_updated (at t2).

■ It is not until clob_updated is assigned to clob_copied (t5) that clob_copied sees the

modification made by clob_updated.

Example
INSERT INTO Multimedia_tab VALUES (1,’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;

Note: Avoid updating the same LOB with different locators! You

will avoid many pitfalls if you use only one locator to update the

same LOB value.
5-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Read Consistent Locators
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

-- At time t1:
 SELECT story INTO clob_updated FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 -- At time t2:
 clob_copied := clob_updated;
 -- after the assign, clob_copied and clob_updated see the same
 -- LOB value

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
Large Objects: Advanced Topics 5-9

Read Consistent Locators
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 clob_copied := clob_updated;

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcdefg'
END;
/

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
When a LOB locator is used as the source to update another internal LOB (as in a

SQL INSERT or UPDATE statement, the DBMS_LOB.COPY() routine, and so on), the

snapshot environment in the source LOB locator determines the LOB value that is

used as the source. If the source locator (for example L1) is a read consistent locator,

then the LOB value as of the point in time of the SELECT of L1 is used. If the source

locator (for example L2) is an updated locator, then the LOB value associated with

L2’s snapshot environment at the time of the operation is used.

Using the table Multimedia_tab as defined previously, three CLOBs are created as

potential locators:

■ clob_selected

■ clob_updated

■ clob_copied

Note these progressions in the following example code at the various times t1

through t5:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At

this juncture, both locators see the same value.

■ Then (at t3), the program utilizes DBMS_LOB.WRITE() to alter the value in clob_
updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ of the value through clob_copied (at t4) reveals that

clob_copied does not see the change made by clob_updated.
5-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Read Consistent Locators
■ Therefore (at t5), when clob_copied is used as the source for the value of the

INSERT statement, we insert the value associated with clob_copied (for example,

without the new changes made by clob_updated). This is demonstrated by the

subsequent DBMS_LOB.READ() of the value just inserted.

Example
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

 -- At time t1:
 SELECT story INTO clob_updated FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 clob_copied := clob_updated;

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
Large Objects: Advanced Topics 5-11

Read Consistent Locators
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'
 -- note that clob_copied doesn’t see the write made before
 -- clob_updated

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 -- the insert uses clob_copied view of the LOB value which does
 -- not include clob_updated changes
 INSERT INTO Multimedia_tab VALUES (2, clob_copied, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL)
 RETURNING story INTO clob_selected;

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

LOB Locators Cannot Span Transactions
Modifying an internal LOB’s value through the LOB locator using DBMS_LOB, OCI,

or SQL INSERT or UPDATE statements changes the locator from a read consistent

locator to an updated locator. Further, the INSERT or UPDATE statement

automatically starts a transaction and locks the row. Once this has occurred, the

locator may not be used outside the current transaction to modify the LOB value. In

other words, LOB locators that are used to write data cannot span transactions.

However, the locator may be used to read the LOB value unless you are in a

serializable transaction.
5-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Read Consistent Locators
Using table Multimedia_tab defined previously, a CLOB locator is created: clob_
updated .

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2), utilizes the DBMS_LOB.WRITE() command to alter

the value in clob_updated, and a DBMS_LOB.READ() reveals a new value.

■ The commit statement (at t3) ends the current transaction.

■ Therefore (at t4), the subsequent DBMS_LOB.WRITE() operation fails because the

clob_updated locator refers to a different (already committed) transaction. This is

noted by the error returned. You must re-select the LOBlocator before using it in

further DBMS_LOB (and OCI) modify operations.

Example of Locator Not Spanning a Transaction
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;
DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:

 SELECT story
 INTO clob_updated
 FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset,

See Also: "LOB Locators and Transaction Boundaries" on

page 5-14, for more information about the relationship between

LOBs and transaction boundaries.
Large Objects: Advanced Topics 5-13

LOB Locators and Transaction Boundaries
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcd'

 -- At time t2:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);
 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcdefg'

 -- At time t3:
 COMMIT;

 -- At time t4:
 dbms_lob.write(clob_updated , write_amount, write_offset,
 buffer);
 -- ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

LOB Locators and Transaction Boundaries
A basic description of LOB locators and their operations is given in Chapter 2,

"Basic LOB Components".

This section discusses the use of LOB locators in transactions, and transaction IDs.

■ Locators Contain Transaction IDs When....

You Begin the Transaction, Then Select Locator. If you begin a transaction and then

select a locator, the locator contains the transaction ID. Note that you can

implicitly be in a transaction without explicitly beginning one. For example,

SELECT... FOR UPDATE implicitly begins a transaction. In such a case, the

locator will contain a transaction ID.

■ Locators Do Not Contain Transaction IDs When...
5-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Locators and Transaction Boundaries
■ You are Outside the Transaction, Then Select Locator. By contrast, if you select a

locator outside of a transaction, the locator does not contain a transaction

ID.

■ Locators Do Not Contain Transaction IDs When Selected Prior to DML Statement
Execution. A transaction ID will not be assigned until the first DML

statement executes. Therefore, locators that are selected prior to such a

DML statement will not contain a transaction ID.

Transaction IDs: Reading and Writing to a LOB Using Locators
You can always read the LOB data using the locator irrespective of whether the

locator contains a transaction ID.

■ Cannot Write Using Locator: If the locator contains a transaction ID, you cannot

write to the LOB outside of that particular transaction.

■ Can Write Using Locator: If the locator does not contain a transaction ID, you can

write to the LOB after beginning a transaction either explicitly or implicitly.

■ Cannot Read or Write Using Locator With Serializable Transactions: If the locator

contains a transaction ID of an older transaction, and the current transaction is

serializable, you cannot read or write using that locator.

■ Can Read, Not Write Using Locator With Non-Serializable Transactions: If the

transaction is non-serializable, you can read, but not write outside of that

transaction.

The following examples show the relationship between locators and non-serializable
transactions

Non-Serializable Example: Selecting the Locator with No Current Transaction

Case 1:
1. Select the locator with no current transaction. At this point, the locator does

not contain a transaction id.

2. Begin the transaction.

3. Use the locator to read data from the LOB.

4. Commit or rollback the transaction.

5. Use the locator to read data from the LOB.
Large Objects: Advanced Topics 5-15

LOB Locators and Transaction Boundaries
6. Begin a transaction. The locator does not contain a transaction id.

7. Use the locator to write data to the LOB. This operation is valid because the

locator did not contain a transaction id prior to the write. After this call, the

locator contains a transaction id.

Case 2:
1. Select the locator with no current transaction. At this point, the locator does

not contain a transaction id.

2. Begin the transaction. The locator does not contain a transaction id.

3. Use the locator to read data from the LOB. The locator does not contain a

transaction id.

4. Use the locator to write data to the LOB. This operation is valid because the

locator did not contain a transaction id prior to the write. After this call, the

locator contains a transaction id. You can continue to read from or write to

the LOB.

5. Commit or rollback the transaction. The locator continues to contain the

transaction id.

6. Use the locator to read data from the LOB. This is a valid operation.

7. Begin a transaction. The locator already contains the previous transaction’s

id.

8. Use the locator to write data to the LOB. This write operation will fail

because the locator does not contain the transaction id that matches the

current transaction.

Non-Serializable Example: Selecting the Locator within a Transaction

Case 3:
1. Select the locator within a transaction. At this point, the locator contains the

transaction id.

2. Begin the transaction. The locator contains the previous transaction’s id.

3. Use the locator to read data from the LOB. This operation is valid even

though the transaction id in the locator does not match the current

transaction.
5-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOBs in the Object Cache
4. Use the locator to write data to the LOB. This operation fails because the

transaction id in the locator does not match the current transaction.

Case 4:
1. Begin a transaction.

2. Select the locator. The locator contains the transaction id because it was

selected within a transaction.

3. Use the locator to read from or write to the LOB. These operations are valid.

4. Commit or rollback the transaction. The locator continues to contain the

transaction id.

5. Use the locator to read data from the LOB. This operation is valid even

though there’s a transaction id in the locator and the transaction was

previously committed or rolled back.

6. Use the locator to write data to the LOB. This operation fails because the

transaction id in the locator is for a transaction that was previously

committed or rolled back.

LOBs in the Object Cache
Consider these object cache issues for internal and external LOB attributes:

■ Internal LOB attributes: Creating an object in object cache, sets the LOB
attribute to empty. When you create an object in the object cache that contains

an internal LOB attribute, the LOB attribute is implicitly set to empty. You may

not use this empty LOB locator to write data to the LOB. You must first flush

the object, thereby inserting a row into the table and creating an empty LOB —

that is, a LOB with 0 length. Once the object is refreshed in the object cache (use

OCI_PIN_LATEST), the real LOB locator is read into the attribute, and you can

then call the OCI LOB API to write data to the LOB.

■ External LOB attributes: Creating an object in object cache, sets the BFILE
attribute to NULL. When creating an object with an external LOB (BFILE)

See Also: "Read Consistent Locators" on page 5-1 for more

information about using the locator to read LOB data.

See Also: "Read Consistent Locators" on page 5-1 for more

information on the using the locator to read LOB data.
Large Objects: Advanced Topics 5-17

LOB Buffering Subsystem
attribute, the BFILE is set to NULL. It must be updated with a valid directory

alias and filename before reading from the file.

When you copy one object to another in the object cache with a LOB locator

attribute, only the LOBlocator is copied. This means that the LOB attribute in these

two different objects contain exactly the same locator which refers to one and the
same LOBvalue. Only when the target object is flushed is a separate, physical copy of

the LOB value made, which is distinct from the source LOB value.

Therefore, in cases where you want to modify the LOB that was the target of the

copy, you must flush the target object, refresh the target object, and then write to

the LOB through the locator attribute.

LOB Buffering Subsystem
Oracle8i and Oracle9i provide a LOB buffering subsystem (LBS) for advanced OCI

based applications such as Data Cartridges, Web servers, and other client-based

applications that need to buffer the contents of one or more LOBs in the client’s

address space. The client-side memory requirement for the buffering subsystem

during its maximum usage is 512KBytes. It is also the maximum amount that you

can specify for a single read or write operation on a LOB that has been enabled for

buffered access.

Advantages of LOB Buffering
The advantages of buffering, especially for client applications that perform a series

of small reads and writes (often repeatedly) to specific regions of the LOB, are:

■ Buffering enables deferred writes to the server. You can buffer up several writes

in the LOB’s buffer in the client’s address space and eventually flush the buffer

to the server. This reduces the number of network round-trips from your client

application to the server, and hence, makes for better overall performance for

LOB updates.

■ Buffering reduces the overall number of LOB updates on the server, thereby

reducing the number of LOB versions and amount of logging. This results in

better overall LOB performance and disk space usage.

See Also: "Updating LOBs and Read-Consistency" on page 5-2 for

a description of what version of the LOB value will be seen by each

object if a write is performed through one of the locators.
5-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
Guidelines for Using LOB Buffering
The following caveats apply to buffered LOB operations:

■ Explicitly flush LOB buffer contents. Oracle8i and Oracle9i provide a simple

buffering subsystem, and not a cache. To be specific, Oracle does not guarantee

that the contents of a LOB’s buffer are always in sync with the LOB value in the

server. Unless you explicitly flush the contents of a LOB’s buffer, you will not see

the results of your buffered writes reflected in the actual LOB on the server.

■ Error recovery for buffered LOB operations is your responsibility. Owing to the

deferred nature of the actual LOB update, error reporting for a particular

buffered read or write operation is deferred until the next access to the server

based LOB.

■ LOB Buffering is Single User, Single Threaded. Transactions involving buffered

LOB operations cannot migrate across user sessions — the LBS is a single user,

single threaded system.

■ Maintain logical savepoints to rollback to. Oracle does not guarantee

transactional support for buffered LOB operations. To ensure transactional

semantics for buffered LOB updates, you must maintain logical savepoints in

your application to rollback all the changes made to the buffered LOB in the

event of an error. You should always wrap your buffered LOB updates within a

logical savepoint (see "OCI Example of LOB Buffering" on page 5-25).

■ Ensure LOB is not updated by another bypassing transaction. In any given

transaction, once you have begun updating a LOB using buffered writes, it is

your responsibility to ensure that the same LOB is not updated through any

other operation within the scope of the same transaction that bypasses the
buffering subsystem.

You could potentially do this by using an SQL statement to update the

server-based LOB. Oracle cannot distinguish, and hence prevent, such an

operation. This will seriously affect the correctness and integrity of your

application.

■ Updating buffer-enabled LOB locators. Buffered operations on a LOB are done

through its locator, just as in the conventional case. A locator that is enabled for

buffering will provide a consistent read version of the LOB, until you perform a

write operation on the LOB through that locator. See also, "Read Consistent

Locators" on page 5-1.

Once the locator becomes an updated locator by virtue of its being used for a

buffered write, it will always provide access to the most up-to-date version of
Large Objects: Advanced Topics 5-19

LOB Buffering Subsystem
the LOBas seen through the buffering subsystem. Buffering also imposes an

additional significance to this updated locator — all further buffered writes to

the LOB can be done only through this updated locator. Oracle will return an error

if you attempt to write to the LOB through other locators enabled for buffering.

See also, "Updating LOBs Via Updated Locators" on page 5-5.

■ Passing a buffer-enabled LOB locator an IN OUT or OUT parameter. You can

pass an updated locator that was enabled for buffering as an IN parameter to a

PL/SQL procedure. However, passing an IN OUT or an OUT parameter will

produce an error, as will an attempt to return an updated locator.

■ You cannot assign an updated locator that was enabled for buffering to another
locator. There are a number of different ways that assignment of locators may

occur — through OCILobAssign (), through assignment of PL/SQL variables,

through OCIObjectCopy () where the object contains the LOB attribute, and so

on. Assigning a consistent read locator that was enabled for buffering to a

locator that did not have buffering enabled, turns buffering on for the target

locator. By the same token, assigning a locator that was not enabled for

buffering to a locator that did have buffering enabled, turns buffering off for the

target locator.

Similarly, if you SELECT into a locator for which buffering was originally

enabled, the locator becomes overwritten with the new locator value, thereby

turning buffering off.

■ When two or more locators point to the same LOB do not enable both for
buffering. If two or more different locators point to the same LOB, it is your

responsibility to make sure that you do not enable both the locators for

buffering. Otherwise Oracle does not guarantee the contents of the LOB.

■ Buffer-enable LOBs do not support appends that create zero-byte fillers or
spaces. Appending to the LOBvalue using buffered write(s) is allowed, but only

if the starting offset of these write(s) is exactly one byte (or character) past the

end of the BLOB (or CLOB/NCLOB). In other words, the buffering subsystem

does not support appends that involve creation of zero-byte fillers or spaces in

the server based LOB.

■ For CLOBs, Oracle requires the client side character set form for the locator
bind variable be the same as that of the LOB in the server. This is usually the

case in most OCI LOBprograms. The exception is when the locator is SELECTed

from a remote database, which may have a different character set form from the

database which is currently being accessed by the OCI program. In such a case,

an error is returned. If there is no character set form input by the user, then we

assume it is SQLCS_IMPLICIT .
5-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
LOB Buffering Usage Notes

LOB Buffer Physical Structure
Each user session has the following structure:

■ Fixed page pool of 16 pages, shared by all LOBs accessed in buffering mode

from that session.

■ Each page has a fixed size of up to 32K bytes (not characters) where page size =

n x CHUNKSIZE ~= 32K.

A LOB’s buffer consists of one or more of these pages, up to a maximum of 16 in

each session. The maximum amount that you ought to specify for any given

buffered read or write operation is 512K bytes, remembering that under different

circumstances the maximum amount you may read/write could be smaller.

Example of Using the LOB Buffering System (LBS)
Consider that a LOB is divided into fixed-size, logical regions. Each page is mapped

to one of these fixed size regions, and is in essence, their in-memory copy.

Depending on the input offset and amount specified for a read or write

operation, Oracle8i and Oracle9i allocate one or more of the free pages in the page

pool to the LOB’s buffer. A free page is one that has not been read or written by a

buffered read or write operation.

For example, assuming a page size of 32KBytes:

■ For an input offset of 1000 and a specified read/write amount of 30000, Oracle

reads the first 32K byte region of the LOB into a page in the LOB’s buffer.

■ For an input offset of 33000 and a read/write amount of 30000, the second 32K

region of the LOB is read into a page.

■ For an input offset of 1000, and a read/write amount of 35000, the LOB’s buffer

will contain two pages — the first mapped to the region 1 — 32K, and the

second to the region 32K+1 — 64K of the LOB.

This mapping between a page and the LOB region is temporary until Oracle maps

another region to the page. When you attempt to access a region of the LOB that is

not already available in full in the LOB’s buffer, Oracle allocates any available free

page(s) from the page pool to the LOB’s buffer. If there are no free pages available in

the page pool, Oracle reallocates the pages as follows. It ages out the least recently
used page among the unmodified pages in the LOB’s buffer and reallocates it for the

current operation.
Large Objects: Advanced Topics 5-21

LOB Buffering Subsystem
If no such page is available in the LOB’s buffer, it ages out the least recently used

page among the unmodified pages of other buffered LOBs in the same session. Again,

if no such page is available, then it implies that all the pages in the page pool are

modified, and either the currently accessed LOB, or one of the other LOBs, need to be

flushed. Oracle notifies this condition to the user as an error. Oracle never flushes

and reallocates a modified page implicitly. You can either flush them explicitly, or

discard them by disabling buffering on the LOB.

To illustrate the preceding discussion, consider two LOBs being accessed in buffered

mode — L1 and L2, each with buffers of size 8 pages. Assume that 6 of the 8 pages

in L1’s buffer are dirty, with the remaining 2 containing unmodified data read in

from the server. Assume similar conditions in L2’s buffer. Now, for the next

buffered operation on L1, Oracle will reallocate the least recently used page from

the two unmodified pages in L1’s buffer. Once all the 8 pages in L1’s buffer are used

up for LOB writes, Oracle can service two more operations on L1 by allocating the

two unmodified pages from L2’s buffer using the least recently used policy. But for

any further buffered operations on L1 or L2, Oracle returns an error.

If all the buffers are dirty and you attempt another read from or write to a buffered

LOB, you will receive the following error:

 Error 22280: no more buffers available for operation

There are two possible causes:

1. All buffers in the buffer pool have been used up by previous operations.

In this case, flush the LOB(s) through the locator that is being used to

update the LOB.

2. You are trying to flush a LOB without any previous buffered update

operations.

In this case, write to the LOB through a locator enabled for buffering before

attempting to flush buffers.

Flushing the LOB Buffer
The term flush refers to a set of processes. Writing data to the LOB in the buffer

through the locator transforms the locator into an updated locator. Once you have

updated the LOB data in the buffer through the updated locator, a flush call will

■ Write the dirty pages in the LOB’s buffer to the server-based LOB, thereby

updating the LOB value,

■ Reset the updated locator to be a read consistent locator, and
5-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
■ Free the flushed buffers or turn the status of the buffer pages back from dirty to

unmodified.

After the flush, the locator becomes a read consistent locator and can be assigned to

another locator (L2 := L1).

For instance, suppose you have two locators, L1 and L2. Let us say that they are

both read consistent locators and consistent with the state of the LOB data in the

server. If you then update the LOBby writing to the buffer, L1 becomes an updated

locator. L1 and L2 now refer to different versions of the LOB value. If you wish to

update the LOB in the server, you must use L1 to retain the read consistent state

captured in L2. The flush operation writes a new snapshot environment into the

locator used for the flush. The important point to remember is that you must use the

updated locator (L1), when you flush the LOB buffer. Trying to flush a read

consistent locator will generate an error.

This raises the question: What happens to the data in the LOB buffer? There are two

possibilities. In the default mode, the flush operation retains the data in the pages

that were modified. In this case, when you read or write to the same range of bytes

no round-trip to the server is necessary. Note that flush in this context does not clear

the data in the buffer. It also does not return the memory occupied by the flushed

buffer to the client address space.

In the second case, you set the flag parameter in OCILobFlushBuffer () to OCI_
LOB_BUFFER_FREE to free the buffer pages, and so return the memory to the client

address space. Note that flush in this context updates the LOB value on the server,

returns a read consistent locator, and frees the buffer pages.

Flushing the Updated LOB
It is very important to note that you must flush a LOB that has been updated

through the LBS in the following situations:

■ Before committing the transaction,

■ Before migrating from the current transaction to another,

■ Before disabling buffering operations on a LOB

■ Before returning from an external callout execution into the calling

function/procedure/method in PL/SQL.

Note: Unmodified pages may now be aged out if necessary.
Large Objects: Advanced Topics 5-23

LOB Buffering Subsystem
Note: When the external callout is called from a PL/SQL block and the locator is passed as a
parameter, all buffering operations, including the enable call, should be made within the
callout itself. In other words, adhere to the following sequence:

■ Call the external callout,

■ Enable the locator for buffering,

■ Read/write using the locator,

■ Flush the LOB,

■ Disable the locator for buffering

■ Return to the calling function/procedure/method in PL/SQL

Remember that Oracle never implicitly flushes the LOB.

Using Buffer-Enabled Locators
Note that there are several cases in which you can use buffer-enabled locators and

others in which you cannot.

■ When it is OK to Use Buffer-Enabled Locators:

■ OCI — A locator that is enabled for buffering can only be used with the

following OCI APIs:

OCILobRead (), OCILobWrite (), OCILobAssign (), OCILobIsEqual (),

OCILobLocatorIsInit (), OCILobCharSetId (),

OCILobCharSetForm ().

■ When it is Not OK to Use Buffer-Enabled Locators: The following OCI APIs

will return errors if used with a locator enabled for buffering:

■ OCI — OCILobCopy (), OCILobAppend (), OCILobErase (),

OCILobGetLength (), OCILobTrim (), OCILobWriteAppend().

These APIs will also return errors when used with a locator which has not

been enabled for buffering, but the LOB that the locator represents is

already being accessed in buffered mode through some other locator.

■ PL/SQL (DBMS_LOB) — An error is returned from DBMS_LOB APIs if the

input lob locator has buffering enabled.

■ As in the case of all other locators, buffer-enabled locators cannot span

transactions.
5-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
Saving Locator State to Avoid a Reselect
Suppose you want to save the current state of the LOB before further writing to the

LOBbuffer. In performing updates while using LOBbuffering, writing to an existing

buffer does not make a round-trip to the server, and so does not refresh the

snapshot environment in the locator. This would not be the case if you were

updating the LOB directly without using LOB buffering. In that case, every update

would involve a round-trip to the server, and so would refresh the snapshot in the

locator.

Therefore to save the state of a LOB that has been written through the LOB buffer,

follow these steps:

1. Flush the LOB, thereby updating the LOB and the snapshot environment in the

locator (L1). At this point, the state of the locator (L1) and the LOBare the same.

2. Assign the locator (L1) used for flushing and updating to another locator (L2).

At this point, the states of the two locators (L1 and L2), as well as the LOB are

all identical.

L2 now becomes a read consistent locator with which you are able to access the

changes made through L1 up until the time of the flush, but not after! This

assignment avoids incurring a round-trip to the server to reselect the locator into

L2.

OCI Example of LOB Buffering
The following pseudocode for an OCI program based on the Multimedia_tab
schema illustrates the issues described in the preceding discussion.

OCI_BLOB_buffering_program ()
{
 int amount;
 int offset;
 OCILobLocator lbs_loc1, lbs_loc2, lbs_loc3;
 void *buffer;
 int bufl;

 -- Standard OCI initialization operations - logging on to
 -- server, creating and initializing bind variables etc.

 init_OCI ();

 -- Establish a savepoint before start of LBS operations
 exec_statement("savepoint lbs_savepoint");
Large Objects: Advanced Topics 5-25

LOB Buffering Subsystem
 -- Initialize bind variable to BLOB columns from buffered
-- access:

 exec_statement("select frame into lbs_loc1 from Multimedia_tab
 where clip_id = 12");
 exec_statement("select frame into lbs_loc2 from Multimedia_tab
 where clip_id = 12 for update");
 exec_statement("select frame into lbs_loc2 from Multimedia_tab
 where clip_id = 12 for update");

 -- Enable locators for buffered mode access to LOB:
 OCILobEnableBuffering(lbs_loc1);
 OCILobEnableBuffering(lbs_loc2);
 OCILobEnableBuffering(lbs_loc3);

 -- Read 4K bytes through lbs_loc1 starting from offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 OCILobRead(.., lbs_loc1, offset, &amount, buffer, bufl,
 ..);
 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a page (call it page_A) in the LOB’s
 -- client-side buffer.
 -- lbs_loc1 is a read consistent locator.

 -- W rite 4K of the LOB throgh lbs_loc2 starting from
 -- offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 buffer = populate_buffer(4096);
 OCILobWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a new page (call it page_B) in the
 -- L OB’s buffer, and modify the contents of this page
 -- with input buffer contents.
 -- lbs_loc2 is an updated locator.

 -- Read 20K bytes through lbs_loc1 starting from
 -- offset 10K
 amount = 20480; offset = 10240;
 OCILobRead(.., lbs_loc1, offset, &amount, buffer,
5-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- Read directly from page_A into the user buffer.
 -- There is no round-trip to the server because the
 -- data is already in the client-side buffer.

 -- Wri te 20K bytes through lbs_loc2 starting from offset
 -- 10K
 amount = 20480; offset = 10240; bufl = 20480;
 buffer = populate_buffer(20480);
 OCILobWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- The contents of the user buffer will now be written
 -- into page_B without involving a round-trip to the
 -- server. This avoids making a new LOB version on the
 -- server and writing redo to the log.

 -- The following write through lbs_loc3 will also
 -- result in an error:
 amount = 20000; offset = 1000; bufl = 20000;
 buffer = populate_buffer(20000);
 OCILobWrite(.., lbs_loc3, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- No two locators can be used to update a buffered LOB
 -- through the buffering subsystem

 -- The following update through lbs_loc3 will also
 -- result in an error
 OCILobFileCopy(.., lbs_loc3, lbs_loc2, ..);

 if (exception)
 goto exception_handler;

-- Locators enabled for buffering cannot be used with
 -- operations like Append, Copy, Trim etc.
 -- When done, flush LOB’s buffer to the server:
 OCILobFlushBuffer(.., lbs_loc2, OCI_LOB_BUFFER_NOFREE);
Large Objects: Advanced Topics 5-27

Creating a Varray Containing References to LOBs
 if (exception)
 goto exception_handler;
 -- This flushes all the modified pages in the LOB’s buffer,
 -- and resets lbs_loc2 from updated to read consistent
 -- locator. The modified pages remain in the buffer
 -- without freeing memory. These pages can be aged
 -- out if necessary.

 -- Disable locators for buffered mode access to LOB */
 OCILobDisableBuffering(lbs_loc1);
 OCILobDisableBuffering(lbs_loc2);
 OCILobDisableBuffering(lbs_loc3);

 if (exception)
 goto exception_handler;
 -- This disables the three locators for buffered access,
 -- and frees up the LOB’s buffer resources.
 exception_handler:
 handle_exception_reporting ();
 exec_statement("rollback to savepoint lbs_savepoint");
}

Creating a Varray Containing References to LOBs
LOBs, or rather references to LOBs, can also be created using VARRAYs. To create a

VARRAY containing references to LOBs read the following:

Column, MAP_OBJ of type MAP_TYP, already exists in table Multimedia_tab .

See Appendix B, "The Multimedia Schema" for a description of table Multimedia_
tab . Column MAP_OBJ contains a BLOB column named DRAWING.

The syntax for creating the associated types and table Multimedia_tab is

described in Chapter 10, "Internal Persistent LOBs", SQL: Create a Table Containing

One or More LOB Columns, on page 10-7.

Creating a Varray Containing LOB References: Example
Suppose you need to store multiple map objects in each multimedia clip. To do that

follow these steps:

1. Define a VARRAY of type REF MAP_TYP.

For example:

CREATE TYPE MAP_TYP_ARR AS
 VARRAY(10) OF REF MAP_TYP;
5-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Partitioned Index-Organized Tables
2. Define a column of the array type in Multimedia_tab.

For example:

CREATE TABLE MULTIMEDIA_TAB (......etc. [list all columns here]
 ... MAP_OBJ_ARR MAP_TYP_ARR)
 VARRAY MAP_OBJ_ARR STORE AS LOB MAP_OBJ_ARR_STORE;

LOBs in Partitioned Index-Organized Tables
Oracle9i introduces support for LOB, VARRAY columns stored as LOBs, and BFILEs

in partitioned index-organized tables. The behavior of LOB columns in these tables

is similar to that of LOB columns in conventional (heap-organized) partitioned

tables, except for the following few minor differences:

■ Tablespace Mapping. In the absence of a tablespace specification for a LOB

column at the individual partition level or at the table level, the LOB's data and

index segments for that partition are created in the tablespace in which the

primary key index segment of the corresponding partition of the

index-organized table is created. In other words, they are equi-partitioned and

collocated with their corresponding primary key index segments.

■ Inline vs Out-of-line. If the partitioned index-organized table is defined

without an overflow segment, then a LOB column cannot be defined or altered

to be created inline. This requirement is the same as that for a non-partitioned

index-organized table.

LOB columns are supported only in range partitioned index-organized tables.

Example of LOB Columns in Partitioned Index-Organized Tables
In this section, we'll highlight the differences listed in the preceding for LOBs in

partitioned index-organized tables with the Multimedia_Tab example described in

Appendix B.

Assume that Multimedia-tab has been created as a range-partitioned

index-organized table, as follows:

CREATE TABLE Multimedia_tab (
 CLIP_ID INTEGER PRIMARY KEY,
 CLIP_DATE DATE,
 STORY CLOB,
 FLSUB NCLOB,
 PHOTO BFILE,
Large Objects: Advanced Topics 5-29

LOBs in Partitioned Index-Organized Tables
 FRAME BLOB,
 SOUND BLOB,
 ...
)
 ORGANIZATION INDEX
 TABLESPACE TBS_IDX
 OVERFLOW
 TABLESPACE TBS_OVF
 LOB (FRAME, S0UND) STORE AS (TABLESPACE TBS_LOB)
 PARTITION BY RANGE (CLIP_DATE)
 (PARTITION Jan_Multimedia_tab VALUES LESS THAN (01-FEB-2000)
 LOB (STORY) STORE AS (TABLESPACE TBS_LOB),
 PARTITION Feb_Multimedia_tab VALUES LESS THAN (01-MAR-2000)
 LOB (FLSUB) STORE AS (TABLESPACE TBS_LOB
 ENABLE STORAGE IN ROW)
);

In the preceding example, the LOB columns FRAME and SOUND will be stored in

the tablespace TBS_LOB across all the partitions.

■ In the partition, Jan_Multimedia_tab, the column STORY is stored in TBS_LOB

because of the partition-specific override, but the column FLSUB will be stored

in TBS_IDX, that is, the tablespace of its primary key index segment.

■ In the partition, Feb_Multimedia_tab, the column STORY is stored in TBS_IDX,

and the column FLSUB will be stored in TBS_LOB by virtue of the

partition-specific override.

The inheritance semantics for the rest of the LOB physical attributes are in line with

LOBs in conventional tables.

Note: Since Multimedia_tab was created with an overflow

segment, the LOB columns are allowed to be stored inline. If that

was not the case, the "ENABLE STORAGE IN ROW" clause for

FLSUB in Feb_Multimedia_tab, would have generated an error.

See Also: Oracle9i SQL Reference for a description of the lob_storage_
clause in CREATE TABLE.
5-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Restrictions for LOBs in Partitioned Index-Organized Tables
Restrictions for LOBs in Partitioned Index-Organized Tables

Range Partitioned Index-Organized Table LOB Restrictions

Non-Supported Column Types
The following column types in Range partitioned index-organized table are not

supported:

■ VARRAY columns STORED AS both inline/out-of-line LOBs.

■ Abstract Data Types (ADTs) with LOB attributes

■ VARRAY (stored as LOB) of ADT (with LOB attributes).

■ NESTED TABLEs with LOB columns.

Non-Supported Column Types in Object Range Partitioned Index-Organized
Tables
The following column types in Object Range partitioned index-organized tables are

not supported:

■ ADTs with LOB attributes

■ VARRAY columns STORED AS both inline/out-of-line LOBs.

■ VARRAY (stored as LOB) of ADT (with LOB attributes).

■ NESTED TABLEs with LOB columns.

Hash Partitioned Index-Organized Table LOB Restrictions
LOB columns are not supported in Hash partitioned index- organized tables.
Large Objects: Advanced Topics 5-31

Restrictions for LOBs in Partitioned Index-Organized Tables
5-32 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Frequently Asked Questions about
6

Frequently Asked Questions about LOBs

This chapter includes the following Frequently Asked Questions (FAQs):

■ Converting Data Types to LOB Data Types

■ General

■ Index-Organized Tables (IOTs) and LOBs

■ Initializing LOB Locators

■ JDBC, JPublisher and LOBs

■ LOB Indexing

■ LOB Storage and Space Issues

■ LONG to LOB Migration

■ Converting Between Different LOB Types

■ Performance

■ PL/SQL
LOBs 6-1

Converting Data Types to LOB Data Types
Converting Data Types to LOB Data Types

Can I Insert or Update Any Length Data Into a LOB Column?

Question
Can I insert or update any length of data for a LOB column? Am I still restricted to

4K. How about LOB attributes

Answer
When inserting or updating a LOB column you are now not restricted to 4K.

For LOB attributes, you must use the following two steps:

1. INSERT empty LOB with the RETURNING clause

2. Call OCILobWrite to write all the data

Does COPY LONG to LOB Work if Data is > 64K?

Question
Example: Copy Long to LOB Using SQL :

INSERT INTO Multimedia_tab (clip_id,sound) SELECT id, TO_LOB(SoundEffects)

Does this work if the data in LONG or LONGRAW is > 64K?

Answer
Yes. All data in the LONG is copied to the LOB regardless of size.
6-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

General
General

How Do I Determine if the LOB Column with a Trigger is Being Updated?

Question
The project that I'm working on requires a trigger on a LOB column. The

requirement is that when this column is updated, we want to check some

conditions. How do I check whether there is any value in the NEW for this LOB

column? Null does not work, since you can't compare BLOB with NULL.

Answer
You can use the UPDATING clause inside of the trigger to find out if the LOB

column is being updated or not.

CREATE OR REPLACE TRIGGER......
...
 IF UPDATING('lobcol')
 THEN
...

Note: The preceding works only for top-level LOB columns.

Reading and Loading LOB Data: What Should Amount Parameter Size Be?

Question
I read in one of the prior release Application Developer's Guides the following:

"When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4Gb regardless of

the starting offset and the amount of data in the LOB. You do need to incur a

round-trip to the server to call OCILobGetLength() to find out the length of the LOB

value in order to determine the amount to read. "

And again, under the DBMS_LOB.LOADFROMFILE() procedure...

"It is not an error to specify an amount that exceeds the length of the data in the

source BFILE. Thus, you can specify a large amount to copy from the BFILE which

will copy data from the src_offset to the end of the BFILE. "

However, the following code...
Frequently Asked Questions about LOBs 6-3

General
 declare
 cursor c is
 select id, text from bfiles;
 v_clob clob;
 begin
 for j in c
 loop
 Dbms_Lob.FileOpen (j.text, Dbms_Lob.File_Readonly);
 insert into clobs (id, text)
 values (j.id, empty_clob())
 returning text into v_clob;
 Dbms_Lob.LoadFromFile
 (
 dest_lob => v_clob,
 src_lob => j.text,
 amount => 4294967296, /* = 4Gb */
 dest_offset => 1,
 src_offset => 1
);
 Dbms_Lob.FileClose (j.text);
 end loop;
 commit;
 end;
 /

causes the following error message:

ORA-21560: argument 3 is null, invalid, or out of range

Reducing the amount by 1 to 4294967295 causes the following error message:

ORA-22993: specified input amount is greater than actual source amount

Please help me understand why I am getting errors.

Answer
■ PL/SQL:

■ For DBMS_LOB.LOADFROMFILE, you cannot specify the amount more

than the size of the BFILE. So the code example you gave returns an error.

■ For DBMS_LOB.READ, the amount can be larger than the size of the data.

But then, since PL/SQL limits the size of the buffer to 32K, and given the

fact that the amount should be no larger than the size of the buffer, the

amount is restricted to 32K.
6-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Index-Organized Tables (IOTs) and LOBs
Please note that in PL/SQL, if the amount is larger than the buffer size, it

returns an error. In any case, the amount cannot exceed 4Gig-1 because that is

the limit of a ub4 variable.

■ OCI: Again, you cannot specify amount larger than the length of the BFILE in

OCILobLoadFromFile. However, in OCILobRead, you can specify

amount =4Gig-1, and it will read to the end of the LOB.

Is LOB Data Lost After a Crash?

Question
We have a table with BLOB columns. We use NOLOGGING to be fast. It means that

the BLOB chunks are not saved in redologs. What happens if the server crashes? At

recovery, is the table data lost or is the table corrupted?

Answer
Any LOB data not written to the datafiles cannot be recovered from redo logs; it

must be reloaded. Because the LOB index updates are written to redo, the index will

indicate that the LOB exists, but the LOB will not exist (it was not recovered from

redo), so my guess is that you will get a data corruption error.

Index-Organized Tables (IOTs) and LOBs

Is Inline Storage Allowed for LOBs in Index-Organized Tables?

Question
Is inline storage allowed for LOBs in index-organized tables?

Answer
For LOBs in index organized tables, inline LOB storage is allowed only if the table is

created with an overflow segment.
Frequently Asked Questions about LOBs 6-5

Initializing LOB Locators
Initializing LOB Locators

When Do I Use EMPTY_BLOB() and EMPTY_CLOB()?

Question
When must I use EMPTY_BLOB() and EMBPTY_CLOB()? I always thought it was

mandatory for each insert of a CLOB or BLOB to initialize the LOB locator first with

either EMPTY_CLOB() or EMPTY_BLOB().

Answer
In Oracle8i release 8.1.5, you can initialize a LOB with data using the INSERT

statement as long as the data is <4K. This is why your insert statement worked.

Note that you can also update a LOB with data that is <4K using the UPDATE

statement. If the LOB is larger than 4K perform the following steps:

1. Insert into the table initializing the LOB using EMPTY_BLOB() or EMPTY_

CLOB() and use the returning clause to get back the locator

2. For LOB attributes, call ocilobwrite() to write the entire data to the LOB. For

other than LOB attributes, you can insert all the data using the INSERT

statement.

Note the following:

■ Oracle has now removed the <4K restriction and you can insert >4K worth of

data into the LOB using the insert or even the update statement for LOB

columns. Note however, that you cannot initialize a LOB attribute which is part

of an object type with data and you must use EMPTY_BLOB()/EMPTY_

CLOB().

■ Also you cannot use >4K as the default value for a LOB even though you can

use >4k when inserting or updating the LOB data.

■ Initializing the LOB value with data or using EMPTY_BLOB()/EMPTY_CLOB()

is orthogonal to how the data is stored. If the LOB value is less than

approximately 4K, then the value is stored inline (as long as the user doesn't

specify DISABLE STORAGE IN ROW) and once it grows larger than 4K, it is

moved out of line.
6-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs
How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?

Question
From java we want to insert a complete object with a BLOB attribute into an

Oracle8.1.5 object table. The problem is - in order to do that - we have somehow to

initialize the blob attribute with EMPTY_BLOB(). Is there any way to initialize the

BLOB attribute with EMPTY_BLOB() in java? What I am doing at the moment is:

First I insert the object with null in the BLOB attribute. Afterwards I update the

object with an EMPTY_BLOB(), then select it again, get the BLOB locator and finally

write my BLOB.

Is this the only way it works ? Is there a way to initialize the BLOB directly in my

toDatum method of the Custom Datum interface implementation?

Answer
Here is the SQLJ equivalent...

 BLOB myblob = null;
 #sql { select empty_blob() into :myblob from dual } ;

and use myblob in your code wherever the BLOB needed to be initialized to null.

See also the question and answer under the section, "JDBC, JPublisher and LOBs",

"How Do I setData to EMPTY_BLOB() Using JPublisher?"

JDBC, JPublisher and LOBs

How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?

Question
Is it possible to insert a row with an empty LOB locator into a table using JDBC?

Answer
You can use the EMPTY_BLOB() in JDBC also.

 Statement stmt = conn.createStatement() ;
 try {
 stmt.execute ("insert into lobtable values (empty_blob())");
 }
Frequently Asked Questions about LOBs 6-7

JDBC, JPublisher and LOBs
 catch{ ...}

Another example is:

 stmt.execute ("drop table lobtran_table");
 stmt.execute ("create table lobtran_table (b1 blob, b2 blob, c1 clob,
 c2 clob, f1 bfile, f2 bfile)");
 stmt.execute ("insert into lobtran_table values
 ('010101010101010101010101010101', empty_blob(),
 'onetwothreefour', empty_clob(),
 bfilename('TEST_DIR','tkpjobLOB11.dat'),
 bfilename ('TEST_DIR','tkpjobLOB12.dat'))");

How Do I setData to EMPTY_BLOB() Using JPublisher?

Question
How do I setData to EMPTY_BLOB() Using JPublisher? Is there something like

EMPTY_BLOB() and EMPTY_CLOB() in a Java statement, not a SQL statement

processed by JDBC? How do we setData to an EMPTY_BLOB() using JPublisher?

Answer
One way to build an empty LOB in JPublisher would be as follows:

BLOB b1 = new BLOB(conn, null) ;

You can use b1 in set method for data column.

JDBC: Do OracleBlob and OracleClob Work in 8.1.x?

Question
Do OracleBlob and OracleClob work in 8.1.x?

Answer
OracleBlob and OracleClob were Oracle specific functions used in JDBC 8.0.x

drivers to access LOB data. In Oracle8i version 8.1.x (and subsequent releases such

as Oracle 9i and higher), OracleBlob and OracleClob are deprecated.

If you use OracleBlob or OracleClob to access LOB data, you will receive the

following typical error message, for example, when attempting to manipulate LOBs

with JDBC Thin Driver :
6-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs
"Dumping lobs java.sql.SQLException: ORA-03115: unsupported network datatype or
representation etc."

See Oracle9i JDBC Developer’s Guide and Referencefor a description of these

non-supported functions and alternative and improved JDBC methods.

How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?

Question
Has anyone come across the following error when attempting to manipulate LOBs

with the 8.1.5 JDBC Thin Driver:

Dumping lobs
java.sql.SQLException: ORA-03115: unsupported network datatype or representation
at oracle.jdbc.ttc7.TTIoer.processError(TTIoer.java:181)
at oracle.jdbc.ttc7.Odscrarr.receive(Compiled Code)
at oracle.jdbc.ttc7.TTC7Protocol.describe(Compiled Code)
at oracle.jdbc.ttc7.TTC7Protocol.parseExecuteDescribe(TTC7Protocol.java: 516)
at oracle.jdbc.driver.OracleStatement.doExecuteQuery(OracleStatement.java:1002)
at oracle.jdbc.driver.OracleStatement.doExecute(OracleStatement.java:1163)
at oracle.jdbc.driver.OracleStatement.doExecuteWithTimeout(OracleStateme
nt.java:1211)
at oracle.jdbc.driver.OracleStatement.executeQuery(OracleStatement.java: 201)
at LobExample.main(Compiled Code)

The code I'm using is the LobExample.java shipped with 8.0.5. This sample was

initially and OCI8 sample. (I am using the Thin Driver and instance from a higher

release.)

Answer
You are using a wrong sample. OracleBlob and OracleClob have been deprecated

and they no longer work.

Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB?

Question
I am running a Java stored procedure that writes a CLOB and am getting an

exception as follows:
Frequently Asked Questions about LOBs 6-9

JDBC, JPublisher and LOBs
ORA-22920: row containing the LOB value is not locked

ORA-06512: at "SYS.DBMS_LOB", line 708

ORA-06512: at line 1

Once I added a 'FOR UPDATE' clause to my SELECT statement, this exception did

not occur.

I feel that the JDBC Developer's Guide and Reference(8.1.5) should be updated to

reflect the need for the 'FOR UPDATE' clause on the SELECT.

Answer
This is not a JDBC issue in specific. This is how LOBs work! This got manifested in

the JSP because by default autoCommit is false. You would also see the same

exception when autoCommit is set to false on the client side. You didn't see the

exception when used with 'For Update' because locks are acquired explicitly.

What Does DBMS_LOB.ERASE Do?

Question
What is DBMS_LOB.ERASE doing?

Answer
It's just "clearing" a segment of the CLOB. It does *not* shorten the CLOB. So the

length of the CLOB is the same before and after the ERASE. You can use DBMS_

LOB.TRIM to make a CLOB shorter.

Can I Use putChars()?

Question
Can I use oracle.sql.CLOB.putChars() ?

Answer
Yes, you can, but you have to make sure that the position and length arguments are

correct. You can also use the recommended OutputStream interface which in turn

will call putChars for you.
6-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs
Manipulating CLOB CharSetId in JDBC

Question
OCI provides function to manipulate a CLOB CharSetId. What is the JDBC

equivalent?

Answer
In JDBC CLOBs are *always* in USC2, which is the Oracle character set

corresponding to the Java "char" type. So there is no equivalent for the OCI CLOB

CharSetId.

Why is Inserting into BLOBs Slower than into LONG Raws?

Question
Why is writing into BLOBs slower than inserting into LONG RAWs?

Answer
It is true that inserting data in BLOBs with JDBC Thin is slower as it still uses the

DBMS_LOB package. With JDBC OCI the inserts are faster as native LOB APIs are

used.

Why Do I Get an ORA-03127 Error with LobLength on a LONG Column?

Question
Why am I getting an ORA-03127 error when getting the LobLength on a LONG

column?

Answer
This is the correct behavior. LONG columns are not 'fetched' in-place (aka in-row).

They are fetched out of place and exists in the pipe until you read them explicitly. In

this case, we got the LobLocator (getBlob()) and then we are trying to get the length

of this LOB before we read the LONG column. Since the pipe is not clear we are

getting the preceding exception. The solution would be to complete reading the

LONG column before you do any operation on the BLOB.
Frequently Asked Questions about LOBs 6-11

JDBC, JPublisher and LOBs
How Do I Create a CLOB Object in a Java Program?

Question
Here is what I'm trying to do with CLOBs through JDBC:

1. Create a CLOB object in a Java program

2. Populate the CLOB with the characters in a String passed into my program

3. Prepare a call to a stored procedure that receives a CLOB as a parameter.

4. Set the parameter with the Java CLOB

5. Execute

I was looking at the method SQLUtil.makeOracleDatum(), but that doesn't

work. I get an invalid type error message. The only Oracle examples I've seen have

the CLOB object created by reading it in from Oracle through a SQL object. I need to

create the CLOB in the Java program.

Answer
This cannot be done as you describe here. The oracle.sql.CLOB class

encapsulates a CLOB locator, not the actual data for the CLOB, and the CLOB

locator must come from the database. There is no way currently to construct a

CLOB locator in the client. You need to insert an empty_clob() into the table,

retrieve the locator, and then write the data to the CLOB.

PLSQL procedures can be poor vehicles for this particular functionality.

If you make the PLSQL parameter of the CLOB type, it represents the CLOB locator

and you still have to use some other interface to write the data to the CLOB. And,

passing all the data to PLSQL as a VARCHAR2 or LONG parameter is also a

problem because PLSQL parameters are limited to 32K, which is rarely enough to

be practically useful in this context.

I would recommend just using the standard JDBC API’s for dealing with the CLOB.

You need to encapsulate the entire functionality required to insert a CLOB, in a

single stored procedure invoked from a client applicatiLoading LOBs and Data Into

LOBs.
6-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs
How do I Load a 1MB File into a CLOB Column?

Question
How do I insert a file of 1MB which is stored on disk, into a CLOB column of my

table. I thought DBMS_LOB.LOADFROMFILE should do the trick, but, the

document says it is valid for BFILE only. How do I do this?

Answer
You can use SQL*Loader. See Oracle9i Database Utilities or in this manual, Chapter 4,
"Managing LOBs", Using SQL*Loader to Load LOBs on on page 4-5.

You can use loadfromfile() to load data into a CLOB, but the data is transferred from

the BFILE as raw data—no character set conversions are performed. It is up to you

to do the character set conversions yourself before calling loadfromfile().

Use OCILobWrite() with a callback. The callback can read from the operating

system (OS) file and convert the data to the database character set (if it's different

than the OS file's character set) and then write the data to the CLOB.

How Do We Improve BLOB and CLOB Performance When Using
JDBC Driver To Load?

Question
We are facing a performance problem concerning BLOBs and CLOBs. Much time is

consumed when loading data into the BLOB or CLOB using JDBC Driver.

Answer
It's true that inserting data into LOBs using JDBC Thin driver is slower as it still

uses the DBMS_LOB package and this adds the overhead of a full JDBC

CallableStatement execution for each LOB operation.

With the JDBC OCI and JDBC server-side internal drivers, the inserts are faster

because native LOB APIs are used. There is no extra overhead from JDBC driver

implementation.

It's recommended that you use InputStream and OutputStream for accessing and
manipulating LOB data. By using streaming access of LOBs, JDBC driver will handle the
buffering of the LOB data properly to reduce the number of network round-trips and ensure
that each database operation uses a data size as a multiple of the LOB's natural chunk size.
Frequently Asked Questions about LOBs 6-13

JDBC, JPublisher and LOBs
Here is an example that uses OutputStream to write data to a BLOB:

/*

 * This sample writes the GIF file john.gif to a BLOB.

 */

import java.sql.*;
import java.io.*;
import java.util.*;

// Importing the Oracle Jdbc driver package makes the code more readable
import oracle.jdbc.driver.*;

//needed for new CLOB and BLOB classes
import oracle.sql.*;

public class LobExample
{
 public static void main (String args [])
 throws Exception
 {
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // It's faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table persons");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
 }
6-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs
 // Create a table containing a BLOB and a CLOB
 stmt.execute ("create table persons (name varchar2 (30), picture blob)");

 // Populate the table
 stmt.execute ("insert into persons values ('John', EMPTY_BLOB())");

 // Select the BLOB
 ResultSet rset = stmt.executeQuery ("select picture from persons where name
= 'John'");
 if (rset.next ())
 {
 // Get the BLOB locator from the table
 BLOB blob = ((OracleResultSet)rset).getBLOB (1);

 // Declare a file handler for the john.gif file
 File binaryFile = new File ("john.gif");

 // Create a FileInputStream object to read the contents of the GIF file
 FileInputStream istream = new FileInputStream (binaryFile);

 // Create an OutputStram object to write the BLOB as a stream
 OutputStream ostream = blob.getBinaryOutputStream ();

 // Create a tempory buffer
 byte[] buffer = new byte[1024];
 int length = 0;

 // Use the read() method to read the GIF file to the byte
 // array buffer, then use the write() method to write it to
 // the BLOB.
 while ((length = istream.read(buffer)) != -1)
 ostream.write(buffer, 0, length);

 // Close the inputstream and outputstream
 istream.close();
 ostream.close();

 // Check the BLOB size
 System.out.println ("Number of bytes written = "+blob.length());
 }

 // Close all resources
 rset.close();
 stmt.close();
 conn.close();
Frequently Asked Questions about LOBs 6-15

LOB Indexing
 }
}

Note that you'll get even better performance if you use DBMS_

LOB.LOADFROMFILE() instead of using DBMS_LOB.WRITE().

In order to be able to use DBMS_LOB.LOADFROMFILE(), the data to be written

into the LOB must be in a server-side file.

LOB Indexing

Is LOB Index Created in Same Tablespace as LOB Data?

Question
Is the LOB index created for the LOB in the same tablespace as the LOB data?

Answer
The LOB index is created on the LOB column and it indexes the LOB data. The LOB

index resides in the same tablespace as the locator.

Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column?

Question
The promotion column could be defined and indexed as a BFILE, but if for

example, a row is DELETEd, the Word document is removed with it when the

promotion column is defined as BLOB, but it is not removed when the column is

defined as a BFILE. Why?

Answer
We don't create an index for BFILE data. Also note that internal persistent LOBs are

automatically backed up with the database whereas external BFILEs are not and

modifications to the internal persistent LOB can be placed in the redo log for future

recovery.
6-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage and Space Issues
Which Views Can I Query to Find Out About a LOB Index?

Question
Which views can I query to find out about a LOB index?

Answer
■ Internal Persistent LOBs:

■ ALL_INDEXES View: Contains all the indexes the current user has the

ability to modify in any way. You will not see the LOB index in this view

because LOB indexes cannot be renamed, rebuilt, or modified.

■ DBA_INDEXES View: Contains all the indexes that exist. Query this view to

find information about the LOB index.

■ USER_INDEXES View: Contains all the indexes that the user owns. The

LOB index will be in this view if the user querying it is the same user that

created it.

■ Temporary LOBs:

For temporary LOBs, the LOB index information can be retrieved from the

view, V$SORT_USAGE.

For example:

SELECT USER#, USERNAME, SEGTYPE, EXTENTS, BLOCKS
 FROM v$sort_usage, v$session
 WHERE SERIAL#=SESSION_NUM;

LOB Storage and Space Issues

What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN ROW?

Question
What happens if I specify a LOB TABLESPACE, but also say ENABLE STORAGE

IN ROW?
Frequently Asked Questions about LOBs 6-17

LOB Storage and Space Issues
Answer
If the length of the LOB value is less than approximately 4K, then the data is stored

inline in the table. When it grows to beyond approximately 4K, then the LOB value

is moved to the specified tablespace.

What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?

Question
I am looking for information on the pros and cons of storing images in a BFILE

versus a BLOB.

Answer
Here's some basic information.

■ Security:

■ BFILEs are inherently insecure, as insecure as your operating system (OS).

■ Features:

■ BFILEs are not writable from typical database APIs whereas BLOBs are.

■ One of the most important features is that BLOBs can participate in

transactions and are recoverable. Not so for BFILEs.

■ Performance:

■ Roughly the same.

■ Upping the size of your buffer cache can make a BIG improvement in BLOB

performance.

■ BLOBs can be configured to exist in Oracle's cache which should make

repeated/multiple reads faster.

■ Piece wise/non-sequential access of a BLOB is known to be faster than a

that of a BFILE.

■ Manageability:

■ Only the BFILE locator is stored in an Oracle BACKUP. One needs to do a

separate backup to save the OS file that the BFILE locator points to. The

BLOB data is backed up along with the rest of the database data.

■ Storage:
6-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage and Space Issues
■ The amount of table space required to store file data in a BLOB will be

larger than that of the file itself due to LOB index which is the reason for

better BLOB performance for piece wise random access of the BLOB value.

When Should I Specify DISABLE STORAGE IN ROW?

Question
Should DISABLE STORAGE IN ROW always be specified if many UPDATEs, or

SELECTs including full table scans are anticipated?

 Answer
Use DISABLE STORAGE IN ROW if the other table data will be updated or selected

frequently, not if the LOB data is updated or selected frequently.

Do <4K BLOBs Go Into the Same Segment as Table Data,
>4K BLOBs Go Into a Specified Segment?

Question
If I specify a segment and tablespace for the BLOB, and specify ENABLE STORAGE
IN ROW then look in USER_LOBS, I see that the BLOB is defined as IN_ROW and it

shows that it has a segment specified. What does this mean? That all BLOBs 4K and

under will go into the same segment as the table data, but the ones larger than that

go into the segment I specified?

Answer
Yes.

Is 4K LOB Stored Inline?

Question
Oracle9i SQL Reference, states the following:

 "ENABLE STORAGE IN ROW--specifies that the LOB value is stored in the row

(inline) if its length is less than approximately 4K bytes minus system control

information. This is the default. "

If an inline LOB is > 4K, which of the following possibilities is true?
Frequently Asked Questions about LOBs 6-19

LOB Storage and Space Issues
1. The first 4K gets stored in the structured data, and the remainder gets stored

elsewhere

2. The whole LOB is stored elsewhere

It sounds to me like #2, but I need to check.

Answer
You are correct -- it's number 2. Some meta information is stored inline in the row so

that accessing the LOB value is faster. However, the entire LOB value is stored

elsewhere once it grows beyond approximately 4K bytes.

1. If you have a NULL value for the BLOB locator, for example, if you have done

the following:

INSERT INTO blob_table (key, blob_column) VALUES (1, null);

In this case I expect that you do not use any space, like any other NULL value,

as we do not have any pointer to a BLOB value at all.

2. If you have a NULL in the BLOB, for example, if you have done the following:

INSERT INTO blob_table (key, blob_column) VALUES (1, empty_blob());

In this case you would be right, that we need at least a chunk size of space.

We distinguish between when we use BLOBs between NULL values and empty

strings.

How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or
EMPTY_BLOB() Instead of NULL? Are Extra Data Blocks Used For This?

Question
If a LOB column is EMPTY_CLOB() or EMPTY_BLOB() instead of NULL, how is the

LOB locator stored in the row and are extra data blocks used for this?

Answer
See also Chapter 7, "Modeling and Design", in this manual, under "LOB Storage".

You can run a simple test that creates a table with a LOB column with attribute

DISABLE STORAGE IN ROW. Insert thousands of rows with NULL LOBs.

Note that Oracle does not consume thousands of chunks to store NULLs!
6-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage and Space Issues
Storing CLOBs Inline: DISABLING STORAGE and Space Used

Question
I have questions about storing CLOBs inline outside the row. We know when you

create a table with LOB column, you can specify DISABLE STORAGE IN ROW or

ENABLE STORAGE IN ROW. My questions are:

1. When you specify ENABLE STORAGE IN ROW, does is mean it stores the LOB

information in the same block as that row?

2. I found the size of the table itself (not including the CLOB segment) with

ENABLE STORAGE IN ROW is much bigger than the size of the table with

DISABLE STORAGE IN ROW, and I know I have separate segment for the

CLOB column in both tables. Why?

Answer
1. If the LOB value is less than approximately 4k than the value is stored inline in

the table. Whether or not the entire row is stored in one block depends on the

size of the row. Big rows will span multiple blocks. If the LOB is more than 4k,

then the LOB value is stored in a different segment.

2. This is because LOBs less than 4k will be stored inline in the table's segment.

Should I Include a LOB Storage Clause When Creating Tables With Varray Columns?

Question
What are the effects of providing or not providing a LOB storage clause when

creating a table containing a Varray column? The documentation suggest that

Varrays will be stored inline or in a LOB depending on their size, so I assume this

would be the case even if no LOB storage clause were provided? Does providing

one imply that a LOB will always be used?

I assume LOB are named for a reason. It is not clear to me what use the names

might be. I understand that it is convenient to name the nested table storage table

because you may want to index it, alter it, and so on. But what can I do with the

LOB? The only example I found was one that modifies the LOB to cache it?

Answer
The documentation says: "Varrays are stored in columns either as raw values or

BLOBs. Oracle decides how to store the varray when the varray is defined, based on
Frequently Asked Questions about LOBs 6-21

LOB Storage and Space Issues
the maximum possible size of the varray computed using the LIMIT of the declared

varray. If the size exceeds approximately 4000 bytes, then the varray is stored in

BLOBs. Otherwise, the varray is stored in the column itself as a raw value. In

addition, Oracle supports inline LOBs; therefore, elements that fit in the first 4000

bytes of a large varray (with some bytes reserved for the LOB locator) are stored in

the column of the row itself."

So, your data will be inline as raw data if you have less than about 4000 bytes and

you do NOT specify a LOB storage clause for your varray.

The documentation (Oracle9i SQL Reference) also says:

"varray_storage_clause: lets you specify separate storage characteristics for the LOB

in which a varray will be stored. In addition, if you specify this clause, Oracle will

always store the varray in a LOB, even if it is small enough to be stored inline."

So, if you do specify this varray_storage_clause, then you will always be storing

your varrays in LOBs. However, according to the first paragraph, varrays also

support inline LOBs, so by default your first 4000 bytes or so will still be stored

inline in the table's row with the other data as an inline LOB. It will also have some

extra LOB overhead.

To clarify, if you specify varray store as LOB, and the column you've defined has a

max size less than 4000 bytes, then it will be stored as an inline LOB. Here's the

whole synopsis:

Calculate MAX possible size of your column, remember that there is some overhead

involved so if you have 10 elements of size 1000 the MAX size is still a little bit

greater than 10*1000.

■ If the max is less than (4000 minus some small number of bytes) and varray

store as LOB is not specified, then it is stored as a raw inline.

■ If the max is less than (4000 minus a small # of bytes) and varray store as LOB is

specified and disable storage in row is not specified, then it is stored as an inline

LOB

■ If the max is less than (4000 - small # of bytes) and varray store as LOB is

specified and disable storage in row is specified, then it is stored out of line in a

LOB.

■ If the max is greater than 4000 or so bytes it will always be stored in a LOB even

if you don't have a varray store as LOB clause. It can be either an inline one or

an out of line LOB depending on it's size and whether or not you've specified

disable storage in row.
6-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LONG to LOB Migration
■ If you do not specify a LOB storage clause or if you have a storage clause that

doesn't specify disable storage in row then the system will automatically try to

put small LOBs inline and only put them out of line when they are greater than

approximately 4000 bytes. Otherwise, if the user specifies disable storage in row

they will always be out of line.

LONG to LOB Migration

How Can We Migrate LONGs to LOBs, If Our Application Cannot Go Down?

Question
Our current table consists of records with 3 fields - a sequence, a redundancy check

number, and a long raw field. The size of the long raw field is around 100KB but it

can be as big as 300KB. The entire file is 160GB and the server's maximum size is

200GB. We converted this database from 7.3.4 to Oracle9i and now our application

programs do not work well with the LONG raw fields. We want to convert them to

BLOBs. We cannot have the application down while we migrate to BLOBs. What

suggestions do you have?

Answer
Oracle9i allows you to use ALTER TABLE in order to copy the data from a LONG to

a LOB. See Chapter 8, "Migrating From LONGs to LOBs". But the ALTER TABLE

command would make the table unusable for the duration of the ALTER.

Another way to do this is to use the TO_LOB operator introduced in Oracle 8i to

copy data from the LONG to the LOB. You can take a look at Oracle9i Database
Migration, Chapter 8 -- Copy LONGs to LOBs. In this case, the table will be unusable

for a much shorter duration of time.

See Also: Chapter 8, "Migrating From LONGs to LOBs"
Frequently Asked Questions about LOBs 6-23

Converting Between Different LOB Types
Converting Between Different LOB Types

Is Implicit LOB Conversion Between Different LOB Types Allowed?

Question
There are no implicit LOB conversions between different LOB types? For example,

in PL/SQL, I cannot use:

 INSERT INTO t VALUES ('abc');
 WHERE t CONTAINS a CLOB column.....

Do you know if this restriction still exists in Oracle8i? I know that this restriction

existed in PL/SQL for Oracle8 but users could issue the INSERT statement in SQL as

long as data to insert was <4K. My understanding is that this <4K restriction has

now been removed in SQL.

Answer
The PL/SQL restriction is removed. In Oracle8i and higher, you can insert more

than 4K worth of data.

Performance

What Can We Do To Improve the Poor LOB Loading Performance When Using
Veritas File System on Disk Arrays, UNIX, and Oracle?

Question 1
We were experiencing a load time of 70+ seconds when attempting to populate a

BLOB column in the database with 250MB of video content. Compared to the 15

seconds transfer time using the UNIX copy, this seemed unacceptable. What can we
do to improve this situation?

The BLOB was being stored in partitioned tablespace and NOLOGGING,

NOCACHE options were specified to maximize performance.

The INITIAL and NEXT extents for the partition tablespace and partition storage

were defined as 300M, with MINEXTENTS set to 1 in order to incur minimal

overhead when loading the data.

CHUNK size was set to 32768 bytes - maximum for Oracle.
6-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Performance
INIT.ORA parameters for db_block_buffers were increased as well as decreased.

All the preceding did very little to affect the load time - this stayed consistently

around the 70-75 seconds range suggesting that there was minimal effect with these

settings.

Answer 1
First examine the I/O storage devices and paths.

Question 2

I/O Devices/Paths 4 SUN AS5200 disk arrays were being used for data storage—the

devices where the BLOB was to be written to. Disks on this array were RAID (0+1)

with 4 stripes of (9+9). Veritas VxFS 3.2.1 was the file system on all disks.

In order to measure the effect of using a different device, the tablespace for the

BLOB was defined on /tmp. /tmp is the swap space.

Needless to say, loading the BLOB now only took 14 seconds, implying a data

transfer rate of 1.07GIG per minute - a performance rating as close, if not higher

than the UNIX copy!

This prompted a closer examination of what was happening when the BLOB was

being loaded to a tablespace on the disk arrays. SAR output indicated significant

waits for I/O, gobbling up of memory, high CPU cycles and yes, the ever-consistent

load time of 70 seconds. Any suggestions on how to resolve this?

Answer 2

Install the Veritas QuickIO Option! Obviously, there seems to be an issue with Veritas,

UNIX, and Oracle operating together. I have come up with supporting

documentation on this. For acceptable performance with Veritas file-system on your

disk arrays with Oracle, we recommend that you install the Veritas QuickIO
option.

A Final Note: Typically when customers complain that writing LOBs is slow, the

problem is usually not how Oracle writes LOBs. In the preceding case, you were

using Veritas File System, which uses UNIX file caching, so performance was very

poor.

After disabling UNIX caching, performance should improve over that with the

native file copy.
Frequently Asked Questions about LOBs 6-25

Performance
Is There a Difference in Performance When Using DBMS_LOB.SUBSTR
Versus DBMS_LOB.READ?

Question
Is there a difference in performance when using DBMS_LOB.SUBSTR compared

with DBMS_LOB.READ?

Answer
DBMS_LOB.SUBSTR is there because it's a function and you can use it in a SQL

statement. There is no performance difference.

Are There Any White Papers or Guidelines on Tuning LOB Performance?

Question
I was wondering if anyone had any white papers or guidelines on tuning LOB

performance.

Answer
Chapter 9, "LOBS: Best Practices" in this manual, discusses LOB performance issues.

Also see "Selecting a Table Architecture" in Chapter 7, "Modeling and Design".

When Should I Use Chunks Over Reading the Whole Thing?

Question
When should I use chunks over reading the whole thing?

Answer
If you intend to read more than one chunk of the LOB, then use OCILobRead with

the streaming mechanism using either polling or a callback. If you only need to read

a small part of the LOB that will fit in one chunk, then only read that chunk.

Reading more will incur extra network overhead.
6-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Performance
Is Inlining the LOB a Good Idea and If So When?

Question
Is inlining the LOB a good idea. If so, then when?

Answer
Inlining the LOB is the default and is recommended most of the time. Oracle9i and

higher stores the LOB inline if the value is less than approximately 4K thus

providing better performance than storing the value out of line. Once the LOB

grows larger than 4K, the LOB value is moved into a different storage segment but

meta information that allows quick lookup of the LOB value is still stored inline. So,

inlining provides the best performance most of the time.

However, you probably don't want to inline the LOB if you'll be doing a lot of base

table processing such as full table scans, multi-row accesses (range scans) or many

updates/selects of columns other than the LOB columns.

How Can I Store LOBs >4Gb in the Database?

Question
How can I store LOBs that are >4Gb in the database?

Answer
Your alternatives for storing >4Gb LOBs are:

■ Compressing the LOB so that it fits in 4Gb

■ Breaking up the LOB into 4Gb chunks as separate LOB columns or as separate

rows.

Why is Performance Affected When Temporary LOBs are Created
in a Called Routine?

Question
We have a nasty performance problem that I have isolated to the creation of

temporary LOBs in a called routine. The following procedures demonstrate the

problem.
Frequently Asked Questions about LOBs 6-27

Performance
■ When RUNLOB() is called with createlob=FALSE (its temporary LOB is created,

but the inner routine's is not), it executes in less than a second.

■ When run with createlob=TRUE (both outer and inner routine LOBs are

created), it takes about 30 seconds and is linear with respect to the size of the

loop. Here's a log:

SQL> set serveroutput on size 20000;
SQL> execute runlob(FALSE);
Start time (seconds): 52089
End time (seconds): 52089
PL/SQL procedure successfully completed.

SQL> execute runlob(TRUE);
Start time (seconds): 52102
End time (seconds): 52131
PL/SQL procedure successfully completed.

This is really killing performance of DDL creation in our API. Any ideas what's

happening here?

CREATE OR REPLACE PROCEDURE lob(createlob BOOLEAN)
 IS
 doc CLOB;
 BEGIN
 IF createlob THEN
 DBMS_LOB.CREATETEMPORARY(doc, TRUE);
 DBMS_LOB.FREETEMPORARY(doc);
 END IF;
 END;
 /
 CREATE OR REPLACE PROCEDURE RUNLOB(createlob BOOLEAN DEFAULT FALSE) AS
 doc CLOB;
 BEGIN
 dbms_output.put_line('Start time (seconds):
 '||to_char(sysdate,'SSSSS'));
 FOR i IN 1..400 LOOP
 DBMS_LOB.CREATETEMPORARY(doc, TRUE);
 lob(createlob);
 DBMS_LOB.FREETEMPORARY(doc);
 END LOOP;
 dbms_output.put_line('End time (seconds):
 '||to_char(sysdate,'SSSSS'));
 END;
 /
6-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Performance
Answer
In your test case, the difference between creating temporary LOBs in RUNLOB()

and in LOB() is that:

■ In RUNLOB(), there's a duration for the function frame and all the new

temporary LOBs are linked from a single duration state object (DSO) created

with the first temporary LOB in the function.

■ In LOB(), however, every time the temporary LOB is created Oracle allocates a

new DSO since the function frame duration is new.

kdlt_add_dso_link() is an expensive operation compared to the rest of the

temporary LOB creation cycles in kdlt? The overhead is from (de)allocating a DSO

for LOB(). kdlt_add_dso_link() needs to allocate a new DSO, for its associated

memory allocation and control structures initialization. The extra code path

accounts for the cost.

To avoid new DSO creation, can you use the workaround of a package variable tmplob
locator in LOB() instead of a local one? Please try the following modified script. The

performance hit is no longer there with this script.

create or replace package pk is
 tmplob clob;
 end pk;
/

 CREATE OR REPLACE PROCEDURE lob(createlob BOOLEAN)
 IS
 doc CLOB;
 BEGIN
 IF createlob THEN
 DBMS_LOB.CREATETEMPORARY(pk.tmplob, TRUE);
 DBMS_LOB.FREETEMPORARY(pk.tmplob);
 null;
 END IF;
 END;
 /

 CREATE OR REPLACE PROCEDURE RUNLOB(createlob BOOLEAN DEFAULT FALSE) AS
 doc CLOB;
 BEGIN
 dbms_output.put_line('Start time (seconds):
 '||to_char(sysdate,'SSSSS'));
 FOR i IN 1..400 LOOP
 DBMS_LOB.CREATETEMPORARY(doc, TRUE);
Frequently Asked Questions about LOBs 6-29

PL/SQL
 lob(createlob);
 DBMS_LOB.FREETEMPORARY(doc);
 END LOOP;
 dbms_output.put_line('End time (seconds):
 '||to_char(sysdate,'SSSSS'));
 END;
 /

Response
Thank you. We should be able to use package-scoped temporary LOBs almost

everywhere we currently have function-local LOBs.

PL/SQL

UPLOAD_AS_BLOB

Question
What is "UPLOAD_AS_BLOB"?

Answer
UPLOAD_AS_BLOB is an attribute of Database Access Descriptor (DAD) which is

used for uploading documents into BLOB type table column using PL/SQL web

gateway interface.
6-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Modeling and D
7

Modeling and Design

This chapter discusses the following topics:

■ Selecting a Datatype

■ Selecting a Table Architecture

■ LOB Storage

■ How to Create Gigabyte LOBs

■ LOB Locators and Transaction Boundaries

■ Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

■ OPEN, CLOSE, and ISOPEN Interfaces for Internal LOBs

■ LOBs in Index Organized Tables (IOT)

■ Manipulating LOBs in Partitioned Tables

■ Indexing a LOB Column

■ SQL Semantics Support for LOBs

■ How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs

■ SQL RAW Type and BLOBs

■ SQL DML Changes For LOBs

■ SQL Functions/Operators for VARCHAR2s/RAWs and CLOBs/BLOBs

■ PL/SQL Statements and Variables: New Semantics Changes

■ PL/SQL CLOB Comparison Rules

■ Interacting with SQL and PL/SQL in OCI and Java Interfaces

■ Performance Attributes When Using SQL Semantics with LOBs
esign 7-1

Selecting a Datatype
■ User-Defined Aggregates and LOBs

Selecting a Datatype
When selecting a datatype, consider the following topics:

■ LOBs Compared to LONG and LONG RAW Types

■ Character Set Conversions: Varying-Width and Multi-byte Fixed-Width

Character Data

LOBs Compared to LONG and LONG RAW Types
Table 7–1 lists the similarities and differences between LOBs, LONGs, and LONG

RAW types.

Table 7–1 LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

You can store multiple LOBs in a single row You can store only one LONG or LONG RAW
in each row.

LOBs can be attributes of a user-defined
datatype

This is not possible with either a LONG or
LONG RAW

Only the LOB locator is stored in the table
column; BLOBand CLOBdata can be stored
in separate tablespaces and BFILE data is
stored as an external file.

For inline LOBs, Oracle will store LOBs
that are less than approximately 4,000 bytes
of data in the table column.

In the case of a LONG or LONG RAW the
entire value is stored in the table column.

When you access a LOB column, you can
choose to fetch the locator or the data.

When you access a LONGor LONG RAW,the
entire value is returned.

A LOB can be up to 4 gigabytes in size. The
BFILE maximum is operating system
dependent, but cannot exceed 4 gigabytes.

The valid accessible range is 1 to (232-1).

By contrast, a LONG or LONG RAW is limited
to 2 gigabytes.

There is greater flexibility in manipulating
data in a random, piece-wise manner with
LOBs. LOBs can be accessed at random
offsets.

Less flexibility in manipulating data in a
random, piece-wise manner with LONG or
LONG RAW data. LONGs must be
accessed from the beginning to the desired
location.
7-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Selecting a Datatype
Replication
Oracle does not support the replication of columns that use the LONG and LONG

RAW data types. Oracle simply omits columns containing these data types from

replicated tables. In Oracle9i, you must convert LONG data types to LOBs and then

replicate.

Converting LONG Columns to LOBs
Existing LONG columns can be converted to LOBs using either of the following

methods:

■ LONG-to-LOB API described in Chapter 8, "Migrating From LONGs to LOBs"

■ TO_LOB() function (see "LONG to LOB Migration Using the LONG-to-LOB

API" on page 10-62 in Chapter 10, "Internal Persistent LOBs").

Character Set Conversions: Varying-Width and Multi-byte Fixed-Width
Character Data

In OCI (Oracle Call Interface), or any of the programmatic environments that access

OCI functionality, character set conversions are implicitly performed when

translating from one character set to another.

However, no implicit translation is ever performed from binary data to a character

set. When you use the loadfromfile operation to populate a CLOBor NCLOB, you

are populating the LOBwith binary data from the BFILE . In that case, you will need

to perform character set conversions on the BFILE data before executing

loadfromfile .

You can replicate LOBs in both local and
distributed environments.

Replication in both local and distributed
environments is not possible with a LONG
or LONG RAW (see Oracle9i Replication)

Note: Oracle9i does not support conversion of LOBs back to

LONGs.

See: Oracle9i Database Globalization Support Guide for more detail
on character set conversions.

Table 7–1 LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type
Modeling and Design 7-3

Selecting a Table Architecture
Selecting a Table Architecture
When designing your table, consider the following design criteria:

■ LOB storage

■ Where are NULL Values in a LOB Column Stored?

■ Defining Tablespace and Storage Characteristics for Internal LOBs

■ LOB Storage Characteristics for LOB Column or Attribute

■ TABLESPACE and LOB Index

* PCTVERSION

* CACHE / NOCACHE / CACHE READS

* LOGGING / NOLOGGING

* CHUNK

* ENABLE | DISABLE STORAGE IN ROW

■ How to Create Gigabyte LOBs

■ LOBs in Index Organized Tables (IOT)

■ Manipulating LOBs in Partitioned Tables

■ Indexing a LOB Column

LOB Storage

Where are NULL Values in a LOB Column Stored?

NULL LOB Column Storage: NULL Value is Stored
If a LOB column is NULL, no data blocks are used to store the information. The

NULL value is stored in the row just like any other NULL value. This is true even

when you specify DISABLE STORAGE IN ROW for the LOB.

Note: The ALTER DATABASE command will not work when

there are CLOB or NCLOB columns in the tables.
7-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
EMPTY_CLOB() or EMPTY_BLOB() Column Storage: LOB Locator is Stored
If a LOB column is initialized with EMPTY_CLOB() or EMPTY_BLOB(), instead of

NULL, a LOB locator is stored in the row. No additional storage is used.

■ DISABLE STORAGE IN ROW: If you have a LOB with one byte of data, there

will be a LOB locator in the row. This is true whether or not the LOB was

created as ENABLE or DISABLE STORAGE IN ROW. In addition, an entire

chunksize of data blocks is used to store the one byte of data if the LOB column

was created as DISABLE STORAGE IN ROW.

■ ENABLE STORAGE IN ROW: If the LOB column was created as ENABLE
STORAGE IN ROW, Oracle8i and higher only consumes one extra byte of

storage in the row to store the one byte of data. If you have a LOB column

created with ENABLE STORAGE IN ROW and the amount of data to store is

larger than will fit in the row (approximately 4,000 bytes) Oracle uses a multiple

of chunksizes to store it.

Defining Tablespace and Storage Characteristics for Internal LOBs
When defining LOBs in a table, you can explicitly indicate the tablespace and

storage characteristics for each internal LOB.

Defining Tablespace and Storage Example1
CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
 lob (c) STORE AS SEGNAME (TABLESPACE lobtbs1 CHUNK 4096
 PCTVERSION 5
 NOCACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);

There are no extra tablespace or storage characteristics for external LOBs since they

are not stored in the database.

If you later wish to modify the LOB storage parameters, use the MODIFY LOB

clause of the ALTER TABLE statement.
Modeling and Design 7-5

LOB Storage
Assigning a LOB Data Segment Name
As shown in the "Defining Tablespace and Storage Example1" on page 7-5,

specifying a name for the LOB data segment makes for a much more intuitive

working environment. When querying the LOB data dictionary views USER_LOBS,
ALL_LOBS, DBA_LOBS (see Oracle9i Database Reference), you see the LOB data

segment that you chose instead of system-generated names.

LOB Storage Characteristics for LOB Column or Attribute
LOBstorage characteristics that can be specified for a LOBcolumn or a LOBattribute

include the following:

■ TABLESPACE

■ PCTVERSION

■ CACHE/NOCACHE/CACHE READS

■ LOGGING/NOLOGGING

■ CHUNK

■ ENABLE/DISABLE STORAGE IN ROW

■ STORAGE. See the "STORAGE clause" in Oracle9i SQL Reference for more

information.

For most users, defaults for these storage characteristics will be sufficient. If you

want to fine-tune LOB storage, you should consider the following guidelines.

Note: Only some storage parameters may be modified! For

example, you can use the ALTER TABLE ... MODIFY LOB

statement to change PCTVERSION, CACHE/NO CACHE

LOGGING/NO LOGGING, and the STORAGE clause.

You can also change the TABLESPACE using the ALTER TABLE

...MOVE statement.

However, once the table has been created, you cannot change the

CHUNK size, or the ENABLE/DISABLE STORAGE IN ROW

settings.
7-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
TABLESPACE and LOB Index
Best performance for LOBs can be achieved by specifying storage for LOBs in a

tablespace different from the one used for the table that contains the LOB. If many

different LOBs will be accessed frequently, it may also be useful to specify a separate

tablespace for each LOB column or attribute in order to reduce device contention.

The LOB index is an internal structure that is strongly associated with LOB storage.

This implies that a user may not drop the LOB index and rebuild it.

The system determines which tablespace to use for LOB data and LOB index

depending on you specification in the LOB storage clause:

■ If you do not specify a tablespace for the LOB data, the table's tablespace is used

for the LOB data and index.

■ If you specify a tablespace for the LOB data, both the LOB data and index use

the tablespace that was specified.

Tablespace for LOB Index in Non-Partitioned Table
If in creating tables in Oracle8i Release 8.1 you specify a tablespace for the LOB
index for a non-partitioned table, your specification of the tablespace will be

ignored and the LOB index will be co-located with the LOB data. Partitioned LOBs

do not include the LOB index syntax.

Specifying a separate tablespace for the LOB storage segments will allow for a

decrease in contention on the table's tablespace.

PCTVERSION
When a LOB is modified, a new version of the LOB page is produced in order to

support consistent read of prior versions of the LOB value.

PCTVERSION is the percentage of all used LOB data space that can be occupied by

old versions of LOB data pages. As soon as old versions of LOB data pages start to

occupy more than the PCTVERSION amount of used LOB space, Oracle tries to

reclaim the old versions and reuse them. In other words, PCTVERSION is the

percent of used LOB data blocks that is available for versioning old LOB data.

 Default: 10 (%) Minimum: 0 (%) Maximum: 100 (%)

Note: The LOB index cannot be altered.
Modeling and Design 7-7

LOB Storage
To decide what value PCTVERSION should be set to, consider the following:

■ How often LOBs are updated?

■ How often the updated LOBs are read?

Table 7–2, "Recommended PCTVERSION Settings" provides some guidelines for

determining a suitable PCTVERSION value.

Example 1:
 Several LOB updates concurrent with heavy reads of LOBs.

 SET PCTVERSION = 20%

Setting PCTVERSION to twice the default allows more free pages to be used for old

versions of data pages. Since large queries may require consistent reads of LOBs, it

may be useful to retain old versions of LOB pages. In this case LOB storage may

grow because Oracle will not reuse free pages aggressively.

Example 2:
LOBs are created and written just once and are primarily read-only afterward.

Updates are infrequent.

 SET PCTVERSION = 5% or lower

The more infrequent and smaller the LOB updates are, the less space needs to be

reserved for old copies of LOB data. If existing LOBs are known to be read-only, you

could safely set PCTVERSION to 0% since there would never be any pages needed

for old versions of data.

CACHE / NOCACHE / CACHE READS
When creating tables that contain LOBs, use the cache options according to the

guidelines in Table 7–3, "When to Use CACHE, NOCACHE, and CACHE READS":

Table 7–2 Recommended PCTVERSION Settings

LOB Update Pattern LOB Read Pattern PCTVERSION

Updates XX% of LOB data Reads updated LOBs XX%

Updates XX% of LOB data Reads LOBs but not the updated LOBs 0%

Updates XX% of LOB data Reads both updated and non-updated
LOBs

XX%

Never updates LOB Reads LOBs 0%
7-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
■ CACHE: Oracle places LOB pages in the buffer cache for faster access.

■ NOCACHE: As a parameter in the LOB_storage_clause, NOCACHE specifies

that LOB values are either not brought into the buffer cache or are brought into

the buffer cache and placed at the least recently used end of the LRU list.

■ CACHE READS: LOB values are brought into the buffer cache only during read

and not during write operations.

Downgrading to 8.1.5 or 8.0.x
If you have CACHE READS set for LOBs in 8.1.6 and you downgrade to 8.1.5 or

8.0.x, your CACHE READS LOBs generate a warning and become CACHE LOGGING
LOBs.

You can explicitly alter the LOBs' storage characteristics later if you do not want

your LOBs to be CACHE LOGGING. For example, if you want the LOBs to be

NOCACHE, use ALTER TABLE to clearly modify them to NOCACHE.

LOGGING / NOLOGGING
[NO] LOGGING has a similar application with regard to using LOBs as it does for

other table operations. In the normal case, if the [NO]LOGGINGclause is omitted, this

means that neither NO LOGGING nor LOGGING is specified and the logging attribute

of the table or table partition defaults to the logging attribute of the tablespace in

which it resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

■ CACHE is specified and [NO]LOGGING clause is omitted, LOGGING is
automatically implemented (because you cannot have CACHE NOLOGGING).

■ CACHEis not specified and [NO]LOGGINGclause is omitted, the process defaults

in the same way as it does for tables and partitioned tables. That is, the

Table 7–3 When to Use CACHE, NOCACHE, and CACHE READS

Cache Mode Read ... Written To ...

CACHE Frequently Frequently

NOCACHE(default) Once or occasionally Never

CACHE READS Frequently Once or occasionally
Modeling and Design 7-9

LOB Storage
[NO]LOGGING value is obtained from the tablespace in which the LOB value

resides.

The following issues should also be kept in mind.

LOBs Will Always Generate Undo for LOB Index Pages
Regardless of whether LOGGING or NOLOGGING is set LOBs will never generate

rollback information (undo) for LOB data pages because old LOB data is stored in

versions. Rollback information that is created for LOBs tends to be small because it

is only for the LOB index page changes.

When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages
NOLOGGING is intended to be used when a customer does not care about media

recovery. Thus, if the disk/tape/storage media fails, you will not be able to recover

your changes from the log since the changes were never logged.

NOLOGGING is Useful for Bulk Loads or Inserts. For instance, when loading data into

the LOB, if you do not care about redo and can just start the load over if it fails, set

the LOB's data segment storage characteristics to NOCACHE NOLOGGING. This

provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify

the LOBstorage characteristics for the LOBdata segment for normal LOBoperations,

for example, to CACHE or NOCACHE LOGGING.

CHUNK
Set CHUNK to the total bytes of LOB data in multiples of database block size, that is,

the number of blocks that will be read or written using OCILobRead() ,

OCILobWrite() , DBMS_LOB.READ() , or DBMS_LOB.WRITE() during one access of

the LOB value.

If only one block of LOB data is accessed at a time, set CHUNK to the size of one

block. For example, if the database block size is 2K, then set CHUNK to 2K.

Note: CACHE implies that you also get LOGGING.

Note: The default value for CHUNK is one Oracle block and does

not vary across platforms.
7-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
Set INITIAL and NEXT to Larger than CHUNK
If you explicitly specify storage characteristics for the LOB, make sure that INITIAL
and NEXT for the LOB data segment storage are set to a size that is larger than the

CHUNK size. For example, if the database block size is 2K and you specify a CHUNK
of 8K, make sure that INITIAL and NEXT are bigger than 8K and preferably

considerably bigger (for example, at least 16K).

Put another way: If you specify a value for INITIAL, NEXT or the LOB CHUNK
size, make sure they are set in the following manner:

■ CHUNK <= NEXT

■ CHUNK <= INITIAL

ENABLE | DISABLE STORAGE IN ROW
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether the

LOB should be stored inline (in the row) or out of line.

The default is ENABLE STORAGE IN ROW.

Guidelines for ENABLE or DISABLE STORAGE IN ROW
The maximum amount of LOB data stored in the row is the maximum VARCHAR2
size (4000). This includes the control information as well as the LOB value. If you

indicate that the LOB should be stored in the row, once the LOB value and control

information is larger than 4000, the LOB value is automatically moved out of the

row.

This suggests the following guidelines:

The default, ENABLE STORAGE IN ROW, is usually the best choice for the

following reasons:

■ Small LOBs: If the LOB is small (< 4000 bytes), then the whole LOB can be read

while reading the row without extra disk I/O.

■ Large LOBs: If the LOB is big (> 4000 bytes), then the control information is still

stored in the row if ENABLE STORAGE IN ROW is set, even after moving the

Note: You may not alter this specification once you have made it:

if you ENABLE STORAGE IN ROW, you cannot alter it to DISABLE
STORAGE IN ROW and vice versa.
Modeling and Design 7-11

How to Create Gigabyte LOBs
LOB data out of the row. This control information could enable us to read the

out-of-line LOB data faster.

However, in some cases DISABLE STORAGE IN ROW is a better choice. This is

because storing the LOB in the row increases the size of the row. This impacts

performance if you are doing a lot of base table processing, such as full table scans,

multi-row accesses (range scans), or many UPDATE/SELECT to columns other than

the LOB columns.

How to Create Gigabyte LOBs
LOBs in Oracle8i and higher can be up to 4 gigabytes. To create gigabyte LOBs, use

the following guidelines to make use of all available space in the tablespace for LOB

storage:

■ Single Datafile Size Restrictions: There are restrictions on the size of a single

datafile for each operating system (OS). For example, Solaris 2.5 only allows OS

files of up to 2 gigabytes. Hence, add more datafiles to the tablespace when the

LOB grows larger than the maximum allowed file size of the OS on which your

Oracle database runs.

■ Set PCT INCREASE Parameter to Zero: PCTINCREASE parameter in the LOB

storage clause specifies the percent growth of the new extent size. When a LOB

is being filled up piece by piece in a tablespace, numerous new extents get

created in the process. If the extent sizes keep increasing by the default value of

50 percent every time, extents will become unmanageably big and eventually

will waste unnecessary space in the tablespace. Therefore, the PCTINCREASE

parameter should be set to zero or a small value.

■ Set MAXEXTENTS to a Suitable Value or UNLIMITED: The MAXEXTENTS

parameter limits the number of extents allowed for the LOB column. A large

number of extents are created incrementally as the LOB size grows. Therefore,

the parameter should be set to a value that is large enough to hold all the LOBs

for the column. Alternatively, you could set it to UNLIMITED.

■ Use a Large Extent Size: For every new extent created, Oracle generates undo

information for the header and other meta data for the extent. If the number of

extents is large, the rollback segment can be saturated. To get around this,

choose a large extent size, say 100 megabytes, to reduce the frequency of extent

creation, or commit the transaction more often to reuse the space in the rollback

segment.
7-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

How to Create Gigabyte LOBs
Example 1: Creating a Tablespace and Table to Store Gigabyte LOBs
A working example of creating a tablespace and a table that can store gigabyte

LOBs follows. The case applies to the multimedia application example in

Chapter 10, "Internal Persistent LOBs", if the video Frame in the multimedia table is

expected to be huge in size, for example, several gigabytes.

CREATE TABLESPACE lobtbs1 datafile '/your/own/data/directory/lobtbs_1.dat' size
2000M reuse online nologging default storage (maxextents unlimited);
ALTER TABLESPACE lobtbs1 add datafile '/your/own/data/directory/lobtbs_2.dat'
size 2000M reuse;

CREATE TABLE Multimedia_tab (
 Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ,
 Comments LONG
)
 NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab
 LOB(Frame) store as (tablespace lobtbs1 chunk 32768 pctversion 0 NOCACHE
NOLOGGING
 storage(initial 100M next 100M maxextents unlimited pctincrease 0));

Example 2: Creating a Tablespace and Table to Store Gigabyte LOBs
The difference between Example 1 and this example is that one specifies the storage

clause during CREATE TABLE and one does it in CREATE TABLESPACE.

■ For temporary LOBs, the STORAGE clause has to be specified when creating

the temp tablespace

■ For persistent LOBs, the STORAGE clause can be specified either when creating

tablespace or when creating table
Modeling and Design 7-13

LOB Locators and Transaction Boundaries

an

of
 of

sure
ngths
How this Affects the Temporary LOB COPY or APPEND?
The critical factor is setting the PCTINCREASE parameter to 0. Otherwise, the

default value is 50%. When a 4gigabyte LOB is being filled up, the extents size

expands gradually until it blows up the tablespace, as follows:

1st extent: 100M, 2nd 100M, 3rd, 150M, 4th 225M...

LOB Locators and Transaction Boundaries
See Chapter 2, "Basic LOB Components" for a basic description of LOB locators and

their operations.

See Chapter 5, "Large Objects: Advanced Topics" for a description of LOB locator

transaction boundaries and using read consistent locators.

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs
This release supports binds of more than 4,000 bytes of data for LOB INSERTs and
UPDATEs. In previous releases this feature was allowed for LONG columns only. You c
now bind the followingfor INSERT or UPDATE into a LOB column:

■ Up to 4GB data using OCIBindByPos(), OCIBindByName()

■ Up to 32,767 bytes data using PL/SQL binds

Since you can have multiple LOBs in a row, you can bind up to 4GB data for each one
those LOBs in the same INSERT or UPDATE statement. In other words, multiple binds
more than 4,000 bytes in size are allowed in a single statement.

Ensure Your Temporary Tablespace is Large Enough! The bind of more than
4,000 bytes of data to a LOB column uses space from temporary tablespace. Hence en
that your temporary tablespace is large enough to hold at least the sum of all the bind le
for LOBs.

If your temporary tablespace is extendable, it will be extended automatically after

the existing space is fully consumed. Use the following statement:

Note: The length of the default values you specify for LOBs still has the
4,000 byte restriction.
7-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

s"
 not.
CREATE TABLESPACE .. AUTOEXTEND ON ... TEMPORARY ..;

to create an extendable temporary tablespace.

Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion
Table Multimedia_tab is described in Appendix B, "The Multimedia Schema".

The following examples use an additional column called Comments. You will need

to add the Comments column to table Multimedia_tab’s CREATE TABLE

syntax with the following line:

Comments LONG -- stores the comments of viewers on this clip

Oracle does not do any implicit conversion, such as HEX to RAW or RAW to HEX

e.t.c., for data of more than 4000 bytes.

declare
 charbuf varchar2(32767);
 rawbuf raw(32767);
begin
 charbuf := lpad ('a', 12000, 'a');
 rawbuf := utl_raw.cast_to_raw(charbuf);

Table 7–4, "Binds of More Than 4,000 Bytes: Allowed INSERT and UPDATE Operation,
outlines which INSERT operations are allowed in the preceding example and which are
The same cases also apply to UPDATE operations.

Table 7–4 Binds of More Than 4,000 Bytes: Allowed INSERT and UPDATE Operations

Allowed INSERTs/UPDATEs ... Non-Allowed INSERTs/UPDATEs ...

INSERT INTO
 Multimedia_tab (story, sound)
 VALUES (charbuf, rawbuf);

INSERT INTO
 Multimedia_tab(sound)
 VALUES(charbuf);

This does not work because Oracle will not do
implicit hex to raw conversion.

- INSERT INTO
 Multimedia_tab(story)
 VALUES (rawbuf);

This does not work because Oracle will not do
implicit hex to raw conversion.
Modeling and Design 7-15

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

of an

to

to
ata:

s of

his

s

4,000 Byte Limit On Results of SQL Operator
If you bind more than 4,000 bytes of data to a BLOB or a CLOB, and the data consists
SQL operator, then Oracle limits the size of the result to at most 4,000 bytes.

The following statement inserts only 4,000 bytes because the result of LPAD is limited
4,000 bytes:

INSERT INTO Multimedia_tab (story) VALUES (lpad('a', 5000, 'a'));

The following statement inserts only 2,000 bytes because the result of LPAD is limited
4,000 bytes, and the implicit hex to raw conversion converts it to 2,000 bytes of RAW d

INSERT INTO Multimedia_tab (sound) VALUES (lpad('a', 5000, 'a'));

Binds of More Than 4,000 Bytes: Restrictions
The following lists the restrictions for binds of more than 4,000 bytes:

■ If a table has both LONG and LOB columns then you can bind more than 4,000 byte
data to either the LONG or LOB columns, but not both in the same statement.

■ You cannot bind data of any size to LOB attributes in Abstract Data Types (ADTs). T
restriction in prior releases still exists. For LOB attributes, first insert an empty LOB
locator and then modify the contents of the LOB using OCILob* functions.

■ In an INSERT AS SELECT operation, binding of any length data to LOB columns i
not allowed. This restriction in prior releases still exists.

Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE
CREATE TABLE foo (a INTEGER);
DECLARE
 bigtext VARCHAR2(32767);

- INSERT INTO
 Multimedia_tab(sound)
 VALUES(
 utl_raw.cast_to_raw(charbuf));

This does not work because Oracle cannot
combine utl_raw.cast_to_raw() operator with
binds of more than 4,000 bytes.

Table 7–4 Binds of More Than 4,000 Bytes: Allowed INSERT and UPDATE Operations

Allowed INSERTs/UPDATEs ... Non-Allowed INSERTs/UPDATEs ...
7-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
 smalltext VARCHAR2(2000);
 bigraw RAW (32767);
BEGIN
 bigtext := LPAD('a', 32767, 'a');
 smalltext := LPAD('a', 2000, 'a');
 bigraw := utlraw.cast_to_raw (bigtext);

/* The following is allowed: */
 INSERT INTO Multimedia_tab(clip_id, story, frame, comments)
 VALUES (1,bigtext, bigraw,smalltext);
/* The following is allowed: */
 INSERT INTO Multimedia_tab (clip_id, story, comments)
 VALUES (2,smalltext, bigtext);

 bigtext := LPAD('b', 32767, 'b');
 smalltext := LPAD('b', 20, 'a');
 bigraw := utlraw.cast_to_raw (bigtext);

/* The following is allowed: */
 UPDATE Multimedia_tab SET story = bigtext, frame = bigraw,
 comments = smalltext;

/* The following is allowed */
 UPDATE Multimedia_tab set story = smalltext, comments = bigtext;

/* The following is NOT allowed because we are trying to insert more than
 4000 bytes of data in a LONG and a LOB column: */
 I NSERT INTO Multimedia_tab (clip_id, story, comments)
 VALUES (5, bigtext, bigtext);

/* The following is NOT allowed because we are trying to insert
 data into LOB attribute */
 INSERT into Multimedia_tab (clip_id,map_obj)
 VALUES (10,map_typ(NULL, NULL, NULL, NULL, NULL,bigtext, NULL));

/* The following is not allowed because we try to perform INSERT AS
 SELECT data INTO LOB */
 INSERT INTO Multimedia_tab (story) AS SELECT bigtext FROM foo;
 END;
Modeling and Design 7-17

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported
For binds of more than 4,000 bytes, inserts are not supported because hex-to-raw

and raw-to-hex conversions are not supported.

/* Oracle does not do any implicit conversion (e.g., HEX to RAW or RAW to HEX
 etc.) for data of more than 4000 bytes. Hence, the following cases will not
 work : */

 declare
 charbuf varchar2(32767);
 rawbuf raw(32767);
 begin
 charbuf := lpad ('a', 12000, 'a');
 rawbuf := utl_raw.cast_to_raw(charbuf);

/* The following is allowed ... */
 INSERT INTO Multimedia_tab (story, sound) VALUES (charbuf, rawbuf);

/* The following is not allowed because Oracle won't do implicit
 hex to raw conversion. */
 INSERT INTO Multimedia_tab (sound) VALUES (charbuf);

/* The following is not allowed because Oracle won't do implicit
 raw to hex conversion. */
 INSERT INTO Multimedia_tab (story) VALUES (rawbuf);

/* The following is not allowed because we can't combine the
 utl_raw.cast_to_raw() operator with the bind of more than 4,000 bytes. */
 INSERT INTO Multimedia_tab (sound) VALUES (utl_raw.cast_to_raw(charbuf));

end;
/

Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes
If you bind more than 4,000 bytes of data to a BLOB or a CLOB, and the data

actually consists of an SQL operator, then Oracle limits the size of the result to 4,000

bytes.

For example,
/* The following command inserts only 4,000 bytes because the result of
 LPAD is limited to 4,000 bytes */
 INSERT INTO Multimedia_tab (story) VALUES (lpad('a', 5000, 'a'));

/* The following command inserts only 2,000 bytes because the result of
7-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
 LPAD is limited to 4,000 bytes, and the implicit hex to raw conversion
 converts it to 2,000 bytes of RAW data. */
 INSERT INTO Multimedia_tab (sound) VALUES (lpad('a', 5000, 'a'));

Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE
CREATE TABLE foo(a INTEGER);
void insert() /* A function in an OCI program */
{
/* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = "INSERT INTO Print_media(ad_sourcetext, ad_composite,
comments)
 VALUES (:1, :2, :3)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LBI, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = "INSERT INTO Print_media (ad_sourcetext,comments)
 VALUES (:1, :2)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *insert_sql = (text *)"UPDATE Print_media SET
Modeling and Design 7-19

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
 ad_sourcetext = :1, ad_photo=:2, comments=:3";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LBI, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *insert_sql = (text *)"UPDATE Print_media SET
 ad_sourcetext = :1, ad_photo=:2, comments=:3";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* Piecewise, callback and array insert/update operations similar to
 the allowed regular insert/update operations are also allowed */
}

void insert()
{
/* The following is NOT allowed because we try to insert >4000 bytes
 to both LOB and LONG columns */
ub1 buffer[8000];
text *insert_sql = (text *)"INSERT INTO Print_media (ad_composite, comments)
 VALUES (:1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
7-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is NOT allowed because we try to insert data into
 LOB attributes */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO Print_media (adheader_typ)
 VALUES (adheader_typ(NULL, NULL, NULL, NULL, NULL,:1, NULL))";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is NOT allowed because we try to do insert as
 select character data into LOB column */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO Print_media (ad_sourcetext)
 SELECT :1 from FOO";
 OCIStmtPrepare(stmthp, errhp, insert_sql,strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* Other update operations similar to the disallowed insert operations are also
 not allowed. Piecewise and callback insert/update operations similar to the
 disallowed regular insert/update operations are also not allowed */
}

Modeling and Design 7-21

OPEN, CLOSE, and ISOPEN Interfaces for Internal LOBs
OPEN, CLOSE, and ISOPEN Interfaces for Internal LOBs
The OPEN, CLOSE, and ISOPEN interfaces let you open and close an internal LOB
and test whether an internal LOB is already open.

It is not mandatory that you wrap all LOB operations inside the OPEN/CLOSE APIs.

The addition of this feature does not impact already-existing applications that write

to LOBs without first opening them, since these calls did not exist in 8.0.

 Wrap LOB Operations Inside an OPEN / CLOSE Call
■ If you do not wrap LOB operations inside an OPEN/CLOSE call operation: Each

modification to the LOB will implicitly open and close the LOB thereby firing

any triggers on a domain index. Note that in this case, any domain indexes on

the LOBwill become updated as soon as LOBmodifications are made. Therefore,

domain LOB indexes are always valid and may be used at any time.

■ If you wrap your LOB operations inside the OPEN/CLOSE operation: Triggers will not

be fired for each LOB modification. Instead, the trigger on domain indexes will

be fired at the CLOSE call. For example, you might design your application so

that domain indexes are not be updated until you call CLOSE. However, this

means that any domain indexes on the LOB will not be valid in-between the

OPEN/CLOSE calls.

Close All Opened LOBs Before Committing the Transaction
It is an error to commit the transaction before closing all opened LOBs that were

opened by the transaction. When the error is returned, the openness of the open

LOBs is discarded, but the transaction is successfully committed. Hence, all the

changes made to the LOB and non-LOB data in the transaction are committed but

but the domain and functional indexes are not updated. If this happens, please

rebuild your functional and domain indexes on the LOB column.

Note: Openness is associated with the LOB, not the locator. The

locator does not save any information as to whether the LOB to

which it refers is open.

Note: Changes to the LOB are not discarded if the COMMIT returns

an error.
7-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

OPEN, CLOSE, and ISOPEN Interfaces for Internal LOBs
At transaction rollback, the openness of all open LOBs still open for that transaction

are discarded. Discarding the openness means the following for LOBs:

■ LOBs will not be closed

■ Triggers on domain indexes will not be fired

What is a ’Transaction’ Where an Open LOB Value is Closed?
A ’transaction’ where an open LOB value must be closed meets one of the following:

■ Between ’DML statements that start a transaction (including SELECT ... FOR
UPDATE)’ and COMMIT

■ Within an autonomous transaction block

A LOB opened when there is no transaction, must be closed before the end of the

session. If there are still open LOBs at the end of the session, the openness will be

discarded and no triggers on domain indexes will be fired.

Do Not Open or Close Same LOB Twice!
It is also an error to open/close the same LOB twice either with different locators or

with the same locator.

Example 1: Correct Use of OPEN/CLOSE Calls to LOBs in a Transaction
This example shows the correct use of open and close calls to LOBs inside and

outside a transaction.

DECLARE
 Lob_loc1 CLOB;
 Lob_loc2 CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1;
BEGIN
 /* Select a LOB: */
 SELECT Story INTO Lob_loc1 FROM Multimedia_tab WHERE Clip_ID = 1;

 /* The following statement opens the LOB outside of a transaction
 so it must be closed before the session ends: */
 DBMS_LOB.OPEN(Lob_loc1, DBMS_LOB.LOB_READONLY);

/* The following statement begins a transaction. Note that Lob_loc1 and
 Lob_loc2 point to the same LOB: */
 SELECT Story INTO Lob_loc2 FROM Multimedia_tab WHERE Clip_ID = 1 for update;
Modeling and Design 7-23

LOBs in Index Organized Tables (IOT)
 /* The following LOB open operation is allowed since this lob has
 not been opened in this transaction: */
 DBMS_LOB.OPEN(Lob_loc2, DBMS_LOB.LOB_READWRITE);

 /* Fill the buffer with data to write to the LOB */
 buffer := 'A good story';
 Amount := 12;

 /* Write the buffer to the LOB: */
 DBMS_LOB.WRITE(Lob_loc2, Amount, Position, Buffer);

 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Lob_loc2);
 /* The COMMIT ends the transaction. It is allowed because all LOBs
 opened in the transaction were closed. */
 COMMIT;
 /* The the following statement closes the LOB that was opened
 before the transaction started: */
 DBMS_LOB.CLOSE(Lob_loc1);
END;

Example 2: Incorrect Use of OPEN/CLOSE Calls to a LOB in a Transaction
This example the incorrect use of OPEN and CLOSE calls to a LOB and illustrates

how committing a transaction which has open LOBs returns an error.

DECLARE
 Lob_loc CLOB;
BEGIN
 /* Note that the FOR UPDATE clause starts a transaction: */
 SELECT Story INTO Lob_loc FROM Multimedia_tab WHERE Clip_ID = 1 for update;
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
 /* COMMIT returns an error because there is still an open LOB associated
 with this transaction: */
 COMMIT;
END;

LOBs in Index Organized Tables (IOT)
Index Organized Tables (IOT) now support internal and external LOB columns. The

SQL DDL, DML and piece wise operations on LOBs in IOT exhibit the same

behavior as for conventional tables. The only exception is the default behavior of

LOBs during creation. The main differences are:
7-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Index Organized Tables (IOT)
■ Tablespace Mapping: By default, or unless specified otherwise, the LOB's data

and index segments will be created in the tablespace in which the primary key

index segments of the index organized table are created.

■ Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index

organized table created without an overflow segment will be stored out of line.

In other words, if an index organized table is created without an overflow

segment, the LOBs in this table have their default storage attributes as DISABLE
STORAGE IN ROW. If you forcibly try to specify an ENABLE STORAGE IN ROW
clause for such LOBs, SQL will raise an error.

On the other hand, if an overflow segment has been specified, LOBs in index

organized tables will exactly mimic their behavior in conventional tables (see

"Defining Tablespace and Storage Characteristics for Internal LOBs" on

page 7-5).

Example of Index Organized Table (IOT) with LOB Columns
Consider the following example:

CREATE TABLE iotlob_tab (c1 INTEGER primary key, c2 BLOB, c3 CLOB, c4
VARCHAR2(20))
 ORGANIZATION INDEX
 TABLESPACE iot_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
 PCTTHRESHOLD 50 INCLUDING c2
 OVERFLOW
 TABLESPACE ioto_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
 STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE IN ROW
 CHUNK 1 PCTVERSION 1 CACHE STORAGE (INITIAL 2m)
 INDEX LOBIDX_C1 (TABLESPACE lobidx_ts STORAGE (INITIAL
 4K)));

Executing these statements will result in the creation of an index organized table

iotlob_tab with the following elements:

■ A primary key index segment in the tablespace iot_ts ,

■ An overflow data segment in tablespace ioto_ts

■ Columns starting from column C3 being explicitly stored in the overflow data

segment

See Also: Chapter 5, "Large Objects: Advanced Topics", "LOBs in

Partitioned Index-Organized Tables".
Modeling and Design 7-25

Manipulating LOBs in Partitioned Tables
■ BLOB (column C2) data segments in the tablespace lob_ts

■ BLOB (column C2) index segments in the tablespace lobidx_ts

■ CLOB (column C3) data segments in the tablespace iot_ts

■ CLOB (column C3) index segments in the tablespace iot_ts

■ CLOB (column C3) stored in line by virtue of the IOT having an overflow

segment

■ BLOB (column C2) explicitly forced to be stored out of line

Other LOB features, such as BFILE s and varying character width LOBs, are also

supported in index organized tables, and their usage is the same as for conventional

tables.

Manipulating LOBs in Partitioned Tables
You can partition tables with LOBs. As a result, LOBs can take advantage of all of the

benefits of partitioning. For example, LOB segments can be spread between several

tablespaces to balance I/O load and to make backup and recovery more

manageable. LOBs in a partitioned table also become easier to maintain.

This section describes some of the ways you can manipulate LOBs in partitioned

tables.

As an extension to the example multimedia application described in Appendix B,

"The Multimedia Schema", let us suppose that makers of a documentary are

producing multiple clips relating to different Presidents of the United States. The

clips consist of photographs of the presidents accompanied by spoken text and

background music. The photographs come from the PhotoLib_Tab archive. To

make the most efficient use of the presidents’ photographs, they are loaded into a

database according to the structure illustrated in Figure 7–1.

The columns in Multimedia_tab are described in Table 7–5, "Multimedia_tab

Columns".

Note: If no overflow had been specified, both C2 and C3 would

have been stored out of line by default.

Note: Support for LOBs in partitioned index organized tables will

be provided in a future release.
7-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables
Figure 7–1 Table Multimedia_tab structure Showing Inclusion of PHOTO_REF
Reference

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO_REF FRAME SOUND INSEG_NTAB MUSIC

Kind of Dat a

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
PHOTO_TYP

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table PRESIDENTPHOTO_TAB (of PHOTO_TYP)

PHOTODATE PHOTONAME SCRIPT

Date
DATE

PRESNAME

Text
VARCHAR2(30)

Text
VARCHAR2(30)

ACTOR

Text
VARCHAR2(30)

Text
CLOB

MUSIC

Audio
BFILE

PRESPHOTO

Photo
BLOB

PK

Reference to a row
object of a table of
the defined type
Modeling and Design 7-27

Manipulating LOBs in Partitioned Tables
Creating and Partitioning a Table Containing LOB Data
To isolate the photographs associated with a given president, a partition is created

for each president by the ending dates of their terms of office. For example, a

president who served two terms would have two partitions: the first partition

bounded by the end date of the first term and a second partition bounded by the

end date of the second term.

Table 7–5 Multimedia_tab Columns

Column Name Description

PRESNAME President’s name. This lets the documentary producers select data for clips
organized around specific presidents. PRESNAME is also chosen as a primary
key because it holds unique values.

PRESPHOTO Contains photographs in which a president appears. This category also
contains photographs of paintings and engravings of presidents who lived
before the advent of photography.

PHOTODATE Contains the date on which the photograph was taken. In the case of
presidents who lived before the advent of photography, PHOTODATE
pertains to the date when the painting or engraving was created.

This column is chosen as the partition key to make it easier to add partitions
and to perform MERGEs and SPLITs of the data based on some given date
such as the end of a president’s first term. This will be illustrated later in this
section.

PHOTONAME Contains the name of the photograph. An example name might be
something as precise as "Bush Addresses UN - June 1990" or as general as
"Franklin Rooseveld - Inauguration".

SCRIPT Contains written text associated with the photograph. This could be text
describing the event portrayed by the photograph or perhaps segments of a
speech by the president.

ACTOR Contains the name of the actor reading the script.

MUSIC Contains background music to be played during the viewing of the
photographs.

Note: In the following examples, extension 1 refers to a

president’s first term and 2 refers to a president’s second term. For

example, GeorgeWashington1_part refers to the partition created

for George Washington’s first term and RichardNixon2_part refers

to the partition created for Richard Nixon’s second term.
7-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables
CREATE TABLE Presidentphoto_tab(PresName VARCHAR2(30), PhotoDate DATE,
 PhotoName VARCHAR2(30), PresPhoto BLOB,
 Script CLOB, Actor VARCHAR2(30), Music BFILE)
 STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0)
 LOB (PresPhoto) STORE AS (CHUNK 4096)
 LOB (Script) STORE AS (CHUNK 2048)
 PARTITION BY RANGE(PhotoDate)

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/manager
GRANT CREATE TABLESPACE, DROP TABLESPACE TO scott;
CONNECT scott/tiger
CREATE TABLESPACEEarlyPresidents_tbs DATAFILE
’disk1:moredata01’ SIZE 1M;
CREATE TABLESPACEEarlyPresidentsPhotos_tbs DATAFILE
’disk1:moredata99’ SIZE 1M;
CREATE TABLESPACEEarlyPresidentsScripts_tbs DATAFILE
’disk1:moredata03’ SIZE 1M;
CREATE TABLESPACERichardNixon1_tbs DATAFILE
’disk1:moredata04’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsPhotos_tbs DATAFILE
’disk1:moredata05’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsScripts_tbs DATAFILE
’disk1:moredata06’ SIZE 1M;
CREATE TABLESPACERichardNixon2_tbs DATAFILE
’disk1:moredata07’ SIZE 1M;
CREATE TABLESPACEGeraldFord1_tbs DATAFILE
’disk1:moredata97’ SIZE 1M;
CREATE TABLESPACE RichardNixonPhotos_tbs DATAFILE
’disk1:moredata08’ SIZE 2M;
CREATE TABLESPACE RichardNixonBigger2_tbs DATAFILE
’disk1:moredata48’ SIZE 2M;
CREATE TABLE Mirrorlob_tab(
 PresName VARCHAR2(30),
 PhotoDate DATE,
 PhotoName VARCHAR2(30),
 PresPhoto BLOB,
 Script CLOB,
 Actor VARCHAR2(30),
 Music BFILE);
Modeling and Design 7-29

Manipulating LOBs in Partitioned Tables
(PARTITION GeorgeWashington1_part
 /* Use photos to the end of Washington's first term */
 VALUES LESS THAN (TO_DATE('19-mar-1792', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION GeorgeWashington2_part
 /* Use photos to the end of Washington's second term */
 VALUES LESS THAN (TO_DATE('19-mar-1796', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION JohnAdams1_part
 /* Use photos to the end of Adams' only term */
 VALUES LESS THAN (TO_DATE('19-mar-1800', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
/* ...intervening presidents... */
PARTITION RichardNixon1_part
 /* Use photos to the end of Nixon's first term */
 VALUES LESS THAN (TO_DATE('20-jan-1972', 'DD-MON-YYYY'))
 TABLESPACE RichardNixon1_tbs
 LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_tbs)
);

Creating an Index on a Table Containing LOB Columns
To improve the performance of queries which access records by a President's name

and possibly the names of photographs, a UNIQUE local index is created:

CREATE UNIQUE INDEX PresPhoto_idx
 ON PresidentPhoto_tab (PresName, PhotoName, Photodate) LOCAL;

Exchanging Partitions Containing LOB Data
As a part of upgrading from Oracle8.0 to 8.1 or higher, data was exchanged from an

existing non-partitioned table containing photos of Bill Clinton's first term into the

appropriate partition:

ALTER TABLE PresidentPhoto_tab EXCHANGE PARTITION RichardNixon1_part
 WITH TABLE Mirrorlob_tab INCLUDING INDEXES;
7-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables
Adding Partitions to Tables Containing LOB Data
To account for Richard Nixon’s second term, a new partition was added to

PresidentPhoto_tab :

ALTER TABLE PresidentPhoto_tab ADD PARTITION RichardNixon2_part
 VALUES LESS THAN (TO_DATE('20-jan-1976', 'DD-MON-YYYY'))
 TABLESPACE RichardNixon2_tbs
 LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_tbs);

Moving Partitions Containing LOBs
During his second term, Richard Nixon had so many photo-opportunities, that the

partition containing information on his second term is no longer adequate. It was

decided to move the data partition and the corresponding LOB partition of

PresidentPhoto_tab into a different tablespace, with the corresponding LOB
partition of Script remaining in the original tablespace:

ALTER TABLE PresidentPhoto_tab MOVE PARTITION RichardNixon2_part
 TABLESPACE RichardNixonBigger2_tbs
 LOB (PresPhoto) STORE AS (TABLESPACE RichardNixonPhotos_tbs);

Splitting Partitions Containing LOBs
When Richard Nixon was re-elected for his second term, a partition with bounds

equal to the expected end of his term (20-jan-1976) was added to the table (see the

preceding example.) Since Nixon resigned from office on 9 August 1974, that

partition had to be split to reflect the fact that the remainder of the term was served

by Gerald Ford:

ALTER TABLE PresidentPhoto_tab SPLIT PARTITION RichardNixon2_part
 AT (TO_DATE('09-aug-1974', 'DD-MON-YYYY'))
 INTO (PARTITION RichardNixon2_part,
 PARTITION GeraldFord1_part TABLESPACE GeraldFord1_tbs
 LOB (PresPhoto) STORE AS (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) STORE AS (TABLESPACE Post1960PresidentsScripts_tbs));

Merging Partitions Containing LOBs
Despite the best efforts of the documentary producers in searching for photographs

of paintings or engravings of George Washington, the number of photographs that

were found was inadequate to justify a separate partition for each of his two terms.

Accordingly, it was decided to merge these two partition into one named

GeorgeWashington8Years_part :
Modeling and Design 7-31

Indexing a LOB Column
ALTER TABLE PresidentPhoto_tab
 MERGE PARTITIONS GeorgeWashington1_part, GeorgeWashington2_part
 INTO PARTITION GeorgeWashington8Years_part TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs);

Indexing a LOB Column
You cannot build B-tree or bitmap indexes on a LOB column. However, depending

on your application and its usage of the LOB column, you might be able to improve

the performance of queries by building indexes specifically attuned to your domain.

Oracle8i and higher’s extensibility interfaces allow for domain indexing, a

framework for implementing such domain specific indexes.

Depending on the nature of the contents of the LOB column, one of the Oracle

interMedia options could also be used for building indexes. For example, if a text

document is stored in a CLOB column, you can build a text index (provided by

Oracle) to speed up the performance of text-based queries over the CLOB column.

Functional Indexes on LOB Columns
Oracle9i now supports functional indexing on LOB columns. Analogous to

extensible/domain indexes on LOB columns, functional indexes are also

automatically updated when a DML operation is performed on the LOB column.

See Also: Oracle9i Data Cartridge Developer’s Guide for information

on building domain specific indexes.

See Also: Oracle interMedia User’s Guide and Reference and Oracle
Text Reference, for more information regarding Oracle’s interMedia

options.

Note: When extensible indexes are being updated, if any

functional indexes are present on the LOB column, they are also

updated.

See Also: Oracle9i Application Developer’s Guide - Fundamentals
7-32 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

SQL Semantics Support for LOBs
SQL Semantics Support for LOBs
This section describes the following topics:

■ How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs

■ SQL RAW Type and BLOBs

■ SQL DML Changes For LOBs

■ SQL DML Changes For LOBs

■ SQL Functions/Operators for VARCHAR2s/RAWs and CLOBs/BLOBs

■ PL/SQL Statements and Variables: New Semantics Changes

■ PL/SQL CLOB Comparison Rules

In prior releases, you could only access LOBs stored in the database using LOB

locators through a set of APIs in various language interfaces (C, C++, OO4O, Java,

COBOL, PL/SQL). LOBs could not be used in SQL character functions.

Improved LOB Usability: Accessing LOBs Using SQL “Character” Functions
In Oracle9i, for the first time, you can access LOBs using SQL VARCHAR2

semantics, such as SQL string operators and functions.

By providing you with an SQL interface, which you are familiar with, accessing

LOB data can be greatly facilitated. You can benefit from this added functionality in

the following two cases:

■ When using small-sized LOBs (~ 10-100K) to store data through the APIs and

you need SQL support on LOBs.

■ When you have just migrated your LONG columns to LOBs. In this release, you

can take advantage of an easier migration process using the LONG-to-LOB

migration API described in Chapter 8, "Migrating From LONGs to LOBs".

Advanced LOB users who need to take advantage of features such as random

access and piecewise fetch, should continue using existing LOB API interfaces.

For users of medium-to-large sized (> 1M) LOBs, this SQL interface is not advised

due to possible performance issues.

This description is limited to internal persistent LOBs only. This release, does not

offer SQL support on BFILEs.
Modeling and Design 7-33

SQL Semantics Support for LOBs
SQL and PL/SQL VARCHAR2 Functions/Operators Now Allowed for CLOBs
The following SQL VARCHAR2 functions and operators are now allowed for

CLOBs, as indicated in Table 7–6:

■ INSTR related operators/functions

■ INSTR() and variants (See Table 7–7)

■ LIKE

■ REPLACE()

■ CONCAT and ||

■ LENGTH() and variants (See Table 7–7)

■ SUBSTR() and variants (See Table 7–7)

■ TRIM(), LTRIM() and RTRIM()

■ LOWER(), UPPER(), NLS_LOWER(), NLS_UPPER()

■ LPAD() and RPAD()

PL/SQL Relational Operators Now Allowed for LOBs
For LONG to LOB migration, the following relational operators in PL/SQL now

work on LONGs and LOBs:

■ Operators: >, <, =, !=,

■ IN, BETWEEN

■ GREATEST and LEAST

■ NLSSORT

These operators are also listed in Table 7–6.

SQL and PL/SQL CHAR to CLOB Conversion Functions
The following CHAR to CLOB conversion functions are now allowed for LOBs:

Note: SQL Semantics Support has no impact on current usage of

LOBs. Existing LOB applications, using LOB APIs, do not need to

be changed.
7-34 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

SQL Semantics Support for LOBs
■ TO_CHAR() and TO_NCHAR() converts CLOB or NCLOB to CHAR or

NCHAR

■ TO_CLOB() and TO_NCLOB() converts CHAR or NCHAR to CLOB or NCLOB

Non-Supported SQL Functionality for LOBs
The following SQL functionality is not supported for LOBs because the functions

are either infrequently used or have easy workarounds.

■ INDEX on LOB column: Workaround, use Oracle9i Text (interMedia Text)

■ SQL Conversion functions: TO_DATE, TO_NUMBER, TO_TIMESTAMP,

CHARTOROWID, TO_MULTI_BYTE, TO_SINGLE_BYTE - not frequently used

■ Other SQL functions: GROUPING - not frequently used.

■ Comparison functions/operators, including the following:

■ Operators: >, <, =, !=

■ IN, SOME, ANY, ALL, BETWEEN

■ MAX, MIN, GREATEST and LEAST

■ SELECT DISTINCT, GROUP BY, ORDER BY (SORT), UNION, INTERSECT,

MINUS

■ JOIN

■ Miscellaneous SQL functions: INITCAP, NLS_INITCAP, DUMP,

TRANSLATE, VSIZE, DECODE

Using SQL Functions and Operators for VARCHAR2s on CLOBs
Table 7–6, lists all SQL operators and functions that take a VARCHAR2 as

operands/arguments, or return a VARCHAR2 value. With the only exception of the

“IS [NOT] NULL” operator, none of the operators/functions in prior releases work

on CLOBs.

Note: These operators are allowed in PL/SQL, but do not work in

SQL queries issued in PL/SQL blocks.
Modeling and Design 7-35

SQL Semantics Support for LOBs
In Table 7–6, the SQL operators/functions supported on CLOBs in Oracle9i, are

indicated in the 4th “SQL” column.

Most functions listed in Table 7–6 also apply to PL/SQL built-in functions (supplied

packages). The 5th “PL/SQL” column indicates the availability of the

operator/function on CLOBs in PL/SQL.

Implicit conversions between CLOBs and CHAR types are enabled in Oracle9i.
Therefore, functions not yet enabled for CLOBs can still accept CLOBs through

implicit conversion. In this case, CLOBs are converted to a CHAR or a VARCHAR2

before the function is invoked. If the CLOB is greater than 4K bytes in size, only

4000 bytes will be converted into CHARs or VARCHAR2s.

In Table 7–6, the functions which take CLOB parameters through implicit

conversions, are denoted as "CNV".

Table 7–6 SQL VARCHAR2 Functions and Operators

Category Operator / Function SQL Example for CLOB Columns SQL PL/SQL

Concat ||, CONCAT() Select clobCol || clobCol2 from tab; Yes Yes

Comparison = , !=, >, >=, <, <=, <>, ^= if clobCol=clobCol2 then... No Yes

Comparison IN, NOT IN if clobCol NOT IN (clob1, clob2, clob3) then... No Yes

Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol2 from...) then... No N/A

Comparison BETWEEN if clobCol BETWEEN clobCol2 and clobCol3 then... No Yes

Comparison LIKE [ESCAPE] and its
variants, see Table 7–7.

if clobCol LIKE ‘%pattern%’ then... Yes Yes

Comparison IS [NOT] NULL where clobCol IS NOT NULL Yes Yes

Character
Functions

INITCAP, NLS_INITCAP select INITCAP(clobCol) from... CNV CNV

Character
Functions

LOWER, NLS_LOWER,
UPPER, NLS_UPPER

...where LOWER(clobCol1) = LOWER(clobCol2) Yes Yes

Character
Functions

LPAD, RPAD select RPAD(clobCol, 20, ' La') from... Yes Yes

Character
Functions

TRIM, LTRIM, RTRIM ...where RTRIM(LTRIM(clobCol,’ab’), ‘xy’) = ‘cd’ Yes Yes
7-36 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

SQL Semantics Support for LOBs
Character
Functions

REPLACE select REPLACE(clobCol, ‘orig’,’new’) from... Yes Yes

Character
Functions

SOUNDEX ...where SOUNDEX(clobCOl) = SOUNDEX(‘SMYTHE’) CNV CNV

Character
Functions

SUBSTR and its variants,
see Table 7–7.

...where substr(clobCol, 1,4) = ‘THIS’ Yes Yes

Character
Functions

TRANSLATE select TRANSLATE(clobCol, ‘123abc’,’NC’) from... CNV CNV

Character
Functions

ASCII select ASCII(clobCol) from... CNV CNV

Character
Functions

INSTR and its variants,
see Table 7–7.

...where instr(clobCol, ‘book’) = 11 Yes Yes

Character
Functions

LENGTH and its
variants, see Table 7–7.

...where length(clobCol) != 7; Yes Yes

Character
Functions

NLSSORT ...where NLSSORT (clobCol,’NLS_SORT = German’) >
NLSSORT (’S’,’NLS_SORT = German’)

CNV CNV

Conversion CHARTOROWID CHARTOROWID(clobCol) CNV CNV

Conversion HEXTORAW HEXTORAW(CLOB) No CNV

Conversion CONVERT select CONVERT(clobCol,’WE8DEC’,’WE8HP’) from... Yes CNV

Conversion TO_DATE TO_DATE(clobCol) CNV CNV

Conversion TO_NUMBER TO_NUMBER(clobCol) CNV CNV

Conversion TO_TIMESTAMP TO_TIMESTAMP(clobCol) No CNV

Conversion TO_MULTI_BYTE

TO_SINGLE_BYTE

TO_MULTI_BYTE(clobCol)

TO_SINGLE_BYTE(clobCol)

CNV CNV

Conversion TO_CHAR TO_CHAR(clobCol) Yes Yes

Conversion TO_NCHAR TO_NCHAR(clobCol) Yes Yes

Table 7–6 SQL VARCHAR2 Functions and Operators (Cont.)

Category Operator / Function SQL Example for CLOB Columns SQL PL/SQL
Modeling and Design 7-37

SQL Semantics Support for LOBs
UNICODE Support for VARCHAR2 and CLOB
In this release, database UNICODE support for VARCHAR2s [unicode] provides a

few UNICODE variants on functions INSTR, SUBSTR, LENGTH, and LIKE. These

UNICODE functions are not yet supported on CLOBs or NCLOBs as summarized

in Table 7–7.

Conversion TO_LOB INSERT INTO... SELECT TO_LOB(longCol)...

Note: TO_LOB can only be used to create or
insert into a table with LOB columns as SELECT
FROM a table with a LONG column.

N/A N/A

Conversion TO_CLOB TO_CLOB(varchar2Col) Yes Yes

Conversion TO_NCLOB TO_NCLOB(varchar2Clob) Yes Yes

Aggregate
Functions

COUNT select count(clobCol) from... No N/A

Aggregate
Functions

MAX, MIN select MAX(clobCol) from... No N/A

Aggregate
Functions

GROUPING select grouping(clobCol) from... group by cube (clobCol); No N/A

Other
Functions

GREATEST, LEAST select GREATEST (clobCol1, clobCol2) from... No CNV

Other
Functions

DECODE select DECODE(clobCol, condition1, value1, defaultValue)
from...

CNV CNV

Other
Functions

NVL select NVL(clobCol,’NULL’) from... Yes Yes

Other
Functions

DUMP select DUMP(clobCol) from... No N/A

Other
Functions

VSIZE select VSIZE(clobCol) from... No N/A

See Also: Oracle9i SQL Reference, Chapter 6, "Functions".

Table 7–6 SQL VARCHAR2 Functions and Operators (Cont.)

Category Operator / Function SQL Example for CLOB Columns SQL PL/SQL
7-38 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

SQL Semantics Support for LOBs
SQL Features Where LOBs Cannot be Used
Table 7–8 lists other SQL features where LOBs cannot be used. Refer to the "LOB

Restrictions" section in Chapter 4, "Managing LOBs", for further details.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i SQL Reference

■ Oracle9i Database Globalization Support Guide

for a detailed description on the usage of UNICODE functions.

Table 7–7 Unicode Related SQL Functions (CLOB=CLOB Support)

SQL Functions Comments CLOB

INSTRB, SUBSTRB, LENGTHB Byte-based functions, existed in prior in Oracle9i releases No

INSTR2, SUBSTR2, LENGTH2,

LIKE2

UCS2 character set based, provided in this release No

INSTR4, SUBSTR4, LENGTH4,

LIKE4

UCS4 character set based, provided in this release No

INSTRC, SUBSTRC, LENGTHC,

LIKEC

Character based, provided in this release No

Table 7–8 SQL Features Where LOBs Cannot be Used

SQL Feature Example for CLOB Columns

SELECT DISTINCT SELECT DISTINCT clobCol from...

SELECT clause

 ORDER BY

SELECT... ORDER BY clobCol

SELECT clause

 GROUP BY

SELECT avg(num) FROM...

GROUP BY clobCol
Modeling and Design 7-39

How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs
How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs

Defining CHAR Buffer on CLOB
With Oracle9i, you can retrieve data from LOBs directly using SQL without using

any special LOB API.

In PL/SQL, you can define a VARCHAR2 for a CLOB and RAW for a BLOB

column. You can also define CLOBs/BLOBs for VARCHAR2/RAW columns.

Selecting a CLOB Column into a CHAR Buffer or CLOB
In PL/SQL, if a CLOB column is selected into a local VARCHAR2 variable, data

stored in the CLOB column is retrieved and put into the CHAR buffer. If the buffer

is not large enough to contain all the CLOB data a truncation error is raised and no

data is written to the buffer. After the SELECT, the VARCHAR2 variable behaves

the same as a regular character buffer.

In contrast, when a CLOB column is selected into a local CLOB variable, the CLOB

locator is fetched. PL/SQL built-in functions that previously took only

VARCHAR2s are now enabled to also take CLOB locators as arguments. The return

type of the functions is CLOB if the primary argument is a CLOB. At the same time,

the CLOB local variable can behave as a LOB locator when passed to DBMS_LOB

APIs.

The preceding statement also applies to RAWs and BLOBs.

Accepting CLOBs in VARCHAR2 Operators/Functions
SQL operators/functions that currently take VARCHAR2 columns as operands or

arguments are now enabled to accept CLOB columns. Previously, in Oracle8i,
comparison of LOBs was not allowed, except for comparing LOB functions and the

‘IS [NOT] NULL’ operator on LOBs. In this release, comparison of LOBs themselves

 UNION, INTERSECT, MINUS

Note: UNION ALL works for LOBs

SELECT clobCol1 from tab1 UNION SELECT clobCol2 from tab2;

 JOIN SELECT... FROM... WHERE tab1.clobCol = tab2.clobCol

INDEX CREATE INDEX clobIndx ON tab(clobCol)...

Table 7–8 SQL Features Where LOBs Cannot be Used (Cont.)

SQL Feature Example for CLOB Columns
7-40 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs
in PL/SQL is allowed, while comparison in SQL queries is not yet available for

performance concerns.

Returning CLOB Values from SQL Functions/Operators
SQL operators/functions that previously returned VARCHAR2s, now either return

a CLOB or a VARCHAR2, depending on the input parameter type.

Returning VARCHAR2s
Operators/functions continue to return VARCHAR2s when only VARCHAR2s are

passed in as arguments. A function with only VARCHAR2 parameters never

returns a CLOB.

Returning CLOBs
Operators/functions return CLOBs when the primary argument, usually the first

parameter is passed in as CLOBs. For example, the following SQL statements select

out results as CLOB types:

SELECT SUBSTR(clobCol, 1,4) FROM WHERE LENGTH(clobCol)>4;
SELECT clobCol1 || charCol1 FROM ...;

Returned LOB is a Temporary LOB Locator
When a LOB is returned, the result from the select list is in the form of a temporary

LOB locator. Your application should view the temporary LOB as local storage for

the CHAR string returned from the SELECT. In PL/SQL, the temporary LOB has

the same lifetime (duration) as other local PL/SQL program variables. It can be

passed to subsequent SQL or PL/SQL VARCHAR2 functions or queries:

■ As a PL/SQL local variable, the temporary LOB will go out of scope at the end

of the residing program block and then the LOB data will automatically be

freed. This is the same behavior as other PL/SQL VARCHAR2 variables. At any

time, nonetheless, you can issue a DBMS_LOB.FREETEMPORARY()call to

release the resources taken by the local temporary LOBs.

Note: For functions like CONCAT(),||, which do not have a

well-defined primary argument, if any parameter is a LOB, the

function returns a LOB.
Modeling and Design 7-41

How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs
■ In OCI, the temporary LOBs returned from SQL queries are always in ’session’

duration, unless a user-defined duration is present, in which case, the

temporary LOBs will be in the user-defined duration.

Alternatively, if any of the following transpire:

■ You select out a CLOB column into a VARCHAR2

■ A function that returns CLOB is put into a VARCHAR2 buffer

the returned result is a regular CHAR buffer with the declared size. If the

VARCHAR2 buffer is not large enough to fit the data from the LOB, a truncation

error is raised.

SQL Query Example 1: Using SQL to SELECT out a CLOB into a VARCHAR2
The following example illustrates selecting out a CLOB column into a VARCHAR2

and returning the result as a CHAR buffer of declared size:

DECLARE
 vc1 VARCHAR2(32000);
 lb1 CLOB;
 lb2 CLOB;
BEGIN
 SELECT clobCol1 INTO vc1 FROM tab WHERE colID=1;
 -- lb1 is a temporary LOB
 SELECT clobCol2 || clobCol3 INTO lb1 FROM tab WHERE colID=2;

 lb2 := vc1|| lb1;
 -- lb2 is a still temporary LOB, so the persistent data in the database
 -- is not modified. An update is necessary to modify the table data.
 UPDATE tab SET clobCol1 = lb2 WHERE colID = 1;

DBMS_LOB.FREETEMPORARY(lb2); -- Free up the space taken by lb2

<... some more queries ...>

END; -- at the end of the block, lb1 is automatically freed

ALERT: Ensure that your temporary tablespace is large enough
to store all temporary LOB results returned from queries in your
program(s).
7-42 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

SQL DML Changes For LOBs
IS [NOT] NULL in VARCHAR2s and CLOBs
For LOB columns, operator “IS [NOT] NULL” has been allowed since Oracle8. It

checks if there is a LOB locator stored in the table row.

For VARCHAR2 columns, operator “IS NULL” indicates an empty string, or a null

string.

SQL RAW Type and BLOBs
SQL RAW types and BLOBs are handled as follows:

■ In PL/SQL: BLOBs to be selected into a RAW.

■ In OCI and other interfaces: Defining any local memory buffer, such as a char

array in C, on a BLOB is enabled. You can define a buffer of any type in a C

program for a BLOB column as SQLT_RAW type.

SQL DML Changes For LOBs
In Oracle9i, there has been no significant change to SQL DML with regards to LOBs.

The only related change is in the WHERE clause of UPDATE and DELETE. In prior

releases, Oracle did not allow LOBs in the WHERE clause of UPDATE, DELETE,

and SELECT. Now, SQL functions of LOBs that do not involve comparing LOB

Note: IS NULL Semantic Discrepancy

In the SQL 92 standard, a character string of length zero is distinct

from a null string.

For an initialized LOB of length 0, you should expect ‘IS NULL’ to

return zero (FALSE), since it is the correct and standard compliant

behavior. In contrast, a VARCHAR2 of length 0 returns TRUE on ’IS

NULL‘.

In addition, for the LENGTH() function:

■ If the input is a character string of zero length, LENGTH()

returns NULL.

■ For a CLOB of zero length, an EMPTY_CLOB(), zero is returned

by LENGTH and DBMS_LOB.GETLENGTH() in SQL and

PL/SQL.

This can be misleading. Note this semantic discrepancy.
Modeling and Design 7-43

SQL Functions/Operators for VARCHAR2s/RAWs and CLOBs/BLOBs
values, are allowed in predicates of the WHERE. clause. For example, length()
and insert() .

SQL Functions/Operators for VARCHAR2s/RAWs and CLOBs/BLOBs
As listed in Table 7–6 through Table 7–8, the SQL functions/operators for

VARCHAR2s/RAWs have been extended to work on CLOB or BLOB columns.

The return type of the SQL functions depend on the input type. Refer to "Returning

CLOB Values from SQL Functions/Operators" on page 7-41 for a detailed

discussion.

The following examples show queries that benefit from the VARCHAR2 semantics

on CLOBs. In prior releases, the effects of these queries used to be achieved, in

PL/SQL code, using DBMS_LOB calls. It will be convenient for you to be able to use

the same interface as VARCHAR2s to access data.

SQL Query Example 2: A few SQL queries on CLOBs
SELECT Gist||Story FROM Multimedia_tab WHERE Story LIKE Gist;

SELECT SUBSTR(Story, 20, 1), LENGTH(Story) FROM Multimedia_tab WHERE Gist NOT IN
Story;
-- A temp LOB is created and returned for ’Gist||Story’ and ’SUBSTR(Story,20,1)’ becausestory is a

CLOB.

Note: These examples are based on the following revised version

of the Multimedia application schema described in Appendix B,

"The Multimedia Schema" and Chapter 10, "Internal Persistent

LOBs" under "Creating a Table Containing One or More LOB

Columns":

CREATE TABLE Multimedia_tab (

 Clip_ID NUMBER NOT NULL,

Story CLOB default EMPTY_CLOB(),

Gist VARCHAR2(100),

......

}

7-44 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

PL/SQL Statements and Variables: New Semantics Changes
PL/SQL Statements and Variables: New Semantics Changes
In PL/SQL, a number of semantic changes have been made as described in the

previous paragraphs.

The new PL/SQL semantics support is described in the following sections as

follows:

■ Implicit Conversions Between CLOB and VARCHAR2

■ PL/SQL Example 1: Prior Release SQL Interface for a CLOB/VARCHAR2

Application

■ PL/SQL Example 2: Accessing CLOB Data When Treated as VARCHAR2s

■ PL/SQL Example 3: Defining a CLOB Variable on a VARCHAR2

■ Explicit Conversion Functions

■ VARCHAR2 and CLOB in PL/SQL Built-in Functions

■ PL/SQL Example 4: CLOB Variables in PL/SQL

■ PL/SQL Example 5: Change in Locator-Data Linkage

■ PL/SQL Example 6: Freeing Temporary LOBs Automatically and Manually

■ PL/SQL CLOB Comparison Rules

■ Interacting with SQL and PL/SQL in OCI and Java Interfaces

Implicit Conversions Between CLOB and VARCHAR2
The implicit conversion in both directions, from CLOB to VARCHAR2, and from

VARCHAR2 to CLOB, have made the following operations between CLOBs and

VARCHAR2s possible:

■ CLOB columns can be selected into VARCHAR2 PL/SQL variables

■ VARCHAR2 columns can be selected into CLOB variables

■ Assignment and parameter passing between CLOBs and VARCHAR2s

Note: The following discussions, concerning CLOBs and

VARCHAR2s, also apply to BLOBs and RAWs, unless otherwise

noted. In the text, BLOB and RAW are not explicitly mentioned.
Modeling and Design 7-45

PL/SQL Statements and Variables: New Semantics Changes
PL/SQL Example 1: Prior Release SQL Interface for a
CLOB/VARCHAR2 Application

The following example illustrates the way CLOB data was accessed prior to this

release. This application tries to simply display both the Gist and Story from the

table Multimedia_tab.

declare
myStoryLOB CLOB;
myStoryBuf VARCHAR2(4001);
amt NUMBER:=4001;
offset NUMBER := 1;

begin
SELECT Story INTO myStoryLOB FROM Multimedia_tab WHERE Clip_ID = 10;
DBMS_LOB.READ(myStoryLOB, amt, offset, myStoryBuf);
-- Display Gist and Story by printing ’myStoryBuf’.

end;

PL/SQL Example 2: Accessing CLOB Data When Treated as VARCHAR2s
The following example illustrates the way CLOB data is accessed with this release

when the CLOBs are treated as VARCHAR2s:

declare
myStoryBuf VARCHAR2(4001);

begin
SELECT Story INTO myStoryBuf FROM Multimedia_tab WHERE Clip_ID = 10;
-- Display Story by printing myStoryBuf directly

end;

PL/SQL Example 3: Defining a CLOB Variable on a VARCHAR2

declare
myGistLOB CLOB;

begin
SELECT Gist INTO myGistLOB FROM Multimedia_tab WHERE Clip_ID = 10;
-- myGistLOB is a temporary LOB.
-- Use myGistLOB as a lob locator

end;
7-46 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

PL/SQL Statements and Variables: New Semantics Changes
Explicit Conversion Functions
In SQL and PL/SQL, the following new explicit conversion functions have been

added to convert other data types to CLOB, NCLOB, and BLOB as part of the

LONG-to-LOB migration:

■ TO_CLOB(): Converting from VARCHAR2, NVARCHAR2, or NCLOB to a

CLOB

■ TO_NCLOB: Converting from VARCHAR2, NVARCHAR2, or CLOB to an

NCLOB

■ TO_BLOB(): Converting from RAW to a BLOB

■ TO_CHAR() is enabled to convert a CLOB to a CHAR type.

■ TO_NCHAR() is enabled to convert an NCLOB to a NCHAR type.

Other explicit conversion functions are not supported in this release, such as, TO_

NUMBER(), see Table 7–6. Conversion function details are explained in Chapter 8,

"Migrating From LONGs to LOBs".

VARCHAR2 and CLOB in PL/SQL Built-in Functions
CLOB and VARCHAR2 are still two distinct types. But depending on the usage, a

CLOB can be passed to SQL and PL/SQL VARCHAR2 built-in functions, behaving

exactly like a VARCHAR2. Or the variable can be passed into DBMS_LOB APIs,

acting like a LOB locator. Please see the following combined example,"PL/SQL

Example 4: CLOB Variables in PL/SQL".

PL/SQL VARCHAR2 functions/operators need to take CLOBs as argument or

operands.

When the size of a VARCHAR2 variable is not large enough to contain the result

from a function that returns a CLOB, or a SELECT on a CLOB column, an error

should be raised and no operation will be performed. This is consistent with current

VARCHAR2 behavior.

Note: In prior releases, in PL/SQL, you had to first issue the

DBMS_LOB.CREATETEMPORARY() call before using the temporary

LOB. From this release, the temporary LOB is created implicitly in

’assignments’ and ’defines.’
Modeling and Design 7-47

PL/SQL Statements and Variables: New Semantics Changes
PL/SQL Example 4: CLOB Variables in PL/SQL
1 declare
2 myStory CLOB;
3 revisedStory CLOB;
4 myGist VARCHAR2(100);
5 revisedGist VARCHAR2(100);
6 begin
7 -- select a CLOB column into a CLOB variable
8 SELECT Story INTO myStory FROM Multimedia_tab WHERE clip_id=10;
9 -- perform VARCHAR2 operations on a CLOB variable
10 revisedStory := UPPER(SUBSTR(myStory, 100, 1));
11 -- revisedStory is a temporary LOB
12 -- Concat a VARCHAR2 at the end of a CLOB
13 revisedStory := revisedStory || myGist;

14 -- The following statement will raise an error since myStory is
15 -- longer than 100 bytes
16 myGist := myStory;
17 end;

Please note that in line 10 of "PL/SQL Example 4: CLOB Variables in PL/SQL", a

temporary CLOB is implicitly created and is pointed to by the revisedStory
CLOB locator. In the current interface the line can be expanded as:

buffer VARCHAR2(32000)
DBMS_LOB.CREATETEMPORARY(revisedStory);
buffer := UPPER(DBMS_LOB.SUBSTR(myStory,100,1));
DBMS_LOB.WRITE(revisedStory,length(buffer),1, buffer);

In line 13, myGist is appended to the end of the temporary LOB, which has the

same effect of:

DBMS_LOB.WRITEAPPEND(revisedStory, myGist, length(myGist));

In some occasions, implicitly created temporary LOBs in PL/SQL statements can

change the representation of LOB locators previously defined. Consider the next

example.

PL/SQL Example 5: Change in Locator-Data Linkage
1 declare
2 myStory CLOB;
3 amt number:=100;
4 buffer VARCHAR2(100):=’some data’;
7-48 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

PL/SQL Statements and Variables: New Semantics Changes
5 begin
6 -- select a CLOB column into a CLOB variable
7 SELECT Story INTO myStory FROM Multimedia_tab WHERE clip_id=10;
8 DBMS_LOB.WRITE(myStory, amt, 1, buf);
9 -- write to the persistent LOB in the table
10
11 myStory:= UPPER(SUBSTR(myStory, 100, 1));
12 -- perform VARCHAR2 operations on a CLOB variable, temporary LOB created.
Changes
13 -- will not be reflected in the database table from this point on.
14
15 update Multimedia_tab set Story = myStory WHERE clip_id = 10;
16 -- an update is necessary to synchronize the data in the table.
17 end;

After line 7, myStory represents a persistent LOB in Multimedia_tab .

The DBMS_LOB.WRITE() call in line 8 directly writes the data to the table.

No UPDATE statement is necessary. Subsequently in line 11, a temporary LOB is

created and assigned to myStory because myStory should now behave like a local

VARCHAR2 variable. The LOB locator myStory now points to the newly-created

temporary LOB.

Therefore, modifications to myStory will no longer be reflected in the database. To

propagate the changes to the database table, an UPDATE statement becomes

necessary now. Note again that for the previous persistent LOB, the UPDATE is not

required.

Temporary LOBs created in a program block as a result of a SELECT or an

assignment are freed automatically at the end of the PL/SQL

block/function/procedure. You can choose to free the temporary LOBs to reclaim

system resources and temporary tablespace by calling DBMS_
LOB.FREETEMPORARY() on the CLOB variable.

PL/SQL Example 6: Freeing Temporary LOBs Automatically and Manually
declare
 Story1 CLOB;
 Story2 CLOB;
 StoryCombined CLOB;
 StoryLower CLOB;
begin
 SELECT Story INTO Story1 FROM Multimedia_tab WHERE Clip_ID = 1;
 SELECT Story INTO Story2 FROM Multimedia_tab WHERE Clip_ID = 2;
Modeling and Design 7-49

PL/SQL CLOB Comparison Rules
 StoryCombined := Story1 || Story2; -- StoryCombined is a temporary LOB
 -- Free the StoryCombined manually to free up space taken
 DBMS_LOB.FREETEMPORARY(StoryCombined);
 StoryLower := LOWER(Story1) || LOWER(Story2);
 end; -- At the end of block, StoryLower is freed.

PL/SQL CLOB Comparison Rules
Like VARCHAR2s, when a CLOB is compared with another CLOB or compared

with a VARCHAR2, a set of rules determines the comparison. The rules are usually

called a "collating sequence”. In Oracle, CHARs and VARCHAR2s have slightly

different sequences due to the blank padding of CHARs.

CLOBS Follow the VARCHAR2 Collating Sequence
As a rule, CLOBs follow the same collating sequence as VARCHAR2s. That is, when

a CLOB is compared, the result is consistent with if the CLOB data content is

retrieved into a VARCHAR2 buffer and the VARCHAR2 is compared. The rule

applies to all cases including comparisons between CLOB and CLOB, CLOB and

VARCHAR2, and CLOB and CHAR.

It makes no sense to compare CLOBs with non-character data, or with BLOBs. An

error is returned in these cases.

Interacting with SQL and PL/SQL in OCI and Java Interfaces
The OCI and Java interfaces now provide the ability to bind and define VARCHAR2

variables to SQL and PL/SQL statements with LOBs.

Note: When a CLOB is compared with a CHAR string, it is always

the character data of the CLOB being compared with the string.

Likewise, when two CLOBs are compared, the data content of the

two CLOBs are compared, not their LOB locators.

See Also:

■ Oracle Call Interface Programmer’s Guide

■ Oracle9i JDBC Developer’s Guide and Reference
7-50 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Performance Attributes When Using SQL Semantics with LOBs
This release does not provide the ability to define variables in the other direction,

that is, defining a client-side CLOB locator on a VARCHAR2 column.

Performance Attributes When Using SQL Semantics with LOBs
Be aware of the following performance issues, when using SQL semantics with

LOBs.

Inserting More than 4K Bytes Data Into LOB Columns
In Oracle9i, the maximum length restriction for all column data and buffer size

when processing SQL queries, can be more than 4K bytes. You can process LOB

data, which can be as long as 4G bytes, in SQL!

Temporary LOBs are used internally if the data is greater than 4K bytes to store

intermediate results.

For large VARCHARs, SQL queries now perform in a similar fashion to when

accessing CLOBs through the previous set of LOB APIs.

Temporary LOB Creation/Deallocation
In PL/SQL, C (OCI), and Java, SQL query results return temporary LOBs for

operation/function calls on LOB columns. For example:

SELECT substr(CLOB_Column, 4001, 32000) FROM ...

Returned temporary LOBs automatically get freed at the end of a PL/SQL program

block.

You can choose to free any unneeded temporary LOBs at any time to free up system

resources and temporary tablespace. Without proper deallocation of the temporary

Note: In OCI, from a SQL query, temporary LOBs are generally

returned in ’session‘ duration.

Note: This could degrade performance. The extra load in query

processing comes from both the cost of dealing with the larger

amount of intermediate results and the lower efficiency of accessing

temporary LOBs.
Modeling and Design 7-51

Performance Attributes When Using SQL Semantics with LOBs
LOBs returned from SQL queries, temporary tablespace gets filled up steadily and

you could observe performance degradation. See "PL/SQL Example 6: Freeing

Temporary LOBs Automatically and Manually", for an example of freeing

temporary LOBs explicitly.

Performance Measurement
The performance of an SQL query execution on CLOB columns should be compared

to that of a query on VARCHAR2s or LONGs of the same size. Expect the

performance on LOBs to be within 80% of VARCHAR2s/LONGs or better.

Note: System/Database Management: After this newly provided

enhanced SQL semantics functionality is used in your applications,

there will be many more temporary LOBs created silently in SQL

and PL/SQL than before. Ensure that temporary tablespace for
storing these temporary LOBs is large enough for your

applications!
7-52 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

User-Defined Aggregates and LOBs
User-Defined Aggregates and LOBs
User-defined aggregates (UDAGs) provide a mechanism for application/cartridge

developers, and end-users to implement and deploy new aggregate functions over

scalar data types (including LOBs) as well as object and opaque types.

The following are two examples of applications for user-defined aggregates

(UDAGs):

■ Spatial Cartridge. In Oracle Spatial cartridge, several functions return

geometries as the result of a spatial query. These functions can only be

aggregated using user-defined aggregate functions. In situations, such as web

delivery, it could be efficient to aggregate the results of a query and send one

aggregate geometry instead of sending several individual geometries.

For example, a query to find the state boundary by unionizing the county

boundaries in each state can be executed as follows:

SELECT SDO_AGGR_UNION(county.geometry)
FROM COUNTIES
GROUP BY county.state;

■ Trusted Oracle. In Trusted Oracle, the row label is modelled as an opaque type

LBAC_LABEL. To define aggregate functions over rowlabels such as greatest

lower bound (GLB) and least upper bound (LUB), queries such as the following,

can then be executed efficiently.

SELECT group_column, GLB(rowlabel)
FROM x
GROUP BY group_column.

User Defined Aggregate functions (UDAG) refer to aggregate functions with user

specified aggregation semantics. You can create a new aggregate function and

provide the aggregation logic using a set of routines. Once created, user defined

aggregate functions can be used in SQL DML statements like built-in aggregates.

Complex data is typically stored in the database using object types, opaque types or

LOBs. User-defined aggregates are useful in specifying aggregation over these

domains of data.

UDAGs can also be used to create new aggregate functions over traditional scalar

data types for financial or scientific applications. Since, it is not possible to provide

native support for all forms of aggregates, this functionality provides you with a

flexible way to add new aggregate functions.
Modeling and Design 7-53

User-Defined Aggregates and LOBs
An aggregate function takes a set of values as input and returns a single value. The

sets of values for aggregation are typically identified using a GROUP BY clause. For

example:

SELECT AVG(T.Sales)
 FROM AnnualSales T
 GROUP BY T.State

UDAGs allow you to register new aggregate functions by providing specific (new)

implementations for the preceding primitive operations.

UDAGs: DDL Support
User-defined aggregate functions have the following DDL support:

■ Creating and dropping aggregate functions over scalar data types (including

LOBs) and user-defined data types (object types and opaque types).

■ Specifying the aggregation logic in form of user supplied routines.

■ Specification of implementation routines in any combination of the following

languages: PL/SQL, C/C++ or Java.

UDAGs: DML and Query Support
User-defined aggregate functions have the following DML and query support:

■ SQL statements which invoke the UDAG as part of an expression in the

SELECT list or as part of the predicate in the HAVING clause

■ Both serial and parallel evaluations of the UDAG

■ Allow specification of DISTINCT and ALL (default) keywords on the input

parameter to the UDAG

■ UDAGs with group by extensions - CUBE, ROLLUP and grouping sets

■ Materialized views with UDAGs with memory-less refresh option

■ Windowing functions with UDAGs

See Also: Oracle9i Data Cartridge Developer’s Guide

Note: In PL/SQL, UDAGs cannot be used in procedural

statements, but can be used in embedded SQL.
7-54 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Migrating From LONGs to
8

Migrating From LONGs to LOBs

This chapter contains the following topics:

■ Introducing LONG-to-LOB Migration

■ Guidelines for Using LONG-to-LOB API

■ Migrating Existing Tables from LONG to LOB

■ LONG-to-LOB Migration Limitations

■ Using LONG-to-LOB API with OCI

■ Using SQL and PL/SQL to Access LONGs and LOBs

■ Applications Requiring Changes When Converting From LONGs to LOBs

■ Using utldtree.sql to Determine Where Your Application Needs Change

■ Examples of Converting from LONG to LOB Using Table Multimedia_tab

■ Summary of New Functionality Associated with the LONG-to-LOB API

■ Compatibility and Migration

■ Performance

■ Frequently Asked Questions (FAQs): LONG to LOB Migration
LOBs 8-1

Introducing LONG-to-LOB Migration
Introducing LONG-to-LOB Migration
To assist you in migrating to LOBs, Oracle supports the LONG API for LOBs. This

API ensures that when you change your LONG columns to LOBs, your existing

applications will require few changes, if any.

The term, “LONG API”, refers to DML and querying of LONG datatypes. Examples

of the LONG API are:

■ For OCI: OCIBindByName(), OCIBindDynamic(), OCIDefineByPos(),

OCIDefineDynamic(),....

■ For PL/SQL: substr, instr,... and parameter passing

Oracle9i supports LONG as well as LOB datatypes. When possible, change your

existing applications to use LOBs instead of LONGs because of the added benefits

that LOBs provide. See Chapter 7, "Modeling and Design", "LOBs Compared to

LONG and LONG RAW Types" on page 7-2.

This chapter describes how the "LONG API" referred to here as "LONG-to-LOB

API", is used for LOBs.

Using the LONG-to-LOB API Results in an Easy Migration
LONG-to-LOB migration allows you to easily migrate your existing applications

that access LONG columns, to use LOB columns. The migration has two parts:

■ Data migration. This consists of the procedure to move existing tables

containing LONG columns to use LOBs. This is described in "Migrating

Existing Tables from LONG to LOB" on page 8-6.

■ Application migration. This specifies how existing LONG applications will

change for using LOBs. Your application will only need to change in very rare

cases. The LONG-to-LOB API that is implemented for LOBs is described in

Note: The "LONG API" applies to other datatypes besides

LONGs. In this chapter, however, we are specifically interested in

this API for LOBs. We refer to it here as the "LONG-to-LOB API".

Note: The performance of some LOB operations improves with

the LONG-to-LOB API. See "Performance" on page 8-42 for details.
8-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Guidelines for Using LONG-to-LOB API
"Using LONG-to-LOB API with OCI" on page 8-12 and "Using SQL and

PL/SQL to Access LONGs and LOBs" on page 8-16.

Guidelines for Using LONG-to-LOB API
The following are guidelines for using LONG-to-LOB API.

Using ALTER TABLE
Use ALTER TABLE to convert LONG columns in existing tables to LOBs. See

"Migrating LONGs to LOBs: Using ALTER TABLE to Change LONG Column to

LOB Types" on page 8-6.

LONG-to-LOB API and OCI

Binds in OCI
Previously, a VARCHAR2 buffer of more than 4000 bytes of data could only be

bound to a LONG column. The LONG-to-LOB API now allows this functionality for

LOBs. It works for the following:

■ Regular, piecewise, and callback binds for INSERTs and UPDATEs

■ Array binds for INSERTs and UPDATEs

■ Parameter passing or across PL/SQL and OCI boundaries

The following OCI functions are part of the LONG-to-LOB API:

■ OCIBindByPos()

■ OCIBindByName()

■ OCIBindDynamic()

■ OCIStmtSetPieceInfo()

Note: LONGs have various restrictions, such as, there can be at

most, only one LONG column in a table,....

On the other hand, LOBs do not have such restrictions. After you

migrate your LONG tables to use LOBs, you will no longer have

these LONG restrictions. You can have multiple LOB columns in a

table, and do multiple >4k binds in a single INSERT/UPDATE,...
Migrating From LONGs to LOBs 8-3

Guidelines for Using LONG-to-LOB API
■ OCIStmtGetPieceInfo()

They accept the following datatypes for inserting or updating LOB columns:

■ SQLT_CHR and SQLT_LNG for CLOB columns

■ SQLT_BIN and SQLT_LBI for BLOB columns

Defines in OCI
The LONG-to-LOB API allows the following OCI functions to accept VARCHAR2

buffer and SQLT_CHR, SQLT_LNG, SQLT_LBI , and SQLT_BIN datatypes as LOB

column outputs:

■ OCIDefineByPos()

■ OCIDefineDynamic()

■ OCIStmtSetPieceInfo()

■ OCIStmtGetPieceInfo()

When you do this, the LOB data (and not the locator) is selected into your buffer.

OCI Functions Allow Piecewise and Array INSERT, UPDATE, or Fetch on LOBs
The OCI functions mentioned earlier, allow piecewise INSERT, UPDATE, or fetch,

and array INSERT, UPDATE, or fetch on LOBs. They allow you to provide data

dynamically at run-time for INSERTs and UPDATEs into LOBs.

The bind (INSERT and UPDATE) functions worked for LOBs in prior releases in the

same way as they do for LONGs.

See Also:

■ "Using OCI Functions to Perform INSERT or UPDATE on

LOBs" on page 8-13

■ "PL/SQL and C Binds from OCI" on page 8-20

Note: In the OCI LONG-to-LOB API, you cannot specify the

amount you want to read. You can only specify the buffer length of

your buffer. So Oracle just reads whatever amount fits into your

buffer.

See Also: See "Using OCI Functions to Perform INSERT or

UPDATE on LOBs" on page 8-13.
8-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Guidelines for Using LONG-to-LOB API
Defines (SELECT) now work for LOBs in regular, piecewise, callback, and array

mode.

Multibyte Charactersets (OCI)
When the Client’s characterset is multibyte, these functions behave the same as for

LONGs.

■ For a piecewise fetch in a multibyte characterset, a multibyte character could be

cut in middle, with some bytes in one buffer and remaining bytes in the next

buffer.

■ For regular fetch, if the buffer cannot hold all bytes of the last character, then

Oracle returns as many bytes as fit into the buffer, hence returning partial

characters.

LONG-to-LOB API and PL/SQL

INSERT and UPDATE of LOB Columns (PL/SQL)
In prior releases, in PL/SQL, you could INSERT or UPDATE the following:

■ Character data, such as VARCHAR2, CHAR, or LONG, into a CLOB column

■ Binary data, such as RAW or LONG RAW, into a BLOB column

See "PL/SQL Interface" on page 8-40.

SELECT on a LOB Column (PL/SQL)
PL/SQL accepts SELECT statements on a CLOB column, where, a character

variable, such as VARCHAR2, CHAR, or LONG, is provided in the INTO clause.

See "Using SQL and PL/SQL to Access LOBs" on page 8-16. The same holds for

selecting a BLOB column into a binary variable, such as RAW or LONG RAW.

See Also: "Using OCI Functions to Perform FETCH on LOBs" on

page 8-14.

Note: In the PL/SQL LONG-to-LOB API, you cannot specify the

amount you want to read. You can only specify the buffer length of

your buffer. If your buffer length is smaller than the LOB data

length, Oracle throws an exception.
Migrating From LONGs to LOBs 8-5

Migrating Existing Tables from LONG to LOB
Assignment and Parameters Passing (PL/SQL)
PL/SQL allows implicit type conversion and assignment of the following:

■ CLOB variables to VARCHAR2, CHAR, or LONG variables and vice-versa.

■ BLOB variables to RAW and LONG RAW variables and vice versa.

The same holds for parameter passing. Hence PL/SQL allows the passing of the

following:

■ A CLOB as an actual parameter to a function whose formal parameter is a

character type, such as VARCHAR2, CHAR, or LONG, or vice versa

■ A BLOB as an actual parameter to a procedure or function whose formal

parameter is a binary type, such as RAW or LONG RAW, or vice versa.

PL/SQL built-in functions and operators which accept VARCHAR2 arguments

also accept CLOB arguments now. For example, INSTR, SUBSTR, comparison

operators,...

Migrating Existing Tables from LONG to LOB
This section describes techniques for migrating existing tables from LONG to LOB

datatypes.

Migrating LONGs to LOBs: Using ALTER TABLE to Change
LONG Column to LOB Types

ALTER TABLE now allows a LONG column to be modified to CLOB or NCLOB

and a LONG_RAW column to be modified to BLOB. The syntax is as follows:

ALTER TABLE [<schema>.]<table_name>
 MODIFY (< long_column_name > { CLOB | BLOB | NCLOB }

See Also:

■ "Implicit Conversion of NUMBER, DATE, ROW_ID, BINARY_

INTEGER, and PLS_INTEGER to LOB is Not Supported" on

page 8-23

■ "No Implicit Conversions of BLOB to VARCHAR2, CHAR, or

CLOB to RAW or LONG RAW" on page 8-23.

See Also: "VARCHAR2 and CLOB in PL/SQL Built-In Functions"

on page 8-19, for a complete list.
8-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Migrating Existing Tables from LONG to LOB
 [DEFAULT <default_value>]) [LOB_storage_clause];

For example, if you had a table with the following definition:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

you can change the column long_col in table Long_tab to datatype CLOB as

follows:

ALTER TABLE Long_tab MODIFY (long_col CLOB);

Note: The new ALTER TABLE statement only modifies either of

the following:

■ A LONG column to a CLOB or an NCLOB column

■ A LONG RAW column to a BLOB column

It will not modify a VARCHAR or a RAW column.

Note: In the new ALTER TABLE statement to change a LONG

column to a LOB, the only other operations allowed are:

■ Specifying the default value for the LOB column

■ Specifying the LOB storage clause for the column being

changed from LONG to LOB

Any other ALTER TABLE operation is not allowed with this

operation.
Migrating From LONGs to LOBs 8-7

Migrating Existing Tables from LONG to LOB
All Constraints of LONG Column are Maintained
All constraints of your previous LONG columns are maintained for the new LOB

columns. The only constraint allowed on LONG columns are NULL and

NOT-NULL. To alter the constraints for these columns, or alter any other columns

or properties of this table, you have to do so in a subsequent ALTER TABLE

statement.

Default Values for LONG are Copied to LOB
If you do not specify a default value, the default value for the LONG column is

copied to the new LOB column.

Note: Migrating LONGs to LOBs: Method Used in Oracle8i

This method of migrating LONGs to LOBs replaces the following

method used in Oracle8i. Oracle8i added a new operator on

LONGs called TO_LOB(). TO_LOB() copies the LONG to a LOB.

You can use CREATE TABLE AS SELECT or INSERT AS SELECT

statements with the TO_LOB operator to copy data from the LONG

to the LOB. For example, if you have a table with the following

definition:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

Do the following:

CREATE TABLE Lob_tab (id NUMBER, clob_col CLOB);

INSERT INTO Lob_tab SELECT id, TO_LOB(long_col) FROM long_

tab;

DROP TABLE Long_tab;

CREATE VIEW Long_tab (id, long_col) AS SELECT * from Lob_tab;

This series of operations is equivalent to changing the datatype of

the column Long_col of table Long_tab from LONG to CLOB.
With this method (the method of choice prior to this release) you

have to create all the constraints, triggers, and indexes on the new

table again.
8-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Migrating Existing Tables from LONG to LOB
Most Triggers Remain Valid
Most of the existing triggers on your table are still usable, however two types of

triggers can cause issues.

Indexes Must be Rebuilt — Use ALTER INDEX...REBUILD
Domain indexes on the LONG column must be dropped before ALTERing the

LONG column to LOB.

All other indexes, including domain and functional indexes on all columns of the

table, will be unusable and must be rebuilt using the ALTER INDEX <index
name> REBUILD statement.

Rebuilding Indexes After a LONG to LOB Migration
To rebuild your indexes on a given table, after a LONG to LOB migration, use the

following steps:

1. Drop the domain indexes on the LONG column, if any

2. ALTER TABLE Long_tab MODIFY (long_col CLOB...)...;

3. SELECT index_name FROM user_indexes WHERE table_name=’LONG_TAB’;

4. For all indexes <index> listed in step 3, issue the command:
ALTER INDEX <index> REBUILD

5. Create the domain index on the LOB column, if desired.

Space Requirements are Temporarily Doubled
The ALTER TABLE MODIFY LONG->LOBstatement copies the contents of the table

into a new space, and frees the old space at the end of the operation. This

temporarily doubles the space requirements. But the advantage is that after the

transformation, the table will not have any embedded NULLs, so the performance

of subsequent DMLs or queries is good.

See: "LONG-to-LOB Migration Limitations" on page 8-10 for

more details.

Note: The table name has to be capitalized in this query.
Migrating From LONGs to LOBs 8-9

LONG-to-LOB Migration Limitations
LOGGING
During migration, the redo changes for the table are logged only if the table has

LOGGING on. Redo changes for the column being converted from LONG to LOB

are logged only if the storage characteristics of the LOB indicate LOGGING. The

default value for LOGGING|NOLOGGING for the LOB is inherited from the

tablespace in which the LOB is being created.

To prevent generation of redo space during migration, do the following to migrate

smoothly:

1. ALTER TABLE Long_tab NOLOGGING;

2. ALTER TABLE Long_tab MODIFY (long_col CLOB [default <default_val>])

LOB (long_col) STORE AS (... NOLOGGING...);

3. ALTER TABLE Long_tab MODIFY LOB long_col STORE AS (...LOGGING...);

4. ALTER TABLE Long_tab LOGGING;

5. Take a backup of the tablespaces containing the table and the LOB.

LONG-to-LOB Migration Limitations
Before migrating from LONGs to LOBs, note the following issues:

Clustered Tables
LOBs are not allowed in clustered tables, whereas LONGs are allowed. So if a table

is a part of a cluster, its LONG or LONG RAW column cannot be changed to LOB.

Replication
Oracle does not support the replication of columns that use the LONG and LONG

RAW datatypes. Oracle simply omits columns containing these datatypes from

replicated tables. You must convert LONG datatypes to LOBs in Oracle8i and then

replicate.

This is not a restriction imposed by LONG-to-LOB, but instead, the LONG-to-LOB

migration enables the replication of these columns.

If a table is replicated or has materialized views, and its LONG column is changed

to LOB, you may have to manually fix the replicas.

Triggers
Triggers are a problem in the following case:
8-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LONG-to-LOB Migration Limitations
You cannot have LOB columns in the UPDATE OF list in the UPDATE OF

trigger. LONG columns are allowed. For example, you cannot say:

create table t(lobcol CLOB);
create trigger trig before/after update of lobcol on t ...;

Hence, in the following case the trigger becomes invalidated and cannot be

recompiled:

create table t(lobcol LONG);
create or replace trigger trig before (or after) update of lobcol on t
for each row
begin
 dbms_output.put_line(’lmn’);
end;
/
insert into t values(’abc’);
UPDATE t SET lobcol = ’xyz’;

ALTER TABLE t MODIFY (lobcol CLOB); -- invalidates the trigger
UPDATE t SET lobcol = ’xyz’; -- doesn’t execute because trigger
 -- can’t be revalidated

This restriction may be removed in a future release. All other triggers work without

a problem.

Indexes
Indexes on any column of the table being migrated must be manually rebuilt. This

includes functional and domain indexes, must be manually rebuilt.

■ Domain indexes for the LONG column must be dropped before ALTERing a

LONG column to LOB.

■ Functional indexes on LONG columns converted to LOBs should work without

any changes to your code.

LONGs, LOBs, and NULLs
There is a difference in how NULL and zero-length LONGs and LOBs behave.

Applications migrating from LONG-to-LOB are not affected by this behavior, as

follows:

Consider these two tables, long_tab and lob_tab:

CREATE TABLE long_tab(id NUMBER, long_col LONG);
Migrating From LONGs to LOBs 8-11

Using LONG-to-LOB API with OCI
CREATE TABLE lob_tab(id NUMBER, lob_col LOB);

NULL LONGs Versus Zero Length LONGs
Zero length LONGs and NULL LONGs are the same. So the following two

statements each produce the same result, each one inserting a NULL in the LONG

column:

INSERT INTO long_tab values(1, NULL);
INSERT INTO long_tab values(1, ’’); -- Zero length string inserts NULL into the
LONG column

NULL LOBs Versus Zero Length LOBs
For LOBs, the following two statements also insert a NULL in the LOB column:

INSERT INTO lob_tab values(1, NULL);
INSERT INTO lob_tab values(1, ’’); -- A zero length string inserts NULL into
LOB column

However, if we truly insert a zero-length LOB using the empty_clob() constructor,

the LOB column will be non-NULL.

INSERT INTO lob_tab values(1, empty_clob()); -- A zero length LOB is not the
same as NULL

Using LONG-to-LOB API with OCI
Prior to this release, OCI provided interface calls for performing piecewise

INSERTS, UPDATES, and fetches of LONG data. These APIs also allow you to

provide data dynamically in case of array INSERTs or UPDATEs, instead of

providing a static array of bind values. These piecewise operations can be

performed by polling or by providing a callback.

The following functions are now supported for LOBs for you to directly INSERT,

UPDATE, and fetch LOB data without your having to deal with the LOB locator:

■ OCIBindByName() or OCIBindByPos(). These functions create an

association between a program variable and a placeholder in the SQL statement

or a PL/SQL block for INSERT/UPDATE.

■ OCIBindDynamic() . This call is used to register user callbacks for dynamic

data allocation for INSERT/UPDATE.

■ OCIDefineByPos() . This call associates an item in a SELECT-list with the

type and output data buffer.
8-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using LONG-to-LOB API with OCI
■ OCIDefineDynamic() . This call registers user callbacks for SELECTs if the

OCI_DYNAMIC_FETCH mode was selected in OCIDefineByPos() .

■ OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo() . These calls are

used to get or set piece information for piecewise operations.

Guidelines for Using LONG-to-LOB API for LOBs with OCI
The aforementioned OCI functions work in this release for LOBs in exactly the same

way as they do for LONGs. Using these, you can perform INSERTs, UPDATEs, and

fetches of data as described here.

Using OCI Functions to Perform INSERT or UPDATE on LOBs
There are various ways to perform INSERT or UPDATE of LOB data.

In all the ways described in the following, it is assumed that you have initialized the

OCI environment and allocated all necessary handles.

Simple INSERTs or UPDATEs in One Piece
To perform simple INSERTs and UPDATEs in one piece, the steps are:

1. OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. OCIBindByName() or OCIBindbyPos() to bind a placeholder in OCI_

DEFAULT mode to bind a LOB as CHAR or BIN.

3. OCIStmtExecute() to do the actual INSERT/UPDATE.

See Also: “Runtime data allocation and piecewise operations” in

the Oracle Call Interface Programmer’s Guide, for details on the API.

Note: When you use the aforementioned functions for CLOBs,

BLOBs, LONGs, and LONG RAWs, specify the datatype (dty) as:

■ SQLT_LNG and SQLT_CHR for CLOBs and LONGs

■ SQLT_LBI and SQLT_BIN for BLOBs and LONG RAWs

Note: These are in addition to the ways to insert LOB locators,

which are documented in Chapter 10, "Internal Persistent LOBs".
Migrating From LONGs to LOBs 8-13

Using LONG-to-LOB API with OCI
Using Piecewise INSERTs and UPDATEs with Polling
To perform piecewise INSERTs and UPDATEs with polling, the steps are:

1. OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. OCIBindByName() or OCIBindbyPos() to bind a placeholder in OCI_DATA_

AT_EXEC mode to bind a LOB as CHAR or BIN.

3. OCIStmtExecute() in default mode. This should return OCI_NEED_DATA.

4. While (returned value is OCI_NEED_DATA), do the following:

* OCIStmtGetPieceInfo() to retrieve information about piece to be

inserted

* OCIStmtSetPieceInfo() to set information about piece to be

inserted

* OCIStmtExecute . You are done when the return value is OCI_

SUCCESS.

Piecewise INSERTs and UPDATEs with Callback
To perform piecewise INSERTs and UPDATEs with callback, the steps are:

1. OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. OCIBindByName() or OCIBindbyPos() to bind a placeholder in OCI_

DATA_AT_EXEC mode to bind a LOB as CHAR or BIN.

3. OCIBindDynamic() to specify the callback.

4. OCIStmtExecute() in default mode.

Array INSERTs and UPDATEs
Use any of the preceding modes in conjunction with OCIBindArrayOfStruct() ,

or by specifying the number of iterations (iter) value > 1 in the

OCIStmtExecute() call.

Using OCI Functions to Perform FETCH on LOBs
There are three ways to fetch the LOB data.

Note: These are in addition to the ways to fetch the LOB locator,

which are documented in Chapter 10, "Internal Persistent LOBs".
8-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using LONG-to-LOB API with OCI
■ Simple fetch in one piece

■ Piecewise fetch

■ Array fetch

Simple Fetch in One Piece
To perform a simple fetch on LOBs in one piece, the steps involved are:

1. OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT

mode.

2. OCIDefineByPos() to define a select list position in OCI_DEFAULT

mode to define a LOB as CHAR or BIN.

3. OCIStmtExecute() to execute the SELECT statement.

4. OCIStmtFetch() to do the actual fetch.

Piecewise Fetch with Polling
To perform a piecewise fetch on LOBs with polling, the steps are:

1. OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT

mode.

2. OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_

FETCH mode to define a LOB as CHAR or BIN.

3. OCIStmtExecute() to execute the SELECT statement.

4. OCIStmtFetch() in default mode. This should return OCI_NEED_DATA.

5. While (returned value is OCI_NEED_DATA), do the following:

* OCIStmtGetPieceInfo() to retrieve information about piece to be

fetched.

* OCIStmtSetPieceInfo() to set information about piece to be

fetched.

* OCIStmtFetch. You are done when the return value is OCI_SUCCESS.

Piecewise with Callback
To perform a piecewise fetch on LOBs with callback, the steps are:

1. OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.
Migrating From LONGs to LOBs 8-15

Using SQL and PL/SQL to Access LONGs and LOBs
2. OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_

FETCH mode to define a LOB as CHAR or BIN.

3. OCIStmtExecute() to execute the SELECT statement.

4. OCIDefineDynamic() to specify the callback.

5. OCIStmtFetch() in default mode.

Array Fetch
Use any of the preceding modes in conjunction with

OCIDefineArrayOfStruct() , or by specifying the number of iterations (iter)
value >1 in the OCIStmtExecute() call.

Using SQL and PL/SQL to Access LONGs and LOBs
This section describes the following topics:

■ Using SQL and PL/SQL to Access LOBs on page 8-16

■ Implicit Assignment and Parameter Passing on page 8-17

■ PL/SQL and C Binds from OCI on page 8-20

■ Calling PL/SQL and C Procedures from SQL or PL/SQL on page 8-21

Using SQL and PL/SQL to Access LOBs
Data from CLOB and BLOB columns can be referenced by regular SQL statements,

such as: INSERT, UPDATE and SELECT.

There is no piecewise INSERT/UPDATE/fetch routine in PL/SQL. Therefore the

amount of data that can be accessed from the LOB column is limited by the

maximum character buffer size. In Oracle9i, PL/SQL supports character buffer sizes

up to 32767 bytes. Hence only LOBs of sizes up to 32767 bytes can be accessed by

PL/SQL applications.

If you need to access more than 32k, OCI callouts have to be made from the

PL/SQL code to utilize the APIs for piecewise insert and fetch.

The following are guidelines for accessing LOB columns:
8-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using SQL and PL/SQL to Access LONGs and LOBs
INSERTs
Data can be inserted into tables containing LOB columns by regular INSERTs in the

VALUES clause. The field of the LOB column can be PL/SQL character or binary

buffer variables (CHAR, VARCHAR2, RAW,...), a string literal, or a LOB locator.

UPDATEs
LOB columns can be updated as a whole by UPDATE... SET statements. There is no

random access of data stored in LOB columns. In the SET clause, the new values can

also be literals or any PL/SQL character or binary variables, or a LOB locator.

Restriction for LONG RAW and RAW Buffers More Than 4000 Bytes. There is a restriction

for binds which exists for both LONGs and LOBs. You cannot bind a VARCHAR2

buffer to a LONG RAW or a BLOB column if the buffer is of size more than 4000

bytes, because SQL will not do implicit HEXTORAW conversions for buffers larger

than 4000 bytes. Similarly, you cannot bind a RAW buffer to a LONG or a CLOB

column if the buffer is of size more than 4000 bytes because SQL will not do implicit

RAWTOHEX conversions for buffers larger than 4000 bytes.

SELECTs
For fetch, in prior releases, you could not use SELECT INTO to bind a character

variable to a LOB column. SELECT INTO used to bind LOB locators to the column.

This constraint has been removed.

LOB columns can be selected into character or binary buffers in PL/SQL. If the LOB

column is longer than the buffer size, an exception is raised without filling the

buffer with any data. LOB columns can also be selected into LOB locators.

Implicit Assignment and Parameter Passing
The LONG-to-LOB migration API supports assigning a CLOB (BLOB) variable to a

LONG(LONG RAW) or a VARCHAR2(RAW) variable and vice-versa. This is

because of the existence of %type and %rowtype datatypes in PL/SQL. The

assignments include parameter passing. These features are explained in detail in the

following section.

Variable Assignment Between CLOB/CHAR and BLOB/RAW
The following variable assignment between CLOB and CHAR, and BLOB and

RAWs are allowed:

CLOB_VAR := CHAR_VAR;
Migrating From LONGs to LOBs 8-17

Using SQL and PL/SQL to Access LONGs and LOBs
CHAR_VAR := CLOB_VAR;
BLOB_VAR := RAW_VAR;
RAW_VAR := BLOB_VAR;

This is done because of the presence of %type and %rowtype in existing code. For

example:

CREATE TABLE t (long_col LONG); -- Alter this table to change LONG column to LOB
DECLARE
 a VARCHAR2(100);
 b t.long_col%type; -- This variable changes from LONG to CLOB
BEGIN
 SELECT * INTO b FROM t;
 a := b; -- This changes from "VARCHAR2 := LONG to VARCHAR2 := CLOB
 b := a; -- This changes from "LONG := VARCHAR2 to CLOB := VARCHAR2
END;

Function/Procedure Parameter Passing
This allows all the user-defined procedures and functions to use CLOBs and BLOBs

as actual parameters where VARCHAR2, LONG, RAW, and LONG RAW are formal

parameters and vice-versa. It also allows PL/SQL built-ins like INSTR to accept

CLOB data in addition to strings. For example:

CREATE PROCEDURE FOO (a IN OUT t.long_col%type) IS......
CREATE PROCEDURE BAR (b IN OUT VARCHAR2) IS ...
DECLARE
 a VARCHAR2(100);
 b t.long_col%type -- This changes to CLOB
BEGIN
 a := ’abc’;
 SELECT long_col into b from t;
 FOO(a); -- Actual parameter is VARCHAR2, formal parameter is CLOB
 BAR(b); -- Actual parameter is CLOB, formal parameter is VARCHAR2
END;

Explicit Conversion Functions
In PL/SQL, the following two new explicit conversion functions have been added

to convert other data types to CLOB and BLOB as part of LONG-to-LOB migration:

■ TO_CLOB() converts LONG, VARCHAR2, and CHAR to CLOB

■ TO_BLOB() converts LONG RAW and RAW to BLOB

TO_CHAR() is enabled to convert a CLOB to a CHAR type.
8-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using SQL and PL/SQL to Access LONGs and LOBs
VARCHAR2 and CLOB in PL/SQL Built-In Functions
PL/SQL VARCHAR2 functions and operators take CLOBs as arguments or

operands. A CLOB can be passed to SQL and PL/SQL VARCHAR2 built-in

functions, behaving exactly like a VARCHAR2. Or the VARCHAR2 variable can be

passed into DBMS_LOB APIs acting like a LOB locator.

The PL/SQL built-in functions which accept CLOB parameters or give CLOB

output are:

■ LENGTH, LENGTHB

■ INSTR, INSTRB

■ SUBSTR, SUBSTRB

■ CONCAT, ||

■ LPAD, RPAD

■ LTRIM, RTRIM, TRIM

■ LIKE

■ REPLACE

■ LOWER, UPPER

■ NLS_LOWER, NLS_UPPER

■ NVL

■ Comparison operators (>, =, <,!=)

If a function returns a CLOB and the result is assigned to a VARCHAR2 variable,

but the size of the VARCHAR2 variable is not large enough to contain the result, an

error is raised and no operation is performed. The same holds if you try to SELECT

a CLOB into a VARCHAR2 variable. This is consistent with the current VARCHAR2

behavior.

These functions implicitly create temporary LOBs. Hence, some LOB locators can

change from persistent to temporary. As a result, any changes to the data pointed to

by the (temporary) LOB locator are not reflected in the persistent LOB which it

initially pointed to.

These temporary LOBs are freed automatically at the end of the PL/SQL block.You

can choose to free them explicitly to reclaim system resources and temporary

tablespace by calling DBMS_LOB.FREE_TEMPORARY() on the CLOB variable.
Migrating From LONGs to LOBs 8-19

Using SQL and PL/SQL to Access LONGs and LOBs
PL/SQL and C Binds from OCI
When you call a PL/SQL procedure from OCI, and have an in or out or in/out

bind, you should be able to:

■ Bind a variable as SQLT_CHR or SQLT_LNG where the formal parameter of the

PL/SQL procedure is SQLT_CLOB, or

■ Bind a variable as SQLT_BIN or SQLT_LBI where the formal parameter is

SQLT_BLOB

The following two cases work:

Calling PL/SQL Outbinds in the "begin foo(:1); end;" Manner.
Here is an example of calling PL/SQL outbinds in the "begin foo(:1);end;" manner:

text *sqlstmt = (text *)"BEGIN get_lob(:c); END; " ;

Calling PL/SQL Outbinds in the "call foo(:1);" Manner.
Here is an example of calling PL/SQL outbinds in the "call foo(:1);" manner:

text *sqlstmt = (text *)"CALL get_lob(:c);" ;

In both these cases, the rest of the program is as follows:

OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 curlen = 0;
OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":c", (sb4) strlen((char *) ":c"),
 (dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 1, (ub4 *) &curlen, (ub4) OCI_DATA_AT_EXEC);

The PL/SQL procedure, get_lob(), is as follows:

procedure get_lob(c INOUT CLOB) is -- This might have been column%type
 begin
 ... /* The procedure body could be in PL/SQL or C*/
 end;

See Also: Chapter 7, "Modeling and Design", "SQL Semantics

Support for LOBs" on page 7-33.
8-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using SQL and PL/SQL to Access LONGs and LOBs
Calling PL/SQL and C Procedures from SQL or PL/SQL

From SQL
When a PL/SQL procedure is called from SQL, LONG parameters are not allowed.

So this case is not a part of the LONG-to-LOB conversion process.

From PL/SQL
You can call a PL/SQL or C procedure from PL/SQL. It is possible to pass a CLOB

as an actual parameter where CHR is the formal parameter, or vice versa. The same

holds for BLOBs and RAWs.

These cases arise when either the formal or the actual parameter is an anchored

type, that is, table%type.
Migrating From LONGs to LOBs 8-21

Applications Requiring Changes When Converting From LONGs to LOBs
Applications Requiring Changes When Converting From LONGs to
LOBs

Even with implicit conversions to LOBs, some changes will have to be made to your

application. Cases where you will have to make changes to your application, are

listed in the following paragraphs.

Overloading with Anchored Types
For applications using anchored types, some overloadings would silently resolve to

different targets during the conversion to LOBs. For example:

procedure p(l long) is ...; -- (1)
procedure p(c clob) is ...; -- (2)

Consider the caller:

declare
 var longtab.longcol%type;
 begin
 ...
 p(var);
 ...
end;

Prior to LOB migration this call would have resolved to overload (1). Once longtab

is migrated to LOBs this call will silently resolve to overload (2). A similar issue

arises if the parameter to (1) was CHAR, VARCHAR2, RAW, LONG RAW.

When migrating LONG columns to LOB you have to manually examine and fix

dependent applications.

Because of the new conversions, some existing applications with procedure

overloadings, that include LOB arguments, may still break. This includes

applications that DO NOT use LONG anchored types. For example,

procedure p(n number) is ...; -- (1)
procedure p(c clob) is ...; -- (2)

p('abc');

Previously, the only conversion allowed was CHAR to NUMBER, so (1) would be

chosen. Now, both conversions are allowed, so the call is ambiguous and raises an

overloading error.
8-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using utldtree.sql to Determine Where Your Application Needs Change
Implicit Conversion of NUMBER, DATE, ROW_ID, BINARY_INTEGER,
and PLS_INTEGER to LOB is Not Supported

PL/SQL currently permits conversion of NUMBER, DATE, ROW_ID, BINARY_

INTEGER, and PLS_INTEGER to LONG. There are no plans to support implicit

conversions from these types to LOB (explicit or implicit). Users relying on these

conversions will have to explicitly convert these types TO_CHAR. Hence, if you

had an assignment of the form:

number_var := long_var; -- The RHS becomes a LOB variable after conversion

Then you have to explicitly modify your code to say:

number_var := TO_CHAR(long_var); -- Note that long_var is of type CLOB after
conversion

No Implicit Conversions of BLOB to VARCHAR2, CHAR, or CLOB to RAW
or LONG RAW

Also, there is no implicit conversion from the following:

■ BLOB to VARCHAR2, CHAR, or LONG

■ CLOB to RAW or LONG RAW

Hence if you had the following code:

SELECT <long raw column> INTO <varchar2> VARIABLE FROM <table>

and you changed the LONG RAW column into BLOB, this SELECT statement will

not work. You have to add the TO_RAW or a TO_CHAR conversion operator on the

selected variable such as:

SELECT TO_RAW(<long raw column>) INTO <varchar2> VARIABLE FROM <table>
-- note that the long raw column is now a BLOB column

The same holds for selecting a CLOB into a RAW variable, or for assignments of

CLOB to RAW and BLOB to VARCHAR2.

Using utldtree.sql to Determine Where Your Application Needs Change
Use the utility, rdbms/admin/utldtree.sql, to determine which parts of your

application potentially need rewriting when you ALTER your LONG tables to

LOBs.
Migrating From LONGs to LOBs 8-23

Examples of Converting from LONG to LOB Using Table Multimedia_tab
utldtree.sql allows you to see all objects that are (recursively) dependent on a given

object. In addition, you will only see objects for which you have permission.

Instructions on how to use utldtree.sql is documented in the file itself. Hence you

can see all objects which depend on the table with the LONG column, and compare

that with the cases documented in the section titled "Applications Requiring

Changes When Converting From LONGs to LOBs" on page 8-22, to see if your

application needs changing.

utldtree.sql is only needed for PL/SQL. For SQL and OCI you do not need to

change your applications.

Examples of Converting from LONG to LOB Using Table Multimedia_tab
See Appendix B, "The Multimedia Schema", for a detailed description of the

Multimedia_tab schema. The fields used in the following examples are:

CREATE TABLE Multimedia_tab (
 Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ
) NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

Suppose the column, STORY, of table MULTIMEDIA_TAB was of type LONG
before, that is, you originally created the table MULTIMEDIA_TAB as follows:

CREATE TABLE MULTIMEDIA_TAB (CLIP_ID NUMBER,
 STORY LONG,
 );

To Convert LONG to CLOB, Use ALTER TABLE
To convert the LONG column to CLOB just use ALTER TABLE as follows:

ALTER TABLE multimedia_tab MODIFY (story CLOB);

and you are done!
8-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
Any existing application using table MULTIMEDIA_TAB can continue to work with

minor modification even after the column STORY has been modified to type

CLOB.

Here are examples of all operations (binds and defines) used by LONGs and that

will continue to work for LOBs with minor modifications as described in

"Applications Requiring Changes When Converting From LONGs to LOBs" on

page 8-22.

Converting LONG to LOB Example 1: More than 4K Binds and Simple INSERTs
The following example illustrates converting from LONG to LOBs when using a

>4K bind and simple INSERT:

word buflen, buf1 = 0;
text buf2[5000];
text *insstmt = (text *)
“INSERT INTO MULTIMEDIA_TAB(CLIP_ID, STORY) VALUES
(:CLIP_ID, :STORY)”;

if (OCIStmtPrepare(stmthp, errhp, insstmt,
(ub4)strlen((char *)insstmt), (ub4) OCI_NTV_SYNTAX,
(ub4) OCI_DEFAULT))
{
 DISCARD printf(“FAILED: OCIStmtPrepare()\n”);
 report_error(errhp);
 return;
}

if (OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) “:CLIP_ID”, (sb4) strlen((char *) “:CLIP_ID”),
 (dvoid *) &buf1, (sb4) sizeof(buf1), SQLT_INT,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByName(stmthp, &bndhp[1], errhp,
 (text *) “:STORY”, (sb4) strlen((char *) “:STORY”),
 (dvoid *) buf2, (sb4) sizeof(buf2), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
{
 DISCARD printf(“FAILED: OCIBindByName()\n”);
 report_error(errhp);
 return;
}

Migrating From LONGs to LOBs 8-25

Examples of Converting from LONG to LOB Using Table Multimedia_tab
buf1 = 101;
memset((void *)buf2, (int)’A’, (size_t)5000);

if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
{
 DISCARD printf(“FAILED: OCIStmtExecute()\n”);
 report_error(errhp);
 return;
}

Converting LONG to LOB Example 2: Piecewise INSERT with Polling
Continuing the preceding example...

text *sqlstmt = (text *)“INSERT INTO MULTIMEDIA_TAB VALUES (:1, :2)”;
ub2 rcode;
ub1 piece, i;

OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt), (ub4) OCI_NTV_SYNTAX,
 (ub4) OCI_DEFAULT);

OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &buf1, (sb4) sizeof(buf1), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) 0, (sb4) 15000, SQLT_LNG,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC);
buf1 = 101;
i = 0;
while (1)
{
 i++;
 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

switch(retval)
 {
8-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
 case OCI_NEED_DATA:

 memset((void *)buf2, (int)’A’+i, (size_t)5000);
 buflen = 5000;
 if (i == 1) piece = OCI_ONE_PIECE
 else if (i == 3) piece = OCI_LAST_PIECE
 else piece = OCI_NEXT_PIECE;

 if (OCIStmtSetPieceInfo((dvoid *)bndhp[1],
 (ub4)OCI_HTYPE_BIND, errhp, (dvoid *)buf2,
 &buflen, piece, (dvoid *) 0, &rcode))
 {
 DISCARD printf(“ERROR: OCIStmtSetPieceInfo: %d \n”, retval);
 break;
 }

 retval = OCI_NEED_DATA;
 break;
 case OCI_SUCCESS:
 break;
 default:
 DISCARD printf(“oci exec returned %d \n”, retval);
 report_error(errhp);
 retval = 0;
 } /* end switch */
 if (!retval) break;
} /* end while(1) */

Converting LONG to LOB Example 3: Piecewise INSERT with Callback
The following example illustrates converting from LONG to LOBs when using a

piecewise INSERT with callback:

void insert_data()
{
text *sqlstmt = (text *) “INSERT INTO MULTIMEDIA_TAB VALUES (:1, :2)”;
OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)
/* bind input */
if (OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) 0, (sb4) sizeof(buf1), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
Migrating From LONGs to LOBs 8-27

Examples of Converting from LONG to LOB Using Table Multimedia_tab
 (dvoid *) 0, (sb4) 3 * sizeof(buf2), SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))
{
 DISCARD printf(“FAILED: OCIBindByPos()\n”);
 report_error(errhp);
 return OCI_ERROR;
}
for (i = 0; i < MAXCOLS; i++)
 pos[i] = i+1;
if (OCIBindDynamic(bndhp[0], errhp, (dvoid *) (dvoid *) &pos[0],
 cbf_in_data,(dvoid *) 0, (OCICallbackOutBind) 0)
 || OCIBindDynamic(bndhp[1], errhp, (dvoid *) (dvoid *) &pos[1],
 cbf_in_data, (dvoid *) 0, (OCICallbackOutBind) 0))
{
 DISCARD printf(“FAILED: OCIBindDynamic()\n”);
 report_error(errhp);
 return OCI_ERROR;
}
OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT)
} /* end insert_data() */

/* Inbind callback to specify input data. */
STATICF sb4 cbf_in_data(ctxp, bindp, iter, index, bufpp, alenpp,
 piecep, indpp)
dvoid *ctxp;
OCIBind *bindp;
ub4 iter;
ub4 index;
dvoid **bufpp;
ub4 *alenpp;
ub1 *piecep;
dvoid **indpp;
{
 static int a = 0;
 word j;
 ub4 inpos = *((ub4 *)ctxp);
 switch(inpos)
 {
 case 1:
 buf1 = 175;
 *bufpp = (dvoid *) &buf1;
 *alenpp = sizeof(buf1);
8-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
 break;
 case 2:
 memset((void *)buf2, (int) ‘A’+a, (size_t) 5000);
 *bufpp = (dvoid *) buf2;
 *alenpp = 5000 ;
 a++;
 break;
 default: printf(“ERROR: invalid position number: %d\n”, pos);
 }
 *indpp = (dvoid *) 0;
 *piecep = OCI_ONE_PIECE;
 if (inpos == 2)
 {
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf(“Insert callback: 1st piece\n”);
 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf(“Insert callback: %d’th piece\n”, a);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf(“Insert callback: %d’th piece\n”, a);
 a = 0;
 }
 }
 return OCI_CONTINUE;
}

Converting LONG to LOB Example 4: Array insert
The following example illustrates converting from LONG to LOBs when using an

array INSERT:

word buflen;
word arrbuf1[5];
text arrbuf2[5][5000];
text *insstmt = (text *)
“INSERT INTO MULTIMEDIA_TAB(CLIP_ID, STORY) VALUES
(:CLIP_ID, :STORY)”;
Migrating From LONGs to LOBs 8-29

Examples of Converting from LONG to LOB Using Table Multimedia_tab
if (OCIStmtPrepare(stmthp, errhp, insstmt,
(ub4)strlen((char *)insstmt), (ub4) OCI_NTV_SYNTAX,
(ub4) OCI_DEFAULT))
{
 DISCARD printf(“FAILED: OCIStmtPrepare()\n”);
 report_error(errhp);
 return;
}

if (OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) “:CLIP_ID”, (sb4) strlen((char *) “:CLIP_ID”),
 (dvoid *) &arrbuf1[0], (sb4) sizeof(arrbuf1[0]), SQLT_INT,(dvoid *) 0, (ub2 *)
 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByName(stmthp, &bndhp[1], errhp,
 (text *) “:STORY”, (sb4) strlen((char *) “:STORY”),
 (dvoid *) arrbuf2[0], (sb4) sizeof(arrbuf2[0]), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
{
 DISCARD printf(“FAILED: OCIBindByName()\n”);
 report_error(errhp);
 return;
}
OCIBindArrayOfStruct(bndhp[0], ERRH, sizeof(arrbuf1[0]),
 indsk, rlsk, rcsk);
OCIBindArrayOfStruct(bndhp[1], ERRH, sizeof(arrbuf2[0]),
 indsk, rlsk, rcsk);
for (i=0; i<5; i++)
{
 arrbuf1[i] = 101+i;
 memset((void *)arrbuf2[i], (int)’A’+i, (size_t)5000);
}

if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 5, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
{
 DISCARD printf(“FAILED: OCIStmtExecute()\n”);
 report_error(errhp);
 return;
}

8-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
Converting LONG to LOB Example 5: Simple Fetch
The following example illustrates converting from LONG to LOBs when using a

simple fetch:

word i, buf1 = 0;
text buf2[5000];

text *selstmt = (text *) “SELECT CLIP_ID, STORY FROM MULTIMEDIA_TAB
 ORDER BY CLIP_ID”;
OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

while (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
{
 OCIDefineByPos(stmthp, &defhp1, errhp, (ub4) 1, (dvoid *) &buf1,
 (sb4) sizeof(buf1), (ub2) SQLT_INT, (dvoid *) 0,
 (ub2 *) 0,(ub2 *) 0, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp2, errhp, (ub4) 2, (dvoid *) buf2,
 (sb4) sizeof(buf2), (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);
 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 DISCARD printf(“buf1 = %d, buf2 = %.*s\n”, buf1, 30, buf2);
}

Converting LONG to LOB Example 6: Piecewise Fetch with Polling
The following example illustrates converting from LONG to LOBs when using a
piecewise fetch with polling:
text *selstmt = (text *) “SELECT STORY FROM MULTIMEDIA_TAB
 ORDER BY CLIP_ID”;
OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIDefineByPos(stmthp, &dfnhp[1], errhp, (ub4) 1,
 (dvoid *) NULL, (sb4) 100000, SQLT_LNG,
 (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DYNAMIC_FETCH);
retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
Migrating From LONGs to LOBs 8-31

Examples of Converting from LONG to LOB Using Table Multimedia_tab
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);

while (retval != OCI_NO_DATA && retval != OCI_SUCCESS)
{
 ub1 piece;
 ub4 iter, buflen;
 ub4 idx;
 genclr((void *)buf2, 5000);

 switch(retval)
 {
 case OCI_NEED_DATA:
 OCIStmtGetPieceInfo(stmthp, errhp, &hdlptr, &hdltype,
 &in_out, &iter, &idx, &piece);
 OCIStmtSetPieceInfo(hdlptr, hdltype, errhp,
 (dvoid *) buf2, &buflen, piece,
 (CONST dvoid *) &indp1, (ub2 *) 0));
 retval = OCI_NEED_DATA;
 break;
 default:
 DISCARD printf(“ERROR: piece-wise fetching\n”);
 return;
 } /* end switch */

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 printf(“Data : %s\n”; buf2);

} /* end while */

Converting LONG to LOB Example 7: Piecewise Fetch with Callback
The following example illustrates converting from LONG to LOBs when using a

piecewise fetch with callback:

select()
{
text *sqlstmt = (text *) “SELECT CLIP_ID, STORY FROM MULTIMEDIA_TAB”;

OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
8-32 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
OCIDefineByPos(stmthp, &dfnhp[0], errhp, (ub4) 1,
 (dvoid *) 0, (sb4) sizeof(buf1), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) OCI_DYNAMIC_FETCH);
OCIDefineByPos(stmthp, &dfnhp[1], errhp, (ub4) 2,
 (dvoid *) 0, (sb4)3 * sizeof(buf2), SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) OCI_DYNAMIC_FETCH);
OCIDefineDynamic(dfnhp[0], errhp, (dvoid *) &outpos,
 (OCICallbackDefine) cbf_get_data);
OCIDefineDynamic(dfnhp[1], errhp, (dvoid *) &outpos2,
 (OCICallbackDefine) cbf_get_data);
OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
buf2[4999] = ‘\0’;
printf(“Select callback: Last piece: %s\n”, buf2);
}

/* -- */
/* Fetch callback to specify buffers. */
/* -- */
STATICF sb4 cbf_get_data(ctxp, dfnhp, iter, bufpp, alenpp, piecep,
 indpp, rcpp)
dvoid *ctxp;
OCIDefine *dfnhp;
ub4 iter;
dvoid **bufpp;
ub4 **alenpp;
ub1 *piecep;
dvoid **indpp;
ub2 **rcpp;
{
 static int a = 0;
 ub4 outpos = *((ub4 *)ctxp);
 len = sizeof(buf1);
 len2 = 5000;

 switch(outpos)
 {
 case 1:
 *bufpp = (dvoid *) &buf1;
 *alenpp = &len;
 break;
Migrating From LONGs to LOBs 8-33

Examples of Converting from LONG to LOB Using Table Multimedia_tab
 case 2:
 a ++;
 *bufpp = (dvoid *) buf2;
 *alenpp = &len2;
 break;
 default:
 *bufpp = (dvoid *) 0;
 *alenpp = (ub4 *) 0;
 DISCARD printf(“ERROR: invalid position number: %d\n”, pos);
 }

 *indpp = (dvoid *) 0;
 *rcpp = (ub2 *) 0;

 if (outpos == 1)
 *piecep = (ub1)OCI_ONE_PIECE;
 if (outpos == 2)
 {
 out2[len2] = ‘\0’;
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf(“Select callback: 0th piece\n”);
 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf(“Select callback: %d’th piece: %s\n”, a-1, out2);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf(“Select callback: %d’th piece: %s\n”, a-1, out2);
 a = 0;
 }
 }

 return OCI_CONTINUE;
}

Converting LONG to LOB Example 8: Array Fetch
The following example illustrates converting from LONG to LOBs when using an

array fetch:
8-34 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
word i;
word arrbuf1[5] = 0;
text arrbuf2[5][5000];

text *selstmt = (text *) “SELECT CLIP_ID, STORY FROM MULTIMEDIA_TAB
 ORDER BY CLIP_ID”;
OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

while (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
{
 OCIDefineByPos(stmthp, &defhp1, errhp, (ub4) 1,
 (dvoid *) &arrbuf1[0], (sb4) sizeof(arrbuf1[0]),
 (ub2) SQLT_INT, (dvoid *) 0,
 (ub2 *) 0,(ub2 *) 0, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &defhp2, errhp, (ub4) 2,
 (dvoid *) arrbuf2[0], (sb4) sizeof(arrbuf2[0]),
 (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);
 OCIDefineArrayOfStruct(dfnhp[0], ERRH, sizeof(arrbuf1[0]), indsk,
 rlsk, rcsk);
 OCIDefineArrayOfStruct(dfnhp[1], ERRH, sizeof(arrbuf2[0]), indsk,
 rlsk, rcsk);

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 5,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 {
 DISCARD printf(“%d, %s\n”, arrbuf1[0], arrbuf2[0]);
 DISCARD printf(“%d, %s\n”, arrbuf1[1], arrbuf2[1]);
 DISCARD printf(“%d, %s\n”, arrbuf1[2], arrbuf2[2]);
 DISCARD printf(“%d, %s\n”, arrbuf1[3], arrbuf2[3]);
 DISCARD printf(“%d, %s\n”, arrbuf1[4], arrbuf2[4]);

 }
}

Migrating From LONGs to LOBs 8-35

Examples of Converting from LONG to LOB Using Table Multimedia_tab
Converting LONG to LOB Example 9: Using PL/SQL in INSERT, UPDATE
and SELECT

INSERT/UPDATE statements on LOBs are used in the same way as on LONGs. For

example:

BEGIN
 INSERT INTO Multimedia_tab VALUES (1, ‘A wonderful story’, NULL, EMPTY_BLOB,
 EMPTY_BLOB(), NULL, NULL, NULL, NULL, NULL);
 UPDATE Multimedia_tab SET Story = ‘A wonderful story’;
END;

LONG-to-LOB API enables SELECT statements to bind character variables to LOB

columns.

BEGIN
story_buffer VARCHAR2(100);
/* This will get the LOB column if it is upto 100 bytes, otherwise it will
raise an exception */
SELECT Story INTO story_buffer FROM Multimedia_tab WHERE Clip_ID = 1;
END;

Converting LONG to LOB Example 10: Assignments and Parameter Passing
in PL/SQL

The LONG-to-LOB API enables implicit assignments of LOBs to VARCHAR2s,

RAWs,..., including parameter passing. For example:

CREATE TABLE t (clob_col CLOB, blob_col BLOB);
INSERT INTO t VALUES(’abcdefg’, ’aaaaaa’);
DECLARE
 var_buf VARCHAR2(100);
 clob_buf CLOB;
 raw_buf RAW(100);
 blob_buf BLOB;
BEGIN
 SELECT * INTO clob_buf, blob_buf FROM t;
 var_buf := clob_buf;
 clob_buf:= var_buf;
 raw_buf := blob_buf;
 blob_buf := raw_buf;
 END;

CREATE PROCEDURE FOO (a IN OUT CLOB) IS......
8-36 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
CREATE PROCEDURE BAR (b IN OUT VARCHAR2) IS
DECLARE
 a VARCHAR2(100) := ’1234567’;
 b CLOB;
BEGIN
 FOO(a);
 SELECT clob_col INTO b FROM t;
 BAR(b);
END;

Converting LONG to LOB Example 11: CLOBs in PL/SQL Built-In Functions
This example illustrates the use of CLOBs in PL/SQL built-in functions, when

converting LONGs to LOBs:

DECLARE
 myStory CLOB;
 revisedStory CLOB;
 myGist VARCHAR2(100):= ’This is my gist.’;
 revisedGist VARCHAR2(100);
BEGIN
 -- select a CLOB column into a CLOB variable
 SELECT Story INTO myStory FROM Multimedia_tab WHERE clip_id=10;

 -- perform VARCHAR2 operations on a CLOB variable
 revisedStory := UPPER(SUBSTR(myStory, 100, 1));

 -- revisedStory is a temporary LOB
 -- Concat a VARCHAR2 at the end of a CLOB
 revisedStory := revisedStory || myGist;
 -- The following statement will raise an error since myStory is
 -- longer than 100 bytes
 myGist := myStory;
END;

Converting LONG to LOB Example 12: Using PL/SQL Binds from OCI on LOBs
The LONG-to-LOB API allows LOB PL/SQL binds from OCI to work as follows:

When you call a PL/SQL procedure from OCI, and have an in or out or inout bind,

you should be able to bind a variable as SQLT_CHR, where the formal parameter of

the PL/SQL procedure is SQLT_CLOB.
Migrating From LONGs to LOBs 8-37

Examples of Converting from LONG to LOB Using Table Multimedia_tab
For the OCI calling program, the following are likely cases:

Calling PL/SQL Outbinds in the "begin foo(:1); end;" Manner
For example:

text *sqlstmt = (text *)"BEGIN PKG1.P5 (:c); END; " ;

Calling PL/SQL Outbinds in the "call foo(:1);" Manner
For example:

text *sqlstmt = (text *)"CALL PKG1.P5(:c);" ;

In both these cases, the rest of the program is as follows:

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 curlen = 0;

 OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":c4", (sb4) strlen((char *) ":c"),
 (dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 1, (ub4 *) &curlen, (ub4) OCI_DATA_AT_EXEC);

 OCIStmtExecute(svchp, stmthp, errhp,(ub4) 0,(ub4) 0, (const OCISnapshot*) 0,
 (OCISnapshot*) 0,(ub4) OCI_DEFAULT);

The PL/SQL procedure PKG1.P5 is as follows:

 CREATE OR REPLACE PACKAGE BODY pkg1 AS
 ...
 procedure p5 (c OUT CLOB) is
 -- This might have been table%rowtype (so it is CLOB now)
 BEGIN
 ...
 END p5;

END pkg1;

Note: C procedures are wrapped inside a PL/SQL stub, so the

OCI application always invokes the PL/SQL stub.
8-38 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Examples of Converting from LONG to LOB Using Table Multimedia_tab
Converting LONG to LOB Example 13: Calling PL/SQL and C Procedures
from PL/SQL

PL/SQL procedures or functions can accept a CLOB or a VARCHAR2 as a formal

parameter. For example the PL/SQL procedure could be one of the following:

■ When the formal parameter is CLOB:

CREATE OR REPLACE PROCEDURE get_lob(table_name IN VARCHAR2, lob INOUT
CLOB) AS
 ...
BEGIN
 ...
END;
/

■ When the formal parameter is VARCHAR2:

CREATE OR REPLACE PROCEDURE get_lob(table_name IN VARCHAR2, lob INOUT
VARCHAR2) AS
 ...
BEGIN
 ...
END;
/

The calling function could be of any of the following types:

■ When the actual parameter is a CHR:

create procedure ...
declare
c VARCHAR2[200];
begin
 get_lob(’table_name’, c);
end;

■ When the actual parameter is a CLOB:

create procedure ...
declare
c table_name.column_name%type -- This is a CLOB now
begin
 get_lob(’table_name’, c);
end;

Both the PL/SQL case stubs works with both cases of the actual parameters.
Migrating From LONGs to LOBs 8-39

Summary of New Functionality Associated with the LONG-to-LOB API
Summary of New Functionality Associated with the LONG-to-LOB API

OCI Functions
OCIDefineByPos() function now accepts the following types:

■ SQLT_CHR and SQLT_LNG for CLOB columns

■ SQLT_BIN and SQLT_LBI for BLOB column

So, for a LOB column, you can define a VARCHAR2 buffer and on the subsequent

OCIStmtFetch() command, you will get the buffer filled with the CLOB/BLOB

data.

OCIBindByPos() and OCIBindByName() functions now accept buffers of up to 4

gigabytes in size.

SQL Statements
The following new syntax has been added:

ALTER TABLE [<schema>.]<table_name>
MODIFY (< long_column_name > { CLOB | BLOB | NCLOB } [DEFAULT <default_
value>) [LOB_storage_clause];

See "Migrating LONGs to LOBs: Using ALTER TABLE to Change LONG Column to

LOB Types" on page 8-6, for details. Changes made to the ALTER TABLE syntax are

as follows:

■ The "datatype" can now be:

■ (CLOB|NCLOB) if the original datatype of the "long_column_name" was

LONG

■ (BLOB) if the original datatype was LONG RAW

■ Only during this (LONG->LOB) conversion can the LOB_storage_clause

clause be specified in the MODIFY clause.

■ During this (LONG->LOB) conversion, you can only specify the [DEFAULT

"expr"]. No other ALTER TABLE operation is allowed with this operation.

PL/SQL Interface
You can now use the following PL/SQL SELECT statements:
8-40 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Compatibility and Migration
■ SELECT on CLOB columns INTO a character buffer variable, such as CHAR,

LONG, or VARCHAR2

■ SELECT on BLOB columns INTO a binary buffer variable, such as RAW and

LONG RAW

You can also make the following assignments:

■ Assign a CLOB (BLOB) to a VARCHAR2 (RAW) variable

■ Assign a VARCHAR2(RAW) variable to a CLOB (BLOB)

In addition, a CLOB (BLOB) can be passed as an actual parameter to a function with

a formal parameter of VARCHAR2 (RAW) and vice-versa, and can call PL/SQL

built-in functions on LOBs.

Compatibility and Migration
When you ALTER TABLE to change the LONG column to LOB, the table looks as if

you never had the LONG column and always had the LOB column. Once you move

all LONG data to LOBs, you cannot ALTER the table back to LONG.

Table 8–1 outlines the behavior of various client-server combinations in this release

and prior to this release.

See: Chapter 7, "Modeling and Design", "SQL Semantics Support

for LOBs" on page 7-33.

Table 8–1 Client - Server Combinations for Oracle9i and Prior to Oracle9i

Client Oracle9 i Release 9.0.0 Server Servers Prior to Oracle9 i

Rel.9.0.0 with

CHARs

Server sends data Client raises error.

Rel.9.0.0 with LOBs Server sends locator Server sends locator.

Prior to Rel.9.0.0

with CHARs

Client raises an error Client raises error.

Prior to Rel.9.0.0

with LOBs

Server sends locator Server sends locator.
Migrating From LONGs to LOBs 8-41

Performance
Performance

INSERTS and Fetches have Comparable Performance
A piecewise INSERT or fetch of LOBs using the LONG-to-LOB API has comparable

performance to the piecewise INSERT or fetch of LOBs using existing functions like

OCILobRead() and OCILobWrite().

Since Oracle allows >4k data to be inserted into LOBs in a single OCI call, a

round-trip to the server is saved.

Also, you can now read LOB data in one OCIStmtFetch() call, instead of

fetching the LOB locator first and then doing OCILobRead(). This improves

performance when you want to read LOB data starting at the beginning (since

OCIStmtFetch() returns the data from offset 1). Hence the LONG-to-LOB API

improves performance of LOB INSERTs and fetches.

PL/SQL
The performance of assigning a VARCHAR2 buffer to a LOB variable is worse than

the performance of the corresponding assignment of VARCHAR2 to the LONG

variable because the former involves creating temporary LOBs. Hence PL/SQL

users will see a silent deterioration in the performance of their applications.

Frequently Asked Questions (FAQs): LONG to LOB Migration

Moving From LOBs Back to LONGs

Question
Once we ALTER a table to change LONG columns to LOB and consequently move

all LONG data to LOBs, we cannot ALTER the column back to LONG. Is there a

work around?

Answer
There is a workaround for this. You can add a LONG column and use an OCI

application to read the data from the LOB column and insert it into the LONG

column. Then you can drop the LOB column.
8-42 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Frequently Asked Questions (FAQs): LONG to LOB Migration
Is CREATE VIEW Needed?

Question
Is CREATE VIEW still needed when migrating from LONGs to LOBs?

Answer
No, you no longer need to use CREATE VIEW. Use the ALTER TABLE statement.

Are OCI LOB Routines Obsolete?

Question
How does OCIStmtFetch() work for LOB columns? Does it return OCI_NEED_

DATA as it previously did for LONG column and must data be completely fetched

before the data for other columns is available? Are all OCI routines for LOBs

obsolete, such as, OCILobRead(),OCILobWrite(), ...?

Answer
OCIStmtFetch() for LOBs works the same way as it did for LONGs previously if
the datatype is specified as SQLT_LNG/SQLT_CHR,... in the define. If the datatype is

specified as SQLT_CLOB or SQLT_BLOB, then the OCIStmtFetch() call fetches

the LOB locator and you can call OCILobRead() to read LOB data. OCI LOB calls

will not be obsoleted.

If the datatype is SQLT_LNG/SQLT_CHR,... for a LOB column, then the LOB data

needs to be completely fetched before the data for other columns are available. The

way SQL*PLUS can get around this problem is to continue using the existing OCI

LOB interface.

PL/SQL Issues

Question
Does a fetch of a LOB column (with size > 32K) into a PL/SQL

CHAR/RAW/LONG/LONG RAW buffer raise an exception?

Answer
In OCIDefineByPos() and PL/SQL “SELECT INTO” commands, there is no way

of specifying the “amount” wanted. You only specify the buffer length. The correct
Migrating From LONGs to LOBs 8-43

Frequently Asked Questions (FAQs): LONG to LOB Migration
amount is fetched without overflowing the buffer, no matter what the LOB size is. If

the whole column is not fetched, then in OCI a truncation error is returned, and in

PL/SQL, an exception is raised.

This behavior is consistent with the existing behavior for LONGs and VARCHAR2s.

Retrieving an Entire Image if Less Than 32K

Question
I can now SELECT LOB data without first retrieving the locator. Can I now retrieve

an entire image with a single SELECT in PL/SQL if the image is less than 32K?

Answer
Yes.

Triggers in LONGs and LOBs

Question
In Triggers, some functionality is supported for LONGs that is not supported for

LOBs. Will this cause a problem?

Answer
There are a couple of limitations on how LOBs work with triggers. See

"LONG-to-LOB Migration Limitations" on page 8-10.
8-44 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOBS: Best Pra
9

LOBS: Best Practices

This chapter discusses the following topics:

■ Using SQL*Loader

■ LOB Performance Guidelines

■ Moving Data to LOBs in a Threaded Environment

■ Migrating from LONGs to LOBs
ctices 9-1

Using SQL*Loader
Using SQL*Loader
You can use SQL*Loader to bulk load LOBs.

Loading XML Documents Into LOBs With SQL*Loader
Because LOBs can be quite large, SQL*Loader can load LOB data from either the

main datafile (inline with the rest of the data) or from LOBFILEs. Figure 9–1 shows

the LOBFILE syntax.

Figure 9–1 The LOBFILE Syntax

LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In

LOBFILEs, LOB data instances are still considered to be in fields (predetermined

size, delimited, length-value), but these fields are not organized into records (the

concept of a record does not exist within LOBFILEs). Therefore, the processing

overhead of dealing with records is avoided. This type of organization of data is

ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader

reads LOBFILEs in 64K chunks. To load physical records larger than 64K, you can

use the READSIZE parameter to specify a larger size.

It is best to load XMLType columns or columns containing XML data in CLOBs,

using LOBFILEs.

See:

■ Chapter 4, "Managing LOBs", "Using SQL*Loader to Load

LOBs", for a brief description and examples of using

SQL*Loader.

■ Oracle9i Database Utilities for a detailed descriptions of using

SQL*Loader for loading objects, LOBs, and collections.
9-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using SQL*Loader
■ When the XML is valid. If the XML data in the LOBFILE is large and you know

that the data is valid XML, then use direct-path load since it bypasses all the XML

validation processing.

■ When the XML needs validating. If it is imperative that the validity of the XML

data be checked, then use conventional path load, keeping in mind that it is not as

efficient as a direct-path load.

A conventional path load executes SQL INSERT statements to populate tables in an

Oracle database. A direct path load eliminates much of the Oracle database

overhead by formatting Oracle data blocks and writing the data blocks directly to

the database files.

A direct-path load does not compete with other users for database resources, so it can

usually load data at near disk speed. Considerations inherent to direct path loads,

such as restrictions, security, and backup implications, are discussed in Chapter 9 of

Oracle9i Database Utilities.

Figure 9–2 illustrates SQL*Loader’s direct-path load and conventional path loads.

Tables to be loaded must already exist in the database. SQL*Loader never creates

tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:

■ You must have INSERT privileges on the table to be loaded.

■ You must have DELETE privilege on the table to be loaded, when using the

REPLACE or TRUNCATE option to empty out the table's old data before

loading the new data in its place.

See Also: Oracle9i Database Utilities for more information on:

loading objects, LOBs, and Collections; and SQL*Loader case

studies.
LOBS: Best Practices 9-3

Using SQL*Loader
Figure 9–2 SQL*Loader: Direct-Path and Conventional Path Loads
9-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Performance Guidelines
LOB Performance Guidelines
■ General Performance Guidelines

■ Temporary LOB Performance Guidelines

General Performance Guidelines
Use the following guidelines to achieve maximum performance with LOBs:

■ When Possible, Read/Write Large Data Chunks at a Time: Since LOBs are big,

you can obtain the best performance by reading and writing large chunks of a

LOB value at a time. This helps in several respects:

a. If accessing the LOB from the client side and the client is at a different node

than the server, large reads/writes reduce network overhead.

b. If using the 'NOCACHE' option, each small read/write incurs an I/O.

Reading/writing large quantities of data reduces the I/O.

c. Writing to the LOB creates a new version of the LOB CHUNK. Therefore,

writing small amounts at a time will incur the cost of a new version for each

small write. If logging is on, the CHUNK is also stored in the redo log.

■ Use LOB Buffering to Read/Write Small Chunks of Data: If you need to

read/write small pieces of LOB data on the client, use LOB buffering — see

OCILobEnableBuffering (), OCILobDisableBuffering (),

OCILobFlushBuffer (), OCILobWrite (), OCILobRead (). Basically, turn on

LOB buffering before reading/writing small pieces of LOB data.

■ Use OCILobRead () and OCILobWrite () with Callback: So that data is

streamed to and from the LOB. Ensure the length of the entire write is set in the

'amount ' parameter on input. Whenever possible, read and write in multiples of

the LOBchunk size.

■ Use a Checkout/Checkin Model for LOBs: LOBs are optimized for the following

operations:

■ SQL UPDATE which replaces the entire LOB value

See Also: Chapter 5, "Large Objects: Advanced Topics", "LOB

Buffering Subsystem" on page 5-18 for more information on LOB
buffering.
LOBS: Best Practices 9-5

LOB Performance Guidelines
■ Copy the entire LOB data to the client, modify the LOB data on the client

side, copy the entire LOB data back to the database. This can be done using

OCILobRead () and OCILobWrite () with streaming.

■ Try to commit changes frequently.

Some Performance Numbers
Table 9–1 lists the results of a performance test that enqueued 500 messages using a

chunk size of 8KB for the LOB part of the payload. This performance test used

Oracle8i Release 3 (8.1.7), and a DB_BLOCKSIZE = 8192 (8K), identical to the

operating system block size.

Previous response times using a 16k chunksize, NOCACHE, and NOLOGGING for

a message of 4000 bytes was 12:28 sec.

These results indicate that the CACHE parameter is the parameter giving the best

performance improvement.

See Also: Chapter 7, "Modeling and Design", "Performance

Attributes When Using SQL Semantics with LOBs" on page 7-51,

for information about performance issues when using SQL

semantics with LOBs

Table 9–1 Response Time When Enqueueing 500 Messages With and Without CACHE and LOGGING

CHUNK SIZE CACHE (Y/N) LOGGING (Y/N) MESSAGE_SIZE RESPONSE TIME

8k NOCACHE NOLOGGING 3900 bytes 01:33 sec

8k NOCACHE NOLOGGING 4000 bytes 06:19 sec

8k NOCACHE NOLOGGING 4000 bytes 04:36 sec

8k CACHE 3900 bytes 01:22 sec

8k CACHE 4000 bytes 01:22 sec

8k CACHE 4000 bytes 01:83 sec

8k CACHE 20000 bytes 02:33 sec
9-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOB Performance Guidelines
Temporary LOB Performance Guidelines
In addition to the guidelines described earlier under "LOB Performance Guidelines"

on LOB performance in general, here are some guidelines for using temporary

LOBs:

■ Use a separate temporary tablespace for temporary LOB storage instead of the
default system tablespace. This avoids device contention when copying data

from persistent LOBs to temporary LOBs.

If you use the newly provided enhanced SQL semantics functionality in your

applications, there will be many more temporary LOBs created silently in SQL

and PL/SQL than before. Ensure that temporary tablespace for storing these

temporary LOBs is large enough for your applications. In particular, these

temporary LOBs are silently created when you use the following:

■ SQL functions on LOBs

■ PL/SQL built-in character functions on LOBs

■ Variable assignments from VARCHAR2/RAW to CLOBs/BLOBs,

respectively.

■ Perform a LONG-to-LOB migration

■ In PLSQL, use NOCOPY to pass temporary LOB parameters by reference
whenever possible. Refer to the PL/SQL User’s Guide and Reference, for more

information on passing parameters by reference and parameter aliasing.

■ Using Temporary LOBs in PL/SQL Procedure Loops. When repeatedly creating

temporary LOBs in PL/SQL procedures in a loop, performance is improved

when a PL/SQL package LOB locator variable is used inside the procedure

instead of using a local variable.

This is because, by using a package variable which persists in a session,

allocating extra memory to manage temporary LOBs in every procedure call is

avoided.

CREATE OR REPLACE PACKAGE pk is
 tmplob clob;

Note: Temporary LOBs created using a session locator are not

cleaned up automatically at the end of function or procedure calls.

The temporary LOB should be explicitly freed by calling DBMS_

LOB.FREETEMPORARY().
LOBS: Best Practices 9-7

LOB Performance Guidelines
END pk;
/
CREATE OR REPLACE PROCEDURE temp_lob_proc
IS
BEGIN
 -- instead of using a local LOB variabe, use a package variable here
 DBMS_LOB.CREATETEMPORARY(pk.tmplob, TRUE);
 -- Do some LOB data maniputation here
 DBMS_LOB.FREETEMPORARY(pk.tmplob);
END;
/
DECLARE
 doc CLOB;
BEGIN
 FOR i IN 1..400 LOOP
 temp_lob_proc();
 END LOOP;
END;
/

■ Take advantage of buffer cache on temporary LOBs. Temporary LOBs created

with the CACHE parameter set to true move through the buffer cache.

Otherwise temporary LOBs are read directly from, and written directly to, disk.

■ Be aware of the cost incurred in assigning temporary LOB variables.
Temporary LOBs create entirely new copies of themselves on assignments. For

example:

 LOCATOR1 BLOB;
 LOCATOR2 BLOB;
 DBMS_LOB.CREATETEMPORARY (LOCATOR1,TRUE,DBMS_LOB.SESSION);
 LOCATOR2 := LOCATOR;

This code causes a copy of the temporary LOB pointed to by LOCATOR1 to be

created. When passing temporary LOB parameters to procedures or functions,

you might also want to consider using pass by reference semantics in PL/SQL.

In OCI, to ensure copy semantics of LOB locators and data,

OCILobLocatorAssign is used to copy temporary LOB locators as well as the

LOB data. To avoid the deep copy, pointer assignment can be done, if copy

semantics of locator copy is not intended. For example:

 OCILOBLocator *LOC1;
 OCILOBLocator *LOC2;
 OCILOBCREATETEMPORARY (LOC1,TRUE,OCIDURATIONSESSION);
 LOC2 = LOC1;
9-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Moving Data to LOBs in a Threaded Environment
■ Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use OCI_

OBJECT mode for OCILobLocatorAssign. In the OCI_OBJECT mode, Oracle

tries to minimize the number of deep copies to be done. Hence, after

OCILobLocatorAssign is done on a source temporary LOB in OCI_OBJECT

mode, the source and the destination locators will point to the same LOB until

any modification is made through either LOB locator.

■ Free up temporary LOBs returned from SQL queries and PLSQL programs.

In PL/SQL, C (OCI), Java and other programmatic interfaces, SQL query results

or PLSQL program executions return temporary LOBs for operation/function

calls on LOBs. For example:

 SELECT substr(CLOB_Column, 4001, 32000) FROM ...

If the query is executed in PLSQL, the returned temporary LOBs automatically

get freed at the end of a PL/SQL program block. You can also explicitly free the

temporary LOBs any time. In OCI and Java, the returned temporary LOB needs

to be freed by the user explicitly.

Without proper deallocation of the temporary LOBs returned from SQL queries,

temporary tablespace gets filled up steadily and you could observe

performance degradation.

Moving Data to LOBs in a Threaded Environment

Incorrect procedure
The following sequence, requires a new connection when using a threaded

environment, adversely affects performance, and is inaccurate:

1. Create an empty (non-NULL) LOB

2. INSERT using the empty LOB

3. SELECT-FOR-UPDATE of the row just entered

4. Move data into the LOB

5. COMMIT. This releases the SELECT-FOR-UPDATE locks and makes the LOB

data persistent.
LOBS: Best Practices 9-9

Migrating from LONGs to LOBs
The Correct Procedure

Hence the preferred procedure is as follows:

1. INSERT an empty LOB, RETURNING the LOB locator.

2. Move data into the LOB using this locator.

3. COMMIT. This releases the SELECT-FOR-UPDATE locks, and makes the LOB

data persistent.

Alternatively, you can insert >4,000 byte of data directly for the LOB columns but

not the LOB attributes.

Migrating from LONGs to LOBs
During migration from LONGs to LOBs, the redo changes for the table are logged

only if the table has LOGGING on. Redo changes for the column being converted

from LONG to LOB are logged only if the storage characteristics of the LOB indicate

LOGGING. The default value for LOGGING|NOLOGGING for the LOB is

inherited from the tablespace in which the LOB is being created.

Preventing Generation of Redo Space During Migration
To prevent generation of redo space during migration and migrate smoothly, use

the following statements:

1. ALTER TABLE Long_tab NOLOGGING;

2. ALTER TABLE Long_tab MODIFY (long_col CLOB [default <default_val>])

LOB (long_col) STORE AS (... NOLOGGING ...);

3. ALTER TABLE Long_tab MODIFY LOB long_col STORE AS (...LOGGING...);

Note:

■ There is no need to 'create' an empty LOB.

■ You can use the RETURNING clause as part of the

INSERT/UPDATE statement to return a locked LOB locator.

This eliminates the need for doing a SELECT-FOR-UPDATE, as

mentioned in step 3.

See Also: Chapter 14, "LOBs Case Studies"
9-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Migrating from LONGs to LOBs
4. ALTER TABLE Long_tab LOGGING;

5. Take a backup of the tablespaces containing the table and the LOB.

See Also: Chapter 8, "Migrating From LONGs to LOBs"
LOBS: Best Practices 9-11

Migrating from LONGs to LOBs
9-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Internal Persis
10

Internal Persistent LOBs

Use Case Model
This chapter describes each operation on LOBs (such as "Write Data to a LOB") in

terms of a use case. Table 10–1, "Internal Persistent LOB Basic Operations",

alphabetically lists all these use cases.

Individual Use Cases
Each detailed internal persistent LOB use case operation description is laid out as

follows:

■ Use case figure. This UML drawing depicts the use case. Appendix A, "Unified

Modeling Language Diagrams" explains how to interpret these diagrams.

■ Purpose. The purpose of this LOB use case.

■ Usage Notes. Guidelines to assist your implementation of the LOB operation.

■ Syntax. The main syntax used to perform the LOBs related activity.

■ Scenario. Describes the implementation of the use case in terms of the sample

schema used in the examples. For further details on sample schemas, refer to

Oracle9i Sample Schemas.

■ Examples. How to apply each use case based on the sample schema used.
tent LOBs 10-1

Use Case Model: Internal Persistent LOBs Operations
Use Case Model: Internal Persistent LOBs Operations
Table 10–1, indicates with a + where examples are provided for specific use cases

in each programmatic environment. An "S" indicates that SQL is used for that use

case and applicable programmatic environment(s).

We refer to programmatic environments by means of the following abbreviations:

■ P — PL/SQL, using the DBMS_LOB Package

■ O — C, using OCI (Oracle Call Interface)

■ CP — C++, using OCCI (Oracle C++ Call Interface)

■ B — COBOL, using Pro*COBOL precompiler

■ C — C/C++, using Pro*C/C++ precompiler

■ V — Visual Basic, using OO4O (Oracle Objects for OLE)

■ J — Java, using JDBC (Java Database Connectivity)

■ S — SQL

Table 10–1 Internal Persistent LOB Basic Operations

LOB Use Case P O CP B C V J

Appending One LOB to Another on page 10-193 + + - + + + +

Java (JDBC): Appending One LOB to Another on page 10-201 + + - + + - +

Character Set Form: Determining Character Set Form on page 10-189 - + - - - - -

Character Set ID: Determining Character Set ID on page 10-185 - + - - - - -

Checking In a LOB on page 10-83 + + - + + + +

Checking Out a LOB on page 10-71 + + - + + + +

Closing LOBs - see Chapter 3, "LOB Support in Different Programmatic
Environments"

- - - - - - -

Comparing All or Part of Two LOBs on page 10-128 + - - + + + +

Copying a LOB Locator on page 10-164 + + - + + + +

Copying All or Part of One LOB to Another LOB on page 10-153 + + - + + + +

Creating a Nested Table Containing a LOB on page 10-13 S S - S S S S
10-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Persistent LOBs Operations
Creating a Table Containing an Object Type with a LOB Attribute on
page 10-10

S S S S S S S

Creating a Table Containing One or More LOB Columns on page 10-5 S S S S S S S

Creating a Varray Containing References to LOBs See Chapter 5, "Large
Objects: Advanced Topics" on page 5-28

S S S S S S S

Deleting the Row of a Table Containing a LOB on page 10-286 S S S S S S S

Disabling LOB Buffering on page 10-263 - + - + + + -

Displaying LOB Data on page 10-98 + + - + + + +

Enabling LOB Buffering on page 10-251 - - - + + + -

Equality: Checking If One LOB Locator Is Equal to Another on
page 10-173

- + - - + - +

Erasing Part of a LOB on page 10-241 + + - + + + +

Flushing the Buffer on page 10-257 - + - + + - -

Initialized Locator: Checking If a LOB Locator Is Initialized on
page 10-180

- + - - + - -

Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on
page 10-16

S S S S S S +

Inserting a Row by Initializing a LOB Locator Bind Variable on
page 10-23

S + - + + + +

Inserting a Row by Selecting a LOB From Another Table on page 10-20 S S S S S S S

Length: Determining the Length of a LOB on page 10-144 + + - + + + +

Loading a LOB with Data From a BFILE on page 10-32 + + - + + + +

Loading an Internal Persistent BLOB with Binary Data from a BFILE on
page 10-43

+ - - - - - -

Loading an Internal Persistent CLOB with BFILE Data on page 10-47 + - - - - - -

LONG to LOB Copying, Using the TO_LOB Operator on page 10-66 S S S S S S S

LONG to LOB Migration Using the LONG-to-LOB API on page 10-62 + + - - - - -

Java (JDBC): Appending One LOB to Another on page 10-201 + + - + + - +

Table 10–1 Internal Persistent LOB Basic Operations (Cont.)

LOB Use Case P O CP B C V J
Internal Persistent LOBs 10-3

Use Case Model: Internal Persistent LOBs Operations
Opening LOBs - see Chapter 3, "LOB Support in Different Programmatic
Environments"

- - - - - - -

Patterns: Checking for Patterns in the LOB (instr) on page 10-137 + - - + + - +

Reading a Portion of the LOB (substr) on page 10-120 + - - + + + +

Reading Data from a LOB on page 10-109 + + - + + + +

Streaming LOB Data. See "JDBC: New LOB Streaming APIs" on
page 3-61. Note: This API has not yet been incorporated in this chapter as
a use case. See a forthcoming release.

- - - - - - +

Trimming LOB Data on page 10-229 + + - + + + +

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() on
page 10-271

S S S S S S S

Updating a Row by Selecting a LOB From Another Table on page 10-275 S S S S S S S

Updating by Initializing a LOB Locator Bind Variable on page 10-277 S + - + + + +

Write-Append, see Append-Writing to the End of a LOB on page 10-203. - - - - - - -

Writing Data to a LOB on page 10-212 + + + + + + +

Table 10–1 Internal Persistent LOB Basic Operations (Cont.)

LOB Use Case P O CP B C V J
10-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table Containing One or More LOB Columns
Creating a Table Containing One or More LOB Columns

Figure 10–1 Use Case Diagram: Creating a Table Containing one or More LOB Columns

Purpose
This procedure describes how to create a table containing one or more LOB

columns.

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2.

■ Creating a Table Containing an Object Type with a LOB

Attribute on page 10-10.

■ Creating a Nested Table Containing a LOB on page 10-13.

■ Creating a Varray Containing References to LOBs in Chapter 5,

"Large Objects: Advanced Topics" on page 5-28.

User/
Program

CREATE table with one or more LOBsCREATE
a Table

Internal Persistent LOBs: CREATING a Table
Internal Persistent LOBs 10-5

Creating a Table Containing One or More LOB Columns
Usage Notes
When you use functions, EMPTY_BLOB () and EMPTY_CLOB(), the resulting LOB is

initialized, but not populated with data. LOBs that are empty are not null, and vice

versa. This is discussed in more detail in "Inserting a LOB Value using EMPTY_

CLOB() or EMPTY_BLOB()" on page 10-16.

■ For information about creating nested tables that have one or more columns of

LOB datatype, see "Creating a Nested Table Containing a LOB" on page 10-13.

■ Creating an object column containing one or more LOBs is discussed under the

heading, "Creating a Table Containing an Object Type with a LOB Attribute" on

page 10-10.

When creating tables that contain LOBs use the guidelines and examples described

in the following:

■ Chapter 2, "Basic LOB Components", "Initializing Internal LOBs to NULL or

Empty"

■ Chapter 4, "Managing LOBs"

■ Chapter 7, "Modeling and Design"

Syntax
Use the following syntax reference:

■ SQL: Oracle9i SQL Reference, "Chapter 7, SQL Statements" — CREATE TABLE

Scenario
These examples use the following Oracle9i Sample Schemas:

■ Human Resources (HR)

■ Order Entry (OE)

See Also:

Oracle9i SQL Reference for a complete specification of syntax for

using LOBs in CREATE TABLE and ALTER TABLE with:

■ BLOB, CLOB, NCLOB and BFILE columns

■ EMPTY_BLOB and EMPTY_CLOB functions

■ LOB storage clause for internal LOB columns, and LOB
attributes of embedded objects
10-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table Containing One or More LOB Columns
■ Product Media (PM)

You must create the HR and OE schemas before your create the PM schema. For

details on these schemas, you must refer to Oracle9i Sample Schemas.

Examples
How to create a table containing a LOB column is illustrated with the following

example, in SQL:

■ SQL: Create a Table Containing One or More LOB Columns

SQL: Create a Table Containing One or More LOB Columns
You may need to set up the following data structures for certain examples in this

manual to work.

/* Setup script for creating Print_media,
 Online_media and associated structures
*/

DROP USER pm CASCADE;
DROP DIRECTORY ADPHOTO_DIR;
DROP DIRECTORY ADCOMPOSITE_DIR;
DROP DIRECTORY ADGRAPHIC_DIR;
DROP INDEX onlinemedia CASCADE CONSTRAINTS;
DROP INDEX printmedia CASCADE CONSTRAINTS;
DROP TABLE online_media CASCADE CONSTRAINTS;
DROP TABLE print_media CASCADE CONSTRAINTS;
DROP TYPE textdoc_typ;
DROP TYPE textdoc_tab;
DROP TYPE adheader_typ;
DROP TABLE adheader_typ;
CREATE USER pm;
GRANT CONNECT, RESOURCE to pm;

CREATE DIRECTORY ADPHOTO_DIR AS ’/tmp/’;
CREATE DIRECTORY ADCOMPOSITE_DIR AS ’/tmp/’;
CREATE DIRECTORY ADGRAPHIC_DIR AS ’/tmp/’;

Note: Since you can use SQL DDL directly to create a table

containing one or more LOB columns, it is not necessary to use the

DBMS_LOB package.
Internal Persistent LOBs 10-7

Creating a Table Containing One or More LOB Columns
CREATE DIRECTORY media_dir AS ’/tmp/’;
GRANT READ ON DIRECTORY ADPHOTO_DIR to pm;
GRANT READ ON DIRECTORY ADCOMPOSITE_DIR to pm;
GRANT READ ON DIRECTORY ADGRAPHIC_DIR to pm;
GRANT READ ON DIRECTORY media_dir to pm;

CONNECT pm/pm (or &pass);
COMMIT;

CREATE TABLE a_table (blob_col BLOB);

CREATE TYPE adheader_typ AS OBJECT (
 header_name VARCHAR2(256),
 creation_date DATE,
 header_text VARCHAR(1024),
 logo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
 document_typ VARCHAR2(32),
 formatted_doc BLOB);

CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

CREATE TABLE adheader_tab of adheader_typ (
Ad_finaltext DEFAULT EMPTY_CLOB(), CONSTRAINT
Take CHECK (Take IS NOT NULL), DEFAULT NULL);

CREATE TABLE online_media
(product_id NUMBER(6),
product_photo ORDSYS.ORDImage,
product_photo_signature ORDSYS.ORDImageSignature,
product_thumbnail ORDSYS.ORDImage,
product_video ORDSYS.ORDVideo,
product_audio ORDSYS.ORDAudio,
product_text CLOB,
product_testimonials ORDSYS.ORDDoc);

CREATE UNIQUE INDEX onlinemedia_pk
 ON online_media (product_id);

ALTER TABLE online_media
ADD (CONSTRAINT onlinemedia_pk
PRIMARY KEY (product_id), CONSTRAINT loc_c_id_fk
FOREIGN KEY (product_id) REFERENCES oe.product_information(product_id)
);
10-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table Containing One or More LOB Columns
CREATE TABLE print_media
(product_id NUMBER(6),
ad_id NUMBER(6),
ad_composite BLOB,
ad_sourcetext CLOB,
ad_finaltext CLOB,
ad_fktextn NCLOB,
ad_testdocs_ntab textdoc_tab,
ad_photo BLOB,
ad_graphic BFILE,
ad_header adheader_typ,
press_release LONG) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

CREATE UNIQUE INDEX printmedia_pk
 ON print_media (product_id, ad_id);

ALTER TABLE print_media
ADD (CONSTRAINT printmedia_pk
PRIMARY KEY (product_id, ad_id),
CONSTRAINT printmedia_fk FOREIGN KEY (product_id)
REFERENCES oe.product_information(product_id)
);
Internal Persistent LOBs 10-9

Creating a Table Containing an Object Type with a LOB Attribute
Creating a Table Containing an Object Type with a LOB Attribute

Figure 10–2 Use Case Diagram: Creating a Table Containing an Object Type with a LOB Attribute

Purpose
This procedure describes how to create a table containing an object type with a LOB

attribute.

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2.

■ Creating a Table Containing One or More LOB Columns on

page 10-5.

■ Creating a Nested Table Containing a LOB on page 10-13.

■ Creating a Varray Containing References to LOBs in Chapter 5,

"Large Objects: Advanced Topics" on page 5-28.

CREATE
a Table

User/
Program

CREATE table with an object
type containing a LOB

CREATE
Object Type

Internal Persistent LOBs : CREATING a Table
10-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table Containing an Object Type with a LOB Attribute
Usage Notes
When creating tables that contain LOBs use the guidelines and examples described

in the following:

■ Chapter 2, "Basic LOB Components", "Initializing Internal LOBs to NULL or

Empty"

■ Chapter 4, "Managing LOBs"

■ Chapter 7, "Modeling and Design"

Syntax
See the following specific reference for a detailed syntax description:

■ SQL: Oracle9i SQL Reference, "Chapter 7, SQL Statements" — CREATE TABLE.

Scenario
You must create the object type that contains LOB attributes before you can proceed

to create a table that makes use of that object type.

This example uses the Product Media schema included with Oracle9i sample

schemas. For details on this schema, you must refer to the Oracle9i Sample Schemas
manual.

Examples
This example is provided in SQL and applies to all programmatic environments:

■ SQL: Creating a Table Containing an Object Type with a LOB Attribute

SQL: Creating a Table Containing an Object Type with a LOB Attribute
Create adheader_typ as a basis for tables containing ad headings or titles and

logos used in these examples:

CREATE TYPE adheader_typ AS OBJECT (
 header_name VARCHAR2(256),
 creation_date DATE,
 header_text VARCHAR(1024),
 logo BLOB);

/* Create table adheader_tab Using SQL DDL: */
CREATE TABLE adheader_tab of adheader_typ (
 logo DEFAULT EMPTY_BLOB() CONSTRAINT Take CHECK (Take IS NOT NULL),
 creation_date DATE);
Internal Persistent LOBs 10-11

Creating a Table Containing an Object Type with a LOB Attribute
Create Type adheader_typ using SQL DDL as a basis for a table that will contain

the column object:

DROP TYPE adheader;
DROP TABLE adheader_tab;
CREATE TYPE adheader_typ AS OBJECT (
 header_name VARCHAR2(256),
 creation_date DATE,
 header_text VARCHAR(1024),
 logo BLOB);

/* Create support table adheader_tab as an archive of
 ad headers using SQL DDL: */
CREATE TABLE adheader_tab of adheader_typ;

See Also: Oracle9i SQL Reference for a complete specification of

the syntax for using LOBs in DDL commands, CREATE TYPE and

ALTER TYPE with BLOB, CLOB, and BFILE attributes.

Note: NCLOBs cannot be attributes of an object type.
10-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Nested Table Containing a LOB
Creating a Nested Table Containing a LOB

Figure 10–3 Use Case Diagram: Creating a Nested Table Containing a LOB

Purpose
This procedure creates a nested table containing a LOB.

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2.

■ Creating a Table Containing One or More LOB Columns on

page 10-5.

■ Creating a Table Containing an Object Type with a LOB

Attribute on page 10-10.

■ Creating a Varray Containing References to LOBs in Chapter 5,

"Large Objects: Advanced Topics" on page 5-28.

CREATE
a Table with a
nested table

column

User/
Program

CREATE table with an nested
table containing a LOB

CREATE
nested table

type

Internal Persistent LOBs : CREATING a Table
Internal Persistent LOBs 10-13

Creating a Nested Table Containing a LOB
Usage Notes

When creating tables that contain LOBs use the guidelines and examples described

in the following sections and these chapters:

■ Chapter 2, "Basic LOB Components", "Initializing Internal LOBs to NULL or

Empty"

■ Chapter 4, "Managing LOBs"

■ Chapter 7, "Modeling and Design"

Syntax
Use the following syntax reference:

■ SQL: Oracle9i SQL Reference , "Chapter 7, SQL Statements" — CREATE TABLE.

Scenario
Create the object type that contains the LOB attributes before you create a nested

table based on that object type. In our example, table Print_media contains nested

table ad_textdoc_ntab that has type textdoc_tab . This type uses two LOB

datatypes:

■ BFILE - an advertisement graphic

■ CLOB - an advertisement transcript

We have already described how to create a table with LOB columns in the previous

section (see "Creating a Table Containing One or More LOB Columns" on

page 10-5), so here we only describe the syntax for creating the underlying object

type.

Examples
The example "SQL: Creating a Nested Table Containing a LOB" is provided in the

SQL programmatic environment.

SQL: Creating a Nested Table Containing a LOB
/* Create type textdoc_typ as the base type
 for the nested table textdoc_ntab,
 where textdoc_ntab contains a LOB:
*/
DROP TYPE textdoc_typ force;
DROP TYPE textdoc_ntab;
10-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Nested Table Containing a LOB
DROP TABLE textdoc_ntable;
CREATE TYPE textdoc_typ AS OBJECT
(
 document_typ VARCHAR2(32),
 formatted_doc BLOB
);

/* The type has been created. Now you need a */
/* nested table of that type to embed in */
/* table Print_media, so: */
CREATE TYPE textdoc_ntab AS TABLE of textdoc_typ;
CREATE TABLE textdoc_ntable (
 id number,
 textdoc_ntab textdoc_typ)
NESTED TABLE textdoc_ntab STORE AS textdoc_nestedtab;

The actual embedding of the nested table is accomplished when the structure of the

containing table is defined. In our example, this is effected by the NESTED TABLE
statement when the Print_media table is created.
Internal Persistent LOBs 10-15

Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

Figure 10–4 Use Case Diagram: Inserting a Row Using EMPTY_CLOB() or EMPTY_BLOB()

User/
Program

EMPTY
_CLOB() or

_BLOB()

INSERT using Empty_CLOB() or Empty_BLOB()INSERT
a Row

Internal Persistent LOBs : INSERTING a Row
10-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
Purpose
This procedure describes how to insert a LOB value using EMPTY_CLOB() or

EMPTY_BLOB().

Usage Notes
Here are guidelines for inserting LOBs:

Before inserting, Make the LOB Column Non-Null
Before you write data to an internal LOB, make the LOBcolumn non-null; that is, the

LOB column must contain a locator that points to an empty or populated LOBvalue.

You can initialize a BLOB column’s value by using the function EMPTY_BLOB() as a

default predicate. Similarly, a CLOB or NCLOB column’s value can be initialized by

using the function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4,000

bytes in size. For example:

INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
 VALUES (1, 1, ’This is a One Line Advertisement’);

You can perform this initialization during CREATE TABLE(see "Creating a Table

Containing One or More LOB Columns") or, as in this case, by means of an INSERT.

Inserting LOBs For Binds of More Than 4,000 Bytes
For guidelines on how to INSERT into a LOB when binds of more than 4,000 bytes

are involved, see the following sections in Chapter 7, "Modeling and Design":

■ Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and

UPDATEs on page 7-14

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ Inserting a Row by Selecting a LOB From Another Table on

page 10-20

■ Inserting a Row by Initializing a LOB Locator Bind Variable on

page 10-23
Internal Persistent LOBs 10-17

Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
■ Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion

on page 7-15

■ Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and

UPDATE on page 7-16

■ Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

on page 7-18

■ Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes

on page 7-18

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ SQL: Oracle9i SQL Reference , "Chapter 7, SQL Statements" — INSERT.

■ C (OCI): There is no applicable syntax reference for this use case.

■ C++ (OCCI): There is no applicable syntax reference for this use case.

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario

Examples
Examples are provided in the following programmatic environments:

■ SQL: Inserting a Value Using EMPTY_CLOB() / EMPTY_BLOB() on page 10-19

■ C (OCI): No example is provided with this release.

■ C++ (OCCI): No example is provided with this release.

See Also: Oracle9i Sample Schemas for a description of the PM

Schema and the Print_media table used in this example.
10-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
■ C/C++ (ProC/C++): No example is provided with this release.

■ COBOL (Pro*COBOL): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

SQL: Inserting a Value Using EMPTY_CLOB() / EMPTY_BLOB()
These functions are special functions in Oracle SQL, and are not part of the DBMS_
LOB package.

/* In the new row of table Print_media,
 the columns ad_sourcetext and ad_fltextn are initialized using EMPTY_CLOB(),
 the columns ad_composite and ad_photo are initialized using EMPTY_BLOB(),
 the column formatted-doc in the nested table is initialized using EMPTY_
BLOB(),
 the column logo in the column object is initialized using EMPTY_BLOB(): */
INSERT INTO Print_media
 VALUES (3060,11001, EMPTY_BLOB(), EMPTY_CLOB(),EMPTY_CLOB(),EMPTY_CLOB(),
 textdoc_tab(textdoc_typ (’HTML’, EMPTY_BLOB())), EMPTY_BLOB(), NULL,
 adheader_typ(’any header name’, <any date>, ’ad header text goes here’,
EMPTY_BLOB()),
 ’Press release goes here’);
Internal Persistent LOBs 10-19

Inserting a Row by Selecting a LOB From Another Table
Inserting a Row by Selecting a LOB From Another Table

Figure 10–5 Use Case Diagram: Inserting a Row by Selecting a LOB From Another Table

Purpose
This procedure describes how to insert a row containing a LOB as SELECT.

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ Inserting a LOB Value using EMPTY_CLOB() or EMPTY_

BLOB() on page 10-16

■ Inserting a Row by Initializing a LOB Locator Bind Variable on

page 10-23

User/
Program

SELECT
a LOB

INSERT as SELECTINSERT
a Row

Internal Persistent LOBs : INSERTING a Row
10-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row by Selecting a LOB From Another Table
Usage Notes

For example, assuming Print_media and Online_media have identical schemas.

The statement creates a new LOB locator in table Print_media. It also copies

the LOB data from Online_media to the location pointed to by the new LOB
locator inserted in table Print_media .

Inserting LOBs For Binds of More Than 4,000 Bytes
For guidelines on how to INSERT into a LOB when binds of more than 4,000 bytes

are involved, see the following sections in Chapter 7, "Modeling and Design":

■ Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and

UPDATEs on page 7-14

■ Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion

on page 7-15

■ Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and

UPDATE on page 7-16

■ Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

on page 7-18

■ Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes

on page 7-18

Syntax
Use the following syntax reference:

■ SQL: Oracle9i SQL Reference , "Chapter 7, SQL Statements" — INSERT.

Scenario
For LOBs, one of the advantages of using an object-relational approach is that you

can define a type as a common template for related tables. For instance, it makes

sense that both the tables that store archival material and working tables that use

those libraries, share a common structure.

Note: Internal LOB types BLOB, CLOB, and NCLOB, use copy
semantics, as opposed to reference semantics that apply to BFILE s.

When a BLOB, CLOB, or NCLOBis copied from one row to another in

the same table or a different table, the actual LOB value is copied,

not just the LOB locator.
Internal Persistent LOBs 10-21

Inserting a Row by Selecting a LOB From Another Table
The following code fragment is based on the fact that the table Online_media is of

the same type as Print_media referenced by the ad_textdocs_ntab column of

table Print_media . It inserts values into the library table, and then inserts this

same data into Print_media by means of a SELECT.

Examples
The following example is provided in SQL and applies to all the programmatic

environments:

■ SQL: Inserting a Row by Selecting a LOB from Another Table on page 10-22

SQL: Inserting a Row by Selecting a LOB from Another Table
/* Store records in the archive table Online_media: */
INSERT INTO Online_media
 VALUES (3060, NULL, NULL, NULL, NULL,
 ’some text about this CRT Monitor’, NULL);

/* Insert values into Print_media by selecting from Online_media: */
INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
 (SELECT product_id, 11001, product_text
 FROM Online_media where product_id = 3060);

See Also: Oracle9i Sample Schemas for a description of the PM

Schema and the Print_media table used in this example.
10-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row by Initializing a LOB Locator Bind Variable
Inserting a Row by Initializing a LOB Locator Bind Variable

Figure 10–6 Use Case Diagram: Inserting a Row by Initializing a LOB Locator Bind Variable

Purpose
This procedure inserts a row by initializing a LOB locator bind variable.

Usage Notes
For guidelines on how to INSERT and UPDATE a LOB when binds of more than

4,000 bytes are involved, see the following sections in Chapter 7, "Modeling and

Design":

■ Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and

UPDATEs on page 7-14

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ Inserting a LOB Value using EMPTY_CLOB() or EMPTY_

BLOB() on page 10-16

■ Inserting a Row by Selecting a LOB From Another Table on

page 10-20

User/
Program

Initialize
a LOB locator
bind variable

INSERT by Initializing a LOB locator bind variableINSERT
a Row

Internal Persistent LOBs : INSERTING a Row
Internal Persistent LOBs 10-23

Inserting a Row by Initializing a LOB Locator Bind Variable
■ Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion

on page 7-15

■ Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and

UPDATE on page 7-16

■ Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

on page 7-18

■ Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes

on page 7-18

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ SQL:Oracle9i SQL Reference , "Chapter 7, SQL Statements" — INSERT

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — INSERT.

■ C/C++ (ProC/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — INSERT

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > Objects > Oradynaset

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
In the following examples you use a LOB locator bind variable to take ad_photo
data in one row of Print_media and insert it into another row.

Examples
Examples are provided in the following programmatic environments:
10-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row by Initializing a LOB Locator Bind Variable
■ PL/SQL (DBMS_LOB Package): Inserting a Row by Initializing a LOB Locator

Bind Variable on page 10-25

■ C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable on

page 10-26

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind

Variable on page 10-28

■ C/C++ (ProC/C++): Inserting a Row by Initializing a LOB Locator Bind

Variable on page 10-29

■ Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind

Variable on page 10-30

■ Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable on

page 10-30

PL/SQL (DBMS_LOB Package): Inserting a Row by Initializing a LOB Locator Bind
Variable

/* Note that the example procedure insertUseBindVariable_proc is not part of the
 DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE insertUseBindVariable_proc
 (productnum IN NUMBER, adnum IN NUMBER, Blob_loc IN BLOB) IS
BEGIN
 INSERT INTO Print_media (product_id, ad_id, ad_photo)
 VALUES (productnum, adnum, Blob_loc);
END;

DECLARE
 Blob_loc BLOB;
BEGIN
 /* Select the LOB from the row where product_id = 3106 and ad_id=13001.
 Initialize the LOB locator bind variable: */
 SELECT ad_photo INTO Blob_loc
 FROM Print_media
 WHERE product_id = 3106 AND ad_id=13001;
 /* Insert into the row where product_id = 2056 AND ad_id=12001 */
 insertUseBindVariable_proc (2056, 12001, Blob_loc);
 COMMIT;
END;
Internal Persistent LOBs 10-25

Inserting a Row by Initializing a LOB Locator Bind Variable
C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
/* Select the locator into a locator variable */
sb4 select_Printmedia_Locator (Lob_loc, errhp, stmthp, svchp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCIStmt *stmthp;
OCISvcCtx *svchp;
{
 OCIDefine *defnp1, *defnp2;

 text *sqlstmt =
 (text *)"SELECT ad_photo FROM Print_media WHERE product_id=2268 AND ad_
id=21001";

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,

(ub2)SQLT_BLOB,(dvoid *)0, (ub2 *)0, (ub2 *)0,
 (ub4)OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *)&Lob_loc, (sb4)0,

(ub2)SQLT_BLOB,(dvoid *)0, (ub2 *)0, (ub2 *)0,
 (ub4)OCI_DEFAULT));

 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return (0);

}
/* Insert the selected Locator into table using Bind Variables.
 This function selects a locator from the Print_media table and inserts
 it into the same table in another row.
 */
void insertUseBindVariable (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
10-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row by Initializing a LOB Locator Bind Variable
OCIStmt *stmthp;
{
 int clipid;
 OCILobLocator *Lob_loc;
 OCIBind *bndhp2;
 OCIBind *bndhp1;

 text *insstmt =
 (text *) "INSERT INTO Print_media (product_id, ad_photo) VALUES (:2268,
:3060)";

 /* Allocate locator resources */
 (void) OCIDescriptorAlloc((dvoid *) envhp,
 (dvoid **) &Lob_loc, (ub4)OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0);

 /* Select a LOB locator from the Print_media table */
 select_Printmedia_Locator(Lob_loc, errhp, stmthp, svchp);

 /* Insert the locator into the Print_media table with product_id=3060 */
 product_id = 3060;

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Binds the bind positions */
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1,
 (dvoid *) &clipid, (sb4) sizeof(clipid),
 SQLT_INT, (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp2, errhp, (ub4) 2,
 (dvoid *) &Lob_loc, (sb4) 0, SQLT_BLOB,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 /* Free LOB resources*/
Internal Persistent LOBs 10-27

Inserting a Row by Initializing a LOB Locator Bind Variable
 OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
 IDENTIFICATION DIVISION.
 PROGRAM-ID. INSERT-LOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 USERID PIC X(11) VALUES "PM/PM".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 INSERT-LOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Initialize the BLOB locator
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 * Populate the LOB
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_PHOTO INTO :BLOB1
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 2268 AND AD_ID = 21001
END-EXEC.

 * Insert the value with PRODUCT_ID of 3060
 EXEC SQL
 INSERT INTO PRINT_MEDIA (PRODUCT_ID, AD_PHOTO)
 VALUES (3060, 11001, :BLOB1)END-EXEC.

 * Free resources held by locator
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
10-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row by Initializing a LOB Locator Bind Variable
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (ProC/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertUseBindVariable_proc(Rownum, Lob_loc)
 int Rownum, Rownum2;
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL INSERT INTO Print_media (product_id, ad_id, ad_photo)
 VALUES (:Rownum, :Rownum2, :Lob_loc);
}
void insertBLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Lob_loc;

 /* Select the LOB from the row where product_id = 2268 and ad_id=21001: */
 EXEC SQL SELECT ad_photo INTO :Lob_loc
 FROM Print_media WHERE product_id = 2268 AND ad_id = 21001;

 /* Insert into the row where product_id = 3106 and ad_id = 13001: */
 insertUseBindVariable_proc(3106, 13001, Lob_loc);

 /* Release resources held by the locator: */
Internal Persistent LOBs 10-29

Inserting a Row by Initializing a LOB Locator Bind Variable
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "pm/pm";
 EXEC SQL CONNECT :pm;
 insertBLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind Variable
Dim OraDyn as OraDynaset, OraPhoto1 as OraBLOB, OraPhotoClone as OraBLOB
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id", ORADYN_DEFAULT)
Set OraPhoto1 = OraDyn.Fields("ad_photo").Value
’Clone it for future reference
Set OraPhotoClone = OraPhoto1

’Go to Next row
OraDyn.MoveNext

’Lets update the current row and set the LOB to OraPhotoClone
OraDyn.Edit
Set OraPhoto1 = OraPhotoClone
OraDyn.Update

Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_31
10-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row by Initializing a LOB Locator Bind Variable
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media WHERE product_id = 3106 AND ad_id =
13001");
 if (rset.next())
 {
 // retrieve the LOB locator from the ResultSet
 BLOB adphoto_blob = ((OracleResultSet)rset).getBLOB (1);
 OraclePreparedStatement ops =
 (OraclePreparedStatement) conn.prepareStatement(
 "INSERT INTO Print_media (product_id, ad_id, ad_photo) VALUES
(2268, 21001, ?)");
 ops.setBlob(1, adphoto_blob);
 ops.execute();
 conn.commit();
 conn.close();
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-31

Loading a LOB with Data From a BFILE
Loading a LOB with Data From a BFILE

Figure 10–7 Use Case Diagram: Loading a LOB with Data From a BFILE

OPEN
a LOB

User/
Program

OCI Lob
FileSet NameSELECT

BFILE OR

INITIALIZE
BFILE
locator

CLOSE
a LOB

close
all BFILES

load a LOB
with data

from a BFILE

OR

open
a BFILE

SELECT
a LOB

close
a BFILE

Internal persistent LOBs : LOADING LOB with Data From a BFILE
10-32 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with Data From a BFILE
Purpose
This procedure describes how to load a LOB with data from a BFILE.

Usage Notes

Since LOBs can be quite large in size, it makes sense that SQL*Loader can load LOB
data from either the main datafile (that is, in-line with the rest of the data) or from

one or more secondary datafiles.

To load LOBdata from the main datafile, the usual SQL*Loader formats can be used.

LOB data instances can be in predetermined size fields, delimited fields, or

length-value pair fields.

For detailed information and tips on using SQL Loader for loading data into an

internal LOB see "Loading Inline LOB Data" and "Loading Out-Of-Line LOB Data"

in Chapter 4 of this guide.

Binary Data to Character Set Conversion is Needed on BFILE Data
In using OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ "Loading an Internal Persistent BLOB with Binary Data from a

BFILE" on page 10-43

■ "Loading an Internal Persistent CLOB with BFILE Data" on

page 10-47

Note: The LOADBLOBFROMFILE and LOADCLOBFROMFILE
procedures implement the functionality of this procedure and

provide improved features for loading binary data and character

data. The improved procedures are available in the PL/SQL

environment only. When possible, using one of the improved

procedures is recommended. See "Loading an Internal Persistent

BLOB with Binary Data from a BFILE" on page 10-43 and "Loading

an Internal Persistent CLOB with BFILE Data" on page 10-47 for

more information.
Internal Persistent LOBs 10-33

Loading a LOB with Data From a BFILE
from one character set to another. When you use the DBMS_LOB.LOADFROMFILE

procedure to populate a CLOB or NCLOB, you are populating the LOB with binary

data from the BFILE. No implicit translation is performed from binary data to a

character set. For this reason, you should use the LOADCLOBFROMFILE

procedure when loading text (see Loading an Internal Persistent CLOB with BFILE

Data on on page 10-47).

Specify Amount to be Less than the Size of BFILE
Unless you specify maxlobsize to load the entire BFILE, the amount (the number

of bytes) you specify to load from a BFILE must be less than or equal to the size of

BFILE as follows:

■ DBMS_LOB.LOADFROMFILE: You cannot specify an amount larger than the

size of the BFILE.

■ OCILobLoadFromFile: You cannot specify an amount larger than the length of

the BFILE.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — LOADFROMFILE.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OciLobLoadFromFile.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB LOAD, LOB OPEN, LOB CLOSE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB LOAD

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >

METHODS > CopyFromBFILE and select OO4O Automation Server >

OBJECTS > OraDynaset, OraDatabase, OraConnection

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
10-34 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with Data From a BFILE
SQLJ Developer’s Guide and ReferenceChapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The examples assume that there is an operating system source file keyboard_
3106_13001 that contains LOB data to be loaded into the target LOB ad_
composite . The examples also assume that directory object ADVERT_DIR already

exists and is mapped to the location of the source file.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Loading a LOB with Data from a BFILE on

page 10-35

■ C (OCI): Loading a LOB with Data from a BFILE on page 10-36

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Loading a LOB with Data from a BFILE on page 10-38

■ C/C++ (ProC/C++): No example is provided with this release.

■ Visual Basic (OO4O): Loading a LOB with Data from a BFILE on page 10-39

■ Java (JDBC): Loading a LOB with Data from a BFILE on page 10-40

PL/SQL (DBMS_LOB Package): Loading a LOB with Data from a BFILE
/* Loading a LOB with Data from a BFILE. Note that the example procedure
loadLOBFromBFILE_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE loadLOBFromBFILE_proc IS
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’keyboard_3106_13001’);
 Amount INTEGER := 4000;
BEGIN
 SELECT ad_photo INTO Dest_loc FROM print_media
 WHERE product_id = 3106 and ad_id=13001 FOR UPDATE;

 /* Opening the source BFILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);

 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
Internal Persistent LOBs 10-35

Loading a LOB with Data From a BFILE
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);

 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Src_loc);
 COMMIT;
END;

C (OCI): Loading a LOB with Data from a BFILE
/* Selecting a BLOB from Print_media and loading it with data from a BFILE */
sb4 select_lock_adphoto_locator_3(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_photo FROM Print_media WHERE product_id=2056
 AND ad_id = 12001 FOR UPDATE";
 OCIDefine *defnp1, *defnp2;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}

void LoadLobDataFromBFile(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
10-36 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with Data From a BFILE
{
 OCILobLocator *bfile;
 OCILobLocator *blob;
 ub4 amount= 4000;

 /* Allocate the Source (bfile) & destination (blob) locators desriptors*/
 OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&bfile,
 (ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid **)0);
 OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&blob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

 /* Select a ad_photo locator for update */
 printf (" select the ad_photo locator...\n");
 select_lock_adphoto_locator_2056(blob, errhp, svchp, stmthp);

 /* Set the Directory Alias and File Name of the ad_photo file */
 printf (" set the file name in bfile\n");
 checkerr (errhp, OCILobFileSetName(envhp, errhp, &bfile, (text*)"ADPHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text*)"mousepad_2056_12001",
 (ub2)strlen("mousepad_2056_12001")));
 printf (" open the bfile\n");
 /* Opening the BFILE locator is Mandatory */
 checkerr (errhp, (OCILobOpen(svchp, errhp, bfile, OCI_LOB_READONLY)));

 printf(" open the lob\n");
 /* Opening the BLOB locator is optional */
 checkerr (errhp, (OCILobOpen(svchp, errhp, blob, OCI_LOB_READWRITE)));

 /* Load the data from the graphic file (bfile) into the blob */
 printf (" load the LOB from File\n");
 checkerr (errhp, OCILobLoadFromFile(svchp, errhp, blob, bfile, (ub4)amount,
 (ub4)1, (ub4)1));

 /* Closing the LOBs is Mandatory if they have been Opened */
 checkerr (errhp, OCILobClose(svchp, errhp, bfile));
 checkerr (errhp, OCILobClose(svchp, errhp, blob));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) bfile, (ub4) OCI_DTYPE_FILE);
 (void) OCIDescriptorFree((dvoid *) blob, (ub4) OCI_DTYPE_LOB);

 return;
}

Internal Persistent LOBs 10-37

Loading a LOB with Data From a BFILE

E

COBOL (Pro*COBOL): Loading a LOB with Data from a BFILE
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-LOAD.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 DEST SQL-BLOB.
 01 BFILE1 SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 * Declare the amount to load. The value here
 * was chosen arbitrarily
 01 LOB-AMT PIC S9(9) COMP VALUE 10.
 01 USERID PIC X(11) VALUES "PM/PM".
 EXEC SQL INCLUDE SQLCA END-EXEC.
 PROCEDURE DIVISION.
 LOB-LOAD.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BFILE locator
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 * Set up the directory and file information
 MOVE "ADGRAPHIC_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1 DIRECTORY = :DIR-ALIAS,FILENAME = :FNAME
 END-EXEC.

 * Allocate and initialize the destination BLOB
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL SELECT AD_GRAPHIC INTO :DEST

FROM PRINT_MEDIA WHERE PRODUCT_ID = 2268 AND AD_ID = 21001 FOR UPDAT
END-EXEC.

 * Open the source BFILE for READ
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.
10-38 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with Data From a BFILE
 * Open the destination BLOB for READ/WRITE
 EXEC SQL LOB OPEN :DEST READ WRITE END-EXEC.

 * Load the destination BLOB from the source BFILE
 EXEC SQL LOB LOAD :LOB-AMT FROM FILE :BFILE1 INTO :DEST END-EXEC.

 * Close the source and destination LOBs
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.
 EXEC SQL LOB CLOSE :DEST END-EXEC.
 END-OF-BLOB.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.
 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Visual Basic (OO4O): Loading a LOB with Data from a BFILE
Dim OraDyn as OraDynaset, OraPhoto1 as OraBLOB, OraMyBfile as OraBFile

OraConnection.BeginTrans
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id", ORADYN_DEFAULT)
Set OraPhoto1 = OraDyn.Fields("ad_photo").Value

OraDb.Parameters.Add "id", 3060,ORAPARAM_INPUT
OraDb.Parameters.Add "mybfile", Null,ORAPARAM_OUTPUT
OraDb.Parameters("mybfile").serverType = ORATYPE_BFILE

OraDb.ExecuteSQL ("begin GetBFile(:id, :mybfile); end;")

Set OraMyBFile = OraDb.Parameters("mybfile").Value
’Go to Next row
OraDyn.MoveNext
Internal Persistent LOBs 10-39

Loading a LOB with Data From a BFILE
OraDyn.Edit
’Lets update OraPhoto1 data with that from the BFILE
OraPhoto1.CopyFromBFile OraMyBFile
OraDyn.Update

OraConnection.CommitTrans

Java (JDBC): Loading a LOB with Data from a BFILE
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_45
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 BLOB dest_lob = null;
10-40 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with Data From a BFILE
 InputStream in = null;
 OutputStream out = null;
 byte buf[] = new byte[1000];
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME(’ADPHOTO_DIR’, ’keyboard_3106_13001’) FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 src_lob.openFile();
 in = src_lob.getBinaryStream();
 }

 rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media WHERE product_id = 3106
 AND AD_ID = 13001 FOR UPDATE");
 if (rset.next())
 {
 dest_lob = ((OracleResultSet)rset).getBLOB (1);

 // Fetch the output stream for dest_lob:
 out = dest_lob.getBinaryOutputStream();
 }

 int length = 0;
 int pos = 0;
 while ((in != null) && (out != null) && ((length = in.read(buf)) != -1))
 {
 System.out.println(
 "Pos = " + Integer.toString(pos) + ". Length = " +
 Integer.toString(length));
 pos += length;
 out.write(buf, pos, length);
 }

 // Close all streams and file handles:
 in.close();
 out.flush();
 out.close();
 src_lob.closeFile();

 // Commit the transaction:
 conn.commit();
 conn.close();
Internal Persistent LOBs 10-41

Loading a LOB with Data From a BFILE
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-42 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading an Internal Persistent BLOB with Binary Data from a BFILE
Loading an Internal Persistent BLOB with Binary Data from a BFILE

Figure 10–8 Use Case Diagram: Loading a BLOB with Data from a BFILE

OPEN
a BLOB

User/
Program

OCI Lob
FileSet NameSELECT

BFILE OR

INITIALIZE
BFILE
locator

CLOSE
a BLOB

close
all BFILES

load a BLOB
with data

from a BFILE

OR

open
a BFILE

SELECT
a BLOB

close
a BFILE

Internal Persistent BLOBs : LOADING BLOB with Data From a BFILE
Internal Persistent LOBs 10-43

Loading an Internal Persistent BLOB with Binary Data from a BFILE
Purpose
This procedure describes how to load an internal persistent BLOB with binary data

from a BFILE.

Usage Notes
Use LOADBLOBFROMFILE for loading of binary data and LOADCLOBFROMFILE for

text loading. This achieves the same outcome as LOADFROMFILE as well as

returning the new offsets to the user. The LOADCLOBFROMFILE API allows you to

specify the character set id of the BFILE ensuring that the character set is properly

converted from the BFILE data character set to the destination CLOB/NCLOB

character set.

Since LOBs can be quite large in size, it makes sense that SQL*Loader can load LOB
data from either the main datafile (that is, in-line with the rest of the data) or from

one or more secondary datafiles.

To load LOBdata from the main datafile, the usual SQL*Loader formats can be used.

LOB data instances can be in predetermined size fields, delimited fields, or

length-value pair fields.

For detailed information and tips on using SQL Loader for loading data into an

internal LOB see "Loading Inline LOB Data" and "Loading Out-Of-Line LOB Data"

in Chapter 4 of this guide.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — LOADBLOBFROMFILE

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ "Loading a LOB with Data From a BFILE" on page 10-32

■ "Loading an Internal Persistent CLOB with BFILE Data" on

page 10-47
10-44 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading an Internal Persistent BLOB with Binary Data from a BFILE
Scenario
The example procedures in this section use the Print_media table of the Product

Media sample schema and assume that there is an operating system source

directory that contains the binary LOB data to be loaded into the target BLOB.

Example
The example, "PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB

with BFILE Data", illustrates LOADBLOBFROMFILE usage in the PL/SQL

programmatic environment. (Other programmatic environments are not

supported.)

PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB
with BFILE Data

The following example illustrates:

■ How to use LOADBLOBFROMFILE to load the entire file without getting its

length first.

■ How to use the return value of the offsets to calculate the actual amount loaded.

DECLARE
 src_loc BFILE := bfilename(’ADVERT_DIR’,’display_ad_frame’) ;
 dst_loc BLOB;
 src_offset NUMBER := 1;
 dst_offset NUMBER := 1;
 src_osin NUMBER;
 dst_osin NUMBER;
 bytes_rd NUMBER;
 bytes_wt NUMBER;
BEGIN
 SELECT ad_composite INTO dst_loc FROM Print_media
 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

 /* Opening the source BFILE is mandatory */
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);

 /* Opening the LOB is optional */
 dbms_lob.OPEN(dst_loc, dbms_lob.lob_readwrite);
 /* Save the input source/destination offsets */
 src_osin := src_offset;
 dst_osin := dst_offset;
 /* Use LOBMAXSIZE to indicate loading the entire BFILE */
 dbms_lob.LOADBLOBFROMFILE(dst_loc,src_loc,dbms_lob.lobmaxsize,src_offset,dst_
Internal Persistent LOBs 10-45

Loading an Internal Persistent BLOB with Binary Data from a BFILE
offset) ;

 /* Closing the LOB is mandatory if you have opened it */
 dbms_lob.close(dst_loc);
 dbms_lob.filecloseall();
 COMMIT;

 /* Use the src_offset returned to calculate the actual amount read from the
BFILE */
 bytes_rd := src_offset - src_osin;
 dbms_output.put_line(’ Number of bytes read from the BFILE ’ || bytes_rd) ;
 /* Use the dst_offset returned to calculate the actual amount written to the
BLOB */
 bytes_wt := dst_offset - dst_osin;
 dbms_output.put_line(’ Number of bytes written to the BLOB ’ || bytes_wt) ;
 /* If there is no exception the number of bytes read should equal to the
number of bytes written */

END ;
10-46 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading an Internal Persistent CLOB with BFILE Data
Loading an Internal Persistent CLOB with BFILE Data

Figure 10–9 Use Case Diagram: Loading a CLOB with BFILE Data

OPEN
a CLOB

User/
Program

OCI Lob
FileSet NameSELECT

BFILE OR

INITIALIZE
BFILE
locator

CLOSE
a CLOB

close
all BFILES

load a CLOB
with data

from a BFILE

OR

open
a BFILE

SELECT
a CLOB

close
a BFILE

Internal Persistent CLOBs : LOADING CLOB with Data From a BFILE
Internal Persistent LOBs 10-47

Loading an Internal Persistent CLOB with BFILE Data
Purpose
This procedure describes how to load an internal persistent CLOB or NCLOB with

character data from a BFILE.

Usage Notes
Use LOADBLOBFROMFILE for loading of binary data and LOADCLOBFROMFILE for

loading of text as the latter method lets you specify the character set id of the BFILE.

The LOADCLOBFROMFILE API allows you to specify the character set id of the

BFILE ensuring that the character set is properly converted from the BFILE data

character set to the destination CLOB/NCLOB character set.

Since LOBs can be quite large in size, it makes sense that SQL*Loader can load LOB
data from either the main datafile (that is, in-line with the rest of the data) or from

one or more secondary datafiles.

To load LOBdata from the main datafile, the usual SQL*Loader formats can be used.

LOB data instances can be in predetermined size fields, delimited fields, or

length-value pair fields.

For detailed information and tips on using SQL Loader for loading data into an

internal LOB see "Loading Inline LOB Data" and "Loading Out-Of-Line LOB Data"

in Chapter 4 of this guide.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — LOADCLOBFROMFILE

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ "Loading a LOB with Data From a BFILE" on page 10-32

■ "Loading an Internal Persistent BLOB with Binary Data from a

BFILE" on page 10-43
10-48 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading an Internal Persistent CLOB with BFILE Data
Scenario
The example procedures in this section use the Print_media table of the Product

Media sample schema and assume that there is an operating system source

directory that contains the character LOB data to be loaded into the target CLOB or

NCLOB.

Examples
The examples given in, PL/SQL (DBMS_LOB Package): Loading an Internal

Persistent CLOB with BFILE Data, illustrate LOADCLOBFROMFILE usage in the

PL/SQL programmatic environment. (Other programmatic environments are not

supported.)

PL/SQL (DBMS_LOB Package): Loading an Internal Persistent CLOB with BFILE Data

Example
The following example illustrates:

■ How to use default csid (0).

■ How to load the entire file without calling getlength for the BFILE.

■ How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format

and the database character set is UTF8.

DECLARE
 src_loc bfile := bfilename(’ADVERT_DIR’,’ad_source_1000’) ;
 dst_loc clob ;
 amt number := dbms_lob.lobmaxsize;
 src_offset number := 1 ;
 dst_offset number := 1 ;
 lang_ctx number := dbms_lob.default_lang_ctx;
 warning number;
BEGIN
 select ad_sourcetext into dst_loc from Print_media
 where product_id = 3000 and ad_id = 1000 for update ;
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);

 /* The default_csid can be used when the BFILE encoding is in the same charset
 * as the destination CLOB/NCLOB charset
 */
dbms_lob.LOADCLOBFROMFILE(dst_loc,src_loc,amt,dst_offset,src_offset,
Internal Persistent LOBs 10-49

Loading an Internal Persistent CLOB with BFILE Data
 dbms_lob.default_csid, lang_ctx,warning) ;

 commit;

 dbms_output.put_line(’ Amount specified ’ || amt) ;
 dbms_output.put_line(’ Number of bytes read from source: ’ ||
 (src_offset-1));
 dbms_output.put_line(’ Number of characters written to destination: ’ ||
 (dst_offset-1));
 if (warning = dbms_lob.warn_inconvertible_char)
 then
 dbms_output.put_line(’Warning: Inconvertible character’);
 end if;

 dbms_lob.filecloseall() ;
END ;

Example
The following example illustrates:

■ How to get the character set ID from the character set name using the NLS_
CHARSET_ID function.

■ How to load a stream of data from a single BFILE into different LOBs using the

returned offset value and the language context lang_ctx .

■ How to read a warning message.

This example assumes that ad_file_ext_01 is a BFILE in JA16TSTSET format

and the database national character set is AL16UTF16.

DECLARE
 src_loc bfile := bfilename(’ADVERT_DIR’,’ad_file_ext_01’) ;
 dst_loc1 nclob;
 dst_loc2 nclob;
 amt number := 1000;
 src_offset number := 1;
 dst_offset number := 1;
 src_osin number;
 cs_id number := NLS_CHARSET_ID(’JA16TSTSET’); /* 998 */
 lang_ctx number := dbms_lob.default_lang_ctx;
 warning number;
BEGIN
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);
 dbms_output.put_line(’ BFILE csid is ’ || cs_id) ;
10-50 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading an Internal Persistent CLOB with BFILE Data
 /* Load the first 1KB of the BFILE into dst_loc1 */
 dbms_output.put_line(’ ----------------------------’) ;
 dbms_output.put_line(’ First load ’) ;
 dbms_output.put_line(’ ----------------------------’) ;

 SELECT ad_fltextn INTO dst_loc1 FROM Print_media
 WHERE product_id=3106 and ad_id=13000 FOR UPDATE;

 dbms_lob.LOADCLOBFROMFILE(dst_loc1, src_loc, amt, dst_offset, src_offset,
 cs_id, lang_ctx, warning);
 commit;

 /* the number bytes read may or may not be 1k */
 dbms_output.put_line(’ Amount specified ’ || amt) ;
 dbms_output.put_line(’ Number of bytes read from source: ’ ||
 (src_offset-1));
 dbms_output.put_line(’ Number of characters written to destination: ’ ||
 (dst_offset-1));
 if (warning = dbms_lob.warn_inconvertible_char)
 then
 dbms_output.put_line(’Warning: Inconvertible character’);
 end if;

 /* load the next 1KB of the BFILE into the dst_loc2 */
 dbms_output.put_line(’ ----------------------------’) ;
 dbms_output.put_line(’ Second load ’) ;
 dbms_output.put_line(’ ----------------------------’) ;

 SELECT ad_fltextn INTO dst_loc2 FROM Print_media
 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

 /* Notice we are using the src_offset and lang_ctx returned from the previous
 * load. We do not use value 1001 as the src_offset here because sometimes the
 * actual amount read may not be the same as the amount specified.
 */

 src_osin := src_offset;
 dst_offset := 1;
 dbms_lob.LOADCLOBFROMFILE(dst_loc2, src_loc, amt, dst_offset, src_offset,
 cs_id, lang_ctx, warning);
 commit ;
 dbms_output.put_line(’ Number of bytes read from source: ’ ||
 (src_offset-src_osin));
 dbms_output.put_line(’ Number of characters written to destination: ’ ||
Internal Persistent LOBs 10-51

Loading an Internal Persistent CLOB with BFILE Data
 (dst_offset-1));
 if (warning = dbms_lob.warn_inconvertible_char)
 then
 dbms_output.put_line(’Warning: Inconvertible character’);
 end if;

 dbms_lob.filecloseall() ;

END ;
10-52 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Open: Checking If a LOB Is Open
Open: Checking If a LOB Is Open

Figure 10–10 Use Case Diagram: Checking If a LOB Is Open

Purpose
This procedure describes how to check if LOB is open.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — OPEN, ISOPEN.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions — OciSeeIfLob IsOpen.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

SEE if
LOB is Open

Internal Persistent LOBs : SEEING if LOB is Open
Internal Persistent LOBs 10-53

Open: Checking If a LOB Is Open
■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB DESCRIBE.

■ C/C++ (ProC/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ... ISOPEN ...

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The following "Checking if a LOB is Open" examples open a graphic image (ad_
composite), and then evaluate it to see if the LOB is open.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking if a LOB is Open on page 10-54

■ C (OCI): Checking if a LOB is Open on page 10-55

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Checking if a LOB is Open on page 10-56

■ C/C++ (ProC/C++): Checking if a LOB is Open on page 10-58

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Checking if a LOB is Open on page 10-59

PL/SQL (DBMS_LOB Package): Checking if a LOB is Open
/* Checking if a LOB is Open. Note that the example procedure lobIsOpen_proc
is not part of the DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE lobIsOpen_proc IS
 Lob_loc BLOB;
 Retval INTEGER;
BEGIN
 SELECT ad_composite INTO Lob_loc FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001;
10-54 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Open: Checking If a LOB Is Open
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc , DBMS_LOB.LOB_READONLY);

 /* See if the LOB is open: */
 Retval := DBMS_LOB.ISOPEN(Lob_loc);
 /* The value of Retval will be 1 meaning that the LOB is open. */
END;

C (OCI): Checking if a LOB is Open
/* Checking if LOB is Open. */
/* Select the locator into a locator variable */
sb4 select_adcomp_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_composite FROM Print_media
 WHERE product_id=2268 AND ad_id = 21001";
 OCIDefine *defnp1 *defnp2;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return (0);
}

void seeIfLOBIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
Internal Persistent LOBs 10-55

Open: Checking If a LOB Is Open
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 int isOpen;

 /* Allocate locator resources */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);
 /* Select the locator */
 (void)select_adcomp_locator(Lob_loc, errhp, svchp, stmthp);

 /* See if the LOB is Open */
 checkerr (errhp, OCILobIsOpen(svchp, errhp, Lob_loc, &isOpen));

 if (isOpen)
 {
 printf(" Lob is Open\n");
 /* ... Processing given that the LOB has already been Opened */
 }
 else
 {
 printf(" Lob is not Open\n");
 /* ... Processing given that the LOB has not been Opened */
 }
 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
 }

COBOL (Pro*COBOL): Checking if a LOB is Open
 * Checking if LOB is Open
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-OPEN.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 LOB-ATTR-GRP.
 05 ISOPN PIC S9(9) COMP.
 01 SRC SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
10-56 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Open: Checking If a LOB Is Open
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 USERID PIC X(11) VALUES "PM/PM".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-OPEN.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the target BLOB
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL SELECT AD_COMPOSITE INTO :BLOB1
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3060 AND AD_ID = 11001
END-EXEC.

 * See if the LOB is OPEN
 EXEC SQL
 LOB DESCRIBE :BLOB1 GET ISOPEN INTO :ISOPN END-EXEC.

 IF ISOPN = 1
 * <Processing for the LOB OPEN case>
 DISPLAY "The LOB is open"
 ELSE
 * <Processing for the LOB NOT OPEN case>
 DISPLAY "The LOB is not open"
 END-IF.

 * Free the resources used by the BLOB
 END-OF-BLOB.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.
Internal Persistent LOBs 10-57

Open: Checking If a LOB Is Open
C/C++ (ProC/C++): Checking if a LOB is Open
/* Checking if LOB is open */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfLOBIsOpen()
{
 OCIBlobLocator *Lob_loc;
 int isOpen = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_composite INTO :Lob_loc
 FROM Print_media WHERE product_id = 3106 and ad_id = 13001;
 /* See if the LOB is Open: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN INTO :isOpen;
 if (isOpen)
 printf("LOB is open\n");
 else
 printf("LOB is not open\n");
 /* Note that in this example, the LOB is not open */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "pm/pm";
 EXEC SQL CONNECT :pm;
 seeIfLOBIsOpen();
 EXEC SQL ROLLBACK WORK RELEASE;
}

10-58 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Open: Checking If a LOB Is Open
Java (JDBC): Checking if a LOB is Open

Checking if a CLOB is Open
To see if a CLOB is open, your JDBC application can now use the isOpen method

defined in oracle.sql.CLOB . The return boolean value indicates whether the

CLOB has been previously opened or not. The isOpen method is defined as

follows:

/**
 * Check whether the CLOB is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

CLOB clob = ...
 // See if the CLOB is opened
 boolean isOpen = clob.isOpen ();

Checking If a BLOB is Open
To see if a BLOB is open, your JDBC application can now use the isOpen method

defined in oracle.sql.BLOB . The return boolean value indicates whether the

BLOB has been previously opened or not. The isOpen method is defined as

follows:

/**
 * Check whether the BLOB is opened.
 * @return true if the LOB is opened.
 */
 public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();

Example

// Checking if LOB is open
// Core JDBC classes:
Internal Persistent LOBs 10-59

Open: Checking If a LOB Is Open
import java.io.OutputStream;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.Types;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_48
{
 public Ex2_48 ()
 {
 }

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");
 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);
 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BLOB blob = null;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media product_id = 3060 AND ad_id =
11001");
 if (rset.next())
 {
 blob = ((OracleResultSet)rset).getBLOB (1);
 }
 OracleCallableStatement cstmt =
 (OracleCallableStatement) conn.prepareCall (
 "BEGIN ? := DBMS_LOB.ISOPEN(?); END;");
10-60 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Open: Checking If a LOB Is Open
 cstmt.registerOutParameter (1, Types.NUMERIC);
 cstmt.setBLOB(2, blob);
 cstmt.execute();
 int result = cstmt.getInt(1);
 System.out.println("The result is: " + Integer.toString(result));

 OracleCallableStatement cstmt2 = (OracleCallableStatement)
 conn.prepareCall (
 "BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READONLY); END;");
 cstmt2.setBLOB(1, blob);
 cstmt2.execute();

 System.out.println("The LOB has been opened with a call to DBMS_LOB.OPEN()");

 // Use the existing cstmt handle to re-query the status of the locator:
 cstmt.setBLOB(2, blob);
 cstmt.execute();
 result = cstmt.getInt(1);
 System.out.println("This result is: " + Integer.toString(result));

 stmt.close();
 cstmt.close();
 cstmt2.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-61

LONG to LOB Migration Using the LONG-to-LOB API
LONG to LOB Migration Using the LONG-to-LOB API

Figure 10–11 Use Case Diagram: Migrating LONGs to LOBs Using the (new) LONG-to-LOB API

Purpose
This procedure describes how to migrate LONGs to LOBs using the (new)

LONG-to-LOB API.

Usage Notes

Syntax
Use the following syntax reference:

■ SQL: Oracle9i SQL Reference , Chapter 4, "Functions"

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ "LONG to LOB Copying, Using the TO_LOB Operator" on

page 10-66

See Also: Chapter 8, "Migrating From LONGs to LOBs" for

further details on using the LONG-to-LOB API.

User/
Program

ALTER TABLE LONG
to LOB

MIGRATE
LONG to

LOB

Internal Persistent LOBs : MIGRATING LONG to LOB
10-62 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LONG to LOB Migration Using the LONG-to-LOB API
Scenario
The fields used in the following example are:

CREATE TABLE Print_media (
 product_id NUMBER NOT NULL,
 ad_id NUMBER NOT NULL,
 ad_sourcetext CLOB default EMPTY_CLOB(),
 ad_fltextn NCLOB default EMPTY_CLOB(),
 ad_graphic BFILE default NULL,
 ad_composite BLOB default EMPTY_BLOB(),
 ad_photo BLOB default EMPTY_BLOB(),
 ad_graphic BFILE default NULL,
);

The following example assumes that the column, ad_sourcetext, of table

PRINT_MEDIA has been created as follows:

CREATE TABLE Print_media (
 ...
 ad_sourcetext LONG,
 ...
);

To Convert LONG to CLOB, Use ALTER TABLE
To convert the LONG column to CLOB just use ALTER TABLE as follows:

ALTER TABLE Print_media MODIFY (ad_sourcetext CLOB);

Any existing application using table Print_media can continue to work with

minor modification even after the column ad_sourcetext has been converted to

type CLOB. Chapter 8, "Migrating From LONGs to LOBs" provides examples of

operations (binds and defines) used by LONGs and that continue to work for LOBs

with minor modifications.

Example
The following example illustrates how to use the LONG-to-LOB API with OCI:

■ C (OCI): LONG to LOB Migration

C (OCI): LONG to LOB Migration
/* Migrating from LONG to LOB Using LONG-to-LOB API */

word buflen, pid, aid;
Internal Persistent LOBs 10-63

LONG to LOB Migration Using the LONG-to-LOB API
text buf2[5000];
text *insstmt = (text *)
"INSERT INTO Print_media(product_id, ad_id, ad_sourcetext) VALUES
(:PID, :AID, :ADSOURCE)";

if (OCIStmtPrepare(stmthp, errhp, insstmt,
(ub4)strlen((char *)insstmt), (ub4) OCI_NTV_SYNTAX,
(ub4) OCI_DEFAULT))
{
 DISCARD printf("FAILED: OCIStmtPrepare()\n");
 report_error(errhp);
 return;
}

if (OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) ":PID", (sb4) strlen((char *) ":PID"),
 (dvoid *) &buf1, (sb4) sizeof(buf1), SQLT_INT,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByName(stmthp, &bndhp[1], errhp,
 (text *) ":AID", (sb4) strlen((char *) ":AID"),
 (dvoid *) &buf1, (sb4) sizeof(buf1), SQLT_INT,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 1,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByName(stmthp, &bndhp[1], errhp,
 (text *) ":ADSOURCE", (sb4) strlen((char *) ":ADSOURCE"),
 (dvoid *) buf2, (sb4) sizeof(buf2), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 3,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
{
 DISCARD printf("FAILED: OCIBindByName()\n");
 report_error(errhp);
 return;
}

buf1 = 101;
memset((void *)buf2, (int)’A’, (size_t)5000);

if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
{
 DISCARD printf("FAILED: OCIStmtExecute()\n");
 report_error(errhp);
 return;
10-64 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LONG to LOB Migration Using the LONG-to-LOB API
}

Internal Persistent LOBs 10-65

LONG to LOB Copying, Using the TO_LOB Operator
LONG to LOB Copying, Using the TO_LOB Operator

Figure 10–12 Use Case Diagram: Copying LONGs to LOBs Using TO_LOB Operator

Purpose
This procedure describes how to copy a LONG to a LOB using the TO_LOB

operator.

Usage Notes
Use of TO_LOB is subject to the following limitations:

■ You can use TO_LOB to copy data to a LOB column, but not to a LOB attribute.

■ You cannot use TO_LOB with any remote table. Consequently, all the following

statements will fail:

INSERT INTO tb1@dblink (lob_col) SELECT TO_LOB(long_col) FROM tb2;
INSERT INTO tb1 (lob_col) SELECT TO_LOB(long_col) FROM tb2@dblink;
CREATE table tb1 AS SELECT TO_LOB(long_col) FROM tb2@dblink;

■ The TO_LOB operator cannot be used in the CREATE TABLE AS SELECT
statement to convert a LONG or LONG RAW column to a LOB column when

creating an Index Organized Table.

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ "LONG to LOB Migration Using the LONG-to-LOB API" on

page 10-62

User/
Program

copy LONG to LOB using
TO_LOB operator

MIGRATE
Long to

LOB

Internal Persistent LOBs : MIGRATING LONG to LOB
10-66 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LONG to LOB Copying, Using the TO_LOB Operator
The workaround is to create the Index Organized Table, and then do an INSERT
AS SELECT of the LONG or LONG RAW column using the TO_LOB operator.

■ If the target table (the table with the lob column) has a trigger — such as

BEFORE INSERT or INSTEAD OF INSERT — the :NEW.lob_col variable can't

be referenced in the trigger body.

■ You cannot deploy TO_LOB inside any PL/SQL block.

■ The TO_LOB function can be used to copy data to a CLOB but not a NCLOB.

This is because LONG datatypes have the database CHAR character set and can

only be converted to a CLOB which also uses the database CHAR character set.

NCLOB on the other hand, use the database NCHAR character set.

Syntax
Use the following syntax reference:

■ SQL: Oracle9i SQL Reference , Chapter 4, "Functions" — TO_LOB.

Scenario
Assume that the following archival source table adlibrary_tab was defined and

contains data:

Rem This script is not needed if you use the (newer)
Rem ALTER TABLE when migrating LONGs to LOBs
CREATE TABLE adlibrary_tab
(
 product_id NUMBER(6),
 ad_id NUMBER(6),
 photos LONG RAW
);

This example assumes that you want to copy the data from the LONG RAW column

(photos) into the BLOB column (ad_photo) of the Print_media table, and uses

the SQL function TO_LOB to accomplish this.

Examples
The example is provided in SQL and applies to all programmatic environments:

■ "SQL: Copying LONGs to LOBs Using TO_LOB Operator"

SQL: Copying LONGs to LOBs Using TO_LOB Operator
 INSERT INTO Print_media (product_id, ad_id, ad_photo)
Internal Persistent LOBs 10-67

LONG to LOB Copying, Using the TO_LOB Operator
 SELECT product_id, TO_LOB(photos)
 FROM adlibrary_tab WHERE product_id =3106;

This functionality is based on using an operator on LONGs called TO_LOB that

converts the LONG to a LOB. The TO_LOB operator copies the data in all the rows of

the LONG column to the corresponding LOB column, and then lets you apply the

LOBfunctionality to what was previously LONGdata. Note that the type of data that

is stored in the LONG column must match the type of data stored in the LOB. For

example, LONG RAW data must be copied to BLOB data, and LONG data must be

copied to CLOB data.

Once you have completed this one-time only operation and are satisfied that the

data has been copied correctly, you could then drop the LONG column. However,

this will not reclaim all the storage originally required to store LONGsin the table. In

order to avoid unnecessary, excessive storage, you are better advised to copy the

LONG data to a LOB in a new or different table. Once you have made sure that the

data has been accurately copied, you should then drop the original table.

One simple way to effect this transposing of LONGs to LOBs is to use the CREATE
TABLE... SELECTstatement, using the TO_LOBoperator on the LONGcolumn as part

of the SELECT statement. You can also use INSERT... SELECT.

In the examples in the following procedure, the LONG column named long_col in

table Long_tab is copied to a LOB column named lob_col in table Lob_tab .

These tables include an id column that contains identification numbers for each

row in the table.

Complete the following steps to copy data from a LONG column to a LOB column:

1. Create a new table with the same definition as the table that contains the LONG
column, but use a LOB datatype in place of the LONG datatype.

For example, if you have a table with the following definition:

CREATE TABLE Long_tab (
 id NUMBER,
 long_col LONG);

Note: in order for the previous example to succeed, execute:

CREATE TABLE adlibrary_tab (
 product_id NUMBER,
 ad_audience LONG RAW);
10-68 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LONG to LOB Copying, Using the TO_LOB Operator
Create a new table using the following SQL statement:

CREATE TABLE Lob_tab (
 id NUMBER,
 blob_col BLOB);

2. Issue an INSERT command using the TO_LOB operator to insert the data from

the table with the LONG datatype into the table with the LOB datatype.

For example, issue the following SQL statement:

INSERT INTO Lob_tab
 SELECT id,
 TO_LOB(long_col)
 FROM long_tab;

3. When you are certain that the copy was successful, drop the table with the

LONG column.

For example, issue the following SQL command to drop the LONG_TAB table:

DROP TABLE Long_tab;

4. Create a synonym for the new table using the name of the table with LONGdata.

The synonym ensures that your database and applications continue to function

properly.

For example, issue the following SQL statement:

CREATE SYNONYM Long_tab FOR Lob_tab;

Once the copy is complete, any applications that use the table must be modified to

use the LOB data.

You can use the TO_LOB operator to copy the data from the LONG to the LOB in

statements that employ CREATE TABLE...AS SELECT or INSERT...SELECT. In the

Note: When you create the new table, make sure you preserve the

table’s schema, including integrity constraints, triggers, grants, and

indexes. The TO_LOB operator only copies data; it does not

preserve the table’s schema.
Internal Persistent LOBs 10-69

LONG to LOB Copying, Using the TO_LOB Operator
latter case, you must have already ALTERed the table and ADDed the LOB column

prior to the UPDATE. If the UPDATE returns an error (because of lack of undo space),

you can incrementally migrate LONG data to the LOB using the WHERE clause. The

WHERE clause cannot contain functions on the LOB but can test the LOB’s nullness.
10-70 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking Out a LOB
Checking Out a LOB

Figure 10–13 Use Case Diagram: Checking Out a LOB

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

CHECKOUT
a LOB

disable
buffering

flush
buffer

enable
buffering

read data
from the LOB

Internal Persistent LOBs : CHECKING OUT a LOB
Internal Persistent LOBs 10-71

Checking Out a LOB
Purpose
This procedure describes how to checkout a LOB.

Usage Notes

Streaming Mechanism The most efficient way to read large amounts of LOB data is to

use OCILobRead () with the streaming mechanism enabled using polling or

callback. Use OCI , OCCI, or PRO*C interfaces with streaming for the underlying

read operation. Using DBMS_LOB.READ will result in non-optimal performance.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — OPEN, READ, CLOSE.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions — OCILobOpen, OCILobRead, OCILobClose.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB READ.

■ C/C++ (ProC/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN, LOB READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > read, copytofile

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2
10-72 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking Out a LOB
Scenario
In the typical use of the checkout-checkin operation, the user wants to checkout a

version of the LOB from the database to the client, modify the data on the client

without accessing the database, and then checkin all the modifications that were

made to the document on the client side. The checkin portion of the scenario is

described in "Checking In a LOB" on page 10-83.

Examples
The following examples are similar to examples provided in "Displaying LOB

Data". Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking Out a LOB on page 10-73

■ C (OCI): Checking Out a LOB on page 10-74

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Checking Out a LOB on page 10-76

■ C/C++ (ProC/C++): Checking Out a LOB on page 10-78

■ Visual Basic (OO4O): Checking Out a LOB on page 10-80

■ Java (JDBC): Checking Out a LOB on page 10-80

PL/SQL (DBMS_LOB Package): Checking Out a LOB
/* Checking out a LOB. The procedure checkOutLOB_proc used here is not part of
the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE checkOutLOB_proc IS
 Lob_loc BLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 2147483647;
BEGIN
 /* Select the LOB: */
 SELECT Nesttab.formatted_doc INTO Lob_loc
 FROM TABLE(SELECT PMtab.Textdoc_ntab FROM Print_media PMtab
 WHERE PMtab.product_id = 3106 AND PMtab.ad_id = 13001) Nesttab
 WHERE Nesttab.document_typ = ’PDF’;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 LOOP
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
Internal Persistent LOBs 10-73

Checking Out a LOB
 /* Process the buffer: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;

C (OCI): Checking Out a LOB
/* Checking out a lOB -- This example reads the entire contents of a BLOB
 piecewise into a buffer using a standard polling method, processing each
 buffer piece after every READ operation until the entire BLOB has been read:
*/

#define MAXBUFLEN 32767
/* Select the locator into a locator variable: */
sb4 select_formatteddoc_locator(Lob_loc, errhp, stmthp, svchp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *) "SELECT Intab.Transcript \
 FROM TABLE(SELECT pm.ad_textdoc_ntab FROM Print_media pm \
 WHERE pm.product_id = 3060 AND pm.ad_id = 11001) ntab \
 WHERE ntab.document_typ = ’PDF’";
 OCIDefine *defnp1, *defnp2;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
10-74 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking Out a LOB
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}

void checkoutLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 boolean done;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate locators desriptors: */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB,(size_t) 0, (dvoid **) 0);
 /* Select the BLOB: */
 printf(" select the formatted_doc locator...\n");
 select_formatteddoc_locator(Lob_loc, errhp, stmthp, svchp);

 /* Open the CLOB: */
 printf (" open lob in checkOutLOB_proc\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

 /* Setting amt = 0 will read till the end of LOB: */
 amt = 0;
 buflen = sizeof(bufp);

 /* Process the data in pieces: */
 printf (" read lob in pieces\n");
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);
 done = FALSE;
 while (!done)
 {
 retval = OCILobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *)bufp,
 buflen, (dvoid *)0,(sb4 (*)(dvoid *, dvoid *, ub4,
 ub1)) 0, (ub2) 0, (ub1) SQLCS_IMPLICIT);
Internal Persistent LOBs 10-75

Checking Out a LOB
 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece or last piece */
 /* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs */
 done = TRUE;
 break;
 case OCI_ERROR:
 checkerr (errhp, OCI_ERROR);
 done = TRUE;
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 /* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs. */
 break;
 default:
 checkerr (errhp, retval);
 done = TRUE;
 break;
 } /* while */
 }
 /* Closing the CLOB is mandatory if you have opened it: */
 printf (" close lob in checkOutLOB_proc\n");
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

COBOL (Pro*COBOL): Checking Out a LOB
 * Checking out a LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CHECKOUT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "PM/PM".
 01 CLOB1 SQL-CLOB.
10-76 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking Out a LOB
 01 BUFFER PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 D-BUFFER-LEN PIC 9.
 01 D-AMT PIC 9.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 READ-CLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC SQL
 SELECT AD_SOURCETEXT INTO :CLOB1 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 3060 AND AD_ID = 11001
 END-EXEC.

 * Initiate polling read:
 MOVE 0 TO AMT.
 * Read first piece of the CLOB into the buffer:
 EXEC SQL
 LOB READ :AMT FROM :CLOB1 AT :OFFSET INTO :BUFFER
 END-EXEC.
 DISPLAY "Reading a CLOB ...".
 DISPLAY " ".
 MOVE BUFFER-LEN TO D-BUFFER-LEN.
 DISPLAY "first read (", D-BUFFER-LEN, "): "
 BUFFER-ARR(1:BUFFER-LEN).

 * Read subsequent pieces of the CLOB:
 READ-LOOP.
 MOVE " " TO BUFFER-ARR.
 EXEC SQL
 LOB READ :AMT FROM :CLOB1 INTO :BUFFER
 END-EXEC.
 MOVE BUFFER-LEN TO D-BUFFER-LEN.
 DISPLAY "next read (", D-BUFFER-LEN, "): "
 BUFFER-ARR(1:BUFFER-LEN).

 GO TO READ-LOOP.
Internal Persistent LOBs 10-77

Checking Out a LOB
 * Read the last piece of the CLOB:
 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 MOVE BUFFER-LEN TO D-BUFFER-LEN.
 DISPLAY "last read (", D-BUFFER-LEN, "): "
 BUFFER-ARR(1:BUFFER-LEN).
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (ProC/C++): Checking Out a LOB
/* Checking out a LOB -
 This example reads the entire contents of a CLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire CLOB has been read: */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256
10-78 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking Out a LOB
void checkOutLOB_proc()
{
 OCIClobLocator *Lob_loc;
 int Amount;
 int Clip_ID, Segment;
 VARCHAR Buffer[BufferLength];

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;

 /* Use Dynamic SQL to retrieve the LOB: */
 EXEC SQL PREPARE S FROM
 ’SELECT Intab. \
 FROM TABLE(SELECT PMtab.textdoc_ntab FROM Print_media PMtab \
 WHERE PMtab.product_id = :pid AND PMtab.ad_id = :aid) ntab \
 WHERE ntab.document_typ = :seg’;
 EXEC SQL DECLARE C CURSOR FOR S;
 Clip_ID = Segment = 1;
 EXEC SQL OPEN C USING :PID, :AID, :Segment;
 EXEC SQL FETCH C INTO :Lob_loc;
 EXEC SQL CLOSE C;

 /* Open the LOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.len = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the LOB into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Checkout %d characters\n", Buffer.len);
 }
 printf("Checkout %d characters\n", Amount);

 /* Closing the LOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{

Internal Persistent LOBs 10-79

Checking Out a LOB
 char *pm = "pm/pm";
 EXEC SQL CONNECT :pm;
 checkOutLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Checking Out a LOB
’Checking out a lOB
’There are two ways of reading a lob using orablob.read or orablob.copytofile

’Using OraBlob.Read mechanism
Dim OraDyn as OraDynaset, OraPhoto as OraBlob, amount_read%, chunksize%, chunk

chunksize = 32767
set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
set OraPhoto = OraDyn.Fields("ad_photo").Value
OraPhoto.PollingAmount = OraPhoto.Size ’Read entire BLOB contents
Do

amount_read = OraPhoto.Read(chunk,chunksize) ’chunk returned is a variant of
type byte array
Loop Until OraPhoto.Status <> ORALOB_NEED_DATA

’Using OraBlob.CopyToFile mechanism
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraPhoto = OraDyn.Fields("ad_photo").Value

’Read entire BLOB contents
OraPhoto.CopyToFile "c:\myphoto.jpg"

Java (JDBC): Checking Out a LOB
// Checking out a LOB
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
10-80 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking Out a LOB
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_59
{

 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);
 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 CLOB src_lob = null;
 InputStream in = null;
 byte buf[] = new byte[MAXBUFSIZE];

 ResultSet rset = stmt.executeQuery (
 "SELECT ntab.formatted_doc FROM TABLE("
 +" SELECT pm.ad_textdoc_ntab FROM Print_media pm "
 +" WHERE pm.product_id=3060 AND ad_id = 11001) ntab
 +" WHERE ntab.document_typ=‘html’");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getCLOB (1);
 in = src_lob.getAsciiStream();
 }

 int length = 0;
 int pos = 0;
 while ((in != null) && ((length = in.read(buf)) != -1))
 {
 pos += length;
 System.out.println(Integer.toString(pos));
 // Process the buffer:
Internal Persistent LOBs 10-81

Checking Out a LOB
 }

 in.close();
 rset.close();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-82 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
Checking In a LOB

Figure 10–14 Use Case Diagram: Checking In a LOB

Purpose
This procedure describes how to check in a LOB.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

CHECKIN
a LOB

write data
to the LOB

Internal Persistent LOBs : CHECKING IN a LOB
Internal Persistent LOBs 10-83

Checking In a LOB
Usage Notes

Streaming Mechanism The most efficient way to write large amounts of LOB data is to

use OCILobWrite () with the streaming mechanism enabled using polling or

callback

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — OPEN, WRITE, CLOSE

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OciLobOpen, OciLobWrite, OciLobClose

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB WRITE.

■ C/C++ (ProC/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > write, and > OBJECTS > Oradynaset > update

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The checkin operation demonstrated here follows from "Checking Out a LOB" on

page 10-71. In this case, the procedure writes the data back into the CLOB
formatted_doc column within the nested table ad_textdoc_ntab that contains

interview segments. As noted earlier, you should use the OCI or PRO*C interface

with streaming for the underlying write operation; using DBMS_LOB.WRITE will

result in non-optimal performance.
10-84 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
The following examples illustrate how to checkin a LOB using various

programmatic environments:

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking in a LOB on page 10-85

■ C (OCI): Checking in a LOB on page 10-86

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Checking in a LOB on page 10-89

■ C/C++ (ProC/C++): Checking in a LOB on page 10-92

■ Visual Basic (OO4O): Checking in a LOB on page 10-94

■ Java (JDBC): Checking in a LOB on page 10-95

PL/SQL (DBMS_LOB Package): Checking in a LOB
/* Checking in a LOB. The example procedure checkInLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE checkInLOB_proc IS
 Lob_loc BLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 2147483647;
 i INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT ntab.formatted_doc INTO Lob_loc
 FROM TABLE(SELECT PMtab.Textdoc_ntab FROM Print_media PMtab
 WHERE PMtab.product_id = 3060 AND PMtab.ad_id = 11001) ntab
 WHERE ntab.document_typ = ’pdf’ FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE)
 FOR i IN 1..3 LOOP
 /* Fill the Buffer with data to be written. */
 /* Write data: */
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
Internal Persistent LOBs 10-85

Checking In a LOB
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Checking in a LOB
/* Checking in a LOB. This example demonstrates how using OCI you can write
 arbitrary amounts of data to an Internal LOB in either a single piece
 of in multiple pieces using a streaming mechanism that utilizes standard
 polling. A statically allocated Buffer holds the data being
 written to the LOB. */

#define MAXBUFLEN 32767
/* Select the locator into a locator variable */
sb4 select_lock_formateddoc_locator(Lob_loc, errhp, stmthp,svchp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1, *defnp2;

 text *sqlstmt =
 (text *) "SELECT ntab.formatted_doc \
 FROM TABLE(SELECT pm.ad_textdoc_ntab FROM Print_media pm \
 WHERE pm.product_id = 2268 AND pm.ad_id = 21001) ntab \
 WHERE ntab.document_typ = ’PDF’ FOR UPDATE";

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
);
 /* Execute and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
10-86 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return OCI_SUCCESS;
}

void checkinLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIClobLocator *Lob_loc;
 ub4 Total = 2.5*MAXBUFLEN;
 ub4 amtp;
 ub4 offset;
 ub4 remainder;
 ub4 nbytes;
 boolean last;
 ub1 bufp[MAXBUFLEN];
 sb4 err;

 /* Allocate locators desriptors*/
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB,(size_t) 0,(dvoid **) 0);
 /* Select the CLOB */
 printf(" select the formatted_doc locator...\n");
 select_lock_formatteddoc_locator(Lob_loc, errhp, stmthp, svchp);

 /* Open the CLOB */
 printf (" open the locator.\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 printf (" write the lob in pieces\n");
 if (Total > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single write is required */

 /* Fill the buffer with nbytes worth of data */
 remainder = Total - nbytes;
 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE */
 amtp = 0;
 /* offset = <Starting position where to begin writing the data>; */
 offset = 1;
Internal Persistent LOBs 10-87

Checking In a LOB
 if (0 == remainder)
 {
 amtp = nbytes;
 /* Here, (Total <= MAXBUFLEN) so we can write in one piece */
 checkerr (errhp, OCILobWrite (svchp, errhp, Lob_loc, amtp,
 offset, bufp, nbytes,
 OCI_ONE_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid *,dvoid *,ub4 *,ub1 *)) 0,
 0, SQLCS_IMPLICIT));
 }
 else
 {
 /* Here (Total > MAXBUFLEN) so we use streaming via standard polling */
 /* write the first piece. Specifying first initiates polling. */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amtp, offset, bufp, nbytes,
 OCI_FIRST_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid *,dvoid *,ub4 *,ub1 *)) 0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);
 last = FALSE;

 /* write the next (interim) and last pieces */
 do
 {
 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= MAXBUFLEN) */
 last = TRUE; /* This is going to be the Final piece */
 }

 /* Fill the buffer with nbytes worth of data */
 if (last)
 {
 /* Specifying LAST terminates polling */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amtp,
 offset, bufp, nbytes,
 OCI_LAST_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_SUCCESS)
 checkerr(errhp, err);
10-88 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
 }
 else
 {
 err = OCILobWrite (svchp, errhp, Lob_loc, &amtp,
 offset, bufp, nbytes,
 OCI_NEXT_PIECE, (dvoid *) 0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);
 }
 /* Determine how much is left to write */
 remainder = remainder - nbytes;
 } while (!last);
 }

 /* At this point, (remainder == 0) */

 /* Closing the BLOB is mandatory if you have opened it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 }

COBOL (Pro*COBOL): Checking in a LOB
 * Checking in a LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CHECKIN.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE
 ASSIGN TO "datfile.dat"
 ORGANIZATION IS SEQUENTIAL.
 DATA DIVISION.
 FILE SECTION.

 FD INFILE
 RECORD CONTAINS 80 CHARACTERS.
 01 INREC PIC X(80).
Internal Persistent LOBs 10-89

Checking In a LOB
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "P/PM".
 01 CLOB1 SQL-CLOB.M
 01 BUFFER PIC X(80) VARYING.
 01 AMT PIC S9(9) COMP VALUE 0.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 END-OF-FILE PIC X(1) VALUES "N".
 01 D-BUFFER-LEN PIC 9.
 01 D-AMT PIC 9.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-CLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.
 EXEC SQL
 SELECT AD_SOURCETEXT INTO :CLOB1 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 3060 AND AD_ID = 11001 FOR UPDATE
 END-EXEC.

 * Open the input file for reading:
 OPEN INPUT INFILE.

 * Either write entire record or write first piece.
 * Read a data file here and populate BUFFER-ARR and BUFFER-LEN.
 * END-OF-FILE will be set to "Y" when the entire file has been
 * read.
 PERFORM READ-NEXT-RECORD.
 MOVE INREC TO BUFFER-ARR.
 MOVE 80 TO BUFFER-LEN.
 IF (END-OF-FILE = "Y")
 MOVE 80 TO AMT
 EXEC SQL
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :CLOB1 AT :OFFSET END-EXEC
 ELSE
 DISPLAY "LOB WRITE FIRST"
 DISPLAY BUFFER-ARR
 MOVE 321 TO AMT
 EXEC SQL
 LOB WRITE FIRST :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC
10-90 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
 END-IF.

 * Continue reading from the input data file
 * and writing to the CLOB:
 PERFORM READ-WRITE
 UNTIL END-OF-FILE = "Y".
 PERFORM SIGN-OFF.
 STOP RUN.

 READ-WRITE.
 PERFORM READ-NEXT-RECORD.
 MOVE INREC TO BUFFER-ARR.
 DISPLAY "READ-WRITE".
 DISPLAY INREC.
 MOVE 80 TO BUFFER-LEN.
 IF END-OF-FILE = "Y"
 DISPLAY "LOB WRITE LAST: ", BUFFER-ARR
 MOVE 1 TO BUFFER-LEN
 EXEC SQL
 LOB WRITE LAST :AMT FROM :BUFFER INTO :CLOB1 END-EXEC
 ELSE
 DISPLAY "LOB WRITE NEXT: ", BUFFER-ARR
 MOVE 0 TO AMT
 EXEC SQL
 LOB WRITE NEXT :AMT FROM :BUFFER INTO :CLOB1 END-EXEC
 END-IF.

 READ-NEXT-RECORD.
 MOVE SPACES TO INREC.
 READ INFILE NEXT RECORD
 AT END
 MOVE "Y" TO END-OF-FILE.

 SIGN-OFF.
 CLOSE INFILE.
 EXEC SQL FREE :CLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
Internal Persistent LOBs 10-91

Checking In a LOB
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (ProC/C++): Checking in a LOB
/* Checking in a LOB.
 This example shows how you can use Pro*C/C++ to WRITE
 arbitrary amounts of data to an Internal LOB in either a single piece
 or in multiple pieces using a Streaming Mechanism that utilizes standard
 polling. A static Buffer holds the data being written: */

#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 512

void checkInLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Lob_loc;
 VARCHAR Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_sourcetext INTO :Lob_loc
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001 FOR
UPDATE;
 /* Open the LOB: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
10-92 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single WRITE is required */
 /* Fill the Buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can WRITE in ONE piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so use streaming via standard polling:
 WRITE the FIRST piece. Specifying FIRST initiates polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write FIRST %d characters\n", Buffer.len);
 last = FALSE;
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder;
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the Buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
Internal Persistent LOBs 10-93

Checking In a LOB
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written */
 /* Close the LOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 checkInLOB_proc(1);
 EXEC SQL ROLLBACK WORK;
 checkInLOB_proc(4);
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Checking in a LOB
’Checking in a LOB
’There are two ways of writing a lob - using orablob.write or
orablob.copyfromfile

’Using the OraBlob.Write mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim fnum As Integer
Dim OraDyn As OraDynaset, OraPhoto As OraBlob, amount_written%, chunksize%,
curchunk() As Byte

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "pm/pm", 0&)
chunksize = 500
ReDim curchunk(chunksize)
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Print_media", ORADYN_DEFAULT)
Set OraPhoto = OraDyn.Fields("ad_photo").Value

fnum = FreeFile
10-94 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
Open "c:\tmp\keyboard_3016_13001.jpg" For Binary As #fnum
OraPhoto.offset = 1
OraPhoto.pollingAmount = LOF(fnum)
remainder = LOF(fnum)

 Dim piece As Byte
 Get #fnum, , curchunk
 OraDyn.Edit
 piece = ORALOB_FIRST_PIECE
 OraPhoto.Write curchunk, chunksize, ORALOB_FIRST_PIECE

 While OraPhoto.Status = ORALOB_NEED_DATA
 remainder = remainder - chunksize
 If remainder <= chunksize Then
 chunksize = remainder
 piece = ORALOB_LAST_PIECE
 Else
 piece = ORALOB_NEXT_PIECE
 End If

 Get #fnum, , curchunk
 OraPhoto.Write curchunk, chunksize, piece
 Wend

OraDyn.Update

’Using the OraBlob.CopyFromFile mechanism
Set OraDyn = OraDb.CreateDynaset("select * from Print_media order by product_
id, ad_id", ORADYN_DEFAULT)
Set OraPhoto = OraDyn.Fields("ad_photo").Value
OraDyn.Edit
OraPhoto.CopyFromFile "c:\tmp\keyboard3016_13001.jpg"
OraDyn.Update

Java (JDBC): Checking in a LOB
// Checking in a LOB
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
Internal Persistent LOBs 10-95

Checking In a LOB
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_66
{
 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 CLOB lob_loc = null;
 String buf = new String ("Some Text To Write for the Ad");
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_sourcetext FROM Print_media WHERE product_id = 2268
 AND ad_id = 21001 FOR UPDATE");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 long pos = 0; // Offset within the CLOB where the data is to be written
 long length = 0; // This is the size of the buffer to be written

 // This loop writes the buffer three times consecutively:
 for (int i = 0; i < 3; i++)
 {
10-96 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking In a LOB
 pos = lob_loc.length();

 // an alternative is: lob_loc.putString(pos, buf);
 lob_loc.putString(pos, buf);

 // Some debug information:
 System.out.println(" putString(" + Long.toString(pos) +" buf);");
 }
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-97

Displaying LOB Data
Displaying LOB Data

Figure 10–15 Use Case Diagram: Displaying LOB Data

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

display
the LOB

data

Internal Persistent LOBs : DISPLAYING a LOB

enable
buffering

DISABLE
Buffering

get
chunk size

flush
buffer

read data
from the LOB
10-98 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying LOB Data
Purpose
This procedure describes how to display LOB data.

Usage Notes

Streaming Mechanism The most efficient way to read large amounts of LOB data is to

use OCILobRead () with the streaming mechanism enabled.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — OPEN, READ, CLOSE.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OciLobOpen, OciLobRead, OciLobClose.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB READ.

■ C/C++ (ProC/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oraclob >

METHODS > read, and > OBJECTS > Oraclob > PROPERTIES > offset

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
As an example of displaying a LOB, our scenario stream-reads the image logo from

the column object ad_header onto the client-side in order to view the data.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2
Internal Persistent LOBs 10-99

Displaying LOB Data
Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Displaying LOB Data on page 10-100

■ C (OCI): Displaying LOB Data on page 10-101

■ C++ (OCCI): No example is provided in this release.

■ COBOL (Pro*COBOL): Displaying LOB Data on page 10-103

■ C/C++ (ProC/C++): Displaying LOB Data on page 10-105

■ Visual Basic (OO4O): Displaying LOB Data on page 10-106

■ Java (JDBC): Displaying LOB Data on page 10-107

PL/SQL (DBMS_LOB Package): Displaying LOB Data
/* Displaying LOB data.The example procedure displayLOB_proc is not part of the
DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE displayLOB_proc IS
Lob_loc BLOB;
Buffer RAW(1024);
Amount BINARY_INTEGER := 1024;
Position INTEGER := 1;
BEGIN
 /* Select the LOB: */
 SELECT pm.ad_header.logo INTO Lob_loc
 FROM print_media pm WHERE pm.product_id = 3060 AND pm.ad_id = 11001;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 LOOP
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
 /* Display the buffer contents: */
 DBMS_OUTPUT.PUT_LINE(utl_raw.cast_to_varchar2(Buffer));
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;
10-100 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying LOB Data
C (OCI): Displaying LOB Data

/* Displaying LOB data. This example reads the entire contents of a BLOB
 piecewise into a buffer using the standard polling method, processing
 each buffer piece after every READ operation until the entire BLOB
 has been read. */

#define MAXBUFLEN 32767
/* Select the locator into a locator variable */
sb4 select_mapobjectdrawing_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1, *defnp2;
 text *sqlstmt =
 (text *) "SELECT pm.Adheader_type.logo \
 FROM Print_media pm WHERE pm.product_id = 3060 AND ad_id =
11001";
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
);

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}

void displayLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
Internal Persistent LOBs 10-101

Displaying LOB Data
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIBlobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 boolean done;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;
 OCILobLocator *Lob_Loc;

 /* Allocate the Source (bfile) & destination (blob) locators desriptors*/
 (void) OCIDescriptorAlloc((dvoid *) envhp,
 (dvoid **) &Lob_loc, (ub4)OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0);
 /* Select the BLOB */
 printf(" select the adheaderlogo locator...\n");
 select_adheaderlogo_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB */
 printf(" open the lob\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

 /* Setting amt = 0 will read till the end of LOB*/
 amt = 0;
 buflen = sizeof(bufp);

 /* Process the data in pieces */
 printf(" Process the data in pieces\n");
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);
 done = FALSE;
 while (!done)
 {
 retval = OCILobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *) bufp,
 buflen, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece or last piece*/

/* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs
10-102 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying LOB Data
 */
 done = TRUE;
 break;
 case OCI_ERROR:
 checkerr (errhp, retval);
 done = TRUE;
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */

/* Process the data in bufp. amt will give the amount of data just read in
 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs
 */
 break;
 default:
 checkerr (errhp, retval);
 done = TRUE;
 break;
 }
 } /* while */

 /* Closing the BLOB is mandatory if you have opened it */
 printf(" close the lob \n");
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

}

COBOL (Pro*COBOL): Displaying LOB Data

 * DISPLAYING LOB DATA
 IDENTIFICATION DIVISION.
 PROGRAM-ID. DISPLAY-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 BUFFER2 PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP.
Internal Persistent LOBs 10-103

Displaying LOB Data
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 D-AMT PIC 9.

 EXEC SQL VAR BUFFER2 IS RAW(5) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 DISPLAY-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL SELECT PM.AD_PHOTO INTO :BLOB1
 FROM PRINT_MEDIA PM WHERE PM.PRODUCT_ID = 2268 AND AD_ID = 21001
END-EXEC.
 DISPLAY "Found column AD_PHOTO".
 * Initiate polling read:
 MOVE 0 TO AMT.

 EXEC SQL LOB READ :AMT FROM :BLOB1 AT :OFFSET
 INTO :BUFFER2 END-EXEC.
 DISPLAY " ".
 MOVE AMT TO D-AMT.
 DISPLAY "first read (", D-AMT, "): " BUFFER2.
 READ-BLOB-LOOP.
 MOVE " " TO BUFFER2.
 EXEC SQL LOB READ :AMT FROM :BLOB1 INTO :BUFFER2 END-EXEC.
 MOVE AMT TO D-AMT.
 DISPLAY "next read (", D-AMT, "): " BUFFER2.
 GO TO READ-BLOB-LOOP.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 MOVE AMT TO D-AMT.
 DISPLAY "last read (", D-AMT, "): " BUFFER2(1:AMT).
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
10-104 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying LOB Data
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (ProC/C++): Displaying LOB Data

/* Displaying LOB data. This example reads the entire contents of a BLOB
 piecewise into a buffer using a standard polling method, processing
 each buffer piece after every READ operation until the entire BLOB
 has been read: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void displayLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BLOB: */
 EXEC SQL SELECT m.ad_header.header_text INTO Lob_loc
 FROM Print_media m WHERE m.product_id = 3060 AND ad_id = 11001;
 /* Open the BLOB: */
Internal Persistent LOBs 10-105

Displaying LOB Data
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BLOB into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 /* Process (Buffer.Length == BufferLength) amount of Buffer.Data */
 }
 /* Process (Buffer.Length == Amount) amount of Buffer.Data */
 /* Closing the BLOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Displaying LOB Data

’Displaying LOB data
’Using the OraClob.Read mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Dim OraDyn as OraDynaset, OraAdSourceText as OraClob, amount_read%, chunksize%,
chunk
chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Print_media", ORADYN_DEFAULT)
Set OraAdSourceText = OraDyn.Fields("ad_sourcetext").Value
OraAdSourceText.PollingAmount = OraAdSourceText.Size ’Read entire CLOB contents
Do
10-106 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying LOB Data
 ’chunk returned is a variant of type byte array:
 amount_read = OraAdSourceText.Read(chunk, chunksize)
 ’Msgbox chnunk
Loop Until OraAdSourceText.Status <> ORALOB_NEED_DATA

Java (JDBC): Displaying LOB Data

// Core JDBC classes:
import java.io.OutputStream;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex2_72
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB lob_loc = null;
 InputStream in = null;
 byte buf[] = new byte[MAXBUFSIZE];
Internal Persistent LOBs 10-107

Displaying LOB Data
 int pos = 0;
 int length = 0;
 ResultSet rset = stmt.executeQuery (
 "SELECT pm.ad_header.logo FROM Print_media pm
 WHERE pm.product_id = 2056 AND ad_id = 12001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // read this LOB through an InputStream:
 in = lob_loc.getBinaryStream();
 while ((length = in.read(buf)) != -1)
 {
 pos += length;
 System.out.println(Integer.toString(pos));
 // Process the contents of the buffer here.
 }
 in.close();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-108 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a LOB
Reading Data from a LOB

Figure 10–16 Use Case Diagram: Reading Data from a LOB

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

flush
buffer

CLOSE
a LOB

READ Data
From the LOB

enable
buffering

disable
buffering

Internal Persistent LOBs : READING Data From the LOB
Internal Persistent LOBs 10-109

Reading Data from a LOB
Procedure
This procedure describes how to read data from LOBs.

Usage Notes

Stream Read The most efficient way to read large amounts of LOB data is to use

OCILobRead () with the streaming mechanism enabled using polling or callback.

When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4 gigabytes - 1

regardless of the starting offset and the amount of data in the LOB. Hence, you do

not need to incur a round-trip to the server to call OCILobGetLength () to find out

the length of the LOB value to determine the amount to read.

Example Assume that the length of a LOB is 5,000 bytes and you want to read the

entire LOB value starting at offset 1,000. Also assume that you do not know the

current length of the LOB value. Here's the OCI read call, excluding the

initialization of all parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

■ When using polling mode, be sure to look at the value of the 'amount ' parameter

after each OCILobRead () call to see how many bytes were read into the buffer

since the buffer may not be entirely full.

■ When using callbacks, the 'len ' parameter, which is input to the callback, will

indicate how many bytes are filled in the buffer. Be sure to check the 'len '

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

Note:

■ In DBMS_LOB.READ, the amount can be larger than the size of

the data. In PL/SQL, the amount should be less than or equal

to the size of the buffer, and the buffer size is limited to 32K.

■ In OCILobRead, you can specify amount = 4 gigabytes-1, and it

will read to the end of the LOB.
10-110 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a LOB
parameter during your callback processing since the entire buffer may not be

filled with data (see the Oracle Call Interface Programmer’s Guide.)

Chunksize A chunk is one or more Oracle blocks. You can specify the chunk size for

the LOB when creating the table that contains the LOB. This corresponds to the

chunk size used by Oracle when accessing or modifying the LOB value. Part of the

chunk is used to store system-related information and the rest stores the LOB value.

The getchunksize function returns the amount of space used in the LOBchunk to

store the LOB value.

You will improve performance if you execute read requests using a multiple of this

chunk size. The reason for this is that you are using the same unit that the Oracle

database uses when reading data from disk. If it is appropriate for your application,

you should batch reads until you have enough for an entire chunk instead of

issuing several LOB read calls that operate on the same LOB chunk.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — OPEN, GETCHUNKSIZE, READ,

CLOSE.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 7, "Chapter 15,

"Relational Functions" — LOB Functions, OciLobOpen, OciLobRead,

OciLobClose.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB READ.

■ C/C++ (ProC/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oraclob >

METHODS > read

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
Internal Persistent LOBs 10-111

Reading Data from a LOB
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The examples read data from a single image.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Reading Data from a LOB on page 10-112

■ C (OCI): Reading Data from a LOB on page 10-113

■ COBOL (Pro*COBOL): Reading Data from a LOB on page 10-115

■ COBOL (Pro*COBOL): Reading Data from a LOB on page 10-115

■ C (OCI): Reading Data from a LOB on page 10-113

■ Visual Basic (OO4O): Reading Data from a LOB on page 10-118

■ Java (JDBC): Reading Data from a LOB on page 10-118

PL/SQL (DBMS_LOB Package): Reading Data from a LOB
/* Reading LOB data. The example procedure readLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE readLOB_proc IS
 Lob_loc BLOB;
 Buffer RAW(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1000;
 Chunksize INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT ad_composite INTO Lob_loc
 FROM print_media WHERE product_id = 3060 AND ad_id = 11001;
 /* Find out the chunksize for this LOB column: */
 Chunksize := DBMS_LOB.GETCHUNKSIZE(Lob_loc);
 IF (Chunksize < 32767) THEN
 Amount := (32767 / Chunksize) * Chunksize;
 END IF;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 /* Read data from the LOB: */
 DBMS_LOB.READ (Lob_loc, Amount, Position, Buffer);
10-112 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a LOB
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

C (OCI): Reading Data from a LOB
/* Reading LOB data. This example reads the entire contents of a BLOB
 piecewise into a buffer using a standard polling method, processing
 each buffer piece after every READ operation until the entire BLOB
 has been read. */
#define MAXBUFLEN 1000

/* Select the locator into a locator variable */
sb4 select_frame_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;

 text *sqlstmt =
 (text *) "SELECT ad_composite \
 FROM Print_media pm \
 WHERE pm.product_id = 2268";

 printf(" prepare statement in select_adcomposite_locator\n");
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 printf(" OCIDefineByPos in select_adcomposite_locator\n");
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
 /* Execute the select and fetch one row */
 printf(" OCIStmtExecute in select_adcomposite_locator\n");
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}

void readLOB_proc(envhp, errhp, svchp, stmthp)
Internal Persistent LOBs 10-113

Reading Data from a LOB
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;
 boolean done;

 OCILobLocator *Lob_loc;
 OCILobLocator *blob;

 /* Allocate the Source (bfile) & destination (blob) locators descriptors*/
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 /* Select the BLOB */
 printf(" call select_ad4read_locator\n");
 select_adcomposite_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB */
 printf(" call OCILobOpen\n");
 checkerr (errhp, OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY));

 /* Setting the amt to the buffer length. Note here that amt is in bytes
 since we are using a BLOB */
 amt = 0;
 buflen = sizeof(bufp);

 /* Process the data in pieces */
 printf(" process the data in pieces\n");
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);
 done = FALSE;

 while (!done)
 {
 retval = OCILobRead(svchp, errhp, Lob_loc, &amt, offset, (dvoid *) bufp,
 buflen, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 switch (retval)
 {
10-114 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a LOB
 case OCI_SUCCESS: /* Only one piece since amtp == bufp */
/* Process the data in bufp. amt will give the amount of data just read in

 bufp. This is in bytes for BLOBs and in characters for fixed
 width CLOBS and in bytes for variable width CLOBs */
 printf("[%.*s]\n", buflen, bufp);
 done = TRUE;
 break;
 case OCI_ERROR:
 /* report_error(); this function is not shown here */
 done = TRUE;
 break;
 case OCI_NEED_DATA:
 printf("[%.*s]\n", buflen, bufp);
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 done = TRUE;
 break;
 }
 }
 /* Closing the BLOB is mandatory if you have opened it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);
}

COBOL (Pro*COBOL): Reading Data from a LOB
 * READING LOB DATA
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 USERID PIC X(11) VALUES "PM/PM".
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.
 PROCEDURE DIVISION.
Internal Persistent LOBs 10-115

Reading Data from a LOB
 ONE-READ-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_COMPOSITE INTO :BLOB1
 FROM PRINT_MEDIA PM WHERE PM.PRODUCT_ID = 2268
 AND AD_ID = 21001 END-EXEC.
 EXEC SQL LOB OPEN :BLOB1 END-EXEC.

 * Perform a single read:
 MOVE 32767 TO AMT.
 EXEC SQL
 LOB READ :AMT FROM :BLOB1 INTO :BUFFER2 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

 END-OF-BLOB.
 DISPLAY "BUFFER2: ", BUFFER2(1:AMT).
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 C/C++ (Pro*C/C++): Reading Data from a LOB
/* Reading LOB data
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
10-116 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a LOB
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void readLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 /* Here (Amount == BufferLength) so only one READ is needed: */
 char Buffer[BufferLength];
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_composite INTO :Lob_loc
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Read the BLOB data into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Read %d bytes\n", Amount);
 /* Close the BLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "pm/pm";
 EXEC SQL CONNECT :pm;
 readLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 10-117

Reading Data from a LOB
Visual Basic (OO4O): Reading Data from a LOB
’Reading LOB data using the OraClob.Read mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Dim OraDyn as OraDynaset, OraAdSourceText as OraClob, amount_read%, chunksize%,
chunk

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Print_media", ORADYN_DEFAULT)
Set OraAdSourceText = OraDyn.Fields("ad_sourcetext").Value
OraAdSourceText.pollingAmount = OraAdSourceText.Size
’Read entire CLOB contents
Do
amount_read = OraAdSourceText.Read(chunk,chunksize)
’chunk returned is a variant of type byte array
Loop Until OraAdSourceText.Status <> ORALOB_NEED_DATA

Java (JDBC): Reading Data from a LOB
// Reading LOB data
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex2_79
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
10-118 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a LOB
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB lob_loc = null;
 byte buf[] = new byte[MAXBUFSIZE];
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media WHERE product_id = 2056 AND ad_
id = 12001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 // MAXBUFSIZE is the number of bytes to read and 1000 is the offset from
 // which to start reading
 buf = lob_loc.getBytes(1000, MAXBUFSIZE);

 // Display the contents of the buffer here:
 System.out.println(new String(buf));
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-119

Reading a Portion of the LOB (substr)
Reading a Portion of the LOB (substr)

Figure 10–17 Use Case Diagram: Reading a Portion of the LOB (substr)

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

read a
portion of the
LOB from the
table (substr)

Internal Persistent LOBs : READING a Portion of the LOB
From a Table (Substr.)
10-120 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of the LOB (substr)
Purpose
This procedure describes how to read portion of the LOB (substring).

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — SUBSTR, OPEN, CLOSE

■ C (OCI): There is no applicable syntax reference for this use case.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — ALLOCATE, LOB OPEN, LOB READ, LOB CLOSE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ. See PL/SQL

DBMS_LOB.SUBSTR.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

PROPERTIES > offset, chunksize, and >OBJECTS > Oraclob > METHODS >

read

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
This example demonstrates reading a portion from image ad_photo .

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2
Internal Persistent LOBs 10-121

Reading a Portion of the LOB (substr)
Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Reading a Portion of the LOB (substr) on

page 10-122

■ C (OCI): No example is provided with this release.

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Reading a Portion of the LOB (substr) on page 10-123

■ C/C++ (Pro*C/C++): Reading a Portion of the LOB (substr) on page 10-124

■ Visual Basic (OO4O): Reading a Portion of the LOB (substr) on page 10-125

■ Java (JDBC): Reading a Portion of the LOB (substr) on page 10-126

PL/SQL (DBMS_LOB Package): Reading a Portion of the LOB (substr)
/* Reading portion of the LOB data using substr.
 Example procedure substringLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE substringLOB_proc IS
 Lob_loc BLOB;
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1024;
 Buffer RAW(32767);
BEGIN
 /* Select the LOB: */
 SELECT ad_photo INTO Lob_loc FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 Buffer := DBMS_LOB.SUBSTR(Lob_loc, Amount, Position);
 /* Process the data */
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

/* In the following SQL statement, 255 is the amount to read
 and 1 is the starting offset from which to read: */
SELECT DBMS_LOB.SUBSTR(ad_photo, 255, 1) FROM Print_media WHERE product_id =
3060 AND ad_id = 11001;
10-122 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of the LOB (substr)
COBOL (Pro*COBOL): Reading a Portion of the LOB (substr)
 * READING PORTION OF THE LOB DATA USING SUBSTR
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BLOB-SUBSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 POS PIC S9(9) COMP VALUE 1.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 BLOB-SUBSTR.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_COMPOSITE INTO :BLOB1
 FROM PRINT_MEDIA PM WHERE PM.PRODUCT_ID = 2268
 AND AD_ID = 21001 END-EXEC.
 DISPLAY "Selected the BLOB".

 * Open the BLOB for READ ONLY:
 EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.

 * Execute PL/SQL to get SUBSTR functionality:
 MOVE 5 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :BUFFER2 := DBMS_LOB.SUBSTR(:BLOB1,:AMT,:POS); END; END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 DISPLAY "Substr: ", BUFFER2-ARR(POS:AMT).
Internal Persistent LOBs 10-123

Reading a Portion of the LOB (substr)
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Reading a Portion of the LOB (substr)
/* Reading portion of the LOB using (substr). Pro*C/C++ lacks an equivalent
 embedded SQL form for the DBMS_LOB.SUBSTR() function.
 However, Pro*C/C++ can interoperate with PL/SQL using anonymous
 PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void substringLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Position = 1;
 int Amount = BufferLength;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
10-124 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of the LOB (substr)
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_photo INTO Lob_loc
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Invoke SUBSTR() from within an anonymous PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Lob_loc, :Amount, :Position);
 END;
 END-EXEC;
 /* Close the BLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Process the Data */
 /* Release resources used by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(0);
}

Visual Basic (OO4O): Reading a Portion of the LOB (substr)
’Reading portion of a LOB (or BFILE). In OO4O this is accomplished by
’setting the OraBlob.Offset and OraBlob.chunksize properties.
’Using the OraClob.Read mechanism
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn as OraDynaset, OraAdSourceText as OraClob, amount_read%, chunksize%,
chunk

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Internal Persistent LOBs 10-125

Reading a Portion of the LOB (substr)
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Print_media", ORADYN_DEFAULT)
Set OraAdSourceText = OraDyn.Fields("ad_sourcetext").Value

’Let’s read 100 bytes from the 500th byte onwards:
OraAdSourceText.Offset = 500
OraAdSourceText.PollingAmount = OraAdSourceText.Size ’Read entire CLOB contents
amount_read = OraAdSourceText.Read(chunk, 100)
’chunk returned is a variant of type byte array

Java (JDBC): Reading a Portion of the LOB (substr)
// Reading portion of a LOB using substr
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_79
{

 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);
10-126 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of the LOB (substr)
 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB lob_loc = null;
 byte buf[] = new byte[MAXBUFSIZE];

 ResultSet rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?, "
 +"DBMS_LOB.LOB_READONLY); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

// MAXBUFSIZE is the number of bytes to read and 1000 is the offset from
 // which to start reading:
 buf = lob_loc.getBytes(1000, MAXBUFSIZE);
 // Display the contents of the buffer here.

 cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-127

Comparing All or Part of Two LOBs
Comparing All or Part of Two LOBs

Figure 10–18 Use Case Diagram: Comparing All or Part of Two LOBs

Purpose
This procedure describes how to compare all or part of two LOBs.

Usage Notes
Not applicable.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

COMPARE All
or Parts of

2 LOBs

Internal Persistent LOBs : COMPARING All or Parts of Two LOBS
10-128 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Part of Two LOBs
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — COMPARE.

■ C (OCI): There is no applicable syntax reference for this use case.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide or

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — EXECUTE. Also reference PL/SQL DBMS_

LOB.COMPARE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — EXECUTE. Also reference

PL/SQL DBMS_LOB.COMPARE.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oradynaset

> METHODS > movenext

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The following examples compare two images from the table Print_media to see

whether they are different.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Comparing All or Part of Two LOBs on

page 10-130

■ C (OCI): No example is provided with this release.

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Comparing All or Part of Two LOBs on page 10-130
Internal Persistent LOBs 10-129

Comparing All or Part of Two LOBs
■ C/C++ (Pro*C/C++): Comparing All or Part of Two LOBs on page 10-132

■ Visual Basic (OO4O): Comparing All or Part of Two LOBs on page 10-133

■ Java (JDBC): Comparing All or Part of Two LOBs on page 10-134

PL/SQL (DBMS_LOB Package): Comparing All or Part of Two LOBs
/* Comparing all or part of two LOBs. The example procedure compareTwoLOBs_proc
 is not part of the DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE compareTwoLOBs_proc IS
 Lob_loc1 BLOB;
 Lob_loc2 BLOB;
 Amount INTEGER := 32767;
 Retval INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT ad_composite INTO Lob_loc1 FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001;
 SELECT ad_composite INTO Lob_loc2 FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN (Lob_loc2, DBMS_LOB.LOB_READONLY);
 /* Compare the two frames: */
 retval := DBMS_LOB.COMPARE(Lob_loc1, Lob_loc2, Amount, 1, 1);
 IF retval = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Processing for equal frames’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Processing for non-equal frames’);
 END IF;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc1);
 DBMS_LOB.CLOSE (Lob_loc2);
END;

COBOL (Pro*COBOL): Comparing All or Part of Two LOBs
 * COMPARING ALL OR PART OF TWO LOBS
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COMPARE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
10-130 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Part of Two LOBs
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 BLOB2 SQL-BLOB.
 01 BUFFER2 PIC X(32767) VARYING.
 01 RET PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP.
 01 POS PIC S9(9) COMP VALUE 1024.
 01 OFFSET PIC S9(9) COMP VALUE 1.

 EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 COMPARE-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :BLOB2 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_COMPOSITE INTO :BLOB1
 FROM PRINT_MEDIA PM WHERE PM.PRODUCT_ID = 2268 AND AD_ID =
21001
 END-EXEC.
 EXEC SQL
 SELECT AD_COMPOSITE INTO :BLOB2
 FROM PRINT_MEDIA PM WHERE PM.PRODUCT_ID = 3060 AND AD_ID = 11001
 END-EXEC.

 * Open the BLOBs for READ ONLY:
 EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :BLOB2 READ ONLY END-EXEC.

 * Execute PL/SQL to get COMPARE functionality:
 MOVE 4 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:BLOB1,:BLOB2,:AMT,1,1); END; END-EXEC.

 IF RET = 0
 * Logic for equal BLOBs goes here
 DISPLAY "BLOBs are equal"
Internal Persistent LOBs 10-131

Comparing All or Part of Two LOBs
 ELSE
 * Logic for unequal BLOBs goes here
 DISPLAY "BLOBs are not equal"
 END-IF.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB2 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL FREE :BLOB2 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Comparing All or Part of Two LOBs
/* Comparing all or part of two LOBs
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareTwoLobs_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;
 int Amount = 32767;
 int Retval;
10-132 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Part of Two LOBs
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Select the LOBs: */
 EXEC SQL SELECT ad_composite INTO :Lob_loc1
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001;
 EXEC SQL SELECT ad_composite INTO :Lob_loc2
 FROM Print_media WHERE product_id = 2056 AND ad_id = 12001;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Compare the two Frames using DBMS_LOB.COMPARE() from within PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(:Lob_loc1, :Lob_loc2, :Amount, 1, 1);
 END;
 END-EXEC;
 if (0 == Retval)
 printf("The frames are equal\n");
 else
 printf("The frames are not equal\n");
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 /* Release resources held by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareTwoLobs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Comparing All or Part of Two LOBs
’Comparing all or part of two LOBs
Dim MySession As OraSession
Dim OraDb As OraDatabase
Internal Persistent LOBs 10-133

Comparing All or Part of Two LOBs
Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Dim OraDyn as OraDynaset, OraAdPhoto1 as OraBLOB, OraAdPhotoClone as OraBLOB

Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value
’Clone it for future reference
Set OraAdPhotoClone = OraAdPhoto1.Clone

’Lets go to the next row and compare LOBs
OraDyn.MoveNext

MsgBox CBool(OraAdPhotot1.Compare(OraAdPhototClone, OraAdPhotoClone.size, 1, 1))

Java (JDBC): Comparing All or Part of Two LOBs
// Comparing all or part of two LOBs
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_87
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
10-134 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Part of Two LOBs
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB lob_loc1 = null;
 BLOB lob_loc2 = null;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBLOB (1);
 }

 rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc2 = ((OracleResultSet)rset).getBLOB (1);
 }

 if (lob_loc1.length() > lob_loc2.length())
 System.out.println ("Looking for LOB2 inside LOB1. result = "
 + Long.toString(lob_loc1.position(lob_loc2, 1)));
 else
 System.out.println("Looking for LOB1 inside LOB2. result = "
 + Long.toString(lob_loc2.position(lob_loc1, 1)));

 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-135

Comparing All or Part of Two LOBs
10-136 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Patterns: Checking for Patterns in the LOB (instr)
Patterns: Checking for Patterns in the LOB (instr)

Figure 10–19 Use Case Diagram: Checking for Pattern in the LOB (instr)

Purpose
This procedure describes how to see if a pattern exists in the LOB (instr).

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

see where/if
a pattern exists

in the LOB
(instr)

Internal Persistent LOBs : SEEING Where/if a Pattern Exists
in the LOB (Instr.)
Internal Persistent LOBs 10-137

Patterns: Checking for Patterns in the LOB (instr)
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — INSTR.

■ C (OCI): There is no applicable syntax reference for this use case.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — EXECUTE. Also reference PL/SQL DBMS_

LOB.INSTR.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — EXECUTE. Also reference

PL/SQL DBMS_LOB.INSTR.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The examples examine the advertisement text in the ad_sourcetext column to

see if the string "children" is present.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking for Pattern in the LOB (instr) on

page 10-139

■ C (OCI): No example is provided with this release.

■ C++ (OCCI): No example is provided with this release.
10-138 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Patterns: Checking for Patterns in the LOB (instr)
■ COBOL (Pro*COBOL): Checking for Patterns in the LOB (instr) on page 10-139

■ C/C++ (Pro*C/C++): Checking for Patterns in the LOB (instr) on page 10-141

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Checking for Patterns in the LOB (instr) on page 10-142

PL/SQL (DBMS_LOB Package): Checking for Pattern in the LOB (instr)
/* Seeing if a pattern exists in the LOB using instr.
 The example procedure instringLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE instringLOB_proc IS
 Lob_loc CLOB;
 Pattern VARCHAR2(30) := ’children’;
 Position INTEGER := 0;
 Offset INTEGER := 1;
 Occurrence INTEGER := 1;
BEGIN
 /* Select the LOB: */
 SELECT ad_sourcetext INTO Lob_loc
 FROM Print_media WHERE product_id = 2268 AND ad_id = 21001;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 /* Seek for the pattern: */
 Position := DBMS_LOB.INSTR(Lob_loc, Pattern, Offset, Occurrence);
 IF Position = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Pattern not found’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The pattern occurs at ’|| position);
 END IF;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

 COBOL (Pro*COBOL): Checking for Patterns in the LOB (instr)
 * SEEING IF A PATTERN EXISTS IN THE LOB USING INSTR
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CLOB-INSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
Internal Persistent LOBs 10-139

Patterns: Checking for Patterns in the LOB (instr)
 01 CLOB1 SQL-CLOB.
 01 PATTERN PIC X(8) VALUE "children".
 01 POS PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 OCCURRENCE PIC S9(9) COMP VALUE 1.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 CLOB-INSTR.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC SQL SELECT AD_SOURCETEXT INTO :CLOB1
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 2268 AND AD_ID = 21001 END-EXEC.

 * Open the CLOB for READ ONLY:
 EXEC SQL LOB OPEN :CLOB1 READ ONLY END-EXEC.

 * Execute PL/SQL to get INSTR functionality:
 EXEC SQL EXECUTE
 BEGIN
 :POS := DBMS_LOB.INSTR(:CLOB1, :PATTERN,:OFFSET,:OCCURRENCE);
 END; END-EXEC.

 IF POS = 0
 * Logic for pattern not found here
 DISPLAY "Pattern not found."
 ELSE
 * Pos contains position where pattern is found
 DISPLAY "Pattern found."
 END-IF.
 EXEC SQL LOB CLOSE :CLOB1 END-EXEC.

 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.
10-140 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Patterns: Checking for Patterns in the LOB (instr)
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Checking for Patterns in the LOB (instr)
/* Seeing if a pattern exists in the LOB using instr
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void instringLOB_proc()
{
 OCIClobLocator *Lob_loc;
 char *Pattern = "The End";
 int Position = 0;
 int Offset = 1;
 int Occurrence = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_sourcetext INTO :Lob_loc
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc;
 /* Seek the Pattern using DBMS_LOB.INSTR() in a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Position := DBMS_LOB.INSTR(:Lob_loc, :Pattern, :Offset, :Occurrence);
 END;
Internal Persistent LOBs 10-141

Patterns: Checking for Patterns in the LOB (instr)
 END-EXEC;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 /* Closing the LOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "pm/pm";
 EXEC SQL CONNECT :pm;
 instringLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Checking for Patterns in the LOB (instr)
// Seeing if a pattern exists in the LMOB using instr
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_91
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
10-142 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Patterns: Checking for Patterns in the LOB (instr)
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "pm");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 final int offset = 1; // Start looking at the first byte
 final int occurrence = 1; // Start at the 1st occurrence of the pattern
within the CLOB

 CLOB lob_loc = null;
 String pattern = new String("Junk"); // Pattern to look for within the CLOB.

 ResultSet rset = stmt.executeQuery (
 "SELECT ad_sourcetext FROM Print_media
 WHERE product_id = 2268 AND ad_id = 21001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 // Search for location of pattern string in the CLOB, starting at offset 1:
 long result = lob_loc.position(pattern, offset);
 System.out.println("Results of Pattern Comparison : " +
 Long.toString(result));

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-143

Length: Determining the Length of a LOB
Length: Determining the Length of a LOB

Figure 10–20 Use Case Diagram: Determining the Length of a LOB

Purpose
This procedure describes how to determine the length of a LOB.

Usage Notes
Not applicable.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

GET the
Length of
the LOB

Internal Persistent LOBs : GETTING the Length of the LOB
10-144 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Length: Determining the Length of a LOB
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — GETLENGTH

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OciLobGetLength.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB DESCRIBE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET

LENGTH...

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Oradynaset

> PROPERTIES > fields

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
These examples demonstrate how to determine the length of the LOB in the foreign

language text (ad_fltextn) column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Determining the Length of a LOB on

page 10-146

■ C (OCI): Determining the Length of a LOB on page 10-146

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Determining the Length of a LOB on page 10-148
Internal Persistent LOBs 10-145

Length: Determining the Length of a LOB
■ C/C++ (Pro*C/C++): Determining the Length of a LOB on page 10-149

■ Visual Basic (OO4O): Determining the Length of a LOB on page 10-150

■ Java (JDBC): Determining the Length of a LOB on page 10-150

PL/SQL (DBMS_LOB Package): Determining the Length of a LOB
/* Getting the length of a LOB.
 Example procedure getLengthLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE getLengthLOB_proc IS
 Lob_loc NCLOB;
 Length INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT ad_fltextn INTO Lob_loc FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READONLY);
 /* Get the length of the LOB: */
 length := DBMS_LOB.GETLENGTH(Lob_loc);
 IF length IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(’LOB is null.’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’|| length);
 END IF;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

C (OCI): Determining the Length of a LOB
/* Getting the length of a LOB
/* Select the locator into a locator variable */
sb4 select_adfltextn_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;

 text *sqlstmt =
10-146 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Length: Determining the Length of a LOB
 (text *)"SELECT ad_fltextn FROM Print_media
 WHERE product_id = 2268";

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2)SQLT_CLOB,(dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT));
 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}

/* This function gets the length of the selected LOB */
void getLengthLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 ub4 length;
 OCILobLocator *Lob_loc;
 /* Allocate Locator resources */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select a LOB locator from FLSub */
 printf(" select a adfltextn locator\n");
 select_adfltextn_locator(Lob_loc, errhp, svchp, stmthp);

 /* Opening the LOB is Optional */
 printf(" Open the locator (optional)\n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READONLY)));

 printf(" get the length of ad_fltextn.\n");
 checkerr (errhp, OCILobGetLength(svchp, errhp, Lob_loc, &length));

 /* Length is undefined if the LOB is NULL or undefined */
 fprintf(stderr," Length of LOB is %d\n",length);
Internal Persistent LOBs 10-147

Length: Determining the Length of a LOB
 /* Closing the LOBs is Mandatory if they have been Opened */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
 }

COBOL (Pro*COBOL): Determining the Length of a LOB
 * GETTING THE LENGTH OF A LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-LENGTH.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 CLOB1 SQL-CLOB.
 01 LOB-ATTR-GRP.
 05 LEN PIC S9(9) COMP.
 01 D-LEN PIC 9(4).
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 EXEC SQL INCLUDE SQLCA END-EXEC.
 PROCEDURE DIVISION.
 LOB-LENGTH.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the target CLOB:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC SQL
 SELECT AD_SOURCETEXT INTO :CLOB1
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 3060 AND AD_ID = 11001 END-EXEC.

 * Obtain the length of the CLOB:
 EXEC SQL
 LOB DESCRIBE :CLOB1 GET LENGTH INTO :LEN END-EXEC.
 MOVE LEN TO D-LEN.
 DISPLAY "The length is ", D-LEN.

 * Free the resources used by the CLOB:
10-148 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Length: Determining the Length of a LOB
 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Determining the Length of a LOB
/* Getting the length of a LOB */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}
void getLengthLOB_proc()
{
 OCIClobLocator *Lob_loc;
 unsigned int Length;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_sourcetext INTO :Lob_loc
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Length: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 /* If the LOB is NULL or unitialized, then Length is Undefined: */
 printf("Length is %d characters\n", Length);
Internal Persistent LOBs 10-149

Length: Determining the Length of a LOB
 /* Closing the LOB is mandatory if you have Opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Determining the Length of a LOB
’Getting the length of a LOB
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value

’Display out size of the lob:
MsgBox "Length of the lob is " & OraAdPhoto1.Size

Java (JDBC): Determining the Length of a LOB
//Getting the length of a LOB
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
10-150 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Length: Determining the Length of a LOB
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_95
{

 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 CLOB lob_loc = null;
 ResultSet rset = stmt.executeQuery
 ("SELECT ad_sourcetext FROM Print_media WHERE product_id = 3106");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 System.out.println(
 "Length of this column is : " + Long.toString(lob_loc.length()));

 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
Internal Persistent LOBs 10-151

Length: Determining the Length of a LOB
 }
 }
}

10-152 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One LOB to Another LOB
Copying All or Part of One LOB to Another LOB

Figure 10–21 Use Case Diagram: Copying All or Part of One LOB to Another LOB

Purpose
This procedure describes how to copy all or part of a LOB to another LOB.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

COPY
All or Part of a
LOB to Another

Copy

Internal Persistent LOBs : COPYING All or Part of a LOB to Another Copy
Internal Persistent LOBs 10-153

Copying All or Part of One LOB to Another LOB
Usage Notes

Locking the Row Prior to Updating Prior to updating a LOB value using the PL/SQL

DBMS_LOB package or OCI, you must lock the row containing the LOB. While the

SQL INSERT and UPDATE statements implicitly lock the row, locking is done

explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and PL/SQL

programs, or by using an OCI pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updating LOBs

Via Updated Locators" on page 5-5 in Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. See the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — COPY

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OciLobCopy

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB COPY. Also reference PL/SQL DBMS_

LOB.COPY.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide for information

on embedded SQL statements and directives — LOB COPY

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > copy, and > OBJECTS > Oradynaset > METHODS > movenext,

edit

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE
10-154 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One LOB to Another LOB
Scenario
The code in these examples shows you how to copy a portion of an image in the

ad_photo column to the ad_composite column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Copying All or Part of One LOB to Another

LOB on page 10-155

■ C (OCI): Copying All or Part of One LOB to Another LOB on page 10-156

■ COBOL (Pro*COBOL): Copying All or Part of One LOB to Another LOB on

page 10-158

■ C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB on page 10-160

■ Visual Basic (OO4O): Copying All or Part of One LOB to Another LOB on

page 10-161

■ Java (JDBC): Copying All or Part of One LOB to Another LOB on page 10-162

PL/SQL (DBMS_LOB Package): Copying All or Part of One LOB to Another LOB
/* Copying all or part of a LOB to another LOB.
 Example procedure copyLOB_proc is not part of DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE copyLOB_proc IS
 Dest_loc BLOB;
 Src_loc BLOB;
 Amount NUMBER;
 Dest_pos NUMBER;
 Src_pos NUMBER;
BEGIN
 SELECT ad_composite INTO Dest_loc FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001 FOR UPDATE;
 /* Select the LOB: */
 SELECT ad_photo INTO Src_loc FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001;
 /* Opening the LOBs is optional: */
 DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Copies the LOB from the source position to the destination position: */
 DBMS_LOB.COPY(Dest_loc, Src_loc, Amount, Dest_pos, Src_pos);
 /* Closing LOBs is mandatory if you have opened them: */
 DBMS_LOB.CLOSE(Dest_loc);
Internal Persistent LOBs 10-155

Copying All or Part of One LOB to Another LOB
 DBMS_LOB.CLOSE(Src_loc);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Copying All or Part of One LOB to Another LOB
/* Copying all or part of a LOB to another LOB */
/* Select the locator */
sb4 select_photo_locator_2(Lob_loc, dest_type, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
ub1 dest_type; /* whether destination locator */
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 char sqlstmt[150];
 OCIDefine *defnp1;
 if (dest_type == TRUE)
 {
 strcpy (sqlstmt,
 (char *)"SELECT ad_photo FROM Print_media
 WHERE product_id=2268 FOR UPDATE");
 printf (" select destination ad_photo locator\n");
 }
 else
 {
 strcpy(sqlstmt, (char *)"SELECT ad_photo FROM Print_media WHERE product_
id=3106");
 printf (" select source ad_photo locator\n");
 }
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (text *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
 /* execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
10-156 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One LOB to Another LOB
 return 0;
}

/* This function copies part of the Source LOB into a specified position
 in the destination LOB
 */
void copyAllPartLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIBlobLocator *Dest_loc, *Src_loc;
 int Amount = 1000; /* <Amount to Copy> */
 int Dest_pos = 100; /*<Position to start copying into> */
 int Src_pos = 1; /* <Position to start copying from> */

 /* Allocate the LOB locators */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs */
 printf(" select the destination and source locators\n");
 select_photo_locator_2(Dest_loc, TRUE, errhp, svchp, stmthp);
 /* destination locator */
 select_photo_locator_2(Src_loc, FALSE, errhp, svchp, stmthp);
 /* source locator */

 /* Opening the LOBs is Optional */
 printf (" open the destination locator (optional)\n");
 checkerr (errhp, OCILobOpen(svchp, errhp, Dest_loc, OCI_LOB_READWRITE));
 printf (" open the source locator (optional)\n");
 checkerr (errhp, OCILobOpen(svchp, errhp, Src_loc, OCI_LOB_READONLY));

 printf (" copy the lob (amount) from the source to destination\n");
 checkerr (errhp, OCILobCopy(svchp, errhp, Dest_loc, Src_loc,
 Amount, Dest_pos, Src_pos));

 /* Closing the LOBs is Mandatory if they have been Opened */
 printf(" close the locators\n");
 checkerr (errhp, OCILobClose(svchp, errhp, Dest_loc));
 checkerr (errhp, OCILobClose(svchp, errhp, Src_loc));
Internal Persistent LOBs 10-157

Copying All or Part of One LOB to Another LOB
 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) Src_loc, (ub4) OCI_DTYPE_LOB);

 return;
 }

COBOL (Pro*COBOL): Copying All or Part of One LOB to Another LOB
 * COPYING ALL OR PART OF A LOB TO ANOTHER LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BLOB-COPY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 DEST SQL-BLOB.
 01 SRC SQL-BLOB.

 * Define the amount to copy.
 * This value has been chosen arbitrarily:
 01 AMT PIC S9(9) COMP VALUE 10.
 * Define the source and destination position.
 * These values have been chosen arbitrarily:
 01 SRC-POS PIC S9(9) COMP VALUE 1.
 01 DEST-POS PIC S9(9) COMP VALUE 1.

 * The return value from PL/SQL function:
 01 RET PIC S9(9) COMP.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 PROCEDURE DIVISION.
 COPY-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL ALLOCATE :SRC END-EXEC.
 DISPLAY "Source and destination LOBs are open.".

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
10-158 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One LOB to Another LOB
 EXEC SQL
 SELECT AD_PHOTO INTO :SRC
 FROM PRINT_MEDIA PM
 WHERE PM.PRODUCT_ID = 3106 AND AD_ID = 13001 END-EXEC.
 DISPLAY "Source LOB populated.".
 EXEC SQL
 SELECT AD_PHOTO INTO :DEST
 FROM PRINT_MEDIA PM
 WHERE PM.PRODUCT_ID = 3060 AND AD_ID = 11001 FOR UPDATE
END-EXEC.
 DISPLAY "Destination LOB populated.".

 * Open the DESTination LOB read/write and SRC LOB read only
 EXEC SQL LOB OPEN :DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC READ ONLY END-EXEC.
 DISPLAY "Source and destination LOBs are open.".

 * Copy the desired amount
 EXEC SQL
 LOB COPY :AMT FROM :SRC AT :SRC-POS
 TO :DEST AT :DEST-POS END-EXEC.
 DISPLAY "Src LOB copied to destination LOB.".

 * Execute PL/SQL to get COMPARE functionality
 * to make sure that the BLOBs are identical
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:SRC,:DEST,:AMT,1,1); END; END-EXEC.

 IF RET = 0
 * Logic for equal BLOBs goes here
 DISPLAY "BLOBs are equal"
 ELSE
 * Logic for unequal BLOBs goes here
 DISPLAY "BLOBs are not equal"
 END-IF.

 EXEC SQL LOB CLOSE :DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :SRC END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
Internal Persistent LOBs 10-159

Copying All or Part of One LOB to Another LOB
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB
/* Copying all or part of a LOB to another LOB */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void copyLOB_proc()
{
 OCIBlobLocator *Dest_loc, *Src_loc;
 int Amount = 5;
 int Dest_pos = 10;
 int Src_pos = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL ALLOCATE :Src_loc;
 /* Select the LOBs: */
 EXEC SQL SELECT ad_photo INTO :Dest_loc
 FROM Print_media WHERE product_id = 2268 AND AD_ID = 21001 FOR
UPDATE;
 EXEC SQL SELECT ad_photo INTO :Src_loc
 FROM Print_media WHERE product_id = 2056 AND ad_id = 12001;
 /* Opening the LOBs is Optional: */
10-160 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One LOB to Another LOB
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB OPEN :Src_loc READ ONLY;
 /* Copies the specified Amount from the source position in the source
 LOB to the destination position in the destination LOB: */
 EXEC SQL LOB COPY :Amount
 FROM :Src_loc AT :Src_pos TO :Dest_loc AT :Dest_pos;
 /* Closing the LOBs is mandatory if they have been opened: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
 /* Release resources held by the locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Copying All or Part of One LOB to Another LOB
’Copying all or part of a LOB to another LOB
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value

Set OraAdPhotoClone = OraAdPhoto1.Clone

’Go to next row and copy LOB

OraDyn.MoveNext

OraDyn.Edit
OraAdPhoto1.Copy OraAdPhotoClone, OraAdPhotoClone.Size, 1, 1
OraDyn.Update
Internal Persistent LOBs 10-161

Copying All or Part of One LOB to Another LOB
Java (JDBC): Copying All or Part of One LOB to Another LOB
// Copying all or part of a LOB to another LOB
 import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_100
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 final int AMOUNT_TO_COPY = 2000;
 ResultSet rset = null;
 BLOB dest_loc = null;
 BLOB src_loc = null;
 InputStream in = null;
 OutputStream out = null;
 byte[] buf = new byte[AMOUNT_TO_COPY];
 rset = stmt.executeQuery (
10-162 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One LOB to Another LOB
 "SELECT ad_photo FROM Print_media
 WHERE product_id = 3060 AND ad_ad = 11001");
 if (rset.next())
 {
 src_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 in = src_loc.getBinaryStream();

 rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001 FOR UPDATE");
 if (rset.next())
 {
 dest_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 out = dest_loc.getBinaryOutputStream();

 // read AMOUNT_TO_COPY bytes into buf from stream, starting from offset 0:
 in.read(buf, 0, AMOUNT_TO_COPY);

// write AMOUNT_TO_COPY bytes from buf into output stream, starting at offset
0:
 out.write(buf, 0, AMOUNT_TO_COPY);

 // Close all streams and handles
 in.close();
 out.flush();
 out.close();
 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-163

Copying a LOB Locator
Copying a LOB Locator

Figure 10–22 Use Case Diagram: Copying a LOB Locator

Purpose
This procedure describes how to copy a LOB locator.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Refer to the "Read Consistent Locators" in

Chapter 5, "Large Objects: Advanced Topics" for information on assigning one

lob locator to another.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

COPY
LOB Locator

Internal Persistent LOBs : COPYING LOB Locator
10-164 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator
■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OciLobAssign, OciLobIsEqual.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — ALLOCATE, LOB ASSIGN.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — SELECT, LOB ASSIGN

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > copy

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
These examples show how to copy one locator to another involving the image (ad_
composite). Note how different locators may point to the same or different,

current or outdated data.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Copying a LOB Locator on page 10-166

■ C (OCI): Copying a LOB Locator on page 10-166

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Copying a LOB Locator on page 10-168

■ C/C++ (Pro*C/C++): Copying a LOB Locator on page 10-169

■ Visual Basic (OO4O: Copying a LOB Locator on page 10-170

■ Java (JDBC): Copying a LOB Locator on page 10-170
Internal Persistent LOBs 10-165

Copying a LOB Locator
PL/SQL (DBMS_LOB Package): Copying a LOB Locator

/* Copying a LOB locator.
 Example procedure lobAssign_proc is not part of DBMS_LOB package. */
CREATE OR REPLACE PROCEDURE lobAssign_proc IS
 Lob_loc1 blob;
 Lob_loc2 blob;
BEGIN
 SELECT ad_composite INTO Lob_loc1 FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the lob
 at this point in time. */
 Lob_loc2 := Lob_loc1;

/* When you write some data to the lob through Lob_loc1, Lob_loc2 will not see
 the newly written data whereas Lob_loc1 will see the new data. */
END;

C (OCI): Copying a LOB Locator
/* Copying a LOB locator */
/* Select the locator */
sb4 select_lock_adcomp_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_composite FROM Print_media
 WHERE product_id=3106 AND ad_id = 13001 FOR UPDATE";
 OCIDefine *defnp1;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

Note: Assigning one LOB to another using PL/SQL entails using

the ":=" sign. This is an advanced topic that is discussed in more

detail under the heading "Read Consistent Locators" on page 5-1.
10-166 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator
 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return (0);
}

void assignLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *dest_loc, *src_loc;
 boolean isEqual;

 /* Allocate the LOB locators */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs */
 printf (" select and lock a frame locator\n");
 select_lock_adcomp_locator(src_loc, errhp, svchp, stmthp);/* source locator */

 /* Assign src_loc to dest_loc thereby saving a copy of the value of the LOB
 at this point in time.
 */
 printf(" assign the src locator to dest locator\n");
 checkerr (errhp, OCILobAssign(envhp, errhp, src_loc, &dest_loc));

 /* When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
 see the newly written data whereas Lob_loc1 will see the new data.
 */

 /* Call OCI to see if the two locators are Equal */

 printf (" check if Lobs are Equal.\n");
 checkerr (errhp, OCILobIsEqual(envhp, src_loc, dest_loc, &isEqual));
 if (isEqual)
 {
 /* ... The LOB locators are Equal */
 printf(" Lob Locators are equal.\n");
 }
Internal Persistent LOBs 10-167

Copying a LOB Locator
 else
 {
 /* ... The LOB locators are not Equal */
 printf(" Lob Locators are NOT Equal.\n");
 }

 /* Note that in this example, the LOB locators will be Equal */

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) src_loc, (ub4) OCI_DTYPE_LOB);
 return;
}

COBOL (Pro*COBOL): Copying a LOB Locator
 * COPYING A LOB LOCATOR
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COPY-LOCATOR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 DEST SQL-BLOB.
 01 SRC SQL-BLOB.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 PROCEDURE DIVISION.
 COPY-BLOB-LOCATOR.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL ALLOCATE :SRC END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_COMPOSITE INTO :SRC
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 2268 AND AD_ID = 21001 FOR UPDATE
 END-EXEC.
 EXEC SQL LOB ASSIGN :SRC TO :DEST END-EXEC.
10-168 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator
 * When you write data to the LOB through SRC, DEST will
 * not see the newly written data

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :SRC END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Copying a LOB Locator
/* Copying a LOB locator */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void lobAssign_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT ad_composite INTO :Lob_loc1
 FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001 FOR UPDATE;
Internal Persistent LOBs 10-169

Copying a LOB Locator
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the
 LOB at this point in time: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
 see the newly written data whereas Lob_loc1 will see the new data: */
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 lobAssign_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O: Copying a LOB Locator
’Copying a LOB locator
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id ", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value
Set OraAdPhotoClone = OraAdPhoto1.Clone

OraDyn.MoveNext

’Copy 1000 bytes of LOB values OraAdPhotoClone to OraAdPhotol at OraAdPhotol
’offset 100:
OraDyn.Edit
OraAdPhoto1.Copy OraAdPhotoClone, 1000, 100
OraDyn.Update

Java (JDBC): Copying a LOB Locator
// Copying a LOB locator
import java.sql.Connection;
import java.sql.Types;
10-170 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_104
{
public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB lob_loc1 = null;
 BLOB lob_loc2 = null;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBLOB (1);
 }

 // When you write data to LOB through lob_loc1,lob_loc2 will not see changes
 lob_loc2 = lob_loc1;
 stmt.close();
 conn.commit();
 conn.close();

 }
Internal Persistent LOBs 10-171

Copying a LOB Locator
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-172 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Equality: Checking If One LOB Locator Is Equal to Another
Equality: Checking If One LOB Locator Is Equal to Another

Figure 10–23 Use Case Diagram: Checking If One LOB Locator Is Equal to Another

Purpose
This procedure describes how to see if one LOB locator is equal to another.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this

use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OciLobAssign, OciLobIsEqual.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

SELECT
a LOB

SEE if LOB
Locators are

Equal

Internal Persistent LOBs : SEEING if LOB Locators are Equal
Internal Persistent LOBs 10-173

Equality: Checking If One LOB Locator Is Equal to Another
■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
If two locators are equal, this means that they refer to the same version of the LOB

data (see "Read Consistent Locators" on page 5-1). In this example, the locators are

equal. However, it may be as important to determine that locators do not refer to

same version of the LOB data.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB): No example is provided with this release.

■ C (OCI): Checking If One LOB Locator Is Equal to Another on page 10-174

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): No example is provided with this release.

■ C/C++ (Pro*C/C++): Checking If One LOB Locator Is Equal to Another on

page 10-176

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Checking If One LOB Locator Is Equal to Another on page 10-177

C (OCI): Checking If One LOB Locator Is Equal to Another
/* Seeing if One LOB locator is Equal to Another */
/* Select the locator: */
sb4 select_lock_adcomp_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
10-174 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Equality: Checking If One LOB Locator Is Equal to Another
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_composite FROM Print_media
 WHERE product_id=2268 AND ad_id = 21001 FOR UPDATE";
 OCIDefine *defnp1;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return (0);
}
void locatorIsEqual(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *dest_loc, *src_loc;
 boolean isEqual;

 /* Allocate the LOB locators: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs: */
 printf (" select and lock an ad_composite locator\n");
 select_lock_adcomp_locator(src_loc, errhp, svchp, stmthp);/* source locator */

 /* Assign src_loc to dest_loc thereby saving a copy of the value of the LOB
 at this point in time: */
 printf(" assign the src locator to dest locator\n");
 checkerr (errhp, OCILobAssign(envhp, errhp, src_loc, &dest_loc));

 /* When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
Internal Persistent LOBs 10-175

Equality: Checking If One LOB Locator Is Equal to Another
 see the newly written data whereas Lob_loc1 will see the new data: */

 /* Call OCI to see if the two locators are Equal: */

 printf (" check if Lobs are Equal.\n");
 checkerr (errhp, OCILobIsEqual(envhp, src_loc, dest_loc, &isEqual));

 if (isEqual)
 {
 /* ... The LOB locators are Equal: */
 printf(" Lob Locators are equal.\n");
 }
 else
 {
 /* ... The LOB locators are not Equal: */
 printf(" Lob Locators are NOT Equal.\n");
 }

 /* Note that in this example, the LOB locators will be Equal */

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) src_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

C/C++ (Pro*C/C++): Checking If One LOB Locator Is Equal to Another
/* Seeing if One LOB locator is equal to another */
/* Pro*C/C++ does not provide a mechanism to test the equality of two
 locators. But you can use OCI directly. Two locators can be
 compared to determine whether or not they are equal as this example
 demonstrates: */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
10-176 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Equality: Checking If One LOB Locator Is Equal to Another
 exit(1);
}

void LobLocatorIsEqual_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;
 OCIEnv *oeh;
 boolean isEqual;
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT ad_composite INTO Lob_loc1
 FROM Print_media
 where product_id = 3060 AND ad_id = 11001 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the
 LOB at this point in time: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* When you write some data to the lob through Lob_loc1, Lob_loc2 will
 not see the newly written data whereas Lob_loc1 will see the new
 data. */
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Call OCI to see if the two locators are Equal: */
 (void) OCILobIsEqual(oeh, Lob_loc1, Lob_loc2, &isEqual);
 if (isEqual)
 printf("The locators are equal\n");
 else
 printf("The locators are not equal\n");
 /* Note that in this example, the LOB locators will be Equal */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobLocatorIsEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Checking If One LOB Locator Is Equal to Another
// Seeing if one LOB locator is equal to another
Internal Persistent LOBs 10-177

Equality: Checking If One LOB Locator Is Equal to Another
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_108
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB lob_loc1 = null;
 BLOB lob_loc2 = null;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBLOB (1);
 }

 // When you write data to LOB through lob_loc1,lob_loc2 will not see the
changes:
 lob_loc2 = lob_loc1;

 // Note that in this example, the Locators will be equal.
10-178 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Equality: Checking If One LOB Locator Is Equal to Another
 if (lob_loc1.equals(lob_loc2))
 {
 // The Locators are equal:
 System.out.println("Locators are equal");
 }
 else
 {
 // The Locators are different:
 System.out.println("Locators are NOT equal");
 }

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-179

Initialized Locator: Checking If a LOB Locator Is Initialized
Initialized Locator: Checking If a LOB Locator Is Initialized

Figure 10–24 Use Case Diagram: Checking If a LOB Locator Is Initialized

Purpose
This procedure describes how to see if a LOB locator is initialized.

Usage Notes
Not applicable.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SEE if
LOB Locator is

Initialized

Internal Persistent LOBs : SEEING if LOB Locator is Initialized
10-180 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Initialized Locator: Checking If a LOB Locator Is Initialized
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this

use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — OciLobLocatorIsInit.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives". See C(OCI), OciLobLocatorIsInit.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): There is no applicable syntax reference for this use case.

Scenario
The operation allows you to determine if the locator has been initialized or not. In

the example shown both locators are found to be initialized.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): Checking If a LOB Locator Is Initialized on page 10-181

■ C (OCCI)): No example is provided with this release.

■ COBOL (Pro*COBOL): No example is provided with this release.

■ C/C++ (Pro*C/C++): Checking If a LOB Locator Is Initialized on page 10-183

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Checking If a LOB Locator Is Initialized
/* Seeing if a LOB locator is initialized */
/* Select the locator: */
Internal Persistent LOBs 10-181

Initialized Locator: Checking If a LOB Locator Is Initialized
sb4 select_adcomp_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_composite FROM Print_media
 WHERE product_id=2268 AND ad_id = 21001";
 OCIDefine *defnp1;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return (0);
}

void isInitializedLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc1, *Lob_loc2;
 boolean isInitialized;

 /* Allocate the LOB locators: */
 printf(" allocate locator 1 and 2\n");
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc1,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc2,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs: */
 printf (" select an ad_composite locator into locator 1\n");
 select_adcomp_locator(Lob_loc1, errhp, svchp, stmthp); /* locator 1 */
10-182 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Initialized Locator: Checking If a LOB Locator Is Initialized
 /* Determine if the locator 1 is Initialized -: */
 checkerr(errhp, OCILobLocatorIsInit(envhp, errhp, Lob_loc1, &isInitialized));
 /* IsInitialized should return TRUE here */
 printf(" for Locator 1, isInitialized = %d\n", isInitialized);

 /* Determine if the locator 2 is Initialized -: */
 checkerr(errhp, OCILobLocatorIsInit(envhp, errhp, Lob_loc2, &isInitialized));
 /* IsInitialized should return FALSE here */
 printf(" for Locator 2, isInitialized = %d\n", isInitialized);

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc1, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) Lob_loc2, (ub4) OCI_DTYPE_LOB);
 return;
 }

C/C++ (Pro*C/C++): Checking If a LOB Locator Is Initialized
/* Seeing if a LOB locator is initialized */
/* Pro*C/C++ has no form of embedded SQL statement to determine if a LOB
 locator is initialized. Locators in Pro*C/C++ are initialized when they
 are allocated via the EXEC SQL ALLOCATE statement. An example
 can be written that uses embedded SQL and the OCI as is shown here: */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void LobLocatorIsInit_proc()
{
 OCIBlobLocator *Lob_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
Internal Persistent LOBs 10-183

Initialized Locator: Checking If a LOB Locator Is Initialized
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_composite INTO Lob_loc
 FROM Print_media where product_id = 2056 AND ad_id = 12001;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized: */
 (void) OCILobLocatorIsInit(oeh, err, Lob_loc, &isInitialized);
 if (isInitialized)
 printf("The locator is initialized\n");
 else
 printf("The locator is not initialized\n");
 /* Note that in this example, the locator is initialized */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobLocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

10-184 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Character Set ID: Determining Character Set ID
Character Set ID: Determining Character Set ID

Figure 10–25 Use Case Diagram: Determining Character Set ID

Purpose
This procedure describes how to determine the character set ID.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

GET Character
Set ID

Internal Persistent LOBs : GETTING Character Set ID
Internal Persistent LOBs 10-185

Character Set ID: Determining Character Set ID
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this

use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobCharSetId

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): There is no applicable syntax reference for this use case.

Scenario
The use case demonstrates how to determine the character set ID of the foreign text

(ad_fltextn).

Example
This functionality is currently available only in OCI:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): Determining Character Set ID on page 10-187

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): No example is provided with this release.

■ C/C++ (Pro*C/C++): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.
10-186 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Character Set ID: Determining Character Set ID
C (OCI): Determining Character Set ID
/* Getting character set id */
/* This function takes a valid LOB locator and prints the character set id of
the LOB. */
/* Select the locator */
sb4 select_adfltextn_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;
 text *sqlstmt =
 (text *)"SELECT ad_fltextn FROM Print_media
 WHERE product_id = 2268 AND ad_id = 21001";
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2)SQLT_CLOB,(dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT));
 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}
sb4 getcsidLob (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub2 charsetid =0 ;
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 printf (" select a ad_fltextn locator\n");
 select_adfltextn_locator(Lob_loc, errhp, svchp, stmthp);
 printf (" get the character set id of adfltextn_locator\n");

 /* Get the charactersid ID of the LOB*/
Internal Persistent LOBs 10-187

Character Set ID: Determining Character Set ID
 checkerr (errhp, OCILobCharSetId(envhp, errhp, Lob_loc, &charsetid));
 printf(" character Set ID of ad_fltextn is : %d\n", charsetid);

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

10-188 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Character Set Form: Determining Character Set Form
Character Set Form: Determining Character Set Form

Figure 10–26 Use Case Diagram: Determining Character Set Form

Purpose
This procedure describes how to get the character set form.

Usage Notes
Not applicable.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

SELECT
a LOB

GET Character
Set Form

Internal Persistent LOBs : GETTING Character Set Form
Internal Persistent LOBs 10-189

Character Set Form: Determining Character Set Form
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this

use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobCharSetForm

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): There is no applicable syntax reference for this use case.

Scenario
The use case demonstrates how to determine the character set form of the foreign

language text (ad_fltextn).

Example
This functionality is currently available only in OCI:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): Determining Character Set Form on page 10-190

■ C (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): No example is provided with this release.

■ C/C++ (Pro*C/C++): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Determining Character Set Form
/* Getting character set form of the foreign language ad text, ad_fltextn */
/* Select the locator */
sb4 select_adfltextn_locator(Lob_loc, errhp, svchp, stmthp)
10-190 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Character Set Form: Determining Character Set Form
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *defnp1;
 text *sqlstmt =
 (text *)"SELECT ad_fltextn FROM Print_media
 WHERE product_id = 2268 AND ad_id = 21001";
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2)SQLT_CLOB,(dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT));

 /* Execute and fetch one row */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}

/* This function takes a valid LOB locator and prints the character set form
 of the LOB.
 */
sb4 getcsformLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub1 charset_form = 0 ;

 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 printf (" select an ad_fltextn locator\n");
 select_adfltextn_locator(Lob_loc, errhp, svchp, stmthp);
 printf (" get the character set form of ad_fltextn\n");
Internal Persistent LOBs 10-191

Character Set Form: Determining Character Set Form
 /* Get the charactersid form of the LOB*/
 checkerr (errhp, OCILobCharSetForm(envhp, errhp, Lob_loc, &charset_form));
 printf(" character Set Form of ad_fltextn is : %d\n", charset_form);

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

10-192 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One LOB to Another
Appending One LOB to Another

Figure 10–27 Use Case Diagram: Appending One LOB to Another

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

APPEND One
LOB to
Another

Internal Persistent LOBs : APPENDING One LOB to Another
Internal Persistent LOBs 10-193

Appending One LOB to Another
Purpose
This procedure describes how to append one LOB to another.

Usage Notes

Locking the Row Prior to Updating Prior to updating a LOB value using the PL/SQL

DBMS_LOB package or the OCI, you must lock the row containing the LOB. While

the SQL INSERT and UPDATE statements implicitly lock the row, locking is done

explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and PL/SQL

programs, or by using an OCI pin or lock function in OCI programs. For more

details on the state of the locator after an update, refer to "Updating LOBs Via

Updated Locators" on page 5-5 in Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. See the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — APPEND

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — OCILobAppend

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB APPEND.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide for information

on embedded SQL statements and directives — LOB APPEND

■ Visual Basic (OO4O): (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > append

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2
10-194 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One LOB to Another
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
These examples append one image to another.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Appending One LOB to Another on

page 10-195

■ C (OCI): Appending One LOB to Another on page 10-196

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Appending One LOB to Another on page 10-198

■ C/C++ (Pro*C/C++): Appending One LOB to Another on page 10-199

■ Visual Basic (OO4O): Appending One LOB to Another on page 10-200

■ Java (JDBC): Appending One LOB to Another on page 10-201

PL/SQL (DBMS_LOB Package): Appending One LOB to Another
/* Appending one LOB to another */
/* Note that the example procedure appendLOB_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE appendLOB_proc IS
 Dest_loc BLOB;
 Src_loc BLOB;
BEGIN
 /* Select the LOB, get the destination LOB locator: */
 SELECT ad_photo INTO Dest_loc FROM Print_media
 WHERE product_id = 2268 AND ad_id = 21001 FOR UPDATE;
 /* Select the LOB, get the destination LOB locator: */
 SELECT ad_photo INTO Src_loc FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Dest_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN (Src_loc, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.APPEND(Dest_loc, Src_loc);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Dest_loc);
Internal Persistent LOBs 10-195

Appending One LOB to Another
 DBMS_LOB.CLOSE (Src_loc);
COMMIT;

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Appending One LOB to Another
/* Appending one LOB to another. */
/* This function appends the Source LOB to the end of the Destination LOB */
/* Select the locator */
sb4 select_lock_adphoto_locator_2(Lob_loc, dest_type, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
ub1 dest_type; /* whether destination locator */
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 char sqlstmt[150];
 OCIDefine *defnp1;
if (dest_type == TRUE)
 {
 strcpy (sqlstmt,
 (char *)"SELECT ad_photo FROM Print_media
 WHERE product_id=2268 AND ad_id=21001 FOR UPDATE");
 printf (" select destination ad_photo locator\n");
 }
 else
 {
 strcpy(sqlstmt, (char *)"SELECT ad_photo FROM Print_media
 WHERE product_id=3106 and ad_id=13001");
 printf (" select source ad_photo locator\n");
 }
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, (text *)sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
10-196 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One LOB to Another
 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return 0;
}
void appendLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Dest_loc, *Src_loc;

 /* Allocate the LOB locators */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Dest_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Src_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the LOBs */
 printf(" select source and destination Lobs\n");
 select_lock_adphoto_locator_2(Dest_loc, TRUE, errhp, svchp, stmthp);
 /* destination locator */
 select_lock_adphoto_locator_2(Src_loc, FALSE, errhp, svchp, stmthp);
 /* source locator */
 /* Opening the LOBs is Optional */
 checkerr (errhp, OCILobOpen(svchp, errhp, Dest_loc, OCI_LOB_READWRITE));
 checkerr (errhp, OCILobOpen(svchp, errhp, Src_loc, OCI_LOB_READONLY));

 /* Append Source LOB to the end of the Destination LOB. */
 printf(" append the source Lob to the destination Lob\n");
 checkerr(errhp, OCILobAppend(svchp, errhp, Dest_loc, Src_loc));

 /* Closing the LOBs is Mandatory if they have been Opened */
 checkerr (errhp, OCILobClose(svchp, errhp, Dest_loc));
 checkerr (errhp, OCILobClose(svchp, errhp, Src_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Dest_loc, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) Src_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Internal Persistent LOBs 10-197

Appending One LOB to Another
COBOL (Pro*COBOL): Appending One LOB to Another
 * APPENDING ONE LOB TO ANOTHER
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-APPEND.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 DEST SQL-BLOB.
 01 SRC SQL-BLOB.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 APPEND-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :DEST END-EXEC.
 EXEC SQL ALLOCATE :SRC END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL SELECT AD_PHOTO INTO :DEST
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 2268
 AND AD_ID = 21001 FOR UPDATE END-EXEC.
 EXEC SQL SELECT AD_PHOTO INTO :SRC
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3060
 AND AD_ID = 11001 END-EXEC.

 * Open the DESTination LOB read/write and SRC LOB read only:
 EXEC SQL LOB OPEN :DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC READ ONLY END-EXEC.

 * Append the source LOB to the destination LOB:
 EXEC SQL LOB APPEND :SRC TO :DEST END-EXEC.
 EXEC SQL LOB CLOSE :DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST END-EXEC.
 EXEC SQL FREE :SRC END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
10-198 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One LOB to Another
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Appending One LOB to Another
/* Appending one LOB to another */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void appendLOB_proc()
{
 OCIBlobLocator *Dest_loc, *Src_loc;
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate the locators: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL ALLOCATE :Src_loc;

 /* Select the destination locator: */
 EXEC SQL SELECT Sound INTO :Dest_loc
 FROM Print_media WHERE product_id = 2268 AND
 ad_id = 21001 FOR UPDATE;

 /* Select the source locator: */
 EXEC SQL SELECT Sound INTO :Src_loc
 FROM Print_media WHERE product_id = 3060 AND
 ad_id = 11001;
Internal Persistent LOBs 10-199

Appending One LOB to Another
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB OPEN :Src_loc READ ONLY;

 /* Append the source LOB to the end of the destination LOB: */
 EXEC SQL LOB APPEND :Src_loc TO :Dest_loc;

 /* Closing the LOBs is mandatory if they have been opened: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;

 /* Release resources held by the locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 appendLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Appending One LOB to Another
’Appending one LOB to another
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value
Set OraAdPhotoClone = OraAdPhoto1

OraDyn.MoveNext
OraDyn.Edit
OraAdPhoto1.Append OraAdPhotoClone
OraDyn.Update
10-200 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One LOB to Another
Java (JDBC): Appending One LOB to Another
// Appending one LOB to another
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_121
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 ResultSet rset = null;
 BLOB dest_loc = null;
 BLOB src_loc = null;
 InputStream in = null;
 byte[] buf = new byte[MAXBUFSIZE];
 int length = 0;
Internal Persistent LOBs 10-201

Appending One LOB to Another
 long pos = 0;
 rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media
 WHERE product_id = 2268 AND ad_id = 21001");
 if (rset.next())
 {
 src_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 in = src_loc.getBinaryStream();

 rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001 FOR UPDATE");
 if (rset.next())
 {
 dest_loc = ((OracleResultSet)rset).getBLOB (1);
 }
 // Start writing at the end of the LOB. ie. append:
 pos = dest_loc.length();
 while ((length = in.read(buf)) != -1)
 {
 // Write the contents of the buffer into position pos of the output LOB:
 dest_loc.putBytes(pos, buf);
 pos += length;
 }

 // Close all streams and handles:
 in.close();
 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-202 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Append-Writing to the End of a LOB
Append-Writing to the End of a LOB

Figure 10–28 Use Case Diagram: Append-Writing to the End of a LOB

Purpose
This procedure describes how to write to the end of (append-write to) a LOB.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

WRITING
to the END of

LOB

Internal Persistent LOBs : WRITING to the END of LOB
Internal Persistent LOBs 10-203

Append-Writing to the End of a LOB
Usage Notes

Writing Singly or Piecewise The writeappend operation writes a buffer to the end of

a LOB.

For OCI, the buffer can be written to the LOB in a single piece with this call;

alternatively, it can be rendered piecewise using callbacks or a standard polling

method.

Writing Piecewise: When to Use Callbacks or Polling? If the value of the piece parameter

is OCI_FIRST_PIECE , data must be provided through callbacks or polling.

■ If a callback function is defined in the cbfp parameter, then this callback

function will be invoked to get the next piece after a piece is written to the pipe.

Each piece will be written from bufp.

■ If no callback function is defined, then OCILobWriteAppend () returns the

OCI_NEED_DATAerror code. The application must call OCILobWriteAppend ()

again to write more pieces of the LOB. In this mode, the buffer pointer and the

length can be different in each call if the pieces are of different sizes and from

different locations. A piece value of OCI_LAST_PIECE terminates the

piecewise write.

Locking the Row Prior to Updating Prior to updating a LOB value using the PL/SQL

DBMS_LOB package or the OCI, you must lock the row containing the LOB. While

the SQL INSERT and UPDATE statements implicitly lock the row, locking is done

explicitly by means of an SQL SELECT FOR UPDATE statement in SQL and PL/SQL

programs, or by using an OCI pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updating LOBs

Via Updated Locators" on page 5-5 in Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — WRITEAPPEND

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobWriteAppend

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide
10-204 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Append-Writing to the End of a LOB
■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB WRITE APPEND.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE APPEND

■ Visual Basic (OO4O): No syntax reference is provided with this release.

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
These examples demonstrate writing to the end of an image.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Writing to the End of (Appending to) a LOB on

page 10-205

■ C (OCI): Writing to the End of (Appending to) a LOB on page 10-206

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Writing to the End of (Appending to) a LOB on

page 10-208

■ C/C++ (Pro*C/C++): Writing to the End of (Appending to) a LOB on

page 10-209

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Writing to the End of (Append-Write to) a LOB on page 10-210

PL/SQL (DBMS_LOB Package): Writing to the End of (Appending to) a LOB
/* Write-appending to a LOB
/* Example procedure lobWriteAppend_proc is not part of DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE lobWriteAppend_proc IS
 Lob_loc BLOB;
 Buffer RAW(32767);
 Amount Binary_integer := 32767;
BEGIN
Internal Persistent LOBs 10-205

Append-Writing to the End of a LOB
 SELECT ad_composite INTO Lob_loc FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001 FOR UPDATE;
 /* Fill the buffer with data... */
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Append the data from the buffer to the end of the LOB: */
 DBMS_LOB.WRITEAPPEND(Lob_loc, Amount, Buffer);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Lob_loc);
END;

C (OCI): Writing to the End of (Appending to) a LOB
/* Write-appending to a LOB */
/* Select the locator into a locator variable: */
sb4 select_lock_adcomp_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_composite FROM Print_media
 WHERE product_id=2268 AND ad_id = 21001 FOR UPDATE";
 OCIDefine *defnp1;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return (0);
}

#define MAXBUFLEN 32767

void writeAppendLob(envhp, errhp, svchp, stmthp)
10-206 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Append-Writing to the End of a LOB
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIBlobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the locator: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf(" select and lock an ad-composite locator\n");
 select_lock_adcomp_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Setting the amt to the buffer length. Note here that amt is in bytes
 since we are using a BLOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);

 /* Fill bufp with data: */
 /* Write the data from the buffer at the end of the LOB: */
 printf(" write-append data to the frame Lob\n");
 checkerr (errhp, OCILobWriteAppend (svchp, errhp, Lob_loc, &amt,
 bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));
 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
}

Internal Persistent LOBs 10-207

Append-Writing to the End of a LOB
COBOL (Pro*COBOL): Writing to the End of (Appending to) a LOB
 * WRITE-APPENDING TO A LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-APPEND-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 AMT PIC S9(9) COMP.
 01 BUFFER PIC X(32767) VARYING.
 EXEC SQL VAR BUFFER IS LONG RAW (32767) END-EXEC.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-APPEND-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL SELECT AD_COMPOSITE INTO :BLOB1
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 3106 AND AD_ID = 13001 FOR UPDATE END-EXEC.

 * Open the target LOB:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.

 * Populate AMT here:
 MOVE 5 TO AMT.
 MOVE "2424242424" to BUFFER.

 * Append the source LOB to the destination LOB:
 EXEC SQL LOB WRITE APPEND :AMT FROM :BUFFER INTO :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.
10-208 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Append-Writing to the End of a LOB
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Writing to the End of (Appending to) a LOB
/* Write-appending to a LOB */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 128

void LobWriteAppend_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 /* Amount == BufferLength so only a single WRITE is needed: */
 char Buffer[BufferLength];
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_composite INTO :Lob_loc
 FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001 FOR UPDATE;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc;
 memset((void *)Buffer, 1, BufferLength);
 /* Write the data from the buffer at the end of the LOB: */
 EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Lob_loc;
Internal Persistent LOBs 10-209

Append-Writing to the End of a LOB
 /* Closing the LOB is mandatory if it has been opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobWriteAppend_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Writing to the End of (Append-Write to) a LOB
// Write-appending to a LOB
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_126
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
10-210 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Append-Writing to the End of a LOB
 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB dest_loc = null;
 byte[] buf = new byte[MAXBUFSIZE];
 long pos = 0;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001 FOR UPDATE");
 if (rset.next())
 {
 dest_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // Start writing at the end of the LOB. ie. append:
 pos = dest_loc.length();

 // fill buf with contents to be written:
 buf = (new String("Hello World")).getBytes();

 // Write the contents of the buffer into position pos of the output LOB:
 dest_loc.putBytes(pos, buf);

 // Close all streams and handles:
 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-211

Writing Data to a LOB
Writing Data to a LOB

Figure 10–29 Use Case Diagram: Writing Data to a LOB

OPEN
a LOB

SELECT
a LOB

get
chunk size

CLOSE
a LOB

WRITE Data
to the LOB

User/
Program

disable
buffering

flush
buffer

enable
buffering

check in
a LOB

Internal Persistent LOBs : WRITING Data to the LOB
10-212 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
Purpose
This procedure describes how to write data to a LOB.

Usage Notes

Stream Write The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled using polling or a callback.

If you know how much data will be written to the LOB, specify that amount when

calling OCILobWrite (). This will allow for the contiguity of the LOB data on disk.

Apart from being spatially efficient, the contiguous structure of the LOB data will

make for faster reads and writes in subsequent operations.

Chunksize A chunk is one or more Oracle blocks. As noted previously, you can

specify the chunk size for the LOB when creating the table that contains the LOB.

This corresponds to the chunk size used by Oracle when accessing/modifying the

LOBvalue. Part of the chunk is used to store system-related information and the rest

stores the LOB value. The getchunksize function returns the amount of space

used in the LOB chunk to store the LOB value.

Use a Multiple of Chunksize to Improve Write Performance. You will improve performance

if you execute write requests using a multiple of this chunk size. The reason for

this is that the LOB chunk is versioned for every write operation. If all writes are

done on a chunk basis, no extra or excess versioning is incurred or duplicated. If it

is appropriate for your application, you should batch writes until you have enough

for an entire chunk instead of issuing several LOB write calls that operate on the

same LOB chunk.

Locking the Row Prior to Updating Prior to updating a LOB value using the PL/SQL

DBMS_LOB package or OCI, you must lock the row containing the LOB. While the

SQL INSERT and UPDATE statements implicitly lock the row, locking is done

explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and PL/SQL

programs, or by using an OCI pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updating LOBs

Via Updated Locators" on page 5-5 in Chapter 5, "Large Objects: Advanced Topics".

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2
Internal Persistent LOBs 10-213

Writing Data to a LOB
Using DBMS_LOB.WRITE() to Write Data to a BLOB When you are passing a hexadecimal

string to DBMS_LOB.WRITE() to write data to a BLOB, use the following

guidelines:

■ The amount parameter should be <= the buffer length parameter

■ The length of the buffer should be ((amount *2) - 1). This guideline exists

because the two characters of the string are seen as one hexadecimal character

(and an implicit hexadecimal-to-raw conversion takes place), that is, every two

bytes of the string are converted to one raw byte.

The following example is correct:

declare
 blob_loc BLOB;
 rawbuf RAW(10);
 an_offset INTEGER := 1;
 an_amount BINARY_INTEGER := 10;
begin
 select blob_col into blob_loc from a_table
where id = 1;
 rawbuf := '1234567890123456789';
 dbms_lob.write(blob_loc, an_amount, an_offset,
rawbuf);
 commit;
end;

Replacing the value for 'an_amount' in the previous example with the following

values, yields error message, ora_21560:

 an_amount BINARY_INTEGER := 11;

or

 an_amount BINARY_INTEGER := 19;

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — WRITE

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobWrite.
10-214 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB WRITE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE

■ Visual Basic (OO4O): (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > write, copyfromfile

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The following examples allow the ad_sourcetext data (the advertisement text) to

be updated by writing data to the LOB.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Writing Data to a LOB on page 10-215

■ C (OCI): Writing Data to a LOB on page 10-217

■ COBOL (Pro*COBOL): Writing Data to a LOB on page 10-220

■ C/C++ (Pro*C/C++): Writing Data to a LOB on page 10-222

■ Visual Basic (OO4O):Writing Data to a LOB on page 10-225

■ Java (JDBC): Writing Data to a LOB on page 10-226

PL/SQL (DBMS_LOB Package): Writing Data to a LOB
/* Writing data to a LOB */
/* Example procedure writeDataToLOB_proc is not part of DBMS_LOB package. */
CREATE or REPLACE PROCEDURE writeDataToLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1;
Internal Persistent LOBs 10-215

Writing Data to a LOB
 i INTEGER;
BEGIN
 /* Select a LOB: */
 SELECT ad_sourcetext INTO Lob_loc
 FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001 FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Fill the buffer with data to write to the LOB: */
 FOR i IN 1..3 LOOP
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 /* Fill the buffer with more data to write to the LOB: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

/* We add a second example to show a case in which the buffer size and amount
 differs from the first example: */
CREATE or REPLACE PROCEDURE writeDataToLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER;
 i INTEGER;
 Chunk_size INTEGER;
BEGIN
 SELECT ad_sourcetext INTO Lob_loc
 FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001 FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 Chunk_size := DBMS_LOB.GETCHUNKSIZE(Lob_loc);

 /* Fill the buffer with ’Chunk_size’ worth of data to write to
 the LOB. Use the chunk size (or a multiple of chunk size) when writing
 data to the LOB. Make sure that you write within a chunk boundary and
 don’t overlap different chunks within a single call to DBMS_LOB.WRITE. */

 Amount := Chunk_size;

 /* Write data starting at the beginning of the second chunk: */
 Position := Chunk_size + 1;
 FOR i IN 1..3 LOOP
10-216 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 /* Fill the buffer with more data (of size Chunk_size) to write to
 the LOB: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
END;

C (OCI): Writing Data to a LOB
/* Writing data to a LOB.
 Using OCI you can write arbitrary amounts of data
 to an Internal LOB in either a single piece or in multiple pieces using
 streaming with standard polling. A dynamically allocated Buffer
 holds the data being written to the LOB. */

/* Select the locator into a locator variable */
sb4 select_lock_adsourcetext_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *) "SELECT ad_sourcetext FROM Print_media pm \
 WHERE pm.product_id = 2268 ANd ad_id = 21001 FOR UPDATE";
 OCIDefine *defnp1;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return (0);
}

#define MAXBUFLEN 32767
void writeDataToLob(envhp, errhp, svchp, stmthp)
Internal Persistent LOBs 10-217

Writing Data to a LOB
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIClobLocator *Lob_loc;
 ub4 Total = 2.5*MAXBUFLEN;
 /* <total amount of data to write to the CLOB in bytes> */
 unsigned int amt;
 unsigned int offset;
 unsigned int remainder, nbytes;
 boolean last;
 ub1 bufp[MAXBUFLEN];
 sb4 err;

 /* Allocate the locators desriptors*/
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the CLOB */
 printf (" select an ad_source_text Lob\n");
 select_lock_adsourcetext_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the CLOB */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));
 if (Total > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single write is required */

 /* Fill the buffer with nbytes worth of data */
 remainder = Total - nbytes;

 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE */
 amt = 0;
 offset = 1;

 printf(" write the Lob data in pieces\n");
 if (0 == remainder)
 {
 amt = nbytes;
 /* Here, (Total <= MAXBUFLEN) so we can write in one piece */
 checkerr (errhp, OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_ONE_PIECE, (dvoid *)0,
10-218 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));
 }
 else
 {
 /* Here (Total > MAXBUFLEN) so we use streaming via standard polling */
 /* write the first piece. Specifying first initiates polling. */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_FIRST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);
 last = FALSE;
 /* Write the next (interim) and last pieces */
 do
 {
 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= MAXBUFLEN) */
 last = TRUE; /* This is going to be the final piece */
 }

 /* Fill the Buffer with nbytes worth of data */
 if (last)
 {
 /* Specifying LAST terminates polling */
 err = OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_LAST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
 if (err != OCI_SUCCESS)
 checkerr(errhp, err);
 }
 else
 {
 err = OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, nbytes,
 OCI_NEXT_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);
Internal Persistent LOBs 10-219

Writing Data to a LOB
 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);
 }
 /* Determine how much is left to write */
 remainder = remainder - nbytes;
 } while (!last);
 }

 /* At this point, (remainder == 0) */

 /* Closing the LOB is mandatory if you have opened it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;
 }

COBOL (Pro*COBOL): Writing Data to a LOB
 * WRITING DATA TO A LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-CLOB.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE
 ASSIGN TO "datfile.dat"
 ORGANIZATION IS SEQUENTIAL.
 DATA DIVISION.
 FILE SECTION.

 FD INFILE
 RECORD CONTAINS 5 CHARACTERS.
 01 INREC PIC X(5).

 WORKING-STORAGE SECTION.
 01 CLOB1 SQL-CLOB.
 01 BUFFER PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP VALUES 321.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 END-OF-FILE PIC X(1) VALUES "N".
 01 D-BUFFER-LEN PIC 9.
10-220 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
 01 D-AMT PIC 9.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-CLOB.
 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Open the input file:
 OPEN INPUT INFILE.
 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.
 EXEC SQL
 SELECT AD_SOURCETEXT INTO :CLOB1 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 3106 AND AD_ID = 13001 FOR UPDATE
 END-EXEC.

 * Either write entire record or write first piece
 * Read a data file here and populate BUFFER-ARR and BUFFER-LEN
 * END-OF-FILE will be set to "Y" when the entire file has been
 * read.
 PERFORM READ-NEXT-RECORD.
 MOVE INREC TO BUFFER-ARR.
 MOVE 5 TO BUFFER-LEN.
 IF (END-OF-FILE = "Y")
 EXEC SQL
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :CLOB1 AT :OFFSET
 END-EXEC
 ELSE
 DISPLAY "LOB WRITE FIRST: ", BUFFER-ARR
 EXEC SQL
 LOB WRITE FIRST :AMT FROM :BUFFER
 INTO :CLOB1 AT :OFFSET
 END-EXEC.

 * Continue reading from the input data file
 * and writing to the CLOB:
 PERFORM READ-NEXT-RECORD.
 PERFORM WRITE-TO-CLOB
 UNTIL END-OF-FILE = "Y".
Internal Persistent LOBs 10-221

Writing Data to a LOB
 MOVE INREC TO BUFFER-ARR.
 MOVE 1 TO BUFFER-LEN.
 DISPLAY "LOB WRITE LAST: ", BUFFER-ARR(1:BUFFER-LEN).
 EXEC SQL
 LOB WRITE LAST :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

 WRITE-TO-CLOB.
 IF (END-OF-FILE = "N")
 MOVE INREC TO BUFFER-ARR.
 MOVE 5 TO BUFFER-LEN.
 DISPLAY "LOB WRITE NEXT: ", BUFFER-ARR(1:BUFFER-LEN).
 EXEC SQL
 LOB WRITE NEXT :AMT FROM :BUFFER INTO :CLOB1
 END-EXEC.
 PERFORM READ-NEXT-RECORD.

 READ-NEXT-RECORD.
 MOVE SPACES TO INREC.
 READ INFILE NEXT RECORD
 AT END
 MOVE "Y" TO END-OF-FILE.
 DISPLAY "END-OF-FILE IS " END-OF-FILE.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Writing Data to a LOB
/* Writing data to a LOB */
10-222 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
/* This example shows how you can use Pro*C/C++ to write
 arbitrary amounts of data to an Internal LOB in either a single piece
 of in multiple pieces using a Streaming Mechanism that utilizes standard
 polling. A dynamically allocated Buffer holds the data being
 written to the LOB: */
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void writeDataToLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Lob_loc;
 varchar Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_sourcetext INTO Lob_loc
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001 FOR
UPDATE;
 /* Open the CLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single write is required */
 /* Fill the buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
Internal Persistent LOBs 10-223

Writing Data to a LOB
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can write in one piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so we streaming via standard polling */
 /* write the first piece. Specifying first initiates polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write first %d characters\n", Buffer.len);
 last = FALSE;
 /* Write the next (interim) and last pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= BufferLength) */
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to write: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
10-224 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
 /* At this point, (Amount == Total), the total amount that was written */
 /* Close the CLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeDataToLOB_proc(1);
 EXEC SQL ROLLBACK WORK;
 writeDataToLOB_proc(4);
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O):Writing Data to a LOB
’Writing data to a LOB
’There are two ways of writing a lob, with orablob.write or
orablob.copyfromfile

’Using the OraBlob.Write mechanism
Dim OraDyn As OraDynaset, OraAdPhoto As OraBlob, amount_written%, chunksize%,
curchunk() As Byte

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Print_media", ORADYN_DEFAULT)
Set OraAdPhoto = OraDyn.Fields("ad_photo").Value

fnum = FreeFile
Open "c:\tmp\keyboard_3106_13001" For Binary As #fnum

OraAdPhoto.offset = 1
OraAdPhoto.pollingAmount = LOF(fnum)
remainder = LOF(fnum)

Dim piece As Byte
Get #fnum, , curchunk

OraDyn.Edit

piece = ORALOB_FIRST_PIECE
Internal Persistent LOBs 10-225

Writing Data to a LOB
OraAdPhoto.Write curchunk, chunksize, ORALOB_FIRST_PIECE

While OraAdPhoto.Status = ORALOB_NEED_DATA
 remainder = remainder - chunksize
 If remainder <= chunksize Then
 chunksize = remainder
 piece = ORALOB_LAST_PIECE
 Else
 piece = ORALOB_NEXT_PIECE
 End If

 Get #fnum, , curchunk
 OraAdPhoto.Write curchunk, chunksize, piece

Wend

OraDyn.Update

’Using the OraBlob.CopyFromFile mechanism

Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraAdPhoto = OraDyn.Fields("ad_photo").Value

Oradyn.Edit
OraAdPhoto.CopyFromFile "c:\keyboardphoto3106.jpg"
Oradyn.Update

Java (JDBC): Writing Data to a LOB
//Writing data to a LOB
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
10-226 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a LOB
public class Ex2_126
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB dest_loc = null;
 byte[] buf = new byte[MAXBUFSIZE];
 long pos = 0;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_composite FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001 FOR UPDATE");
 if (rset.next())
 {
 dest_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // Start writing at the end of the LOB. ie. append:
 pos = dest_loc.length();

 // fill buf with contents to be written:
 buf = (new String("Hello World")).getBytes();

 // Write the contents of the buffer into position pos of the output LOB:
 dest_loc.putBytes(pos, buf);

 // Close all streams and handles:
 stmt.close();
 conn.commit();
 conn.close();
Internal Persistent LOBs 10-227

Writing Data to a LOB
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-228 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming LOB Data
Trimming LOB Data

Figure 10–30 Use Case Diagram: Trimming LOB Data

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

TRIM the
LOB Data

Internal Persistent LOBs : TRIMMING the LOB Data
Internal Persistent LOBs 10-229

Trimming LOB Data
Purpose
This procedure describes how to trim LOB data.

Usage Notes

Locking the Row Prior to Updating Prior to updating a LOB value using the PL/SQL

DBMS_LOB package, or OCI, you must lock the row containing the LOB. While the

SQL INSERT and UPDATE statements implicitly lock the row, locking is done

explicitly by means of:

■ A SELECT FOR UPDATE statement in SQL and PL/SQL programs.

■ An OCI pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updating LOBs

Via Updated Locators" on page 5-5 in Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — TRIM

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobTrim.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB TRIM.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL and Precompiler Directives" — LOB TRIM

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > trim

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2
10-230 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming LOB Data
■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
Unless otherwise noted, these examples access text (CLOB data) referenced in the

ad_finaltext column of table Adheader_typ , and trim it.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Trimming LOB Data on page 10-231

■ C (OCI): Trimming LOB Data on page 10-232

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Trimming LOB Data on page 10-233

■ C/C++ (Pro*C/C++): Trimming LOB Data on page 10-234

■ Visual Basic (OO4O): Trimming LOB Data on page 10-236

■ Java (JDBC): Trimming LOB Data on page 10-236

PL/SQL (DBMS_LOB Package): Trimming LOB Data
/* Trimming LOB data */
/* Example procedure trimLOB_proc is not part of DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE trimLOB_proc IS
 Lob_loc CLOB;
BEGIN
 /* Select the LOB, get the LOB locator: */
 SELECT pm.Adheader_typ.ad_finaltext INTO Lob_loc FROM Print_media pm
 WHERE pm.product_id = 2056 AND pm.ad_id = 12001 FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Trim the LOB data: */
 DBMS_LOB.TRIM(Lob_loc,100);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
COMMIT;
/* Exception handling: */
EXCEPTION
Internal Persistent LOBs 10-231

Trimming LOB Data
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Trimming LOB Data
/* Trimming LOB data
/* Select the locator into a locator variable */
sb4 select_lock_adfinaltext_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *) "SELECT pm.ad_finaltext \
 FROM Print_media pm WHERE pm.product_id = 2268
 AND ad_id = 21001 FOR UPDATE";
 OCIDefine *defnp1;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_CLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}
void trimLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 unsigned int trimLength;
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);
10-232 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming LOB Data
 /* Select the CLOB */
 printf(" select an ad_finaltext LOB\n");
 select_lock_adfinaltext_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the CLOB */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Trim the LOB to its new length */
 trimLength = 100; /* <New truncated length of the LOB>*/

 printf (" trim the lob to %d bytes\n", trimLength);
 checkerr (errhp, OCILobTrim (svchp, errhp, Lob_loc, trimLength));

 /* Closing the CLOB is mandatory if you have opened it */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators*/
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);
 }

COBOL (Pro*COBOL): Trimming LOB Data
 * Trimming LOB data
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TRIM-CLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 CLOB1 SQL-CLOB.
 01 NEW-LEN PIC S9(9) COMP.
 * Define the source and destination position and location:
 01 SRC-POS PIC S9(9) COMP.
 01 DEST-POS PIC S9(9) COMP.
 01 SRC-LOC PIC S9(9) COMP.
 01 DEST-LOC PIC S9(9) COMP.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 TRIM-CLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
Internal Persistent LOBs 10-233

Trimming LOB Data
 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC SQL
 SELECT PM.AD_SOURCETEXT INTO :CLOB1
 FROM PRINT_MEDIA PM
 WHERE PM.PRODUCT_ID = 3060
 AND AD_ID = 11001 FOR UPDATE END-EXEC.

 * Open the CLOB:
 EXEC SQL LOB OPEN :CLOB1 READ WRITE END-EXEC.

 * Move some value to NEW-LEN:
 MOVE 3 TO NEW-LEN.
 EXEC SQL
 LOB TRIM :CLOB1 TO :NEW-LEN END-EXEC.

 EXEC SQL LOB CLOSE :CLOB1 END-EXEC.
 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Trimming LOB Data
/* Trimming LOB data */
#include "pers_trim.h"
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("sqlcode = %ld\n", sqlca.sqlcode);
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
10-234 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming LOB Data
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void trimLOB_proc()
{
 voiced_typ_ref *vt_ref;
 voiced_typ *vt_typ;
 OCIClobLocator *Lob_loc;
 unsigned int Length, trimLength;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :vt_ref;
 EXEC SQL ALLOCATE :vt_typ;

 /* Retrieve the REF using Associative SQL */
 EXEC SQL SELECT PMtab.ad_sourctext INTO :vt_ref
 FROM Print_media PMtab
 WHERE PMtab.product_id = 3060 AND ad_id = 11001 FOR UPDATE;

 /* Dereference the Object using the Navigational Interface */
 EXEC SQL OBJECT DEREF :vt_ref INTO :vt_typ FOR UPDATE;
 Lob_loc = vt_typ->script;

 /* Opening the LOB is Optional */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 printf("Old length was %d\n", Length);
 trimLength = (unsigned int)(Length / 2);

 /* Trim the LOB to its new length */
 EXEC SQL LOB TRIM :Lob_loc TO :trimLength;

 /* Closing the LOB is mandatory if it has been opened */
 EXEC SQL LOB CLOSE :Lob_loc;

 /* Mark the Object as Modified (Dirty) */
 EXEC SQL OBJECT UPDATE :vt_typ;

 /* Flush the changes to the LOB in the Object Cache */
 EXEC SQL OBJECT FLUSH :vt_typ;

 /* Display the new (modified) length */
 EXEC SQL SELECT Mtab.Voiced_ref.Script INTO :Lob_loc
Internal Persistent LOBs 10-235

Trimming LOB Data
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 2;
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 printf("New length is now %d\n", Length);

 /* Free the Objects and the LOB Locator */
 EXEC SQL FREE :vt_ref;
 EXEC SQL FREE :vt_typ;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 trimLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Trimming LOB Data
’Trimming LOB data
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value

OraDyn.Edit
OraAdPhoto1.Trim 10
OraDyn.Update

Java (JDBC): Trimming LOB Data
// Trimming BLOBs and CLOBs.
// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;
10-236 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming LOB Data
class TrimLob
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 String url = "jdbc:oracle:oci8:@";
 try {
 String url1 = System.getProperty("JDBC_URL");
 if (url1 != null)
 url = url1;
 } catch (Exception e) {
 // If there is any security exception, ignore it
 // and use the default
 }

 // Connect to the database
 Connection conn =
 DriverManager.getConnection (url, "pm", "pm");
 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
 }

 // Create a table containing a BLOB and a CLOB
 stmt.execute ("create table basic_lob_table (x varchar2 (30), b blob, c
clob)");

 // Populate the table
 stmt.execute ("insert into basic_lob_table values (’one’,
’010101010101010101010101010101’, ’onetwothreefour’)");
Internal Persistent LOBs 10-237

Trimming LOB Data
 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Show the original lob length
 System.out.println ("Open the lobs");
 System.out.println ("blob.length()="+blob.length());
 System.out.println ("clob.length()="+clob.length());

 // Trim the lobs
 System.out.println ("Trim the lob to length = 6");
 blob.trim (6);
 clob.trim (6);

 // Show the lob length after trim()
 System.out.println ("Open the lobs");
 System.out.println ("blob.length()="+blob.length());
 System.out.println ("clob.length()="+clob.length());
 }

 // Close the ResultSet
 rset.close ();

 // Close the Statement
 stmt.close ();

 // Close the connection
 conn.close ();
 }
}

Here is the old way of trimming LOB data, using DBMS_LOB.trim :

// Trimming LOB data
// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
10-238 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming LOB Data
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_141
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 CLOB lob_loc = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT pm.ad_finaltext FROM Print_media pm
 WHERE pm.product_id = 2056 AND ad_id = 12001 FOR UPDATE");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getCLOB (1);
 }

 // Open the LOB for READWRITE:
 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READWRITE);
 END;");
 cstmt.setCLOB(1, lob_loc);
Internal Persistent LOBs 10-239

Trimming LOB Data
 cstmt.execute();

 // Trim the LOB to length of 400:
 cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.TRIM(?, 400); END;");
 cstmt.setCLOB(1, lob_loc);
 cstmt.execute();

 // Close the LOB:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setCLOB(1, lob_loc);
 cstmt.execute();

 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-240 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a LOB
Erasing Part of a LOB

Figure 10–31 Use Case Diagram: Erasing Part of a LOB

User/
Program

SELECT
a LOB

ERASE Part
of a LOB

OPEN
a LOB

CLOSE
a LOB

Internal Persistent LOBs : ERASING Part of a LOB
Internal Persistent LOBs 10-241

Erasing Part of a LOB
Purpose
This procedure describes how to erase part of a LOB.

Usage Notes

Locking the Row Prior to Updating Prior to updating a LOB value using the PL/SQL

DBMS_LOB package or OCI, you must lock the row containing the LOB. While

INSERT and UPDATE statements implicitly lock the row, locking is done explicitly

by means of a SELECT FOR UPDATEstatement in SQL and PL/SQL programs, or by

using the OCI pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updating LOBs

Via Updated Locators" on page 5-5 in Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBM_LOB Package): Oracle9i Supplied PL/SQL Packages and Types
Reference Chapter 18, "DBMS_LOB" — ERASE

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobErase.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB ERASE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL and Precompiler Directives" — LOB ERASE

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > erase

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2
10-242 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a LOB
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
The examples demonstrate erasing a portion of the image (ad_photo).

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Erasing Part of a LOB on page 10-243

■ C (OCI): Erasing Part of a LOB on page 10-244

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Erasing Part of a LOB on page 10-245

■ C/C++ (Pro*C/C++): Erasing Part of a LOB on page 10-246

■ Visual Basic (OO4O): Erasing Part of a LOB on page 10-247

■ Java (JDBC): Erasing Part of a LOB on page 10-248

PL/SQL (DBMS_LOB Package): Erasing Part of a LOB
/* Erasing part of a LOB.
 Example procedure eraseLOB_proc is not part of DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE eraseLOB_proc IS
 Lob_loc BLOB;
 Amount INTEGER := 3000;
BEGIN
 /* Select the LOB, get the LOB locator: */
 SELECT ad_photo INTO lob_loc FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001 FOR UPDATE;
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Erase the data: */
 DBMS_LOB.ERASE(Lob_loc, Amount, 2000);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
COMMIT;
/* Exception handling: */
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
Internal Persistent LOBs 10-243

Erasing Part of a LOB
END;

C (OCI): Erasing Part of a LOB
/* Erasing part of a LOB (persistent LOBs)
 Select the locator into a locator variable: */
sb4 select_lock_adphoto_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_photo FROM Print_media
 WHERE product_id=3060 AND ad_id = 11001 FOR UPDATE";
 OCIDefine *defnp1, *defnp2;

 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
);

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}

void eraseLob(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
10-244 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a LOB
 ub4 amount = 3000;
 ub4 offset = 2000;

 OCILobLocator *Lob_Loc;

 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the CLOB: */
 printf(" select and lock an ad_photo LOB\n");
 select_lock_adphoto_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Erase the data starting at the specified Offset: */
 printf(" erase %d bytes from the ad_photo Lob\n", amount);
 checkerr (errhp, OCILobErase (svchp, errhp, Lob_loc, &amount, offset));

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);
 return;
}

COBOL (Pro*COBOL): Erasing Part of a LOB
 * ERASING PART OF A LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ERASE-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 ERASE-BLOB.
Internal Persistent LOBs 10-245

Erasing Part of a LOB
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.
 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_PHOTO INTO :BLOB1
 FROM PRINT_MEDIA PM
 WHERE PM.PRODUCT_ID = 2268 AND AD_ID = 21001 FOR UPDATE
 END-EXEC.

 * Open the BLOB:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.

 * Move some value to AMT and OFFSET:
 MOVE 2 TO AMT.
 MOVE 1 TO OFFSET.
 EXEC SQL
 LOB ERASE :AMT FROM :BLOB1 AT :OFFSET END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Erasing Part of a LOB
/* Erasing part of a LOB */
#include <oci.h>
10-246 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a LOB
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void eraseLob_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = 5;
 int Offset = 5;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_composite INTO :Lob_loc
 FROM Print_media WHERE product_id = 3060 AND ad_id = 11001 FOR
UPDATE;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 /* Erase the data starting at the specified Offset: */
 EXEC SQL LOB ERASE :Amount FROM :Lob_loc AT :Offset;
 printf("Erased %d bytes\n", Amount);
 /* Closing the LOB is mandatory if it has been opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 eraseLob_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Erasing Part of a LOB
’Erasing part of a LOB
Dim MySession As OraSession
Internal Persistent LOBs 10-247

Erasing Part of a LOB
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)

Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Print_media ORDER BY product_
id", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value
’Erase 10 bytes begining from the 100th byte:
OraDyn.Edit
OraAdPhoto1.Erase 10, 100
OraDyn.Update

Java (JDBC): Erasing Part of a LOB
// Erasing part of a LOB
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_145
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
10-248 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a LOB
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BLOB lob_loc = null;
 int eraseAmount = 30;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001 FOR UPDATE");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBLOB (1);
 }

 // Open the LOB for READWRITE:
 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.OPEN(?, "
 +"DBMS_LOB.LOB_READWRITE); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

 // Erase eraseAmount bytes starting at offset 2000:
 cstmt = (OracleCallableStatement)
 conn.prepareCall ("BEGIN DBMS_LOB.ERASE(?, ?, 1); END;");
 cstmt.registerOutParameter (1, OracleTypes.BLOB);
 cstmt.registerOutParameter (2, Types.INTEGER);
 cstmt.setBLOB(1, lob_loc);
 cstmt.setInt(2, eraseAmount);
 cstmt.execute();
 lob_loc = cstmt.getBLOB(1);
 eraseAmount = cstmt.getInt(2);

 // Close the LOB:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.CLOSE(?); END;");
 cstmt.setBLOB(1, lob_loc);
 cstmt.execute();

 conn.commit();
 stmt.close();
Internal Persistent LOBs 10-249

Erasing Part of a LOB
 cstmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

10-250 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Enabling LOB Buffering
Enabling LOB Buffering

Figure 10–32 Use Case Diagram: Enabling LOB Buffering

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

read data
from the LOB

ENABLE
Buffering

write data
to the LOB

DISABLE
buffering

FLUSH
buffer

Internal Persistent LOBs : ENABLING Buffering
Internal Persistent LOBs 10-251

Enabling LOB Buffering
Purpose
This procedure describes how to enable LOB buffering.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-18 in

Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this

use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCIEnableLobBuffering,

OCIDisableLobBuffering, OCIFlushBuffer

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB ENABLE BUFFERING.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL and Precompiler Directives" — LOB ENABLE BUFFERING

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

Note:

■ You must flush the buffer in order to make your modifications

persistent.

■ Do not enable buffering for the stream read and write involved

in checkin and checkout.
10-252 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Enabling LOB Buffering
■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > EnableBuffering

■ Java (JDBC): There is no applicable syntax reference for this use case.

Scenario
This scenario is part of the management of a buffering example related to ad_
photo that is developed in this and related methods.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB): No example is provided with this release.

■ C (OCI): No example is provided with this release.

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Erasing Part of a LOB on page 10-245

■ C/C++ (Pro*C/C++): Erasing Part of a LOB on page 10-246

■ Visual Basic (OO4O): Erasing Part of a LOB on page 10-247

C (OCI): Enabling LOB Buffering

COBOL (Pro*COBOL): Enabling LOB Buffering
 * ENABLING LOB BUFFERING
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 BUFFER PIC X(10).
 01 AMT PIC S9(9) COMP.
 EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

See: This is executed in a similar way to that described in the

example, "Disabling LOB Buffering" on page 10-263.
Internal Persistent LOBs 10-253

Enabling LOB Buffering
 PROCEDURE DIVISION.
 LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT ad_photo INTO :BLOB1
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 3060 AND AD_ID = 11001
 FOR UPDATE END-EXEC.

 * Open the BLOB and enable buffering:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
 EXEC SQL
 LOB ENABLE BUFFERING :BLOB1 END-EXEC.

 * Write some data to the BLOB:
 MOVE "242424" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1 END-EXEC.

 MOVE "212121" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1 END-EXEC.

 * Now flush the buffered writes:
 EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
 EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
10-254 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Enabling LOB Buffering
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Enabling LOB Buffering
/* Enabling LOB buffering
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void enableBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;
 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_composite INTO :Lob_loc
 FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001 FOR UPDATE;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
Internal Persistent LOBs 10-255

Enabling LOB Buffering
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 enableBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Enabling LOB Buffering
’Enabling LOB buffering (persistent LOBs)
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id", ORADYN_DEFAULT)
Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value

’Enable buffering:
OraAdPhoto1.EnableBuffering
10-256 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Flushing the Buffer
Flushing the Buffer

Figure 10–33 Use Case Diagram: Flushing the Buffer

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

read data
from the LOB

ENABLE
buffering

write data
to the LOB

FLUSH
the Buffer

DISABLE
buffering

Internal Persistent LOBs : FLUSHING the Buffer
Internal Persistent LOBs 10-257

Flushing the Buffer
Purpose
This procedure describes how to flush the LOB buffer.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-18 in

Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this

use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCIEnableLobBuffering,

OCIDisableLobBuffering, OCIFlushBuffer.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB FLUSH BUFFER.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB FLUSH BUFFER.

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

Notes:

■ You must flush the buffer in order to make your modifications

persistent.

■ Do not enable buffering for the stream read and write involved

in checkin and checkout.
10-258 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Flushing the Buffer
■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > FlushBuffer.

■ Java (JDBC): There is no applicable syntax reference for this use case.

Scenario
This scenario is part of the management of a buffering example related to ad_
photo that is developed in this and related methods.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): Flushing the Buffer on page 10-259

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Flushing the Buffer on page 10-259

■ C/C++ (Pro*C/C++): Flushing the Buffer on page 10-261

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Flushing the Buffer

COBOL (Pro*COBOL): Flushing the Buffer
 * Flushing the LOB buffer (persistent LOBs)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 BUFFER PIC X(10).

See: Flushing the Buffer in OCI is executed in a similar fashion to

that described in the example, "Disabling LOB Buffering" on

page 10-263.
Internal Persistent LOBs 10-259

Flushing the Buffer
 01 AMT PIC S9(9) COMP.
 EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_PHOTO INTO :BLOB1
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 2056 AND AD_ID = 12001 FOR UPDATE
 END-EXEC.

 * Open the BLOB and enable buffering:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
 EXEC SQL LOB ENABLE BUFFERING :BLOB1 END-EXEC.

 * Write some data to the BLOB:
 MOVE "242424" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 MOVE "212121" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL
 LOB WRITE :AMT FROM :BUFFER INTO :BLOB1
 END-EXEC.

 * Now flush the buffered writes:
 EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
 EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
10-260 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Flushing the Buffer
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Flushing the Buffer
/* Flushing the LOB Buffer (persistent LOBs)
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void flushBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;

 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
Internal Persistent LOBs 10-261

Flushing the Buffer
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 flushBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Flushing the Buffer

Note: A Visual Basic (OO4O) example will be made available in a

subsequent release.
10-262 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering
Disabling LOB Buffering

Figure 10–34 Use Case Diagram: Disabling LOB Buffering

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

read data
from the LOB

write data
to the LOB

DISABLE
Buffering

enable
buffering

flush
buffer

Internal Persistent LOBs : DISABLING Buffering
Internal Persistent LOBs 10-263

Disabling LOB Buffering
Purpose
This procedure describes how to disable LOB buffering.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-18 in

Chapter 5, "Large Objects: Advanced Topics".

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this

use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCIEnableLobBuffering,

OCIDisableLobBuffering, OCIFlushBuffer

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB DISABLE BUFFER.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DISABLE BUFFER

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

Note:

■ You must flush the buffer in order to make your modifications

persistent.

■ Do not enable buffering for the stream read and write involved

in checkin and checkout.
10-264 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering
■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > Orablob >

METHODS > DisableBuffering

■ Java (JDBC): There is no applicable syntax reference for this use case.

Scenario
This scenario is part of the management of a buffering example related to ad_
photo that is developed in this and related methods.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): Disabling LOB Buffering on page 10-265

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Disabling LOB Buffering on page 10-267

■ C/C++ (Pro*C/C++): Disabling LOB Buffering on page 10-269

■ Visual Basic (OO4O): Disabling LOB Buffering on page 10-270

■ Java (JDBC): No example is provided with this release.

C (OCI): Disabling LOB Buffering
/* Disabling LOB buffering (persistent LOBs) */
/* Select the locator into a locator variable: */
sb4 select_lock_adphoto_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_photo FROM Print_media
 WHERE product_id=3060 FOR UPDATE";
 OCIDefine *defnp1;
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
Internal Persistent LOBs 10-265

Disabling LOB Buffering
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}
#define MAXBUFLEN 32767
void lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the locator desriptor: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" select an ad_photo Lob\n");
 select_lock_adphoto_locator(Lob_loc, errhp, svchp, stmthp);

 /* Open the BLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, Lob_loc, OCI_LOB_READWRITE)));

 /* Enable LOB Buffering: */
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, Lob_loc));

 printf (" write data to LOB\n");

 /* Write data into the LOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);
 offset = 1;
10-266 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering
 checkerr (errhp, OCILobWrite (svchp, errhp, Lob_loc, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, Lob_loc,
 (ub4)OCI_LOB_BUFFER_FREE));

 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, Lob_loc));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem: */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, Lob_loc));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_LOB);

 return;

}

COBOL (Pro*COBOL): Disabling LOB Buffering
 * DISABLING LOB BUFFERING (PERSISTENT LOBS)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 BUFFER PIC X(10).
 01 AMT PIC S9(9) COMP.
 EXEC SQL VAR BUFFER IS RAW(10) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
Internal Persistent LOBs 10-267

Disabling LOB Buffering
 LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT SOUND INTO :BLOB1
 FROM MULTIMEDIA_TAB
 WHERE CLIP_ID = 1 FOR UPDATE
 END-EXEC.

 * Open the BLOB and enable buffering:
 EXEC SQL LOB OPEN :BLOB1 READ WRITE END-EXEC.
 EXEC SQL
 LOB ENABLE BUFFERING :BLOB1
 END-EXEC.

 * Write some data to the BLOB:
 MOVE "242424" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL LOB WRITE :AMT FROM :BUFFER INTO :BLOB1 END-EXEC.

 MOVE "212121" TO BUFFER.
 MOVE 3 TO AMT.
 EXEC SQL LOB WRITE :AMT FROM :BUFFER INTO :BLOB1 END-EXEC.

 * Now flush the buffered writes:
 EXEC SQL LOB FLUSH BUFFER :BLOB1 END-EXEC.
 EXEC SQL LOB DISABLE BUFFERING :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
10-268 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Disabling LOB Buffering
/* Disabling LOB buffering (persistent LOBs) */
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void disableBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;
 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_photo INTO :Lob_loc
 FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001 FOR UPDATE;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 7; multiple++)
Internal Persistent LOBs 10-269

Disabling LOB Buffering
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Write APPEND can only be done when Buffering is Disabled: */
 EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 disableBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Disabling LOB Buffering
’Disabling LOB buffering (persistent LOBs)
Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdPhoto1 As OraBlob, OraAdPhotoClone As OraBlob

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("exampledb", "samp/samp", 0&)
Set OraDyn = OraDb.CreateDynaset(
 "SELECT * FROM Print_media ORDER BY product_id, ad_id", ORADYN_DEFAULT)

Set OraAdPhoto1 = OraDyn.Fields("ad_photo").Value
’Disable buffering:
OraAdPhoto1.DisableBuffering
10-270 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

Figure 10–35 Use Case Diagram: Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

User/
Program

EMPTY
_CLOB() or

_BLOB()

UPDATE using Empty_CLOB() or Empty BLOB()
UPDATE

the Row or
Entire LOB

Data

: Internal Persistent
LOBs

UPDATING the Row
or Entire LOB Data
Internal Persistent LOBs 10-271

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
For Binds of More Than 4,000 Bytes
For information on how to UPDATE a LOB when binds of more than 4,000 bytes are

involved, see the following sections in Chapter 7, "Modeling and Design":

■ Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and

UPDATEs on page 7-14

■ Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion

on page 7-15

■ Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and

UPDATE on page 7-16

■ Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

on page 7-18

■ Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes

on page 7-18

■ Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE

on page 7-19

Purpose
This procedure describes how to UPDATE a LOB with EMPTY_CLOB() or EMPTY_

BLOB().

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ Updating a Row by Selecting a LOB From Another Table on

page 10-276

■ Updating by Initializing a LOB Locator Bind Variable on

page 10-278

Note: Performance improves when you update the LOB with the

actual value, instead of using EMPTY_CLOB() or EMPTY_BLOB().
10-272 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
Usage Notes

Making a LOB Column Non-Null Before you write data to an internal LOB, make the LOB
column non-null; that is, the LOB column must contain a locator that points to an

empty or populated LOB value. You can initialize a BLOB column’s value by using

the function EMPTY_BLOB() as a default predicate. Similarly, a CLOB or NCLOB
column’s value can be initialized by using the function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4,000

bytes in size. For example:

UPDATE Print_media
 SET ad_sourcetext = ’This is a One Line Story’
 WHERE product_id = 2268;

You can perform this initialization during CREATE TABLE(see "Creating a Table

Containing One or More LOB Columns") or, as in this case, by means of an INSERT.

Syntax
Use the following syntax reference:

■ SQL: Oracle9i SQL Reference Chapter 7, "SQL Statements" — UPDATE

Scenario
The following example shows a series of updates using the EMPTY_CLOB operation to

different data types.

Examples
The example is provided in SQL and applies to all the programmatic environments:

■ SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

UPDATE Print_media SET ad_sourcetext = EMPTY_CLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

UPDATE Print_media SET ad_fltextn = EMPTY_CLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

UPDATE Print_media SET ad_photo = EMPTY_BLOB()
 WHERE product_id = 3060 AND ad_id = 11001;
Internal Persistent LOBs 10-273

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
10-274 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a Row by Selecting a LOB From Another Table
Updating a Row by Selecting a LOB From Another Table

Figure 10–36 Use Case Diagram: Updating a Row by Selecting a LOB from Another Table

Purpose
This procedure describes how to use UPDATE as SELECT with LOBs.

Usage Notes
Not applicable.

Syntax
Use the following syntax reference:

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() on

page 10-273

■ Updating by Initializing a LOB Locator Bind Variable on

page 10-278

User/
Program

SELECT
a LOB

UPDATE as SELECT
UPDATE

the Row or
Entire LOB

Data

Internal Persistent LOBs : UPDATING the Row or Entire LOB Data
Internal Persistent LOBs 10-275

Updating a Row by Selecting a LOB From Another Table
■ SQL: Oracle9i SQL Reference , Chapter 7, "SQL Statements" — UPDATE

Scenario
This example updates data from online_media by means of a reference:

Examples
The SQL example provided applies to all programmatic environments:

■ SQL: Update a Row by Selecting a LOB From Another Table

SQL: Update a Row by Selecting a LOB From Another Table
Rem Updating a row by selecting a LOB from another table (persistent LOBs)

UPDATE Print_media SET ad_sourcetext =
 (SELECT * product_text FROM online_media WHERE product_id = 3060);
 WHERE product_id = 3060 AND ad_id = 11001;
10-276 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating by Initializing a LOB Locator Bind Variable
Updating by Initializing a LOB Locator Bind Variable

Figure 10–37 Use Case Diagram: Updating by Initializing a LOB Locator Bind Variable

Purpose
This procedure describes how to UPDATE by initializing a LOB locator bind

variable.

Usage Notes
Not applicable.

See Also:

■ Table 10–1, "Internal Persistent LOB Basic Operations" on

page 10-2

■ Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() on

page 10-273

■ Updating a Row by Selecting a LOB From Another Table on

page 10-276

User/
Program

UPDATE by initializing LOB
locator bind variable

UPDATE
the row / entire

LOB data

Internal Persistent LOBs : UPDATING the Row or Entire LOB Data
Internal Persistent LOBs 10-277

Updating by Initializing a LOB Locator Bind Variable
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL: Oracle9i SQL Reference , Chapter 7, "SQL Statements" — UPDATE

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions.

■ C++ (OCCI): Oracle C++ Call Interface Programmer’s Guide

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — ALLOCATE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — ALLOCATE.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS >

Oradatabase > METHODS > ExecuteSQL

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
These examples update ad_photo data by means of a locator bind variable.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL: Updating by Initializing a LOB Locator Bind Variable on page 10-278

■ C (OCI): Updating by Initializing a LOB Locator Bind Variable on page 10-279

■ C++ (OCCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Updating by Initializing a LOB Locator Bind Variable

on page 10-281

■ C/C++ (Pro*C/C++): Updating by Initializing a LOB Locator Bind Variable on

page 10-282
10-278 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating by Initializing a LOB Locator Bind Variable
■ Visual Basic (OO4O): Updating by Initializing a LOB Locator Bind Variable on

page 10-283

■ Java (JDBC): Updating by Initializing a LOB Locator Bind Variable on

page 10-284

PL/SQL: Updating by Initializing a LOB Locator Bind Variable
/* Updating a LOB by initializing a LOB locator bind variable */
/* Example procedure updateUseBindVariable_proc is not part of
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (Lob_loc BLOB) IS
BEGIN
 UPDATE Print_media SET ad_photo = lob_loc
 WHERE product_id = 3060 AND ad_id = 11001;
END;

DECLARE
 Lob_loc BLOB;
BEGIN
 /* Select the LOB: */
 SELECT ad_photo INTO Lob_loc
 FROM Print_media
 WHERE product-id = 3060 AND ad_id = 11001;
 updateUseBindVariable_proc (Lob_loc);
 COMMIT;
END;

C (OCI): Updating by Initializing a LOB Locator Bind Variable
/* Updating a LOB by initializing a LOB locator bind variable (persistent LOBs)
*/
/* Select the locator into a locator variable: */
sb4 select_adphoto_locator(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *sqlstmt =
 (text *)"SELECT ad_photo FROM Print_media
 WHERE product_id=2268";
 OCIDefine *defnp1;
Internal Persistent LOBs 10-279

Updating by Initializing a LOB Locator Bind Variable
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 checkerr (errhp, OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *)&Lob_loc, (sb4)0,
 (ub2) SQLT_BLOB,(dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT));
 /* Execute the select and fetch one row: */
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 return 0;
}

/* Update the LOB in the selected row in the table: */
void updateLobUsingBind (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 text *updstmt =
 (text *) "UPDATE Print_media SET ad_photo = :1 WHERE product_id = 3106";
 OCILobLocator *Lob_loc;
 OCIBind *bndhp1;

 /* Allocate locator resources: */
 (void) OCIDescriptorAlloc((dvoid *)envhp, (dvoid **)&Lob_loc,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid **)0);

 /* Select the locator: */
 printf(" select an ad_photo locator\n");
 (void)select_adphoto_locator(Lob_loc, errhp, svchp, stmthp);

 /* Prepare the SQL statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, updstmt, (ub4)
 strlen((char *) updstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Binds the bind positions: */
 printf(" bind locator to bind position\n");

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1,
 (dvoid *) &Lob_loc, (sb4)0, SQLT_BLOB,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
10-280 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating by Initializing a LOB Locator Bind Variable
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement: */
 printf ("update LOB column in another row using this locator\n");
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 return;
}

COBOL (Pro*COBOL): Updating by Initializing a LOB Locator Bind Variable
 * Updating a LOB by initializing a LOB locator bind variable
 * [Example script: 3806.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. UPDATE-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 NEW-LEN PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP.

 * Define the source and destination position and location:
 01 SRC-POS PIC S9(9) COMP.
 01 DEST-POS PIC S9(9) COMP.
 01 SRC-LOC PIC S9(9) COMP.
 01 DEST-LOC PIC S9(9) COMP.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 UPDATE-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
Internal Persistent LOBs 10-281

Updating by Initializing a LOB Locator Bind Variable
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_PHOTO INTO :BLOB1
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 2056 AND AD_ID = 12001
 END-EXEC.

 EXEC SQL
 UPDATE PRINT_MEDIA
 SET AD_PHOTO = :BLOB1
 WHERE PRODUCT_ID = 2268 AND AD_ID = 21001
 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Updating by Initializing a LOB Locator Bind Variable
/* Updating a LOB by initializing a LOB locator bind variable (persistent
LOBs)*/
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

10-282 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating by Initializing a LOB Locator Bind Variable
void updateUseBindVariable_proc(Lob_loc)
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL UPDATE Print_media SET ad_photo = :Lob_loc WHERE product_id = 2268;
}

void updateLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_photo INTO :Lob_loc
 FROM Print_media WHERE product_id = 3060;
 updateUseBindVariable_proc(Lob_loc);
 EXEC SQL FREE :Lob_loc;
 EXEC SQL COMMIT WORK;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 updateLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Updating by Initializing a LOB Locator Bind Variable
’Updating a LOB by initializing a LOB locator bind variable (persistent LOBs)
Dim OraDyn As OraDynaset, OraAdPhoto as OraBlob

’Select a column with product_id = 3106:
Set OraDyn = OraDb.CreateDynaset("SELECT * FROM Print_media WHERE
 product_id= 3106", ORADYN_DEFAULT)

’Get the OraBlob object from the field:
Set OraAdPhoto = OraDyn.Fields("AD_PHOTO").Value

’Create a parameter for OraBlob object:
OraDb.Parameters.Add "AD_PHOTO",Null,ORAPARM_INPUT,ORATYPE_BLOB

’Set the value of ad_photo parameter to OraAdPhoto:
OraDb.Parameters("AD_PHOTO").Value = OraAdPhoto
Internal Persistent LOBs 10-283

Updating by Initializing a LOB Locator Bind Variable
’Update table Print_media with OraAdPhoto for product_id = 2268:
OraDb.ExecuteSQL("Update Print_media SET ad_photo = :AD_PHOTO
 WHERE product_id = 2268")

Java (JDBC): Updating by Initializing a LOB Locator Bind Variable
// Updating a LOB by initializing a LOB locator bind variable (persistent LOBs)
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex2_163
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 // retrieve the LOB locator from the ResultSet:
 BLOB photo_blob = ((OracleResultSet)rset).getBLOB (1);
10-284 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating by Initializing a LOB Locator Bind Variable
 OraclePreparedStatement ops =
 (OraclePreparedStatement) conn.prepareStatement(
 "UPDATE Print_media SET ad_photo = ?
 WHERE product_id = 2056 AND ad_id = 12001");
 ops.setBlob(1, photo_blob);
 ops.execute();
 rset.close();
 stmt.close();
 conn.commit();
 conn.close();
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Internal Persistent LOBs 10-285

Deleting the Row of a Table Containing a LOB
Deleting the Row of a Table Containing a LOB

Figure 10–38 Use Case Diagram: Deleting the Row of a Table Containing a LOB

Purpose
This procedure describes how to delete the row of a table containing a LOB.

Usage Notes
To delete a row that contains an internal LOB column or attribute use one of the

following commands

■ SQL DML: DELETE

■ SQL DDL that effectively deletes it:

■ DROP TABLE

See Also: Table 10–1, "Internal Persistent LOB Basic Operations"

on page 10-2

User/
Program

DELETE
the Row

Internal Persistent LOBs : DELETING the Row
10-286 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Deleting the Row of a Table Containing a LOB
■ TRUNCATE TABLE

■ DROP TABLESPACE.

In either case you delete the LOB locator and the LOB value as well.

Distinct LOB Locators for Distinct Rows Of course, two distinct rows of a table with a

LOB column have their own distinct LOB locators and distinct copies of the LOB
values irrespective of whether the LOB values are the same or different. This means

that deleting one row has no effect on the data or LOBlocator in another row even if

one LOB was originally copied from another row.

Syntax
Use the following syntax reference:

■ SQL: Oracle9i SQL Reference , Chapter 7, "SQL Statements" — DELETE, DROP

TABLE, TRUNCATE TABLE

Scenario
In the following example, all data associated with the product having product_id
= 3060 AND ad_id 11001 is deleted.

Examples
The SQL example provide applies to all programmatic environments:

■ SQL: Delete a LOB on page 10-287

SQL: Delete a LOB
DELETE FROM Print_media WHERE product_id = 3060 AND ad_id = 11001;
TRUNCATE TABLE Print_media;
DROP TABLE Print_media;

Note: Due to the consistent read mechanism, the old LOB value

remains accessible with the value that it had at the time of

execution of the statement (such as SELECT) that returned the LOB
locator. This is an advanced topic. It is discussed in more detail

with regard to "Read Consistent Locators" on page 5-1.
Internal Persistent LOBs 10-287

Deleting the Row of a Table Containing a LOB
10-288 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Temporar
11

Temporary LOBs

Use Case Model
In this chapter we discuss each operation on a Temporary LOB (such as "Loading a

Temporary LOB with Data from a BFILE") in terms of a use case. Table 11–1, "Use

Case Model Overview: Internal Temporary LOBs" lists all the use cases.

Individual Use Cases
Each Internal Persistent LOB use case is described as follows:

■ Use case figure. Depicts the use case. For help in understanding the use case

diagrams, see Appendix A, "Unified Modeling Language Diagrams".

■ Purpose. The purpose of this use case with regards to LOBs.

■ Usage Notes. Guidelines to assist your implementation of the LOB operation.

■ Syntax. Pointers to the syntax in different programmatic environments that

underlies the LOBs related activity for the use case.

■ Scenario. Describes the implementation of the use case in terms of the sample

schema used in the examples. For further details on sample schemas, refer to

Oracle9i Sample Schemas.

■ Examples. How to apply each use case based on the sample schema used.

Use Case Model: Internal Temporary LOBs
Table 11–1, "Use Case Model Overview: Internal Temporary LOBs" indicates with +
where examples are provided for specific use cases and in which programmatic

environment (see Chapter 3, "LOB Support in Different Programmatic

Environments" for a complete discussion and references to related manuals).

We refer to programmatic environments by means of the following abbreviations:
y LOBs 11-1

Use Case Model: Internal Temporary LOBs
■ P — PL/SQL using the DBMS_LOB Package

■ O — C using OCI (Oracle Call Interface)

■ B — COBOL using Pro*COBOL precompiler

■ C — C/C++ using Pro*C/C++ precompiler

■ V — Visual Basic using OO4O (Oracle Objects for OLE)

■ J — Java using JDBC (Java Database Connectivity)

■ S — SQL

Table 11–1 Use Case Model Overview: Internal Temporary LOBs

Use Case and Page P O B C V * J

Appending One Temporary LOB to Another on page 11-150 + + + + - -

Checking If a LOB is Temporary on page 11-23 + + + + - +

Comparing All or Part of Two Temporary LOBs on page 11-92 + - + + - -

Copying a LOB Locator for a Temporary LOB on page 11-125 + + + + - -

Copying All or Part of One Temporary LOB to Another on page 11-115 + + + + - -

Creating a Temporary LOB on page 11-13 + + + + - +

Determining if a LOB Locator for a Temporary LOB Is Initialized on
page 11-140

- + - + - -

Determining If a Pattern Exists in a Temporary LOB (instr) on page 11-99 + - + + - -

Loading a Temporary LOB with Data from a BFILE on page 11-39 + + + + - -

Loading a Temporary BLOB with Binary Data from a BFILE on page 11-48 + - - - - -

Loading a Temporary CLOB/NCLOB with Character Data from a File on
page 11-52

+ - - - - -

Disabling LOB Buffering for a Temporary LOB on page 11-211 - + + + - -

Displaying Temporary LOB Data on page 11-64 + + + + - -

Enabling LOB Buffering for a Temporary LOB on page 11-197 - + + + - -

Erasing Part of a Temporary LOB on page 11-188 + + + + - -

Finding Character Set Form of a Temporary LOB on page 11-147 - + - - - -

Finding Character Set ID of a Temporary LOB on page 11-144 - + - - - -
11-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs
* There are no Visual Basic examples provided for internal temporary LOB use cases.

Finding the Length of a Temporary LOB on page 11-106 + + + + - -

Flushing Buffer for a Temporary LOB on page 11-204 - + + + - -

Freeing a Temporary LOB on page 11-31 + + + + - +

Is One Temporary LOB Locator Equal to Another on page 11-135 - + - + - -

Loading a Temporary LOB with Data from a BFILE on page 11-39 + + + + - -

Loading a Temporary BLOB with Binary Data from a BFILE on page 11-48 + - - - - -

Loading a Temporary CLOB/NCLOB with Character Data from a File on
page 11-52

+ - - - - -

Reading Data from a Temporary LOB on page 11-74 + + + + - -

Reading Portion of Temporary LOB (Substr) on page 11-85 + - + + - -

Trimming Temporary LOB Data on page 11-179 + + + + - -

Write-Appending to a Temporary LOB on page 11-160 + + + + - -

Writing Data to a Temporary LOB on page 11-168 + + + + - -

Table 11–1 Use Case Model Overview: Internal Temporary LOBs (Cont.)

Use Case and Page P O B C V * J
Temporary LOBs 11-3

Programmatic Environments
Programmatic Environments
Oracle9i supports the definition, creation, deletion, access, and update of temporary

LOBs in the following programmatic environments or "interfaces":

■ PL/SQL, using the DBMS_LOB package

■ C/C++, using PRO*C precompiler

■ COBOL, using Pro*COBOL precompiler

■ C, using OCI

■ Java, using JDBC

Locators
The ’interfaces’ listed earlier, operate on temporary LOBs through locators in the

same way that they do for permanent LOBs. Since temporary LOBs are never part of

any table, you cannot use SQL DML to operate on them. You must manipulate them

using the DBMS_LOB package, OCI, or the other programmatic interfaces.

Temporary LOB Locators Can be IN Values
SQL support for temporary LOBs is available in that temporary LOB locators can be

used as IN values, with values accessed through a locator. Specifically, they can be

used as follows:

■ As a value in a WHERE clause for INSERT, UPDATE, DELETE, or SELECT. For
example :

SELECT pattern FROM composite_image WHERE temp_lob_pattern_id =
somepattern_match_function(lobvalue);

■ As a variable in a SELECT INTO... statement. For example:

SELECT PermanentLob INTO TemporaryLob_loc FROM Demo_tab WHERE Column1 := 1;

Note: Selecting a permanent LOB into a LOB locator that points to

a temporary LOB will cause the locator to point to a permanent

LOB. It does not cause a copy of the permanent LOB to be put in the

temporary LOB.
11-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments
Can You Use the Same Functions for Temporary and Internal Persistent LOBs?
You can use the following functions for internal persistent LOBs and temporary

LOBs:

■ DBMS_LOB package PL/SQL procedures (COMPARE, INSTR, SUBSTR)

■ DBMS_LOB package PL/SQL procedures and corresponding OCI functions

(Append , Copy, Erase , Getlength , Loadfromfile , Read, Trim , Write,
WriteAppend).

■ OCI functions (OCILobLocatorAssign , OCILobLocatorIsInit , and so
on).

In addition, you can use the ISTEMPORARY function to determine if a LOB is

temporarily based on its locator.

DBMS_LOB.createtemporary() Parameter is a Hint
The DBMS_LOB.createtemporary() call takes a duration parameter. This

parameter is merely a hint and is not strictly enforced.

Temporary LOB Data is Stored in Temporary Tablespace
Temporary LOBs are not stored permanently in the database like other data. The

data is stored in temporary tablespaces and is not stored in any tables. This means

you can CREATE an internal temporary LOB (BLOB,CLOB, NCLOB) on the server

independent of any table, but you cannot store that LOB.

Since temporary LOBs are not associated with table schema, there is no meaning to

the terms "inline" and "out-of-line" for temporary LOBs.

Lifetime and Duration of Temporary LOBs
The default lifetime of a temporary LOB is a session.

Note: One thing to keep in mind is that temporary LOBs do not

support transactions and consistent reads.

Note: All temporary LOBs reside on the server. There is no support

for client-side temporary LOBs.
Temporary LOBs 11-5

Programmatic Environments
The interface for creating temporary LOBs includes a parameter that lets you specify

the default scope of the life of the temporary LOB. By default, all temporary LOBs

are deleted at the end of the session in which they were created. If a process dies

unexpectedly or the database instance terminates, all temporary LOBs are deleted.

OCI Can Group Temporary LOBs into Logical Buckets
OCI users can group temporary LOBs together into a logical bucket.

"OCIDuration" represents a store for temporary LOBs. There is a default duration

for every session into which temporary LOBs are placed if you do not specify a

specific duration. The default duration ends when your session ends. Also, you can

perform an OCIDurationEnd operation that frees all OCIDuration contents.

Memory Handling

LOB Buffering and CACHE, NOCACHE, CACHE READS
Temporary LOBs are especially useful when you want to perform transformational

operations on a LOB — such as morphing an image, or changing a LOB from one

format to another — and then return it to the database.

These transformational operations can use LOB Buffering. You can specify

CACHE,NOCACHE,or CACHE READSfor each temporary LOB, and FREE an

individual temporary LOB when you have no further need for it.

Temporary Tablespace
Your temporary tablespace is used to store temporary LOB data. Data storage

resources are controlled by the DBA through control of a user’s access to temporary

tablespaces, and by the creation of different temporary tablespaces.

Explicitly Free Temporary LOB Space to Reuse It
Memory usage increases incrementally as the number of temporary LOBs grows.

You can reuse temporary LOB space in your session by freeing temporary LOBs

explicitly.

■ When the Session Finishes: Explicitly freeing one or more temporary LOBs does

not result in all of the space being returned to the temporary tablespace for

general re-consumption. Instead, it remains available for reuse in the session.

■ When the Session Dies: If a process dies unexpectedly or the database crashes, the

space for temporary LOBs is freed along with the deletion of the temporary
11-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Features Specific to Temporary LOBs
LOBs. In all cases, when a user’s session ends, space is returned to the

temporary tablespace for general reuse.

Selecting a Permanent LOB INTO a Temporary LOB Locator
We previously noted that if you perform the following:

SELECT permanent_lob INTO temporary_lob_locator FROM y_blah WHERE x_blah

the temporary_lob_locator will get overwritten with the locator for the

permanent_lob . The temporary_lob_locator now points to the LOB stored in the

table.

Since CR and rollbacks are not supported for temporary LOBs, you will have to free

the temporary LOB and start over again if you run into an error.

Locators and Semantics
Creation of a temporary LOB instance by a user causes the engine to create, and

return a locator to LOB data. Temporary LOBs do not support any operations that

are not supported for persistent LOB locators, but temporary LOB locators have

specific features.

Features Specific to Temporary LOBs
The following features are specific to temporary LOBs:

■ Temporary LOB Locator is Overwritten by Permanent LOB Locator

For example, when you perform the following query:

Note: Unless you saved the locator for the temporary_lob in

another variable, you will lose track of the LOB that temporary_
lob_locator originally pointed to before the SELECT INTO
operation.

In this case the temporary LOBwill not get implicitly freed. If you do

not wish to waste space, explicitly free a temporary LOB before

overwriting it with a permanent LOB locator.

See Also: Chapter 7, "Modeling and Design", "LOB Storage" on

page 7-4 and Chapter 9, "LOBS: Best Practices".
Temporary LOBs 11-7

Features Specific to Temporary LOBs
SELECT permanent_lob INTO temporary_lob_locator FROM y_blah
 WHERE x_blah = a_number;

temporary_lob_locator is overwritten by the permanent_lob ’s locator.

This means that unless you have a copy of temporary_lob ’s locator that

points to the temporary LOB that was overwritten, you no longer have a locator

with which to access the temporary LOB.

■ Assigning Multiple Locators to Same Temporary LOB Impacts Performance

Temporary LOBs adhere to value semantics in order to be consistent with

permanent LOBs and to conform to the ANSI standard for LOBs. Since CR,

undo, and versions are not generated for temporary LOBs, there may be an

impact on performance if you assign multiple locators to the same temporary

LOB. This is because semantically each locator will have its own copy of the

temporary LOB. Each time you use OCILobLocatorAssign , or the equivalent

assignment in PL/SQL, the database makes a copy of the temporary LOB
(although it may be done lazily for performance reasons) .

Each locator points to its own LOB value. If one locator is used to create a

temporary LOB, and another LOB locator is assigned to that temporary LOB
using OCILobLocatorAssign , the database copies the original temporary

LOB and cause the second locator to point to the copy, not the original

temporary LOB.

■ Avoid Using More than One Locator For Each Temporary LOB

In order for multiple users to modify the same LOB, they must go through

the same locator. Although temporary LOBs use value semantics, you can

apply pseudo-reference semantics by using pointers to locators in OCI, and

having multiple pointers to locators point to the same temporary LOB

locator if necessary. In PL/SQL, you can have the same effect by passing the

temporary LOB locator "by reference" between modules. This will help

avoid using more than one locator for each temporary LOB, and prevent

these modules from making local copies of the temporary LOB.

Here are two examples of situations where a user will incur a copy, or at

least an extra round trip to the server:

* Assigning one temporary LOB to another

DECLARE
 Va BLOB;
 Vb BLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Vb,TRUE);
11-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Features Specific to Temporary LOBs
 DBMS_LOB.CREATETEMPORARY(Va,TRUE);
 Va := Vb;
END;

This causes Oracle to create a copy of Vb and point the locator Va to it.

This also frees the temporary LOB that Va used to point to.

* Assigning one collection to another collection

If a temporary LOB is an element in a collection and you assign one col-

lection to another, you will incur copy overhead and free overhead for

the temporary LOB locators that are updated. This is also true for the

case where you assign an object type containing a temporary LOB as an

attribute to another such object type, and they have temporary LOB
locators that get assigned to each other because the object types have

LOB attributes that are pointing to temporary LOB locators.

If your application involves several such assignments and copy opera-

tions of collections or complex objects, and you seek to avoid the over-

head mentioned earlier, then persistent internal LOBs may be more

suitable for such applications. More precisely:

* Do not use temporary LOBs inside collections or complex objects

when you are doing assignments or copies of those collections or com-

plex objects.

* Do not select LOB values into temporary LOB locators.

■ Freeing Temporary LOBs in User-Defined Durations. Reassigning Locators
Incurs Overhead

■ OCI: You will incur overhead if you have a temporary LOB in a duration,

you call OCIDurationEnd on that duration, and then reassign the locator

for that temporary LOB to another LOB.

Irrespective of whether there was a previous OCIDurationEnd call, Oracle

attempts to free the temporary LOB to which the locator pointed. If you try

to access the temporary LOB with that locator you will incur an error. Once

you issue OCIDurationEnd, all temporary LOBs in that duration are freed

See Also:

■ Oracle9i Database Concepts

■ Oracle9i Application Developer’s Guide - Fundamentals
Temporary LOBs 11-9

Features Specific to Temporary LOBs
regardless of the fact that locators may still exist that used to refer to the

now freed LOBs.

User-defined OCIDurations can be created using the

OCIDurationBegin call when the database is using the object option.

The user can end the OCIDuration with a call to OCIDurationEnd . Any

temporary LOBs that existed in the duration will be freed.

■ PL/SQL: In PL/SQL, user-defined durations are not exposed. However,

users may specify either session scope or call scopes using the predefined

duration parameters DBMS_LOB.SESSION or DBMS_LOB.CALL

Security Issues with Temporary LOBs
Security is provided through the LOB locator.

■ Only the user who created the temporary LOB can access it.

■ Locators are not designed to be passed from one user’s session to another. If

you did manage to pass a locator from one session to another:

■ You would not be able to access temporary LOBs in the new session from the

original session.

■ You would not be able to access a temporary LOB in the original session

from the new (current) session to which the locator was migrated.

■ Temporary LOBlookup is localized to each user’s own session. Someone using a

locator from another session would only be able to access LOBs within his own

session that had the same lobid . Users of your application should not try to do

this, but if they do, they will still not be able to affect anyone else’s data.

NOCOPY Restrictions
See PL/SQL User’s Guide and Reference, Chapter 7: "SUBPROGRAMS" — NOCOPY

COMPILER HINT, for guidelines, restrictions, and tips on using NOCOPY.

Managing Temporary LOBs
Oracle keeps track of temporary LOBs in each session, and provides a v$ view called

v$temporary_lobs . From the session the application can determine that user

owns the temporary LOBs. This view can be used by DBAs to monitor and guide

any emergency cleanup of temporary space used by temporary LOBs.
11-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Features Specific to Temporary LOBs
Using JDBC and Temporary LOBs
Oracle9i JDBC drivers contain APIs to create and close temporary LOBs. These APIs

should replace the previous workaround of using dbms_
lob.createTemporary() , dbms_lob.isTemporary() and dbms_
lob.freeTemporary() in dbms_lob PL/SQL package.

Using JDBC and Temporary BLOBs
The oracle.sql.BLOB class is the Oracle JDBC driver's implementation of

standard JDBC java.sql.Blob interface. Each oracle.sql.BLOB instance

represents a BLOB object in the database. Table 11–2 lists new Oracle extension APIs

in oracle.sql.BLOB to access temporary BLOBs.

Using JDBC and Temporary CLOBs
The oracle.sql.CLOB class is the Oracle JDBC driver's implementation of

standard JDBC java.sql.Clob interface. Table 11–3 lists the new Oracle extension

APIs in oracle.sql.CLOB for accessing temporary CLOBs.

Table 11–2 JDBC: Temporary BLOB APIs

Methods Description

public static BLOB createTemporary(
Connection conn, boolean cache,
int duration) throws SQLException

Creates a temporary BLOB. See

public static boolean isTemporary(
BLOB blob) throws SQLException

Checks if the specified BLOB locator refers to a
temporary BLOB

public boolean isTemporary()
throws SQLException

Checks if the current BLOB locator refers to a
temporary BLOB

public static void freeTemporary(
BLOB temp_blob) throws SQLException

Frees the specified temporary BLOB

public void freeTemporary()
throws SQLException

Frees the temporary BLOB
Temporary LOBs 11-11

Features Specific to Temporary LOBs
Table 11–3 JDBC: Temporary CLOB APIs

Methods Description

public static CLOB createTemporary(
Connection conn, boolean cache,
int duration)

throws SQLException

Creates a temporary CLOB

public static boolean isTemporary(
CLOB clob) throws SQLException

Checks if the specified CLOB locator refers to a temporary
CLOB

public boolean isTemporary()
throws SQLException

Checks if the current CLOB locator refers to a temporary
CLOB

public static void freeTemporary(
CLOB temp_clob)

throws SQLException

Frees the specified temporary CLOB

public void freeTemporary()
throws SQLException

Frees the temporary CLOB
11-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Temporary LOB
Creating a Temporary LOB

Figure 11–1 Use Case Diagram: Creating a Temporary LOB

Purpose
This procedure describes how to create a temporary LOB.

Usage Notes
A temporary LOB is empty when it is created.

Temporary LOBs do not support the EMPTY_BLOB() or EMPTY_CLOB() functions

that are supported for permanent LOBs. The EMPTY_BLOB() function specifies the

fact that the LOB is initialized, but not populated with any data.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

CREATE
a Temporary

LOB

free
a temporary

LOB

Internal Temporary LOBs : CREATING a Temporary LOB
Temporary LOBs 11-13

Creating a Temporary LOB
■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — CREATETEMPORARY, FREETEMPORARY.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobCreateTemporary

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB DESCRIBE, LOB COPY.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE, LOB COPY

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
These examples create a temporary LOB and copy the object contents from an ad_

composite image from the Print_media table to the temporary LOB. This technique

is useful, for example, if you need to convert the image from one graphic format to

another. The temporary LOB is read through the CACHE, and is automatically

cleaned up at the end of the user’s session, if it is not explicitly freed sooner.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Creating a Temporary LOB on page 11-15

■ C (OCI): Creating a Temporary LOB on page 11-16

■ COBOL (Pro*COBOL): Creating a Temporary LOB on page 11-18

■ C/C++ (Pro*C/C++): Creating a Temporary LOB on page 11-19

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Creating a Temporary BLOB on page 11-20
11-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Temporary LOB
PL/SQL (DBMS_LOB Package): Creating a Temporary LOB

Rem Set up script for working with Temporary LOBs

DROP TABLE long_raw_tab;
CREATE TABLE long_raw_tab (id number, long_raw_col long raw);
INSERT INTO long_raw_tab VALUES (1, HEXTORAW(’7D’));
INSERT INTO Print_media (product_id,ad_composite) SELECT
 id,TO_LOB(long_raw_col) FROM long_raw_tab;

DECLARE
 Dest_loc BLOB;
 Src_loc BLOB;
 Amount INTEGER := 4000;
BEGIN
 SELECT ad_composite INTO Src_loc FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001;

 /* Create a temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE);

 /* Copy the entire object from the Src_loc to the Temporary Lob: */
 DBMS_LOB.COPY(Dest_loc,Src_loc,DBMS_LOB.GETLENGTH(Src_loc),1,1);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
END;

Note: You must set up the following data structures to use most of

the examples given in this chapter:

Note: The DBMS_LOB.CREATETEMPORARY procedure takes an

optional duration parameter. In PL/SQL, this duration parameter is

used only as a hint about the duration of the LOB data. PL/SQL

calculates the duration of the LOB data internally, taking into

account your hint. You do not have to specify the duration of the

LOB data!
Temporary LOBs 11-15

Creating a Temporary LOB
C (OCI): Creating a Temporary LOB
/* Creating a temporary LOB using C(OCI). [Example script: 3820.c]
 This function reads in one of the composite ads, ad_composite,
 from table Print_media.It creates a temporary LOB so that you can use the
 temporary LOB to convert the image from one format to another, say JPG to
GIFF.
 The Temporary LOB created is read through the CACHE, and is automatically
cleaned
 up after the your session, if it is not explicitly freed sooner.
 This function returns 0 if it completes successfully, and -1 if it fails: */

sb4 select_and_createtemp (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIDefine *defnp1, *defnp2;
 OCIBind *bndhp;
 text *sqlstmt;
 int rowind =1;
 ub4 loblen = 0;
 OCILobLocator *tblob;
 printf ("in select_and_createtemp \n");
 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("failed in OCIDescriptor Alloc in select_and_createtemp \n");
 return -1;
 }

 /* Arbitrarily select where product_id =3060: */
 sqlstmt = (text *)
 "SELECT ad_composite FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001 FOR UPDATE";

 if (OCIStmtPrepare(stmthp, errhp, sqlstmt,
 (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return -1;
 }
11-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Temporary LOB
 /* Define for BLOB: */
 if (OCIDefineByPos(stmthp,
 &defnp1, errhp, (ub4) 1, (dvoid *) &lob_loc, (sb4)0,
 (ub2) SQLT_BLOB, (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DEFAULT)
 || &defnp2, errhp, (ub4) 2, (dvoid *) &lob_loc, (sb4)0,
 (ub2) SQLT_BLOB, (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: Select locator: OCIDefineByPos()\n");
 return -1;
 }
 /* Execute the select and fetch one row: */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return -1;
 }
 if(OCILobCreateTemporary(svchp,
 errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobGetLength(svchp, errhp, lob_loc, &loblen) != 0)
 {
 printf("OCILobGetLength FAILED\n");
 return -1;
 }
 if (OCILobCopy(svchp, errhp, tblob,lob_loc,(ub4)loblen, (ub4) 1, (ub4) 1))
 {
 printf("OCILobCopy FAILED \n");
 }
 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call \n");
 return -1;
 }

 return 0;
Temporary LOBs 11-17

Creating a Temporary LOB
 }

COBOL (Pro*COBOL): Creating a Temporary LOB
 * Creating a Temporary LOB [example script: 3821.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CREATE-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 TEMP-BLOB SQL-BLOB.
 01 LEN PIC S9(9) COMP.
 01 D-LEN PIC 9(9).
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 PROCEDURE DIVISION.
 CREATE-TEMPORARY.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
 EXEC SQL
 SELECT AD_COMPOSITE INTO :BLOB1
 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 3060 AND AD_ID = 11001
 END-EXEC.

 * Get the length of the persistent BLOB:
11-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Temporary LOB
 EXEC SQL
 LOB DESCRIBE :BLOB1
 GET LENGTH INTO :LEN
 END-EXEC.

 * Copy the entire length from persistent to temporary:
 EXEC SQL
 LOB COPY :LEN FROM :BLOB1 TO :TEMP-BLOB
 END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Creating a Temporary LOB
/* Creating a temporary LOB [example script #: 3822.c] */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
Temporary LOBs 11-19

Creating a Temporary LOB
}

void createTempLOB_proc()
{
 OCIBlobLocator *Lob_loc, *Temp_loc;
 int Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB Locators: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :Temp_loc;

 /* Create the Temporary LOB: */
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 EXEC SQL SELECT ad_composite INTO :Lob_loc FROM Print_media
 WHERE product_ID = 3060 AND ad_id = 111001;

 /* Copy the full length of the source LOB into the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
 EXEC SQL LOB COPY :Amount FROM :Lob_loc TO :Temp_loc;

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 createTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Creating a Temporary BLOB
To create a temporary BLOB, the JDBC application can use the createTemporary

static method defined in oracle.sql.BLOB class as follows:

/**
 * Create a temporary blob.
11-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Temporary LOB
 *
 * @param cache Specifies if LOB should be read into buffer cache or not.
 * @param duration The duration of the temporary LOB. The following are
 * valid values: DURATION_SESSION, DURATION_CALL.
 * @return A temporary blob.
 * @since 8.2.0
 */
public static BLOB createTemporary (Connection conn, boolean cache, int
duration) throws SQLException

Possible values of the duration parameter are:

public static final int DURATION_SESSION

public static final int DURATION_CALL

Each call to createTemporary returns a temporary BLOB. For example,

// Make a JDBC connection
 Connection conn = ...

// Create a temporary BLOB
 BLOB temporaryBlob = BLOB.createTemporary (conn, true,
 BLOB.DURATION_SESSION);

The new createTemporary API replaces previous workarounds using DBMS_

LOB.createtemporary() in the DBMS_LOB PL/SQL package.

Java (JDBC): Creating a Temporary CLOB
To create a temporary CLOB, the JDBC application can use the createTemporary

static method defined in oracle.sql.CLOB class as follows:

/**
* Create a temporary clob.
*
* @param cache Specifies if LOB should be read into buffer cache or not.
* @param duration The duration of the temporary LOB. The following are
* valid values: DURATION_SESSION, DURATION_CALL.
* @return A temporary clob.
*/
public static CLOB createTemporary (Connection conn, boolean cache, int
duration)
throws SQLException

The possible values of the duration parameter are --
Temporary LOBs 11-21

Creating a Temporary LOB
public static final int DURATION_SESSION
public static final int DURATION_CALL

Each call to createTemporary returns a temporary CLOB. For example,

// Make a JDBC connection
 Connection conn = ...
// Create a temporary CLOB
 CLOB temporaryClob = CLOB.createTemporary (conn, true, CLOB.DURATION_
SESSION);

The new createTemporary API should replace the previous workaround of using

dbms_lob.createtemporary() in dbms_lob PL/SQL package.
11-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a LOB is Temporary
Checking If a LOB is Temporary

Figure 11–2 Use Case Diagram: Checking If a LOB is Temporary

Purpose
This procedure describes how to see if a LOB is temporary.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — ISTEMPORARY, FREETEMPORARY

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

SEE if LOB
is Temporary

Internal Temporary LOBs : SEEING if LOB is Temporary
Temporary LOBs 11-23

Checking If a LOB is Temporary
■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobIsTemporary

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB DESCRIBE, ISTEMPORARY.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB

DESCRIBE...ISTEMPORARY

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): Oracle9i JDBC Developer’s Guide and Reference Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Oracle9i
SQLJ Developer’s Guide and Reference Chapter 5, "Type Support", Oracle Type

Support, Support for BLOB, CLOB, and BFILE.

Scenario
These are generic examples that query whether the locator is associated with a

temporary LOB or not.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking If a LOB is Temporary on page 11-24

■ C (OCI): Checking If a LOB is Temporary on page 11-25

■ COBOL (Pro*COBOL): Checking If a LOB is Temporary on page 11-26

■ C/C++ (Pro*C/C++): Checking If a LOB is Temporary on page 11-27

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Checking if a BLOB is Temporary on page 11-28

■ Java (JDBC): Checking if a CLOB is Temporary on page 11-29.

PL/SQL (DBMS_LOB Package): Checking If a LOB is Temporary
/* Checking if a LOB is temporary. [Example script: 3828.sql]
 This is an example of freeing a temporary LOB. First test to make
 sure that the LOB locator points to a temporary LOB, then free it.
 Otherwise, issue an error: */
11-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a LOB is Temporary
CREATE or REPLACE PROCEDURE freeTempLob_proc(Lob_loc IN OUT BLOB) IS
BEGIN
 /* Free the temporary LOB locator passed in. */
 /* First check to make sure that the locator is pointing to a temporary
 LOB:*/
 IF DBMS_LOB.ISTEMPORARY(Lob_loc) = 1 THEN
 /* Free the temporary LOB locator: */
 DBMS_LOB.FREETEMPORARY(Lob_loc);
 DBMS_OUTPUT.PUT_LINE(’ temporary LOB was freed’);
 ELSE
 /* Print an error: */
 DBMS_OUTPUT.PUT_LINE(
 ’Locator passed in was not a temporary LOB locator’);
 END IF;
END;

C (OCI): Checking If a LOB is Temporary
/* Checking if a LOB is temporary. [Example script: 3829.c]
 This function frees a temporary LOB. It takes a locator as an argument,
 checks to see if it is a temporary LOB. If it is, the function frees
 the temporary LOB. Otherwise, it prints out a message saying the locator
 was not a temporary LOB locator. This function returns 0 if it
 completes successfully, -1 otherwise: */

sb4 check_and_free_temp(OCILobLocator *tblob,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 boolean is_temp;
 is_temp = FALSE;

 if (OCILobIsTemporary(envhp, errhp, tblob, &is_temp))
 {
 printf ("FAILED: OCILobIsTemporary call\n");
 return -1;
 }
 if(is_temp)
 {
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call\n");
Temporary LOBs 11-25

Checking If a LOB is Temporary
 return -1;

 }else
 {
 printf("Temporary LOB freed\n");
 }
 }else
 {
 printf("locator is not a temporary LOB locator\n");
 }
 return 0;
 }

COBOL (Pro*COBOL): Checking If a LOB is Temporary

 * Checking if a LOB is temporary [Example script: 3830.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-ISTEMP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 IS-TEMP PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 CREATE-TEMPORARY.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.
11-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a LOB is Temporary
 * Check if the LOB is temporary:
 EXEC SQL
 LOB DESCRIBE :TEMP-BLOB
 GET ISTEMPORARY INTO :IS-TEMP
 END-EXEC.

 IF IS-TEMP = 1
 * Logic for a temporary LOB goes here
 DISPLAY "LOB is temporary."
 ELSE
 * Logic for a persistent LOB goes here.
 DISPLAY "LOB is persistent."
 END-IF.

 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Checking If a LOB is Temporary
/* Checking if a LOB is temporary [Example script: 3831.pc]
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
Temporary LOBs 11-27

Checking If a LOB is Temporary
}

void lobIsTemp_proc()
{
 OCIBlobLocator *Temp_loc;
 int isTemporary = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Determine if the Locator is a Temporary LOB Locator: */
 EXEC SQL LOB DESCRIBE :Temp_loc GET ISTEMPORARY INTO :isTemporary;

 /* Note that in this example, isTemporary should be 1 (TRUE) */
 if (isTemporary)
 printf("Locator is a Temporary LOB locator\n");
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
else
 printf("Locator is not a Temporary LOB locator \n");
 }

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 lobIsTemp_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Checking if a BLOB is Temporary
To see if a BLOB is temporary, the JDBC application can either use the

isTemporary instance method to determine whether the current BLOB object is

temporary, or pass the BLOB object to the static isTemporary method to

determine whether the specified BLOB object is temporary. These two methods are

defined as follows:

/**
* Checking if a BLOB is temporary. [Example script: 3833.java]
* Returns true if LOB locator points to a temporary BLOB, False if not.
11-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a LOB is Temporary
* @param lob the BLOB to test.
* @returns true if LOB locator points to a temporary BLOB, False if not.
*/
 public static boolean isTemporary (BLOB lob) throws SQLException

/**
 * Returns true if LOB locator points to a temporary BLOB, False if not.
 * @returns true if LOB locator points to a temporary BLOB, False if not.
 */
 public boolean isTemporary () throws SQLException

 //The usage example is--

 BLOB blob = ...

 // See if the BLOB is temporary
 boolean isTemporary = blob.isTemporary ();

 // See if the specified BLOB is temporary
 boolean isTemporary2 = BLOB.isTemporary(blob);

This JDBC API replaces previous workarounds that use

DBMS_LOB.isTemporary() .

Java (JDBC): Checking if a CLOB is Temporary
To see if a CLOB is temporary, the JDBC application can either use the

isTemporary instance method to determine whether the current CLOB object is

temporary, or pass the CLOB object to the static isTemporary method to determine

whether the specified CLOB object is temporary. These two methods are defined as

follows:

/**
 * Checking if LOB is temporary [Example script: 3834.java]
 * Return true if the LOB locator points to a temporary CLOB, False if it
 * does not.
 *
 * @param lob the BLOB to test.
 * @return true if the LOB locator points to a temporary CLOB, False if it
 * does not.
 */
 public static boolean isTemporary (CLOB lob) throws SQLException

 /**
Temporary LOBs 11-29

Checking If a LOB is Temporary
 * Return true if the LOB locator points to a temporary CLOB, False if it
 * does not.
 *
 * @return true if the LOB locator points to a temporary CLOB, False if it
 * does not.
 */
 public boolean isTemporary () throws SQLException

 //The usage example is--

 CLOB clob = ...

 // See if the CLOB is temporary
 boolean isTemporary = clob.isTemporary ();

 // See if the specified CLOB is temporary
 boolean isTemporary2 = CLOB.isTemporary(clob);

This API replaces previous workarounds that used DBMS_LOB.istemporary().
11-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Freeing a Temporary LOB
Freeing a Temporary LOB

Figure 11–3 Use Case Diagram: Freeing a Temporary LOB

Purpose
This procedure describes how to free a temporary LOB.

Usage Notes
A temporary LOB instance can only be destroyed for example, in OCI or the DBMS_
LOB package by using the appropriate FREETEMPORARY or OCIDurationEnd or

OCILOBFreeTemporary statements.

To make a temporary LOB permanent, the user must explicitly use the OCI or

DBMS_LOB copy() command and copy the temporary LOB into a permanent one.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

FREE
a Temporary

LOB

Internal Temporary LOBs : FREEING a Temporary LOB
Temporary LOBs 11-31

Freeing a Temporary LOB
■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — FREETEMPORARY

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobFreeTemporary

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB FREE TEMPORARY.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB FREE TEMPORARY

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 3, "LOB Support in Different Programmatic

Environments", Table 3–50, "JDBC: Temporary BLOB APIs". Note:

temporaryClob.java has been deprecated as there is no longer a need for this

class in the JDBC standard.

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Freeing a Temporary LOB on page 11-32

■ C (OCI): Freeing a Temporary LOB on page 11-33

■ COBOL (Pro*COBOL): Freeing a Temporary LOB on page 11-34

■ C/C++ (Pro*C/C++): Freeing a Temporary LOB on page 11-35

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Freeing a Temporary BLOB and Java (JDBC): Freeing a Temporary

CLOB.

■ Java (JDBC): Creating and Freeing a Temporary CLOB Using

TemporaryClob.java has been deprecated.

PL/SQL (DBMS_LOB Package): Freeing a Temporary LOB
/* Freeing a temporary LOB [Example script: 3836.sql]
DECLARE
 Dest_loc BLOB;
11-32 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Freeing a Temporary LOB
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_3060_11001’);
 Amount INTEGER := 4000;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE);
 /* Opening the BFILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);

 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);

 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.CLOSE(Dest_loc);
 /* Free the temporary LOB: */
 DBMS_LOB.FREETEMPORARY(Dest_loc);
END;

C (OCI): Freeing a Temporary LOB
/* Freeing a temporary LOB. [Example script: 3837.c]
 This function creates a temporary LOB and then frees it:
 This function returns 0 if it completes successfully, -1 otherwise: */

sb4 freeTempLob(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *tblob;
 checkerr (errhp,OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0,
 (dvoid**)0));
 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0,SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED:CreateTemporary():freeTempLob\n");
 return -1;
 }

 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call in freeTempLob\n");
Temporary LOBs 11-33

Freeing a Temporary LOB
 return -1;

 }else
 {
 printf("Temporary LOB freed in freeTempLob\n");
 }
 return 0;
 }

COBOL (Pro*COBOL): Freeing a Temporary LOB
 * Freeing a temporary LOB [Example script: 3838.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. FREE-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".

 01 TEMP-BLOB SQL-BLOB.
 01 IS-TEMP PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 FREE-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Do something with the temporary LOB here:

 * Free the temporary LOB:
11-34 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Freeing a Temporary LOB
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Freeing a Temporary LOB
/* Freeing a temporary LOB. [Example script: 3839.pc]
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void freeTempLob_proc()
{
 OCIBlobLocator *Temp_loc;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Do something with the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
Temporary LOBs 11-35

Freeing a Temporary LOB
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 freeTempLob_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Freeing a Temporary BLOB
To free a temporary BLOB, the JDBC application can either use the

freeTemporary instance method to free the current BLOB object, or pass the

temporary BLOB to be freed to the static freeTemporary method to free the

specified temporary BLOB. These two methods are defined as follows:

/**
* Freeing a temporary BLOB. [Example script: 3840.java]
* This example frees the contents and locator of a temporary BLOB.
* @param temp_lob A temporary BLOB to be freed.
* @exception SQLException if temp_lob is a permanent LOB or temp_lob has already
* been freed.
*/

public static void freeTemporary (BLOB temp_lob) throws SQLException

/**
* Free the contents and the locator of the temporary BLOB.
* @exception SQLException if self is a permanent LOB or self has already been
freed.
*/

public void freeTemporary() throws SQLException

/**
* The usage example example is --
* BLOB tempBlob1 = ...
* BLOB tempBlob2 = ...
* // free the temporary BLOB
* tempBlob1.freeTemporary ();
* // free the specified temporary BLOB
* BLOB.freeTemporary(tempBlob2);
*
* The newer freeTemporary APIs should replace previous workaround of
* using dbms_lob.freeTemporary() in dbms_lob PL/SQL package.
*/
11-36 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Freeing a Temporary LOB
The freeTemporary APIs should replace the previous workaround of using dbms_
lob.freeTemporary() in dbms_lob PL/SQL package.

Java (JDBC): Freeing a Temporary CLOB
To free a temporary CLOB, the JDBC application can either use the

freeTemporary instance method to free the current CLOB object, or pass the

temporary CLOB to be freed to the static freeTemporary method to free the

specified temporary CLOB. These two methods are defined as follows:

/**
* Freeing a temporary CLOB. [Example script: 3841.java]
* Free the contents and the locator of the temporary blob.
* @param temp_lob A temporary CLOB to be freed.
* @since 8.2.0
* @exception SQLException if temp_lob is a permanent LOB or temp_lob has
* already been freed.
*/

public static void freeTemporary (CLOB temp_lob) throws SQLException

/**
* Free the contents and the locator of the temporary CLOB.
*
* @since 8.2.0
* @exception SQLException if self is a permanent lob or self has
* already been freed.
*/
public void freeTemporary() throws SQLException

/**
* Use the free temporary CLOB API as follows:
* CLOB tempClob1 = ...
* CLOB tempClob2 = ...
* // free the temporary CLOB
* tempClob1.freeTemporary ();
* // free the specified temporary CLOB
* CLOB.freeTemporary(tempClob2);
*
*The freeTemporary API replaces previous workarounds that use DBMS_
LOB.freetemporary().
*/
Temporary LOBs 11-37

Freeing a Temporary LOB
The freeTemporary API replaces previous workarounds that use DBMS_

LOB.freetemporary().

Java (JDBC): Creating and Freeing a Temporary CLOB Using TemporaryClob.java

Note: temporaryClob.java and temporaryBlob.java classes have

been deprecated. These classes are no longer needed or used in the

JDBC standard.
11-38 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary LOB with Data from a BFILE
Loading a Temporary LOB with Data from a BFILE

Figure 11–4 Use Case Diagram: Loading a LOB with Data from a BFILE

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

free
a temporary

LOB

close
a BFILE

specify
BFILE name

SELECT
BFILE OR

INITIALIZE
a BFILE
locator

open
a BFILE

LOAD a LOB
with Data

from a BFILE

Internal Temporary LOBs : LOADING a LOB with Data from a BFILE
Temporary LOBs 11-39

Loading a Temporary LOB with Data from a BFILE
Purpose
This procedure describes how to load a temporary LOB with data from a BFILE.

Usage Notes

Binary Data to Character Set Conversion is Needed on BFILE Data In using OCI, or any of

the programmatic environments that access OCI functionality, character set

conversions are implicitly performed when translating from one character set to

another. When you use the DBMS_LOB.LOADFROMFILE procedure to populate a

CLOB or NCLOB, you are populating the LOB with binary data from the BFILE. No

implicit translation is performed from binary data to a character set. For this reason,

you should use the LOADCLOBFROMFILE procedure when loading text (see

Loading a Temporary CLOB/NCLOB with Character Data from a File on on

page 11-52).

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

See Also:

■ Table 11–1, "Use Case Model Overview: Internal Temporary

LOBs" on page 11-2

■ "Loading a Temporary BLOB with Binary Data from a BFILE"

on page 11-48

■ "Loading a Temporary CLOB/NCLOB with Character Data

from a File" on page 11-52

Note: The LOADBLOBFROMFILE and LOADCLOBFROMFILE
procedures implement the functionality of this procedure and

provide improved features for loading binary data and character

data. The improved procedures are available in the PL/SQL

environment only. When possible, using one of the improved

procedures is recommended. See "Loading a Temporary BLOB with

Binary Data from a BFILE" on page 11-48 and "Loading a

Temporary CLOB/NCLOB with Character Data from a File" on

page 11-52 for more information.
11-40 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary LOB with Data from a BFILE
■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — CREATETEMPORARY, FREETEMPORARY

■ C (OCI): Oracle Call Interface Programmer’s Guide) Chapter 15, "Relational

Functions" — LOB Functions,OCILobLoadFromFile

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB LOAD.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB LOAD

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Loading a

LOB with Data from a BFILE" on page 10-40.

Scenario
The example procedures assume that there is an operating system source directory

(ADPHOTO_DIR) that contains the LOB data to be loaded into the target LOB.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Loading a Temporary LOB with Data from a

BFILE on page 11-41

■ C (OCI): Loading a Temporary LOB with Data from a BFILE on page 11-42

■ COBOL (Pro*COBOL): Loading a Temporary LOB with Data from a BFILE on

page 11-44

■ C/C++ (Pro*C/C++): Loading a Temporary LOB with Data from a BFILE on

page 11-46

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Loading a Temporary LOB with Data from a BFILE
/* Loading a temporary LOB with data from a BFILE.
 Example procedure freeTempLob_proc is not part of DBMS_LOB package: */

CREATE or REPLACE PROCEDURE freeTempLob_proc(Lob_loc IN OUT BLOB) IS
Temporary LOBs 11-41

Loading a Temporary LOB with Data from a BFILE
BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE);
 /* Use the temporary LOB locator here, then free it.*/
 /* Free the temporary LOB locator: */
 DBMS_LOB.FREETEMPORARY(Lob_loc);
 DBMS_OUTPUT.PUT_LINE(’Temporary LOB was freed’);
END;

C (OCI): Loading a Temporary LOB with Data from a BFILE
/* Loading a temporary LOB with data from a BFILE.
 This section of code shows you how to create a temporary LOB, and load
 the contents of a BFILE into that temporary LOB: */

sb4 load_temp(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *bfile;
 int amount =100;
 OCILobLocator *tblob;

 printf("in load_temp\n");
 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in load_temp\n");
 return -1;
 }
 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&bfile,
 (ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in load_temp\n");
 return -1;
 }

 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0,
 SQLCS_IMPLICIT, OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
11-42 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary LOB with Data from a BFILE
 }

 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"ADPHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"), (text *)"monitor_3060_11001",
 (ub2)strlen("monitor_3060_11001")))
 {
 printf("OCILobFileSetName FAILED in load_temp\n");
 return -1;
 }

 /* Opening the BFILE is mandatory: */
 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile load_temp \n");
 return -1;
 }

 /* Opening the LOB is optional: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 if(OCILobLoadFromFile(svchp,
 errhp,
 tblob,
 (OCILobLocator*)bfile,
 (ub4)amount,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return -1;
 }

 /* Close the lobs: */
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
 return -1;
 }

 checkerr(errhp,(OCILobClose(svchp, errhp, (OCILobLocator *) tblob)));
Temporary LOBs 11-43

Loading a Temporary LOB with Data from a BFILE
 /* Free the temporary LOB now that we are done using it */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }
 }

COBOL (Pro*COBOL): Loading a Temporary LOB with Data from a BFILE
 * Loading a temporary LOB with data from a BFILE.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOAD-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "USER1/USER1".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 LOAD-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
11-44 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary LOB with Data from a BFILE
 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
Temporary LOBs 11-45

Loading a Temporary LOB with Data from a BFILE
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Loading a Temporary LOB with Data from a BFILE
/* Loading a temporary LOB with data from a BFILE. */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void loadTempLobFromBFILE_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the BFILE is mandatory; */
 /* Opening the LOB is optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load the data from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Temp_loc;
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free the Temporary LOB: */
11-46 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary LOB with Data from a BFILE
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Temp_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadTempLobFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
)

Temporary LOBs 11-47

Loading a Temporary BLOB with Binary Data from a BFILE
Loading a Temporary BLOB with Binary Data from a BFILE

Figure 11–5 Use Case Diagram: Loading a BLOB with Data from a BFILE

User/
Program

create
a temporary

BLOB

OPEN
a BLOB

CLOSE
a BLOB

free
a temporary

BLOB

close
a BFILE

specify
BFILE name

SELECT
BFILE OR

INITIALIZE
a BFILE
locator

open
a BFILE

LOAD a BLOB
with Data

from a BFILE

Internal Temporary BLOBs : LOADING a BLOB with Data from a BFILE
11-48 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary BLOB with Binary Data from a BFILE
Purpose
This procedure describes how to load a temporary BLOB with binary data from a

BFILE.

Usage Notes
Use LOADBLOBFROMFILE for loading of binary data and LOADCLOBFROMFILE for

text loading. This achieves the same outcome as LOADFROMFILE as well as

returning the new offsets to the user. The LOADCLOBFROMFILE API allows you to

specify the character set id of the BFILE ensuring that the character set is properly

converted from the BFILE data character set to the destination CLOB/NCLOB

character set.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — LOADBLOBFROMFILE

Scenario
The example procedures in this section use the Print_media table of the Product

Media sample schema and assume that there is an operating system source

directory that contains the binary LOB data to be loaded into the target BLOB.

Examples
The example, "PL/SQL (DBMS_LOB Package): Loading a Temporary BLOB with

BFILE data", illustrates LOADBLOBFROMFILE usage in the PL/SQL programmatic

environment. (Other programmatic environments are not supported.)

See Also:

■ Table 11–1, "Use Case Model Overview: Internal Temporary

LOBs" on page 11-2

■ "Loading a Temporary CLOB/NCLOB with Character Data

from a File" on page 11-52

■ "Loading a Temporary LOB with Data from a BFILE" on

page 11-39
Temporary LOBs 11-49

Loading a Temporary BLOB with Binary Data from a BFILE
PL/SQL (DBMS_LOB Package): Loading a Temporary BLOB with BFILE data
The following example illustrates:

■ How to load a temporary BLOB with binary data from a BFLIE.

■ How to load a BLOB with BFILE data without getting the length of the BFILE

first.

■ How to use the source offset and destination offset values returned by

LOADBLOBFROMFILE to determine the size of the BLOB.

DECLARE
 src_loc BFILE := bfilename(’ADPHOTO_DIR’,’monitor_3060_11001’);
 dst_loc BLOB;
 src_offset NUMBER := 1;
 dst_offset NUMBER := 1;
 src_osin NUMBER;
 dst_osin NUMBER;
 bytes_rd NUMBER;
 bytes_wt NUMBER;
BEGIN
 dbms_lob.createtemporary(dst_loc, TRUE);

 /* Opening the source BFILE is mandatory. */
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);

 /* Opening the LOB is optional. */
 dbms_lob.open(dst_loc, dbms_lob.lob_readwrite);
 /* Save the input source/destination offsets. */
 src_osin := src_offset;
 dst_osin := dst_offset;

 /* Use LOBMAXSIZE to indicate loading the entire BFILE. */
 dbms_lob.LOADBLOBFROMFILE(dst_loc, src_loc, dbms_lob.lobmaxsize, src_offset,
 dst_offset) ;

 /* Closing the LOB is mandatory if you have opened it */
 dbms_lob.close(dst_loc);
 dbms_lob.filecloseall();

 /* Use the src_offset returned to calculate the actual
 * amount read from the BFILE.
 */
 bytes_rd := src_offset - src_osin;
 dbms_output.put_line(’ Number of bytes read from the BFILE ’ || bytes_rd) ;
11-50 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary BLOB with Binary Data from a BFILE
 /* Use the dst_offset returned to calculate the actual
 * amount written to the BLOB.
 */
 bytes_wt := dst_offset - dst_osin;
 dbms_output.put_line(’ Number of bytes written to the BLOB ’ || bytes_wt) ;

 /* If there is no exception the number of bytes read
 * should equal to the number of bytes written.
 */

 /* Free the temporary LOB. */
 dbms_lob.freetemporary(dst_loc);

END ;
Temporary LOBs 11-51

Loading a Temporary CLOB/NCLOB with Character Data from a File
Loading a Temporary CLOB/NCLOB with Character Data from a File

Figure 11–6 Use Case Diagram: Loading a CLOB or NCLOB with Data from a BFILE

User/
Program

create
a temporary

CLOB

OPEN
a CLOB

CLOSE
a CLOB

free
a temporary

CLOB

close
a BFILE

specify
BFILE name

SELECT
BFILE OR

INITIALIZE
a BFILE
locator

open
a BFILE

LOAD a CLOB
with Data

from a BFILE

Internal Temporary CLOBs : LOADING a CLOB with Data from a BFILE
11-52 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary CLOB/NCLOB with Character Data from a File
Purpose
This procedure describes how to load a temporary CLOB or NCLOB with character

data from a BFILE.

Usage Notes
Use LOADBLOBFROMFILE for loading of binary data and LOADCLOBFROMFILE for

loading of text as the latter method lets you specify the character set id of the BFILE.

The LOADCLOBFROMFILE API allows you to specify the character set id of the

BFILE ensuring that the character set is properly converted from the BFILE data

character set to the destination CLOB/NCLOB character set.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — LOADCLOBFROMFILE

Scenario
The example procedures in this section use the Print_media table of the Product

Media sample schema and assume that there is an operating system source

directory that contains the character LOB data to be loaded into the target CLOB or

NCLOB.

Examples
The example, "PL/SQL (DBMS_LOB Package): Loading a Temporary

CLOB/NCLOB with BFILE Data", illustrates LOADCLOBFROMFILE usage in the

PL/SQL programmatic environment. (Other programmatic environments are not

supported.)

See Also:

■ Table 11–1, "Use Case Model Overview: Internal Temporary

LOBs" on page 11-2

■ "Loading a Temporary BLOB with Binary Data from a BFILE"

on page 11-48

■ "Loading a Temporary LOB with Data from a BFILE" on

page 11-39
Temporary LOBs 11-53

Loading a Temporary CLOB/NCLOB with Character Data from a File
PL/SQL (DBMS_LOB Package): Loading a Temporary CLOB/NCLOB with BFILE Data

Example
The following example illustrates:

■ How to load a temporary CLOB or NCLOB with character data from BFILE.

■ How load the entire file without calling getlength on the BFILE .

■ How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format

and the database character set is UTF8.

DECLARE
 src_loc bfile := bfilename(’ADVERT_DIR’,’ad_source_1000’);
 dst_loc clob ;
 amt number := dbms_lob.lobmaxsize;
 src_offset number := 1 ;
 dst_offset number := 1 ;
 lang_ctx number := dbms_lob.default_lang_ctx;
 warning number;
BEGIN
 dbms_lob.createtemporary(dst_loc, TRUE);
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);

 /* The default_csid can be used when the BFILE encoding is in the same charset
 * as the destination CLOB/NCLOB charset
 */

 dbms_lob.LOADCLOBFROMFILE(dst_loc, src_loc, amt, dst_offset, src_offset,
 dbms_lob.default_csid, lang_ctx,warning) ;
 commit ;

 dbms_output.put_line(’ Amount specified ’ || amt) ;
 dbms_output.put_line(’ Number of bytes read from source: ’ ||
 (src_offset-1));
 dbms_output.put_line(’ Number of characters written to destination: ’ ||
 (dst_offset-1));
 if (warning = dbms_lob.warn_inconvertible_char)
 then
 dbms_output.put_line(’Warning: Inconvertible character’);
 end if;

 dbms_lob.filecloseall() ;
 dbms_lob.freetemporary(dst_loc);
11-54 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a Temporary CLOB/NCLOB with Character Data from a File
END ;

Example
The following example illustrates:

■ How to get the character set ID from the character set name using the NLS_
CHARSET_ID function.

■ How to load a stream of data from a single BFILE into different LOBs using the

returned offset value and the language context lang_ctx .

■ How to read a warning message.

This example assumes that ad_file_ext_01 is a BFILE in JA16TSTSET format

and the database national character set is AL16UTF16.

DECLARE
 src_loc bfile := bfilename(’ADVERT_DIR’,’ad_file_ext_01’) ;
 dst_loc1 nclob;
 dst_loc2 nclob;
 amt number := 1000;
 src_offset number := 1;
 dst_offset number := 1;
 src_osin number;
 cs_id number := NLS_CHARSET_ID(’JA16TSTSET’); /* 998 */
 lang_ctx number := dbms_lob.default_lang_ctx;
 warning number;
BEGIN
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);
 dbms_output.put_line(’ BFILE csid is ’ || cs_id) ;

 /* Load the first 1KB of the BFILE into dst_loc1 */
 dbms_output.put_line(’ ----------------------------’) ;
 dbms_output.put_line(’ First load ’) ;
 dbms_output.put_line(’ ----------------------------’) ;

 dbms_lob.createtemporary(dst_loc1, TRUE);

 dbms_lob.LOADCLOBFROMFILE(dst_loc1, src_loc, amt, dst_offset, src_offset,
 cs_id, lang_ctx,warning);
 commit;

 /* The number bytes read may or may not be 1k */
 dbms_output.put_line(’ Amount specified ’ || amt) ;
 dbms_output.put_line(’ Number of bytes read from source: ’ ||
Temporary LOBs 11-55

Loading a Temporary CLOB/NCLOB with Character Data from a File
 (src_offset-1));
 dbms_output.put_line(’ Number of characters written to destination: ’ ||
 (dst_offset-1));
 IF (warning = dbms_lob.warn_inconvertible_char)
 then
 dbms_output.put_line(’Warning: Inconvertible character’);
 END IF;

 /* load the next 1KB of the BFILE into the dst_loc2 */
 dbms_output.put_line(’ ----------------------------’) ;
 dbms_output.put_line(’ Second load ’) ;
 dbms_output.put_line(’ ----------------------------’) ;

 dbms_lob.createtemporary(dst_loc2, TRUE);
 /* Notice we are using the src_offset and lang_ctx returned from the previous
 * load. We do not use value 1001 as the src_offset here because sometimes the
 * actual amount read may not be the same as the amount specified.
 */
 src_osin := src_offset;
 dst_offset := 1;
 dbms_lob.LOADCLOBFROMFILE(dst_loc2, src_loc, amt, dst_offset, src_offset,
 cs_id, lang_ctx, warning);
 commit;
 dbms_output.put_line(’ Number of bytes read from source: ’ ||
 (src_offset-src_osin));
 dbms_output.put_line(’ Number of characters written to destination: ’ ||
 (dst_offset-1));
 if (warning = dbms_lob.warn_inconvertible_char)
 then
 dbms_output.put_line(’Warning: Inconvertible character’);
 END IF;

 dbms_lob.filecloseall() ;
 dbms_lob.freetemporary(dst_loc1);
 dbms_lob.freetemporary(src_loc2);

END ;
11-56 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Temporary LOB Is Open
Determining If a Temporary LOB Is Open

Figure 11–7 Use Case Diagram: Determining If a Temporary LOB Is Open

Purpose
This procedure describes how to see if a temporary LOB is open.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — ISOPEN

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

SEE
if LOB is Open

free
a temporary

LOB

Internal Temporary LOBs : SEEING if LOB is Open
Temporary LOBs 11-57

Determining If a Temporary LOB Is Open
■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobIsOpen

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB DESCRIBE...ISOPEN.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE...ISOPEN

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Checking

if a LOB is Open" on page 10-59.

Scenario
These generic examples takes a locator as input, create a temporary LOB, open it

and test if the LOB is open.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL: Determining if a Temporary LOB is Open on page 11-58

■ C (OCI) Determining if a Temporary LOB is Open on page 11-59

■ COBOL (Pro*COBOL): Determining if a Temporary LOB is Open on page 11-60

■ C/C++ (Pro*C/C++): Determining if a Temporary LOB is Open on page 11-62

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL: Determining if a Temporary LOB is Open
/* Determining if a temporary LOB is open.
 Example procedure seeTempLOBIsOpen_proc is not part of
 DBMS_LOB package. This procedure takes a locator as input, creates a
 temporary LOB, opens it and tests if the LOB is open. */

CREATE OR REPLACE PROCEDURE seeTempLOBIsOpen_proc(Lob_loc IN OUT BLOB,
 Retval OUT INTEGER) IS
BEGIN
 /* Create the temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE);
11-58 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Temporary LOB Is Open
 /* See If the LOB is open: */
 Retval := DBMS_LOB.ISOPEN(Lob_loc);
 /* The value of Retval will be 1 if the LOB is open. */
 /* Free the temporary LOB: */
 DBMS_LOB.FREETEMPORARY(Lob_loc);
END;

C (OCI) Determining if a Temporary LOB is Open
/* Determining if a temporary LOB is open.
 This function takes a locator and returns 0 if the function
 completes successfully. The function prints out "Temporary LOB is open" or
 "Temporary LOB is closed". It does not check whether or not the locator is
 actually pointing to a temporary LOB or not, but the open or close test will
 work either way. The function returns 0 if it completes
 successfully, and -1 if it fails. */

sb4 seeTempLOBIsOpen (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 boolean is_open = FALSE;

 printf("in seeTempLOBIsOpen \n");

 if(OCILobCreateTemporary(svchp,
 errhp,
 lob_loc,
 (ub2)0,
 SQLCS_IMPLICIT,
 OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCILobIsOpen(svchp, errhp, lob_loc, &is_open))
 {
 printf("OCILobIsOpen FAILED\n");
 return -1;
Temporary LOBs 11-59

Determining If a Temporary LOB Is Open
 }
 if(is_open)
 {
 printf("Temporary LOB is open\n");

 }else
 {
 printf("Temporary LOB is closed\n");

 }

 if(OCILobFreeTemporary(svchp,errhp,lob_loc))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }
 return 0;
 }

COBOL (Pro*COBOL): Determining if a Temporary LOB is Open
 * Determining if a temporary LOB is open. [Example script: 3850.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-ISOPEN.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP.
 01 IS-OPEN PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 PROCEDURE DIVISION.
 TEMP-LOB-ISOPEN.
11-60 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Temporary LOB Is Open
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Open temporary LOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ ONLY END-EXEC.
 EXEC SQL
 LOB DESCRIBE :TEMP-BLOB GET ISOPEN INTO :IS-OPEN
 END-EXEC.

 IF IS-OPEN = 1
 * Logic for an open temporary LOB goes here:
 DISPLAY "Temporary LOB is OPEN."
 ELSE
 * Logic for a closed temporary LOB goes here:
 DISPLAY "Temporary LOB is CLOSED."
 END-IF.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.
Temporary LOBs 11-61

Determining If a Temporary LOB Is Open
C/C++ (Pro*C/C++): Determining if a Temporary LOB is Open
/* Determining if a temporary LOB is open. [Example script: 3851.pc] */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void tempLobIsOpen_proc()
{
 OCIBlobLocator *Temp_loc;
 int isOpen = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Open the Temporary LOB */
 EXEC SQL LOB OPEN :Temp_loc READ ONLY;
 /* Determine if the LOB is Open */
 EXEC SQL LOB DESCRIBE :Temp_loc GET ISOPEN INTO :isOpen;
 if (isOpen)
 printf("Temporary LOB is open\n");
 else
 printf("Temporary LOB is not open\n");
 /* Note that in this example, the LOB is Open so isOpen == 1 (TRUE) */
 /* Close the LOB */
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
11-62 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Temporary LOB Is Open
 tempLobIsOpen_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-63

Displaying Temporary LOB Data
Displaying Temporary LOB Data

Figure 11–8 Use Case Diagram: Displaying Temporary LOB Data

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

DISPLAY the
LOB Data

free
a temporary

LOB

flush
buffer

DISABLE
Buffering

enable
buffering

read data
from the LOB

Internal Temporary LOBs : DISPLAYING the LOB Data
11-64 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying Temporary LOB Data
Purpose
This procedure describes how to display temporary LOB data.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — OPEN, LOADFROMFILE, READ. Chapter 29,

"DBMS_OUTPUT" — PUT_LINE

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobRead

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB READ.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC):

Displaying LOB Data" on page 10-107.

Scenario
As an instance of displaying a LOB, our example stream-reads the image

monitor_photo from the column object Adheader_typ onto the client-side in

order to view the data.

Examples
Examples are provided in the following programmatic environments:

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.
Temporary LOBs 11-65

Displaying Temporary LOB Data
■ PL/SQL (DBMS_LOB Package): Displaying Temporary LOB Data on

page 11-66

■ C (OCI): Displaying Temporary LOB Data on page 11-67

■ COBOL (Pro*COBOL): Displaying Temporary LOB Data on page 11-70

■ C/C++ (Pro*C/C++): Displaying Temporary LOB Data on page 11-72

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Displaying Temporary LOB Data
/* DIsplaying temporary LOB data. [Example script: 3853.sql]
 The following function accesses the monitor_photo file, creates a temporary
 LOB, loads some data from the file, and then reads it back and
 displays it. */

DECLARE
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
 Amount INTEGER := 128;
 Bbuf RAW(128);
 Position INTEGER :=1;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc,Src_loc,Amount);

 LOOP
 DBMS_LOB.READ (Dest_loc, Amount, Position, Bbuf);
 /* Display the buffer contents: */
 DBMS_OUTPUT.PUT_LINE(’Result :’|| utl_raw.cast_to_varchar2(Bbuf));
 Position := Position + Amount;
 END LOOP;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data loaded into temp LOB’);

 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
11-66 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying Temporary LOB Data
 /* Closing the file is mandatory unless you close the files later: */
 DBMS_LOB.CLOSE(Src_loc);
END;

C (OCI): Displaying Temporary LOB Data
/* Displaying temporary LOB data. [Example script: 3854.c]
 This function accesses the monitor_photo file for product 3060 with ad_id
 11001. It creates a temporary LOB, loads some data from the file, then reads
 it back and displays it. The reading is done in a streaming fashion. This
 function assumes that the file specified is kept in the directory known by
 the directory alias "ADPHOTO_DIR". It also assumes that the file is at least
 14000 bytes long, which is the amount to be read and loaded. These amounts
 are arbitrary for this example. This function uses fprintf() to display the
 contents of the file. This works well for text data, but you may wish to
 change the method for binary data. For audio data, you could, for instance,
 call an audio function. The function returns 0 if it completes successfully,
 and -1 if it fails. */

#define MAXBUFLEN 32767
sb4 display_file_to_lob(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 int rowind;
 char *binfile;
 OCILobLocator *tblob;
 OCILobLocator *bfile;

 ub4 amount = 14000;
 ub4 offset = 0;
 ub4 loblen = 0;
 ub4 amtp = 0;
 sword retval;
 ub4 piece = 1;
 ub4 remainder= 0;
 ub1 bufp[MAXBUFLEN];
 sb4 return_code = 0;

 (void) printf("\n===> Testing loading files into lobs and displaying
 them\n\n");

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
Temporary LOBs 11-67

Displaying Temporary LOB Data
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCILobFileSetName(envhp, errhp, &bfile, (text*)"ADPHOTO_DIR",
 (ub2)
 strlen("ADPHOTO_DIR"),(text*)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED\n");
 return_code = -1;
 }

 /* Open the BFILE: */
 if(OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_FILE_READONLY))
 {
 printf("OCILobFileOpen FAILED \n");
 return_code = -1;
 }

 if(OCILobLoadFromFile(svchp,errhp,tblob,(OCILobLocator*)bfile,(ub4)amount,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
11-68 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying Temporary LOB Data
 }

 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);

 retval = OCILobRead(svchp, errhp, tblob, &amtp, offset,
 (dvoid *) bufp, (amount < MAXBUFLEN ? amount : MAXBUFLEN),
 (dvoid *)0, (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 printf("1st piece read from file is %s\n",bufp);

 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece */
 (void) printf("stream read piece # %d \n", ++piece);
 (void)printf("piece read was %s\n",bufp);
 break;
 case OCI_ERROR:
 /* report_error(); function not shown here */
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 remainder = amount;
 printf("remainder is %d \n",remainder);
 do
 {
 memset(bufp, ’\0’, MAXBUFLEN);
 amtp = 0;
 remainder -= MAXBUFLEN;
 printf("remainder is %d \n",remainder);
 retval = OCILobRead(svchp, errhp, tblob, &amtp, offset,
 (dvoid *) bufp, (ub4) MAXBUFLEN, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 /* The amount read returned is undefined for FIRST, NEXT pieces: */
 (void)fprintf(stderr,"stream read %d th piece, amtp = %d\n",
 ++piece, amtp);
 (void)fprintf(stderr,"piece of length read was %d\n",
 strlen((const char*)bufp));
 (void)fprintf(stderr,"piece read was %s\n",bufp);
 } while (retval == OCI_NEED_DATA);
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
Temporary LOBs 11-69

Displaying Temporary LOB Data
 break;
 }

 /* Close the audio file: */
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobFileClose FAILED\n");
 return_code = -1;
 }
 /* clean up the temp LOB now that we are done with it */

 if(check_and_free_temp(tblob, errhp, svchp,stmthp, envhp))
 {
 printf("check and free failed in load test\n");
 return_code = -1;
 }
 return return_code;
 }

COBOL (Pro*COBOL): Displaying Temporary LOB Data
 * Displaying temporary LOB data. [Example script: 3855.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(9) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).
 01 ISTEMP PIC S9(9) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.
 PROCEDURE DIVISION.
 ONE-READ-BLOB.
11-70 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying Temporary LOB Data
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Perform a single read:
 EXEC SQL
 LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
 END-EXEC.

 DISPLAY "Read ", BUFFER2, " from TEMP-BLOB".

 END-OF-BLOB.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
Temporary LOBs 11-71

Displaying Temporary LOB Data
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Displaying Temporary LOB Data
/* Displaying temporary LOB data. */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void displayTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
11-72 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying Temporary LOB Data
 int Position = 1;
 /* Datatype Equivalencing is Mandatory for this Datatype */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB Locators */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load a specified amount from the BFILE into the Temporary LOB */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc;
 /* Setting Amount = 0 will initiate the polling method */
 Amount = 0;
 /* Set the maximum size of the Buffer */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BLOB into the Buffer */
 EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
 printf("Display %d bytes\n", Buffer.Length);
 }
 printf("Display %d bytes\n", Amount);
 /* Closing the LOBs is mandatory if you have opened them */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-73

Reading Data from a Temporary LOB
Reading Data from a Temporary LOB

Figure 11–9 Use Case Diagram: Reading Data from a Temporary LOB

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

disable
buffering

free
a temporary

LOB

READ Data
from the LOB

flush
buffer

enable
buffering

Internal Temporary LOBs : READING Data from the LOB
11-74 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a Temporary LOB
Purpose
This procedure describes how to read data from a temporary LOB.

Usage Notes

Stream Reading The most efficient way to read large amounts of LOB data is to use

OCILobRead () with the streaming mechanism enabled using polling or a callback.

When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4 gigabytes

regardless of the starting offset and the amount of data in the LOB. You do not need

to incur a round-trip to the server to call OCILobGetLength () to find out the

length of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read

the entire LOB value starting at offset 1,000. Also assume that you do not know the

current length of the LOB value. Here's the OCI read call, excluding the

initialization of the parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

When using polling mode, be sure to look at the value of the 'amount ' parameter

after each OCILobRead () call to see how many bytes were read into the buffer since

the buffer may not be entirely full.

When using callbacks, the 'len ' parameter, input to the callback, indicates how

many bytes are filled in the buffer. Check the 'len ' parameter during your callback

processing since the entire buffer may not be filled with data (see theOracle Call
Interface Programmer’s Guide.).

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — READ

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.
Temporary LOBs 11-75

Reading Data from a Temporary LOB
■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobRead

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB READ.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs","Java (JDBC): Reading

Data from a LOB" on page 10-118.

Scenario
These examples read LOB data from the AD_PHOTO LOB column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Reading Data from a Temporary LOB on

page 11-76

■ C (OCI): Reading Data from a Temporary LOB on page 11-77

■ COBOL (Pro*COBOL): Reading Data from a Temporary LOB on page 11-80

■ C/C++ (Pro*C/C++): Reading Data from a Temporary LOB on page 11-82

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Reading Data from a Temporary LOB
/* Reading temporary LOB data. [Example script: 3859.sql]
 PL/SQL does not support streaming reads. See the OCI example for an
 illustration of streaming reads: */
DECLARE
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’keyboard_photo_3106_13001’);
 Amount INTEGER := 4000;
 Bbuf RAW(32767);
 Position INTEGER :=1;
BEGIN
11-76 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a Temporary LOB
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional: */
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 DBMS_LOB.READ (Dest_loc, Amount, Position, Bbuf);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Src_loc);
END;

C (OCI): Reading Data from a Temporary LOB
/* Reading temporary LOB data. [Example script: 3861.c]
 This is the same example as for reading and displaying data from a
 temporary LOB. This function takes the ’monitor_photo for product 3060,
 ad_id 11001’ file, opens that file as a BFILE as input, loads that file
 data into a temporary LOB and then reads the data from the temporary
 LOB, 5000 or less bytes at a time. 5000 bytes was an arbitrary maximum buffer
 length chosen for this example. The function returns 0 if it completes
 successfully, -1 if it fails. */

#define MAXBUFLEN 32767

sb4 test_file_to_lob (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 int rowind;
 OCILobLocator *bfile;

 ub4 amount = 14000;
 ub4 offset =0;
 ub4 loblen = 0;
 ub4 amtp = 0;
 sword retval;
 ub4 piece = 1;
 ub4 remainder=0;
 ub1 bufp[MAXBUFLEN];

 (void) printf(
"\n===> Testing loading files into lobs and displaying them\n\n");
Temporary LOBs 11-77

Reading Data from a Temporary LOB
 if (OCIDescriptorAlloc((dvoid **)&bfile,
 (ub4)OCI_DTYPE_LOB, (size_t)0,
 (dvoid**)0))

 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, lob_loc, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }
 if(OCILobFileSetName(envhp, errhp, &bfile,(text*)"ADPHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text*)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED\n");
 return -1;
 }
 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_FILE_READONLY))
 {
 printf("OCILobFileOpen FAILED \n");
 return -1;
 }
 if(OCILobLoadFromFile(svchp,errhp,lob_loc,(OCILobLocator*)bfile,(ub4)amount,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return -1;
 }

 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);

 retval = OCILobRead(svchp, errhp, lob_loc, &amtp, offset, (dvoid *) bufp,
 (amount < MAXBUFLEN ? amount : MAXBUFLEN), (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 fprintf(stderr,"1st piece read from file is %s\n",bufp);

 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece */
 (void) printf("stream read piece # %d \n", ++piece);
11-78 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a Temporary LOB
 (void)printf("piece read was %s\n",bufp);
 break;
 case OCI_ERROR:
 /* report_error(); function not shown here */
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 remainder = amount;
 fprintf(stderr,"remainder is %d \n",remainder);
 do
 {
 memset(bufp, ’\0’, MAXBUFLEN);
 amtp = 0;
 remainder -= MAXBUFLEN;
 fprintf(stderr,"remainder is %d \n",remainder);

 retval = OCILobRead(svchp, errhp, lob_loc, &amtp, offset,
 (dvoid *) bufp,(ub4) MAXBUFLEN, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 /* The amount read returned is undefined for FIRST, NEXT pieces: */
 (void)fprintf(stderr,"stream read %d th piece, amtp = %d\n",
 ++piece, amtp);
 (void)fprintf(stderr,
 "piece of length read was %d\n",strlen((const char *)bufp));
 (void)fprintf(stderr,"piece read was %s\n",bufp);
 } while (retval == OCI_NEED_DATA);
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 break;
 }

 /* Close the audio file: */
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobFileClose FAILED\n");
 return -1;
 }
 if (OCIDescriptorFree ((dvoid*) lob_loc, (ub4) OCI_DTYPE_LOB))
 {
 printf ("failed in OCIDescriptor Free\n");
 return -1;
 }
Temporary LOBs 11-79

Reading Data from a Temporary LOB
 /* Clean up the temp LOB now that we are done with it: */
 if(check_and_free_temp(lob_loc, errhp, svchp,stmthp, envhp))
 {
 printf("check and free failed in load test\n");
 return -1;
 }
 return 0;
}

sb4 check_and_free_temp(OCILobLocator *tblob,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stnthp,
 OCIEnv *envhp)
{
 boolean is_temp;
 is_temp = FALSE;
 if (OCILobIsTemporary (envhp,errhp, tblob, &is_temp))
 {
 printf ("FAILED: OciLobIsTemporary call \n");
 }
 if(is_temp)
 {
 if (OCILobFreeTemporary (svchp, errhp,tblob))
 {
 printf ("FAILED: OCILobFreeTemporary call \n");
 return -1;
 } else
 {
 printf ("Temporary LOB freed\n");
 }
 }else
 {
 printf ("locator is not a temporary LOB locator\n");
 }
 return 0;
}

COBOL (Pro*COBOL): Reading Data from a Temporary LOB
 * Reading temporary LOB data. [Example script: 3862.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
 ENVIRONMENT DIVISION.
11-80 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a Temporary LOB
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(9) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).
 01 ISTEMP PIC S9(9) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.
 PROCEDURE DIVISION.
 ONE-READ-BLOB.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
 END-EXEC.
Temporary LOBs 11-81

Reading Data from a Temporary LOB
 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Perform a single read:

 EXEC SQL
 LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
 END-EXEC.

 DISPLAY "Read ", BUFFER2, " from TEMP-BLOB".

 END-OF-BLOB.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Reading Data from a Temporary LOB
/* Reading temporary LOB data. [Example script: 3863.pc] */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
11-82 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a Temporary LOB
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void readTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Length, Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;

 /* Datatype Equivalencing is Mandatory for this Datatype */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Initialize the BFILE Locator */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Determine the Length of the BFILE */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;

 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Open the BFILE for Reading */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;

 /* Load the BFILE into the Temporary LOB */
 Amount = Length;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 /* Close the BFILE */
Temporary LOBs 11-83

Reading Data from a Temporary LOB
 EXEC SQL LOB CLOSE :Lob_loc;
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the Temporary LOB into the Buffer */
 EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
 printf("Read %d bytes\n", Buffer.Length);
 }
 printf("Read %d bytes\n", Amount);

 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators */
 EXEC SQL FREE :Temp_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-84 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Portion of Temporary LOB (Substr)
Reading Portion of Temporary LOB (Substr)

Figure 11–10 Use Case Diagram: Reading Portion of Temporary LOB from the Table (Substr)

Purpose
This procedure describes how to read portion of a temporary LOB (substr).

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

READ a
Portion of the LOB

(Substr.)
free

a temporary
LOB

Internal Temporary LOBs : READING a Portion of the LOB
from a Table (Subst.)
Temporary LOBs 11-85

Reading Portion of Temporary LOB (Substr)
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — SUBSTR

■ C (OCI): There is no applicable syntax reference for this use case.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB READ.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB LOAD. See also PL/SQL

DBMS_LOB.SUBSTR.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Reading a

Portion of the LOB (substr)" on page 10-126.

Scenario
These examples show the operation in terms of reading a portion of the image in the

AD_PHOTO column.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Reading a Portion of Temporary LOB (substr)

on page 11-86

■ C (OCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Reading a Portion of Temporary LOB (substr) on

page 11-87

■ C/C++ (Pro*C/C++): Reading a Portion of Temporary LOB (substr) on

page 11-89

■ Visual Basic (OO4O): No example is provided with this release.
11-86 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Portion of Temporary LOB (Substr)
■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Reading a Portion of Temporary LOB (substr)
/* Reading portion of a temporary LOB using substr. [Example script: 3864.sql]
 Example procedure substringTempLOB_proc is not part of DBMS_LOB package.
 This example assumes you have a ’monitor_photo_3060_11001’ file in a
 directory which has a ADPHOTO alias */
CREATE or REPLACE PROCEDURE substringTempLOB_proc IS
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
 Amount INTEGER := 32767;
 Bbuf RAW(32767);
 Position INTEGER :=128;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 Bbuf := DBMS_LOB.SUBSTR(Dest_loc, Amount, Position);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.CLOSE(Dest_loc);
END;

COBOL (Pro*COBOL): Reading a Portion of Temporary LOB (substr)
 * Reading portion of a temporary LOB using substr
 * [Example script: 3865.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ONE-READ-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(9) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 BUFFER2 PIC X(32767) VARYING.
Temporary LOBs 11-87

Reading Portion of Temporary LOB (Substr)
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).
 01 ISTEMP PIC S9(9) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 ONE-READ-BLOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.

 * Set up the directory and file information
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :SRC-BFILE GET LENGTH INTO :AMT
 END-EXEC.

 * Open source BFILE and destination temporary BLOB.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
11-88 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Portion of Temporary LOB (Substr)
 END-EXEC.

 * Perform a single read

 EXEC SQL
 LOB READ :AMT FROM :TEMP-BLOB INTO :BUFFER2
 END-EXEC.

 DISPLAY "Read ", BUFFER2, " from TEMP-BLOB".

 END-OF-BLOB.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Reading a Portion of Temporary LOB (substr)
/* Reading a portion of a temporary LOB. [Example script: 3866.pc]
 Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using
 anonymous PL/SQL blocks embedded in a Pro*C/C++ program, as this example
 shows. */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
Temporary LOBs 11-89

Reading Portion of Temporary LOB (Substr)
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 4096

void substringTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Position = 1024;
 unsigned int Length;
 int Amount = BufferLength;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Open the LOBs: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Determine the length of the BFILE and load it into the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 EXEC SQL LOB LOAD :Length FROM FILE :Lob_loc INTO :Temp_loc;
 /* Invoke SUBSTR() on the Temporary LOB inside a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Temp_loc, :Amount, :Position);
 END;
 END-EXEC;
 /* Process the Data in the Buffer. */
11-90 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Portion of Temporary LOB (Substr)
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources used by the locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-91

Comparing All or Part of Two Temporary LOBs
Comparing All or Part of Two Temporary LOBs

Figure 11–11 Use Case Diagram: Comparing All or Part of Two Temporary LOBs

Purpose
This procedure describes how to compare all or part of two temporary LOBs.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

COMPARE
All or Parts of

2 LOBs

free
a temporary

LOB

Internal Temporary LOBs : COMPARING All or Parts of Two LOBs
11-92 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Part of Two Temporary LOBs
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — COMPARE

■ C (OCI): There is no applicable syntax reference for this use case.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB COPY. See also PL/SQL DBMS_

LOB.COMPARE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB COPY. See also PL/SQL

DBMS_LOB.COMPARE.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC):

Comparing All or Part of Two LOBs" on page 10-134.

Scenario
The following examples compare two composite advertisements to see whether

they are different. Depending on the result of the comparison, the examples insert

the composite into the table.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Comparing All or Part of Two Temporary

LOBs on page 11-93

■ C (OCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Comparing All or Part of Two Temporary LOBs on

page 11-95

■ C/C++ (Pro*C/C++): Comparing All or Part of Two Temporary LOBs on

page 11-97
Temporary LOBs 11-93

Comparing All or Part of Two Temporary LOBs
■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Comparing All or Part of Two Temporary LOBs
/* Comparing all or part of two temporary LOBs [Example script: 3868.sql]
 The procedure compareTwoTemporPersistLOBs_proc is not part
 of DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE compareTwoTmpPerLOBs_proc IS
 Lob_loc1 BLOB;
 Lob_loc2 BLOB;
 Temp_loc BLOB;
 Amount INTEGER := 32767;
 Retval INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT ad_composite INTO Lob_loc1 FROM Print_media
 WHERE product_ID = 3060 AND ad_id = 11001;
 SELECT ad_composite INTO Lob_loc2 FROM Print_media
 WHERE product_ID = 2268 AND ad_id = 21001;

 /* Copy one of the composite ad files into a temp LOB and convert
 it to a different format before comparing the ads : */
 DBMS_LOB.CREATETEMPORARY(Temp_loc, TRUE);
 DBMS_LOB.OPEN(Temp_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Lob_loc1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(Lob_loc2, DBMS_LOB.LOB_READONLY);
 /* Copy the persistent LOB into the temp LOB: */
 DBMS_LOB.COPY(Temp_loc,Lob_loc2,DBMS_LOB.GETLENGTH(Lob_loc2),1,1);

 /* Perform some conversion function on the temp LOB before comparing it*/
 /* ...some_conversion_format_function(Temp_loc); */
 retval := DBMS_LOB.COMPARE(Lob_loc1, Temp_loc, Amount, 1, 1);
 IF retval = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Processing for equal frames’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Processing for non-equal frames’);
 END IF;
 DBMS_LOB.CLOSE(Temp_loc);
 DBMS_LOB.CLOSE(Lob_loc1);
 DBMS_LOB.CLOSE(Lob_loc2);
 /* Free the temporary LOB now that you are done using it: */
 DBMS_LOB.FREETEMPORARY(Temp_loc);
11-94 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Part of Two Temporary LOBs
 END;

COBOL (Pro*COBOL): Comparing All or Part of Two Temporary LOBs
 * Comparing all or part of two temporary LOBs [Example script: 3869.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BLOB-COMPARE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BLOB1 SQL-BLOB.
 01 BLOB2 SQL-BLOB.
 01 TEMP-BLOB SQL-BLOB.
 01 RET PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP VALUE 5.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 PROCEDURE DIVISION.
 BLOB-COMPARE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :BLOB2 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_COMPOSITE INTO :BLOB1
 FROM PRINT_MEDIA M WHERE M.PRODUCT_ID = 3106 AND AD_ID = 13001
 END-EXEC.

 EXEC SQL
 SELECT AD_COMPOSITE INTO :BLOB2
 FROM PRINT_MEDIA M WHERE M.PRODUCT_ID = 2268 AND AD_ID = 21001
 END-EXEC.
Temporary LOBs 11-95

Comparing All or Part of Two Temporary LOBs
 * Allocate and create a temporary LOB:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Open the BLOBs for READ ONLY, Open temp LOB READ/WRITE:
 EXEC SQL LOB OPEN :BLOB1 READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :BLOB2 READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.

 * Copy data from BLOB2 to the temporary BLOB:
 EXEC SQL
 LOB COPY :AMT FROM :BLOB2 TO :TEMP-BLOB
 END-EXEC.

 * Execute PL/SQL to use its COMPARE functionality:
 MOVE 5 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:BLOB1,:TEMP-BLOB,:AMT,1,1);
 END;
 END-EXEC.

 IF RET = 0
 * Logic for equal BLOBs goes here
 DISPLAY "BLOBs are equal"
 ELSE
 * Logic for unequal BLOBs goes here
 DISPLAY "BLOBs are not equal"
 END-IF.

 EXEC SQL LOB CLOSE :BLOB1 END-EXEC.
 EXEC SQL LOB CLOSE :BLOB2 END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.

 EXEC SQL FREE :TEMP-BLOB END-EXEC.

 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL FREE :BLOB2 END-EXEC.
 STOP RUN.
11-96 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Part of Two Temporary LOBs
 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Comparing All or Part of Two Temporary LOBs
/* Comparing all or part of two temporary LOBs. [Example script: 3870.pc]
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareTwoTempOrPersistLOBs_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2, *Temp_loc;
 int Amount = 128;
 int Retval;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Select the LOBs: */
 EXEC SQL SELECT ad_composite INTO :Lob_loc1
 FROM Print_media WHERE Product_ID = 3060 AND ad_id = 11001;
 EXEC SQL SELECT ad_composite INTO :Lob_loc2
 FROM Print_media WHERE Product_ID = 2268 AND ad_id = 21001;
Temporary LOBs 11-97

Comparing All or Part of Two Temporary LOBs
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Copy the Persistent LOB into the Temporary LOB: */
 EXEC SQL LOB COPY :Amount FROM :Lob_loc2 TO :Temp_loc;

 /* Compare the two Frames using DBMS_LOB.COMPARE() from within PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(:Lob_loc1, :Temp_loc, :Amount, 1, 1);
 END;
 END-EXEC;
 if (0 == Retval)
 printf("Frames are equal\n");
 else
 printf("Frames are not equal\n");
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareTwoTempOrPersistLOBs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-98 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Pattern Exists in a Temporary LOB (instr)
Determining If a Pattern Exists in a Temporary LOB (instr)

Figure 11–12 Use Case Diagram: Determining If a Pattern Exists in a Temporary LOB (instr)

Purpose
This procedure describes how to see if a pattern exists in a temporary LOB (instr).

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

SEE Where/if
a Pattern Exists

in the LOB
(Instr)

create
a temporary

LOB

free
a temporary

LOB

Internal Temporary LOBs : SEEING Where/if a Pattern
Exists in the LOB (Instr.)
Temporary LOBs 11-99

Determining If a Pattern Exists in a Temporary LOB (instr)
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — INSTR

■ C (OCI): There is no applicable syntax reference for this use case.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB COPY. See also PL/SQL DBMS_LOB.INSTR.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB COPY. See also DBMS_

LOB.INSTR.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Checking

for Patterns in the LOB (instr)" on page 10-142.

Scenario
The following examples examine the advertisement text to see if the string

"children" is present.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Determining If a Pattern Exists in a Temporary

LOB on page 11-100

■ C (OCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Determining If a Pattern Exists in a Temporary LOB

(instr) on page 11-101

■ Table , "C/C++ (Pro*C/C++): Determining If a Pattern Exists in a Temporary

LOB (instr)" on page 11-104

■ Visual Basic (OO4O): No example is provided with this release.
11-100 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Pattern Exists in a Temporary LOB (instr)
■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Determining If a Pattern Exists in a Temporary LOB
/* Determining if a pattern exists in a temporary LOB. [Example script:
3871.sql]
 Procedure instringTempLOB_proc is not part of DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE instringTempLOB_proc IS
 Lob_loc CLOB;
 Temp_clob CLOB;
 Pattern VARCHAR2(30) := ’children’; Position INTEGER := 0;
 Offset INTEGER := 1;
 Occurrence INTEGER := 1;
BEGIN
 /* Create the temp LOB and copy a CLOB into it: */
 DBMS_LOB.CREATETEMPORARY(Temp_clob,TRUE);
 SELECT ad_sourcetext INTO Lob_loc FROM Print_media
 WHERE Product_ID = 3060 AND ad_id = 11001;

 DBMS_LOB.OPEN(Temp_clob,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Lob_loc,DBMS_LOB.LOB_READONLY);
 /* Copy the CLOB into the temp CLOB: */
 DBMS_LOB.COPY(Temp_clob,Lob_loc,DBMS_LOB.GETLENGTH(Lob_loc),1,1);
 /* Seek the pattern in the temp CLOB: */
 Position := DBMS_LOB.INSTR(Temp_clob, Pattern, Offset, Occurrence);
 IF Position = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Pattern not found’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The pattern occurs at ’|| position);
 END IF;
 DBMS_LOB.CLOSE(Lob_loc);
 DBMS_LOB.CLOSE(Temp_clob);
 /* Free the temporary LOB: */
 DBMS_LOB.FREETEMPORARY(Temp_clob);
END;

COBOL (Pro*COBOL): Determining If a Pattern Exists in a Temporary LOB (instr)
* Determining if a pattern exists in a temporary LOB. [Example script: 3872.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CLOB-INSTR.
 ENVIRONMENT DIVISION.
Temporary LOBs 11-101

Determining If a Pattern Exists in a Temporary LOB (instr)
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 CLOB1 SQL-CLOB.
 01 TEMP-CLOB SQL-CLOB.
 01 PATTERN PIC X(8) VALUE "children".
 01 BUFFER2 PIC X(32767) VARYING.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 OCCURRENCE PIC S9(9) COMP VALUE 1.
 01 LEN PIC S9(9) COMP.
 01 POS PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 EXEC SQL VAR BUFFER2 IS LONG RAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 CLOB-INSTR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :CLOB1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-CLOB END-EXEC.
 EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
 EXEC SQL
 SELECT AD_SOURCETEXT INTO :CLOB1
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106 AND AD_ID = 11001
 END-EXEC.
 EXEC SQL ALLOCATE :TEMP-CLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-CLOB
 END-EXEC.

 * Open the CLOB for READ ONLY:
 EXEC SQL LOB OPEN :CLOB1 READ ONLY END-EXEC.
11-102 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Pattern Exists in a Temporary LOB (instr)
 * Use LOB describe to get the length of CLOB1:
 EXEC SQL
 LOB DESCRIBE :CLOB1 GET LENGTH INTO :LEN
 END-EXEC.
 EXEC SQL
 LOB COPY :LEN FROM :CLOB1 TO :TEMP-CLOB
 END-EXEC.

 * Execute PL/SQL to get INSTR functionality:
 EXEC SQL EXECUTE
 BEGIN
 :POS := DBMS_LOB.INSTR(:TEMP-CLOB,:PATTERN,
 :OFFSET, :OCCURRENCE);
 END;
 END-EXEC.

 IF POS = 0
 * Logic for pattern not found here
 DISPLAY "Pattern was not found"
 ELSE
 * Pos contains position where pattern is found
 DISPLAY "Pattern was found"
 END-IF.

 * Close and free the LOBs:
 EXEC SQL LOB CLOSE :CLOB1 END-EXEC.
 EXEC SQL FREE :TEMP-CLOB END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-CLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-CLOB END-EXEC.

 END-OF-CLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :CLOB1 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
Temporary LOBs 11-103

Determining If a Pattern Exists in a Temporary LOB (instr)
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Determining If a Pattern Exists in a Temporary LOB (instr)
/* Determining if a pattern exists in a temporary LOB using instr
 [Example script: 3873.pc] */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void instringTempLOB_proc()
{
 OCIClobLocator *Lob_loc, *Temp_loc;
 char *Pattern = "The End";
 unsigned int Length;
 int Position = 0;
 int Offset = 1;
 int Occurrence = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Persistent LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_sourcetext INTO :Lob_loc
 FROM print_media WHERE product_ID = 3060 AND ad_id = 11001;
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Determine the Length of the Persistent LOB: */
11-104 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a Pattern Exists in a Temporary LOB (instr)
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH into :Length;
 /* Copy the Persistent LOB into the Temporary LOB: */
 EXEC SQL LOB COPY :Length FROM :Lob_loc TO :Temp_loc;
 /* Seek the Pattern using DBMS_LOB.INSTR() in a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Position :=
 DBMS_LOB.INSTR(:Temp_loc, :Pattern, :Offset, :Occurrence);
 END;
 END-EXEC;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 instringTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-105

Finding the Length of a Temporary LOB
Finding the Length of a Temporary LOB

Figure 11–13 Use Case Diagram: Finding the Length of a Temporary LOB

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

GET the
Length of
the LOB

free
a temporary

LOB

Internal Temporary LOBs : GETTING the Length of the LOB
11-106 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Finding the Length of a Temporary LOB
Purpose
This procedure describes how to get the length of a temporary LOB.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — GETLENGTH

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobGetLength

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB DESCRIBE... GET LENGTH.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE...GET LENGTH

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC):

Determining the Length of a LOB" on page 10-150.

Scenario
The following examples get the length of the photo LOB to determine whether it

will run over the 4 gigabyte limit.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Finding the Length of a Temporary LOB on

page 11-107

■ C (OCI): Finding the Length of a Temporary LOB on page 11-108

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.
Temporary LOBs 11-107

Finding the Length of a Temporary LOB
■ COBOL (Pro*COBOL): Finding the Length of a Temporary LOB on page 11-110

■ C/C++ (Pro*C/C++): Finding the Length of a Temporary LOB on page 11-112

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Finding the Length of a Temporary LOB
/* Finding the length of a temporary LOB. [Example script: 3874.sql]
 Procedure getLengthTempCLOB_proc is not part of DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE getLengthTempCLOB_proc IS
 Length INTEGER;
 tlob CLOB;
 bufc VARCHAR2(8);
 Amount NUMBER;
 pos NUMBER;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
BEGIN
 DBMS_LOB.CREATETEMPORARY(tlob,TRUE);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(tlob,DBMS_LOB.LOB_READWRITE);
 /* Opening the file is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(tlob, Src_loc, Amount);
 /* Get the length of the LOB: */
 length := DBMS_LOB.GETLENGTH(tlob);
 IF length = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’LOB is empty.’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’ || length);
 END IF;
 /* Must close any lobs that were opened: */
 DBMS_LOB.CLOSE(tlob);
 DBMS_LOB.CLOSE(Src_loc);
 /* Free the temporary LOB now that we are done with it: */
 DBMS_LOB.FREETEMPORARY(tlob);
END;

C (OCI): Finding the Length of a Temporary LOB
/* Finding the length of a temporary LOB. [Example script: 3875.c]
11-108 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Finding the Length of a Temporary LOB
 This function takes a temporary LOB locator ’amount’ as argument, and
 prints out the length of the corresponding LOB. The function returns
 0 if it completes successfully, -1 if it fails.*/
sb4 print_length(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 ub4 length=0;
 ub4 amount = 4;
 ub4 pos = 1;
 OCILobLocator *bfile;
 OCILobLocator *tblob;
 sb4 return_code = 0;

 printf("in print_length\n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"ADPHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text *)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED\n");
 return_code = -1;
 }
 checkerr(errhp,(OCILobFileOpen(svchp, errhp,
 (OCILobLocator *) bfile,
 OCI_LOB_READONLY)));
 /* Create a temporary BLOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
Temporary LOBs 11-109

Finding the Length of a Temporary LOB
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1 ;
 }

 if(OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 (void) printf("FAILED: Open Temporary \n");
 return_code = -1;
 }

 if(OCILobLoadFromFile(svchp, errhp, tblob,(OCILobLocator*)bfile,
 (ub4)amount, (ub4)1,(ub4)1))
 {
 (void) printf("FAILED: Open Temporary \n");
 return_code = -1;
 }

 if (OCILobGetLength(svchp, errhp, tblob,&length))
 {
 printf ("FAILED: OCILobGetLength in print_length\n");
 return_code = -1;
 }

 /* Close the bfile and the temp LOB */
 checkerr(errhp,OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile));

 checkerr(errhp,OCILobClose(svchp, errhp, (OCILobLocator *) tblob));

 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 fprintf(stderr,"Length of LOB is %d\n",length);
 return return_code;
 }

COBOL (Pro*COBOL): Finding the Length of a Temporary LOB
 * Finding the length of a temporary LOB. [Example script: 3876.pco]
11-110 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Finding the Length of a Temporary LOB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-LENGTH.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 LEN PIC S9(9) COMP.
 01 LEN-D PIC 9(4).
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 PROCEDURE DIVISION.
 TEMP-LOB-LENGTH.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.
Temporary LOBs 11-111

Finding the Length of a Temporary LOB
 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Get the length of the temporary LOB:
 EXEC SQL
 LOB DESCRIBE :TEMP-BLOB GET LENGTH INTO :LEN
 END-EXEC.
 MOVE LEN TO LEN-D.
 DISPLAY "Length of TEMPORARY LOB is ", LEN-D.
 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Finding the Length of a Temporary LOB
/* Finding the length of a temporary LOB. [Example script: 3877.pc] */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
11-112 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Finding the Length of a Temporary LOB
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void getLengthTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "modem_photo_2268_21001";
 int Length, Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 /* Get the length of the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;

 /* Note that in this example, Length == Amount == 4096: */
 printf("Length is %d bytes\n", Length);

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB: */
Temporary LOBs 11-113

Finding the Length of a Temporary LOB
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-114 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One Temporary LOB to Another
Copying All or Part of One Temporary LOB to Another

Figure 11–14 Use Case Diagram: Copying All or Part of One Temporary LOB to Another

Purpose
This procedure describes how to copy all or part of one temporary LOB to another.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

COPY All or
Part of a LOB to

Another LOBfree
a temporary

LOB

Internal Temporary LOBs : COPYING All or Part of a LOB to Another LOB
Temporary LOBs 11-115

Copying All or Part of One Temporary LOB to Another
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — COPY

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobCopy.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB COPY.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB COPY

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Copying

All or Part of One LOB to Another LOB" on page 10-162.

Scenario
Assume the following table:

CREATE TABLE ad_library_tab of adheader_typ;

INSERT INTO adheader_tab
 (SELECT * FROM adheaderlib_tab Vtab1
 WHERE T2.creation_date = ’08/16/2001’);

These examples create a new LOB locator in table adheader_tab , and copy LOB

data from Vtab1 to the location pointed to by a new LOB locator inserted into table

adheader_tab.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Copying All or Part of One Temporary LOB on

page 11-116
11-116 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One Temporary LOB to Another
■ C (OCI): Copying All or Part of One Temporary LOB to Another on page 11-118

■ COBOL (Pro*COBOL): Copying All or Part of One Temporary LOB to Another

on page 11-121

■ C/C++ (Pro*C/C++): Copying All or Part of One Temporary LOB to Another

on page 11-123

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Copying All or Part of One Temporary LOB
/* Copying all or part of one temporary LOB to another. [Example script:
3880.sql]
 Procedure copyTempLOB_proc is not part of DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE copyTempLOB_proc IS
 Dest_pos NUMBER;
 Src_pos NUMBER;
 Dest_loc BLOB;
 Dest_loc2 BLOB;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
 Amount INTEGER := 32767;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc2,TRUE);
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the temporary LOBs is optional: */
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Dest_loc2,DBMS_LOB.LOB_READWRITE);

 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 /* Set Dest_pos to the position at which we should start writing in the
 target temp LOB */
 /* Copies the LOB from the source position to the destination
 position:*/
 /* Set amount to the amount you want copied */
 Amount := 328;
 Dest_pos := 1000;
 Src_pos := 1000;
 /* Set Src_pos to the position from which we should start copying data
 from tclob_src: */
 DBMS_LOB.COPY(Dest_loc2,Dest_loc, Amount, Dest_pos, Src_pos);
Temporary LOBs 11-117

Copying All or Part of One Temporary LOB to Another
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Dest_loc2);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc2);
END;

C (OCI): Copying All or Part of One Temporary LOB to Another
/* Copying all or part of one temporary LOB to another. [Example script: 3881.c]
 This function copies 4000 bytes from one temporary LOB to another. It reads
 the source LOB starting at offset 1, and writes to the destination at
 offset 2.
 The function returns 0 if it completes successfully, -1 otherwise. */
 sb4 copy_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIDefine *defnp1;
 OCILobLocator *tblob;
 OCILobLocator *tblob2;
 OCILobLocator *bfile;
 int rowind =1;
 ub4 amount=4000;
 ub4 src_offset=1;
 ub4 dest_offset=2;
 sb4 return_code = 0;

 printf("in copy_temp_lobs \n");

 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in copy_temp_lobs\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&bfile,
 (ub4)OCI_DTYPE_FILE, (size_t)0, (dvoid**)0))
 {
11-118 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One Temporary LOB to Another
 printf("OCIDescriptorAlloc failed in copy_temp_lobs\n");
 return -1;
 }

 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob2,
 (ub4)OCI_DTYPE_LOB, (size_t)0, (dvoid**)0))
 {
 printf("OCIDescriptorAlloc failed in copy_temp_lobs\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp, errhp, tblob2, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1;
 }

 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"ADPHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text *)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED\n");
 return_code = -1;
 }

 if(OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
Temporary LOBs 11-119

Copying All or Part of One Temporary LOB to Another
 return_code = -1;
 }
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob2, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return_code = -1;
 }

 if(OCILobLoadFromFile(svchp, errhp, tblob, (OCILobLocator*)bfile,
 (ub4)amount, (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
 }

 if (OCILobCopy(svchp, errhp, tblob2, tblob, amount, dest_offset,
 src_offset))
 {
 printf ("FAILED: OCILobCopy in copy_temp_lobs\n");
 return -1;
 }
 /* Close LOBs here */

 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobFileClose FAILED for bfile \n");
 return_code = -1;
 }
 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob2))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
 /* free the temporary lobs now that we are done using them */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 if(OCILobFreeTemporary(svchp, errhp, tblob2))
11-120 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One Temporary LOB to Another
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 return return_code;
}

COBOL (Pro*COBOL): Copying All or Part of One Temporary LOB to Another
 * Copying all or part of one temporary LOB to another
 * [Example script: 3882.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-BLOB-COPY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-DEST SQL-BLOB.
 01 TEMP-SRC SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 AMT PIC S9(9) COMP.

 * Define the source and destination position and location:
 01 SRC-POS PIC S9(9) COMP VALUE 1.
 01 DEST-POS PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 PROCEDURE DIVISION.
 TEMP-BLOB-COPY.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-DEST END-EXEC.
 EXEC SQL ALLOCATE :TEMP-SRC END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
Temporary LOBs 11-121

Copying All or Part of One Temporary LOB to Another
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-SRC
 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-SRC READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :TEMP-DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 * MOVE the desired amount to copy to AMT:
 MOVE 5 TO AMT.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-SRC
 END-EXEC.

 * Copy data from BFILE to temporary LOB:
 EXEC SQL
 LOB COPY :AMT FROM :TEMP-SRC AT :SRC-POS
 TO :TEMP-DEST AT :DEST-POS
 END-EXEC.

 EXEC SQL LOB CLOSE :TEMP-SRC END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-SRC
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL FREE :TEMP-SRC END-EXEC.
11-122 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying All or Part of One Temporary LOB to Another
 EXEC SQL FREE :TEMP-DEST END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Copying All or Part of One Temporary LOB to Another
/* Copying all or part of one temporary LOB to another. [Example script:
3883.pc] */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void copyTempLOB_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
Temporary LOBs 11-123

Copying All or Part of One Temporary LOB to Another
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
 /* Load a specified amount from the BFILE into one of the
 Temporary LOBs: */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Copy a specified amount from one Temporary LOB to another: */
 EXEC SQL LOB COPY :Amount FROM :Temp_loc1 TO :Temp_loc2;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-124 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a Temporary LOB
Copying a LOB Locator for a Temporary LOB

Figure 11–15 Use Case Diagram: Copying a LOB Locator for a Temporary LOB

Purpose
This procedure describes how to copy a LOB locator for a temporary LOB.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

READ a
Portion of the LOB

(Substr.)
free

a temporary
LOB

Internal Temporary LOBs : READING a Portion of the LOB
from a Table (Subst.)
Temporary LOBs 11-125

Copying a LOB Locator for a Temporary LOB
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
"DBMS_LOB" —CREATETEMPORARY, LOADFROMFILE, FREETEMPORARY

■ PL/SQL (DBMS_LOB):There is no applicable syntax reference for this use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobLocatorIsInit

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB ASSIGN.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Copying

a LOB Locator" on page 10-170.

Scenario
This generic operation copies one temporary LOB locator to another.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Copying a LOB Locator for a Temporary LOB

on page 11-126

■ C (OCI): Copying a LOB Locator for a Temporary LOB on page 11-128

■ COBOL (Pro*COBOL): Copying a LOB Locator for a Temporary LOB on

page 11-130

■ C/C++ (Pro*C/C++): Copying a LOB Locator for a Temporary LOB on

page 11-132

■ Visual Basic (OO4O): No example is provided with this release.
11-126 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a Temporary LOB
■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Copying a LOB Locator for a Temporary LOB

/* Copying a LOB locator for a temporary LOB.
 Procedure copyTempLOBLocator_proc is not part of DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE copyTempLOBLocator_proc(
 Lob_loc1 IN OUT CLOB, Lob_loc2 IN OUT CLOB) IS

 bufp VARCHAR2(4);
 Amount NUMBER := 32767;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc1,TRUE);
 DBMS_LOB.CREATETEMPORARY(Lob_loc2,TRUE);
 /* Populate the first temporary LOB with some data. */
 /* Opening file is mandatory: */
 DBMS_LOB.OPEN(Src_loc,DBMS_LOB.LOB_READONLY);
 /* Opening LOB is optional: */
 DBMS_LOB.OPEN(Lob_loc1,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Lob_loc2,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Lob_loc1,Src_loc,Amount);

 /* Assign Lob_loc1 to Lob_loc2 thereby creating a copy of the value of
 the temporary LOB referenced by Lob_loc1 at this point in time: */
 Lob_loc2 := Lob_loc1;

 /* When you write some data to the LOB through Lob_loc1, Lob_loc2
 will not see the newly written data whereas Lob_loc1 will see
 the new data: */
 /*Closing LOBs is mandatory if they were opened: */
 DBMS_LOB.CLOSE (Src_loc);
 DBMS_LOB.CLOSE (Lob_loc1);
 DBMS_LOB.CLOSE (Lob_loc2);
 DBMS_LOB.FREETEMPORARY(Lob_loc1);
 DBMS_LOB.FREETEMPORARY(Lob_loc2);

Note: Assigning one LOB to another using PL/SQL entails using

the "=" sign. This is discussed in more detail with regard to "Read

Consistent Locators" in Chapter 5, "Large Objects: Advanced

Topics".
Temporary LOBs 11-127

Copying a LOB Locator for a Temporary LOB
END;

C (OCI): Copying a LOB Locator for a Temporary LOB
* Copying a LOB locator for a temporary LOB. [Example script: 3886.c]
 This function creates two temporary lobs. It populates one and
 then copies the locator of that one to the other temporary
 LOB locator: */

sb4 copy_locators(OCIError *errhp,
 OCISvcCtx *svchp,
 OCIEnv *envhp)
{
 sb4 return_code = 0;
 OCILobLocator *tblob;
 OCILobLocator *tblob2;
 OCILobLocator *bfile;
 ub4 amount = 4000;

checkerr(errhp,OCIDescriptorAlloc((dvoid*)envhp,(dvoid**)&tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));

checkerr(errhp,OCIDescriptorAlloc((dvoid*)envhp,(dvoid**)&tblob2,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));

checkerr(errhp,OCIDescriptorAlloc((dvoid*)envhp,(dvoid**)&bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0));

 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"PHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text *)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED in load_temp\n");
 return -1;
 }

 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_FILE_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile load_temp \n");
11-128 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a Temporary LOB
 return -1;
 }

 if(OCILobCreateTemporary(svchp,errhp, tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if(OCILobCreateTemporary(svchp,errhp, tblob2,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob2, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 if(OCILobLoadFromFile(svchp, errhp, tblob, (OCILobLocator*)bfile,
 (ub4)amount, (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile failed \n");
 return_code = -1;
 }

 if(OCILobLocatorAssign(svchp,errhp, (CONST OCILobLocator *)tblob,&tblob2))
 {

 printf("OCILobLocatorAssign failed \n");
 return_code = -1;
 }
Temporary LOBs 11-129

Copying a LOB Locator for a Temporary LOB
 /* Close the lobs */
 if (OCILobFileClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
 return -1;
 }

 checkerr(errhp,(OCILobClose(svchp, errhp, (OCILobLocator *) tblob)));
 checkerr(errhp,(OCILobClose(svchp, errhp, (OCILobLocator *) tblob2)));

 /* Free the temporary lobs now that we are done using it */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 if(OCILobFreeTemporary(svchp, errhp, tblob2))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }
}

COBOL (Pro*COBOL): Copying a LOB Locator for a Temporary LOB
 * Copying a LOB locator for a temporary LOB
 * [Example script: 3887.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-BLOB-COPY-LOCATOR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".

 01 TEMP-DEST SQL-BLOB.
 01 TEMP-SRC SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 AMT PIC S9(9) COMP.
11-130 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a Temporary LOB
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-BLOB-COPY-LOCATOR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-DEST END-EXEC.
 EXEC SQL ALLOCATE :TEMP-SRC END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-SRC
 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-SRC READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :TEMP-DEST READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 * MOVE the desired amount to copy to AMT:
 MOVE 5 TO AMT.
 EXEC SQL
Temporary LOBs 11-131

Copying a LOB Locator for a Temporary LOB
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-SRC
 END-EXEC.

 * Assign source BLOB locator to destination BLOB locator:
 EXEC SQL
 LOB ASSIGN :TEMP-SRC TO :TEMP-DEST
 END-EXEC.

 EXEC SQL LOB CLOSE :TEMP-SRC END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-DEST END-EXEC.
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-SRC
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-DEST
 END-EXEC.
 EXEC SQL FREE :TEMP-SRC END-EXEC.
 EXEC SQL FREE :TEMP-DEST END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Copying a LOB Locator for a Temporary LOB
/* copying a lOB locator for a temporary LOB. [Example script: 3888.pc]
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
11-132 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a Temporary LOB
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void copyTempLobLocator_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Assign Temp_loc1 to Temp_loc2 thereby creating a copy of the value of
 the Temporary LOB referenced by Temp_loc1 at this point in time: */
 EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;

 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;

 /* Release resources held by the Locators: */
Temporary LOBs 11-133

Copying a LOB Locator for a Temporary LOB
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyTempLobLocator_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-134 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Is One Temporary LOB Locator Equal to Another
Is One Temporary LOB Locator Equal to Another

Figure 11–16 Use Case Diagram: Is One Temporary LOB Locator Equal to Another

Purpose
This procedure describes how to see if one LOB locator for a temporary LOB is

equal to another.

Usage Notes
If two locators are equal they refer to the same version of the LOB data (see "Read

Consistent Locators" in Chapter 5, "Large Objects: Advanced Topics").

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

SEE if
LOB locators

are equal

free
a temporary

LOB

Internal Temporary LOBs : SEEING if LOB Locators are Equal
Temporary LOBs 11-135

Is One Temporary LOB Locator Equal to Another
■ PL/SQL (DBMS_LOB): There is no applicable syntax reference for this use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobIsEqual

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN. See also C(OCI)

function, OCILobIsEqual

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Checking

If One LOB Locator Is Equal to Another" on page 10-177.

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package). No example is provided with this release.

■ C (OCI): Is One LOB Locator for a Temporary LOB Equal to Another on

page 11-136

■ COBOL (Pro*Cobol): No example is provided with this release.

■ C/C++ (Pro*C/C++): Is One LOB Locator for a Temporary LOB Equal to

Another on page 11-138

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Is One LOB Locator for a Temporary LOB Equal to Another
/* Equality - Is one temporary LOB locator equal to another? [Example script:
3889.c] */

sb4 ck_isequal (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *loc1;
11-136 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Is One Temporary LOB Locator Equal to Another
 OCILobLocator *loc2;
 boolean is_equal;
 is_equal= FALSE;
 if(OCILobCreateTemporary(svchp, errhp, loc1, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }
 if(OCILobCreateTemporary(svchp, errhp, loc2, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobIsEqual(envhp,loc1,loc2, &is_equal))
 {
 printf ("FAILED: OCILobLocatorIsEqual call\n");
 return -1;
 }
 if(is_equal)
 {
 fprintf (stderr,"LOB loators are equal \n");
 return -1;

 }else
 {
 fprintf(stderr,"LOB locators are not equal \n");
 }
 if(OCILobFreeTemporary(svchp,errhp,loc1))
 {
 printf("FAILED: OCILobFreeTemporary for temp LOB #1\n");
 return -1;
 }
 if(OCILobFreeTemporary(svchp,errhp,loc2))
 {
 printf("FAILED: OCILobFreeTemporary for temp LOB #2\n");
 return -1;
 }
OCILobDescriptor free????
 return 0;
 }
Temporary LOBs 11-137

Is One Temporary LOB Locator Equal to Another
C/C++ (Pro*C/C++): Is One LOB Locator for a Temporary LOB Equal to Another
/* Equality - Is one LOB locator for a temporary LOB equal to another? */
/* [Example script: 3890.pc] */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("sqlcode = %ld\n", sqlca.sqlcode);
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeTempLobLocatorsAreEqual_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount = 4096;
 OCIEnv *oeh;
 int isEqual = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

 /* Load a specified amount from the BFILE into one of the Temporary LOBs: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
11-138 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Is One Temporary LOB Locator Equal to Another
 /* Retrieve the OCI Environment Handle: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);

 /* Now assign Temp_loc1 to Temp_loc2 using Embedded SQL: */
 EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

 /* Determine if the Temporary LOBs are Equal: */
 (void) OCILobIsEqual(oeh, Temp_loc1, Temp_loc2, &isEqual);

 /* This time, isEqual should be 0 (FALSE): */
 printf("Locators %s equal\n", isEqual ? "are" : "are not");

 /* Assign Temp_loc1 to Temp_loc2 using C pointer assignment: */
 Temp_loc2 = Temp_loc1;

 /* Determine if the Temporary LOBs are Equal again: */
 (void) OCILobIsEqual(oeh, Temp_loc1, Temp_loc2, &isEqual);

 /* The value of isEqual should be 1 (TRUE) in this case: */
 printf("Locators %s equal\n", isEqual ? "are" : "are not");

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Note that because Temp_loc1 and Temp_loc2 are now equal, closing
 and freeing one will implicitely do the same to the other: */
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeTempLobLocatorsAreEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-139

Determining if a LOB Locator for a Temporary LOB Is Initialized
Determining if a LOB Locator for a Temporary LOB Is Initialized

Figure 11–17 Use Case Diagram: Determining If a LOB Locator for a Temporary LOB Is Initialized

Purpose
This procedure describes how to see if a LOB locator for a temporary LOB is

initialized.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): There is no applicable syntax reference for this use case.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

SEE if
LOB Locator
is initialized

Internal Temporary LOBs : SEEING if LOB Locator is Initialized
11-140 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining if a LOB Locator for a Temporary LOB Is Initialized
■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobLocatorIsInit

■ COBOL: A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB CREATE TEMPORARY.

See also C(OCI) function, OCILobLocatorIsInit

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "C (OCI): Checking If a

LOB Locator Is Initialized"

Scenario
This generic function takes a LOB locator and checks if it is initialized. If it is

initialized, then it prints out a message saying "LOB is initialized". Otherwise, it

reports "LOB is not initialized".

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package). No example is provided with this release.

■ C (OCI): Determining If a LOB Locator for a Temporary LOB Is Initialized on

page 11-141

■ COBOL (Pro*Cobol): No example is provided with this release.

■ C/C++ (Pro*C/C++): Determining If a LOB Locator Is Initialized on

page 11-142

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Determining If a LOB Locator for a Temporary LOB Is Initialized
/* Is a LOB locator for a temporary LOB is initialized? [Example script:3892.c]
 This function takes a LOB locator and checks if it is initialized. If it is
 initialized, it prints out a message, "LOB is initialized".
 Otherwise, it says "LOB is not initialized". This function returns
 0 if it completes successfully, -1 if it doesn’t. */

sb4 ck_isinit (OCILobLocator *lob_loc,
 OCIError *errhp,
Temporary LOBs 11-141

Determining if a LOB Locator for a Temporary LOB Is Initialized
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 boolean is_init;
 is_init= FALSE;
 if (OCILobLocatorIsInit(envhp,errhp, lob_loc, &is_init))
 {
 printf ("FAILED: OCILobLocatorIsInit call\n");
 return -1;
 }
 if(is_init)
 {
 printf ("LOB is initialized\n");
 }else
 {
 printf("LOB is not initialized\n");
 }
 return 0;
 }

C/C++ (Pro*C/C++): Determining If a LOB Locator Is Initialized
/* Is a LOB locator for a temporary LOB initialized? [Example script: 3893.pc]
*/

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}
void tempLobLocatorIsInit_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized = 0;
11-142 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining if a LOB Locator for a Temporary LOB Is Initialized
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized */
 (void) OCILobLocatorIsInit(oeh, err, Temp_loc, &isInitialized);
 if (isInitialized)
 printf("Locator is initialized\n");
 else
 printf("Locator is not initialized\n");
 /* Note that in this example, the locator is initialized. */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 tempLobLocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-143

Finding Character Set ID of a Temporary LOB
Finding Character Set ID of a Temporary LOB

Figure 11–18 Use Case Diagram: Finding Character Set ID for a Temporary LOB

Purpose
This procedure describes how to get the character set ID of a temporary LOB.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

GET Character
Set ID

free
a temporary

LOB

Internal Temporary LOBs : GETTING Character Set ID
11-144 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Finding Character Set ID of a Temporary LOB
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): A syntax reference is not applicable with this release.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobCharSetId

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "C (OCI): Determining

Character Set ID".

Scenario
This function takes a LOB locator and prints the character set id of the LOB.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package). No example is provided with this release.

■ C (OCI): Finding Character Set ID of a Temporary LOB on page 11-145

■ COBOL (Pro*Cobol): No example is provided with this release.

■ C/C++ (Pro*C/C++): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Finding Character Set ID of a Temporary LOB
/* Finding the character set id of a temporary LOB. [Example script: 3894.c]

This function takes a LOB locator and prints the character set id of the LOB.
 The function returns 0 if it completes successfully, -1 if it doesn’t. */
Temporary LOBs 11-145

Finding Character Set ID of a Temporary LOB
sb4 get_charsetid (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 ub2 charsetid=199;
 if(OCILobCreateTemporary(svchp, errhp, lob_loc, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobCharSetId(envhp, errhp, lob_loc, &charsetid))
 {
 printf ("FAILED: OCILobCharSetId call\n");
 return -1;
 }
 fprintf (stderr,"LOB charsetid is %d\n",charsetid);
 if(OCILobFreeTemporary(svchp,errhp,lob_loc))
 {
 printf("FAILED: OCILobFreeTemporary \n");
 return -1;
 }

 return 0;

}

11-146 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Finding Character Set Form of a Temporary LOB
Finding Character Set Form of a Temporary LOB

Figure 11–19 Use Case Diagram: Finding Character Set Form of a Temporary LOB

Purpose
This procedure describes how to get the character set form of a temporary LOB.

Usage Notes
Not applicable.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

GET Character
Set Form

create
a temporary

LOB

free
a temporary

LOB

Internal Temporary LOBs : GETTING Character Set Form
Temporary LOBs 11-147

Finding Character Set Form of a Temporary LOB
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): A syntax reference is not applicable in this release.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobCharSetForm

■ COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "C (OCI): Determining

Character Set Form".

Scenario
This function takes a LOB locator and prints the character set form for the LOB.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package). No example is provided with this release.

■ C (OCI): Finding Character Set Form of a Temporary LOB on page 11-148

■ COBOL (Pro*Cobol): No example is provided with this release.

■ C/C++ (Pro*C/C++): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Finding Character Set Form of a Temporary LOB
/* Finding the character set form of a temporary LOB [Example script: 3895.c]
 This function takes a LOB locator and prints out the character set form for
 the LOB. It returns 0 if it completes successfully, -1 if it doesn’t. */

sb4 get_charsetform (OCILobLocator *lob_loc,
 OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
11-148 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Finding Character Set Form of a Temporary LOB
 OCIEnv *envhp)
{
 ub1 charsetform =0;
 if(OCILobCreateTemporary(svchp,errhp,lob_loc,(ub2)0,
 SQLCS_IMPLICIT, OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobCharSetForm(envhp,errhp, lob_loc, &charsetform))
 {
 printf ("FAILED: OCILobCharSetForm call\n");
 return -1;
 }
 fprintf (stderr,"LOB charsetform is %d\n",charsetform);

 if(OCILobFreeTemporary(svchp,errhp,lob_loc))
 {
 printf("FAILED: OCILobFreeTemporary \n");
 return -1;
 }
 return 0;
 }
Temporary LOBs 11-149

Appending One Temporary LOB to Another
Appending One Temporary LOB to Another

Figure 11–20 Use Case Diagram: Appending One Temporary LOB to Another

Purpose
This procedure describes how to append one temporary LOB to another.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

APPEND One
LOB to
Another

free
a temporary

LOB

Internal Temporary LOBs : APPENDING One LOB to Another
11-150 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One Temporary LOB to Another
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — APPEND

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobAppend.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB APPEND.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB APPEND

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC):

Appending One LOB to Another" on page 10-201.

Scenario
These examples deal with the task of appending one segment of sound to another.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Appending One Temporary LOB to Another on

page 11-151

■ C (OCI): Appending One Temporary LOB to Another on page 11-152

■ COBOL (Pro*COBOL): Appending One Temporary LOB to Another

■ C/C++ (Pro*C/C++): Appending One Temporary LOB to Another

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.
Temporary LOBs 11-151

Appending One Temporary LOB to Another
PL/SQL (DBMS_LOB Package): Appending One Temporary LOB to Another
/* Appending one temporary LOB to another [Example script: 3896.sql]
 Procedure appendTempLOB_proc is not part of DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE appendTempLOB_proc IS
 Dest_loc2 CLOB;
 Dest_loc CLOB;
 Amount NUMBER;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
BEGIN
 DBMS_LOB.CREATETEMPORARY(Dest_loc,TRUE);
 DBMS_LOB.CREATETEMPORARY(Dest_loc2,TRUE);
 DBMS_LOB.OPEN(Dest_loc,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Dest_loc2,DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.OPEN(Src_loc,DBMS_LOB.LOB_READWRITE);
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 DBMS_LOB.LOADFROMFILE(Dest_loc2, Src_loc, Amount);
 DBMS_LOB.APPEND(Dest_loc, Dest_loc2);
 /* Close the temporary lobs and then free them: */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Dest_loc2);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc);
 DBMS_LOB.FREETEMPORARY(Dest_loc2);
END;

C (OCI): Appending One Temporary LOB to Another
/* Appending one temporary LOB to another [Example script: 3897.c]
 This function takes two temporary LOB locators and appends the second
 LOB to the first one. It returns 0 if it completes successfully, -1,
 otherwise.*/

sb4 append_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *tblob;
 OCILobLocator *tblob2;
 OCILobLocator *bfile;
 ub4 amt = 4000;
11-152 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One Temporary LOB to Another
 sb4 return_code = 0;

 printf("in append \n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob2,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in print_length\n");
 return -1;
 }

 /* Set the BFILE to point to the monitor_photo file */
 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"PHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text *)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED\n");
 return -1;
 }

 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
Temporary LOBs 11-153

Appending One Temporary LOB to Another
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob2,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return_code = -1;
 }

 /* Open the lobs: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB tblob \n");
 return_code = -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob2, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB, tblob2 \n");
 return_code = -1;
 }

 /* Populate the source temporary LOB with some data: */

 if(OCILobLoadFromFile(svchp, errhp, tblob,(OCILobLocator*)bfile,
 (ub4)amt, (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
 }

 /* Append the source LOB to the dest temp LOB: */
 if (OCILobAppend(svchp, errhp,tblob2,tblob))
 {
 printf ("FAILED: OCILobAppend in append_temp_lobs\n");
 return_code = -1;
 }else
 {
 printf("Append succeeded\n");
 }
11-154 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One Temporary LOB to Another
 if(OCILobFreeTemporary(svchp,errhp,tblob))
 {
 printf("FAILED: OCILobFreeTemporary \n");
 return_code = -1;
 }
 if(OCILobFreeTemporary(svchp,errhp,tblob2))
 {
 printf("FAILED: OCIlobFreeTemporary\n");
 return_code = -1;
 }
 return return_code;
 }

COBOL (Pro*COBOL): Appending One Temporary LOB to Another
 * Appending one temporary LOB to another [Example script: 3898.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. APPEND-TEMP-BLOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * Define the username and password:
 01 USERID PIC X(11) VALUES "SAMP/SAMP".

 * Define the temporary LOBs and the source BFILE:
 01 TEMP-BLOB1 SQL-BLOB.
 01 TEMP-BLOB2 SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 AMT PIC S9(9) COMP.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.

 * Define the source position in BFILE:
 01 SRC-POS PIC S9(9) COMP.

 * Define the line number in case of error:
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 PROCEDURE DIVISION.
 APPEND-TEMP-BLOB.
Temporary LOBs 11-155

Appending One Temporary LOB to Another
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB1 END-EXEC.
 EXEC SQL ALLOCATE :TEMP-BLOB2 END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB1
 END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB2
 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_11001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB2 READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :TEMP-BLOB1 READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 DISPLAY "LOBs opened.".

 * Move the desired amount to copy to AMT:
 MOVE 5 TO AMT.
 MOVE 1 TO SRC-POS.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE
 AT :SRC-POS INTO :TEMP-BLOB1
 END-EXEC.

 ADD 1 TO AMT GIVING SRC-POS.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE
 AT :SRC-POS INTO :TEMP-BLOB2
11-156 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One Temporary LOB to Another
 END-EXEC.
 DISPLAY "Temporary LOBs loaded".

 EXEC SQL
 LOB APPEND :TEMP-BLOB2 TO :TEMP-BLOB1
 END-EXEC.
 DISPLAY "LOB APPEND complete.".

 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB1
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB2
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB1 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB2 END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Appending One Temporary LOB to Another
/* Appending one temporary LOB to another. [Example script: 3899.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
Temporary LOBs 11-157

Appending One Temporary LOB to Another
 exit(1);
}

void appendTempLOB_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount = 2048;
 int Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

 /* Load a specified amount from the BFILE into the first Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc1;

 /* Set the Position for the next load from the same BFILE: */
 Position = Amount + 1;

 /* Load a second amount from the BFILE into the second Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc2;

 /* Append the second Temporary LOB to the end of the first one: */
 EXEC SQL LOB APPEND :Temp_loc2 TO :Temp_loc1;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;

 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
11-158 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Appending One Temporary LOB to Another
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 appendTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-159

Write-Appending to a Temporary LOB
Write-Appending to a Temporary LOB

Figure 11–21 Use Case Diagram: Write-Appending to a Temporary LOB

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

free
a temporary

LOB

User/
Program

WRITING
to the END of

LOB

Internal Temporary LOBs : WRITING to the END of LOB
11-160 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Write-Appending to a Temporary LOB
Purpose
This procedure describes how to write append to a temporary LOB.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — WRITEAPPEND

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobWriteAppend

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB WRITE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Writing to

the End of (Append-Write to) a LOB" on page 10-210.

Scenario
These examples read in 32767 bytes of data from an image file and append it to a

temporary LOB.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Writing-Appending to a Temporary LOB on

page 11-161

■ C (OCI): Writing-Appending to a Temporary LOB on page 11-162

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.
Temporary LOBs 11-161

Write-Appending to a Temporary LOB
■ COBOL (Pro*COBOL): Write-Appending to a Temporary LOB on page 11-164

■ C/C++ (Pro*C/C++): Write-Appending to a Temporary LOB on page 11-166

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Writing-Appending to a Temporary LOB
/* Write-appending to a temporary LOB. [Example script: 3900.sql]
 Procedure writeAppendTempLOB_proc is not part of DBMS_LOB package.
 This procedure reads in 32767 bytes of data from the monitor_photo_3060_11001
 file and appends it to a temporary LOB. */

CREATE OR REPLACE PROCEDURE writeAppendTempLOB_proc IS
 Lob_loc BLOB;
 Buffer RAW(32767);
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
 Amount Binary_integer := 32767;
 Position Binary_integer := 128;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE);
 /* Opening the temporary LOB is optional: */
 DBMS_LOB.OPEN(Lob_loc,DBMS_LOB.LOB_READWRITE);
 /* Opening the FILE is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Fill the buffer with data: */
 DBMS_LOB.LOADFROMFILE (Lob_loc,Src_loc, Amount);

 /* Append the data from the buffer to the end of the LOB: */
 DBMS_LOB.WRITEAPPEND(Lob_loc, Amount, Buffer);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.CLOSE(Lob_loc);
 DBMS_LOB.FREETEMPORARY(Lob_loc);
END;

C (OCI): Writing-Appending to a Temporary LOB
/* Write-appending to a temporary LOB [Example script: 3901.c] */

#define MAXBUFLEN 32767
sb4 write_append_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
11-162 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Write-Appending to a Temporary LOB
 OCIEnv *envhp)
{
 OCIClobLocator *tclob;
 unsigned int Total = 40000;
 unsigned int amtp;
 unsigned int nbytes;
 ub1 bufp[MAXBUFLEN];

 /* Allocate the locators desriptors: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tclob ,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 if(OCILobCreateTemporary(svchp, errhp, tclob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_CLOB, OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the CLOB */
 printf("calling open \n");
 checkerr (errhp, (OCILobOpen(svchp, errhp, tclob, OCI_LOB_READWRITE)));

 nbytes = MAXBUFLEN; /* We will use Streaming via Standard Polling */

 /* Fill the Buffer with nbytes worth of Data */
 memset(bufp,’a’,32767);

 amtp = sizeof(bufp);
 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE */

 printf("calling write append \n");
 checkerr (errhp, OCILobWriteAppend (svchp, errhp, tclob, &amtp,
 bufp, nbytes, OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 printf("calling close \n");
 /* Closing the LOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tclob));

 /* Free the temporary LOB: */
 printf("calling free\n");
 checkerr(errhp,OCILobFreeTemporary(svchp,errhp,tclob));
Temporary LOBs 11-163

Write-Appending to a Temporary LOB
 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tclob, (ub4) OCI_DTYPE_LOB);
 }

COBOL (Pro*COBOL): Write-Appending to a Temporary LOB
 * Write-appending to a temporary LOB. [Example script: 3902.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-APPEND-TEMP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 BUFFER PIC X(2048).
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 EXEC SQL VAR BUFFER IS RAW(2048) END-EXEC.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-APPEND-TEMP.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.
11-164 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Write-Appending to a Temporary LOB
 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_11001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 MOVE "262626" TO BUFFER.
 MOVE 3 TO AMT.
 * Append the data in BUFFER to TEMP-BLOB:
 EXEC SQL
 LOB WRITE APPEND :AMT FROM :BUFFER INTO :TEMP-BLOB
 END-EXEC.
 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
Temporary LOBs 11-165

Write-Appending to a Temporary LOB
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Write-Appending to a Temporary LOB
/* Write-appending to a temporary LOB. [Example script: 3903.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void writeAppendTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
11-166 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Write-Appending to a Temporary LOB
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB: */
 Amount = 2048;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 strcpy((char *)Buffer.Data, "afafafafafaf");
 Buffer.Length = 6;

 /* Write the contents of the Buffer to the end of the Temporary LOB: */
 Amount = Buffer.Length;
 EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Temp_loc;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeAppendTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-167

Writing Data to a Temporary LOB
Writing Data to a Temporary LOB

Figure 11–22 Use Case Diagram: Writing Data to a Temporary LOB

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

free
a temporary

LOB

disable
buffering

WRITE Data
to the LOB

enable
buffering

flush
buffer

Internal Temporary LOBs : WRITING Data to the LOB
11-168 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a Temporary LOB
Purpose
This procedure describes how to write data to a temporary LOB.

Usage Notes

Stream Writing The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled using polling or a callback.

If you know how much data will be written to the LOB specify that amount when

calling OCILobWrite (). This will allow for the contiguity of the LOB data on disk.

Apart from being spatially efficient, contiguous structure of the LOB data will make

for faster reads and writes in subsequent operations.

Using DBMS_LOB.WRITE() to Write Data to a Temporary BLOB When you are passing a

hexadecimal string to DBMS_LOB.WRITE() to write data to a BLOB, use the

following guidelines:

■ The amount parameter should be <= the buffer length parameter

■ The length of the buffer should be ((amount *2) - 1). This guideline exists

because the two characters of the string are seen as one hexadecimal character

(and an implicit hexadecimal-to-raw conversion takes place), that is, every two

bytes of the string are converted to one raw byte.

The following example is correct:

/* Writing data to a temporary LOB. [Example script: 3905.sql]

declare
 blob_loc BLOB;
 rawbuf RAW(10);
 an_offset INTEGER := 1;
 an_amount BINARY_INTEGER := 10;
begin
 select blob_col into blob_loc from a_table
where id = 1;
 rawbuf := ’1234567890123456789’;
 dbms_lob.write(blob_loc, an_amount, an_offset,
rawbuf);
 commit;
end;

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.
Temporary LOBs 11-169

Writing Data to a Temporary LOB
Replacing the value for 'an_amount' in the previous example with the following

values, yields error message, ora_21560:

 an_amount BINARY_INTEGER := 11;
or

 an_amount BINARY_INTEGER := 19;

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — WRITE

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobWrite

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB WRITE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Writing

Data to a LOB" on page 10-226.

Scenario
The example procedures allow the ad_sourcetext data (the text for the

advertisement) to be updated by writing data to the LOB.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Writing Data to a Temporary LOB on

page 11-170

■ C (OCI): Writing Data to a Temporary LOB on page 11-171

■ COBOL (Pro*COBOL): Writing Data to a Temporary LOB on page 11-174

■ C/C++ (Pro*C/C++): Writing Data to a Temporary LOB on page 11-176
11-170 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a Temporary LOB
■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Writing Data to a Temporary LOB
/* Writing data to a temporary LOB [Example script: 3909.sql]
 Procedure writeDataToTempLOB_proc is not part of DBMS_LOB package. */

CREATE or REPLACE PROCEDURE writeDataToTempLOB_proc IS
 Lob_loc CLOB;
 Buffer VARCHAR2(26);
 Amount BINARY_INTEGER := 26;
 Position INTEGER := 1;
 i INTEGER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Fill the buffer with data to write to the LOB: */
 Buffer := ’abcdefghijklmnopqrstuvwxyz’;

 FOR i IN 1..3 LOOP
 DBMS_LOB.WRITE (Lob_loc, Amount, Position, Buffer);
 /* Fill the buffer with more data to write to the LOB: */
 Position := Position + Amount;
 END LOOP;
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 DBMS_LOB.FREETEMPORARY(Lob_loc);
END;

C (OCI): Writing Data to a Temporary LOB
/* Writing data to a temporary LOB. [Example script: 3910] */
/* This example illustrates streaming writes with polling */

#define MAXBUFLEN 32767
sb4 write_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCIClobLocator *tclob;
Temporary LOBs 11-171

Writing Data to a Temporary LOB
 unsigned int Total = 40000;
 unsigned int amtp;
 unsigned int offset;
 unsigned int remainder, nbytes;
 boolean last;
 ub1 bufp[MAXBUFLEN];
 sb4 err;

 /* Allocate the locators descriptors: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tclob ,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 if(OCILobCreateTemporary(svchp,
 errhp,
 tclob,
 (ub2)0,
 SQLCS_IMPLICIT,
 OCI_TEMP_CLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the CLOB: */
 checkerr (errhp, (OCILobOpen(svchp, errhp, tclob, OCI_LOB_READWRITE)));

 if (Total > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* We will use Streaming via Standard Polling */
 else
 nbytes = Total; /* Only a single WRITE is required */

 /* Fill the Buffer with nbytes worth of Data: */
 memset(bufp,’a’,32767);

 remainder = Total - nbytes;
 amtp = 0;
 offset = 1;
 /* Setting Amount to 0 streams the data until use specifies OCI_LAST_PIECE: */

 if (0 == remainder)
 {
 amtp = nbytes;
 /* Here, (Total <= MAXBUFLEN) so we can WRITE in ONE piece: */
11-172 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a Temporary LOB
 checkerr (errhp, OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));
 }
 else
 {
 /* Here (Total > MAXBUFLEN) so we use Streaming via Standard Polling: */
 /* WRITE the FIRST piece. Specifying FIRST initiates Polling: */
 err = OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_FIRST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);

 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);

 last = FALSE;
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
 {
 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= MAXBUFLEN) */
 last = TRUE; /* This is going to be the Final piece */
 }

 /* Fill the Buffer with nbytes worth of Data */

 if (last)
 {
 /* Specifying LAST terminates Polling */
 err = OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_LAST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);

 if (err != 0)
 checkerr (errhp, err);
Temporary LOBs 11-173

Writing Data to a Temporary LOB
 } else

 {
 err = OCILobWrite (svchp, errhp, tclob, &amtp,
 offset, bufp, nbytes,
 OCI_NEXT_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT);

 if (err != OCI_NEED_DATA)
 checkerr (errhp, err);

 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 /* At this point, (remainder == 0) */

 /* Closing the LOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tclob));

 /* Free the temporary LOB: */
 checkerr(errhp,OCILobFreeTemporary(svchp,errhp,tclob));

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tclob, (ub4) OCI_DTYPE_LOB);
}

COBOL (Pro*COBOL): Writing Data to a Temporary LOB
 * Writing data to a temporary LOB [Example script: 3911.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRITE-TEMP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-CLOB SQL-CLOB.
 01 BUFFER PIC X(20) VARYING.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
11-174 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a Temporary LOB
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 WRITE-TEMP.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-CLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-CLOB
 END-EXEC.
 EXEC SQL LOB OPEN :TEMP-CLOB READ WRITE END-EXEC.

 MOVE "ABCDE12345ABCDE12345" TO BUFFER-ARR.
 MOVE 20 TO BUFFER-LEN.
 MOVE 20 TO AMT.
 * Append the data in BUFFER to TEMP-CLOB:
 EXEC SQL LOB WRITE :AMT FROM :BUFFER INTO :TEMP-CLOB END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :TEMP-CLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL LOB FREE TEMPORARY :TEMP-CLOB END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-CLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
Temporary LOBs 11-175

Writing Data to a Temporary LOB
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Writing Data to a Temporary LOB
/* Writing data to a temporary LOB. [Example script: 3912] */

#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void writeDataToTempLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Open the Temporary LOB: */
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use Streaming via Standard Polling */
 else
 nbytes = Total; /* Only a single WRITE is required */
 /* Fill the Buffer with nbytes worth of Data: */
11-176 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Writing Data to a Temporary LOB
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can WRITE in ONE piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so use Streaming via Standard Polling */
 /* WRITE the FIRST piece. Specifying FIRST initiates Polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write FIRST %d characters\n", Buffer.len);
 last = FALSE;
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= BufferLength) */
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the Buffer with nbytes worth of Data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates Polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
Temporary LOBs 11-177

Writing Data to a Temporary LOB
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written. */
 /* Close the Temporary LOB: */
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Free resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeDataToTempLOB_proc(1); /* Write One Piece */
 writeDataToTempLOB_proc(4); /* Write Multiple Pieces using Polling */
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-178 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming Temporary LOB Data
Trimming Temporary LOB Data

Figure 11–23 Use Case Diagram: Trimming Temporary LOB Data

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

TRIM the
LOB Data

free
a temporary

LOB

Internal Temporary LOBs : TRIMMING the LOB Data
Temporary LOBs 11-179

Trimming Temporary LOB Data
Purpose
This procedure describes how to trim temporary LOB data.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — TRIM

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobTrim

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB TRIM.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB TRIM

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Java (JDBC): Trimming

LOB Data" on page 10-236.

Scenario
The following examples access text (CLOB data) referenced in the ad_finaltext
column of table adheader_tab , and trim it.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Trimming Temporary LOB Data on page 11-180

■ C (OCI): Trimming Temporary LOB Data on page 11-181

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.
11-180 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming Temporary LOB Data
■ COBOL (Pro*COBOL): Trimming Temporary LOB Data on page 11-184

■ C/C++ (Pro*C/C++): Trimming Temporary LOB Data on page 11-185

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

PL/SQL (DBMS_LOB Package): Trimming Temporary LOB Data
/* Trimming temporary LOB data. [Example script: 3914.sql]
 Procedure trimTempLOB_proc is not part of DBMS_LOB package. */

CREATE OR REPLACE PROCEDURE trimTempLOB_proc IS
 Lob_loc CLOB;
 Amount number;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
 TrimAmount number := 100;
BEGIN
 /* Create a temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);
 /* Opening the file is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Populate the temporary LOB with some data: */
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(Lob_loc, Src_loc, Amount);
 DBMS_LOB.TRIM(Lob_loc,TrimAmount);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.FREETEMPORARY(Lob_loc);
COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Trimming Temporary LOB Data
/* Trimming temporary LOB data. [Example script: 3915.c]

sb4 trim_temp_lobs (OCIError *errhp,
Temporary LOBs 11-181

Trimming Temporary LOB Data
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
{
 OCILobLocator *tblob;
 OCILobLocator *bfile;
 ub4 amt = 4000;
 ub4 trim_size = 2;
 sb4 return_code = 0;

 printf("in trim\n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in trim\n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED in trim\n");
 return -1;
 }

 /* Set the BFILE to point to the monitor_photo file: */
 if(OCILobFileSetName(envhp, errhp, &bfile, (text *)"ADPHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text *)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED\n");
 return -1;
 }

 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE,
11-182 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming Temporary LOB Data
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return_code = -1;
 }

 /* populate the temp LOB with 4000 bytes of data */
 if(OCILobLoadFromFile(svchp, errhp, tblob, (OCILobLocator*)bfile,
 (ub4)amt,(ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;
 }

 if (OCILobTrim(svchp, errhp, (OCILobLocator *) tblob, trim_size))
 {
 printf("OCILobTrim FAILED for temp LOB \n");
 return_code = -1;
 } else
 {
 printf("OCILobTrim succeeded for temp LOB \n");
 }

 if (OCILobClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
 return_code = -1;
 }

 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
Temporary LOBs 11-183

Trimming Temporary LOB Data
 }
 return return_code;
 }

COBOL (Pro*COBOL): Trimming Temporary LOB Data
 * Trimming temporary LOB data. [Example script: 3916.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-TRIM.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-TRIM.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE and BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
11-184 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming Temporary LOB Data
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Trim the last half of the data:
 MOVE 5 TO AMT.
 EXEC SQL LOB TRIM :TEMP-BLOB TO :AMT END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.

 * Free the temporary LOB:
 EXEC SQL LOB FREE TEMPORARY :TEMP-BLOB END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Trimming Temporary LOB Data
/* Trimming temporary LOB data. [Example script: 3917.pc] */
Temporary LOBs 11-185

Trimming Temporary LOB Data
void trimTempLOB_proc()
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void trimTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount = 4096;
 int trimLength;

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load the specified amount from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 /* Set the new length of the Temporary LOB: */
 trimLength = (int) (Amount / 2);

 /* Trim the Temporary LOB to its new length: */
 EXEC SQL LOB TRIM :Temp_loc TO :trimLength;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
11-186 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Trimming Temporary LOB Data
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 trimTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-187

Erasing Part of a Temporary LOB
Erasing Part of a Temporary LOB

Figure 11–24 Use Case Diagram: Erasing Part of a Temporary LOB

Purpose
This procedure describes how to erase part of a temporary LOB.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

ERASE Part
of a LOB

free
a temporary

LOB

Internal Temporary LOBs : ERASING Part of a LOB
11-188 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a Temporary LOB
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — ERASE

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobErase

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB ERASE.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ERASE

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See "Java (JDBC): Erasing Part of a LOB" on page 10-248 in

Chapter 10, "Internal Persistent LOBs".

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Erasing Part of a Temporary LOB on

page 11-189

■ (OCI): Erasing Part of a Temporary LOB on page 11-190

■ COBOL (Pro*COBOL): Erasing Part of a Temporary LOB on page 11-193

■ C/C++ (Pro*C/C++): Erasing Part of a Temporary LOB on page 11-195

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.
Temporary LOBs 11-189

Erasing Part of a Temporary LOB
PL/SQL (DBMS_LOB Package): Erasing Part of a Temporary LOB
/* Erasing part of a temporary LOB. [Example script: 3918.sql]
 Procedure eraseTempLOB_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE trimTempLOB_proc IS
 Lob_loc CLOB;
 amt number;
 Src_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’monitor_photo_3060_11001’);
 Amount INTEGER := 32767;
BEGIN

 /* Create a temporary LOB: */
 DBMS_LOB.CREATETEMPORARY(Lob_loc,TRUE);

 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN (Lob_loc, DBMS_LOB.LOB_READWRITE);

 /* Populate the temporary LOB with some data: */
 Amount := 32767;
 DBMS_LOB.LOADFROMFILE(Lob_loc, Src_loc, Amount);
 /* Erase the LOB data: */
 amt := 3000;
 DBMS_LOB.ERASE(Lob_loc, amt, 2);

 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE (Lob_loc);
 DBMS_LOB.CLOSE(Src_loc);
 DBMS_LOB.FREETEMPORARY(Lob_loc);
COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

(OCI): Erasing Part of a Temporary LOB
/* Erasing part of a temporary LOB. [Example script: 3919.c]
 This example erases 2 bytes at offset 100 in a temporary LOB: */

sb4 erase_temp_lobs (OCIError *errhp,
 OCISvcCtx *svchp,
 OCIStmt *stmthp,
 OCIEnv *envhp)
11-190 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a Temporary LOB
{
 OCILobLocator *tblob;
 OCILobLocator *bfile;
 ub4 amt = 4000;
 ub4 erase_size = 2;
 ub4 erase_offset = 100;
 sb4 return_code = 0;

 printf("in erase\n");
 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &tblob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED \n");
 return -1;
 }

 if(OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &bfile,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0))
 {
 printf("OCIDescriptor Alloc FAILED \n");
 return -1;
 }

 /* Set the BFILE to point to the monitor_photo_3060_11001 file: */
 if(OCILobFileSetName(envhp, errhp, &bfile,
 (text *)"ADPHOTO_DIR",
 (ub2)strlen("ADPHOTO_DIR"),
 (text *)"monitor_photo_3060_11001",
 (ub2)strlen("monitor_photo_3060_11001")))
 {
 printf("OCILobFileSetName FAILED\n");
 return -1;
 }

 if (OCILobFileOpen(svchp, errhp, (OCILobLocator *) bfile, OCI_LOB_READONLY))
 {
 printf("OCILobFileOpen FAILED for the bfile\n");
 return_code = -1;
 }

 if(OCILobCreateTemporary(svchp,errhp,tblob,(ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB, OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
Temporary LOBs 11-191

Erasing Part of a Temporary LOB
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return_code = -1;
 }

 /* Populate the temp LOB with 4000 bytes of data: */
 if(OCILobLoadFromFile(svchp,
 errhp,
 tblob,
 (OCILobLocator*)bfile,
 (ub4)amt,
 (ub4)1,(ub4)1))
 {
 printf("OCILobLoadFromFile FAILED\n");
 return_code = -1;

 }

 if (OCILobErase(svchp, errhp, (OCILobLocator *) tblob, &erase_size,
 erase_offset))
 {
 printf("OCILobErase FAILED for temp LOB \n");
 return_code = -1;
 } else
 {
 printf("OCILobErase succeeded for temp LOB \n");
 }

 if (OCILobClose(svchp, errhp, (OCILobLocator *) bfile))
 {
 printf("OCILobClose FAILED for bfile \n");
 return_code = -1;
 }

 if (OCILobClose(svchp, errhp, (OCILobLocator *) tblob))
 {
 printf("OCILobClose FAILED for temporary LOB \n");
 return_code = -1;
 }
 /* free the temporary LOB now that we are done using it */
11-192 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a Temporary LOB
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return_code = -1;
 }
 return return_code;
 }

COBOL (Pro*COBOL): Erasing Part of a Temporary LOB
 * Erasing part of a temporary LOB. [Example script: 3920.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-BLOB-ERASE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP VALUE 10.
 01 POS PIC S9(9) COMP VALUE 1.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.
 PROCEDURE DIVISION.
 TEMP-BLOB-ERASE.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locator:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CREATE TEMPORARY :TEMP-BLOB END-EXEC.

 * Set up the directory and file information:
Temporary LOBs 11-193

Erasing Part of a Temporary LOB
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME
 END-EXEC.

 * Open source BFILE and destination temporary BLOB:
 EXEC SQL LOB OPEN :TEMP-BLOB READ WRITE END-EXEC.
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :TEMP-BLOB
 END-EXEC.

 * Erase some of the LOB data:
 EXEC SQL
 LOB ERASE :AMT FROM :TEMP-BLOB AT :POS
 END-EXEC.

 * Close the LOBs
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :TEMP-BLOB END-EXEC.
 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * And free the LOB locators:
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
11-194 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Erasing Part of a Temporary LOB
 STOP RUN.

C/C++ (Pro*C/C++): Erasing Part of a Temporary LOB
/* Erasing part of a temporary LOB. [Example script: 3921.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void eraseTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADPHOTO_DIR", *Name = "monitor_photo_3060_11001";
 int Amount;
 int Position = 1024;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB: */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
Temporary LOBs 11-195

Erasing Part of a Temporary LOB
 /* Erase a specified amount from the Temporary LOB at a given position: */
 Amount = 2048;
 EXEC SQL LOB ERASE :Amount FROM :Temp_loc AT :Position;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 eraseTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-196 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Enabling LOB Buffering for a Temporary LOB
Enabling LOB Buffering for a Temporary LOB

Figure 11–25 Use Case Diagram: Enabling LOB Buffering for a Temporary LOB

Purpose
This procedure describes how to enable LOB buffering for a temporary LOB.

Usage Notes
Enable buffering when performing a small series of reads or writes. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

flush
buffer

disable
buffering

create
a temporary

LOB

free
a temporary

LOB

ENABLE
Buffering

Internal Temporary LOBs : ENABLING Buffering
Temporary LOBs 11-197

Enabling LOB Buffering for a Temporary LOB
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): There is no applicable syntax reference for this use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCIEnableLobBuffering, OCIDisbleLobBuffering,

OCILobFlushBuffer

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB ENABLE BUFFERING.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ENABLE BUFFERING

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Enabling LOB

Buffering" on page 10-251.

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): Enabling LOB Buffering for a Temporary LOB on page 11-198

■ COBOL (Pro*COBOL): Enabling LOB Buffering for a Temporary LOB on

page 11-200

■ C/C++ (Pro*C/C++): Enabling LOB Buffering for a Temporary LOB on

page 11-202

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

Note: Do not enable buffering to perform the stream read and

write involved in checkin and checkout.
11-198 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Enabling LOB Buffering for a Temporary LOB
C (OCI): Enabling LOB Buffering for a Temporary LOB
/* Enabling LOB buffering for a temporary LOB. [Example script: 3922.c] */

#define MAXBUFLEN 32767
sb4 lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *tblob;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the descriptor for the lob locator: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tblob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" create a temporary Lob\n");
 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the BLOB: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
 }

 /* Enable LOB Buffering: */
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, tblob));
Temporary LOBs 11-199

Enabling LOB Buffering for a Temporary LOB
 printf (" write data to LOB\n");

 /* Write data into the LOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);
 offset = 1;
 checkerr (errhp, OCILobWrite (svchp, errhp, tblob, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, tblob,
 (ub4)OCI_LOB_BUFFER_FREE));

 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, tblob));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tblob));

 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tblob, (ub4) OCI_DTYPE_LOB);

 return;

}

COBOL (Pro*COBOL): Enabling LOB Buffering for a Temporary LOB
 * Enabling LOB buffering for a temporary LOB. [Example script: 3923.pco]
 IDENTIFICATION DIVISION.
11-200 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Enabling LOB Buffering for a Temporary LOB
 PROGRAM-ID. TEMP-LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 BUFFER PIC X(80).
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL VAR BUFFER IS RAW(80) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Enable buffering for the temporary LOB:
 EXEC SQL LOB ENABLE BUFFERING :TEMP-BLOB END-EXEC.

 * Write some data to the temporary LOB here:
 MOVE ’252525262626252525’ TO BUFFER.
 EXEC SQL
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :TEMP-BLOB END-EXEC

 * Flush the buffered writes:
 EXEC SQL
 LOB FLUSH BUFFER :TEMP-BLOB FREE END-EXEC.

 * Disable buffering for the temporary LOB:
 EXEC SQL
Temporary LOBs 11-201

Enabling LOB Buffering for a Temporary LOB
 LOB DISABLE BUFFERING :TEMP-BLOB
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Enabling LOB Buffering for a Temporary LOB
/* Enabling LOB buffering for a temporary LOB. [Example script: 3924.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void enableBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
11-202 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Enabling LOB Buffering for a Temporary LOB
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }

 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 printf("Wrote %d characters using the Buffering Subsystem\n", Length);

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 enableBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 11-203

Flushing Buffer for a Temporary LOB
Flushing Buffer for a Temporary LOB

Figure 11–26 Use Case Diagram: Flushing Buffer for a Temporary LOB

Purpose
This procedure describes how to flush the buffer for a temporary LOB.

Usage Notes
Not applicable.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2.

User/
Program

disable
buffering

FLUSH
Buffer

create
a temporary

LOB

free
a temporary

LOB

enable
buffering

: Internal Temporary
LOBs FLUSHING Buffer
11-204 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Flushing Buffer for a Temporary LOB
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): There is no applicable syntax reference for this use case.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobFlushBuffer

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB FLUSH BUFFER.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB FLUSH BUFFER

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See Chapter 10, "Internal Persistent LOBs", "Flushing the Buffer"

on page 10-257.

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example is provided with this release.

■ C (OCI): Flushing Buffer for a Temporary LOB on page 11-100

■ COBOL (Pro*COBOL): Determining If a Pattern Exists in a Temporary LOB

(instr) on page 11-101

■ C/C++ (Pro*C/C++): Determining If a Pattern Exists in a Temporary LOB

(instr) on page 11-104

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Flushing Buffer for a Temporary LOB
/* Flushing the temporary LOB buffer. [Exmaple script: 3926] */
Temporary LOBs 11-205

Flushing Buffer for a Temporary LOB
sb4 lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *tblob;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the descriptor for the lob locator: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tblob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" create a temporary Lob\n");
 /* Create a temporary lob :*/
 if(OCILobCreateTemporary(svchp, errhp, tblob, (ub2)0,
 SQLCS_IMPLICIT, OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE, OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the BLOB: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp lob \n");
 return -1;
 }

 /* Enable LOB Buffering: */
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, tblob));

 printf (" write data to LOB\n");

 /* Write data into the LOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);
 offset = 1;
11-206 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Flushing Buffer for a Temporary LOB
 checkerr (errhp, OCILobWrite (svchp, errhp, tblob, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));
 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, tblob,
 (ub4)OCI_LOB_BUFFER_FREE));
 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, tblob));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tblob));

 /* Free the temporary lob now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tblob, (ub4) OCI_DTYPE_LOB);

 return;

}

COBOL (Pro*COBOL): Flushing Buffer for a Temporary LOB
 * Flushing a temporary LOB buffer. [Example script: 3927.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. FREE-TEMPORARY.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".

 01 TEMP-BLOB SQL-BLOB.
Temporary LOBs 11-207

Flushing Buffer for a Temporary LOB
 01 IS-TEMP PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 FREE-TEMPORARY.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Do something with the temporary LOB here:

 * Free the temporary LOB:
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.
 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.
11-208 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Flushing Buffer for a Temporary LOB
C/C++ (Pro*C/C++): Flushing Buffer for a Temporary LOB
/* Flushing a temporary LOB buffer. [Example script: 3928.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void flushBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;

 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
Temporary LOBs 11-209

Flushing Buffer for a Temporary LOB
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 printf("Wrote %d characters using the Buffering Subsystem\n", Length);

 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 flushBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-210 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering for a Temporary LOB
Disabling LOB Buffering for a Temporary LOB

Figure 11–27 Use Case Diagram: Disabling LOB Buffering

Purpose
This procedure describes how to disable temporary LOB buffering.

See Also: Table 11–1, "Use Case Model Overview: Internal

Temporary LOBs" on page 11-2

User/
Program

flush
buffer

DISABLE
Buffering

create
a temporary

LOB

free
a temporary

LOB

enable
buffering

Internal Temporary LOBs : DISABLING Buffering
Temporary LOBs 11-211

Disabling LOB Buffering for a Temporary LOB
Usage Notes
You enable buffering when performing a small series of reads or writes. Once you

have completed these tasks, you must disable buffering before you can continue

with any other LOB operations.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): A syntax reference is not applicable in this release.

■ C (OCI): Oracle Call Interface Programmer’s Guide Chapter 15, "Relational

Functions" — LOB Functions, OCILobDisableBuffering

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB DISABLE BUFFERING.

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DISABLE BUFFERING

■ Visual Basic (OO4O): There is no applicable syntax reference for this use case.

■ Java (JDBC): See the section, Chapter 10, "Internal Persistent LOBs", "C (OCI):

Disabling LOB Buffering".

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): No example provided with this release.

■ C (OCI): Disabling LOB Buffering on page 11-212

■ COBOL (Pro*COBOL): Disabling LOB Buffering for a Temporary LOB on

page 11-215

Note: Do not enable buffering to perform the stream read and

write involved in checkin and checkout.
11-212 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering for a Temporary LOB
■ C/C++ (Pro*C/C++): Disabling LOB Buffering for a Temporary LOB on

page 11-216

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Disabling LOB Buffering
/* Disabling LOB buffering for temporary LOBs. [Example script: 3929.c] */

sb4 lobBuffering (envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *tblob;
 ub4 amt;
 ub4 offset;
 sword retval;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen;

 /* Allocate the descriptor for the lob locator: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &tblob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0);

 /* Select the BLOB: */
 printf (" create a temporary Lob\n");
 /* Create a temporary LOB: */
 if(OCILobCreateTemporary(svchp,errhp, tblob, (ub2)0, SQLCS_IMPLICIT,
 OCI_TEMP_BLOB,
 OCI_ATTR_NOCACHE,
 OCI_DURATION_SESSION))
 {
 (void) printf("FAILED: CreateTemporary() \n");
 return -1;
 }

 /* Open the BLOB: */
 if (OCILobOpen(svchp, errhp, (OCILobLocator *) tblob, OCI_LOB_READWRITE))
 {
 printf("OCILobOpen FAILED for temp LOB \n");
 return -1;
Temporary LOBs 11-213

Disabling LOB Buffering for a Temporary LOB
 }

 /* Enable LOB Buffering: */
 printf (" enable LOB buffering\n");
 checkerr (errhp, OCILobEnableBuffering(svchp, errhp, tblob));

 printf (" write data to LOB\n");

 /* Write data into the LOB: */
 amt = sizeof(bufp);
 buflen = sizeof(bufp);
 offset = 1;
 checkerr (errhp, OCILobWrite (svchp, errhp, tblob, &amt,
 offset, bufp, buflen,
 OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid*,dvoid*,ub4*,ub1 *))0,
 0, SQLCS_IMPLICIT));

 /* Flush the buffer: */
 printf(" flush the LOB buffers\n");
 checkerr (errhp, OCILobFlushBuffer(svchp, errhp, tblob,
 (ub4)OCI_LOB_BUFFER_FREE));

 /* Disable Buffering: */
 printf (" disable LOB buffering\n");
 checkerr (errhp, OCILobDisableBuffering(svchp, errhp, tblob));

 /* Subsequent LOB WRITEs will not use the LOB Buffering Subsystem */

 /* Closing the BLOB is mandatory if you have opened it: */
 checkerr (errhp, OCILobClose(svchp, errhp, tblob));

 /* Free the temporary LOB now that we are done using it: */
 if(OCILobFreeTemporary(svchp, errhp, tblob))
 {
 printf("OCILobFreeTemporary FAILED \n");
 return -1;
 }

 /* Free resources held by the locators: */
 (void) OCIDescriptorFree((dvoid *) tblob, (ub4) OCI_DTYPE_LOB);

 return;

}

11-214 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering for a Temporary LOB
COBOL (Pro*COBOL): Disabling LOB Buffering for a Temporary LOB
 * Disabling LOB buffering for a temporary LOB. [Example script: 3930.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEMP-LOB-BUFFERING.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 BUFFER PIC X(80).
 01 AMT PIC S9(9) COMP VALUE 10.
 01 ORASLNRD PIC 9(4).

 EXEC SQL VAR BUFFER IS RAW(80) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 TEMP-LOB-BUFFERING.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the CLOB locators:
 EXEC SQL ALLOCATE :TEMP-BLOB END-EXEC.
 EXEC SQL
 LOB CREATE TEMPORARY :TEMP-BLOB
 END-EXEC.

 * Enable buffering for the temporary LOB:
 EXEC SQL
 LOB ENABLE BUFFERING :TEMP-BLOB
 END-EXEC.

 * Write some data to the temporary LOB here:

 MOVE ’252525262626252525’ TO BUFFER.
 EXEC SQL
Temporary LOBs 11-215

Disabling LOB Buffering for a Temporary LOB
 LOB WRITE ONE :AMT FROM :BUFFER
 INTO :TEMP-BLOB
 END-EXEC

 * Flush the buffered writes:
 EXEC SQL
 LOB FLUSH BUFFER :TEMP-BLOB FREE
 END-EXEC.

 * Disable buffering for the temporary LOB:
 EXEC SQL
 LOB DISABLE BUFFERING :TEMP-BLOB
 END-EXEC.
 EXEC SQL
 LOB FREE TEMPORARY :TEMP-BLOB
 END-EXEC.

 EXEC SQL FREE :TEMP-BLOB END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Disabling LOB Buffering for a Temporary LOB
/* Disabling LOB buffering for a temporary LOB. [Example script: 3931.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
11-216 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Disabling LOB Buffering for a Temporary LOB
}

#define BufferLength 1024

void disableBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 7; multiple++)
 {

 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }

 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;

 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;

 /* Write APPEND can only be done when Buffering is Disabled: */
 EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;

 printf("Wrote a total of %d characters\n", Length);

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
Temporary LOBs 11-217

Disabling LOB Buffering for a Temporary LOB
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 disableBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

11-218 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

12

External LOBs (BFILEs)

Use Case Model
In this chapter we discuss each operation on External LOBs (such as "Reading Data

from a BFILE") in terms of a use case. Table 12–1, "Use Case Model: External LOBs

(BFILEs)" lists all the use cases.

Individual Use Cases
Each External LOB (BFILE) use case is described as follows:

■ Use case figure. A figure that depicts the use case. See Appendix A, "Unified

Modeling Language Diagrams" for help in understanding these UML based

diagrams.

■ Purpose. The purpose of this use case with regards to LOBs.

■ Usage Notes. Guidelines to assist your implementation of the LOB operation.

■ Syntax. Pointers to the syntax in different programmatic environments that

underlies the LOBs related activity for the use case.

■ Scenario. Describes the implementation of the use case in terms of the sample

schema used in the examples. For further details on sample schemas, refer to

Oracle9i Sample Schemas.

■ Examples. How to apply each use case based on the sample schema used.
External LOBs (BFILEs) 12-1

Use Case Model: External LOBs (BFILEs)
Use Case Model: External LOBs (BFILEs)
Table 12–1, "Use Case Model: External LOBs (BFILEs)" indicates with + where

examples are provided for specific use cases and in which programmatic

environment (see Chapter 3, "LOB Support in Different Programmatic

Environments" for a complete discussion and references to related manuals).

Programmatic environment abbreviations used in the following table, are as

follows:

■ P — PL/SQL using the DBMS_LOB Package

■ O — C using OCI (Oracle Call Interface)

■ B — COBOL using Pro*COBOL precompiler

■ C — C/C++ using Pro*C/C++ precompiler

■ V — Visual Basic using OO4O (Oracle Objects for OLE)

■ J — Java using JDBC (Java Database Connectivity)

■ S — SQL

Table 12–1 Use Case Model: External LOBs (BFILEs)

Use Case and Page P O B C V J

Creating a Table Containing One or More BFILE Columns on page 12-13 S S S S S S

Creating a Table of an Object Type with a BFILE Attribute on page 12-17 S S S S S S

Creating a Table with a Nested Table Containing a BFILE on page 12-20 S S S S S S

INSERT a Row Using BFILENAME() on page 12-22 S + + + + +

INSERT a BFILE Row by Selecting a BFILE From Another Table on page 12-31 S S S S S S

Inserting a Row With BFILE by Initializing a BFILE Locator on page 12-33 + + + + + +

Loading Data Into External LOB (BFILE) on page 12-42 S S S S S S

Loading a LOB with BFILE Data on page 12-46 + + + + + +

Loading a BLOB with BFILE Data on page 12-55 + - - - - -

Loading a CLOB with BFILE Data on page 12-59 + - - - - -

Ways to Open a BFILE on page 12-63 - - - - - -

Opening a BFILE with FILEOPEN on page 12-65 + + - - - +
12-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs (BFILEs)
Opening a BFILE with OPEN on page 12-70 + + + + + +

Ways to See If a BFILE is Open on page 12-78 - - - - - -

Checking If the BFILE is Open with FILEISOPEN on page 12-80 + + - - - +

Checking If a BFILE is Open Using ISOPEN on page 12-86 + + + + + +

Displaying BFILE Data on page 12-96n + + + + + +

Reading Data from a BFILE on page 12-108n + + + + + +

Reading a Portion of BFILE Data (substr) on page 12-119 + - + + + +

Comparing All or Parts of Two BFILES on page 12-127 + - + + + +

Checking If a Pattern Exists (instr) in the BFILE on page 12-137 + - + + - +

Checking If the BFILE Exists on page 12-145 + + + + + +

Getting the Length of a BFILE on page 12-154 + + + + + +

Copying a LOB Locator for a BFILE on page 12-164 + + + + - +

Determining If a LOB Locator for a BFILE Is Initialized on page 12-172 - + - + - -

Determining If One LOB Locator for a BFILE Is Equal to Another on
page 12-177

- + - + - +

Getting DIRECTORY Alias and Filename on page 12-184n + + + + + +

Updating a BFILE Using BFILENAME() on page 12-193 S S S S S S

Updating a BFILE by Selecting a BFILE From Another Table on page 12-196 S S S S S S

Updating a BFILE by Initializing a BFILE Locator on page 12-198 + + + + + +

Closing a BFILE with FILECLOSE on page 12-208n + + - - + +

Closing a BFILE with CLOSE on page 12-214 + + + + + +

Closing All Open BFILEs with FILECLOSEALL on page 12-222 + + + + + +

Deleting the Row of a Table Containing a BFILE on page 12-231 S S S S S S

Table 12–1 Use Case Model: External LOBs (BFILEs) (Cont.)

Use Case and Page P O B C V J
External LOBs (BFILEs) 12-3

Accessing External LOBs (BFILEs)
Accessing External LOBs (BFILEs)
To access external LOBs (BFILEs) use one of the following interfaces:

■ Precompilers, such as Pro*C/C++ and Pro*COBOL

■ OCI (Oracle Call Interface)

■ PL/SQL (DBMS_LOB package)

■ Java (JDBC)

■ Oracle Objects for OLE (OO4O)

Directory Object
The DIRECTORY object facilitates administering access and usage of BFILE s in an

Oracle Server (see CREATE DIRECTORY in Oracle9i SQL Reference). A DIRECTORY
specifies a logical alias name for a physical directory on the server’s file system under

which the file to be accessed is located. You can access a file in the server’s file

system only if granted the required access privilege on DIRECTORY object.

Initializing a BFILE Locator
DIRECTORY object also provides the flexibility to manage the locations of the files,

instead of forcing you to hardcode the absolute path names of physical files in your

applications. A DIRECTORY alias is used in conjunction with the BFILENAME()

function, in SQL and PL/SQL, or the OCILobFileSetName (), in OCI for

initializing a BFILE locator.

See Also: Chapter 3, "LOB Support in Different Programmatic

Environments" for information about the six interfaces used to

access external LOBs (BFILEs) and their available functions.

Note: Oracle does not verify that the directory and path name you

specify actually exist. You should take care to specify a valid

directory in your operating system. If your operating system uses

case-sensitive path names, be sure you specify the directory in the

correct format. There is no need to specify a terminating slash (for

example, /tmp/ is not necessary, simply use /tmp).
12-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Directory Object
How to Associate Operating System Files with Database Records
To associate an operating system (OS) file to a BFILE , first create a DIRECTORY
object which is an alias for the full path name to the operating system file.

To associate existing operating system files with relevant database records of a

particular table use Oracle SQL DML (Data Manipulation Language). For example:

■ Use INSERT to initialize a BFILE column to point to an existing file in the

server’s file system

■ Use UPDATE to change the reference target of the BFILE

■ Initialize a BFILE to NULL and then update it later to refer to an operating

system file using the BFILENAME() function.

■ OCI users can also use OCILobFileSetName () to initialize a BFILE locator

variable that is then used in the VALUES clause of an INSERT statement.

Examples
The following statements associate the files Image1.gif and image2.gif with

records having key_value of 21 and 22 respectively. ’IMG’ is a DIRECTORY object

that represents the physical directory under which Image1.gif and image2.gif
are stored.

INSERT INTO Lob_table VALUES
 (21, BFILENAME(’IMG’, ’Image1.gif’));
 INSERT INTO Lob_table VALUES
 (22, BFILENAME(’IMG’, ’image2.gif’));

The following UPDATE statement changes the target file to image3.gif for the

row with key_value 22.

 UPDATE Lob_table SET f_lob = BFILENAME(’IMG’, ’image3.gif’)
 WHERE Key_value = 22;

Note: You may need to set up data structures similar to the

following for certain examples to work:

CREATE TABLE Lob_table (
 Key_value NUMBER NOT NULL,
 F_lob BFILE)
External LOBs (BFILEs) 12-5

Directory Object
BFILENAME() and Initialization
BFILENAME() is a built-in function that is used to initialize the BFILE column to

point to the external file.

Once physical files are associated with records using SQL DML, subsequent read

operations on the BFILE can be performed using PL/SQL DBMS_LOB package and

OCI. However, these files are read-only when accessed through BFILES , and so

they cannot be updated or deleted through BFILES .

As a consequence of the reference-based semantics for BFILEs , it is possible to have

multiple BFILE columns in the same record or different records referring to the

same file. For example, the following UPDATE statements set the BFILE column of

the row with key_value 21 in lob_table to point to the same file as the row

with key_value 22.

UPDATE lob_table
 SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value = 22)
 WHERE key_value = 21;

Think of BFILENAME() in terms of initialization — it can initialize the value for the

following:

■ BFILE column

■ BFILE (automatic) variable declared inside a PL/SQL module

Advantages. This has the following advantages:

■ If your need for a particular BFILE is temporary, and scoped just within the

module on which you are working, you can utilize the BFILE related APIs on

the variable without ever having to associate this with a column in the

database.

■ Since you are not forced to create a BFILE column in a server side table,

initialize this column value, and then retrieve this column value using a

SELECT, you save a round-trip to the server.

For more information, refer to the example given for DBMS_LOB.LOADFROMFILE
(see "Loading a LOB with BFILE Data" on page 12-46).

The OCI counterpart for BFILENAME() is OCILobFileSetName (), which can be

used in a similar fashion.
12-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

BFILE Security
DIRECTORY Name Specification
The naming convention for DIRECTORY objects is the same as that for tables and

indexes. That is, normal identifiers are interpreted in uppercase, but delimited

identifiers are interpreted as is. For example, the following statement:

CREATE DIRECTORY scott_dir AS '/usr/home/scott';

creates a directory object whose name is ’SCOTT_DIR’ (in uppercase). But if a

delimited identifier is used for the DIRECTORY name, as shown in the following

statement

CREATE DIRECTORY "Mary_Dir" AS '/usr/home/mary';

the directory object’s name is ’Mary_Dir ’. Use ’SCOTT_DIR’ and ’Mary_Dir ’

when calling BFILENAME(). For example:

BFILENAME(’SCOTT_DIR’, ’afile’)
BFILENAME(’Mary_Dir’, ’afile’)

On Windows Platforms
On Windows NT, for example, the directory names are case-insensitive. Therefore

the following two statements refer to the same directory:

CREATE DIRECTORY "big_cap_dir" AS "g:\data\source";

CREATE DIRECTORY "small_cap_dir" AS "G:\DATA\SOURCE";

BFILE Security
This section introduces the BFILE security model and associated SQL statements.

The main SQL statements associated with BFILE security are:

■ SQL DDL: CREATE and REPLACE or ALTER a DIRECTORY object

■ SQL DML: GRANT and REVOKE the READ system and object privileges on

DIRECTORY objects

Ownership and Privileges
The DIRECTORYobject is a system owned object. For more information on system

owned objects, see Oracle9i SQL Reference. Oracle9i supports two new system

privileges, which are granted only to DBA:
External LOBs (BFILEs) 12-7

BFILE Security
■ CREATE ANY DIRECTORY — for creating or altering the directory object creation

■ DROP ANY DIRECTORY — for deleting the directory object

Read Permission on Directory Object
READ permission on the DIRECTORY object allows you to read files located under

that directory. The creator of the DIRECTORY object automatically earns the READ
privilege.

If you have been granted the READ permission with GRANT option, you may in turn

grant this privilege to other users/roles and add them to your privilege domains.

The physical directory that it represents may or may not have the corresponding

operating system privileges (read in this case) for the Oracle Server process.

It is the DBA’s responsibility to ensure the following:

■ That the physical directory exists

■ Read permission for the Oracle Server process is enabled on the file, the

directory, and the path leading to it

■ The directory remains available, and read permission remains enabled, for the

entire duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may

read from files in the directory. These privileges are checked and enforced by the

PL/SQL DBMS_LOB package and OCI APIs at the time of the actual file operations.

SQL DDL for BFILE Security
Refer to the Oracle9i SQL Reference for information about the following SQL DDL

statements that create, replace, and drop directory objects:

Note: The READ permission is defined only on the DIRECTORY
object, not on individual files. Hence there is no way to assign

different privileges to files in the same directory.

WARNING: Because CREATE ANY DIRECTORY and DROP ANY
DIRECTORYprivileges potentially expose the server file system to
all database users, the DBA should be prudent in granting these
privileges to normal database users to prevent security breach.
12-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

BFILE Security
■ CREATE DIRECTORY

■ DROP DIRECTORY

SQL DML for BFILE Security
Refer to the Oracle9i SQL Reference for information about the following SQL DML

statements that provide security for BFILE s:

■ GRANT (system privilege)

■ GRANT (object privilege)

■ REVOKE (system privilege)

■ REVOKE (object privilege)

■ AUDIT (new statements)

■ AUDIT (schema objects)

Catalog Views on Directories
Catalog views are provided for DIRECTORY objects to enable users to view object

names and corresponding paths and privileges. Supported views are:

■ ALL_DIRECTORIES (OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all directories accessible to the user.

■ DBA_DIRECTORIES(OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all directories specified for the entire database.

Guidelines for DIRECTORY Usage
The main goal of the DIRECTORY feature is to enable a simple, flexible,

non-intrusive, yet secure mechanism for the DBA to manage access to large files in

the server file system. But to realize this goal, it is very important that the DBA

follow these guidelines when using DIRECTORY objects:

■ Do Not Map DIRECTORY to Directories of Data Files, And So On. A

DIRECTORY should not be mapped to physical directories that contain Oracle

data files, control files, log files, and other system files. Tampering with these

files (accidental or otherwise) could corrupt the database or the server operating

system.
External LOBs (BFILEs) 12-9

BFILE Security
■ Only the DBA Should Have System Privileges. The system privileges such as

CREATE ANY DIRECTORY (granted to the DBA initially) should be used

carefully and not granted to other users indiscriminately. In most cases, only the

database administrator should have these privileges.

■ Use Caution When Granting DIRECTORY Object Privilege. Privileges on

DIRECTORY objects should be granted to different users carefully. The same

holds for the use of the WITH GRANT OPTIONclause when granting privileges to

users.

■ Do not Drop or Replace DIRECTORY Objects When Database is in Operation.
DIRECTORY objects should not be arbitrarily dropped or replaced when the

database is in operation. If this were to happen, operations from all sessions on

all files associated with this directory object will fail. Further, if a DROP or

REPLACE command is executed before these files could be successfully closed,

the references to these files will be lost in the programs, and system resources

associated with these files will not be released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, will be to either execute a

program block that calls DBMS_LOB.FILECLOSEALL() and restart their file

operations, or exit their sessions altogether. Hence, it is imperative that you use

these commands with prudence, and preferably during maintenance

downtimes.

■ Caution When Revoking User’s Privilege on DIRECTORY Objects. Revoking a

user’s privilege on a DIRECTORY object using the REVOKE statement causes all

subsequent operations on dependent files from the user’s session to fail. Either

you must re-acquire the privileges to close the file, or execute a

FILECLOSEALL() in the session and restart the file operations.

In general, using DIRECTORY objects for managing file access is an extension of

system administration work at the operating system level. With some planning, files

can be logically organized into suitable directories that have READ privileges for

the Oracle process.

DIRECTORY objects can be created with READ privileges that map to these physical

directories, and specific database users granted access to these directories.

BFILEs in Shared Server (Multi-Threaded Server — MTS) Mode
Oracle9i does not support session migration for BFILE s in Shared Server

(Multi-Threaded Server — MTS) mode. This implies that operations on open

BFILE s can persist beyond the end of a call to a shared server.
12-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

BFILE Security
In shared server sessions, BFILE operations will be bound to one shared server,

they cannot migrate from one server to another. This restriction will be removed in

a forthcoming release.

External LOB (BFILE) Locators
For BFILE s, the value is stored in a server-side operating system file; in other

words, external to the database. The BFILE locator that refers to that file is stored in

the row.

When Two Rows in a BFILE Table Refer to the Same File If a BFILE locator variable that is

used in a DBMS_LOB.FILEOPEN() (for example L1) is assigned to another locator

variable, (for example L2), both L1 and L2 point to the same file. This means that

two rows in a table with a BFILE column can refer to the same file or to two distinct

files — a fact that the canny developer might turn to advantage, but which could

well be a pitfall for the unwary.

BFILE Locator Variable A BFILE locator variable behaves like any other automatic

variable. With respect to file operations, it behaves like a file descriptor available as

part of the standard I/O library of most conventional programming languages. This

implies that once you define and initialize a BFILE locator, and open the file

pointed to by this locator, all subsequent operations until the closure of this file

must be done from within the same program block using this locator or local copies

of this locator.

Guidelines
■ Open and Close a File From Same Program Block at Same Nesting Level. The

BFILE locator variable can be used, just as any scalar, as a parameter to other

procedures, member methods, or external function callouts. However, it is

recommended that you open and close a file from the same program block at

the same nesting level.

■ Set the BFILE Value Before Flushing Object to Database. If the object contains

a BFILE , you must set the BFILE value before flushing the object to the

database, thereby inserting a new row. In other words, you must call

OCILobFileSetName () after OCIObjectNew () and before

OCIObjectFlush ().

■ Indicate Directory Alias and Filename Before INSERT or UPDATE of BFILE.
It is an error to INSERT or UPDATE a BFILE without indicating a directory

alias and filename.
External LOBs (BFILEs) 12-11

BFILE Security
This rule also applies to users using an OCI bind variable for a BFILE in an

insert/update statement. The OCI bind variable must be initialized with a

directory alias and filename before issuing the insert or update statement.

■ Initialize BFILE Before INSERT or UPDATE

General Rule
Before using SQL to insert or update a row with a BFILE , the user must initialize

the BFILE to one of the following:

■ NULL (not possible if using an OCI bind variable)

■ A directory alias and filename

Note: OCISetAttr () does not allow the user to set a BFILE
locator to NULL.
12-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table Containing One or More BFILE Columns
Creating a Table Containing One or More BFILE Columns

Figure 12–1 Use Case Diagram: Creating a Table Containing One or More BFILE Columns

Purpose
This procedure describes how to create a table containing one or more BFILE

columns.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Creating a Table of an Object Type with a BFILE Attribute on

page 12-17

■ Creating a Table with a Nested Table Containing a BFILE on

page 12-20

CREATE
a Table

(BFILEs)

User/
Program

CREATE table with one or more BFILEs

External LOBs : CREATING a Table (BFILEs)
External LOBs (BFILEs) 12-13

Creating a Table Containing One or More BFILE Columns
Usage Notes
SQL Data Definition Language (DDL) is used to define BFILE columns in a table

and BFILE attributes in an object type.

Syntax
Use the following syntax references:

■ SQL (Oracle9i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE

Scenario
The heart of our hypothetical application is the table Print_media . The varied

types that make up the columns of this table make it possible to collect together the

many different kinds of elements used in printed media.

Examples
The following example is provided in SQL and applies to all programmatic

environments:

■ SQL: Creating a Table Containing One or More BFILE Columns on page 12-14

SQL: Creating a Table Containing One or More BFILE Columns
You may need to set up the following data structures for certain examples in this

chapter to work:

/* Setup script for creating Print_media, Online_media and associated
structures */

Rem The HR and OE Schema need to be created before you create the PM Schema
Rem For a detailed listing of the pm_drop.sql and pm_main.sql scripts see
Rem the manual, Oracle9i Sample Schemas.

DROP USER pm CASCADE;
DROP DIRECTORY ADPHOTO_DIR;
DROP DIRECTORY ADCOMPOSITE_DIR;
DROP DIRECTORY ADGRAPHIC_DIR;
DROP INDEX onlinemedia CASCADE CONSTRAINTS;
DROP INDEX printmedia CASCADE CONSTRAINTS;
DROP TABLE online_media CASCADE CONSTRAINTS;
DROP TABLE print_media CASCADE CONSTRAINTS;
DROP TYPE textdoc_typ;
DROP TYPE textdoc_tab;
DROP TYPE adheader_typ;
12-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table Containing One or More BFILE Columns
DROP TABLE adheader_typ;
CREATE USER pm;
GRANT CONNECT, RESOURCE to pm;

CREATE DIRECTORY ADPHOTO_DIR AS ’/tmp/’;
CREATE DIRECTORY ADCOMPOSITE_DIR AS ’/tmp/’;
CREATE DIRECTORY ADGRAPHIC_DIR AS ’/tmp/’;
CREATE DIRECTORY media_dir AS ’/tmp/’;
GRANT READ ON DIRECTORY ADPHOTO_DIR to pm;
GRANT READ ON DIRECTORY ADCOMPOSITE_DIR to pm;
GRANT READ ON DIRECTORY ADGRAPHIC_DIR to pm;
GRANT READ ON DIRECTORY media_dir to pm;

CONNECT pm/pm (or &pass);
COMMIT;

CREATE TABLE a_table (blob_col BLOB);

CREATE TYPE adheader_typ AS OBJECT (
 header_name VARCHAR2(256),
 creation_date DATE,
 header_text VARCHAR(1024),
 logo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
 document_typ VARCHAR2(32),
 formatted_doc BLOB);

CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

CREATE TABLE Adheader_tab of adheader_typ (
 header_name VARCHAR2(256) CONSTRAINT hname CHECK (hname IS NOT NULL),
 creation_date DATE DEFAULT NULL,
 logo DEFAULT EMPTY_BLOB()
);

CREATE TABLE online_media
(product_id NUMBER(6),
product_photo ORDSYS.ORDImage,
product_photo_signature ORDSYS.ORDImageSignature,
product_thumbnail ORDSYS.ORDImage,
product_video ORDSYS.ORDVideo,
product_audio ORDSYS.ORDAudio,
product_text CLOB,
product_testimonials ORDSYS.ORDDoc);
External LOBs (BFILEs) 12-15

Creating a Table Containing One or More BFILE Columns
CREATE UNIQUE INDEX onlinemedia_pk
 ON online_media (product_id);

ALTER TABLE online_media
ADD (CONSTRAINT onlinemedia_pk
PRIMARY KEY (product_id), CONSTRAINT loc_c_id_fk
FOREIGN KEY (product_id) REFERENCES oe.product_information(product_id)
);

CREATE TABLE print_media
(product_id NUMBER(6),
ad_id NUMBER(6),
ad_composite BLOB,
ad_sourcetext CLOB,
ad_finaltext CLOB,
ad_fktextn NCLOB,
ad_testdocs_ntab textdoc_tab,
ad_photo BLOB,
ad_graphic BFILE,
ad_header adheader_typ,
press_release LONG) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

CREATE UNIQUE INDEX printmedia_pk
 ON print_media (product_id, ad_id);

ALTER TABLE print_media
ADD (CONSTRAINT printmedia_pk
PRIMARY KEY (product_id, ad_id),
CONSTRAINT printmedia_fk FOREIGN KEY (product_id)
REFERENCES oe.product_information(product_id)
);
12-16 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table of an Object Type with a BFILE Attribute
Creating a Table of an Object Type with a BFILE Attribute

Figure 12–2 Use Case Diagram: Creating a Table Containing a BFILE

Purpose
This procedure describes how to create a table of an object type with a BFILE

attribute.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Creating a Table Containing One or More BFILE Columns on

page 12-13

■ Creating a Table with a Nested Table Containing a BFILE on

page 12-20

CREATE
a Table

User/
Program

CREATE table with an object
type containing a BFILE

CREATE
Object Type

External LOBs : CREATING a Table
External LOBs (BFILEs) 12-17

Creating a Table of an Object Type with a BFILE Attribute
Usage Notes
As shown in the diagram, you must create the object type that contains the BFILE
attributes before you can proceed to create a table that makes use of that object type.

SQL Data Definition Language (DDL) is used to define BFILE columns in a table

and BFILE attributes in an object type.

Syntax
Use the following syntax references:

■ SQL (Oracle9i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE,

CREATE TYPE

Note that NCLOBs cannot be attributes of an object type.

Scenario
Our example application contains examples of two different ways in which object

types can contain BFILEs :

■ Multimedia_tab contains a column Voiced_ref that references row objects

in the table VoiceOver_tab which is based on the type Voiced_typ . This

type contains two kinds of LOBs — a CLOB to store the script that’s read by the

actor, and a BFILE to hold the audio recording.

■ Multimedia_tab contains column Map_obj that contains column objects of

the type Map_typ. This type utilizes the BFILE datatype for storing aerial

pictures of the region.

Examples
The following example is provided in SQL and applies to all programmatic

environments:

■ SQL: Creating a Table of an Object Type with a BFILE Attribute on page 12-18

SQL: Creating a Table of an Object Type with a BFILE Attribute
/* Create type Voiced_typ as a basis for tables that can contain recordings of
 voice-over readings using SQL DDL: */
CREATE TYPE Voiced_typ AS OBJECT
(Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
12-18 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table of an Object Type with a BFILE Attribute
);

/* Create table Voiceover_tab Using SQL DDL: */
CREATE TABLE Voiceover_tab OF Voiced_typ
(Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

/* Create Type Map_typ using SQL DDL as a basis for the table that will contain
 the column object: */
CREATE TYPE Map_typ AS OBJECT
(Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);

/* Create support table MapLib_tab as an archive of maps using SQL DDL: */
CREATE TABLE Map_tab of MapLib_typ;
External LOBs (BFILEs) 12-19

Creating a Table with a Nested Table Containing a BFILE
Creating a Table with a Nested Table Containing a BFILE

Figure 12–3 Use Case Diagram: Creating a Table with a Nested Table Containing a BFILE

Purpose
This procedure describes how to create a table with nested table containing a BFILE.

Usage Notes
As shown in the use case diagram, you must create the object type that contains

BFILE attributes before you create a nested table that uses that object type. SQL

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Creating a Table Containing One or More BFILE Columns on

page 12-13

■ Creating a Table of an Object Type with a BFILE Attribute on

page 12-17

CREATE
a Table with a
nested table

column

User/
Program

CREATE table with a nested
table containing one or
more BFILEs

CREATE
nested table

type

External LOBs : CREATING a Table (Nested)
12-20 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Creating a Table with a Nested Table Containing a BFILE
Data Definition Language (DDL) is used to define BFILE columns in a table and

BFILE attributes in an object type.

Syntax
Use the following syntax references:

■ SQL (Oracle9i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE,

CREATE TYPE

Scenario
In our example, Print_media table contains a nested table ad_textdoc_ntab
that includes type textdoc_typ . This type makes use of two LOB datatypes — a

BFILE for graphic images of products, and a BLOB for formatted documents.

We have already described how to create a table with BFILE columns (see "Creating

a Table Containing One or More BFILE Columns" on page 12-13), so here we only

describe the SQL syntax for creating the underlying object type.

Examples
The following example is provided in SQL and applies to all programmatic

environments:

■ SQL: Creating a Table with a Nested Table Containing a BFILE on page 12-21

SQL: Creating a Table with a Nested Table Containing a BFILE
Because you use SQL DDL directly to create a table, the DBMS_LOB package is not

relevant.

CREATE TYPE textdoc_typ AS OBJECT (
 document_typ VARCHAR2(32),
 formatted_doc BLOB);

CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

/* Embedding the nested table is accomplished when the structure
 of the containing table is defined. Using the PM sample schema,
 this is done by adding the following clause to the end of the CREATE
 Print_media statement: */

NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;
External LOBs (BFILEs) 12-21

INSERT a Row Using BFILENAME()
INSERT a Row Using BFILENAME()

Figure 12–4 Use Case Diagram: INSERT a Row Using BILENAME()

User/
Program

BFILENAME()

INSERT using BFILENAME()INSERT
a Row

External LOBs : INSERTING a Row
12-22 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Using BFILENAME()
Purpose
This procedure describes how to insert a row using BFILENAME().

Usage Notes
Call BFILENAME () function as part of an INSERT to initialize a BFILE column or

attribute for a particular row, by associating it with a physical file in the server’s file

system.

Although DIRECTORY object, represented by the directory_alias parameter to

BFILENAME(), need not already be defined before BFILENAME() is called by a SQL

or PL/SQL program, the DIRECTORY object and operating system file must exist
by the time you actually use the BFILE locator. For example, when used as a

parameter to one of the following operations:

■ OCILobFileOpen()

■ DBMS_LOB.FILEOPEN()

■ OCILobOpen()

■ DBMS_LOB.OPEN()

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ INSERT a BFILE Row by Selecting a BFILE From Another Table

on page 12-31

■ Inserting a Row With BFILE by Initializing a BFILE Locator on

page 12-33

Note: BFILENAME() does not validate privileges on this

DIRECTORY object, or check if the physical directory that the

DIRECTORY object represents actually exists. These checks are

performed only during file access using the BFILE locator that was

initialized by BFILENAME().

Note: Before you insert, you must initialize the BFILE either to

NULL or to a directory alias and filename.
External LOBs (BFILEs) 12-23

INSERT a Row Using BFILENAME()
Ways BFILENAME() is Used to Initialize BFILE Column or Locator Variable
You can use BFILENAME() in the following ways to initialize a BFILE column:

■ As part of an SQL INSERT statement

■ As part of an UPDATE statement

You can use BFILENAME() to initialize a BFILE locator variable in one of the

programmatic interface programs, and use that locator for file operations. However,

if the corresponding directory alias or filename does not exist then PL/SQL DBMS_
LOB or other relevant routines that use this variable, will generate errors.

The directory_alias parameter in the BFILENAME() function must be specified

taking case-sensitivity of the directory name into consideration.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. See the following syntax

references for each programmatic environment:

■ SQL Oracle9i SQL Reference, Chapter 7, "SQL Statements" — INSERT

■ C (OCI) Oracle Call Interface Programmer’s Guide: Chapter 7, "LOB and File

Operations", for usage notes. Chapter 15, "Relational Functions" — LOB

Functions

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, embedded SQL, and

precompiler directives. See also Oracle9i SQL Reference, for related information

on the SQL INSERT statement.

■ C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide: "Large Objects

(LOBs)", "LOB Statements", "Embedded SQL Statements and Directives". See

Oracle9i SQL Reference, Chapter 7, "SQL Statements" — INSERT

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS >

OraDynaset > METHODS > AddNew

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference: Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in Oracle9i SQLJ Developer’s Guide and Reference: Chapter

5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and BFILE.

See Also: "DIRECTORY Name Specification". on page 12-7
12-24 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Using BFILENAME()
Scenario
The following examples illustrate how to insert a row using BFILENAME().

Examples
Examples are provided in the following six programmatic environments:

■ SQL: Inserting a Row by means of BFILENAME() on page 12-25

■ C (OCI): Inserting a Row by means of BFILENAME() on page 12-25

■ COBOL (Pro*COBOL): Inserting a Row by means of BFILENAME() on

page 12-26

■ C/C++ (Pro*C/C++): Inserting a Row by means of BFILENAME() C/C++

(Pro*C/C++): Inserting a Row by means of BFILENAME() on page 12-27

■ Visual Basic (OO4O): Inserting a Row by means of BFILENAME() Visual Basic

(OO4O): Inserting a Row by means of BFILENAME() on page 12-28

■ Java (JDBC): Inserting a Row by means of BFILENAME() on page 12-29

SQL: Inserting a Row by means of BFILENAME()
/* Inserting a row using BFILENAME(). [Example script: 3945.sql]
 Note that this is the same INSERT statement as applied to internal
 persistent LOBs but with the BFILENAME() function added to initialize
 the BFILE columns: */

INSERT INTO Print_media VALUES (3106, 13001, EMPTY_BLOB(),
 EMPTY_CLOB(), EMPTY_CLOB(), EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), BFILENAME(’AD_GRAPHIC_DIR’, ’3106_keyboard’),
 NULL, "Your press release text goes here");

C (OCI): Inserting a Row by means of BFILENAME()
/* Inserting a row using BFILENAME. [Example script: 3946.c] */

void insertUsingBfilename(svchp, stmthp, errhp)
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 text *insstmt =
 (text *) "INSERT INTO Print_media VALUES (3060, 11001, EMPTY_BLOB(), \
External LOBs (BFILEs) 12-25

INSERT a Row Using BFILENAME()
 EMPTY_CLOB(), EMPTY_CLOB(), EMPTY_CLOB(), \
 (SELECT REF(ad) FROM Textdoc_ntab ad WHERE document_typ = ‘PDF‘), \
 EMPTY_BLOB(), BFILENAME (’ADGRAPHIC_DIR’,’monitor_3060_11001’), \
 (SELECT REF(adhead) FROM Adheader_typ Adhead \
 WHERE creation_date = ‘1-20-2001’), \
 "PRESS RELEASE \
Date of Press Release: January 11, 2001 \
Contact Information: Shelley and Co., Oracle Corporation, 500 Oracle Parkway, \
Redwood City, CA 94065 \"
Disclaimer: This product, product name, and information is fictitious and has \
been composed to illustrate the functionality of Oracle products. \
Any similarity to existing products or product names is coincidental. \
TIGER2 3060 Monitor an Exceptional Visual Experience! \
Oracle announces its return to manufacturing hardware and computer peripherals!
\
The first model to have completed rigorous usability and stress tests is the \
TIGER2 +3060 17-Inch CRT MONITOR with its cousin the TIGER2 3060a 17-inch \
Flatscreen." \
)";

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
 /* Execute the SQL statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

COBOL (Pro*COBOL): Inserting a Row by means of BFILENAME()
 * Inserting a row using BFILENAME() [Example script: 3947.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-INSERT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
12-26 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Using BFILENAME()
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-INSERT.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 EXEC SQL
 INSERT INTO PRINT_MEDIA (PRODUCT_ID, AD_GRAPHIC)
 VALUES (1, BFILENAME(’ADGRAPHIC_DIR’, ’KEYBOARD_310_13001’))
 END-EXEC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Inserting a Row by means of BFILENAME()
/* Inserting a row using BFILENAME(). [Example script: 3948.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
External LOBs (BFILEs) 12-27

INSERT a Row Using BFILENAME()
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILENAMEInsert_proc()
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 /* Delete any existing row: */
 EXEC SQL DELETE FROM Print_media WHERE product_id = 2056 AND ad_id = 12001;

 /* Insert a new row using the BFILENAME() function for BFILEs: */
 EXEC SQL INSERT INTO Print_media
 VALUES (2056, 12001, EMPTY_BLOB(), EMPTY_CLOB(), EMPTY_CLOB(), EMPTY_CLOB(),
 ad_textdocs(textdoc_typ(PDF, EMPTY_BLOB())),
 EMPTY_BLOB(),
 BFILENAME(’ADGRAPHIC_DIR’, ’mousepad_2056_12001’),
 NULL,
 ‘You Can’t Beat this Mousepad for Ergonomic Value!!’)
 ;
 printf("Inserted %d row\n", sqlca.sqlerrd[2]);
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILENAMEInsert_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Inserting a Row by means of BFILENAME()
’Inserting a row using BFILENAME(). [Example script: 3949.txt]

Dim OraDyn as OraDynaset, OraAdGraphic as OraBFile

Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value
OraDyn.AddNew
OraDyn.Fields("product_id").value = 3060
OraDyn.Fields("ad_sourcetext").value = Empty ’This is equivalent to EMPTY_CLOB()
12-28 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Using BFILENAME()
in SQL
OraDyn.Fields("fltextn").value = Empty
’Initialize BFile Data:
OraAdGraphic.DirectoryName = "ADGRAPHIC_DIR"
OraAdGraphic.FileName = "monitor_graphic_3060_11001"
OraDyn.Fields("ad_composite").Value = Empty
OraDyn.Fields("ad_photo").Value = Empty
OraDyn.Update
’Add the row to the table

Java (JDBC): Inserting a Row by means of BFILENAME()
// Inserting a row using BFILENAME(). [Example script: 3951.java]

import java.io.InputStream;
import java.io.OutputStream;
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex4_21
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
External LOBs (BFILEs) 12-29

INSERT a Row Using BFILENAME()
 stmt.execute("INSERT INTO Print_media "
 +"VALUES (3060, 11001, EMPTY_BLOB(), EMPTY_CLOB(), "
 +" EMPTY_CLOB(), EMPTY_CLOB(),"
 +"(SELECT REF(ad) FROM Textdoc_ntab ad"
 +" WHERE document_typ = ‘PDF‘),"
 +"EMPTY_BLOB(), BFILENAME (’AD_GRAPHIC’,’monitor_3060’), "
 +"(SELECT REF(adhead) FROM Adheader_typ Adhead"
 +" WHERE creation_date = ‘1-20-2001’), "
 +"PRESS RELEASE \"
+"Date of Press Release: January 11, 2001 \"
+"Contact Information: Any name,Oracle Corporation, 500 Oracle Parkway,"
+"Redwood City, CA 94065 \"
+"Disclaimer: This product, product name, and information is fictitious and has"
been" +"composed to illustrate the functionality of Oracle products. \"
+"Any similarity to existing products or product names is coincidental. \"
+"TIGER2 3060 Monitor an Exceptional Visual Experience! \"
+"Oracle announces its return to manufacturing hardware and computer
peripherals! \"
+"The first model to have completed rigorous usability and stress tests is the"
+"TIGER2 +3060 17-Inch CRT MONITOR with its cousin the TIGER2 3060a 17-inch"
+"Flatscreen. \"
+"Its initial offering is for $150 and its suggested retail value is $299. \"
);
 // Commit the transaction:
 conn.commit();
 stmt.close();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

12-30 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

INSERT a BFILE Row by Selecting a BFILE From Another Table
INSERT a BFILE Row by Selecting a BFILE From Another Table

Figure 12–5 Use Case Diagram: INSERT a Row Containing a BFILE by Selecting a BFILE From Another
Table (INSERT ... AS ... SELECT)

Purpose
This procedure describes how to INSERT a row containing a BFILE by selecting a

BFILE from another table.

Usage Notes
With regard to LOBs, one of the advantages of utilizing an object-relational

approach is that you can define a type as a common template for related tables. For

instance, it makes sense that both the tables that store archival material and the

working tables that use those libraries share a common structure. See the following

"Scenario".

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ INSERT a Row Using BFILENAME() on page 12-22

■ Inserting a Row With BFILE by Initializing a BFILE Locator on

page 12-33

User/
Program

SELECT
a BFILE

INSERT
a Row

INSERT as SELECT

External LOBs : INSERTING a Row
External LOBs (BFILEs) 12-31

INSERT a BFILE Row by Selecting a BFILE From Another Table
Syntax
See the following syntax reference:

■ SQL (Oracle9i SQL Reference): Chapter 7, "SQL Statements" — INSERT

Scenario
The following code fragment is based on the fact that a library table

VoiceoverLib_tab is of the same type (Voiced_typ) as Voiceover_tab
referenced by column Voiced_ref of Multimedia_tab table.

It inserts values from the library table into Multimedia_tab by means of a

SELECT.

Examples
The example is provided in SQL and applies to all programmatic environments:

■ SQL: Inserting a Row Containing a BFILE by Selecting a BFILE From Another

Table on page 12-32

SQL: Inserting a Row Containing a BFILE by Selecting a BFILE From Another Table
 INSERT INTO Voiceover_tab
 (SELECT * from VoiceoverLib_tab
 WHERE Take = 12345);

Note: Before you insert, you must initialize the BFILE either to

NULL or to a directory alias and filename.
12-32 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row With BFILE by Initializing a BFILE Locator
Inserting a Row With BFILE by Initializing a BFILE Locator

Figure 12–6 Use Case Diagram: Inserting a Row by Initializing a BFILE Locator

User/
Program

BFILENAME
OCI LOB File

Set Name

SELECT
a BFILE

OR

INSERT
a Row

Initialize
a BFILE locator

INSERT by Initializing BFILE locator

External LOBs : INSERTING a Row
External LOBs (BFILEs) 12-33

Inserting a Row With BFILE by Initializing a BFILE Locator
Purpose
This procedure describes how to INSERT a row containing a BFILE by initializing a

BFILE locator.

Usage Notes

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. See the following syntax

references for each programmatic environment:

■ SQL(Oracle9i SQL Reference, Chapter 7 "SQL Statements" — INSERT

■ C (OCI) Oracle Call Interface Programmer’s Guide: Chapter 7, "LOB and File

Operations". Chapter 15, "Relational Functions" — LOB Functions.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, embedded SQL, and

precompiler directives. See also Oracle9i SQL Reference, for related information

on the SQL INSERT statement.

■ C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide: "Large Objects

(LOBs)", "LOB Statements", "Embedded SQL Statements and Directives" — LOB

FILE SET. See also (Oracle9i SQL Reference), Chapter 7 "SQL Statements" —

INSERT

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ INSERT a Row Using BFILENAME() on page 12-22

■ INSERT a BFILE Row by Selecting a BFILE From Another Table

on page 12-31

Note: You must initialize the BFILE locator bind variable to a

directory alias and filename before issuing the insert statement.

Note: Before you insert, you must initialize the BFILE either to

NULL or to a directory alias and filename.
12-34 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row With BFILE by Initializing a BFILE Locator
■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >

METHODS > DirectoryName, FileName; and > OBJECTS > OraDynaset >

METHODS > Update

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference: Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in Oracle9i SQLJ Developer’s Guide and Reference: Chapter

5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and BFILE.

Scenario
In these examples we insert an ad_graphic from an operating system source file

(ADGRAPHIC_DIR).

Examples
Examples in the following programmatic environments are provided:

■ PL/SQL: Inserting a Row Containing a BFILE by Initializing a BFILE Locator on

page 12-35

■ C (OCI): Inserting a Row Containing a BFILE by Initializing a BFILE Locator on

page 12-36

■ COBOL (Pro*COBOL): Inserting a Row Containing a BFILE by Initializing a

BFILE Locator on page 12-37

■ C/C++ (Pro*C/C++): Inserting a Row Containing a BFILE by Initializing a

BFILE Locator on page 12-38

■ Visual Basic (OO4O): Inserting a Row Containing a BFILE by Initializing a

BFILE Locator on page 12-39

■ Java (JDBC): Inserting a Row Containing a BFILE by Initializing a BFILE

Locator on page 12-39

PL/SQL: Inserting a Row Containing a BFILE by Initializing a BFILE Locator
/* Inserting row containing a BFILE by initializing a BFILE locator
 [Example script: 3953.sql] */

DECLARE
 /* Initialize the BFILE locator: */
 Lob_loc BFILE := BFILENAME(’ADGRAPHIC_DIR’, ’keyboard_graphic_3106_13001’);
BEGIN
External LOBs (BFILEs) 12-35

Inserting a Row With BFILE by Initializing a BFILE Locator
 INSERT INTO Print_media
 (product_id, ad_id, ad_graphic) VALUES (3106, 13001, Lob_loc);
 COMMIT;
END;

C (OCI): Inserting a Row Containing a BFILE by Initializing a BFILE Locator
/* Inserting a row by initializing a BFILE Locator. [Example script: 3954.c] */

void insertUsingBfileLocator(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 text *insstmt =
 (text *) "INSERT INTO Print_media (product_id, ad_graphic) \
 VALUES (2056, :Lob_loc)";
 OCIBind *bndhp;
 OCILobLocator *Lob_loc;
 OraText *Dir = (OraText *)"ADGRAPHIC_DIR", *Name = (OraText *)"mousepad_2056_
12001";

 /* Prepare the SQL statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
 /* Allocate Locator resources: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_FILE, (size_t) 0, (dvoid **) 0);
 checkerr (errhp, OCILobFileSetName(envhp, errhp, &Lob_loc,
 Dir, (ub2)strlen((char *)Dir),
 Name,(ub2)strlen((char *)Name)));
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &Lob_loc, (sb4) 0, SQLT_BFILE,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));
 /* Execute the SQL statement: */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
 /* Free LOB resources: */
 OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_FILE);
}

12-36 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row With BFILE by Initializing a BFILE Locator
COBOL (Pro*COBOL): Inserting a Row Containing a BFILE by
Initializing a BFILE Locator
 * Inserting a row containing a BFILE by initializing a BFILE
 * [Example script: 3955.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-INSERT-INIT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 TEMP-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-INSERT-INIT.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Set up the directory and file information:
 MOVE "ADGRAPHIC_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_graphic_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 * Set the directory alias and filename in locator:
 EXEC SQL
 LOB FILE SET :SRC-BFILE DIRECTORY = :DIR-ALIAS,
 FILENAME = :FNAME END-EXEC.
External LOBs (BFILEs) 12-37

Inserting a Row With BFILE by Initializing a BFILE Locator
 EXEC SQL
 INSERT INTO PRINT_MEDIA (PRODUCT_ID, AD_GRAPHIC)
 VALUES (3106, :SRC-BFILE)END-EXEC.
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Inserting a Row Containing a BFILE by Initializing a BFILE
Locator

/* Inserting a row containing a BFILE by initializing a BFILE */
/* [Example script: 3958.pc] */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertBFILELocator_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADGRAPHIC_DIR", *Name = "mousepad_graphic_2056_12001";
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the input Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 /* Set the Directory and Filename in the Allocated (Initialized) Locator: */
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 EXEC SQL INSERT INTO Print_media (Product_ID, ad_graphic) VALUES (2056, :Lob_
12-38 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row With BFILE by Initializing a BFILE Locator
loc);
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 insertBFILELocator_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
 }
}

Visual Basic (OO4O): Inserting a Row Containing a BFILE by
Initializing a BFILE Locator
’ Inserting a row containing a BFILE by initializing a BFILE.
’ [Example script: 3959.txt]

Dim OraDyn as OraDynaset, OraPhoto as OraBFile, OraMusic as OraBFile
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraMusic = OraDyn.Fields("ad_graphic").Value

’Edit the first row and initiliaze the "ad_graphic" column:
OraDyn.Edit
OraPhoto.DirectoryName = "ADGRAPHIC_DIR"
OraPhoto.Filename = "mousepad_graphic_2056_12001"
OraDyn.Update

Java (JDBC): Inserting a Row Containing a BFILE by Initializing a BFILE Locator
// Inserting a row containing a BFILE by initializing a BFILE.
// [Example script: 3960.java]

// Java IO classes:
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
External LOBs (BFILEs) 12-39

Inserting a Row With BFILE by Initializing a BFILE Locator
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_26
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 OracleCallableStatement cstmt = null;
 rset = stmt.executeQuery (
 "SELECT BFILENAME(’ADGRAPHIC_DIR’,’monitor_graphic_3060_11001’) FROM
DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Prepare a CallableStatement to OPEN the LOB for READWRITE:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "INSERT INTO Print_media (product_id, ad_graphic) VALUES (3060, ?)");
 cstmt.setBFILE(1, src_lob);
 cstmt.execute();

 //Close the statements and commit the transaction:
 stmt.close();
 cstmt.close();
 conn.commit();
12-40 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Inserting a Row With BFILE by Initializing a BFILE Locator
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-41

Loading Data Into External LOB (BFILE)
Loading Data Into External LOB (BFILE)

Figure 12–7 Use Case Diagram: Loading Initial Data into External LOB (BFILE)

Purpose
This procedure describes how to load initial data into a BFILE and the BFILE data

into a table.

Usage Notes
The BFILE datatype stores unstructured binary data in operating-system files

outside the database.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2

User/
Program

LOAD
BFILE Data into

a Table

External LOBs : LOADING BFILE Data into a Table
12-42 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading Data Into External LOB (BFILE)
A BFILE column or attribute stores a file locator that points to a server-side external

file containing the data.

The SQL*Loader assumes that the necessary DIRECTORY objects (a logical alias

name for a physical directory on the server's file system) have already been created.

A control file field corresponding to a BFILE column consists of column name

followed by the BFILE directive.

The BFILE directive takes as arguments a DIRECTORYobject name followed by a

BFILE name. Both of these can be provided as string constants, or they can be

dynamically sourced through some other field.

Syntax
Use the following syntax references:

■ SQL*Loader (Oracle9i Database Utilities)

■ Chapter 4, "Managing LOBs", Using SQL*Loader to Load LOBs

Scenario
The following two examples illustrate the loading of BFILES . In the first example

only the file name is specified dynamically. In the second example, the BFILE and

the DIRECTORY object are specified dynamically.

Note: A particular file to be loaded as a BFILE does not have to

actually exist at the time of loading.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on BFILES.

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/manager
GRANT CREATE ANY DIRECTORY to samp;
CONNECT samp/samp
CREATE OR REPLACE DIRECTORY adgraphic_photo as ’/tmp’;
CREATE OR REPLACE DIRECTORY adgraphic_dir as ’/tmp’;
External LOBs (BFILEs) 12-43

Loading Data Into External LOB (BFILE)
Examples
The following examples load data into BFILES:

■ Loading Data Into BFILES: File Name Only is Specified Dynamically

■ Loading Data into BFILES: File Name and DIRECTORY Object Dynamically

Specified

Loading Data Into BFILES: File Name Only is Specified Dynamically

Control File
LOAD DATA
INFILE sample9.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ’,’
(product_id INTEGER EXTERNAL(6),
 FileName FILLER CHAR(30),
 ad_graphic BFILE(CONSTANT "modem_graphic_2268_21001", FileName))

Data file (sample9.dat)
007, modem_2268.jpg,
008, monitor_3060.jpg,
009, keyboard_2056.jpg,

Loading Data into BFILES: File Name and DIRECTORY Object
Dynamically Specified

Control File
LOAD DATA
INFILE sample10.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ’,’

Note: product_ID defaults to (255) if a size is not specified. It is

mapped to the file names in the datafile. ADGRAPHIC_PHOTO is the

directory where all files are stored. ADGRAPHIC_DIR is a

DIRECTORY object created previously.
12-44 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading Data Into External LOB (BFILE)
(
 product_id INTEGER EXTERNAL(6),
 ad_graphic BFILE (DirName, FileName),
 FileName FILLER CHAR(30),
 DirName FILLER CHAR(30)
)

Data file (sample10.dat)
007,monitor_3060.jpg,ADGRAPHIC_PHOTO,
008,modem_2268.jpg,ADGRAPHIC_PHOTO,
009,keyboard_2056.jpg,ADGRAPHIC_DIR,

Note: DirName FILLER CHAR (30) is mapped to the datafile

field containing the directory name corresponding to the file being

loaded.
External LOBs (BFILEs) 12-45

Loading a LOB with BFILE Data
Loading a LOB with BFILE Data

Figure 12–8 Use Case Diagram: Loading a LOB with BFILE Data

User/
Program

LOAD a LOB
with Data from

a BFILE

SELECT
a LOB

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

close
a BFILE

open
a BFILE

OR

External LOBs : LOADING a LOB with Data from a BFILE
12-46 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with BFILE Data
Purpose
This procedure describes how to load a LOB with BFILE data.

Usage Notes

Character Set Conversion In using OCI, or any of the programmatic environments

that access OCI functionality, character set conversions are implicitly performed

when translating from one character set to another.

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set When you use

the DBMS_LOB.LOADFROMFILE procedure to populate a CLOB or NCLOB, you are

populating the LOB with binary data from the BFILE . No implicit translation is

performed from binary data to a character set. For this reason, you should use the

LOADCLOBFROMFILE procedure when loading text (see Loading a CLOB with

BFILE Data on page 12-59).

Specify Amount Parameter to be Less than the Size of the BFILE!
■ DBMS_LOB.LOADFROMFILE: You cannot specify the amount parameter to

be larger than the size of the BFILE.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Loading a BLOB with BFILE Data on page 12-55

■ Loading a CLOB with BFILE Data on page 12-59

Note: The LOADBLOBFROMFILE and LOADCLOBFROMFILE
procedures implement the functionality of this procedure and

provide improved features for loading binary data and character

data. The improved procedures are available in the PL/SQL

environment only. When possible, using one of the improved

procedures is recommended. See "Loading a BLOB with BFILE

Data" and "Loading a CLOB with BFILE Data" for more

information.

See Also: Oracle9i Database Globalization Support Guide for character set
conversion issues.
External LOBs (BFILEs) 12-47

Loading a LOB with BFILE Data
■ OCILobLoadFromFile: You cannot specify the amount parameter to be larger

than the length of the BFILE.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — LOADFROMFILE

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations", for usage notes and examples. Chapter 15, "Relational Functions"

— LOB Functions, OCILobLoadFromFile.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, embedded SQL, and

LOB LOAD precompiler directives.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements" "Embedded SQL Statements and

Directives"— LOB LOAD.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS >

OraBLOB.OraCLOB > METHODS > CopyFromBfile

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
These example procedures assume there is a directory object (ADGRAPHIC_DIR)
that contains the LOB data to be loaded into the destination LOB.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Loading a LOB with BFILE Data on page 12-49

■ C (OCI): Loading a LOB with BFILE Data on page 12-49
12-48 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with BFILE Data
■ COBOL (Pro*COBOL): Loading a LOB with BFILE Data on page 12-51

■ C/C++ (Pro*C/C++): Loading a LOB with BFILE Data on page 12-53

■ Visual Basic (OO4O): Loading a LOB with BFILE Data on page 12-54

PL/SQL (DBMS_LOB Package): Loading a LOB with BFILE Data
/* Loading a LOB with BFILE data.
 Procedure loadLOBFromBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE loadLOBFromBFILE_proc IS
 Dest_loc BLOB;
 Src_loc BFILE := BFILENAME(’ADGRAPHIC_DIR’,
 ’keyboard_graphic_3106_13001’);
 Amount INTEGER := 4000;
BEGIN
 SELECT ad_graphic INTO Dest_loc FROM Print_media
 WHERE product_id = 3060 AND ad_id = 13001 FOR UPDATE;
 /* Opening the LOB is mandatory: */
 DBMS_LOB.OPEN(Src_loc, DBMS_LOB.LOB_READONLY);
 /* Opening the LOB is optional: */
 DBMS_LOB.OPEN(Dest_loc, DBMS_LOB.LOB_READWRITE);
 DBMS_LOB.LOADFROMFILE(Dest_loc, Src_loc, Amount);
 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Dest_loc);
 DBMS_LOB.CLOSE(Src_loc);
 COMMIT;
END;

C (OCI): Loading a LOB with BFILE Data
/* Loading a LOB with BFILE data.
 Select the lob/bfile from the Print_media table */

void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 char selstmt[150];
 OCIDefine *dfnhp, *dfnhp2;
External LOBs (BFILEs) 12-49

Loading a LOB with BFILE Data
 strcpy(selstmt, (char *) "SELECT ad_photo FROM Print_media \
 WHERE product_id=3106 AND ad_id = 13001 FOR UPDATE");

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
 /* Define the column being selected */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BLOB,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BLOB,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));
 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

void loadLobFromBfile(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *dest_loc;
 OCILobLocator *src_loc;

 /* Allocate locators */
 (void) OCIDescriptorAlloc((dvoid *) envhp,
 (dvoid **) &dest_loc, (ub4)OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 (void) OCIDescriptorAlloc((dvoid *) envhp,
 (dvoid **) &src_loc, (ub4)OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 checkerr(errhp, OCILobFileSetName(envhp, errhp, &src_loc,
 (text *) "ADPHOTO_DIR", (ub2) strlen("ADPHOTO_DIR"),
 (text *) "keyboard_photo_3106_13001",
 (ub2) strlen(keyboard_photo_3106_13001")));
12-50 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with BFILE Data
 selectLob(dest_loc, errhp, svchp, stmthp);

 checkerr(errhp, OCILobFileOpen(svchp, errhp, src_loc,
 (ub1)OCI_FILE_READONLY));
 checkerr(errhp, OCILobOpen(svchp, errhp, dest_loc, (ub1)OCI_LOB_READWRITE));
 checkerr (errhp, OCILobLoadFromFile(svchp, errhp, dest_loc, src_loc,
 (ub4)4000, (ub4)1, (ub4)1));
 checkerr(errhp, OCILobClose(svchp, errhp, dest_loc));
 checkerr(errhp, OCILobFileClose(svchp, errhp, src_loc));
}

COBOL (Pro*COBOL): Loading a LOB with BFILE Data
 * Loading a LOB with BFILE data.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOAD-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 DEST-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 DIR-IND PIC S9(4) COMP.
 01 FNAME-IND PIC S9(4) COMP.
 01 AMT PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 LOAD-BFILE.

 * Allocate and initialize the LOB locators:
 EXEC SQL ALLOCATE :DEST-BLOB END-EXEC.
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
External LOBs (BFILEs) 12-51

Loading a LOB with BFILE Data
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 * Populate the BFILE:
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT AD_GRAPHIC INTO :SRC-BFILE
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106 AND AD_ID = 13001
 END-EXEC.

 * Open the source BFILE READ ONLY.
 * Open the destination BLOB READ/WRITE:
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :DEST-BLOB READ WRITE END-EXEC.

 * Load BFILE data into the BLOB:
 EXEC SQL
 LOB LOAD :AMT FROM FILE :SRC-BFILE INTO :DEST-BLOB END-EXEC.

 * Close the LOBs:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.
 EXEC SQL LOB CLOSE :DEST-BLOB END-EXEC.

 * And free the LOB locators:
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :DEST-BLOB END-EXEC.
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.
12-52 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a LOB with BFILE Data
C/C++ (Pro*C/C++): Loading a LOB with BFILE Data
/* Loading a LOB with BFILE data. */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void loadLOBFromBFILE_proc()
{
 OCIBlobLocator *Dest_loc;
 OCIBFileLocator *Src_loc;
 char *Dir = "ADGRAPHIC_DIR", *Name = "mousepad_graphic_2056_12001";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Src_loc;
 EXEC SQL LOB FILE SET :Src_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL SELECT ad_photo INTO :Dest_loc FROM Print_media
 WHERE Product_ID = 2056 AND AD_ID = 12001 FOR UPDATE;

 /* Opening the BFILE is Mandatory: */
 EXEC SQL LOB OPEN :Src_loc READ ONLY;

 /* Opening the BLOB is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest_loc;

 /* Closing LOBs and BFILEs is Mandatory if they have been OPENed: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
External LOBs (BFILEs) 12-53

Loading a LOB with BFILE Data
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadLOBFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Loading a LOB with BFILE Data
’Loading a LOB with BFILE data

Dim OraDyn as OraDynaset, OraDyn2 as OraDynaset, OraAdGraphic as OraBFile
Dim OraAdPhoto as OraBlob

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)

Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value
Set OraAdPhoto = OraDyn.Fields("ad_photo").Value

OraDyn.Edit
’Load LOB with data from BFILE:
OraAdPhoto.CopyFromBFile (OraAdGraphic)
OraDyn.Update
12-54 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a BLOB with BFILE Data
Loading a BLOB with BFILE Data

Figure 12–9 Use Case Diagram: Loading a BLOB with Binary Data

User/
Program

LOAD a BLOB
with Data from

a BFILE

SELECT
a BLOB

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

OR

External BLOBs : LOADING a BLOB with Data from a BFILE
External LOBs (BFILEs) 12-55

Loading a BLOB with BFILE Data
Purpose
This procedure describes how to load a BLOB with binary data from a BFILE. This

achieves the same outcome as LOADFROMFILE as well as returning the new offsets

to the user.

Usage Notes
Use LOADBLOBFROMFILE for loading of binary data and LOADCLOBFROMFILE for

text loading. Note that since this functionality does not support BFILE on the client

side, the loading takes place on the server side only. The LOADCLOBFROMFILE API

allows you to specify the character set id of the BFILE ensuring that the character

set is properly converted from the BFILE data character set to the destination

CLOB/NCLOB character set.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — LOADBLOBFROMFILE

Scenario
The example procedures in this section use the Print_media table of the Product

Media sample schema and assume that there is an operating system source

directory that contains the binary LOB data to be loaded into the target BLOB.

Examples
The example, "PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB

with BFILE Data", illustrates LOADBLOBFROMFILE usage in the PL/SQL

programmatic environment. (Other programmatic environments are not

supported.)

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Loading a LOB with BFILE Data on page 12-46

■ Loading a CLOB with BFILE Data on page 12-59
12-56 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a BLOB with BFILE Data
PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB with BFILE Data
The following example illustrates:

■ How to load an internal persistent BLOB with binary data from a BFILE.

■ How to use LOADBLOBFROMFILE to load the entire file without getting its

length first.

■ How to use the return value of the offsets to calculate the actual amount loaded.

DECLARE
 src_loc BFILE := bfilename(’ADVERT_DIR’,’display_ad_frame’) ;
 dst_loc BLOB;
 src_offset NUMBER := 1;
 dst_offset NUMBER := 1;
 src_osin NUMBER;
 dst_osin NUMBER;
 bytes_rd NUMBER;
 bytes_wt NUMBER;
BEGIN
 SELECT ad_composite INTO dst_loc FROM Print_media
 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

 /* Opening the source BFILE is mandatory */
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);

 /* Opening the LOB is optional */
 dbms_lob.OPEN(dst_loc, dbms_lob.lob_readwrite);
 /* Save the input source/destination offsets */
 src_osin := src_offset;
 dst_osin := dst_offset;
 /* Use LOBMAXSIZE to indicate loading the entire BFILE */
 dbms_lob.LOADBLOBFROMFILE(dst_loc,src_loc,dbms_lob.lobmaxsize,src_offset,dst_
offset) ;

 /* Closing the LOB is mandatory if you have opened it */
 dbms_lob.close(dst_loc);
 dbms_lob.filecloseall();
 COMMIT;

 /* Use the src_offset returned to calculate the actual amount read from the
BFILE */
 bytes_rd := src_offset - src_osin;
 dbms_output.put_line(’ Number of bytes read from the BFILE ’ || bytes_rd) ;
 /* Use the dst_offset returned to calculate the actual amount written to the
External LOBs (BFILEs) 12-57

Loading a BLOB with BFILE Data
BLOB */
 bytes_wt := dst_offset - dst_osin;
 dbms_output.put_line(’ Number of bytes written to the BLOB ’ || bytes_wt) ;
 /* If there is no exception the number of bytes read should equal to the
number of bytes written */

END ;
12-58 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a CLOB with BFILE Data
Loading a CLOB with BFILE Data

Figure 12–10 Use Case Diagram: Loading a CLOB or NCLOB with Character Data

User/
Program

LOAD a CLOB
with Data from

a BFILE

SELECT
a CLOB

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

OR

External CLOBs : LOADING a CLOB with Data from a BFILE
External LOBs (BFILEs) 12-59

Loading a CLOB with BFILE Data
Purpose
This procedure describes how to load an internal persistent CLOB or NCLOB with

character data from a BFILE.

Usage Notes
Use LOADBLOBFROMFILE for loading of binary data and LOADCLOBFROMFILE for

loading of text as the latter method lets you specify the character set id of the BFILE.

Note that since this functionality does not support BFILE on the client side, the

loading takes place on the server side only. The LOADCLOBFROMFILE API allows

you to specify the character set id of the BFILE ensuring that the character set is

properly converted from the BFILE data character set to the destination

CLOB/NCLOB character set.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): Oracle9i Supplied PL/SQL Packages and Types Reference
Chapter 18, "DBMS_LOB" — LOADCLOBFROMFILE

Scenario
The example procedures in this section use the Print_media table of the Product

Media sample schema and assume that there is an operating system source

directory that contains the character LOB data to be loaded into the target CLOB or

NCLOB.

Examples
The example, "PL/SQL (DBMS_LOB Package): Loading a CLOB/NCLOB with

BFILE Data", illustrates LOADCLOBFROMFILE usage in the PL/SQL programmatic

environment. (Other programmatic environments are not supported.)

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Loading a LOB with BFILE Data on page 12-46

■ Loading a BLOB with BFILE Data on page 12-55
12-60 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Loading a CLOB with BFILE Data
PL/SQL (DBMS_LOB Package): Loading a CLOB/NCLOB with BFILE Data
The following example illustrates:

■ How to load an internal persistent CLOB or NCLOB with character data from a

BFILE.

■ How to use default csid (0).

■ How to load the entire file without calling getlength for the BFILE.

■ How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format

and the database charset is UTF8.

DECLARE
 src_loc bfile := bfilename(’ADVERT_DIR’,’ad_source_1000’) ;
 dst_loc clob ;
 amt number := dbms_lob.lobmaxsize;
 src_offset number := 1 ;
 dst_offset number := 1 ;
 lang_ctx number := dbms_lob.default_lang_ctx;
 warning number;
BEGIN
 select ad_sourcetext into dst_loc from Print_media
 where product_id = 3000 and ad_id = 1000 for update ;
 dbms_lob.fileopen(src_loc, dbms_lob.file_readonly);

 /* The default_csid can be used when the BFILE encoding is in the same charset
 * as the destination CLOB/NCLOB charset
 */
dbms_lob.LOADCLOBFROMFILE(dst_loc,src_loc,amt,dst_offset,src_offset,

 dbms_lob.default_csid, lang_ctx,warning) ;

 commit;

 dbms_output.put_line(’ Amount specified ’ || amt) ;
 dbms_output.put_line(’ Number of bytes read from source: ’ ||

See Also:

■ PL/SQL (DBMS_LOB Package): Loading an Internal Persistent

CLOB with BFILE Data on page 10-49

■ PL/SQL (DBMS_LOB Package): Loading a Temporary

CLOB/NCLOB with BFILE Data on page 11-54
External LOBs (BFILEs) 12-61

Loading a CLOB with BFILE Data
 (src_offset-1));
 dbms_output.put_line(’ Number of characters written to destination: ’ ||
 (dst_offset-1));
 if (warning = dbms_lob.warn_inconvertible_char)
 then
 dbms_output.put_line(’Warning: Inconvertible character’);
 end if;

 dbms_lob.filecloseall() ;
END ;
12-62 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Ways to Open a BFILE
Ways to Open a BFILE

Figure 12–11 Use Case Diagram: Ways to Open a BFILE

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

OPEN
a BFILE

External LOBs : OPENING a BFILE
External LOBs (BFILEs) 12-63

Ways to Open a BFILE
Recommendation: Use OPEN to Open BFILE
Opening a BFILE using FILEOPEN is still supported; however, using OPEN is
recommended for extensibility in future releases.

Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES
A limited number of BFILE s can be open simultaneously in each session. The

maximum number is specified by using the initialization parameter SESSION_
MAX_OPEN_FILES.

SESSION_MAX_OPEN_FILES defines an upper limit on the number of

simultaneously open files in a session. The default value for this parameter is 10.

That is, a maximum of 10 files can be opened simultaneously in each session if the

default value is utilized. The database administrator can change the value of this

parameter in the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session.

To close all open files, use the FILECLOSEALL call.

Close Files After Use
It is good practice to close files after use to keep the SESSION_MAX_OPEN_FILES

value small. Choosing a larger value would entail a higher memory usage.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Opening a BFILE with FILEOPEN on page 12-65

■ Opening a BFILE with OPEN on page 12-70
12-64 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Opening a BFILE with FILEOPEN
Opening a BFILE with FILEOPEN

Figure 12–12 Use Case Diagram: Opening a BFILE with FILEOPEN

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

Open a BFILE
with FILEOPEN

open
a BFILE

External LOBs : OPENING a BFILE with FILEOPEN
External LOBs (BFILEs) 12-65

Opening a BFILE with FILEOPEN
Purpose
This procedure describes how to open a BFILE using FILEOPEN.

Usage Notes
While you can continue to use the older FILEOPEN form, we strongly recommend
that you switch to using OPEN, because this facilitates future extensibility.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — FILEOPEN, FILECLOSE

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations, for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileOpen, OCILobFileClose, OCILobFileSetName

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
These examples open keyboard_photo3060 in operating system file ADPHOTO_DIR.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Ways to Open a BFILE on page 12-63

■ Opening a BFILE with OPEN on page 12-70
12-66 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Opening a BFILE with FILEOPEN
Examples
Examples are provided in the following four programmatic environments:

■ PL/SQL: Opening a BFILE with FILEOPEN on page 12-67

■ C (OCI): Opening a BFILE with FILEOPEN on page 12-67

■ COBOL (Pro*COBOL): No example is provided with this release.

■ C/C++ (Pro*C/C++): No example is provided with this release.

■ Visual Basic (OO4O): Opening a BFILE with FILEOPEN on page 12-68

■ Java (JDBC): Opening a BFILE with FILEOPEN on page 12-68

PL/SQL: Opening a BFILE with FILEOPEN
/* Opening a BFILE with FILEOPEN [Example script: 3973.sql] */
/* Procedure openBFILE_procOne is not part of DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE openBFILE_procOne IS
 File_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’keyboard_photo3060’);
BEGIN
 /* Open the BFILE: */
 DBMS_LOB.FILEOPEN (File_loc, DBMS_LOB.FILE_READONLY);
 /* ... Do some processing. */
 DBMS_LOB.FILECLOSE(File_loc);
END;

C (OCI): Opening a BFILE with FILEOPEN
/* Opening a BFILE with FILEOPEN */

void BfileOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *bfile_loc;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);
External LOBs (BFILEs) 12-67

Opening a BFILE with FILEOPEN
 /* Set the bfile locator information */
 checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *)"ADGRAPHIC_DIR",
 (ub2)strlen("ADGRAPHIC_DIR"),
 (OraText *)"keyboard_graphic_3106_
13001",
 (ub2)strlen("keyboard_graphic_3106_
13001"))));
 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));
 /* ... Do some processing. */
 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

Visual Basic (OO4O): Opening a BFILE with FILEOPEN

Java (JDBC): Opening a BFILE with FILEOPEN
// Opening a BFILE with FILEOPEN
import java.io.OutputStream;
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_38
{

Note: At the present time, OO4O only offers BFILE opening with

OPEN (see "Visual Basic (OO4O) Opening a BFILE with OPEN" on

page 12-75).
12-68 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Opening a BFILE with FILEOPEN
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME(’AD_GRAPHIC’, ’monitor_3060’) FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);

 src_lob.openFile();
 System.out.println("The file is now open");
 }

 // Close the BFILE, statement and connection:
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-69

Opening a BFILE with OPEN
Opening a BFILE with OPEN

Figure 12–13 Use Case Diagram: Opening a BFILE with OPEN

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

Open a BFILE
with OPEN

OPEN
a BFILE

External LOBs : OPENING a BFILE
12-70 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Opening a BFILE with OPEN
Purpose
This procedure describes how to open a BFILE with OPEN.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL(DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — OPEN

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations", for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobOpen, OCILobClose

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB statements, and embedded SQL and

precompiler directives — LOB OPEN.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB OPEN.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >

METHODS > Open, and > OBJECTS > OraDynaset > METHODS > MoveFirst

MoveLast MovePrevious MoveNext

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Ways to Open a BFILE on page 12-63

■ Opening a BFILE with FILEOPEN on page 12-65
External LOBs (BFILEs) 12-71

Opening a BFILE with OPEN
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
 These examples open an image in operating system file ADPHOTO_DIR.

Examples
Examples are provided in the following six programmatic environments:

■ PL/SQL: Opening a BFILE with OPEN on page 12-72

■ C (OCI): Opening a BFILE with OPEN on page 12-72

■ C/C++ (Pro*C/C++): Opening a BFILE with OPEN on page 12-74

■ COBOL (Pro*COBOL): Opening a BFILE with OPEN on page 12-73

■ Visual Basic (OO4O) Opening a BFILE with OPEN on page 12-75

■ Java (JDBC): Opening a BFILE with OPEN on page 12-76

PL/SQL: Opening a BFILE with OPEN
/* Opening a BFILE with OPEN. */
/* Procedure openBFILE_procTwo is not part of DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE openBFILE_procTwo IS
 File_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’keyboard_photo_3060_11001’);
BEGIN
 /* Open the BFILE: */
 DBMS_LOB.OPEN (File_loc, DBMS_LOB.LOB_READONLY);
 /* ... Do some processing: */
 DBMS_LOB.CLOSE(File_loc);
END;

C (OCI): Opening a BFILE with OPEN
/* Opening a BFILE with OPEN. */

void BfileFileOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

12-72 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Opening a BFILE with OPEN
 OCILobLocator *bfile_loc;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 /* Set the Bfile Locator Information */
 checkerr(errhp, (OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *)"ADGRAPHIC_DIR", (ub2)strlen("ADGRAPHIC_
DIR"),
 (OraText *)"keyboard_graphic_3106_13001",
 (ub2)strlen("keyboard_graphic_3106_13001"))));
 checkerr(errhp, OCILobOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));
 /* ... Do some processing. */
 checkerr(errhp, OCILobClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Opening a BFILE with OPEN
 * Opening a BFILE with OPEN. [Example script: 3978.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. OPEN-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 OPEN-BFILE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
External LOBs (BFILEs) 12-73

Opening a BFILE with OPEN
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3106_13001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 * Assign directory alias and file name to BFILE:
 EXEC SQL
 LOB FILE SET :SRC-BFILE
 DIRECTORY = :DIR-ALIAS, FILENAME = :FNAME END-EXEC.

 * Open the BFILE read only:
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 * Close the LOB:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

 * And free the LOB locator:
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Opening a BFILE with OPEN
/* Opening a BFILE using OPEN. [Example script: 3979.pc]
 In Pro*C/C++ there is only one form of OPEN used for OPENing
 BFILEs. There is no FILE OPEN, only a simple OPEN statement: */
12-74 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Opening a BFILE with OPEN
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void openBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "GRAPHIC_DIR", *Name = "mousepad_2056";

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* ... Do some processing: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 openBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O) Opening a BFILE with OPEN
’Opening a BFILE using OPEN. [Example script: 3981.txt]
Dim OraDyn as OraDynaset, OraAdGraphic as OraBFile
Set OraDyn = OraDb.CreateDynaset("select * from Print_media",ORADYN_DEFAULT)
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value

’Go to the last row and open the Bfile for reading:
OraDyn.MoveLast
External LOBs (BFILEs) 12-75

Opening a BFILE with OPEN
OraAdGraphic.Open ’Open Bfile for reading
’Do some processing:
OraAdGraphic.Close

Java (JDBC): Opening a BFILE with OPEN
// Opening a BFILE with OPEN. [Example script: 3982.java]
import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex4_41
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME(’ADGRAPHIC_DIR’, ’monitor_graphic_3060_11001’) FROM
DUAL");
12-76 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Opening a BFILE with OPEN
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);

 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall ("begin dbms_lob.open (?,dbms_lob.lob_readonly);
end;");
 cstmt.registerOutParameter(1,OracleTypes.BFILE);
 cstmt.setBFILE (1, src_lob);
 cstmt.execute();
 src_lob = cstmt.getBFILE(1);
 System.out.println ("the file is now open");
 }

 // Close the BFILE, statement and connection:
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-77

Ways to See If a BFILE is Open
Ways to See If a BFILE is Open

Figure 12–14 Use Case Diagram: Two Ways to See If a BFILE is Open

Recommendation: Use OPEN to Open BFILE
As you can see by comparing the code, these alternative methods are very similar.

While you can continue to use the older FILEISOPEN form, we strongly

recommend that you switch to using ISOPEN, because this facilitates future

extensibility.

Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES
A limited number of BFILE s can be open simultaneously in each session. The

maximum number is specified by using the SESSION_MAX_OPEN_FILES
initialization parameter.

SESSION_MAX_OPEN_FILES defines an upper limit on the number of

simultaneously open files in a session. The default value for this parameter is 10.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Checking If the BFILE is Open with FILEISOPEN on page 12-80

■ Checking If a BFILE is Open Using ISOPEN on page 12-86

User/
Program

SEE if the
BFILE is Open

External LOBs : SEEING if the BFILE is Open
12-78 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Ways to See If a BFILE is Open
That is, a maximum of 10 files can be opened simultaneously in each session if the

default value is utilized. The database administrator can change the value of this

parameter in the init .ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session. To close all open files, use

the FILECLOSEALL call.
External LOBs (BFILEs) 12-79

Checking If the BFILE is Open with FILEISOPEN
Checking If the BFILE is Open with FILEISOPEN

Figure 12–15 Use Case Diagram: Checking If BFILE is Open Using FILEISOPEN

Purpose
This procedure describes how to see if a BFILE is OPEN with FILEISOPEN .

Usage Notes
While you can continue to use the older FILEISOPEN form, we strongly recommend
that you switch to using ISOPEN, because this facilitates future extensibility.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL(DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — FILEISOPEN

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Ways to See If a BFILE is Open on page 12-78

■ Checking If a BFILE is Open Using ISOPEN on page 12-86

User/
Program

SEE if the BFILE is Open
Using FILEISOPEN

See if the
BFILE is Open

External LOBs : SEEING if the BFILE is Open
12-80 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE is Open with FILEISOPEN
■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileIsOpen

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
These examples query whether a BFILE associated with ad_graphic is open.

Examples
Examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with

FILEISOPEN on page 12-81

■ C (OCI): Checking If the BFILE is Open with FILEISOPEN on page 12-82

■ C/C++ (Pro*C/C++): No example is provided with this release.

■ COBOL (Pro*COBOL): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided. See note on page 12-84

■ Java (JDBC): Checking If the BFILE is Open with FILEISOPEN on page 12-84

PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with FILEISOPEN
/* Checking if the BFILE is OPEN with FILEISOPEN. [Example script: 3984.sql]
 Procedure seeIfOpenBFILE_procOne is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE seeIfOpenBFILE_procOne IS
 File_loc BFILE;
 RetVal INTEGER;
BEGIN
 /* Select the LOB, initializing the BFILE locator: */
 SELECT ad_graphic INTO File_loc FROM Print_media
External LOBs (BFILEs) 12-81

Checking If the BFILE is Open with FILEISOPEN
 WHERE product_ID = 3060 AND ad_id = 11001;
 RetVal := DBMS_LOB.FILEISOPEN(File_loc);
 IF (RetVal = 1)
 THEN
 DBMS_OUTPUT.PUT_LINE(’File is open’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’File is not open’);
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Checking If the BFILE is Open with FILEISOPEN
/* Checking if the BFILE is open with FILEISOPEN. [Example script: 3985.c] */

/* Select the lob/bfile from the Print_media table */
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt =
 (text *) "SELECT ad_graphic FROM Print_media
 WHERE product_id=3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));
12-82 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE is Open with FILEISOPEN
 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
void BfileFileIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
 boolean flag;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));

 checkerr(errhp, OCILobFileIsOpen(svchp, errhp, bfile_loc, &flag));

 if (flag == TRUE)
 {
 printf("File is open\n");
 }
 else
 {
 printf("File is not open\n");
 }

 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

External LOBs (BFILEs) 12-83

Checking If the BFILE is Open with FILEISOPEN
Visual Basic (OO4O): Checking If the BFILE is Open with FILEISOPEN

Java (JDBC): Checking If the BFILE is Open with FILEISOPEN
// Checking if the BFEIL is open with FILEISOPEN.[Example script:3986.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_45
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

Note: At the present time, OO4O only offers ISOPEN to test

whether or not a BFILE is open (see "Visual Basic (OO4O):

Checking If the BFILE is Open with FILEISOPEN" on page 12-84).
12-84 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE is Open with FILEISOPEN
 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 boolean result = false;

 rset = stmt.executeQuery (
"SELECT BFILENAME(’ADGRAPHIC_DIR’, ’monitor_graphic_3060_11001’) FROM

DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 result = src_lob.isFileOpen();
 System.out.println(
 "result of fileIsOpen() before opening file : " + result);
 if (!result)
 src_lob.openFile();

 result = src_lob.isFileOpen();
 System.out.println(
 "result of fileIsOpen() after opening file : " + result);

 // Close the BFILE, statement and connection:
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-85

Checking If a BFILE is Open Using ISOPEN
Checking If a BFILE is Open Using ISOPEN

Figure 12–16 Use Case Diagram: Checking If a BFILE is Open Using ISOPEN

Purpose
This procedure describes how to see if a BFILE is open using ISOPEN.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — ISOPEN

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2, for all basic operations of Internal Temporary LOBs

■ Ways to See If a BFILE is Open on page 12-78

■ Checking If the BFILE is Open with FILEISOPEN on page 12-80

User/
Program

SEE if the BFILE is Open
Using ISOPEN

See if the
BFILE is Open

External LOBs : SEEING if the BFILE is Open
12-86 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a BFILE is Open Using ISOPEN
■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileIsOpen

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB DESCRIBE ... ISOPEN.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Large Objects (LOBs)", "LOB Statements",

"Embedded SQL Statements and Directives" — LOB DESCRIBE ... ISOPEN

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBfile >

METHODS > IsOpen and > OBJECTS > OraDynaset

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
These examples query whether the a BFILE is open that is associated with ad_
graphic .

Examples
Examples are provided in the following six programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with ISOPEN on

page 12-87

■ C (OCI): Checking If the BFILE is Open with ISOPEN on page 12-88

■ COBOL (Pro*COBOL): Checking If the BFILE is Open with ISOPEN on

page 12-90

■ C/C++ (Pro*C/C++): Checking If the BFILE is Open with ISOPEN on

page 12-91

■ Visual Basic (OO4O): Checking If the BFILE is Open with ISOPEN on

page 12-92

■ Java (JDBC): Checking If the BFILE is Open with ISOPEN on page 12-93
External LOBs (BFILEs) 12-87

Checking If a BFILE is Open Using ISOPEN
PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with ISOPEN
/* Checking if the BFILE is open with ISOPEN. [Example script: 3987.sql] */
/* Procedure seeIfOpenBFILE_procTwo is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE seeIfOpenBFILE_procTwo IS
 File_loc BFILE;
 RetVal INTEGER;
BEGIN
 /* Select the LOB, initializing the BFILE locator: */
 SELECT ad_graphic INTO File_loc FROM Print_media
 WHERE product_ID = 3060 AND ad_id = 11001;
 RetVal := DBMS_LOB.ISOPEN(File_loc);
 IF (RetVal = 1)
 THEN
 DBMS_OUTPUT.PUT_LINE(’File is open’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’File is not open’);
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Checking If the BFILE is Open with ISOPEN
/* Checking if the BFILE is Open with ISOPEN. Example script:3988.c] */

/* Select the lob/bfile from the Print_media table */
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt =
 (text *) "SELECT ad_graphic FROM Print_media
 WHERE product_id=3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
12-88 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a BFILE is Open Using ISOPEN
 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));
 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}
void BfileIsOpen(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
 boolean flag;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr(errhp, OCILobOpen(svchp, errhp, bfile_loc,
 (ub1)OCI_FILE_READONLY));

 checkerr(errhp, OCILobIsOpen(svchp, errhp, bfile_loc, &flag));

 if (flag == TRUE)
 {
 printf("File is open\n");
 }
 else
 {
 printf("File is not open\n");
 }
External LOBs (BFILEs) 12-89

Checking If a BFILE is Open Using ISOPEN
 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Checking If the BFILE is Open with ISOPEN
 * Checking if BFILE is open with ISOPEN. [Example script: 3989.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. OPEN-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 SRC-BFILE SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 OPEN-BFILE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Set up the directory and file information:
 MOVE "ADPHOTO_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_photo_3060_11001" TO FNAME-ARR.
 MOVE 16 TO FNAME-LEN.

 * Assign directory alias and file name to BFILE:
 EXEC SQL
12-90 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a BFILE is Open Using ISOPEN
 LOB FILE SET :SRC-BFILE
 DIRECTORY = :DIR-ALIAS, FILENAME = :FNAME
 END-EXEC.

 * Open the BFILE read only:
 EXEC SQL
 LOB OPEN :SRC-BFILE READ ONLY
 END-EXEC.

 * Close the LOB:
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

 * And free the LOB locator:
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Checking If the BFILE is Open with ISOPEN
/* Checking if the BFILE is open with ISOPEN. [Example script: 3990.pc]
 In Pro*C/C++, there is only one form of ISOPEN to determine whether
 or not a BFILE is OPEN. There is no FILEISOPEN, only a simple ISOPEN.
 This is an attribute used in the DESCRIBE statement: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
External LOBs (BFILEs) 12-91

Checking If a BFILE is Open Using ISOPEN
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfOpenBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 int isOpen;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BFILE into the locator: */
 EXEC SQL SELECT ad_graphic INTO :Lob_loc FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001;
 /* Determine if the BFILE is OPEN or not: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN into :isOpen;
 if (isOpen)
 printf("BFILE is open\n");
 else
 printf("BFILE is not open\n");
 /* Note that in this example, the BFILE is not open: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfOpenBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Checking If the BFILE is Open with ISOPEN
’ Checking if the BFILE is open with ISOPEN. [Example script: 3992.txt]
Dim OraDyn as OraDynaset, OraAdGraphic as OraBFile, amount_read%, chunksize%,
chunk

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
12-92 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a BFILE is Open Using ISOPEN
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value

If OraAdGraphic.IsOpen then
 ’Process, if the file is already open:
Else
 ’Process, if the file is not open, and return an error:
End If

Java (JDBC): Checking If the BFILE is Open with ISOPEN
// Checking if the BFILE is open with ISOPEN. [Example script: 3993.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_48
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
External LOBs (BFILEs) 12-93

Checking If a BFILE is Open Using ISOPEN
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;
 rset = stmt.executeQuery (
 "SELECT BFILENAME(’ADGRAPHIC_DIR’, ’monitor_graphic_3060_11001’) FROM
DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }
 result = new Boolean(src_lob.isFileOpen());
 System.out.println(
 "result of fileIsOpen() before opening file : " + result.toString());
 src_lob.openFile();
 result = new Boolean(src_lob.isFileOpen());
 System.out.println(
 "result of fileIsOpen() after opening file : " + result.toString());

 // Close the BFILE, statement and connection:
 src_lob.closeFile();

 int i = cstmt.getInt(1);
 System.out.println("The result is: " + Integer.toString(i));

 OracleCallableStatement cstmt2 = (OracleCallableStatement)
 conn.prepareCall (
 "BEGIN DBMS_LOB.OPEN(?,DBMS_LOB.LOB_READONLY); END;");
 cstmt2.setBFILE(1, bfile);
 cstmt2.execute();

 System.out.println("The BFILE has been opened with a call to "
 +"DBMS_LOB.OPEN()");

 // Use the existing cstmt handle to re-query the status of the locator:
 cstmt.setBFILE(2, bfile);
 cstmt.execute();
 i = cstmt.getInt(1);
 System.out.println("This result is: " + Integer.toString(i));

 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
12-94 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a BFILE is Open Using ISOPEN
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-95

Displaying BFILE Data
Displaying BFILE Data

Figure 12–17 Use Case Diagram: Displaying BFILE Data

Purpose
This procedure describes how to display BFILE data.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

OR

read
data from the

BFILE

DISPLAY
 the BFILE

External LOBs : DISPLAYING the BFILE
12-96 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying BFILE Data
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — READ. Chapter 29, "DBMS_OUTPUT" - PUT_

LINE

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileOpen, OCILobRead

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB READ, DISPLAY.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements" — READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

METHODS > Read, and OO4O Automation Server > OBJECTS > OraBFILE >

PROPERTIES > PollingAmount, Offset, Status. See also OO4O Automation

Server > OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
These examples open and display BFILE data.

Examples
Examples are provided in six programmatic environments:

■ PL/SQL: Displaying BFILE Data on page 12-98

■ C (OCI): Displaying BFILE Data on page 12-98
External LOBs (BFILEs) 12-97

Displaying BFILE Data
■ COBOL (Pro*COBOL): Displaying BFILE Data on page 12-101

■ C/C++ (Pro*C/C++): Displaying BFILE Data on page 12-103

■ Visual Basic (OO4O): Displaying BFILE Data on page 12-104

■ Java (JDBC): Displaying BFILE Data on page 12-105

PL/SQL: Displaying BFILE Data
/* Displaying BFILE data. [Example script: 3994.sql] */
/* Procedure displayBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE displayBFILE_proc IS
 File_loc BFILE;
 Buffer RAW(1024);
 Amount BINARY_INTEGER := 1024;
 Position INTEGER := 1;
BEGIN
 /* Select the LOB: */
 SELECT ad_graphic INTO File_loc
 FROM print_media WHERE Product_ID = 3060 AND ad_id = 11001;
 /* Opening the BFILE: */
 DBMS_LOB.OPEN (File_loc, DBMS_LOB.LOB_READONLY);
 LOOP
 DBMS_LOB.READ (File_loc, Amount, Position, Buffer);
 /* Display the buffer contents: */
 DBMS_OUTPUT.PUT_LINE(utl_raw.cast_to_varchar2(Buffer));
 Position := Position + Amount;
 END LOOP;
 /* Closing the BFILE: */
 DBMS_LOB.CLOSE (File_loc);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;

C (OCI): Displaying BFILE Data
/* Displaying BFILE data. [Example script: 3995.c] */
/* Select the lob/bfile from the Print_media table */

void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
12-98 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying BFILE Data
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt =
 (text *) "SELECT ad_graphic FROM Print_media
 WHERE product_id=3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

#define MAXBUFLEN 32767

void BfileDisplay(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 /* Assume all handles passed as input to this routine have been
 allocated and initialized */
 OCILobLocator *bfile_loc;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen, amt, offset;
 boolean done;
 ub4 retval;
External LOBs (BFILEs) 12-99

Displaying BFILE Data
 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);
 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 OCI_FILE_READONLY));
 /* This example will READ the entire contents of a BFILE piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BFILE has been read. */
 /* Setting amt = 0 will read till the end of LOB*/
 amt = 0;
 buflen = sizeof(bufp);
 /* Process the data in pieces */
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);
 done = FALSE;
 while (!done)
 {
 retval = OCILobRead(svchp, errhp, bfile_loc,
 &amt, offset, (dvoid *) bufp,
 buflen, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 switch (retval)
 {
 case OCI_SUCCESS: /* Only one piece or last piece*/
 /* process the data in bufp. amt will give the amount of data
 just read in bufp. This is in bytes for BLOBs and in characters
 for fixed width CLOBS and in bytes for variable width CLOBs*/
 done = TRUE;
 break;
 case OCI_ERROR:
 /* report_error(); this function is not shown here */
 done = TRUE;
 break;
 case OCI_NEED_DATA: /* There are 2 or more pieces */
 /* process the data in bufp. amt will give the amount of
 data just read in bufp. This is in bytes for BFILEs and i
 characters for fixed width CLOBS and in bytes for variable
 width CLOBs */
 break;
 default:
12-100 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying BFILE Data
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 done = TRUE;
 break;
 } /* switch */
 } /* while */

 /* Closing the BFILE is mandatory if you have opened it */
 checkerr (errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Displaying BFILE Data
 * Displaying BFILE data. [Example script: 3996.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. DISPLAY-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(9) VALUES "SAMP/SAMP".
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 DEST-BLOB SQL-BLOB.
 01 SRC-BFILE SQL-BFILE.
 01 BUFFER PIC X(5) VARYING.
 01 OFFSET PIC S9(9) COMP VALUE 1.
 01 AMT PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 D-AMTPIC 99,999,99.
 EXEC SQL VAR BUFFER IS LONG RAW (100) END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 DISPLAY-BFILE-DATA.

 * Connect to ORACLE
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
External LOBs (BFILEs) 12-101

Displaying BFILE Data
 END-EXEC.

 * Allocate and initialize the BFILE locator
 EXEC SQL ALLOCATE :SRC-BFILE END-EXEC.

 * Select the BFILE
 EXEC SQL SELECT AD_GRAPHIC INTO :SRC-BFILE
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106 AND AD_ID = 13001
 END-EXEC.

 * Open the BFILE
 EXEC SQL LOB OPEN :SRC-BFILE READ ONLY END-EXEC.

 * Set the amount = 0 will initiate the polling method
 MOVE 0 TO AMT;
 EXEC SQL LOB READ :AMT FROM :SRC-BFILE INTO :BUFFER END-EXEC.

 * DISPLAY "BFILE DATA".
 * MOVE AMT TO D-AMT.
 * DISPLAY "First READ (", D-AMT, "): " BUFFER.

 * Do READ-LOOP until the whole BFILE is read.
 EXEC SQL WHENEVER NOT FOUND GO TO END-LOOP END-EXEC.

 READ-LOOP.
 EXEC SQL LOB READ :AMT FROM :SRC-BFILE INTO :BUFFER END-EXEC.

 * MOVE AMT TO D-AMT.
 * DISPLAY "Next READ (", D-AMT, "): " BUFFER.

 GO TO READ-LOOP.

 END-LOOP.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

 * Close the LOB
 EXEC SQL LOB CLOSE :SRC-BFILE END-EXEC.

 * And free the LOB locator
 EXEC SQL FREE :SRC-BFILE END-EXEC.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
12-102 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying BFILE Data
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Displaying BFILE Data
/* Displaying BFILE data. [Example script: 3997.pc]
 This example reads the entire contents of a BFILE piecewise into a
 buffer using a streaming mechanism via standard polling, displaying each
 buffer piece after every READ operation until the entire BFILE has been
 read: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void displayBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 int Amount;
 struct {
 short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer is VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BFILE: */
External LOBs (BFILEs) 12-103

Displaying BFILE Data
 EXEC SQL SELECT ad_graphic INTO :Lob_loc
 FROM Print_media WHERE Product_ID = 2056 AND ad_id = 12001;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BFILE into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Display %d bytes\n", Buffer.Length);
 }
 printf("Display %d bytes\n", Amount);
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Displaying BFILE Data
’ Displaying BFILE data. [Example script: 3999.txt]
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraAdGraphio As OraBfile, amount_read%, chunksize%,
chunk As Variant

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)

chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value
12-104 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying BFILE Data
OraAdGraphic.offset = 1
OraAdGraphic.PollingAmount = OraAdGraphic.Size ’Read entire BFILE contents

’Open the Bfile for reading:
OraAdGraphic.Open
amount_read = OraAdGraphic.Read(chunk, chunksize)

While OraAdGraphic.Status = ORALOB_NEED_DATA
 amount_read = OraAdGraphic.Read(chunk, chunksize)
Wend
OraAdGraphic.Close

Java (JDBC): Displaying BFILE Data
// Displaying BFILE data. [Example script: 4000.java]

import java.io.OutputStream;
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_53
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);
External LOBs (BFILEs) 12-105

Displaying BFILE Data
 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;
 InputStream in = null;
 byte buf[] = new byte[1000];
 int length = 0;
 boolean alreadyDisplayed = false;
 rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Open the BFILE:
 src_lob.openFile();

 // Get a handle to stream the data from the BFILE:
 in = src_lob.getBinaryStream();

 // This loop fills the buf iteratively, retrieving data
 // from the InputStream:
 while ((in != null) && ((length = in.read(buf)) != -1))
 {
 // the data has already been read into buf

 // We will only display the first CHUNK in this example:
 if (! alreadyDisplayed)
 {
 System.out.println("Bytes read in: " + Integer.toString(length));
 System.out.println(new String(buf));
 alreadyDisplayed = true;
 }
 }

 // Close the stream, BFILE, statement and connection:
 in.close();
 src_lob.closeFile();
 stmt.close();
12-106 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Displaying BFILE Data
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-107

Reading Data from a BFILE
Reading Data from a BFILE

Figure 12–18 Use Case Diagram: Reading Data from a BFILE

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

OR

User/
Program

READ Data
from the BFILE

External LOBs : READING Data from the BFILE
12-108 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a BFILE
Purpose
This procedure describes how to read data from a BFILE.

Usage Notes

Always Specify 4 GByte - 1 Regardless of LOB Size When reading the LOB value, it is not

an error to try to read beyond the end of the LOB. This means that you can specify

an input amount of 4 GByte -1 regardless of the starting offset and the amount of

data in the LOB. Hence, you do not need to incur a round-trip to the server to call

OCILobGetLength () to find out the length of the LOB value in order to determine

the amount to read.

Example
For example, assume that the length of a LOB is 5,000 bytes and you want to read

the entire LOB value starting at offset 1,000. Also assume that you do not know

the current length of the LOB value. Here is the OCI read call, excluding the

initialization of all parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

The Amount Parameter
■ In DBMS_LOB.READ, the amount parameter can be larger than the size of the

data. In PL/SQL, the amount parameter should be less than or equal to the size

of the buffer, and the buffer size is limited to 32K.

■ In OCILobRead, you can specify amount = 4 Gb - 1, and it will read to the end

of the LOB.

Note: The most efficient way to read large amounts of LOB data is

to use OCILobRead () with the streaming mechanism enabled using

polling or a callback. See Also: Chapter 10, "Internal Persistent

LOBs", "Loading a LOB with Data From a BFILE", Usage Notes.
External LOBs (BFILEs) 12-109

Reading Data from a BFILE
Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — READ

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobRead

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB READ.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB READ

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

METHODS > Read, and OO4O Automation Server > OBJECTS > OraBFILE >

PROPERTIES > PollingAmount, Offset, Status. See also OO4O Automation

Server > OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
The following examples read a photograph into ad_graphic from a BFILE in

’ADPHOTO_DIR’.

Examples
Examples are provided in these six programmatic environments:

■ PL/SQL (DBMS_LOB Package): Reading Data from a BFILE on page 12-111

■ C (OCI): Reading Data from a BFILE on page 12-111

■ COBOL (Pro*COBOL): Reading Data from a BFILE on page 12-113
12-110 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a BFILE
■ C/C++ (Pro*C/C++): Reading Data from a BFILE on page 12-114

■ Visual Basic (OO4O): Reading Data from a BFILE on page 12-115

■ Java (JDBC): Reading Data from a BFILE on page 12-116

PL/SQL (DBMS_LOB Package): Reading Data from a BFILE
/* Reading data from a BFILE. [Example script: 4002.sql] */
/* Procedure readBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE readBFILE_proc IS
 File_loc BFILE := BFILENAME(’ADPHOTO_DIR’,
 ’keyboard_photo_3060_11001’);
 Amount INTEGER := 32767;
 Position INTEGER := 1;
 Buffer RAW(32767);
BEGIN
 /* Select the LOB: */
 SELECT ad_graphic INTO File_loc FROM print_media
 WHERE Product_ID = 3060 AND ad-Id = 11001;
 /* Open the BFILE: */
 DBMS_LOB.OPEN(File_loc, DBMS_LOB.LOB_READONLY);
 /* Read data: */
 DBMS_LOB.READ(File_loc, Amount, Position, Buffer);
 /* Close the BFILE: */
 DBMS_LOB.CLOSE(File_loc);
END;

C (OCI): Reading Data from a BFILE
/* Reading data from a BFILE. [Example script: 4003.c] */

/* Select the lob/bfile from the Print_media table */
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt =
 (text *) "SELECT ad_graphic FROM Print_media
 WHERE product_id=3106 AND ad_id = 13001";
External LOBs (BFILEs) 12-111

Reading Data from a BFILE
 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

#define MAXBUFLEN 32767

void BfileRead(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
 ub1 bufp[MAXBUFLEN];
 ub4 buflen, amt, offset;
 ub4 retval;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);
 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 OCI_FILE_READONLY));
12-112 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a BFILE
 /* This example will READ the entire contents of a BFILE piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BFILE has been read. */
 /* Setting amt = 0 will read till the end of LOB*/
 amt = 0;
 buflen = sizeof(bufp);
 /* Process the data in pieces */
 offset = 1;
 memset(bufp, ’\0’, MAXBUFLEN);

 retval = OCILobRead(svchp, errhp, bfile_loc,
 &amt, offset, (dvoid *) bufp,
 buflen, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 /* Closing the BFILE is mandatory if you have opened it */
 checkerr (errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Reading Data from a BFILE
 * Reading data from a BFILE. [Example script: 4004.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. READ-BFILE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 BFILE1 SQL-BFILE.
 01 BUFFER2 PIC X(5) VARYING.
 01 AMT PIC S9(9) COMP.
 01 OFFSET PIC S9(9) COMP VALUE 1.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC SQL VAR BUFFER2 IS LONG RAW(5) END-EXEC.

 PROCEDURE DIVISION.
 READ-BFILE.

 * Allocate and initialize the CLOB locator
External LOBs (BFILEs) 12-113

Reading Data from a BFILE
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT AD_GRAPHIC INTO :BFILE1
 FROM PRINT_MEDIA M WHERE M.PRODUCT_ID = 3106 AND AD_ID = 13001
 END-EXEC.
 * Open the BFILE
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

 * Initiate polling read
 MOVE 0 TO AMT.

 EXEC SQL LOB READ :AMT FROM :BFILE1
 INTO :BUFFER2 END-EXEC.
 *
 * Display the data here.
 *

 * Close and free the locator
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.

C/C++ (Pro*C/C++): Reading Data from a BFILE
/* Reading data from BFILE. [Example script: 4005.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 4096
12-114 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a BFILE
void readBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 /* Amount and BufferLength are equal so only one READ is necessary: */
 int Amount = BufferLength;
 char Buffer[BufferLength];
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_graphic INTO :Lob_loc
 FROM Print_media WHERE Product_ID = 2056;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Read data: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Read %d bytes\n", Amount);
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Reading Data from a BFILE
’ Reading data from a BFILE [Example script: 4007.txt]

Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraAdGraphic As OraBfile, amount_read%, chunksize%,
chunk As Variant

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)
External LOBs (BFILEs) 12-115

Reading Data from a BFILE
chunksize = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value

OraAdGraphic.offset = 1
OraAdGraphic.PollingAmount = OraAdGraphic.Size ’Read entire BFILE contents

’Open the Bfile for reading:
OraAdGraphic.Open
amount_read = OraAdGraphic.Read(chunk, chunksize)
While OraAdGraphic.Status = ORALOB_NEED_DATA
 amount_read = OraAdGraphic.Read(chunk, chunksize)
Wend
OraAdGraphic.Close

Java (JDBC): Reading Data from a BFILE
// Reading data from a BFILE. [Example script: 4008.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_53
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
12-116 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading Data from a BFILE
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 Boolean result = null;
 InputStream in = null;
 byte buf[] = new byte[1000];
 int length = 0;
 boolean alreadyDisplayed = false;
 rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Open the BFILE:
 src_lob.openFile();

 // Get a handle to stream the data from the BFILE:
 in = src_lob.getBinaryStream();

 // This loop fills the buf iteratively, retrieving data
 // from the InputStream:
 while ((in != null) && ((length = in.read(buf)) != -1))
 {
 // the data has already been read into buf

 // We will only display the first CHUNK in this example:
 if (! alreadyDisplayed)
 {
 System.out.println("Bytes read in: " + Integer.toString(length));
 System.out.println(new String(buf));
 alreadyDisplayed = true;
 }
 }

 // Close the stream, BFILE, statement and connection:
External LOBs (BFILEs) 12-117

Reading Data from a BFILE
 in.close();
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

12-118 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of BFILE Data (substr)
Reading a Portion of BFILE Data (substr)

Figure 12–19 Use Case Diagram: Reading a Portion of BFILE Data (substr)

User/
Program

READ a
Portion of the
BFILE Data

(Substr.)

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

OR

External LOBs : READING a Portion of the BFILE Data (Substr.)
External LOBs (BFILEs) 12-119

Reading a Portion of BFILE Data (substr)
Purpose
This procedure describes how to read portion of BFILE data (substr).

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — SUBSTR

■ C (OCI): A syntax reference is not applicable in this release.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB OPEN, LOB CLOSE. See PL/SQL DBMS_

LOB.SUBSTR.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB OPEN. See also PL/SQL DBMS_LOB.SUBSTR

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

METHODS > Open, and OO4O Automation Server > OBJECTS > OraBFILE >

PROPERTIES > PollingAmount, Offset, Status. See also OO4O Automation

Server > OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs
12-120 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of BFILE Data (substr)
Scenario
The following examples read a graphic image into ad_graphic from BFILE
’ADPHOTO_DIR’.

Examples
Examples are provided in these five programmatic environments:

■ PL/SQL (DBMS_LOB Package): Reading a Portion of BFILE Data (substr) on

page 12-121

■ C (OCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Reading a Portion of BFILE Data (substr) on

page 12-121

■ C/C++ (Pro*C/C++): Reading a Portion of BFILE Data (substr) on page 12-123

■ Visual Basic (OO4O): Reading a Portion of BFILE Data (substr) on page 12-124

■ Java (JDBC): Reading a Portion of BFILE Data (substr) on page 12-124

PL/SQL (DBMS_LOB Package): Reading a Portion of BFILE Data (substr)
/* Reading portion of a BFILE data using substr. [Example script: 4009.sql] */
/* Procedure substringBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE substringBFILE_proc IS
 File_loc BFILE;
 Position INTEGER := 1;
 Buffer RAW(32767);
BEGIN
 /* Select the LOB: */
 SELECT PMtab.ad_graphic INTO File_loc FROM Print_media PMtab
 WHERE PMtab.product_id = 3060 AND PMtab.ad_id = 11001;
 /* Open the BFILE: */
 DBMS_LOB.OPEN(File_loc, DBMS_LOB.LOB_READONLY);
 Buffer := DBMS_LOB.SUBSTR(File_loc, 255, Position);
 /* Close the BFILE: */
 DBMS_LOB.CLOSE(File_loc);
END;

COBOL (Pro*COBOL): Reading a Portion of BFILE Data (substr)
 * Reading portion of a BFILE data using substr. [Example script: 4010.pco]
External LOBs (BFILEs) 12-121

Reading a Portion of BFILE Data (substr)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-SUBSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 BFILE1 SQL-BFILE.
 01 BUFFER2 PIC X(32767) VARYING.
 01 AMT PIC S9(9) COMP.
 01 POS PIC S9(9) COMP VALUE 1024.
 01 OFFSET PIC S9(9) COMP VALUE 1.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC SQL VAR BUFFER2 IS VARRAW(32767) END-EXEC.

 PROCEDURE DIVISION.
 BFILE-SUBSTR.

 * Allocate and initialize the CLOB locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT PTAB.AD_GRAPHIC INTO :BFILE1
 FROM PRINT_MEDIA PTAB WHERE PTAB.PRODUCT_ID = 3106 AND PTAB.AD_
ID = 13001
 END-EXEC.

 * Open the BFILE for READ ONLY:
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

 * Execute PL/SQL to use its SUBSTR functionality:
 MOVE 32767 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :BUFFER2 := DBMS_LOB.SUBSTR(:BFILE1,:AMT,:POS);
 END;
 END-EXEC.

 * Close and free the locators:
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
12-122 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of BFILE Data (substr)
C/C++ (Pro*C/C++): Reading a Portion of BFILE Data (substr)
/* Reading portion of a BFILE data using substr. [Example script: 4011.pc]
 Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
 PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256
void substringBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 int Position = 1;
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer IS RAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT PMtab.ad_graphic INTO :Lob_loc
 FROM Print_media PMtab WHERE PMtab.product_id = 2056 AND PMTab.ad_id
= 12001;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Invoke SUBSTR() from within an anonymous PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Lob_loc, 256, :Position);
 END;
 END-EXEC;
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{

External LOBs (BFILEs) 12-123

Reading a Portion of BFILE Data (substr)
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Reading a Portion of BFILE Data (substr)
’ Reading portion of a BFILE data using substr. [Example script: 4013.txt]
Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraAdGraphic As OraBfile, amount_read%, chunksize%,
chunk

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)

chunk_size = 32767
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value
OraMusic.PollingAmount = OraAdGraphic.Size ’Read entire BFILE contents
OraAdGraphic.offset = 255 ’Read from the 255th position
’Open the Bfile for reading:
OraAdGraphic.Open
amount_read = OraAdGraphic.Read(chunk, chunk_size) ’chunk returned is a variant
of type byte array
 If amount_read <> chunk_size Then
 ’Do error processing
 Else
 ’Process the data
 End If

Java (JDBC): Reading a Portion of BFILE Data (substr)
// Reading portion of a BFILE data using substr. [Example script: 4014.java]

import java.io.OutputStream;
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
12-124 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Reading a Portion of BFILE Data (substr)
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_62
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 InputStream in = null;
 byte buf[] = new byte[1000];
 int length = 0;
 rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media WHERE product_id = 3106 AND ad_id =
13001");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Open the BFILE:
 src_lob.openFile();

 // Get a handle to stream the data from the BFILE
 in = src_lob.getBinaryStream();

 if (in != null)
External LOBs (BFILEs) 12-125

Reading a Portion of BFILE Data (substr)
 {
 // request 255 bytes into buf, starting from offset 1.
 // length = # bytes actually returned from stream:
 length = in.read(buf, 1, 255);
 System.out.println("Bytes read in: " + Integer.toString(length));

 // Process the buf:
 System.out.println(new String(buf));
 }

 // Close the stream, BFILE, statement and connection:
 in.close();
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

12-126 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Parts of Two BFILES
Comparing All or Parts of Two BFILES

Figure 12–20 Use Case Diagram: Comparing All or Parts of Two BFILES

User/
Program

COMPARE
All or Parts of 2

BFILEs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

OR

External LOBs : COMPARING All or Parts of Two BFILEs
External LOBs (BFILEs) 12-127

Comparing All or Parts of Two BFILES
Purpose
This procedure describes how to compare all or parts of two BFILES.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL(DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — COMPARE

■ C (OCI): A syntax reference is not applicable in this release.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB OPEN. See PL/SQL DBMS_LOB.COMPARE.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB OPEN. See PL/SQL DBMS_LOB.COMPARE.

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

METHODS > Open, Compare, and OO4O Automation Server > OBJECTS >

OraDatabase > PROPERTIES > Parameters. See also OO4O Automation Server

> OBJECTS > OraBFILE > Examples

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs
12-128 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Parts of Two BFILES
Scenario
The following examples determine whether a photograph in file, ’ADPHOTO_DIR’,
has already been used as a specific ad_graphic by comparing each data entity bit

by bit.

Examples
Examples are provided in these five programmatic environments:

■ PL/SQL (DBMS_LOB Package): Comparing All or Parts of Two BFILES on

page 12-129

■ C (OCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Comparing All or Parts of Two BFILES on page 12-130

■ C/C++ (Pro*C/C++): Comparing All or Parts of Two BFILES on page 12-132

■ Visual Basic (OO4O): Comparing All or Parts of Two BFILES on page 12-133

■ Java (JDBC): Comparing All or Parts of Two BFILES on page 12-134

PL/SQL (DBMS_LOB Package): Comparing All or Parts of Two BFILES
/* Comparing all or parts of two BFILES. [Example script: 4015.sql] */
/* Procedure instringBFILE_proc is not part of DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE instringBFILE_proc IS
 File_loc BFILE;
 Pattern RAW(32767);
 Position INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT PMtab.ad_graphic INTO File_loc
 FROM THE(SELECT PMtab.textdoc_ntab FROM Print_media PMtab
 WHERE Product_ID = 3060 AND ad_id = 11001) PMtab
 WHERE Segment = 1;
 /* Open the BFILE: */
 DBMS_LOB.OPEN(File_loc, DBMS_LOB.LOB_READONLY);
 /* Initialize the pattern for which to search, find the 2nd occurrence of
 the pattern starting from the beginning of the BFILE: */
 Position := DBMS_LOB.INSTR(File_loc, Pattern, 1, 2);
 /* Close the BFILE: */

Note: LOBMAXSIZE is set at 4 Gb so that you do not have to find

out the length of each BFILE before beginning the comparison.
External LOBs (BFILEs) 12-129

Comparing All or Parts of Two BFILES
 DBMS_LOB.CLOSE(File_loc);
END;

COBOL (Pro*COBOL): Comparing All or Parts of Two BFILES
 * Comparing all or parts of two BFILES. [Example script: 4016.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-COMPARE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 BFILE2 SQL-BFILE.
 01 RET PIC S9(9) COMP.
 01 AMT PIC S9(9) COMP.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFIlE-COMPARE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BLOB locators:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL ALLOCATE :BFILE2 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADGRAPHIC_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_graphic_3106_13001" TO FNAME-ARR.
 MOVE 17 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1 DIRECTORY = :DIR-ALIAS,
12-130 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Parts of Two BFILES
 FILENAME = :FNAME
 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT AD_GRAPHIC INTO :BFILE2
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106 AND ad_id = 13001
 END-EXEC.

 * Open the BLOBs for READ ONLY:
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.
 EXEC SQL LOB OPEN :BFILE2 READ ONLY END-EXEC.

 * Execute PL/SQL to get COMPARE functionality:
 MOVE 5 TO AMT.
 EXEC SQL EXECUTE
 BEGIN
 :RET := DBMS_LOB.COMPARE(:BFILE1,:BFILE2,
 :AMT,1,1);
 END;
 END-EXEC.

 IF RET = 0
 * Logic for equal BFILEs goes here
 DISPLAY "BFILES are equal"
 ELSE
 * Logic for unequal BFILEs goes here
 DISPLAY "BFILEs are not equal"
 END-IF.

 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.
 EXEC SQL LOB CLOSE :BFILE2 END-EXEC.
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL FREE :BFILE2 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
External LOBs (BFILEs) 12-131

Comparing All or Parts of Two BFILES
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Comparing All or Parts of Two BFILES
/* Comparing all or parts of two BFILES. [Example script: 4017.pc]
 Pro*C/C++ lacks an equivalent embedded SQL form for the
 DBMS_LOB.COMPARE() function. Like the DBMS_LOB.SUBSTR() function,
 however, Pro*C/C++ can invoke DBMS_LOB.COMPARE() in an anonymous PL/SQL
 block as shown here: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareBFILEs_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;
 int Retval = 1;
 char *Dir1 = "GRAPHIC_DIR", *Name1 = "mousepad_2056";

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL LOB FILE SET :Lob_loc1 DIRECTORY = :Dir1, FILENAME = :Name1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Photo INTO :Lob_loc2 FROM Print_media
 WHERE Product_ID = 2056;
 /* Open the BFILEs: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Compare the BFILEs in PL/SQL using DBMS_LOB.COMPARE() */
 EXEC SQL EXECUTE
12-132 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Parts of Two BFILES
 BEGIN
 :Retval := DBMS_LOB.COMPARE(
 :Lob_loc2, :Lob_loc1, DBMS_LOB.LOBMAXSIZE, 1, 1);
 END;
 END-EXEC;
 /* Close the BFILEs: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 if (0 == Retval)
 printf("BFILEs are the same\n");
 else
 printf("BFILEs are not the same\n");
 /* Release resources used by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareBFILEs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Comparing All or Parts of Two BFILES
’Comparing all or parts of two BFILES. [Example script: 4018.txt]
’The PL/SQL packages and the tables mentioned here are not part of the
’standard OO4O installation:

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraDyn As OraDynaset, OraAdGraphic As OraBfile, OraMyAdGraphic As OraBfile,
OraSql As OraSqlStmt

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters

OraParameters.Add "id", 3106, ORAPARM_INPUT
External LOBs (BFILEs) 12-133

Comparing All or Parts of Two BFILES
’Define out parameter of BFILE type:
OraParameters.Add "MyAdGraphic", Null, ORAPARM_OUTPUT
OraParameters("MyAdGraphic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(
 "BEGIN SELECT ad_graphic INTO :MyAdGraphic FROM Print_media WHERE product_
id = :id;
 END;", ORASQL_FAILEXEC)

Set OraMyAdGraphic = OraParameters("MyAdGraphic").Value

’Create dynaset:
Set OraDyn =
 OraDb.CreateDynaset(
 "SELECT * FROM Print_media WHERE product_id = 3106", ORADYN_DEFAULT)
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value

’Open the Bfile for reading:
OraAdGraphic.Open
OraMyAdGraphic.Open

If OraAdGraphic.Compare(OraMyAdGraphic) Then
 ’Process the data
Else
 ’Do error processing
End If
OraDb.Connection.CommitTrans

Java (JDBC): Comparing All or Parts of Two BFILES
// Comparing all or parts of two BFILES. [Example script: 4019.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
12-134 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Comparing All or Parts of Two BFILES
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_66
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc1 = null;
 BFILE lob_loc2 = null;
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media WHERE product_id = 3106");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }

 rset = stmt.executeQuery (
 "SELECT BFILENAME(’AD_GRAPHIC’, ’keyboard_3106’) FROM DUAL");
 if (rset.next())
 {
 lob_loc2 = ((OracleResultSet)rset).getBFILE (1);
External LOBs (BFILEs) 12-135

Comparing All or Parts of Two BFILES
 }

 lob_loc1.openFile ();
 lob_loc2.openFile ();

 if (lob_loc1.length() > lob_loc2.length())
 System.out.println("Looking for LOB2 inside LOB1. result = " +
 lob_loc1.position(lob_loc2, 1));
 else
 System.out.println("Looking for LOB1 inside LOB2. result = " +
 lob_loc2.position(lob_loc1, 1));

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

12-136 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a Pattern Exists (instr) in the BFILE
Checking If a Pattern Exists (instr) in the BFILE

Figure 12–21 Use Case Diagram: Checking If a Pattern Exists in the BFILE

User/
Program

SEE Where/if
a Pattern Exists

in the BFILE
(Instr.)

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

OR

External LOBs : SEEING Where/if a Pattern Exists in the BFILE (Instr.)
External LOBs (BFILEs) 12-137

Checking If a Pattern Exists (instr) in the BFILE
Purpose
This procedure describes how to see if a pattern exists (instr) in the BFILE.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — INSTR

■ C (OCI): A syntax reference is not applicable in this release.

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB OPEN. See PL/SQL DBMS_LOB.INSTR.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB OPEN. See PL/SQL DBMS_LOB.INSTR.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
The following examples search for the occurrence of a pattern in an ad_graphic
image.

Examples
These examples are provided in the following four programmatic environments:

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs
12-138 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a Pattern Exists (instr) in the BFILE
■ PL/SQL (DBMS_LOB Package): Checking If a Pattern Exists (instr) in the BFILE

on page 12-139

■ C (OCI): No example is provided with this release.

■ COBOL (Pro*COBOL): Checking If a Pattern Exists (instr) in the BFILE on

page 12-139

■ C/C++ (Pro*C/C++): Checking If a Pattern Exists (instr) in the BFILE on

page 12-141

■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): Checking If a Pattern Exists (instr) in the BFILE on page 12-143

PL/SQL (DBMS_LOB Package): Checking If a Pattern Exists (instr) in the BFILE
/* Checking if a pattern exists in a BFILE using instr [Example script:
4030.sql]
/* Procedure compareBFILEs_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE compareBFILEs_proc IS
 /* Initialize the BFILE locator: */
 File_loc1 BFILE := BFILENAME(’ADPHOTO_DIR’, ’keyboard_photo_3060_
11001’);
 File_loc2 BFILE;
 Retval INTEGER;
BEGIN
 /* Select the LOB: */
 SELECT ad_graphic INTO File_loc2 FROM print_media
 WHERE Product_ID = 3060 AND ad_id = 11001;
 /* Open the BFILEs: */
 DBMS_LOB.OPEN(File_loc1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(File_loc2, DBMS_LOB.LOB_READONLY);
 Retval := DBMS_LOB.COMPARE(File_loc2, File_loc1, DBMS_LOB.LOBMAXSIZE, 1, 1);
 /* Close the BFILEs: */
 DBMS_LOB.CLOSE(File_loc1);
 DBMS_LOB.CLOSE(File_loc2);
END;

COBOL (Pro*COBOL): Checking If a Pattern Exists (instr) in the BFILE
 * Checking if a pattern exists in a BFILE using instr [Example script:
4021.pco]
 IDENTIFICATION DIVISION.
External LOBs (BFILEs) 12-139

Checking If a Pattern Exists (instr) in the BFILE
 PROGRAM-ID. BFILE-INSTR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.

 * The length of pattern was chosen arbitrarily:
 01 PATTERN PIC X(4) VALUE "2424".
 EXEC SQL VAR PATTERN IS RAW(4) END-EXEC.
 01 POS PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-INSTR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT AD_GRAPHIC INTO :BFILE1
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106 AND AD_ID = 13001
 END-EXEC.

 * Open the CLOB for READ ONLY:
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

 * Execute PL/SQL to get INSTR functionality:
 EXEC SQL EXECUTE
 BEGIN
 :POS := DBMS_LOB.INSTR(:BFILE1,:PATTERN, 1, 2); END; END-EXEC.

 IF POS = 0
 * Logic for pattern not found here
 DISPLAY "Pattern is not found."
 ELSE
12-140 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a Pattern Exists (instr) in the BFILE
 * Pos contains position where pattern is found
 DISPLAY "Pattern is found."
 END-IF.

 * Close and free the LOB:
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Checking If a Pattern Exists (instr) in the BFILE
/* Checking if a pattern exists in a BFILE using instr [Example script: 4022.pc]
 Pro*C lacks an equivalent embedded SQL form of the DBMS_LOB.INSTR()
 function. However, like SUBSTR() and COMPARE(), Pro*C/C++ can call
 DBMS_LOB.INSTR() from within an anonymous PL/SQL block as shown here: */

#include <sql2oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define PatternSize 5
External LOBs (BFILEs) 12-141

Checking If a Pattern Exists (instr) in the BFILE
void instringBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Position = 0;
 int Product_id = 2056, Segment = 1;
 char Pattern[PatternSize];
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Pattern IS RAW(PatternSize);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Use Dynamic SQL to retrieve the BFILE Locator: */
 EXEC SQL PREPARE S FROM
 ’SELECT Intab.ad_graphic \
 FROM TABLE(SELECT PMtab.textdoc_ntab FROM Print_media PMtab \
 WHERE product_id = :cid) PMtab \
 WHERE PMtab.Segment = :seg’;
 EXEC SQL DECLARE C CURSOR FOR S;
 EXEC SQL OPEN C USING :Product_ID, :Segment;
 EXEC SQL FETCH C INTO :Lob_loc;
 EXEC SQL CLOSE C;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 memset((void *)Pattern, 0, PatternSize);
 /* Find the first occurrance of the pattern starting from the
 beginning of the BFILE using PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Position := DBMS_LOB.INSTR(:Lob_loc, :Pattern, 1, 1);
 END;
 END-EXEC;
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
12-142 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If a Pattern Exists (instr) in the BFILE
 instringBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Checking If a Pattern Exists (instr) in the BFILE
// Checking if a pattern exists in a BFILE using instr [Example script:
4024.java]

import java.io.OutputStream;
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_70
{

 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
External LOBs (BFILEs) 12-143

Checking If a Pattern Exists (instr) in the BFILE
 try
 {
 BFILE lob_loc = null;
 // Pattern to look for within the BFILE:
 String pattern = new String("children");

 ResultSet rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }

 // Open the LOB:
 lob_loc.openFile();
 // Search for the location of pattern string in the BFILE,
 // starting at offset 1:
 long result = lob_loc.position(pattern.getBytes(), 1);
 System.out.println(
 "Results of Pattern Comparison : " + Long.toString(result));

 // Close the LOB:
 lob_loc.closeFile();

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

12-144 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE Exists
Checking If the BFILE Exists

Figure 12–22 Use Case Diagram: Checking If the BFILE Exists

Purpose
This procedure describes how to see if a BFILE exists.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

SEE if the
BFILE Exists

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator
b

User/
Program

External LOBs : SEEING if the BFILE Exists
External LOBs (BFILEs) 12-145

Checking If the BFILE Exists
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — FILEEXISTS

■ C (OCI) Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileExists

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB DESCRIBE ... FILEEXISTS.

■ C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide): "Large Objects

(LOBs)", "LOB Statements", "Embedded SQL Statements and Directives" — LOB

DESCRIBE ...GET FILEEXISTS

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

PROPERTIES > Exists, and OO4O Automation Server > OBJECTS >

OraDatabase > PROPERTIES > Parameters. See also OO4O Automation Server

> OBJECTS > OraBFILE > Examples

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference : Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
This example queries whether a BFILE that is associated with Recording .

Examples
The examples are provided in the following six programmatic environments:

■ PL/SQL (DBMS_LOB Package): Checking If the BFILE Exists on page 12-147

■ C (OCI): Checking If the BFILE Exists on page 12-147
12-146 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE Exists
■ COBOL (Pro*COBOL): Checking If the BFILE Exists on page 12-149

■ C/C++ (Pro*C/C++): Checking If the BFILE Exists on page 12-150

■ Visual Basic (OO4O): Checking If the BFILE Exists on page 12-151

■ Java (JDBC): Checking If the BFILE Exists on page 12-152

PL/SQL (DBMS_LOB Package): Checking If the BFILE Exists
/* Checking if a BFILE exists [Example script: 4025.sql] */
/* Procedure seeIfExistsBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE seeIfExistsBFILE_proc IS
 File_loc BFILE;
BEGIN
 /* Select the LOB: */
 SELECT Intab.ad_graphic INTO File_loc
 FROM THE(SELECT PMtab.textdoc_ntab FROM Print_media PMtab
 WHERE PMtab.product_id = 3060 AND ad_id = 11001) PMtab
 WHERE PMtab.Segment = 1;
 /* See If the BFILE exists: */
 IF (DBMS_LOB.FILEEXISTS(File_loc) != 0)
 THEN
 DBMS_OUTPUT.PUT_LINE(’Processing given that the BFILE exists’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’Processing given that the BFILE does not exist’);
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’Operation failed’);
END;

C (OCI): Checking If the BFILE Exists
/* Checking if a BFILE exists [Example script: 4026.c] */

/* Select the lob/bfile from the Print_media table */
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

External LOBs (BFILEs) 12-147

Checking If the BFILE Exists
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt = (text *) "SELECT ad_graphic FROM Print_media \
 WHERE product_id = 3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

void BfileExists(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
 boolean is_exist;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);
 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr (errhp, OCILobFileExists(svchp, errhp, bfile_loc, &is_exist));

 if (is_exist == TRUE)
12-148 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE Exists
 {
 printf("File exists\n");
 }
 else
 {
 printf("File does not exist\n");
 }

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Checking If the BFILE Exists
 * Checking if a BFILE exists. [Example script: 4027.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-EXISTS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 FEXISTS PIC S9(9) COMP.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-EXISTS.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT AD_GRAPHIC INTO :BFILE1
External LOBs (BFILEs) 12-149

Checking If the BFILE Exists
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106 AND AD_ID = 13001
 END-EXEC.

 EXEC SQL
 LOB DESCRIBE :BFILE1 GET FILEEXISTS INTO :FEXISTS
 END-EXEC.

 IF FEXISTS = 1
 * Logic for file exists here
 DISPLAY "File exists"
 ELSE
 * Logic for file does not exist here
 DISPLAY "File does not exist"
 END-IF.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Checking If the BFILE Exists
/* Checking if a BFILE exists. [Example script: 4028.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
12-150 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE Exists
 exit(1);
}

void seeIfBFILEExists_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Exists = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT PMtab.ad_graphic INTO :Lob_loc
 FROM Print_media PMtab WHERE PMtab.Product_ID = 2056 AND PMtab.ad_id
= 12001;
 /* See if the BFILE Exists: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET FILEEXISTS INTO :Exists;
 printf("BFILE %s exist\n", Exists ? "does" : "does not");
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfBFILEExists_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Checking If the BFILE Exists
’Checking if a BFILE exists. [Example script: 4030.txt]
’The PL/SQL packages and the tables mentioned here are not part of the
’standard OO4O installation:

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraAdGraphic As OraBfile, OraSql As OraSqlStmt

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters
External LOBs (BFILEs) 12-151

Checking If the BFILE Exists
OraParameters.Add "id", 2056, ORAPARM_INPUT

’Define out parameter of BFILE type:
OraParameters.Add "MyAdGraphic", Null, ORAPARM_OUTPUT
OraParameters("MyAdGraphic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(
 "BEGIN SELECT ad_graphic INTO :MyAdGraphic FROM Print_media WHERE

product_id = :id;
 END;", ORASQL_FAILEXEC)

Set OraAdGraphic = OraParameters("MyAdGraphic").Value

If OraAdGraphic.Exists Then
 ’Process the data
Else
 ’Do error processing
End If
OraDb.Connection.CommitTrans

Java (JDBC): Checking If the BFILE Exists
// Checking if a BFILE exists. [Example script: 4031.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_74
{

12-152 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Checking If the BFILE Exists
 static final int MAXBUFSIZE = 32767;

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE lob_loc = null;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }

 // See if the BFILE exists:
 System.out.println("Result from fileExists(): " + lob_loc.fileExists());

 // Return the length of the BFILE:
 long length = lob_loc.length();
 System.out.println("Length of BFILE: " + length);

 // Get the directory alias for this BFILE:
 System.out.println("Directory alias: " + lob_loc.getDirAlias());

 // Get the file name for this BFILE:
 System.out.println("File name: " + lob_loc.getName());
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
External LOBs (BFILEs) 12-153

Getting the Length of a BFILE
 {
 e.printStackTrace();
 }
 }
}

Getting the Length of a BFILE

Figure 12–23 Use Case Diagram: Getting the Length of a BFILE

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

GET the Length
of the BFILE

OR

External LOBs : GETTING the Length of the BFILE
12-154 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting the Length of a BFILE
Purpose
This procedure describes how to get the length of a BFILE.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — GETLENGTH

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations". Chapter 15, "Relational Functions" — LOB Functions,

OCILobGetLength

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB DESCRIBE ... GET LENGTH INTO ...

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB DESCRIBE ... GET LENGTH INTO ...

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

PROPERTIES > Size. See also OO4O Automation Server > OBJECTS > OraBfile

> Examples

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference : Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
This example gets the length of a BFILE that is associated with ad_graphic .

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs
External LOBs (BFILEs) 12-155

Getting the Length of a BFILE
Examples
The examples are provided in six programmatic environments:

■ PL/SQL (DBMS_LOB Package): Getting the Length of a BFILE on page 12-154

■ C (OCI): Getting the Length of a BFILE on page 12-156

■ COBOL (Pro*COBOL): Getting the Length of a BFILE on page 12-158

■ C/C++ (Pro*C/C++): Getting the Length of a BFILE on page 12-159

■ Visual Basic (OO4O): Getting the Length of a BFILE on page 12-160

■ Java (JDBC): Getting the Length of a BFILE on page 12-161

PL/SQL (DBMS_LOB Package): Getting the Length of a BFILE
/* Getting the length of a BFILE. [Example script: 4032.sql]
/* Procedure getLengthBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE getLengthBFILE_proc IS
 File_loc BFILE;
 Length INTEGER;
BEGIN
 /* Initialize the BFILE locator by selecting the LOB: */
 SELECT PMtab.ad_graphic INTO File_loc FROM Print_media PMtab
 WHERE PMtab.product_id = 3060 AND PMtab.ad_id = 11001;
 /* Open the BFILE: */
 DBMS_LOB.OPEN(File_loc, DBMS_LOB.LOB_READONLY);
 /* Get the length of the LOB: */
 Length := DBMS_LOB.GETLENGTH(File_loc);
 IF Length IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(’BFILE is null.’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’ || length);
 END IF;
 /* Close the BFILE: */
 DBMS_LOB.CLOSE(File_loc);
END;

C (OCI): Getting the Length of a BFILE
/* Getting the length of a BFILE. [Example script: 4033.c] */
/* Select the lob/bfile from table Print_media */
12-156 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting the Length of a BFILE
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt = (text *) "SELECT ad_graphic FROM Print_media \
 WHERE product_id = 3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

void BfileLength(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
 ub4 len;

 /* Allocate the locator descriptor */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);
External LOBs (BFILEs) 12-157

Getting the Length of a BFILE
 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr (errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 (ub1) OCI_FILE_READONLY));

 checkerr (errhp, OCILobGetLength(svchp, errhp, bfile_loc, &len));

 printf("Length of bfile = %d\n", len);

 checkerr (errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Getting the Length of a BFILE
 * Getting the length of a BFILE. [Example script: 4034.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-LENGTH.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 LEN PIC S9(9) COMP.
 01 D-LEN PIC 9(4).
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-LENGTH.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
12-158 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting the Length of a BFILE
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT AD_GRAPHIC INTO :BFILE1
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106
 END-EXEC.

 * Use LOB DESCRIBE to get length of lob:
 EXEC SQL
 LOB DESCRIBE :BFILE1 GET LENGTH INTO :LEN END-EXEC.

 MOVE LEN TO D-LEN.
 DISPLAY "Length of BFILE is ", D-LEN.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Getting the Length of a BFILE
/* Getting the length of a BFILE. [Example script: 4035.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

External LOBs (BFILEs) 12-159

Getting the Length of a BFILE
void getLengthBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Length = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT PMtab.ad_graphic INTO :Lob_loc
 FROM Print_media PMtab
 WHERE PMtab.product_id = 3060 AND ad_id = 11001;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Length: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 /* If the BFILE is NULL or unitialized, then Length is Undefined: */
 printf("Length is %d bytes\n", Length);
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Getting the Length of a BFILE
’Getting the length of a BFILE. [Example script: 4037.txt]
’The PL/SQL packages and the tables mentioned here are not part of the ’
’standard OO4O installation:

Dim MySession As OraSession
Dim OraDb As OraDatabase

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)

OraDb.Connection.BeginTrans
12-160 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting the Length of a BFILE
Set OraParameters = OraDb.Parameters

OraParameters.Add "id", 2056, ORAPARM_INPUT

’Define out parameter of BFILE type:
OraParameters.Add "AdGraphic", Null, ORAPARM_OUTPUT
OraParameters("MyAdGraphic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(
 "BEGIN SELECT ad_graphic INTO :MyAdGraphic FROM Print_media WHERE product_
id = :id;
 END;", ORASQL_FAILEXEC)

Set OraAdGraphic = OraParameters("MyAdGraphic").Value

If OraAdGraphic.Size = 0 Then
 MsgBox "BFile size is 0"
Else
 MsgBox "BFile size is " & OraAdGraphic.Size
End If
OraDb.Connection.CommitTrans

Java (JDBC): Getting the Length of a BFILE
// Getting the length of a BFILE. [Example script: 4038.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_74
External LOBs (BFILEs) 12-161

Getting the Length of a BFILE
{

 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE lob_loc = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }

 // See if the BFILE exists:
 System.out.println("Result from fileExists(): " + lob_loc.fileExists());

 // Return the length of the BFILE:
 long length = lob_loc.length();
 System.out.println("Length of BFILE: " + length);

 // Get the directory alias for this BFILE:
 System.out.println("Directory alias: " + lob_loc.getDirAlias());

 // Get the file name for this BFILE:
 System.out.println("File name: " + lob_loc.getName());

 stmt.close();
 conn.commit();
12-162 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting the Length of a BFILE
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-163

Copying a LOB Locator for a BFILE
Copying a LOB Locator for a BFILE

Figure 12–24 Use Case Diagram: Copying a LOB Locator for a BFILE

Purpose
This procedure describes how to copy a LOB locator for a BFILE.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

COPY
a LOB
Locator

External LOBs : COPYING a LOB Locator
12-164 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a BFILE
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ SQL (Oracle9i SQL Reference): Chapter 7, "SQL Statements" — CREATE

PROCEDURE

■ PL/SQL (DBMS_LOB package): Refer to Chapter 5, "Large Objects: Advanced

Topics" of this manual for information on assigning one lob locator to another.

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobLocatorAssign

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB ASSIGN

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB ASSIGN

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference : Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
This example assigns one BFILE locator to another related to ad_graphic .

Examples
The examples are provided in the following five programmatic environments:

■ PL/SQL: Copying a LOB Locator for a BFILE on page 12-159

■ C (OCI): Copying a LOB Locator for a BFILE on page 12-166

■ COBOL (Pro*COBOL): Copying a LOB Locator for a BFILE on page 12-168
External LOBs (BFILEs) 12-165

Copying a LOB Locator for a BFILE
■ C/C++ (Pro*C/C++): Copying a LOB Locator for a BFILE on page 12-169

■ Visual Basic: An example is not provided with this release.

■ Java (JDBC): Copying a LOB Locator for a BFILE on page 12-170

PL/SQL: Copying a LOB Locator for a BFILE

/* Copying a LOB locator for a BFILE. [Example script: 4039.sql] */
/* Procedure BFILEAssign_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE BFILEAssign_proc IS
 File_loc1 BFILE;
 File_loc2 BFILE;
BEGIN
 SELECT Photo INTO File_loc1 FROM print_media
 WHERE Product_ID = 3060 AND ad_id = 11001 FOR UPDATE;
 /* Assign File_loc1 to File_loc2 so that they both refer to the same
operating
 system file: */
 File_loc2 := File_loc1;
 /* Now you can read the bfile from either File_loc1 or File_loc2. */
END;

C (OCI): Copying a LOB Locator for a BFILE
/* Copying a LOB locator for a BFILE. [Example script: 4040.c] */
/* Select the lob/bfile from the Print_media table */

void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt = (text *) "SELECT ad_graphic FROM Print_media \

Note: Assigning one BFILE to another using PL/SQL entails

using the "=" sign. This is discussed in more detail with regard to

"Read Consistent Locators" in Chapter 5, "Large Objects: Advanced

Topics".
12-166 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a BFILE
 WHERE product_id = 3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

void BfileAssign(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *src_loc;
 OCILobLocator *dest_loc;

 /* Allocate the locator descriptors */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &src_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 /* Select the bfile */
 selectLob(src_loc, errhp, svchp, stmthp);
External LOBs (BFILEs) 12-167

Copying a LOB Locator for a BFILE
 checkerr(errhp, OCILobLocatorAssign(svchp, errhp, src_loc, &dest_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)src_loc, (ub4)OCI_DTYPE_FILE);
 OCIDescriptorFree((dvoid *)dest_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Copying a LOB Locator for a BFILE
 * Copying a LOB locator for a BFILE. [Example script: 4041.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-COPY-LOCATOR.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 BFILE2 SQL-BFILE.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BILFE-COPY-LOCATOR.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL ALLOCATE :BFILE2 END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC SQL
 SELECT AD_GRAPHIC INTO :BFILE1
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106
 AND AD_ID = 13001 END-EXEC.
 EXEC SQLLOB ASSIGN :BFILE1 TO :BFILE2 END-EXEC.

 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
12-168 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a BFILE
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL FREE :BFILE2 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Copying a LOB Locator for a BFILE
/* Copying a LOB locator for a BFILE. [Example script: 4042.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILEAssign_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT ad_graphic INTO :Lob_loc1
 FROM Print_media WHERE product_id = 2056 AND ad_id = 12001;
 /* Assign Lob_loc1 to Lob_loc2 so that they both refer to the same
 operating system file: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* Now you can read the BFILE from either Lob_loc1 or Lob_loc2 */
}

External LOBs (BFILEs) 12-169

Copying a LOB Locator for a BFILE
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILEAssign_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Copying a LOB Locator for a BFILE
// Copying a LOB locator for a BFILE. [Example script: 4044.java]

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex4_81
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE lob_loc1 = null;
12-170 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Copying a LOB Locator for a BFILE
 BFILE lob_loc2 = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }

 // Assign lob_loc1 to lob_loc2 so that they both refer
 // to the same operating system file.
 // Now the BFILE can be read through either of the locators:
 lob_loc2 = lob_loc1;
 stmt.close();
 conn.commit();
 conn.close();
 }
 //catch (SQLException e)
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-171

Determining If a LOB Locator for a BFILE Is Initialized
Determining If a LOB Locator for a BFILE Is Initialized

Figure 12–25 Use Case Diagram: Determining If a LOB Locator Is Initialized

Purpose
This procedure describes how to determine if a BFILE LOB locator is initialized.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

User/
Program

SEE
if Locator

is Initialized

External LOBs : SEEING if Locator is Initialized
12-172 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a LOB Locator for a BFILE Is Initialized
Usage Notes
On the client side, before you call any OCILob* interfaces (such as OCILobWrite),

or any programmatic environments that use OCILob* interfaces, first initialize the

LOB locator, using a SELECT, for example.

If your application requires a locator to be passed from one function to another, you

may want to verify that the locator has already been initialized. If the locator is not

initialized, you could design your application either to return an error or to perform

the SELECT before calling the OCILob* interface.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): A syntax reference is not applicable in this release.

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobLocatorIsInit

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and

Directives". See also C(OCI) function, OCILobLocatorIsInit

■ Visual Basic (OO4O): A syntax reference is not applicable in this release

■ Java (JDBC): A syntax reference is not applicable in this release.

Scenario
Not applicable.

Examples
The examples are provided in the following programmatic environments:

■ PL/SQL (DBMS_LOB): No example is provided with this release.

■ C (OCI): Determining If a LOB Locator for a BFILE Is Initialized on page 12-179

■ COBOL (Pro*COBOL): No example is provided with this release.

■ C/C++ (Pro*C/C++): Determining If a LOB Locator for a BFILE Is Initialized

on page 12-175
External LOBs (BFILEs) 12-173

Determining If a LOB Locator for a BFILE Is Initialized
■ Visual Basic (OO4O): No example is provided with this release.

■ Java (JDBC): No example is provided with this release.

C (OCI): Determining If a LOB Locator for a BFILE Is Initialized
/* Determining if a LOB locator for a BFILE is initialized.
 [Example script: 4045.c]*/

/* Select the lob/bfile from the Print_media table */
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt = (text *) "SELECT ad_graphic FROM Print_media \
 WHERE product_id = 3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

void BfileIsInit(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
12-174 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If a LOB Locator for a BFILE Is Initialized
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
 boolean is_init;

 /* Allocate the locator descriptors */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);
 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr(errhp, OCILobLocatorIsInit(envhp, errhp, bfile_loc, &is_init));

 if (is_init == TRUE)
 {
 printf("Locator is initialized\n");
 }
 else
 {
 printf("Locator is not initialized\n");
 }
 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

C/C++ (Pro*C/C++): Determining If a LOB Locator for a BFILE Is Initialized
/* Determining if a LOB locator for a BFILE is initialized.
 [Example script: 4046.pc]
 Pro*C/C++ has no form of embedded SQL statement to determine if a BFILE
 locator is initialized. Locators in Pro*C/C++ are initialized when they
 are allocated with the EXEC SQL ALLOCATE statement. However, an example
 can be written that uses embedded SQL and the OCI as shown here: */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
External LOBs (BFILEs) 12-175

Determining If a LOB Locator for a BFILE Is Initialized
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILELocatorIsInit_proc()
{
 OCIBFileLocator *Lob_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.ad_graphic INTO :Lob_loc
 FROM Print_media PMtab
 WHERE PMtab.product_id = 2056 AND ad_id = 12001;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized: */
 (void) OCILobLocatorIsInit(oeh, err, Lob_loc, &isInitialized);
 if (isInitialized)
 printf("Locator is initialized\n");
 else
 printf("Locator is not initialized\n");
 /* Note that in this example, the locator is initialized: */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILELocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

12-176 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If One LOB Locator for a BFILE Is Equal to Another
Determining If One LOB Locator for a BFILE Is Equal to Another

Figure 12–26 Use Case Diagram: Determining If One LOB Locator for a BFILE Is Equal to Another

User/
Progra m

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

SEE
if Locators
are Equal

External LOBs : SEEING if Locators are Equal
External LOBs (BFILEs) 12-177

Determining If One LOB Locator for a BFILE Is Equal to Another
Purpose
This procedure describes how to see if one BFILE LOB locator is equal to another.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): A syntax reference is not applicable in this release.

■ (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobIsEqual

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB ASSIGN. See also C(OCI) function, OCILobIsEqual

■ Visual Basic (OO4O): A syntax reference is not applicable in this release

■ Java (JDBC) (Oracle9i JDBC Developer’s Guide and Reference : Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read Consistent Locators" in Chapter 5, "Large Objects: Advanced

Topics").

Examples
The examples are provided in the following three programmatic environments:

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs
12-178 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If One LOB Locator for a BFILE Is Equal to Another
■ PL/SQL: An example is not provided with this release.

■ C (OCI): Determining If One LOB Locator for a BFILE Is Equal to Another on

page 12-174

■ COBOL (Pro*COBOL): An example is not provided with this release.

■ C/C++ (Pro*C/C++): Determining If One BFILE LOB Locator Is Equal to

Another on page 12-181

■ Visual Basic (OO4O): An example is not provided with this release.

■ Java (JDBC): Determining If One LOB Locator for a BFILE Is Equal to Another

on page 12-182

C (OCI): Determining If One LOB Locator for a BFILE Is Equal to Another
/* Determining if one LOB locator for a BFILE is equal to another */
/* [Example script: 4047.c] */

/* Select the lob/bfile from the Print_media table */
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt = (text *) "SELECT ad_graphic FROM Print_media \
 WHERE product_id = 3106 AND ad_id = 13001";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));
External LOBs (BFILEs) 12-179

Determining If One LOB Locator for a BFILE Is Equal to Another
 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

void BfileIsEqual(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc1;
 OCILobLocator *bfile_loc2;
 boolean is_equal;

 /* Allocate the locator descriptors */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc1,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc2,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 /* Select the bfile */
 selectLob(bfile_loc1, errhp, svchp, stmthp);

 checkerr(errhp,
 OCILobLocatorAssign(svchp, errhp, bfile_loc1, &bfile_loc2));

 checkerr(errhp, OCILobIsEqual(envhp, bfile_loc1, bfile_loc2, &is_equal));

 if (is_equal == TRUE)
 {
 printf("Locators are equal\n");
 }
 else
 {
 printf("Locators are not equal\n");
 }

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc1, (ub4)OCI_DTYPE_FILE);
12-180 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If One LOB Locator for a BFILE Is Equal to Another
 OCIDescriptorFree((dvoid *)bfile_loc2, (ub4)OCI_DTYPE_FILE);
}

C/C++ (Pro*C/C++): Determining If One BFILE LOB Locator Is Equal to Another
/* Determining if one LOB locator for a BFILE is equal to another */
 [Example script: 4048.pc]
 Pro*C/C++ does not provide a mechanism to test the equality of two
 locators However, by using the OCI directly, two locators can be
 compared to determine whether or not they are equal as this example
 demonstrates: */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILELocatorIsEqual_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;
 OCIEnv *oeh;
 boolean isEqual = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT ad_graphic INTO :Lob_loc1
 FROM Print_media WHERE product_id = 2056 AND ad_id = 12001;
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* Now you can read the BFILE from either Lob_loc1 or Lob_loc2 */
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Call OCI to see if the two locators are Equal: */
 (void) OCILobIsEqual(oeh, Lob_loc1, Lob_loc2, &isEqual);
 if (isEqual)
 printf("Locators are equal\n");
 else
External LOBs (BFILEs) 12-181

Determining If One LOB Locator for a BFILE Is Equal to Another
 printf("Locators are not equal\n");
 /* Note that in this example, the LOB locators will be Equal: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILELocatorIsEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Determining If One LOB Locator for a BFILE Is Equal to Another
// Determining if one LOB locator for a BFILE is equal to another
// [Example script: 4050.java]

import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_89
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
12-182 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Determining If One LOB Locator for a BFILE Is Equal to Another
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE lob_loc1 = null;
 BFILE lob_loc2 = null;

 ResultSet rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }

 // Set both LOBS to reference the same BFILE:
 lob_loc2 = lob_loc1;

 // Note that in this example, the Locators will be equal:
 if (lob_loc1.equals(lob_loc2))
 {
 // The Locators are equal:
 System.out.println("The BFILEs are equal");
 }
 else
 {
 // The Locators are different:
 System.out.println("The BFILEs are NOT equal");
 }

 stmt.close();
 conn.commit();
 conn.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-183

Getting DIRECTORY Alias and Filename
Getting DIRECTORY Alias and Filename

Figure 12–27 Use Case Diagram: Get DIRECTORY Alias and Filename

Purpose
This procedure describes how to get DIRECTORY alias and filename.

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

GET Directory
Alias and
Filename

External LOBs : GETTING Directory Alias and Filename
12-184 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting DIRECTORY Alias and Filename
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — FILEGETNAME

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileGetName

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB DESCRIBE ...GET DIRECTORY ...

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB DESCRIBE ...GET DIRECTORY ...

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference: Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
This example retrieves the DIRECTORY alias and filename related to the BFILE ,

ad_graphic .

Examples
The examples are provided in the following six programmatic environments:

■ PL/SQL (DBMS_LOB Package): Getting Directory Alias and Filename on

page 12-181

■ C (OCI): Getting Directory Alias and Filename on page 12-186

■ COBOL (Pro*COBOL): Getting Directory Alias and Filename on page 12-188

■ C/C++ (Pro*C/C++): Getting Directory Alias and Filename on page 12-189
External LOBs (BFILEs) 12-185

Getting DIRECTORY Alias and Filename
■ Visual Basic (OO4O): Getting Directory Alias and Filename on page 12-190

■ Java (JDBC): Getting Directory Alias and Filename on page 12-191

PL/SQL (DBMS_LOB Package): Getting Directory Alias and Filename
/* Getting the directory alias and filename [Example script: 4051.sql] */

CREATE OR REPLACE PROCEDURE getNameBFILE_proc IS
 File_loc BFILE;
 DirAlias_name VARCHAR2(30);
 File_name VARCHAR2(40);
BEGIN
 SELECT ad_graphic INTO File_loc FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001;
 DBMS_LOB.FILEGETNAME(File_loc, DirAlias_name, File_name);
 /* do some processing based on the directory alias and file names */
END;

C (OCI): Getting Directory Alias and Filename
/* Getting the directory alias and filename [Example script: 4052.c] */

/* Select the lob/bfile from the Print_media table */
void selectLob(Lob_loc, errhp, svchp, stmthp)
OCILobLocator *Lob_loc;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCIDefine *dfnhp, *dfnhp2;
 text *selstmt = (text *) "SELECT ad_graphic FROM Print_media \
 WHERE product_id = 3106";

 /* Prepare the SQL select statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *) selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Call define for the bfile column */
 checkerr (errhp, OCIDefineByPos(stmthp, &dfnhp, errhp, 1,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT)
12-186 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting DIRECTORY Alias and Filename
 || OCIDefineByPos(stmthp, &dfnhp2, errhp, 2,
 (dvoid *)&Lob_loc, 0 , SQLT_BFILE,
 (dvoid *)0, (ub2 *)0, (ub2 *)0,
 OCI_DEFAULT));

 /* Execute the SQL select statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

void BfileGetDirFile(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
 OraText dir_alias[32] = NULL;
 OraText filename[256] = NULL;
 ub2 d_length = 32;
 ub2 f_length = 256;

 /* Allocate the locator descriptors */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 /* Select the bfile */
 selectLob(bfile_loc, errhp, svchp, stmthp);

 checkerr(errhp, OCILobFileGetName(envhp, errhp, bfile_loc,
 dir_alias, &d_length, filename, &f_length));

 printf("Directory Alias : [%s]\n", dir_alias);
 printf("File name : [%s]\n", filename);

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

External LOBs (BFILEs) 12-187

Getting DIRECTORY Alias and Filename
COBOL (Pro*COBOL): Getting Directory Alias and Filename
d * Getting the directory alias and filename [Example script: 4053.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-DIR-ALIAS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-DIR-ALIAS.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.

 * Populate the BFILE locator:
 EXEC SQL
 SELECT AD_GRAPHIC INTO :BFILE1
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3106 AND AD_ID = 13001
 END-EXEC.

 * Use the LOB DESCRIBE functionality to get
 * the directory alias and the filename:
 EXEC SQL LOB DESCRIBE :BFILE1
 GET DIRECTORY, FILENAME INTO :DIR-ALIAS, :FNAME END-EXEC.

 DISPLAY "DIRECTORY: ", DIR-ALIAS-ARR, "FNAME: ", FNAME-ARR.
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
12-188 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting DIRECTORY Alias and Filename
 STOP RUN.
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Getting Directory Alias and Filename
/* Getting the directory alias and filename [Example script: 4054.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void getBFILEDirectoryAndFilename_proc()
{
 OCIBFileLocator *Lob_loc;
 char Directory[31], Filename[255];
 /* Datatype Equivalencing is Optional: */
 EXEC SQL VAR Directory IS STRING;
 EXEC SQL VAR Filename IS STRING;
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;

 /* Select the BFILE: */
 EXEC SQL SELECT ad_graphic INTO :Lob_loc
 FROM print_media WHERE product_id = 2056 AND ad_id = 12001;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Directory Alias and Filename: */
 EXEC SQL LOB DESCRIBE :Lob_loc
External LOBs (BFILEs) 12-189

Getting DIRECTORY Alias and Filename
 GET DIRECTORY, FILENAME INTO :Directory, :Filename;

 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 printf("Directory Alias: %s\n", Directory);
 printf("Filename: %s\n", Filename);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getBFILEDirectoryAndFilename_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Getting Directory Alias and Filename
'Getting the directory alias and filename [Example script: 4056.txt]
'The PL/SQL packages and tables mentioned here are not part of the
'standard OO4O installation:

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraAdGraphic1 As OraBfile, OraSql As OraSqlStmt

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)
OraDb.Connection.BeginTrans
Set OraParameters = OraDb.Parameters
OraParameters.Add "id", 2056, ORAPARM_INPUT

'Define out parameter of BFILE type:
OraParameters.Add "MyAdGraphic", Null, ORAPARM_OUTPUT
OraParameters("MyAdGraphic").ServerType = ORATYPE_BFILE

Set OraSql =
 OraDb.CreateSql(
 "BEGIN SELECT ad_graphic INTO :MyAdGraphic FROM Print_media
 WHERE product_id = :id;
 END;", ORASQL_FAILEXEC)
12-190 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Getting DIRECTORY Alias and Filename
Set OraAdGraphic1 = OraParameters("MyAdGraphic").Value
'Get Directory alias and filename:
MsgBox " Directory alias is " & OraAdGraphic1.DirectoryName &
 " Filename is " & OraAdGraphic1.filename

OraDb.Connection.CommitTrans

Java (JDBC): Getting Directory Alias and Filename
// Getting the directory alias and filename [Example script: 4057.java]

import java.io.InputStream;
import java.io.OutputStream;
// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex4_74
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
External LOBs (BFILEs) 12-191

Getting DIRECTORY Alias and Filename
 BFILE lob_loc = null;
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc = ((OracleResultSet)rset).getBFILE (1);
 }
 // See if the BFILE exists:
 System.out.println("Result from fileExists(): " + lob_loc.fileExists());

 // Return the length of the BFILE:
 long length = lob_loc.length();
 System.out.println("Length of BFILE: " + length);

 // Get the directory alias for this BFILE:
 System.out.println("Directory alias: " + lob_loc.getDirAlias());

 // Get the file name for this BFILE:
 System.out.println("File name: " + lob_loc.getName());
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

12-192 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE Using BFILENAME()
Updating a BFILE Using BFILENAME()

Figure 12–28 Use Case Diagram: Updating a BFILE Using BFILENAME()

User/
Program

BFILENAME()

UPDATE
a BFILE with a

diff. OS file

UPDATE a BFILE with a different OS File
Using BFILENAME()

External LOBs : UPDATING a BFILE with a different OS File
External LOBs (BFILEs) 12-193

Updating a BFILE Using BFILENAME()
Usage Notes

BFILENAME() Function The BFILENAME() function can be called as part of SQL

INSERT or UPDATE to initialize a BFILE column or attribute for a particular row by

associating it with a physical file in the server’s file system.

The DIRECTORY object represented by the directory_alias parameter to this

function need not already be defined using SQL DDL before the BFILENAME()
function is called in SQL DML or a PL/SQL program. However, the directory object

and operating system file must exist by the time you actually use the BFILE locator

(for example, as having been used as a parameter to an operation such as

OCILobFileOpen() , DBMS_LOB.FILEOPEN() , OCILobOpen() , or DBMS_
LOB.OPEN()) .

Note that BFILENAME() does not validate privileges on this DIRECTORY object, or

check if the physical directory that the DIRECTORY object represents actually exists.

These checks are performed only during file access using the BFILE locator that

was initialized by the BFILENAME() function.

You can use BFILENAME() as part of a SQL INSERT and UPDATE statement to

initialize a BFILE column. You can also use it to initialize a BFILE locator variable

in a PL/SQL program, and use that locator for file operations. However, if the

corresponding directory alias or filename does not exist, then PL/SQL DBMS_LOB
routines that use this variable will generate errors.

The directory_alias parameter in the BFILENAME() function must be specified

taking case-sensitivity of the directory name into consideration.

Syntax
FUNCTION BFILENAME(directory_alias IN VARCHAR2,
 filename IN VARCHAR2)
RETURN BFILE;

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Updating a BFILE by Selecting a BFILE From Another Table on

page 12-196

■ Updating a BFILE by Initializing a BFILE Locator on

page 12-198
12-194 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE Using BFILENAME()
Use the following syntax references:

■ SQL (Oracle9i SQL Reference):Chapter 7, "SQL Statements" — UPDATE. Chapter

4, "Functions" — BFILENAME()

Scenario
This example updates the Print_media table by means of the BFILENAME function.

Examples
The example is provided in SQL syntax and applies to all programmatic

environments:

■ SQL: Updating a BFILE by means of BFILENAME() on page 12-195

SQL: Updating a BFILE by means of BFILENAME()
/* Updating a BFILE using BFILENAME() [Example script: 4059.sql] */

UPDATE Print_media
SET ad_graphic = BFILENAME(’ADGRAPHIC_DIR’, ’keyboard_graphic_3106_13001’)
 WHERE product_id = 3106 AND ad_id = 13001;

See Also: "DIRECTORY Name Specification" on page 12-7 for

information about the use of uppercase letters in the directory

name, and OCILobFileSetName () in Oracle Call Interface
Programmer’s Guide for an equivalent OCI based routine.
External LOBs (BFILEs) 12-195

Updating a BFILE by Selecting a BFILE From Another Table
Updating a BFILE by Selecting a BFILE From Another Table

Figure 12–29 Use Case Diagram: Updating a BFILE by Selecting a BFILE From
Another Table

Purpose
This procedure describes how to UPDATE a BFILE by selecting a BFILE from

another table.

Usage Notes
There is no copy function for BFILE s, so you have to use UPDATE as SELECT if you

want to copy a BFILE from one location to another. Because BFILE s use reference

semantics instead of copy semantics, only the BFILE locator is copied from one row

to another row. This means that you cannot make a copy of an external LOB value

without issuing an operating system command to copy the operating system file.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Updating a BFILE Using BFILENAME() on page 12-193

■ Updating a BFILE by Initializing a BFILE Locator on

page 12-198

User/
Program

UPDATE a BFILE with a different OS File as SELECT

SELECT
a BFILE

UPDATE
a BFILE with a

diff. OS File

External LOBs : UPDATING a BFILE with a different OS File
12-196 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE by Selecting a BFILE From Another Table
Syntax
Use the following syntax references:

■ SQL (Oracle9i SQL Reference), Chapter 7, "SQL Statements" — UPDATE

Scenario
This example updates the table, Voiceover_tab by selecting from the archival storage

table, VoiceoverLib_tab./

Examples
The example is provided in SQL and applies to all programmatic environments:

■ SQL: Updating a BFILE by Selecting a BFILE From Another Table on

page 12-197

SQL: Updating a BFILE by Selecting a BFILE From Another Table
UPDATE Adheader_tab
 SET (header_name, creation_date, header_text, logo) =
 (SELECT * FROM AdheaderLib_tab AHtab
 WHERE AHtab.creation_date = ’08/08/2001’);
External LOBs (BFILEs) 12-197

Updating a BFILE by Initializing a BFILE Locator
Updating a BFILE by Initializing a BFILE Locator

Figure 12–30 Use Case Diagram: Updating a BFILE by Initializing a BFILE Locator

User/
Program

OCILOBFileSet
NAME()

SELECT
a BFILE

OR
Initialize

a BFILE locator

UPDATE a BFILE with a different OS File by
Initializing a BFILE LocatorUPDATE

a BFILE with a
diff. OS File

External LOBs : UPDATING a BFILE with a different OS File
12-198 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE by Initializing a BFILE Locator
Purpose
This procedure describes how to UPDATE a BFILE by initializing a BFILE locator.

Usage Notes
You must initialize the BFILE locator bind variable to a directory alias and filename

before issuing the update statement.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB): See the (Oracle9i SQL Reference), Chapter 7, "SQL

Statements" — UPDATE

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileSetName

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — ALLOCATE. See also (Oracle9i SQL Reference), Chapter
7, "SQL Statements" — UPDATE

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and

Directives". See also (Oracle9i SQL Reference), Chapter 7, "SQL Statements" —
UPDATE

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

PROPERTIES > DirectoryName, FileName, and OO4O Automation Server >

OBJECTS > OraDatabase > METHODS > ExecuteSQL. See also OO4O

Automation Server > OBJECTS > OraBfile > Examples

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Updating a BFILE Using BFILENAME() on page 12-193

■ Updating a BFILE by Selecting a BFILE From Another Table on

page 12-196
External LOBs (BFILEs) 12-199

Updating a BFILE by Initializing a BFILE Locator
■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference: Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
Not applicable.

Examples
The examples are provided in six programmatic environments:

■ PL/SQL: Updating a BFILE by Initializing a BFILE Locator on page 12-198

■ C (OCI): Updating a BFILE by Initializing a BFILE Locator on page 12-201

■ COBOL (Pro*COBOL): Updating a BFILE by Initializing a BFILE Locator on

page 12-202

■ C/C++ (Pro*C/C++): Updating a BFILE by Initializing a BFILE Locator on

page 12-203

■ Visual Basic (OO4O): Updating a BFILE by Initializing a BFILE Locator on

page 12-204

■ Java (JDBC): Updating a BFILE by Initializing a BFILE Locator on page 12-206

PL/SQL: Updating a BFILE by Initializing a BFILE Locator
/* Updating a BFILE by initializing a BFILE locator. [Example script:4061.sql]
 Procedure updateUseBindVariable_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (File_loc BFILE) IS
BEGIN
 UPDATE Print_media SET ad_graphic = File_loc
 WHERE product_id = 3060 AND ad_id = 11001;
END;

DECLARE
 File_loc BFILE;
BEGIN
 SELECT ad_graphic INTO File_loc
 FROM Print_media
 WHERE product_id = 3060 AND ad_id = 11001;
 updateUseBindVariable_proc (File_loc);
12-200 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE by Initializing a BFILE Locator
 COMMIT;
END;

C (OCI): Updating a BFILE by Initializing a BFILE Locator
/* Updating a BFILE by initializing a BFILE locator. [Example script: 4062.c] */
void BfileUpdate(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{
 OCILobLocator *Lob_loc;
 OCIBind *bndhp, *bndhp2;

 text *updstmt =
 (text *) "UPDATE Print_media SET ad_graphic = :Lob_loc
 WHERE product_id = 3106 AND ad_id = 13001";

 OraText *Dir = (OraText *)"ADGRAPHIC_DIR",
 *Name = (OraText *)"keyboard_graphic_3106_13001";

 /* Prepare the SQL statement: */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, updstmt, (ub4)
 strlen((char *) updstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Allocate Locator resources: */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &Lob_loc,
 (ub4)OCI_DTYPE_FILE, (size_t) 0, (dvoid **) 0);

 checkerr (errhp, OCILobFileSetName(envhp, errhp, &Lob_loc,
 Dir, (ub2)strlen((char *)Dir),
 Name,(ub2)strlen((char *)Name)));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &Lob_loc, (sb4) 0, SQLT_BFILE,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp2, errhp, (ub4) 2,
 (dvoid *) &Lob_loc, (sb4) 0, SQLT_BFILE,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,

(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
);
External LOBs (BFILEs) 12-201

Updating a BFILE by Initializing a BFILE Locator
 /* Execute the SQL statement: */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));

 /* Free LOB resources: */
 OCIDescriptorFree((dvoid *) Lob_loc, (ub4) OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Updating a BFILE by Initializing a BFILE Locator
 * Updating a BFILE by initializing a BFILE locator. [Example script:
4063.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-UPDATE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 BFILE-IND PIC S9(4) COMP.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(30) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-UPDATE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.

 * Allocate and initialize the BFILE locator:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 * Populate the BFILE:
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BFILE END-EXEC.
 EXEC ORACLE OPTION (SELECT_ERROR=NO) END-EXEC.
 EXEC SQL
12-202 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE by Initializing a BFILE Locator
 SELECT AD_GRAPHIC INTO :BFILE1:BFILE-IND
 FROM PRINT_MEDIA WHERE PRODUCT_ID = 3060
 AND AD_ID = 13001 END-EXEC.

 * Make graphic associated with product_id=3106 same as product_id=3060
 * and ad_id = 13001:
 EXEC SQL
 UPDATE PRINT_MEDIA SET AD_GRAPHIC = :BFILE1:BFILE-IND
 WHERE PRODUCT_ID = 3106 AND AD_ID = 13001 END-EXEC.

 * Free the BFILE:
 END-OF-BFILE.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BFILE1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Updating a BFILE by Initializing a BFILE Locator
/* Updating a BFILE by initializing a BFILE locator. [Example script: 4064.pc]
*/

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

External LOBs (BFILEs) 12-203

Updating a BFILE by Initializing a BFILE Locator
void updateUseBindVariable_proc(Lob_loc)
 OCIBFileLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL UPDATE Print_media SET ad_graphic = :Lob_loc
 WHERE product_ID = 2056 AND ad_id = 12001;
}

void updateBFILE_proc()
{
 OCIBFileLocator *Lob_loc;

 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT ad_graphic INTO :Lob_loc
 FROM Print_media WHERE product_id = 2056 AND ad_id 12001;
 updateUseBindVariable_proc(Lob_loc);
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 updateBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Updating a BFILE by Initializing a BFILE Locator
’Updating a BFILE by initializing a BFILE locator. [Example script:4066.txt]

Dim MySession As OraSession
Dim OraDb As OraDatabase
Dim OraParameters As OraParameters, OraAdGraphic As OraBfile

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)

OraDb.Connection.BeginTrans

Set OraParameters = OraDb.Parameters

’Define in out parameter of BFILE type:
OraParameters.Add "MyAdGraphic", Null, ORAPARM_BOTH, ORATYPE_BFILE
12-204 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE by Initializing a BFILE Locator
’Define out parameter of BFILE type:
OraDb.ExecuteSQL (
"BEGIN SELECT ad_graphic INTO :MyAdGraphic FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001;
 END;")

’Update the ad_graphic BFile for product_id=2056 AND ad_id = 12001
 to product_id=2268 AND ad_id = 21001:
OraDb.ExecuteSQL (
 "UPDATE Print_media SET ad_graphic = :MyAdGraphic
 WHERE product_id = 2268 AND ad_id = 21001")

’Get Directory alias and filename
’MsgBox " Directory alias is " & OraAdGraphic1.DirectoryName & " Filename is " &
OraAdGraphic1.filename

OraDb.Connection.CommitTrans
External LOBs (BFILEs) 12-205

Updating a BFILE by Initializing a BFILE Locator
Java (JDBC): Updating a BFILE by Initializing a BFILE Locator
// Updating a BFILE by initializing a BFILE locator. [Example script: 4067.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_100
{

 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 OraclePreparedStatement pstmt = null;

 rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
12-206 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Updating a BFILE by Initializing a BFILE Locator
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 // Prepare a CallableStatement to OPEN the LOB for READWRITE:
 pstmt = (OraclePreparedStatement) conn.prepareStatement (
 "UPDATE Print_media SET ad_graphic = ?
 WHERE product_id = 3060 AND ad_id = 11001");
 pstmt.setBFILE(1, src_lob);
 pstmt.execute();

 //Close the statements and commit the transaction:
 stmt.close();
 pstmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-207

Closing a BFILE with FILECLOSE
Closing a BFILE with FILECLOSE

Figure 12–31 Use Case Diagram: Closing a BFILE with FILECLOSE

User/
Program

Close a BFILE
with FILECLOSE

close
the BFILE

User/
Program

Close a BFILE
with FILECLOSE

close all
opened files

open
a BFILE

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

open
a BFILE

CLOSE
the BFILE

External LOBs : CLOSING the BFILE
12-208 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing a BFILE with FILECLOSE
Purpose
This procedure describes how to close a BFILE with FILECLOSE.

Usage Notes
Although closing a BFILE with FILECLOSE is still supported, we strongly

recommend that you use CLOSE instead. Doing so facilitates future extensibility.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB)(Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — FILEOPEN, FILECLOSE

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileClose

■ COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

■ Visual Basic (OO4O): A syntax reference is not applicable in this release.

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference: Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
This example closes a BFILE in ADPHOTO_DIR.

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Closing a BFILE with CLOSE on page 12-214
External LOBs (BFILEs) 12-209

Closing a BFILE with FILECLOSE
Examples
■ PL/SQL (DBMS_LOB Package): Closing a BFile with FILECLOSE on

page 12-208

■ C (OCI): Closing a BFile with FILECLOSE on page 12-208

■ COBOL (Pro*COBOL): No example is provided with this release.

■ C/C++ (Pro*C/C++): No example is provided with this release.

■ Visual Basic (OO4O): No example is provided. See note on page 12-211.

■ Java (JDBC): Closing a BFile with FILECLOSE on page 12-211

PL/SQL (DBMS_LOB Package): Closing a BFile with FILECLOSE
/* Closing a BFILE with FILECLOSE. [Example script: 4068.sql]
 Procedure closeBFILE_procOne is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE closeBFILE_procOne IS
 File_loc BFILE := BFILENAME(’ADPHOTO_DIR’, ’keyboard_photo_3060_11001’);
BEGIN
 DBMS_LOB.FILEOPEN(File_loc, DBMS_LOB.FILE_READONLY);
 /* ...Do some processing. */
 DBMS_LOB.FILECLOSE(File_loc);
END;

C (OCI): Closing a BFile with FILECLOSE
/* Closing a BFILE with FILECLOSE. [Example script: 4069.c] */

void BfileFileClose(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;

 /* Allocate the locator descriptors */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);
12-210 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing a BFILE with FILECLOSE
 checkerr(errhp, OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *) "ADGRAPHIC_DIR", (ub2) strlen("ADGRAPHIC_
DIR"),
 (OraText *) "keyboard_graphic_3106_13001",
 (ub2) strlen("keyboard_graphic_3106_13001")));

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc,
 (ub1) OCI_FILE_READONLY));

 checkerr(errhp, OCILobFileClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

Visual Basic (OO4O): Closing a BFile with FILECLOSE

Java (JDBC): Closing a BFile with FILECLOSE
// Closing a BFILE with FILECLOSE. [Example script: 4071.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex4_45

Note: At the present time, OO4O only offers BFILE closing with

CLOSE.
External LOBs (BFILEs) 12-211

Closing a BFILE with FILECLOSE
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();

 try
 {
 BFILE src_lob = null;
 ResultSet rset = null;
 boolean result = false;

 rset = stmt.executeQuery (
 "SELECT BFILENAME(’ADGRAPHIC_DIR’,’keyboard_graphic_3106_11001’)
 FROM DUAL");
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 }

 result = src_lob.isFileOpen();
 System.out.println(
 "result of fileIsOpen() before opening file : " + result);

 src_lob.openFile();

 result = src_lob.isFileOpen();
 System.out.println(
 "result of fileIsOpen() after opening file : " + result);

 // Close the BFILE, statement and connection:
 src_lob.closeFile();
 stmt.close();
 conn.commit();
 conn.close();
12-212 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing a BFILE with FILECLOSE
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-213

Closing a BFILE with CLOSE
Closing a BFILE with CLOSE

Figure 12–32 Use Case Diagram: Closing an Open BFILE with CLOSE

User/
Program

Close a BFILE
with CLOSE

close
the BFILE

close all
opened files

open
a BFILE

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

close
a BFILE

open
a BFILE

External LOBs : CLOSING a BFILE
12-214 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing a BFILE with CLOSE
Purpose
This procedure describes how to close a BFILE with CLOSE.

Usage Notes
Use CLOSE in conjunction with OPEN.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — CLOSE

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobClose

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB CLOSE

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB CLOSE

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

PROPERTIES > IsOpen. See also OO4O Automation Server > OBJECTS >

OraBFILE > Examples.

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference : Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):

See Also:

■ Table 12–1, "Use Case Model: External LOBs (BFILEs)" on

page 12-2

■ Closing a BFILE with FILECLOSE on page 12-208

See: Opening a BFILE with OPEN on page 12-70
External LOBs (BFILEs) 12-215

Closing a BFILE with CLOSE
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
These examples close a BFILE in ADGRAPHIC_DIR.

Examples
■ PL/SQL (DBMS_LOB Package): Closing a BFile with CLOSE on page 12-216

■ C (OCI): Closing a BFile with CLOSE on page 12-216

■ COBOL (Pro*COBOL): Closing a BFILE with CLOSE on page 12-217

■ C/C++ (Pro*C/C++): Closing a BFile with CLOSE on page 12-218

■ Visual Basic (OO4O): Closing a BFile with CLOSE on page 12-219

■ Java (JDBC): Closing a BFile with CLOSE on page 12-220

PL/SQL (DBMS_LOB Package): Closing a BFile with CLOSE
/* Closing a BFILE with CLOSE. [Example script: 4072.sql]
 Procedure closeBFILE_procTwo is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE closeBFILE_procTwo IS
 File_loc BFILE := BFILENAME(’ADGRAPHIC_DIR’,’keyboard_graphic_3060_11001’);
BEGIN
 DBMS_LOB.OPEN(File_loc, DBMS_LOB.LOB_READONLY);
 /* ...Do some processing. */
 DBMS_LOB.CLOSE(File_loc);
END;

C (OCI): Closing a BFile with CLOSE
/* Closing a BFILE with CLOSE. [Example script: 4073.c] */

void BfileClose(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc;
12-216 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing a BFILE with CLOSE
 /* Allocate the locator descriptors */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 checkerr(errhp, OCILobFileSetName(envhp, errhp, &bfile_loc,
 (OraText *) "ADGRAPHIC_DIR", (ub2) strlen("ADGRAPHIC_DIR"),
 (OraText *) "keyboard_3106",
 (ub2) strlen("keyboard_3106")));

 checkerr(errhp, OCILobOpen(svchp, errhp, bfile_loc,
 (ub1) OCI_LOB_READONLY));

 checkerr(errhp, OCILobClose(svchp, errhp, bfile_loc));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Closing a BFILE with CLOSE
 * Closing a BFILE with CLOSE. [Example script: 4074.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-CLOSE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 DIR-ALIAS PIC X(30) VARYING.
 01 FNAME PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-CLOSE.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
External LOBs (BFILEs) 12-217

Closing a BFILE with CLOSE
 * Allocate and initialize the BFILE locators:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADGRAPHIC_DIR" TO DIR-ALIAS-ARR.
 MOVE 9 TO DIR-ALIAS-LEN.
 MOVE "keyboard_graphic_3106_13001" TO FNAME-ARR.
 MOVE 13 TO FNAME-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1
 DIRECTORY = :DIR-ALIAS, FILENAME = :FNAME END-EXEC.

 EXEC SQL
 LOB OPEN :BFILE1 READ ONLY END-EXEC.

 * Close the LOB:
 EXEC SQL LOB CLOSE :BFILE1 END-EXEC.

 * And free the LOB locator:
 EXEC SQL FREE :BFILE1 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

C/C++ (Pro*C/C++): Closing a BFile with CLOSE
/* Closing a BFILE with CLOSE. [Example script: 4075.pc]
 Pro*C/C++ has only one form of CLOSE for BFILEs. Pro*C/C++ has no
 FILECLOSE statement. A simple CLOSE statement is used instead: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
12-218 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing a BFILE with CLOSE
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void closeBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "ADGRAPHIC_DIR", *Name = "mousepad_graphic_2056_12001";

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* ... Do some processing */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 closeBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Closing a BFile with CLOSE
’Closing a BFILE with CLOSE. [Example script: 4076.txt

Dim MySession As OraSession
Dim OraDb As OraDatabase

Dim OraDyn As OraDynaset, OraAdGraphic As OraBfile, amount_read%, chunksize%,
chunk

Set MySession = CreateObject("OracleInProcServer.XOraSession")
Set OraDb = MySession.OpenDatabase("pmschema", "pm/pm", 0&)

chunksize = 32767
External LOBs (BFILEs) 12-219

Closing a BFILE with CLOSE
Set OraDyn = OraDb.CreateDynaset("select * from Print_media", ORADYN_DEFAULT)
Set OraAdGraphic = OraDyn.Fields("ad_graphic").Value

If OraAdGraphic.IsOpen Then
 ’Process because the file is already open
 OraAdGraphic.Close
End If

Java (JDBC): Closing a BFile with CLOSE
// Closing a BFILE with CLOSE. [Example script: 4077.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class Ex4_48
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
12-220 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing a BFILE with CLOSE
 {
 BFILE src_lob = null;
 ResultSet rset = null;

 rset = stmt.executeQuery (
 "SELECT BFILENAME(’ADGRAPHIC_DIR’, ’keyboard_graphic_3106_13001’) FROM
DUAL");
 OracleCallableStatement cstmt = null;
 if (rset.next())
 {
 src_lob = ((OracleResultSet)rset).getBFILE (1);
 cstmt = (OracleCallableStatement)conn.prepareCall
 ("begin dbms_lob.open (?,dbms_lob.lob_readonly); end;");
 cstmt.registerOutParameter(1,OracleTypes.BFILE);
 cstmt.setBFILE (1, src_lob);
 cstmt.execute();
 src_lob = cstmt.getBFILE(1);
 System.out.println ("the file is now open");
 }

 // Close the BFILE, statement and connection:
 cstmt = (OracleCallableStatement)
 conn.prepareCall ("begin dbms_lob.close(?); end;");
 cstmt.setBFILE(1,src_lob);
 cstmt.execute();
 stmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

External LOBs (BFILEs) 12-221

Closing All Open BFILEs with FILECLOSEALL
Closing All Open BFILEs with FILECLOSEALL

Figure 12–33 Use Case Diagram: Closing All Open BFILEs

It is the user’s responsibility to close any opened file(s) after normal or abnormal

termination of a PL/SQL program block or OCI program. So, for instance, for every

DBMS_LOB.FILEOPEN() or DBMS_LOB.OPEN() call on a BFILE , there must be a

matching DBMS_LOB.FILECLOSE() or DBMS_LOB.CLOSE() call. You should close

open files before the termination of a PL/SQL block or OCI program, and also in

situations that have raised errors. The exception handler should make provision to

close any files that were opened before the occurrence of the exception or abnormal

termination.

If this is not done, Oracle considers these files unclosed.

Purpose
This procedure describes how to close all BFILEs .

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

See Also: "Specify the Maximum Number of Open BFILEs:

SESSION_MAX_OPEN_FILES" on page 12-64

User/
Program

CLOSE All
Opened Files

External LOBs : CLOSING All Opened Files
12-222 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing All Open BFILEs with FILECLOSEALL
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Support in Different Programmatic Environments" for a list of

available functions in each programmatic environment. Use the following syntax

references for each programmatic environment:

■ PL/SQL (DBMS_LOB) (Oracle9i Supplied PL/SQL Packages and Types Reference):
Chapter 18, "DBMS_LOB" — FILECLOSEALL

■ C (OCI) (Oracle Call Interface Programmer’s Guide): Chapter 7, "LOB and File

Operations" for usage notes. Chapter 15, "Relational Functions" — LOB

Functions, OCILobFileCloseAll

■ COBOL (Pro*COBOL) Pro*COBOL Precompiler Programmer’s Guide for

information on LOBs, usage notes on LOB Statements, and embedded SQL and

precompiler directives — LOB FILE CLOSE ALL

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): "Large

Objects (LOBs)", "LOB Statements", "Embedded SQL Statements and Directives"

— LOB FILE CLOSE ALL

■ Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help

Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraBFILE >

METHODS > CloseAll. See also OO4O Automation Server > OBJECTS >

OraBFILE > Examples

■ Java (JDBC) Oracle9i JDBC Developer’s Guide and Reference : Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle9i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
Not applicable.

Examples
■ PL/SQL (DBMS_LOB Package): Closing All Open BFiles on page 12-224

■ C (OCI): Closing All Open BFiles on page 12-224

■ COBOL (Pro*COBOL): Closing All Open BFiles on page 12-225
External LOBs (BFILEs) 12-223

Closing All Open BFILEs with FILECLOSEALL
■ C/C++ (Pro*C/C++): Closing All Open BFiles on page 12-227

■ Visual Basic (OO4O): Closing All Open BFiles on page 12-228

■ Java (JDBC): Closing All Open BFiles with FILECLOSEALL on page 12-228

PL/SQL (DBMS_LOB Package): Closing All Open BFiles
/* Closing all open BFILEs. [Example script: 4078.sql]
 Procedure closeAllOpenFilesBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE closeAllOpenFilesBFILE_proc IS
BEGIN
 /* Close all open BFILEs: */
 DBMS_LOB.FILECLOSEALL;
END;

C (OCI): Closing All Open BFiles
/* Closing all open BFILEs. [Example script: 4079.c] */

void BfileCloseAll(envhp, errhp, svchp, stmthp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
{

 OCILobLocator *bfile_loc1;
 OCILobLocator *bfile_loc2;

 /* Allocate the locator descriptors */
 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc1,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 (void) OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &bfile_loc2,
 (ub4) OCI_DTYPE_FILE,
 (size_t) 0, (dvoid **) 0);

 checkerr(errhp, OCILobFileSetName(envhp, errhp, &bfile_loc1,
 (OraText *) "ADGRAPHIC_DIR", (ub2) strlen("ADGRAPHIC_DIR"),
 (OraText *) "keyboard_graphic_3106_13001",
 (ub2) strlen("keyboard_graphic_3106_13001")));
12-224 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing All Open BFILEs with FILECLOSEALL
 checkerr(errhp, OCILobFileSetName(envhp, errhp, &bfile_loc2,
 (OraText *) "ADGRAPHIC_DIR", (ub2) strlen("ADGRAPHIC_DIR"),
 (OraText *) "monitor_graphic_3060_11001",
 (ub2) strlen("monitor_graphic_306_11001")));

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc1,
 (ub1) OCI_LOB_READONLY));

 checkerr(errhp, OCILobFileOpen(svchp, errhp, bfile_loc2,
 (ub1) OCI_LOB_READONLY));

 checkerr(errhp, OCILobFileCloseAll(svchp, errhp));

 /* Free the locator descriptor */
 OCIDescriptorFree((dvoid *)bfile_loc1, (ub4)OCI_DTYPE_FILE);
 OCIDescriptorFree((dvoid *)bfile_loc2, (ub4)OCI_DTYPE_FILE);
}

COBOL (Pro*COBOL): Closing All Open BFiles
 * Closing all open BFILEs. [Example script: 4080.pco]
 IDENTIFICATION DIVISION.
 PROGRAM-ID. BFILE-CLOSE-ALL.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERID PIC X(11) VALUES "SAMP/SAMP".
 01 BFILE1 SQL-BFILE.
 01 BFILE2 SQL-BFILE.
 01 DIR-ALIAS1 PIC X(30) VARYING.
 01 FNAME1 PIC X(20) VARYING.
 01 DIR-ALIAS2 PIC X(30) VARYING.
 01 FNAME2 PIC X(20) VARYING.
 01 ORASLNRD PIC 9(4).

 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 PROCEDURE DIVISION.
 BFILE-CLOSE-ALL.
External LOBs (BFILEs) 12-225

Closing All Open BFILEs with FILECLOSEALL
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL
 CONNECT :USERID
 END-EXEC.

 * Allocate the BFILEs:
 EXEC SQL ALLOCATE :BFILE1 END-EXEC.
 EXEC SQL ALLOCATE :BFILE2 END-EXEC.

 * Set up the directory and file information:
 MOVE "ADGRAPHIC_DIR" TO DIR-ALIAS1-ARR.
 MOVE 9 TO DIR-ALIAS1-LEN.
 MOVE "keyboard_graphic_3106_13001" TO FNAME1-ARR.
 MOVE 16 TO FNAME1-LEN.

 EXEC SQL
 LOB FILE SET :BFILE1
 DIRECTORY = :DIR-ALIAS1, FILENAME = :FNAME1 END-EXEC.
 EXEC SQL LOB OPEN :BFILE1 READ ONLY END-EXEC.

 * Set up the directory and file information:
 MOVE "ADGRAPHIC_DIR" TO DIR-ALIAS2-ARR.
 MOVE 9 TO DIR-ALIAS2-LEN.
 MOVE "mousepad_graphic_2056_12001" TO FNAME2-ARR.
 MOVE 13 TO FNAME2-LEN.
 EXEC SQL LOB FILE SET :BFILE2
 DIRECTORY = :DIR-ALIAS2, FILENAME = :FNAME2 END-EXEC.
 EXEC SQL LOB OPEN :BFILE2 READ ONLY END-EXEC.

 * Close both BFILE1 and BFILE2:
 EXEC SQL LOB FILE CLOSE ALL END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED ON LINE ", ORASLNRD, ":".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.
12-226 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing All Open BFILEs with FILECLOSEALL
C/C++ (Pro*C/C++): Closing All Open BFiles
/* Closing all open BFILEs. [Example script: 4081.pc] */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void closeAllOpenBFILEs_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Populate the Locators: */
 EXEC SQL SELECT ad_graphic INTO :Lob_loc1
 FROM Print_media
 WHERE product_id = 2056 AND ad_id = 12001;
 EXEC SQL SELECT Mtab.ad_graphic INTO Lob_loc2
 FROM Print_media PMtab
 WHERE PMtab.product_id = 3060 AND ad_id = 11001;
 /* Open both BFILEs: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Close all open BFILEs: */
 EXEC SQL LOB FILE CLOSE ALL;
 /* Free resources held by the Locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 closeAllOpenBFILEs_proc();
External LOBs (BFILEs) 12-227

Closing All Open BFILEs with FILECLOSEALL
 EXEC SQL ROLLBACK WORK RELEASE;
}

Visual Basic (OO4O): Closing All Open BFiles
’Closing all open BFILEs. [Example script: 4083.txt]

Dim OraParameters as OraParameters, OraAdGraphic as OraBFile
OraConnection.BeginTrans

Set OraParameters = OraDatabase.Parameters

’Define in out parameter of BFILE type:
OraParameters.Add "MyAdGraphic", Null,ORAPARAM_BOTH,ORATYPE_BFILE

’Select the ad graphic BFile for product_id 2268:
OraDatabase.ExecuteSQL("Begin SELECT ad_graphic INTO :MyAdGraphic FROM
Print_media WHERE product_id = 2268 AND ad_id = 21001; END; ")

’Get the BFile ad_graphic column:
set OraAdGraphic = OraParameters("MyAdGraphic").Value

’Open the OraAdGraphic:
OraAdGraphic.Open

’Do some processing on OraAdGraphic

’Close all the BFILEs associated with OraAdGraphic:
OraAdGraphic.CloseAll

Java (JDBC): Closing All Open BFiles with FILECLOSEALL
// Closing all open BFILEs. [Example script: 4084.java]

import java.io.InputStream;
import java.io.OutputStream;

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Types;
import java.sql.Statement;
import java.sql.PreparedStatement;
12-228 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Closing All Open BFILEs with FILECLOSEALL
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;
public class Ex4_66
{
 static final int MAXBUFSIZE = 32767;
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver:
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "samp", "samp");

 // It’s faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 BFILE lob_loc1 = null;
 BFILE lob_loc2 = null;
 ResultSet rset = null;
 OracleCallableStatement cstmt = null;
 rset = stmt.executeQuery (
 "SELECT ad_graphic FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 lob_loc1 = ((OracleResultSet)rset).getBFILE (1);
 }

 rset = stmt.executeQuery (
 "SELECT BFILENAME(’ADGRAPHIC_DIR’, ’keyboard_graphic_3106_13001’)
 FROM DUAL");
 if (rset.next())
 {
 lob_loc2 = ((OracleResultSet)rset).getBFILE (1);
 }
External LOBs (BFILEs) 12-229

Closing All Open BFILEs with FILECLOSEALL
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.FILEOPEN(?,DBMS_LOB.LOB_READONLY); END;");
 // Open the first LOB:
 cstmt.setBFILE(1, lob_loc1);
 cstmt.execute();

 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN DBMS_LOB.FILEOPEN(?,DBMS_LOB.LOB_READONLY); END;");
 // Use the same CallableStatement to open the second LOB:
 cstmt.setBFILE(1, lob_loc2);
 cstmt.execute();

 lob_loc1.openFile ();
 lob_loc2.openFile ();

 // Compare MAXBUFSIZE bytes starting at the first byte of
 // both lob_loc1 and lob_loc2:
 cstmt = (OracleCallableStatement) conn.prepareCall (
 "BEGIN ? := DBMS_LOB.COMPARE(?, ?, ?, 1, 1); END;");
 cstmt.registerOutParameter (1, Types.NUMERIC);
 cstmt.setBFILE(2, lob_loc1);
 cstmt.setBFILE(3, lob_loc2);
 cstmt.setInt(4, MAXBUFSIZE);
 cstmt.execute();
 int result = cstmt.getInt(1);
 System.out.println("Comparison result: " + Integer.toString(result));

 // Close all BFILEs:
 stmt.execute("BEGIN DBMS_LOB.FILECLOSEALL; END;");

 stmt.close();
 cstmt.close();
 conn.commit();
 conn.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

12-230 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Deleting the Row of a Table Containing a BFILE
Deleting the Row of a Table Containing a BFILE

Figure 12–34 Use Case Diagram: Deleting the Row of a Table Containing a BFILE

Purpose
This procedure describes how to DELETE the row of a table containing a BFILE.

Usage Notes
Unlike internal persistent LOBs, the LOB value in a BFILE does not get deleted by

using SQL DDL or SQL DML commands — only the BFILE locator is deleted.

Deletion of a record containing a BFILE column amounts to de-linking that record

from an existing file, not deleting the physical operating system file itself. An SQL

DELETE statement on a particular row deletes the BFILE locator for the particular

row, thereby removing the reference to the operating system file.

Syntax
See the following syntax reference:

See Also: Table 12–1, "Use Case Model: External LOBs (BFILEs)"

on page 12-2, for all basic operations of Internal Temporary LOBs

User/
Program

DELETE
the Row

External LOBs : DELETING the Row
External LOBs (BFILEs) 12-231

Deleting the Row of a Table Containing a BFILE
■ SQL (Oracle9i SQL Reference), Chapter 7, "SQL Statements" — DELETE, DROP,

TRUNCATE

Scenario
The following DELETE, DROP TABLE, or TRUNCATE TABLE statements delete the

row, and hence the BFILE locator that refers to the advertisement graphic image for

the product with product_id 3106 and ad_id 13001, but do not delete the

operating system file for the graphic image.

Examples
The following examples are provided in SQL and apply to all programmatic

environments:

■ "SQL: Deleting a Row from a Table"

SQL: Deleting a Row from a Table
/* Deleting the row of a table containing a BFILE [Example script: 4085.sql] */

DELETE FROM Print_media
 WHERE product_id = 3106 AND ad_id = 13001;

DROP TABLE Multimedia_tab;

TRUNCATE TABLE Multimedia_tab;
12-232 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Using OraOLEDB to Manipulate
13

Using OraOLEDB to Manipulate LOBs

This chapter contains the following sections:

■ Introducing OLE DB

■ Manipulating LOBs Using ADO Recordsets and OLE DB Rowsets

■ Manipulating LOBs Using OraOLEDB Commands

■ ADO and LOBs Example 1: Inserting LOB Data From a File
 LOBs 13-1

Introducing OLE DB
Introducing OLE DB
OLE DB is an open specification for accessing various types of data from different

stores in a uniform way. It uses a set of COM interfaces for accessing and

manipulating different types of data. The interfaces are available from various

database providers.

OLE DB introduces the concept of a consumer and a provider. A consumer is a

client application that uses or ’consumes’ an OLE DB interface. A provider is a

component that exposes an OLE DB interface.

A typical provider can retrieve data from a particular data store and expose the data

to a consumer in tabular form.

OraOLEDB: OLE DB and Oracle Large Object (LOB) Support
OraOLEDB is an OLE DB provider for Oracle. It offers high performance and

efficient access to Oracle data including LOBs. It also allows updates to certain LOB

types.

The following LOB types are supported by OraOLEDB:

■ For Persistent LOBs. READ/WRITE through the rowset.

■ For BFILEs. READ-ONLY through the rowset.

■ Temporary LOBs are not supported through the rowset.

Rowset Object
Rowset is an OLE DB object that provides READ/WRITE capability to data

obtained by executing an SQL SELECT statement or a stored procedure that returns

a REF Cursor.

BFILEs can be part of the rowset but they are read-only.
13-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs Using ADO Recordsets and OLE DB Rowsets
Manipulating LOBs Using ADO Recordsets and OLE DB Rowsets
LOB data is never retrieved and stored in the provider cache. When a server cursor

is used, OraOLEDB provides the LOB data to the consumer only when it is

requested.

To incur less round trips to the database, reads and writes should be carried out in

large chunks for better performance.

Use Explicit Transactions
When using server cursor in an auto-commit mode, all LOB data modifications are

transmitted to the database and committed. This means that even if the recordset

is in a deferred update mode, the LOB data modifications and any previous

deferred updates, will be permanent. To have flexibility of rolling back LOB data

modifications, it is advised that explicit transactions are used when manipulation

LOB data.

ADO Recordsets and LOBs

GetChunk()
The GetChunk method of ADO recordset object retrieves LOB data. When

subsequent GetChunk() calls are made on the same LOB column, data is retrieved

from where it left off. However, if the current row changes or if another LOB

column is read from or written to, calling GetChunk() again on the original LOB

column will retrieve data from the beginning.

Writing Data to a LOB Column With AppendChunk()
The AppendChunk() method of ADO recordset object writes data to a LOB column.

The initial AppendChunk() method will overwrite any existing data. Subsequent

AppendChunk() calls will append the data, but the appending will end when the

current row changes or when another LOB column data is updated or read from.

Note: Although most LOB columns in an Oracle database support

up to 4 GB of data storage, ADO limits the maximum column size

to 2 GB.
Using OraOLEDB to Manipulate LOBs 13-3

Manipulating LOBs Using OraOLEDB Commands
OLE DB Rowsets and LOBs
The following OLE DB rowset methods read and write LOB data:

■ IRowset::GetData() and ISequentialStream::Read() reads LOB data.

■ IRowsetChange::SetData() and ISequentialStream::Write() writes LOB data.

Manipulating LOBs Using OraOLEDB Commands
In OraOLEDB, the following functionality is supported:

■ LOB input bind parameters, through commands

■ Tables with any type of LOB, including BFiles, can be created through

commands

LOB input or output parameters are supported in stored procedure executions

using OraOLEDB 8.1.7 or higher. In addition, the database must be Oracle8i Release

8.1 or higher.

ADO and LOBs Example 1: Inserting LOB Data From a File
The following is an ADO sample that demonstrates the insertion of a new row with

a LOB column. A file called "c:\myfile.txt" will need to be created on your machine

for this sample to work. It can be created using your favorite editor to contain any

character data such as "This is only a test". This character data will then be used by

the program to populate the CLOB column in the MULTIMEDIA_TAB table.

The program then retrieves the newly inserted data from the database and validates

the inserted data. The inserted row is then deleted before the program exits.

The example covers the following ADO methods that can be used for LOBs,

namely:

■ GetChunk method

■ AppendChunk method

■ ActualSize property

Sub Main()
Dim con As New ADODB.Connection
Dim cmd As New ADODB.Command

 Dim rst As New ADODB.Recordset
13-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

ADO and LOBs Example 1: Inserting LOB Data From a File
 Dim LogFileName As String
 Dim LogFileNum As Integer

 Dim sql As String ' SELECT statement
 Dim clob_data As Variant ' data from a text file
 Dim vardata As Variant ' data retrieved from clob data in chunks
 Dim vardata_len As Long ' length of the data retrieved from the CLOB
column

Dim done As Boolean ' done = True if finished retrieving all the data
 Dim Data As Variant ' the entire data retrieved from the CLOB column

 On Error GoTo ErrorHandler

 ' open a text file
 LogFileName = "c:\myfile.txt"
 LogFileNum = FreeFile
 Open LogFileName For Input As LogFileNum

 ' load text from file to a local variable
 clob_data = Input$(LOF(LogFileNum), LogFileNum)
 Close #LogFileNum

 ' connect as adldemo/adldemo
 con.CursorLocation = adUseServer
 con.Open "Provider=OraOLEDB.Oracle;Data Source=db9i;" & _
 "User Id=adldemo;Password=adldemo;"

 ' open a recordset
 sql = "select clip_id, story from MULTIMEDIA_TAB"
 rst.Open sql, con, adOpenStatic, adLockOptimistic, adCmdText

 ' add a new record
 rst.AddNew
 rst!clip_id = 1234
 rst!story.AppendChunk (clob_data)
 rst.Update

 ' fetch entire CLOB data
 Do While (Not (done))
 vardata = rst!story.GetChunk(4096)
 If Not (IsNull(vardata)) Then
 Data = Data & vardata
 Else
 done = True
 End If
Using OraOLEDB to Manipulate LOBs 13-5

ADO and LOBs Example 1: Inserting LOB Data From a File
 Loop

 ' validate fetched data
 If Data = clob_data And Len(clob_data) = rst!story.ActualSize Then
 MsgBox "The CLOB data (of " & Len(clob_data) & " bytes) " & _
 "was inserted and retrieved properly!"
 End If

 ' cleanup
 con.Execute "delete from multimedia_tab where clip_id = 1234"
 rst.Close
 con.Close

 Exit Sub
ErrorHandler:
 MsgBox "Error: " & Err.Description
End Sub
13-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

LOBs Case S
14

LOBs Case Studies

This chapter contains the following sections:

■ Building a Multimedia Repository

■ Building a LOB-Based Web Site: First Steps
tudies 14-1

Building a Multimedia Repository
Building a Multimedia Repository
This description has been extracted from an article by Samir S. Shah in Java

Developer’s Journal. Reprinted by permission of Java Developer’s Journal.

Toolset Used

■ Jdeveloper 2.0 with JDK 1.1.7

■ Oracle 8.1.5 or higher

■ JDBC Thin Driver

■ Oracle8i (8.1.5) Enterprise server

■ Java Web Server 2.0

■ Oracle intermedia 8.1.5.

■ Platform: Windows 2000 Server

Today building an information repository is essential for businesses. the

information repository helps establish a paperless office and allows data to be

shared in or outside an enterprise.

With the toolset mentioned earlier, you can build an enterprise-class, scalable

web-enabled multimedia-rich information repository that incorporates various

forms of media. This repository includes unstructured data, such as document files,

video clips, photographs, ... and sound files. It uses Java and Oracle’s Large Objects

(LOBs).

This section describes how you can build such an information repository for storing

and searching documents such as Microsoft Word, HTML, and XML files which are

stored in a LOB column of a database table.

The example used here populates the repository with Microsoft Word resumes,

indexes it using Oracle Text (interMedia Text), and reads the repository using Java

streams from a servlet.

See Figure 14–1.
14-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Building a Multimedia Repository
Figure 14–1 Data Repository Using Oracle and Java

Building repositories using Java and Oracle8i/9i has several benefits. The

documents can inherently take advantage of the transaction management and ACID

(Atomocity, Concurrency, Integrity, and Durability) properties of the relational

database. This means that changes to an internal LOB can be committed or

rolled-back. Moreover, because the unstructured data is stored by the database,

your applications can seamlessly take advantage of database features such as

backup and recovery. This helps Administrators who would no longer have to

perform separate database and file system backups for relational information and

documents.

All data in the database, including structured (relational) and unstructured

(document files), can be written, searched, and accessed using SQL. The SQL

statements can be executed from Java using JDBC.

Browser

Web
Server

Java Servlets
Java Servlets Documents

Word, HTML,
XML, ASCII

Java
Streams Table

Structured
Columns . . .

LOB
Column

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Text
Indexing

Oracle
Repository
LOBs Case Studies 14-3

Building a Multimedia Repository
How this Application Uses LOBs
Oracle8i and Oracle9i support several types of LOB columns. One type, BLOBs, can

house binary information such as audio, video, images, and comments internally in

the database. Each row can store up to 4 gigabytes of data. The application

described here uses a BLOB data type to store Microsoft Word resumes.

The Oracle database stores a locator in-line with the data. The locator is a pointer to

the actual location of the data (LOB value). The LOB data can be stored in the same

or a separate table. the advantage of using the locator is that the database will not

have to scan the LOB data each time it reads multiple rows because only the LOB

locator value is read. The actual LOB data is read only when required.

When working with Java and LOBs, first execute the SELECT statement to get the

LOB locator, then read or write LOBs using JDBC.

The actual LOB data is materialized as a java stream from the database, where the

locator represents the data in the table. The following code reads the resume of an

employee whose employee number is 7900. Employee number is stored in a LOB

column called "resume" in table, sam_emp.

Statement st = cn.createStatement();
 ResultSet rs = st.executeQuery
 ("Select resume from sam_emp where empno=7900”);
 rs.next();
oracle.sql.BLOB blob=((OracleResultSet)rs).getBLOB(1);
InputStream is=blob.getBinaryStream();

Populating the Repository
The documents can be written to LOB columns using Java, PL/SQL, or a bulk

loading utility called Oracle SQL*Loader. To insert a new row, perform the

following:

1. Execute the SQL insert statement with an empty BLOB.

2. Query the same row to get the locator object.Use this to write your document to

the LOB column.

Note: The JDBC driver’s Oracle type extension package,

oracle.sql, is used to read and write from an oracle database.
14-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Building a Multimedia Repository
3. Create the Java output stream using the getBinaryOutputStream() method

of this object to write your document or any binary information to that column.

For example, to insert information about a new employee whose employee

number is 9001 in table sam_emp, first insert all the structured information

along with an empty BLOB using JDBC. next select the LOB column, resume, of

the same row to get the oracle.sql.BLOB object (the locator).

4. Finally, create the Java output stream from this object. For example, to insert

information about a new employee whose employee number is 9001 in the

sam_emp table, first insert all the structured data along with an empty BLOB,

using JDBC. Next, select the LOB column, resume, from the same row to get the

oracle.sql.BLOB object (the locator). Finally, create the Java output stream from

this object:

st.execute("INSERT INTO sam_emp(empno, resume)
 VALUES(9001,empty_blob())");
ResultSet rs = st.executeQuery(
 "select resume from sam_emp where empno=9001 for update");
 rs.next();
oracle.sql.BLOB blob = ((OracleResultSet)rs).getBLOB(1);
OutputStream os = blob.getBinaryOutputStream();

Optionally, you can use java.awt.FileDialog class and java.io package

to dynamically select and read a file from your PC. Then, load it to a LOB

column using the preceding code.

The way you search and retrieve documents does not depend on how you load the

documents. For example, you can store the documents using PL/SQL or

SQL*Loader, then search and retrieve using Java servlets.

Example 1: Inserting a Word document into a BLOB Column using PL/SQL
The following code (steps 2-5) inserts MyResume.doc in the resume column of sam_

emp table.

1. Create a directory object in Oracle. Here is how to create a directory object

called MY_FILES which represents C:\MY_DATA directory.

You must have CREATE DIRECTORY privilege in Oracle.

Note: Java streams are employed to write the documents to the

LOB column.
LOBs Case Studies 14-5

Building a Multimedia Repository
create or replace directory MY_FILES as 'C:\MY_DATA';

2. Insert a row with empty BLOB in your table and return the locator.

3. Point to the Word file to be loaded from the directory created in Step 1, using

the BFILE data type.

4. Open the file and use the locator from step 2 to insert the file.

5. Close the file and commit the transaction.

declare
 f_lob bfile;
 b_lob blob;

begin

 insert into sam_emp(empno,ename,resume)
 values (9001, 'Samir',empty_blob())
 return documents into b_lob;

 f_lob := bfilename('MY_FILES', 'MyResume.doc');
 dbms_lob.fileopen(f_lob, dbms_lob.file_readonly);
 dbms_lob.loadfromfile
 (b_lob, f_lob, dbms_lob.getlength(f_lob));
 dbms_lob.fileclose(f_lob);

 commit;

end;
/

Searching the Repository
Documents stored in the LOB columns can be indexed using Oracle Text

(interMedia Text). Oracle9i Text provides you with advanced search capabilities

such as fuzzy, stemming, proxy, phrases, and more. It can also generate thematic

searches and gist. The documents can be indexed using ‘create index’ database

command.

See Also:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference
14-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Building a Multimedia Repository
How the Index Was Built on Table sam_emp, resume Column
The following code shows you how the index was built on the resume column of

the sam_emp table. Once the index is created, the Java applications can search the

repository by simply submitting SELECT statements.

The following steps index all the Microsoft Word formatted resumes stored in the

resume column to the sam_emp table.The resumes can then be searched using SQL.

1. Add primary key to your table if it does not exist. To make empno primary key

of the sam_emp table execute following command:

alter table sam_emp add constraint
pk_sam_emp primary key(empno);

2. Get the privileges (ctxapp role) to create text indexes from your administrators.

3. Create the index with appropriate filter object. Filters determine how to extract

text for document indexing from word processor, formatted documents as well

as plain text.

create index ctx_doc_idx on sam_emp(resume)
indextype is ctxsys.context parameters
('filter CTXSYS.INSO_FILTER');

MyServletCtx Servlet
The following code lists the servlet ‘MyServletCtx’. It searches the term passed to it

as a parameter in the resume column of table, sam_emp. The servlet returns the

rows matching the search criteria in HTML table format. The employee names in

the HTML table are hyperlinked to another servlet, ‘MyServlet‘, which reads the

entire resumé from the database, in its original format.

MyServletCtx.java
1234567890123456789012345678901234567890123456789012
package package1;
import javax.servlet.*;

See Also:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference

for a complete list of filters.
LOBs Case Studies 14-7

Building a Multimedia Repository
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;

/**
* This servlet searches documents stored in Oracle8i
* database repository using SQL and JDBC. The hit
* list is displayed in html table with hyper links.
* JDK 1.1.7 and Oracle Thin JDBC 1.22 complient
* driver is used.
*
* @author Samir Shah
* @version 1.0
**/
public class MyServletCtx extends HttpServlet{
 Connection cn;

 public void init(ServletConfig parm1)
 throws ServletException {
 super.init(parm1);
 try{
 DriverManager.registerDriver(
 (new oracle.jdbc.driver.OracleDriver()));
 cn =DriverManager.getConnection
 ("jdbc:oracle:thin:@sshah:1521:o8i",
 "scott", "tiger");
 }
 catch (SQLException se){se.printStackTrace();}
 }

 public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException{

 doPost(req,res);
 }

 public void doPost(HttpServletRequest req,
 HttpServletResponse res) throws IOException{

 PrintWriter out = res.getWriter();
 res.setContentType("text/html");

 //The term to search in resume column
 String term = req.getParameter("term");
 if (term == null)
14-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Building a Multimedia Repository
 term="security";

 out.print("<html>");
 out.print("<body>");
 out.print("<H1>Search Result</H1>");
 out.print("<table border=1 bgcolor=lightblue>");
 out.print("<tr><th>ID#</th><th>Name</th></tr>");
 out.print("<tr>");
 try{
 Statement st = cn.createStatement();

 //search the term in resume column using SQL
 String query =
 "Select empno,ename from sam_emp" +
 " where contains(resume,'"+term+"')>0";

 ResultSet rs = st.executeQuery(query);

 while (rs.next()){
 out.print("<td>"+ rs.getInt(1)+"</td>");
 out.print("<td>" +
 "<A HREF=http://sshah:8080/" +
 "servlet/MyServlet?term=" +
 rs.getString(1) +
 " target=Document>" +
 rs.getString(2) +
 "</td>");
 out.print("</tr>");
 }

 out.print("</table>");
 out.print("</body>");
 out.print("</html>");
 }//try
 catch (SQLException se){se.printStackTrace();}

 }
}

LOBs Case Studies 14-9

Building a Multimedia Repository
Retrieving Data from the Repository
The document retrieval using Java is similar to writing documents to the repository.

The section, "How this Application Uses LOBs" on page 14-4 describes how to read

LOBs from the database.

The following code in ‘MyServlet’ reads a Microsoft Word resumé from the table,

sam_emp. It sets the content type, then streams it out to the browser using an

output stream.

MyServlet.java
1234567890123456789012345678901234567890123456789012
package package1;

import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;
import oracle.sql.*; //for oracle.sql.BLOB

/**
* This class reads the entire document from the
* resume LOB column. It takes one parameter,term,
* to search a specific employee from the sam_emp
* table and returns the doucement stored in that
* row.
*
* JDK 1.1.7, Oracle Thin JDBC 1.22 complient driver
* Use Oracle JDBC Type extends package oracle.sql.
*
* @author Samir Shah
* @version 1.0
**/
public class MyServlet extends HttpServlet{
 Connection cn;

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 {
 try{
 doPost(req,res);
 }catch (IOException ie){ie.printStackTrace();}
 }
14-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Building a Multimedia Repository
 public void init(ServletConfig parm1)
 throws ServletException
 {

 super.init(parm1);
 try{
 DriverManager.registerDriver(
 (new oracle.jdbc.driver.OracleDriver()));
 cn =DriverManager.getConnection(
 "jdbc:oracle:thin:@sshah:1521:o8i",
 "scott", "tiger");
 }
 catch (SQLException se){se.printStackTrace();}
 }

 public void doPost(HttpServletRequest req,
 HttpServletResponse res) throws IOException
 {
 InputStream is=null;
 oracle.sql.BLOB blob=null;

 res.setContentType("application/msword");
 OutputStream os = res.getOutputStream();
 String term = req.getParameter("term");

 if (term==null)
 term="9001";

 try{
 Statement st = cn.createStatement();
 ResultSet rs = st.executeQuery
 ("Select resume from sam_emp"+
 " where empno="+term);

 while (rs.next()){
 blob=((OracleResultSet)rs).getBLOB(1);
 is=blob.getBinaryStream();
 }

 int pos=0;
 int length=0;
 byte[] b = new byte[blob.getChunkSize()];

 while((length=is.read(b))!= -1){
LOBs Case Studies 14-11

Building a Multimedia Repository
 pos+=length;
 os.write(b);
 }
 }//try
 catch (SQLException se)
{
 se.printStackTrace();
 }
 finally {
 is.close();
 }

 }

}

Summary
This section showed you how to store, search and retrieve Word documents using

LOB data types and Java.

You can also store, index, parse and transform XML documents using the Oracle9i

database. By storing XML documents in the database, there is no need to administer

and manage multiple repositories for relational and XML data. Oracle9i and Oracl9i

Application Server are XML-enabled whereby you can run the Oracle XML Parser

for Java and parse and transform XML files in the database before outputting to an

application server.
14-12 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Building a LOB-Based Web Site: First Steps
Building a LOB-Based Web Site: First Steps

Problem
Design and Build a LOB and interMedia Based Web site. The Web site must include

video 'thumbnails' where by users can click a specific thumbnail to see a short 6 - 8

second video clip.

First Steps Solution
Here are some ideas for setting up your LOB-based web-site:

1. Install Oracle9i (including interMedia) on your database server.

2. Install a web server, such as, Oracle9i Application Server, IIS, Netscape Web

server, or Apache.

3. Install the interMedia Web Agent on your web server

4. Install the interMedia ClipBoard on your client (PC)

5. On your server, create a table with at least three columns, such as:

create table video_clips (
move_id integer,
thumbnail ordsys.ordimage,
movie ordsys.ordvideo);

See Note 2.

6. Collect/Capture your media content (images, movies)

7. If you're using a digital camera or scanner interMedia ClipBoard will help you

with this

8. Use interMedia ClipBoard to upload your media content into the database, into

the table you created in step 5.

9. Use a HTML authoring tool, such as DreamWeaver, FrontPage, ... in

conjunction with interMedia ClipBoard to build your web pages.

10. Add the thumbnails with the help of interMedia ClipBoard, with a caption.

Make the thumbnails have hyperlinks to the movie clips. It is recommended to

not use a separate streaming server at this point. One way to do this is to

encode the movies as Apple QuickTime files, for example, if you do this

correctly they'll start playing as they download... This is not quite the same as
LOBs Case Studies 14-13

Building a LOB-Based Web Site: First Steps
"streaming". If you have reasonable bandwidth, this should be more than

sufficient.

11. DO you need plug-ins? How about Space requirements? Assume you have

about 100 movie clips and they all take a total of about 30+ minutes. You should

not need any plugins, that is no Real Networks plugins.

Your disk space depends on the frame size, frame rate, and compression

settings. One second of video, at 720x480 pixels, 30 frames per second (fps),

takes roughly 3.6MB of disk space. 720x480 is pretty big for the web but should

be fine if this is on an intranet. 30 fps looks very smooth but might not be

necessary. Test a sample to see what 320x240 looks like. Check if there is

sufficient detail present. If not, increase the resolution until you are satisfied.

Note 1:

■ This isn't likely to be trivial to set up. Just getting everything

installed and configured could be challenging. Enroll the help

of Oracle DBAs and consultants

■ If you can, specify a DB_BLOCKS_SIZE of 8K and as many DB_

BLOCK_BUFFERS as you can.

Note 2: The foregoing example is a simplistic create table

example. You typically need LOB storage clauses for LOBs inside

ORDImage and ORDVideo. You also need a separate tablespace for

these LOBs, CHUNK 32768, NOCACHE on the VIDEO LOB,

CACHE on the IMAGE LOB.

See Also:

■ Oracle interMedia User’s Guide and Reference

■ Using Oracle8i with the Web
14-14 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Unified Modeling Language Diagra
A

Unified Modeling Language Diagrams

The Unified Modeling Language (UML) use case diagrams in this manual present a

representation of the technology used in Advanced Queuing. A brief explanation of

use case diagrams and UML notation follows.

This chapter discusses the following topics:

■ Use Case Diagrams

■ State Diagrams
ms A-1

Use Case Diagrams
Use Case Diagrams
In a use case diagram, the primary use case is instigated by an actor (stickman),

which can be a human user, an application, or a subprogram. The actor is connected

to the primary use case, which is depicted as an oval (bubble) enclosing the use case

action, as shown in Figure A–1.

Figure A–1 A Primary Use Case

Primary use cases may require other operations to complete them. In Figure A–2,

■ specify queue name

is one of the suboperations, or secondary use cases, needed to complete

■ ENQUEUE a message

The downward lines from the primary use case lead to the other required

operations (not shown).

Figure A–2 A Primary Use Case with Suboperations

User/
Program

DELETE
the row

AQ Operational Interface

User/
Program

specify
queue name

ENQUEUE
a message
A-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Use Case Diagrams
As shown in Figure A–3, a secondary use case with a drop shadow expands into its

own use case diagram, thus making it easier to:

■ Understand the logic of the operation

■ Continue a complex operation across multiple pages

In this example

■ specify message properties

■ specify options

■ add payload

are all expanded in separate use case diagrams.

Figure A–3 A Use Case Diagram with Drop Shadows Representing Secondary Use
Cases

AQ Operational Interface

User/
Program

specify
options

add
payload

specify
message
properties

specify
queue name

ENQUEUE
a message
Unified Modeling Language Diagrams A-3

Use Case Diagrams
The diagram fragment in Figure A–4 shows an expanded use case diagram. While

the standard diagram has the actor as the initiator, here the use case itself is the

point of departure for the suboperation. In this example, the expanded view of

■ add payload

represents a constituent operation of

■ ENQUEUE a message

Figure A–4 The Expanded Use Case Diagram

Figure A–5 shows how note boxes are used:

■ Note boxes can present an alternative name. In this case, the action SELECT
propagation schedules in the user schema is represented by the view USER_
QUEUE_SCHEDULES.

■ Note boxes can qualify the use case action. In this case, the list attribute names

action is qualified by the note that you must list at least one attribute if you do

not list all the attributes of the propagation schedule.

Figure A–5 Note Boxes

The dotted arrow in the use case diagram indicates dependency. In Figure A–6

■ free a temporary LOB

AQ Operational Interface

add
payload

ENQUEUE
a message

User/
Program

OR

list
all propagation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
A-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Use Case Diagrams
requires that you first

■ create a temporary LOB

The target of the arrow shows the operation that must be performed first.

Figure A–6 Dependencies

Use cases and their suboperations can be linked in complex relationships. In the

example in Figure A–7, you must first

■ REGISTER for notification

to later

■ receive a notification

Figure A–7 Use Case and Suboperation Relationships

In Figure A–8, the branching paths of an OR condition are shown. In invoking the

view, you can choose to list all the attributes or view one or more attributes. The

grayed arrow indicates that you can stipulate which attributes you want to view.

User/
Program

create
a temporary

LOB

free
a temporary

LOB

REGISTER
for

notification

receive
notification
Unified Modeling Language Diagrams A-5

Use Case Diagrams
Figure A–8 The Branching Paths of an OR Condition

In Figure A–9, the black dashed line and arrow indicate that the targeted operation

is required. The gray dashed line and arrow indicate that the targeted operation is

optional. In this example, executing

■ write append

on a LOB requires that you first

■ SELECT a LOB

You may optionally choose to

■ OPEN a LOB or get chunk size

The diagram shows that if you open a LOB, you must also close it.

User/
Program

OR

list
all propagation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
A-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

State Diagrams
Figure A–9 Required and Optional Operations

State Diagrams
A state diagram presents the attributes of a view. Attributes of a view have two

states—visible or invisible. In this example, a state diagram (the Queue, Name,

Address, and Protocol boxes in the gray area at the bottom of the figure) is added

below a use case diagram to show all the attributes of the view.

Figure A–10 shows that the view is for querying queue subscribers. You can

stipulate one attribute, some combination of the four attributes, or all four

attributes.

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

write
append
Unified Modeling Language Diagrams A-7

State Diagrams
Figure A–10 Use Case and State Diagram to Show Attributes of a View

The class diagram in Figure A–11 shows:

■ Whether classes, interfaces, and exceptions are entailed in the interrelationship

by means of the <<>>, stereotype, such as <<interface>>

■ The name of the package in which the class is found, such as oracle.jms

■ The name of the class, such as AQjmsConnection

AQ Administrative Interface

User/
Program

OR

list
all queue
subscriber
attributes

List at
least one
attribute

User view
AQ$<queue_table_name>_S

SELECT
queue

subscribers

list
attribute
names

NAMEQUEUE ADDRESS PROTOCOL
A-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

State Diagrams
Figure A–11 A Class Diagram Representing Classes, Interfaces, and Exceptions

<< interface >>

<< interface >>

javax.jms
QueueConnection

<< class >>

oracle.jms
AQjmsConnection

<< interface >>

javax.jms
TopicConnection

javax.jms
Connection
Unified Modeling Language Diagrams A-9

State Diagrams
A-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

The Multimedia Sch
B

The Multimedia Schema

This appendix describes the following topics:

■ A Typical Multimedia Application

■ The Multimedia Schema

■ Table Multimedia_Tab

■ Script for Creating the Multimedia Schema

Note: The Multimedia Sample Schema has been deprecated and is

not supplied with Oracle9i. This appendix is included to provide

context for examples in this guide that have not yet been migrated

to the new Product Media (PM) Sample Schema which replaces the

Multimedia schema for most LOB examples.

For more information about sample schemas, see "Examples in This

Guide" on page 1-9.
ema B-1

A Typical Multimedia Application
A Typical Multimedia Application
Oracle9i supports LOBs, large objects which can hold up to 4 gigabytes of binary or

character data. What does this mean to you, the application developer?

Consider the following multimedia scenario.

Multimedia data is used in an increasing variety of media channels — film,

television, Web pages, and CD-ROM being the most prevalent. The media

experiences having to do with these different channels vary in many respects

(interactivity, physical environment, the structure of information, to name a few).

Despite these differences, there is often considerable similarity in the multimedia

authoring process, especially with regard to assembling content.

For instance, a television station that creates complex documentaries, an advertising

agency that produces advertisements for television, and a software production

house that specializes in interactive games for the web could all make good use of a

database management system for collecting and organizing the multimedia data.

Presumably, they each have sophisticated editing software for composing these

elements into their specific products, but the complexity of such projects creates a

need for a pre-composition application for organizing the multimedia elements into

appropriate groups.

Taking our lead from movie-making, our hypothetical application for collecting

content uses the clip as its basic unit of organization. Any clip is able to include one

or more of the following media types:

■ Character text, such as, storyboard, transcript, subtitles

■ Images, such as, photographs, video frames

■ Line drawings, such as, maps

■ Audio, such as, sound-effects, music, interviews

Since this is a pre-editing application, the precise relationship of elements within a

clip (such as the synchronization of voice-over audio with a photograph) and

between clips (such as the sequence of clips) is not defined.

The application should allow multiple editors working simultaneously to store,

retrieve and manipulate the different kinds of multimedia data. We assume that

some material is gathered from in-house databases. At the same time, it should also

be possible to purchase and download data from professional services.
B-2 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

The Multimedia Schema
This Scenario is Only An Example
Our mission in this appendix is not to create this real-life application, but to

describe some typical scenarios you may need to know about working with LOBs.

Consequently, we only implement the application sufficiently to demonstrate the

technology. For example, we deal with only a limited number of multimedia types.

We make no attempt to create the client-side applications for manipulating LOBs.

Also we do not deal with deployment issues such as the fact that you should
implement disk striping of LOB files, if possible, for best performance.

The Multimedia Schema
Figure B–1 illustrates multimedia schema used for the examples in this manual.

The Multimedia schema is comprised of the following components:

■ Table Multimedia_tab

■ Table VoiceOver_tab

■ Nested Table INSEG_NTAB

■ Column Object MAP_OBJ
The Multimedia Schema B-3

The Multimedia Schema
Figure B–1 The Multimedia Schema

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table VOICEOVER_TAB (of VOICED_TYP)

SCRIPT ACTOR RECORDING

Text
CLOB

ORIGINATOR

Text
VARCHAR2(30)

Text
VARCHAR2(30)

Audio
BFILE

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

Date
DATE

INTERVIEWER

Text
VARCHAR2(30)

TRANSCRIPT

Text
CLOB

INTERVIEWEE

Text
VARCHAR2(30)

RECORDING

Audio
BFILE

SEGMENT

Number
NUMBER

Column Object MAP_OBJ (of MAP_TYP)

NW

Number
NUMBER

NE

Number
NUMBER

SW

Number
NUMBER

SE

Number
NUMBER

DRAWING

Map
BLOB

AERIAL

Photo
BFILE

REGION

Text
VARCHAR2(30)

TAKE

Number
NUMBER

PKPK

PK

Reference to a row
object of a table of
the defined type

Nested Table of the
defined type

Column Object of
the defined type
B-4 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Table Multimedia_Tab
Table Multimedia_Tab
Figure B–1, "The Multimedia Schema", shows table Multimedia_tab’s structure.

Table Multimedia_tab columns are described in the following:

■ CLIP_ID: Every row (clip object) must have a number which identifies the clip.

This number is generated by the Oracle number SEQUENCER as a matter of

convenience, and has nothing to do with the eventual ordering of the clip.

■ STORY: The application design requires that every clip must also have text, that

is a storyboard, that describes the clip. Since we do not wish to limit the length

of this text, or restrict its format, we use a CLOB datatype.

■ FLSUB: Subtitles have many uses — for closed-captioning, as titles, as overlays

that draw attention, and so on. A full-fledged application would have columns

for each of these kinds of data but we are considering only the specialized case

of a foreign language subtitle, for which we use the NCLOB datatype.

■ PHOTO: Photographs are clearly a staple of multimedia products. We assume

there is a library of photographs stored in the PhotoLib_tab archive. Since a

large database of this kind would be stored on tertiary storage that was

periodically updated, the column for photographs makes use of the BFILE

datatype.

■ FRAME: It is often necessary to extract elements from dynamic media sources for

further processing For instance, VRML game-builders and animation

cartoonists are often interested in individual cells. Our application takes up the

need to subject film/video to frame-by-frame analysis such as was performed

on the film of the Kennedy assassination. While it is assumed that the source is

on persistent storage, our application allows for an individual frame to be

stored as a BLOB.

■ SOUND: A BLOB column for sound-effects.

■ VOICED_REF: This column allows for a reference to a specific row in a table

which must be of the type Voiced_typ . In our application, this is a reference to

a row in the table VoiceOver_tab whose purpose is to store audio recordings

for use as voice-over commentaries. For instance, these might be readings by

actors of words spoken or written by people for whom no audio recording can

be made, perhaps because they are no longer living, or because they spoke or

wrote in a foreign language.

This structure offers the application builder a number of different strategies

from those discussed thus far. Instead of loading material into the row from an

archival source, an application can simply reference the data. This means that
The Multimedia Schema B-5

Table Multimedia_Tab
the same data can be referenced from other tables within the application, or by

other applications. The single stipulation is that the reference can only be to tables
of the same type. Put another way: the reference, Voiced_ref , can refer to row

objects in any table which conforms to the type, Voiced_typ .

Note that Voiced_typ combines the use of two LOB datatypes:

■ CLOB to store the script which the actor reads

■ BFILE for the audio recordings.

■ INSEG_NTAB: While it is not possible to store a Varray of LOBs, application

builders can store a variable number of multimedia elements in a single row

using nested tables. In our application, nested table InSeg_ntab of predefined

type InSeg_typ can be used to store zero, one, or many interview segments in

a given clip. So, for instance, a hypothetical user could use this facility to collect

together one or more interview segments having to do with the same theme

that occurred at different times.

In this case, nested table, interviewsegments_ntab , makes use of the

following two LOB datatypes:

■ BFILE to store the audio recording of the interview

■ CLOB for transcript

Since such segments might be of great length, it is important to keep in mind

that LOBs cannot be more than 4 gigabytes.

■ MUSIC: The ability to handle music must be one of the basic requirements of

any multimedia database management system. In this case, the BFILE datatype

is used to store the audio as an operating system file.

■ MAP_OBJ: Multimedia applications must be able to handle many different kinds

of line art — cartoons, diagrams, and fine art, to name a few. In our application,

provision is made for a clip to contain a map as a column object, MAP_OBJ, of

the object type MAP_TYP. In this case, the object is contained by value, being

embedded in the row.

As defined in our application, MAP_TYP has only one LOB in its structure — a

BLOB for the drawing itself. However, as in the case of the types underlying

REFs and nested tables, there is no restriction on the number of LOBs that an

object type may contain.
B-6 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Script for Creating the Multimedia Schema
Script for Creating the Multimedia Schema
Here is the script used to create the Multimedia schema:

CONNECT system/manager;
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO_DIR;
DROP DIRECTORY FRAME_DIR;
DROP DIRECTORY PHOTO_DIR;
DROP TYPE InSeg_typ force;
DROP TYPE InSeg_tab;
DROP TABLE InSeg_table;
CREATE USER samp identified by samp;
GRANT CONNECT, RESOURCE to samp;
CREATE DIRECTORY AUDIO_DIR AS ’/tmp/’;
CREATE DIRECTORY FRAME_DIR AS ’/tmp/’;
CREATE DIRECTORY PHOTO_DIR AS ’/tmp/’;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT (
 Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
);

CREATE TABLE VoiceoverLib_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

CREATE TYPE InSeg_typ AS OBJECT (
 Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB
);
The Multimedia Schema B-7

Script for Creating the Multimedia Schema
CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;
CREATE TYPE Map_typ AS OBJECT (
 Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

Since one can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LOB package.
CREATE TABLE Multimedia_tab (
 Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ
) NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

This script is also located in $HOME Oracle9i "demo" directory in the following

files:

■ lobdemo.sql

■ adloci.sql.

See Also: Chapter 10, "Internal Persistent LOBs", "Creating a

Table Containing One or More LOB Columns" on page 10-5.
B-8 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Script for Creating the Multimedia Schema
See Also: For further LOB examples:

■ Oracle interMedia User’s Guide and Reference

■ Oracle interMedia Java Classes User’s Guide and Reference

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference
The Multimedia Schema B-9

Script for Creating the Multimedia Schema
B-10 Oracle9i Application Developer’s Guide - Large Objects (LOBs)

Index

A
accessing external LOBs, 12-4

ALTER TABLE

migrating from LONG to LOB, 8-3

amount, 12-109

amount parameter

reading and loading LOB data, the size of

(FAQ), 6-3

used with BFILEs, 12-47

ANSI standard for LOBs, 11-8

AppendChunk(), see OraOLEDB, 13-3

appending

one LOB to another

internal persistent LOBs, 10-193

one temporary LOB to another, 11-150

writing to the end of a LOB

internal persistent LOBs, 10-203

assigning

one collection to another collection in temporary

LOBs, 11-9

one temporary LOB to another, 11-8

B
BFILE class, See JDBC

BFILE-buffering, See JDBC

BFILENAME(), 12-22, 12-194

advantages of using, 12-6

BFILEs

accessing, 12-4

converting to CLOB or NCLOB, 12-47

creating an object in object cache, 5-17

datatype, 2-2, 2-3

DBMS_LOB read-only procedures, 3-10

DBMS_LOB, offset and amount parameters in

bytes, 3-7

equal locators, check for, 12-177

hard links and symbolic links not allowed, 4-1

initializing using BFILENAME(), 2-6

locators, 2-5

maximum number of open, 4-2, 12-154

multi-threaded server (MTS), 4-18, 12-10

OCI functions to read/examine values, 3-15,

3-27

OCI read-only functions, 3-15, 3-27

opening and closing using JDBC, 3-56

operating system files, and, 4-1

Oracle Objects for OLE (OO4O)

opening/closing methods, 3-42

properties, 3-44

read-only methods, 3-43

Pro*C/C++ precompiler statements, 3-31

Pro*COBOL precompiler embedded SQL

statements, 3-35

reading with DBMS_LOB, 3-9

reference semantics, 2-3

rules for using, 4-1

security, 12-7

storage devices, 2-2

streaming APIs, 3-63

using JDBC to read/examine, 3-50

using Pro*C/C++ precompiler to open and

close, 3-32

binding data to internal LOBs, restriction

removal, xlix

binding LONG columns or LOB columns, but not

both, xlix
Index-1

binds

HEX to RAW or RAW to HEX conversion, 7-15

updating more than 4,000 bytes

internal persistent LOBs, 10-272

See also INSERT statements and UPDATE

statements

BLOB-buffering, See JDBC

BLOBs

class, See JDBC

datatype, 2-2

DBMS_LOB, offset and amount parameters in

bytes, 3-7

modify using DBMS_LOB, 3-8

using JDBC to modify, 3-48

using JDBC to read/examine BLOB values, 3-48

using oracle.sql.BLOB methods to modify, 3-48

buffering

disable

internal persistent LOBs, 10-263

enable

internal persistent LOBs, 10-251

flush

internal persistent LOBs, 10-257

LOB buffering subsystem, 5-21

C
C++, See Pro*C/C++ precompiler

C, See OCI

CACHE / NOCACHE, 7-8

caches

object cache, 5-17

callback, 10-72, 10-84, 10-110, 10-204, 11-169

catalog views

v$temporary_lobs, 11-10

CHAR buffer, defining on CLOB, 7-40

CHAR to CLOB

SQL and PL/SQL conversion, 7-35

character data

varying width, 2-4

character set form

getting

internal persistent LOBs, 10-189

character set ID

getting the

internal persistent LOBs, 10-185

temporary LOB of, getting the, 11-144

See CSID parameter

charactersets

multibyte, LONGs and LOBs, 8-5

checking in a LOB

internal persistent LOBs, 10-83

checking out a LOB

internal persistent LOBs, 10-71

CHUNK, 7-10

chunks

when to use, 6-26

chunksize, 10-213

multiple of, to improve performance, 10-111

classes

putChars(), 6-10

CLOB class, See JDBC

CLOB-buffering, See JDBC

CLOBs

columns

varying- width character data, 2-4

datatype, 2-2

varying-width columns, 2-4

DBMS_LOB, offset and amount parameters in

characters, 3-7

modify using DBMS_LOB, 3-8

opening and closing using JDBC, 3-54

reading/examining with JDBC, 3-49

using JDBC to modify, 3-49

Clone method, See Oracle Objects for OLE (OO4O)

closing

all open BFILEs, 12-222

BFILEs with CLOSE, 12-214

BFILEs with FILECLOSE, 12-208

clustered tables, 8-10

COBOL, See Pro*COBOL precompiler

comparing

all or part of two LOBs

internal persistent LOBs, 10-128

all or part of two temporary LOBs, 11-92

all or parts of two BFILEs, 12-127

compatibility, 1-8

conventional path load, 9-3

conversion

explicit functions for PL/SQL, 7-47
Index-2

conversions

character set, 12-47

from binary data to character set, 12-47

implicit, between CLOB and VARCHAR2, 7-45

See also binds HEX to RAW

conversions, implicit between CLOBs and

CHAR, 7-36

converting

between different LOB types, 6-24

to CLOB, 7-47

converting to LOB data types, 6-2

copy semantics, 2-3

internal LOBs, 10-21

copying

all or part of a LOB to another LOB

internal persistent LOBs, 10-153

all or part of one temporary LOB to

another, 11-115

for BFILEs there is no copy function, 12-196

LOB locator

internal persistent LOBs, 10-164

LOB locator for BFILE, 12-164

LONG to LOB (FAQ), 6-2

temporary LOB locator, 11-125

TO_LOB limitations, 10-66

crashing

Is LOB data lost after (FAQ), 6-5

creating a temporary LOB, 11-13

creating tables

containing an object type with LOB attribute

internal Persistent LOBs, 10-10

containing one or more LOB columns

internal persistent LOBs, 10-5

containing one ore more BFILE columns, 12-13

nested, containing LOB

internal persistent LOBs, 10-13

of an object type with BFILE attribute, 12-17

with a nested table containing a BFILE, 12-20

creating VARRAYs

containing references to LOBs, 5-28

CSID parameter

setting OCILobRead and OCILobWrite to OCI_

UCS2ID, 3-11

D
datatypes

converting to LOBs FAQ, 6-2

DBMS_LOB

ERASE, 6-10

substr compared with read, 6-26

updating LOB with bind variable, 5-10

WRITE()

passing hexadecimal string to, 10-214

DBMS_LOB functions on a NULL LOB

restriction, 2-9

DBMS_LOB package

available LOB procedures/functions, 3-3, 3-4

client procedures cannot call DBMS_LOB, 3-7

CREATETEMPORARY(), 11-15

.createTemporary() as JDBC workaround, 11-11

for temporary LOBs, 3-9

functions/procedures to modify BLOB, CLOB,

and NCLOB, 3-8

functions/procedures to read/examine internal

and external LOBs, 3-9

isTemporary() as JDBC workaround, 11-11

LOADFROMFILE(), 12-47

multi-threaded server (MTS), 4-18, 12-10

offset and amount parameter rules, 3-7

open and close, JDBC replacements for, 3-52

opening/closing internal and external

LOBs, 3-10

provide LOB locator before invoking, 3-6

read-only functions/procedures for

BFILEs, 3-10

to work with LOBs, using, 3-6

WRITE()

guidelines, 10-214

guidelines for temporary LOBs, 11-169

passing hexadecimal string to, 11-169

DBMS_LOB()

READ, 10-110

DBMS_LOB.createtemporary(), 11-5

DBMS_LOB.isTemporary(), previous workaround

for JDBC, 11-29

DBMS_LOB.LOADFROMFILE, 2-4

DBMS_LOB.READ, 12-109

DELETE
Index-3

BLOB columns versus BFILE columns, and LOB

indexing, 6-16

deleting

row containing LOB

internal persistent LOBs, 10-286

directories

catalog views, 12-9

guidelines for usage, 12-9

ownership and privileges, 12-7

DIRECTORY name specification, 12-7

DIRECTORY object, 12-4

catalog views, 12-9

getting the alias and filename, 12-184

guidelines for usage, 12-9

names on Windows NT, 12-7

naming convention, 12-7

OS file must exist before locator use, and, 12-23

READ permission on object not individual

files, 12-8

rules for using, 4-1

symbolic links, 4-1

symbolic links, and, 4-1

directory objects, 12-4

directory_alias parameter, 12-24

direct-path load, 9-3

disable buffering, See LOB buffering

DISABLE STORAGE IN ROW, 6-21

when to use, 6-19

disk striping of LOB files, B-3

displaying

LOB data for internal persistent LOBs, 10-98

temporary LOB data, 11-64

E
embedded SQL statements, See Pro*C/C++

precompiler and Pro*COBOL precompiler

empty LOBs

creating using JDBC, 3-68

JDBC, 3-68

EMPTY_BLOB()

setdata using JPublisher (FAQ), 6-8

EMPTY_BLOB()/EMPTY_CLOB()

when to use (FAQ), 6-6

EMPTY_CLOB()

LOB locator storage, 6-20

EMPTY_CLOB()/BLOB()

to initialize a BFILE, 2-6

to initialize internal LOB

equal

one LOB locator to another

internal persistent LOBs, 10-173

one temporary LOB locator, to another, 11-135

equal locators

checking if one BFILE LOB locator equals

another, 12-177

erasing

part of LOB

internal persistent LOBs, 10-241

part of temporary LOBs, 11-188

errors

ORA-03127, 6-11

examples

repercussions of mixing SQL DML with DBMS_

LOB, 5-6

updated LOB locators, 5-8

updating a LOB with a PL/SQL variable, 5-10

existence

check for BFILE, 12-145

extensible indexes, 7-32

external callout, 5-23

external LOBs (BFILEs)

See BFILEs

external LOBs (BFILEs), See BFILEs

F
FILECLOSEALL(), 12-10, 12-64, 12-79

flushing

LOB buffer, 5-22

flushing buffer, 5-18

temporary LOB, 11-204

FOR UPDATE clause

LOB locator, 5-2

LOBs, 2-7

freeing

temporary LOBs, 11-31

FREETEMPORARY(), 11-31

freeTemporary() as JDBC workaround, 11-11

functional indexes, 7-32
Index-4

function-based indexing, 1-7

G
GetChunk(), see OraOLEDB, 13-3

H
hard links, rules with BFILEs, 4-1

hexadecimal string

passing to DBMS_LOB.WRITE(), 10-214, 11-169

I
implicit conversions, 7-36

Improved LOB Usability, Accessing LOBs Using

SQL “Character” Functions, 7-33

index organized tables, 10-66

indexes

function-based, 1-7

rebuilding after LONG-to-LOB migration, 8-9

indexes, restrictions, 8-11

index-organized tables

inline storage for LOBs and (FAQ), 6-5

initialized

checking if BFILE LOB locator is, 12-172

initializing

BFILE column or locator variable using

BFILENAME(), 12-24

BLOB attribute using EMPTY_BLOB() FAQ, 6-7

BLOB attribute with EMPTY_BLOB() in Java

(FAQ), 6-7

during CREATE TABLE or INSERT, 10-17

external LOBs, 2-6

internal LOBs, See LOBs

internal LOBs

using EMPTY_CLOB(), EMPTY_BLOB()

inline

when to use, 6-27

INSERT statements

binds of greater than 4000 bytes, 7-14

inserting

a row by initializing a LOB locator

internal persistent LOBs, 10-23

a row by initializing BFILE locator, 12-33

a row by selecting a LOB from another table

internal persistent LOBs, 10-20

a row containing a BFILE by selecting BFILE

from another table, 12-31

a row using BFILENAME(), 12-22

any length data (FAQ), 6-2

binds of more than 4,000 bytes, 10-17, 10-21,

10-23

LOB value using EMPTY_CLOB()/EMPTY_

BLOB()

internal persistent LOBs, 10-16

row with empty LOB using JDBS (FAQ), 6-7

interfaces for LOBs, see programmatic environments

J
Java, See JDBC

JDBC

available LOB methods/properties, 3-4

BFILE class

BFILE streaming APIs, 3-63

BFILE-buffering, 3-51

BLOB and CLOB classes

calling DBMS_LOB package, 3-46

changing internal LOBs with Java using objects

oracle.sql.BLOB/CLOB, 3-45

checking if BLOB is temporary, 11-28

checking if CLOB is temporary, 11-29

CLOB streaming APIs, 3-62

creating a temporary BLOB, 11-20

creating a temporary CLOB, 11-21

driver to load LOBs, improving

performance, 6-13

empty LOBs, 3-68

encapsulating locators

freeing a temporary BLOB, 11-36

freeing a temporary CLOB, 11-37

inserting a row with empty LOB locator into

table, 6-7

methods/properties for BLOB-buffering, 3-49

methods/properties for CLOB-buffering, 3-50

modifying BLOB values, 3-48

modifying CLOB values, 3-49

newStreamLob.java, 3-64

now binds and defines VARCHAR2
Index-5

variables, 7-50

opening and closing BFILEs, 3-56

opening and closing CLOBs, 3-54

opening and closing LOBs, 3-52

OracleBlob, OracleClob do not work in

8.1.x, 3-51

reading internal LOBs and external LOBs

(BFILEs) with Java, 3-45

reading/examining BLOB values, 3-48

reading/examining CLOB values, 3-49

reading/examining external LOB (BFILE)

values, 3-50

referencing LOBs, 3-46

streaming APIs for LOBs, 3-61

syntax references, 3-46

temporary LOB workarounds not needed, 11-11

trimming LOBs, 3-60

using OracleResultSet to reference LOBs, 3-46

using OUT parameter from

OraclePreparedStatement to reference

LOBs, 3-46

writing to empty LOBs, 3-69

JDBC and Empty LOBs, 3-68

JPublisher

building an empty LOB in, 6-8

L
LBS, See Lob Buffering Subsystem (LBS)

length

an internal persistent LOB, 10-144

getting BFILE, 12-154

temporary LOB, 11-106

loading

1Mb into CLOB column, FAQ, 6-13

a LOB with BFILE data, 12-46

external LOB (BFILE) data into table, 12-42

LOB with data from a BFILE, 10-32

temporary BLOB with binary data from

BFILE, 11-48

temporary CLOB or NCLOB with character data

from BFILE, 11-52

temporary LOB with data from BFILE, 11-39

loading XML documents, 9-2

LOB, 5-12

LOB buffering

BLOB-buffering with JDBC, 3-49

buffer-enabled locators, 5-24

disable for temporary LOBs, 11-211

example, 5-21

flushing for temporary LOBs, 11-204

flushing the buffer, 5-22

flushing the updated LOB through LBS, 5-23

guidelines, 5-19

OCI example, 5-25

OCI functions, 3-16

OCILobFlushBuffer(), 5-23

Oracle Objects for OLE (OO4O)

methods for internal LOBs, 3-43

physical structure of buffer, 5-21

Pro*C/C++ precompiler statements, 3-32

Pro*COBOL precompiler statements, 3-36

temporary LOBs

CACHE, NOCACHE, CACHE READS, 11-6

usage notes, 5-21

LOB Buffering SubSystem (LBS)

LOB Buffering Subsystem (LBS)

advantages, 5-18

buffer-enabled locators, 5-23

buffering example using OCI, 5-25

example, 5-21

flushing

updated LOB, 5-23

flushing the buffer, 5-22

guidelines, 5-18

saving the state of locator to avoid reselect, 5-25

usage, 5-21

LOB locator

copy semantics, 2-3

external LOBs (BFILEs), 2-3

internal LOBs, 2-3

reference semantics, 2-3

LOB-Based Web site, building, 14-13

LOBFILE, syntax, 9-2

LOBs, 5-17

accessing through a locator, 2-7

attributes and object cache, 5-17

buffering

caveats, 5-18

pages can be aged out, 5-23
Index-6

buffering subsystem, 5-18

buffering usage notes, 5-21

CACHE READS setting, 4-19

compatibility, 1-8

datatypes versus LONG, 1-4

external (BFILEs), 2-2

flushing, 5-18

in partitioned tables, 7-26

in the object cache, 5-17

index metadata through system views, 6-17

inline storage, 2-5

interfaces, See programmatic environments

interMEDIA, 1-4

internal

creating an object in object cache, 5-17

internal LOBs

CACHE / NOCACHE, 7-8

CHUNK, 7-10

copy semantics, 2-3

ENABLE | DISABLE STORAGE IN

ROW, 7-11

initializing, 12-108

locators, 2-5

locking before updating, 10-154, 10-194,

10-204, 10-213, 10-230, 10-242

LOGGING / NOLOGGING, 7-9

Oracle Objects for OLE (OO4O), modifying

methods, 3-41

PCTVERSION, 7-7

setting to empty, 2-9

tablespace and LOB index, 7-7

tablespace and storage characteristics, 7-5

transactions, 2-2

locators, 2-5, 5-2

cannot span transactions, 7-14

migration issues, 1-8

multimedia uses, B-2

object cache, 5-17

performing SELECT on, 2-7

piecewise operations, 5-6

read consistent locators, 5-2

reason for using, 1-2

setting to contain a locator, 2-6

setting to NULL, 2-9

tables

adding partitions, 7-31

creating, 7-28

creating indexes, 7-30

exchanging partitions, 7-30

merging partitions, 7-31

moving partitions, 7-31

partitioning, 7-28

splitting partitions, 7-31

unstructured data, 1-2

updated LOB locators, 5-5

value, 2-5

varying-width character data, 7-3

locators, 2-5

accessing a LOB through, 2-7

BFILEs, 12-11

guidelines, 12-11

two rows can refer to the same file, 12-11

buffer-enabled, 5-24

cannot span transactions, 7-14

copying temporary LOB, 11-125

external LOBs (BFILEs), 2-5

initializing LOB or BFILE to contain, 2-6

LOB, cannot span transactions, 5-12

multiple, 5-2

OCI functions, 3-16, 3-27

Pro*COBOL precompiler statements, 3-35

providing in Pro*COBOL precompiler, 3-33

read consistent, 5-2, 5-10, 5-12, 5-23, 5-25, 5-26,

5-28

read consistent locators, 5-2

read consistent, updating, 5-2

reading and writing to a LOB using, 5-15

saving the state to avoid reselect, 5-25

see if LOB locator is initialized

internal persistent LOBs, 10-180

selecting, 2-7

selecting within a transaction, 5-16

selecting without current transaction, 5-15

setting column or attribute to contain, 2-6

temporary, SELECT permanent LOB

INTO, 11-7

transaction boundaries, 5-14

updated, 5-5, 5-10, 5-22

updating, 5-12

LOGGING
Index-7

migrating LONG-to-LOBs, 8-10

LOGGING / NOLOGGING, 7-9

LONG API

See LONG-to-LOB, 8-2

LONG versus LOB datatypes, 1-4

LONG-to-LOB Migration, 8-2

LONG-to-LOB migration

ALTER TABLE, 8-6

changes needed, 8-22

clustered tables, 8-10

examples, 8-24

index organized tables, 10-66

LOGGING, 8-10

multibyte charactersets, 8-5

NULLs, 8-11

OCI, 8-3, 8-12

parameter passing, 8-6

performance, 8-42

PL/SQL, 8-5

rebuilding indexes, 8-9

replication, 8-10

space requirements, 8-9

triggers, 8-10

utldtree.sql use for PL/SQL, 8-23

lONG-to-LOB migration

PL/SQL, 8-16

M
migrating

LONG to LOBs, 6-23

LONG to LOBs, see LONG-to-LOB, 8-2

LONG-to-LOB using ALTER TABLE, 8-6

LONG-to-LOBs, constraints maintained, 8-8

LONG-to-LOBs, indexing, 8-9

migration, 1-8

multi-threaded server (MTS)

BFILEs, 4-18, 12-10

N
national language support

NCLOBs, 2-2

NCLOB parameters allowed as attributes, xlvi

NCLOBs

datatype, 2-2

DBMS_LOB, offset and amount parameters in

characters, 3-7

modify using DBMS_LOB, 3-8

NewStreamLob.java, 3-64

NOCOPY restrictions, 11-10

NOCOPY, using to pass temporary LOB parameters

by reference, 9-7

non-NULL

before writing to LOB column make it

internal persistent LOBs, 10-273

IS, 7-43

VARCHAR2

and CLOBs, IS, 7-43

NULL, 7-43

null

versus zero length, in SQL92 standard, 7-43

NULL in, 7-43

NULL LOB, restrictions calling OCI and DBMS_LOB

functions, 2-9

O
object cache, 5-17

creating an object in, 5-17

LOBs, 5-17

OCCI

compared to other interfaces, 3-3

LOB functionality, 3-22

OCCIBfile, 3-27

OCCIBlob

copy, amount parameter must be less than length

of BFILE, 3-25

read, 3-24

write, 3-25

OCCIBlob class, 3-23

OCCIClob

copy, amount parameter must be less than length

of BFILE, 3-25

read, 3-24

read, amount parameter, 3-25

write, 3-25

OCCIClob class, 3-23

OCI

available LOB functions, 3-3
Index-8

functions for BFILEs, 3-15, 3-27

functions for temporary LOBs, 3-15, 3-27

functions to modify internal LOB values, 3-14,

3-26

functions to open/close internal and external

LOBs, 3-16, 3-28

functions to read or examine internal and

external LOB values, 3-15, 3-27

LOB buffering example, 5-25

LOB locator functions, 3-16, 3-27

Lob-buffering functions, 3-16

locators, 2-8

NCLOB parameters, 3-13, 3-25

now binds and defines VARCHAR2 variables

with LOBs, 7-50

OCILobFileGetLength

CLOB and NCLOB input and output

length, 3-12

OCILobRead

varying-width CLOB and NCLOB input and

amount amounts, 3-12

OCILobWrite

varying-width CLOB and NCLOB input and

amount amounts, 3-12, 3-25

offset and amount parameter rules

fixed-width character sets, 3-11, 3-24

seeIfLOBOpen and how to use main(), 3-17

setting OCILobRead, OCILobWrite to OCI_

UCS2ID, 3-11

temporary LOBs, 11-9

temporary lobs can be grouped into logical

buckets, 11-6

using in LONG-to-LOB migration, 8-12

using to work LOBs, 3-10

OCI functions on a NULL LOB restriction, 2-9

OCIBindByName(), 7-14

OCIBindByPos(), 7-14

OCIDuration(), 11-6

OCIDurationEnd(), 11-6, 11-9, 11-31

OCILobAssign(), 5-20, 11-8

OCILobFileSetName(), 12-6, 12-11

OCILobFlushBuffer(), 5-23

OCILOBFreeTemporary(), 11-31

OCILobGetLength(), 12-109

OCILobLoadFromFile(), 12-48

OCILobRead

BFILEs, 12-109

OCILobRead(), 10-99, 10-110, 11-75, 12-109

amount, 6-5

to read large amounts of LOB data, 10-72

OCILobWrite(), 11-169

to write large amounts of LOB data, 10-84

OCILobWriteAppend(), 10-204

OCIObjectFlush(), 12-11

OCIObjectNew(), 12-11

OCISetAttr(), 12-12

OLEDB, 3-70, 13-2

OO4O, See Oracle Objects for OLE (OO4O)

open

checking for open BFILEs, 12-78

checking for open BFILEs with

FILEISOPEN(), 12-80

checking if BFILE is open with ISOPEN, 12-86

checking if temporary LOB is, 11-57

seeing if a LOB is open, 10-53

opening

BFILEs, 12-63

BFILEs using FILEOPEN, 12-65

BFILEs with OPEN, 12-70

opening and closing LOBs

using JDBC, 3-52

ora_21560

DBMS_LOB.write() to temporary LOB, 11-170

ORA-17098

empty LOBs and JDBC, 3-69

OraBfile, See Oracle Objects for OLE (OO4O)

OraBlob, See Oracle Objects for OLE (OO4O)

Oracle Call Interface, See OCI

Oracle Objects for OLE (OO4O)

available LOB methods/properties, 3-4

internal LOB buffering, 3-43

methods and properties to access data stored in

BLOBs, CLOBs, NCLOBs, and BFILEs, 3-39

modifying internal LOBs, 3-41

opening/closing external LOBs (BFILEs), 3-42

OraBfile example

OraBlob example

OraBlob, OraClob, and OraBfile encapsulate

locators, 3-38

properties for operating on external LOBs
Index-9

(BFILEs), 3-44

properties for operating on LOBs, 3-43

reading/examining internal LOB and external

LOB (BFile) values, 3-42

read-only methods for external LOBs

(BFILEs), 3-43

syntax reference, 3-37

using Clone method to retain locator

independent of dynaset, 3-38

Oracle Provider for OLEDB, see OraOLEDB, 13-2

OraclePreparedStatement, See JDBC

OracleResultSet, See JDBC

oracle.sql.BFILE

BFILE-buffering, 3-51

JDBC methods to read/examine BFILEs, 3-50

oracle.sql.BLOB

for modifying BLOB values, 3-48

reading/examining BLOB values, 3-48

See JDBC

oracle.sql.BLOBs

BLOB-buffering

oracle.sql.CLOB

CLOB-buffering

JDBC methods to read/examine CLOB

values, 3-49

modifying CLOB values, 3-49

oracle.sql.CLOBs

See JDBC

ORaOLEDB

AppendChunk(), 13-3

OraOLEDB, 3-70, 13-1, 13-2

GetChunk(), 13-3

P
partitioned index-organized tables

for LOBs, 5-29

restrictions for LOBs, 5-31

pattern

check if it exists in BFILE using instr, 12-137

see if it exists IN LOB using (instr)

internal persistent LOBs, 10-137

temporary LOBs

checking if it exists, 11-99

PCTVERSION, 7-7

performance

assigning multiple locators to same temporary

LOB, impacts, 11-8

chunks versus reading, 6-26

creating temporary LOBs in called routine

(FAQ), 6-27

disk striping of LOBs, B-3

guidelines

frequently asked questions (FAQ), 6-26

reading/writing large data chunks, 9-5

reading/writing large data chunks, temporary

LOBs, 9-8

improving BLOB and CLOB, when loading with

JDBC driver, 6-13

improving loading, when using Veritas, 6-24

inlining and when its a good idea to use

(FAQ), 6-27

LONG-to-LOB migration, 8-42

OCI and temporary LOBs, 11-9

when using SQL semantics with LOBs, 7-43

PIOT, 5-29

PL/SQL, 3-2

and LOBs, semantics changes, 7-45

assigning one LOB to another, 11-127

changing locator-data linkage, 7-48

CLOB variables in, 7-48

CLOB variables in PL/SQL, 7-48

CLOB versus VARCHAR2 comparison, 7-50

CLOBs passed in like VARCHAR2s, 7-47

defining a CLOB Variable on a

VARCHAR, 7-46

freeing temporary LOBs automatically and

manually, 7-49

inserting Word document into a BLOB, 14-5

OCI and Java LOB interactions, 7-50

performance when reassigning locators in

temporary LOBs, 11-10

using in LONG-to-LOB migration, 8-16

polling, 10-72, 10-84, 10-110, 10-204, 11-169

populating your data repository, 14-4

Pro*C/C++ precompiler

available LOB functions, 3-3

LOB buffering, 3-32

locators, 3-31

modifying internal LOB values, 3-30
Index-10

opening and closing internal LOBs and external

LOBs (BFILEs), 3-32

providing an allocated input locator

pointer, 3-29

reading or examining internal and external LOB

values, 3-30

statements for BFILEs, 3-31

statements for temporary LOBs, 3-31

Pro*COBOL precompiler

available LOB functions, 3-3

LOB buffering, 3-36

locators, 3-35

modifying internal LOB values, 3-34

providing an allocated input locator, 3-33

reading or examining internal and external

LOBs, 3-35

statements for BFILEs, 3-35

temporary LOBs, 3-35

programmatic environments

available functions, 3-3

compared, 3-3

programmatic environments for LOBs, 3-2

putChars(), 6-10

R
read consistency

LOBs, 5-2

read consistent locators, 5-2, 5-10, 5-12, 5-23, 5-25,

5-26, 5-28

reading

BFILES

specify 4 Gb-1 regardless of LOB, 12-109

data form a temporary LOB, 11-74

data from a LOB

internal persistent LOBs, 10-109

large amounts of LOB data using

streaming, 10-72

large data chunks, performance guidelines, 9-5

large data chunks, temporary LOBs, 9-8

portion of BFILE data using substr, 12-119

portion of LOB using substr

internal persistent LOBs, 10-120

portion of temporary LOB, 11-85

small amounts of data, enable buffering, 10-252

Recordsets, ADO, 13-3

redo space

during LONG-to-LOB migration, prevent

generation, 9-10

reference semantics, 2-3, 10-21

BFILEs enables multiple BFILE columns for each

record, 12-6

replication, 8-10

restrictions

binding of data, removed for INSERTS and

UPDATES, xlix

binds of more than 4000 bytes, 7-16

cannot call OCI or DBMS_LOB functions on a

NULL LOB, 2-9

clustered tables, 8-10

indexes, 8-11

on LOBs, 4-16

partitioned index-organized tables and

LOBs, 5-31

removed, xlvi

replication, 8-10

triggers, 8-10

retrieving data, 14-10

round-trips to the server, avoiding, 5-18, 5-25

Rowset, OLEDB, 13-2

rules for using directory objects and BFILEs, 4-1

S
searching for data, 14-6

security

BFILEs, 12-7

BFILEs using SQL DDL, 12-8

BFILEs using SQL DML, 12-9

segment

LOB restriction, must be at least 3 blocks, 4-18

SELECT statement

FOR UPDATE, 2-7

read consistency, 5-2

selecting a permanent LOB INTO a temporary LOB

locator, 11-7

semantics

copy-based for internal LOBs, 10-21

pseudo-reference, 11-8

reference based for BFILEs, 12-6
Index-11

value, 11-8

SESSION_MAX_OPEN_FILES parameter, 4-2,

12-64, 12-78

setData

setting to EMPTY_BLOB() using JPublisher, 6-8

setting

internal LOBs to empty, 2-9

LOBs to NULL, 2-9

overrides for NLS_LANG variable

space requirements, LONG-to-LOB migration, 8-9

spatial cartridge and user-defined aggregates, 7-53

SQL

“Character” Functions, improved, 7-33

features where LOBs cannot be used, 7-39

functions and operators, returning CLOB values

from, 7-41

RAW type and BLOBs, 7-43

where LOBs cannot be used, 7-39

SQL DDL

BFILE security, 12-8

SQL DML

BFILE security, 12-9

SQL Loader

loading InLine LOB data, 4-8

performance for internal LOBs, 4-7

SQL semantics on LOBs

non-supported functionality, 7-35

SQL*Loader

conventional path load, 9-3

direct-path load, 9-3

LOBFILE, 9-2

storing

CLOBs Inline, 6-21

greater than 4GB LOBs in database (FAQ), 6-27

LOB storage clause, when to use with

varrays, 6-21

storing images in a BFILE versus BLOB, 6-18

stream

reading

temporary LOBs, 11-75

writing, 11-169

streaming, 10-84, 10-99

do not enable buffering, when using, 10-252

write, 10-213

streaming APIs

NewStreamLob.java, 3-64

using JDBC and BFILEs, 3-63

using JDBC and CLOBs, 3-62

using JDBC and LOBs, 3-61

symbolic links, rules with DIRECTORY objects and

BFILEs, 4-1

system owned object, See DIRECTORY object

T
tablespace

LOB index in same, FAQ, 6-16

specified with ENABLE STORAGE IN ROW,

FAQ, 6-17

temporary, 11-6

temporary LOB data stored in temporary, 11-5

temporary BLOB

checking if temporary using JDBC, 11-28

freeing, using JDBC, 11-36

using JDBC to create, 11-20

temporary CLOB

checking if temporary using JDBC, 11-29

freeing using JDBC, 11-37

using JDBC to create, 11-21

temporary LOBs

character set ID, 11-144

checking if LOB is temporary, 11-23

data stored in temporary tablespace, 11-5

DBMS_LOB available

functions/procedures, 3-9

disable buffering

explicitly freeing before overwriting it with

permanent LOB locator, 11-7

features, 11-7

inline and out-of-line not used, 11-5

JDBC, 11-11

lifetime and duration, 11-5

locators can be IN values, 11-4

locators operate as with permanent LOBs, 11-4

memory handling, 11-6

OCI and logical buckets, 11-6

OCI functions, 3-15, 3-27

performance, 11-8

Pro*C/C++ precompiler embedded SQL

statements, 3-31
Index-12

Pro*COBOL precompiler statements, 3-35

reside on server not client, 11-5

similar functions used to permanent LOBs, 11-5

SQL DML does not operate on, 11-4

transactions and consistent reads not

supported, 11-5

trimming, 11-179

write append to, 11-160

temporary tablespace

for binds of more than 4000 bytes, 7-14

temporaryClob.java

no longer used- deprecated class, 11-38

TO_BLOB(),TO_CHAR(), TO_NCHAR(), 7-47

TO_CLOB()

converting VARCHAR2,NVARCHAR2,NCLOB

to CLOB, 7-47

TO_LOB

limitations, 10-66

TO_NCLOB(), 7-47

transaction boundaries

LOB locators, 5-14

transaction IDs, 5-15

transactions

external LOBs do not participate in, 2-3

IDs of locators, 5-14

internal LOBs participate fully, 2-2

LOB locators cannot span, 5-12

LOBs locators cannot span, 7-14

locators with non-serializable, 5-15

locators with serializable, 5-15

migrating from, 5-23

triggers

LOB columns with, how to tell when updated

(FAQ), 6-3

LONG-to-LOB migration, 8-10

trimming

LOB data

internal persistent LOBs, 10-229

temporary LOB data, 11-179

trimming LOBs using JDBC, 3-60

Trusted Oracle and user-defined aggregates, 7-53

U
UDAGs, see user-defined aggregates

UNICODE

VARCHAR2 and CLOBs support, 7-38

unstructured data, 1-2

UPDATE statements

binds of greater than 4000 bytes, 7-14

updated locators, 5-5, 5-10, 5-22

updating

any length data (FAQ), 6-2

avoid the LOB with different locators, 5-8

BFILEs by selecting a BFILE from another

table, 12-196

BFILEs using BFILENAME(), 12-193

by initializing a LOB locator bind variable

internal persistent LOBs, 10-277

by selecting a LOB from another table

internal persistent LOBs, 10-275

LOB values using one locator, 5-8

LOB values, read consistent locators, 5-2

LOB with PL/SQL bind variable, 5-10

LOBs using SQL and DBMS_LOB, 5-6

locators, 5-12

locking before, 10-154

locking prior to, 10-194, 10-230, 10-242

with EMPTY_CLOB()/EMPTY_BLOB()

internal persistent LOBs, 10-271

UPLOAD_AS_BLOB and DAD, 6-30

use cases

full list of internal persistent LOBs, 10-2

user-defined aggregates (UDAGs) and LOBs, 7-53

utldtree.sql, 8-23

V
value of LOBs, 2-5

VARCHAR2

accessing CLOB data when treated as, 7-46

also RAW, applied to CLOBs and BLOBs, 7-40

defining CLOB variable on, 7-46

OCI and JDBC now bind and define variables to

SQL, PL/SQL with LOBs, 7-50

VARCHAR2s

on CLOBs, SQL functions and operators

for, 7-35

VARRAYs

See creating VARRAYs
Index-13

varrays

including LOB storage clause to create tables

(FAQ), 6-21

varying-width character data, 2-4

Veritas with LOBs, 6-24

views on DIRECTORY object, 12-9

Visual Basic, See Oracle Objects for OLE(OO4O)

W
Web sites, building LOB-based, 14-13

write

streaming, 11-169

write appending

to temporary LOBs, 11-160

writing

data to a LOB

internal persistent LOBs, 10-212

data to a temporary LOB, 11-168

large data chunks, performance guidelines, 9-5

large data chunks, temporary LOBs, 9-8

singly or piecewise, 10-204

small amounts of data, enable buffering, 10-252

X
XML

stored in LOBs, 1-3

XML, loading, 9-2
Index-14

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documents
	Conventions
	Documentation Accessibility

	What’s New with Large Objects (LOBs)?
	LOB Features Introduced with Oracle9i, Release 2 (9.2)
	LOB Features Introduced with Oracle9i, Release 1 (9.0.1)
	LOB Features Introduced with Oracle8i Release 2 (8.1.6)
	LOB Features Introduced with Oracle8i, Release 8.1.5

	1 Introduction to LOBs
	Why Use LOBs?
	Unstructured Data
	Unstructured Data Cannot be Decomposed Into Standard Components
	Unstructured Data is Large
	Unstructured Data in System Files Need Accessing from the Database

	LOB Datatype Helps Support Internet Applications
	Two Type of LOBs Supported

	Using XML, LOBs, and Oracle Text (interMedia Text)
	Use CLOBs or BFILEs to Store Unstructured Data
	Oracle Text (interMedia Text) Indexing Supports Searching Content in XML Elements
	LOBS Enable Oracle Text (interMEDIA Text)

	Why Not Use LONGs?
	LOB Columns

	LONG-to-LOB Migration API
	SQL Semantics Support for LOBs
	Partitioned Index-Organized Tables and LOBs
	Extensible Indexing on LOBs
	Extensible Optimizer

	Function-Based Indexing on LOBs
	XML Documents Can be Stored in XMLType Columns as CLOBs
	Compatibility and Migration Issues
	Examples in This Guide

	2 Basic LOB Components
	The LOB Datatype
	Internal LOBs
	Internal LOB Datatypes

	External LOBs (BFILEs)
	External LOB Datatypes

	Internal LOBs Use Copy Semantics, External LOBs Use Reference Semantics
	Copy Semantics
	Reference Semantics

	Varying-Width Character Data
	Using DBMS_LOB.LOADFROMFILE and Functions that Access OCI
	Converting Between Client Character Set and UCS-2

	LOB Value and Locators
	Inline storage of the LOB value
	LOB Locators
	Setting the LOB Column/Attribute to Contain a Locator
	Internal LOBs
	External LOBs

	Accessing a LOB Through a Locator
	SELECTing a LOB

	Creating Tables that Contain LOBs
	Initializing Internal LOBs to NULL or Empty
	Setting an Internal LOB to NULL
	Setting an Internal LOB to Empty

	Initializing LOBs Example Using Table Multimedia_tab
	Initializing Internal LOB Columns to a Value
	Initializing External LOBs to NULL or a File Name

	3 LOB Support in Different Programmatic Environments
	Eight Programmatic Environments Operate on LOBs
	Comparing the LOB Interfaces
	Using PL/SQL (DBMS_LOB Package) To Work With LOBs
	Provide a LOB Locator Before Invoking the DBMS_LOB Routine
	PL/SQL - LOB Guidelines
	Client PL/SQL Procedures Cannot Call DBMS_LOB Routines
	Offset and Amount Parameters: Fixed-Width Versus Varying-Width, Character or Byte For DBMS_LOB Pa...
	DBMS_LOB.LOADFROMFILE: Amount Parameter Value
	DBMS_LOB.READ: Amount Parameter Can be Larger than Data Size

	PL/SQL Functions and Procedures that Operate on LOBs
	PL/SQL Functions/Procedures To Modify BLOB, CLOB, and NCLOB Values
	PL/SQL Functions/Procedures To Read or Examine Internal and External LOB Values
	PL/SQL Functions/Procedures To Operate on Temporary LOBs
	PL/SQL Read-Only Functions/Procedures for BFILEs
	PL/SQL Functions/Procedures To Open and Close Internal and External LOBs

	Using C (OCI) To Work With LOBs
	Set CSID Parameter To OCI_UCS2ID to Read/Write in UCS2
	Offset and Amount Parameters: Fixed-Width Versus Varying-Width, Character or Byte
	Fixed Width Character Set Rules
	Varying-Width Character Set Rules
	Other Operations
	NCLOBs

	OCILobLoadFromFile: Specify Amount Parameter to be Less than Length of BFILE
	OCILobRead: Specify Amount Parameter to be 4 gigabytes - 1
	OCI LOB Examples
	Further Information About OCI
	OCI Functions that Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
	OCI Functions To Modify Internal LOB (BLOB, CLOB, and NCLOB) Values
	OCI Functions To Read or Examine Internal LOB and External LOB (BFILE) Values
	OCI Functions For Temporary LOBs
	OCI Read-Only Functions For BFILEs
	OCI LOB Locator Functions
	OCI LOB-Buffering Functions
	OCI Functions To Open and Close Internal and External LOBs
	OCI Example — Is the LOB Open: main() and seeIfLOBIsOpen

	Using C++ (OCCI) To Work With LOBs
	Distinct Classes for Each LOB Type
	OCCIClob Class
	OCCIBlob Class

	Offset and Amount Parameters: Fixed-Width Versus Varying-Width, Character or Byte
	Fixed Width Character Set Rules
	Varying-Width Character Set Rules
	OffSet and Amount Parameters for Other OCCI Operations
	NCLOBs

	Loading from Files with OCCIClob.copy() and OCCIBlob.copy(): Amount Parameter
	OCCIClob.read(), OCCIBlob.read(), and OCCIBfile.read():Amount Parameter
	Further Information About OCCI
	OCCI Methods that Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
	OCCI Methods To Modify Internal LOB (BLOB, CLOB, and NCLOB) Values
	OCCI Methods To Read or Examine Internal LOB and BFILE Values
	OCCI Read-Only Methods For BFILEs
	Other OCCI LOB Methods
	OCCI Methods To Open and Close Internal and External LOBs

	Using C/C++ (Pro*C) To Work with LOBs
	First Provide an Allocated Input Locator Pointer that Represents LOB
	Pro*C/C++ Statements that Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*C/C++ Embedded SQL Statements To Modify Internal LOB Values
	Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External LOB Values
	Pro*C/C++ Embedded SQL Statements For Temporary LOBs
	Pro*C/C++ Embedded SQL Statements For BFILEs
	Pro*C/C++ Embedded SQL Statements For LOB Locators
	Pro*C/C++ Embedded SQL Statements For LOB Buffering
	Pro*C/C++ Embedded SQL Statements To Open and Close Internal and External LOBs

	Using COBOL (Pro*COBOL) to Work with LOBs
	First Provide an Allocated Input Locator Pointer that Represents LOB
	Pro*COBOL Statements that Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*COBOL Embedded SQL Statements To Modify Internal LOB Values
	Pro*COBOL Embedded SQL Statements To Read or Examine Internal and External LOB Values
	Pro*COBOL Embedded SQL Statements For Temporary LOBs
	Pro*COBOL Embedded SQL Statements For BFILEs
	Pro*COBOL Embedded SQL Statements For LOB Locators
	Pro*COBOL Embedded SQL Statements For LOB Buffering
	Pro*COBOL Embedded SQL Statements To Open and Close Internal LOBs and BFILEs

	Using Visual Basic (Oracle Objects for OLE (OO4O)) to Work with LOBs
	OO4O Syntax Reference
	Syntax
	Further Information

	OraBlob, OraClob, and OraBfile Object Interfaces Encapsulate Locators
	OraBlob and OraClob Objects Are Retrieved as Part of Dynaset and Represent LOB Locators
	Use the Clone Method to Retain Locator Independent of the Dynaset Move

	Example of OraBlob and OraBfile
	OO4O Methods and Properties to Access Data Stored in LOBs
	OO4O Methods To Modify BLOB, CLOB, and NCLOB Values
	OO4O Methods To Read or Examine Internal and External LOB Values
	OO4O Methods To Open and Close External LOBs (BFILEs)
	OO4O Methods For Internal LOB-Buffering
	OO4O Properties For Operating on LOBs
	OO4O Read-Only Methods For External Lobs (BFILEs)
	OO4O Properties For Operating on External LOBs (BFILEs)

	Using Java (JDBC) To Work with LOBs
	Changing Internal Persistent LOBs Using Java
	Reading Internal Persistent LOBs and External LOBs (BFILEs) with Java
	BLOB, CLOB, and BFILE Classes

	Calling DBMS_LOB Package From Java (JDBC)
	Referencing LOBs Using Java (JDBC)
	Using OracleResultSet: BLOB and CLOB Objects Retrieved Represent LOB Locators of Current Row

	JDBC Syntax References and Further Information
	JDBC Methods for Operating on LOBs
	JDBC oracle.sql.BLOB Methods To Modify BLOB Values
	JDBC oracle.sql.BLOB Methods To Read or Examine BLOB Values
	JDBC oracle.sql.BLOB Methods and Properties for BLOB-Buffering
	JDBC oracle.sql.CLOB Methods To Modify CLOB Values
	JDBC oracle.sql.CLOB Methods To Read or Examine CLOB Value
	JDBC oracle.sql.CLOB Methods and Properties for CLOB-Buffering
	JDBC oracle.sql.BFILE Methods To Read or Examine External LOB (BFILE) Values
	JDBC oracle.sql.BFILE Methods and Properties for BFILE-Buffering
	JDBC: OracleBlob and OracleClob Do Not Work in Oracle8i 8.1.x and Higher Releases
	JDBC Temporary LOB APIs
	JDBC: Opening and Closing LOBs
	JDBC: Opening and Closing BLOBs
	Opening the BLOB
	Checking If the BLOB is Opened
	Closing the BLOB

	JDBC: Opening and Closing CLOBs
	Opening the CLOB
	Checking if the CLOB is Open
	Closing the CLOB

	JDBC: Opening and Closing BFILEs
	Opening BFILEs
	Checking if the BFILE is Open
	Closing the BFILE
	Usage Example (OpenCloseLob.java)

	Trimming LOBs using JDBC
	JDBC: Trimming BLOBs
	JDBC: Trimming CLOBs

	JDBC: New LOB Streaming APIs
	New JDBC BLOB Streaming APIs

	New CLOB Streaming APIs
	New BFILE Streaming APIs
	JDBC BFILE Streaming Example (NewStreamLob.java)

	JDBC and Empty LOBs

	OLEDB (Oracle Provider for OLEDB — OraOLEDB)

	4 Managing LOBs
	Rules for using Directory Objects and BFILEs
	DBA Actions Required Prior to Working with LOBs
	Set Maximum Number of Open BFILEs
	Using SQL DML for Basic Operations on LOBs
	Changing Tablespace Storage for a LOB
	Oracle8 Release 8.0.4.3
	Oracle8i and Oracle9i

	Managing Temporary LOBs
	Using SQL*Loader to Load LOBs
	LOBFILES

	Inline versus Out-of-Line LOBs
	Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL*Loader
	SQL*Loader Performance: Loading Into Internal LOBs

	Loading Inline LOB Data
	Loading Inline LOB Data in Predetermined Size Fields
	Control File
	Data File (sample.dat)

	Loading Inline LOB Data in Delimited Fields
	Control File
	Data File (sample1.dat)

	Loading Inline LOB Data in Length-Value Pair Fields
	Control File
	Data File (sample2.dat)

	Loading Out-Of-Line LOB Data
	Loading One LOB Per File
	Control File
	Data File (sample3.dat)
	Secondary Data File (FirstStory.txt)
	Secondary Data File (SecondStory.txt)

	Loading Out-of-Line LOB Data in Predetermined Size Fields
	Control File
	Data File (sample4.dat)
	Secondary Data File (FirstStory1.txt)

	Loading Out-of-Line LOB Data in Delimited Fields
	Control File
	Data File (sample5.dat)
	Secondary Data File (FirstStory2.txt)

	Loading Out-of-Line LOB Data in Length-Value Pair Fields
	Control File
	Data File (sample6.dat)
	Secondary Data File (FirstStory3.txt)

	SQL*Loader LOB Loading Tips
	LOB Restrictions

	5 Large Objects: Advanced Topics
	Introducing Large Objects: Advanced Topics
	Read Consistent Locators
	A Selected Locator Becomes a Read Consistent Locator
	Updating LOBs and Read-Consistency
	Example

	Updating LOBs Via Updated Locators
	Example of Updating a LOB Using SQL DML and DBMS_LOB
	Example

	Example of Using One Locator to Update the Same LOB Value
	Example

	Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
	Example

	LOB Locators Cannot Span Transactions
	Example of Locator Not Spanning a Transaction

	LOB Locators and Transaction Boundaries
	Transaction IDs: Reading and Writing to a LOB Using Locators
	Non-Serializable Example: Selecting the Locator with No Current Transaction
	Case 1:
	Case 2:

	Non-Serializable Example: Selecting the Locator within a Transaction
	Case 3:
	Case 4:

	LOBs in the Object Cache
	LOB Buffering Subsystem
	Advantages of LOB Buffering
	Guidelines for Using LOB Buffering
	LOB Buffering Usage Notes
	LOB Buffer Physical Structure
	Example of Using the LOB Buffering System (LBS)

	Flushing the LOB Buffer
	Flushing the Updated LOB
	Using Buffer-Enabled Locators
	Saving Locator State to Avoid a Reselect
	OCI Example of LOB Buffering

	Creating a Varray Containing References to LOBs
	Creating a Varray Containing LOB References: Example

	LOBs in Partitioned Index-Organized Tables
	Example of LOB Columns in Partitioned Index-Organized Tables

	Restrictions for LOBs in Partitioned Index-Organized Tables
	Range Partitioned Index-Organized Table LOB Restrictions
	Non-Supported Column Types
	Non-Supported Column Types in Object Range Partitioned Index-Organized Tables

	Hash Partitioned Index-Organized Table LOB Restrictions

	6 Frequently Asked Questions about LOBs
	Converting Data Types to LOB Data Types
	Can I Insert or Update Any Length Data Into a LOB Column?
	Question
	Answer

	Does COPY LONG to LOB Work if Data is > 64K?
	Question
	Answer

	General
	How Do I Determine if the LOB Column with a Trigger is Being Updated?
	Question
	Answer

	Reading and Loading LOB Data: What Should Amount Parameter Size Be?
	Question
	Answer

	Is LOB Data Lost After a Crash?
	Question
	Answer

	Index-Organized Tables (IOTs) and LOBs
	Is Inline Storage Allowed for LOBs in Index-Organized Tables?
	Question
	Answer

	Initializing LOB Locators
	When Do I Use EMPTY_BLOB() and EMPTY_CLOB()?
	Question
	Answer

	How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?
	Question
	Answer

	JDBC, JPublisher and LOBs
	How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?
	Question
	Answer

	How Do I setData to EMPTY_BLOB() Using JPublisher?
	Question
	Answer

	JDBC: Do OracleBlob and OracleClob Work in 8.1.x?
	Question
	Answer

	How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?
	Question
	Answer

	Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB?
	Question
	Answer

	What Does DBMS_LOB.ERASE Do?
	Question
	Answer

	Can I Use putChars()?
	Question
	Answer

	Manipulating CLOB CharSetId in JDBC
	Question
	Answer

	Why is Inserting into BLOBs Slower than into LONG Raws?
	Question
	Answer

	Why Do I Get an ORA-03127 Error with LobLength on a LONG Column?
	Question
	Answer

	How Do I Create a CLOB Object in a Java Program?
	Question
	Answer

	How do I Load a 1MB File into a CLOB Column?
	Question
	Answer

	How Do We Improve BLOB and CLOB Performance When Using JDBC Driver To Load?
	Question
	Answer

	LOB Indexing
	Is LOB Index Created in Same Tablespace as LOB Data?
	Question
	Answer

	Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column?
	Question
	Answer

	Which Views Can I Query to Find Out About a LOB Index?
	Question
	Answer

	LOB Storage and Space Issues
	What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN ROW?
	Question
	Answer

	What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?
	Question
	Answer

	When Should I Specify DISABLE STORAGE IN ROW?
	Question
	Answer

	Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go Into a Specified Segment?
	Question
	Answer

	Is 4K LOB Stored Inline?
	Question
	Answer

	How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or EMPTY_BLOB() Instead of NULL? Ar...
	Question
	Answer

	Storing CLOBs Inline: DISABLING STORAGE and Space Used
	Question
	Answer

	Should I Include a LOB Storage Clause When Creating Tables With Varray Columns?
	Question
	Answer

	LONG to LOB Migration
	How Can We Migrate LONGs to LOBs, If Our Application Cannot Go Down?
	Question
	Answer

	Converting Between Different LOB Types
	Is Implicit LOB Conversion Between Different LOB Types Allowed?
	Question
	Answer

	Performance
	What Can We Do To Improve the Poor LOB Loading Performance When Using Veritas File System on Disk...
	Question 1
	Answer 1
	Question 2
	Answer 2

	Is There a Difference in Performance When Using DBMS_LOB.SUBSTR Versus DBMS_LOB.READ?
	Question
	Answer

	Are There Any White Papers or Guidelines on Tuning LOB Performance?
	Question
	Answer

	When Should I Use Chunks Over Reading the Whole Thing?
	Question
	Answer

	Is Inlining the LOB a Good Idea and If So When?
	Question
	Answer

	How Can I Store LOBs >4Gb in the Database?
	Question
	Answer

	Why is Performance Affected When Temporary LOBs are Created in a Called Routine?
	Question
	Answer
	Response

	PL/SQL
	UPLOAD_AS_BLOB
	Question
	Answer

	7 Modeling and Design
	Selecting a Datatype
	LOBs Compared to LONG and LONG RAW Types
	Replication
	Converting LONG Columns to LOBs

	Character Set Conversions: Varying-Width and Multi-byte Fixed-Width Character Data

	Selecting a Table Architecture
	LOB Storage
	Where are NULL Values in a LOB Column Stored?
	NULL LOB Column Storage: NULL Value is Stored
	EMPTY_CLOB() or EMPTY_BLOB() Column Storage: LOB Locator is Stored

	Defining Tablespace and Storage Characteristics for Internal LOBs
	Defining Tablespace and Storage Example1
	Assigning a LOB Data Segment Name

	LOB Storage Characteristics for LOB Column or Attribute
	TABLESPACE and LOB Index
	Tablespace for LOB Index in Non-Partitioned Table

	PCTVERSION
	CACHE / NOCACHE / CACHE READS
	CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
	Downgrading to 8.1.5 or 8.0.x

	LOGGING / NOLOGGING
	LOBs Will Always Generate Undo for LOB Index Pages
	When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages

	CHUNK
	Set INITIAL and NEXT to Larger than CHUNK

	ENABLE | DISABLE STORAGE IN ROW
	Guidelines for ENABLE or DISABLE STORAGE IN ROW

	How to Create Gigabyte LOBs
	Example 1: Creating a Tablespace and Table to Store Gigabyte LOBs
	Example 2: Creating a Tablespace and Table to Store Gigabyte LOBs
	How this Affects the Temporary LOB COPY or APPEND?

	LOB Locators and Transaction Boundaries
	Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
	Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs
	Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion
	4,000 Byte Limit On Results of SQL Operator
	Binds of More Than 4,000 Bytes: Restrictions
	Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE
	Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported
	Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes
	Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE

	OPEN, CLOSE, and ISOPEN Interfaces for Internal LOBs
	Wrap LOB Operations Inside an OPEN / CLOSE Call
	Close All Opened LOBs Before Committing the Transaction
	What is a ’Transaction’ Where an Open LOB Value is Closed?
	Do Not Open or Close Same LOB Twice!
	Example 1: Correct Use of OPEN/CLOSE Calls to LOBs in a Transaction
	Example 2: Incorrect Use of OPEN/CLOSE Calls to a LOB in a Transaction

	LOBs in Index Organized Tables (IOT)
	Example of Index Organized Table (IOT) with LOB Columns

	Manipulating LOBs in Partitioned Tables
	Creating and Partitioning a Table Containing LOB Data
	Creating an Index on a Table Containing LOB Columns
	Exchanging Partitions Containing LOB Data
	Adding Partitions to Tables Containing LOB Data
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs

	Indexing a LOB Column
	Functional Indexes on LOB Columns

	SQL Semantics Support for LOBs
	Improved LOB Usability: Accessing LOBs Using SQL “Character” Functions
	SQL and PL/SQL VARCHAR2 Functions/Operators Now Allowed for CLOBs
	PL/SQL Relational Operators Now Allowed for LOBs
	SQL and PL/SQL CHAR to CLOB Conversion Functions
	Non-Supported SQL Functionality for LOBs
	Using SQL Functions and Operators for VARCHAR2s on CLOBs
	UNICODE Support for VARCHAR2 and CLOB
	SQL Features Where LOBs Cannot be Used

	How SQL VARCHAR2/RAW Semantics Apply to CLOBs/BLOBs
	Defining CHAR Buffer on CLOB
	Selecting a CLOB Column into a CHAR Buffer or CLOB

	Accepting CLOBs in VARCHAR2 Operators/Functions
	Returning CLOB Values from SQL Functions/Operators
	Returning VARCHAR2s
	Returning CLOBs
	Returned LOB is a Temporary LOB Locator
	SQL Query Example 1: Using SQL to SELECT out a CLOB into a VARCHAR2

	IS [NOT] NULL in VARCHAR2s and CLOBs

	SQL RAW Type and BLOBs
	SQL DML Changes For LOBs
	SQL Functions/Operators for VARCHAR2s/RAWs and CLOBs/BLOBs
	SQL Query Example 2: A few SQL queries on CLOBs

	PL/SQL Statements and Variables: New Semantics Changes
	Implicit Conversions Between CLOB and VARCHAR2
	PL/SQL Example 1: Prior Release SQL Interface for a CLOB/VARCHAR2 Application
	PL/SQL Example 2: Accessing CLOB Data When Treated as VARCHAR2s
	PL/SQL Example 3: Defining a CLOB Variable on a VARCHAR2
	Explicit Conversion Functions
	VARCHAR2 and CLOB in PL/SQL Built-in Functions
	PL/SQL Example 4: CLOB Variables in PL/SQL
	PL/SQL Example 5: Change in Locator-Data Linkage
	PL/SQL Example 6: Freeing Temporary LOBs Automatically and Manually

	PL/SQL CLOB Comparison Rules
	CLOBS Follow the VARCHAR2 Collating Sequence

	Interacting with SQL and PL/SQL in OCI and Java Interfaces
	Performance Attributes When Using SQL Semantics with LOBs
	Inserting More than 4K Bytes Data Into LOB Columns
	Temporary LOB Creation/Deallocation
	Performance Measurement

	User-Defined Aggregates and LOBs
	UDAGs: DDL Support
	UDAGs: DML and Query Support

	8 Migrating From LONGs to LOBs
	Introducing LONG-to-LOB Migration
	Using the LONG-to-LOB API Results in an Easy Migration

	Guidelines for Using LONG-to-LOB API
	Using ALTER TABLE
	LONG-to-LOB API and OCI
	Binds in OCI
	Defines in OCI
	OCI Functions Allow Piecewise and Array INSERT, UPDATE, or Fetch on LOBs
	Multibyte Charactersets (OCI)

	LONG-to-LOB API and PL/SQL
	INSERT and UPDATE of LOB Columns (PL/SQL)
	SELECT on a LOB Column (PL/SQL)
	Assignment and Parameters Passing (PL/SQL)

	Migrating Existing Tables from LONG to LOB
	Migrating LONGs to LOBs: Using ALTER TABLE to Change LONG Column to LOB Types
	All Constraints of LONG Column are Maintained
	Default Values for LONG are Copied to LOB
	Most Triggers Remain Valid
	Indexes Must be Rebuilt — Use ALTER INDEX...REBUILD
	Rebuilding Indexes After a LONG to LOB Migration
	Space Requirements are Temporarily Doubled
	LOGGING

	LONG-to-LOB Migration Limitations
	Clustered Tables
	Replication
	Triggers
	Indexes
	LONGs, LOBs, and NULLs
	NULL LONGs Versus Zero Length LONGs
	NULL LOBs Versus Zero Length LOBs

	Using LONG-to-LOB API with OCI
	Guidelines for Using LONG-to-LOB API for LOBs with OCI
	Using OCI Functions to Perform INSERT or UPDATE on LOBs
	Simple INSERTs or UPDATEs in One Piece
	Using Piecewise INSERTs and UPDATEs with Polling
	Piecewise INSERTs and UPDATEs with Callback
	Array INSERTs and UPDATEs

	Using OCI Functions to Perform FETCH on LOBs
	Simple Fetch in One Piece
	Piecewise Fetch with Polling
	Piecewise with Callback
	Array Fetch

	Using SQL and PL/SQL to Access LONGs and LOBs
	Using SQL and PL/SQL to Access LOBs
	INSERTs
	UPDATEs
	SELECTs

	Implicit Assignment and Parameter Passing
	Variable Assignment Between CLOB/CHAR and BLOB/RAW
	Function/Procedure Parameter Passing

	Explicit Conversion Functions
	VARCHAR2 and CLOB in PL/SQL Built-In Functions
	PL/SQL and C Binds from OCI
	Calling PL/SQL Outbinds in the "begin foo(:1); end;" Manner.
	Calling PL/SQL Outbinds in the "call foo(:1);" Manner.

	Calling PL/SQL and C Procedures from SQL or PL/SQL
	From SQL
	From PL/SQL

	Applications Requiring Changes When Converting From LONGs to LOBs
	Overloading with Anchored Types
	Implicit Conversion of NUMBER, DATE, ROW_ID, BINARY_INTEGER, and PLS_INTEGER to LOB is Not Supported
	No Implicit Conversions of BLOB to VARCHAR2, CHAR, or CLOB to RAW or LONG RAW

	Using utldtree.sql to Determine Where Your Application Needs Change
	Examples of Converting from LONG to LOB Using Table Multimedia_tab
	To Convert LONG to CLOB, Use ALTER TABLE
	Converting LONG to LOB Example 1: More than 4K Binds and Simple INSERTs
	Converting LONG to LOB Example 2: Piecewise INSERT with Polling
	Converting LONG to LOB Example 3: Piecewise INSERT with Callback
	Converting LONG to LOB Example 4: Array insert
	Converting LONG to LOB Example 5: Simple Fetch
	Converting LONG to LOB Example 6: Piecewise Fetch with Polling
	Converting LONG to LOB Example 7: Piecewise Fetch with Callback
	Converting LONG to LOB Example 8: Array Fetch
	Converting LONG to LOB Example 9: Using PL/SQL in INSERT, UPDATE and SELECT
	Converting LONG to LOB Example 10: Assignments and Parameter Passing in PL/SQL
	Converting LONG to LOB Example 11: CLOBs in PL/SQL Built-In Functions
	Converting LONG to LOB Example 12: Using PL/SQL Binds from OCI on LOBs
	Calling PL/SQL Outbinds in the "begin foo(:1); end;" Manner
	Calling PL/SQL Outbinds in the "call foo(:1);" Manner

	Converting LONG to LOB Example 13: Calling PL/SQL and C Procedures from PL/SQL

	Summary of New Functionality Associated with the LONG-to-LOB API
	OCI Functions
	SQL Statements
	PL/SQL Interface

	Compatibility and Migration
	Performance
	INSERTS and Fetches have Comparable Performance
	PL/SQL

	Frequently Asked Questions (FAQs): LONG to LOB Migration
	Moving From LOBs Back to LONGs
	Question
	Answer

	Is CREATE VIEW Needed?
	Question
	Answer

	Are OCI LOB Routines Obsolete?
	Question
	Answer

	PL/SQL Issues
	Question
	Answer

	Retrieving an Entire Image if Less Than 32K
	Question
	Answer

	Triggers in LONGs and LOBs
	Question
	Answer

	9 LOBS: Best Practices
	Using SQL*Loader
	Loading XML Documents Into LOBs With SQL*Loader

	LOB Performance Guidelines
	General Performance Guidelines
	Some Performance Numbers

	Temporary LOB Performance Guidelines

	Moving Data to LOBs in a Threaded Environment
	Incorrect procedure
	The Correct Procedure

	Migrating from LONGs to LOBs
	Preventing Generation of Redo Space During Migration

	10 Internal Persistent LOBs
	Use Case Model: Internal Persistent LOBs Operations
	Creating a Table Containing One or More LOB Columns
	SQL: Create a Table Containing One or More LOB Columns

	Creating a Table Containing an Object Type with a LOB Attribute
	SQL: Creating a Table Containing an Object Type with a LOB Attribute

	Creating a Nested Table Containing a LOB
	SQL: Creating a Nested Table Containing a LOB

	Inserting a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
	SQL: Inserting a Value Using EMPTY_CLOB() / EMPTY_BLOB()

	Inserting a Row by Selecting a LOB From Another Table
	SQL: Inserting a Row by Selecting a LOB from Another Table

	Inserting a Row by Initializing a LOB Locator Bind Variable
	PL/SQL (DBMS_LOB Package): Inserting a Row by Initializing a LOB Locator Bind Variable
	C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
	COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
	C/C++ (ProC/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
	Visual Basic (OO4O): Inserting a Row by Initializing a LOB Locator Bind Variable
	Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

	Loading a LOB with Data From a BFILE
	PL/SQL (DBMS_LOB Package): Loading a LOB with Data from a BFILE
	C (OCI): Loading a LOB with Data from a BFILE
	COBOL (Pro*COBOL): Loading a LOB with Data from a BFILE
	Visual Basic (OO4O): Loading a LOB with Data from a BFILE
	Java (JDBC): Loading a LOB with Data from a BFILE

	Loading an Internal Persistent BLOB with Binary Data from a BFILE
	PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB with BFILE Data

	Loading an Internal Persistent CLOB with BFILE Data
	PL/SQL (DBMS_LOB Package): Loading an Internal Persistent CLOB with BFILE Data

	Open: Checking If a LOB Is Open
	PL/SQL (DBMS_LOB Package): Checking if a LOB is Open
	C (OCI): Checking if a LOB is Open
	COBOL (Pro*COBOL): Checking if a LOB is Open
	C/C++ (ProC/C++): Checking if a LOB is Open
	Java (JDBC): Checking if a LOB is Open
	Checking if a CLOB is Open
	Checking If a BLOB is Open

	LONG to LOB Migration Using the LONG-to-LOB API
	To Convert LONG to CLOB, Use ALTER TABLE
	C (OCI): LONG to LOB Migration

	LONG to LOB Copying, Using the TO_LOB Operator
	SQL: Copying LONGs to LOBs Using TO_LOB Operator

	Checking Out a LOB
	PL/SQL (DBMS_LOB Package): Checking Out a LOB
	C (OCI): Checking Out a LOB
	COBOL (Pro*COBOL): Checking Out a LOB
	C/C++ (ProC/C++): Checking Out a LOB
	Visual Basic (OO4O): Checking Out a LOB
	Java (JDBC): Checking Out a LOB

	Checking In a LOB
	PL/SQL (DBMS_LOB Package): Checking in a LOB
	C (OCI): Checking in a LOB
	COBOL (Pro*COBOL): Checking in a LOB
	C/C++ (ProC/C++): Checking in a LOB
	Visual Basic (OO4O): Checking in a LOB
	Java (JDBC): Checking in a LOB

	Displaying LOB Data
	PL/SQL (DBMS_LOB Package): Displaying LOB Data
	C (OCI): Displaying LOB Data
	COBOL (Pro*COBOL): Displaying LOB Data
	C/C++ (ProC/C++): Displaying LOB Data
	Visual Basic (OO4O): Displaying LOB Data
	Java (JDBC): Displaying LOB Data

	Reading Data from a LOB
	PL/SQL (DBMS_LOB Package): Reading Data from a LOB
	C (OCI): Reading Data from a LOB
	COBOL (Pro*COBOL): Reading Data from a LOB
	C/C++ (Pro*C/C++): Reading Data from a LOB
	Visual Basic (OO4O): Reading Data from a LOB
	Java (JDBC): Reading Data from a LOB

	Reading a Portion of the LOB (substr)
	PL/SQL (DBMS_LOB Package): Reading a Portion of the LOB (substr)
	COBOL (Pro*COBOL): Reading a Portion of the LOB (substr)
	C/C++ (Pro*C/C++): Reading a Portion of the LOB (substr)
	Visual Basic (OO4O): Reading a Portion of the LOB (substr)
	Java (JDBC): Reading a Portion of the LOB (substr)

	Comparing All or Part of Two LOBs
	PL/SQL (DBMS_LOB Package): Comparing All or Part of Two LOBs
	COBOL (Pro*COBOL): Comparing All or Part of Two LOBs
	C/C++ (Pro*C/C++): Comparing All or Part of Two LOBs
	Visual Basic (OO4O): Comparing All or Part of Two LOBs
	Java (JDBC): Comparing All or Part of Two LOBs

	Patterns: Checking for Patterns in the LOB (instr)
	PL/SQL (DBMS_LOB Package): Checking for Pattern in the LOB (instr)
	COBOL (Pro*COBOL): Checking for Patterns in the LOB (instr)
	C/C++ (Pro*C/C++): Checking for Patterns in the LOB (instr)
	Java (JDBC): Checking for Patterns in the LOB (instr)

	Length: Determining the Length of a LOB
	PL/SQL (DBMS_LOB Package): Determining the Length of a LOB
	C (OCI): Determining the Length of a LOB
	COBOL (Pro*COBOL): Determining the Length of a LOB
	C/C++ (Pro*C/C++): Determining the Length of a LOB
	Visual Basic (OO4O): Determining the Length of a LOB
	Java (JDBC): Determining the Length of a LOB

	Copying All or Part of One LOB to Another LOB
	PL/SQL (DBMS_LOB Package): Copying All or Part of One LOB to Another LOB
	C (OCI): Copying All or Part of One LOB to Another LOB
	COBOL (Pro*COBOL): Copying All or Part of One LOB to Another LOB
	C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB
	Visual Basic (OO4O): Copying All or Part of One LOB to Another LOB
	Java (JDBC): Copying All or Part of One LOB to Another LOB

	Copying a LOB Locator
	PL/SQL (DBMS_LOB Package): Copying a LOB Locator
	C (OCI): Copying a LOB Locator
	COBOL (Pro*COBOL): Copying a LOB Locator
	C/C++ (Pro*C/C++): Copying a LOB Locator
	Visual Basic (OO4O: Copying a LOB Locator
	Java (JDBC): Copying a LOB Locator

	Equality: Checking If One LOB Locator Is Equal to Another
	C (OCI): Checking If One LOB Locator Is Equal to Another
	C/C++ (Pro*C/C++): Checking If One LOB Locator Is Equal to Another
	Java (JDBC): Checking If One LOB Locator Is Equal to Another

	Initialized Locator: Checking If a LOB Locator Is Initialized
	C (OCI): Checking If a LOB Locator Is Initialized
	C/C++ (Pro*C/C++): Checking If a LOB Locator Is Initialized

	Character Set ID: Determining Character Set ID
	C (OCI): Determining Character Set ID

	Character Set Form: Determining Character Set Form
	C (OCI): Determining Character Set Form

	Appending One LOB to Another
	PL/SQL (DBMS_LOB Package): Appending One LOB to Another
	C (OCI): Appending One LOB to Another
	COBOL (Pro*COBOL): Appending One LOB to Another
	C/C++ (Pro*C/C++): Appending One LOB to Another
	Visual Basic (OO4O): Appending One LOB to Another
	Java (JDBC): Appending One LOB to Another

	Append-Writing to the End of a LOB
	PL/SQL (DBMS_LOB Package): Writing to the End of (Appending to) a LOB
	C (OCI): Writing to the End of (Appending to) a LOB
	COBOL (Pro*COBOL): Writing to the End of (Appending to) a LOB
	C/C++ (Pro*C/C++): Writing to the End of (Appending to) a LOB
	Java (JDBC): Writing to the End of (Append-Write to) a LOB

	Writing Data to a LOB
	PL/SQL (DBMS_LOB Package): Writing Data to a LOB
	C (OCI): Writing Data to a LOB
	COBOL (Pro*COBOL): Writing Data to a LOB
	C/C++ (Pro*C/C++): Writing Data to a LOB
	Visual Basic (OO4O):Writing Data to a LOB
	Java (JDBC): Writing Data to a LOB

	Trimming LOB Data
	PL/SQL (DBMS_LOB Package): Trimming LOB Data
	C (OCI): Trimming LOB Data
	COBOL (Pro*COBOL): Trimming LOB Data
	C/C++ (Pro*C/C++): Trimming LOB Data
	Visual Basic (OO4O): Trimming LOB Data
	Java (JDBC): Trimming LOB Data

	Erasing Part of a LOB
	PL/SQL (DBMS_LOB Package): Erasing Part of a LOB
	C (OCI): Erasing Part of a LOB
	COBOL (Pro*COBOL): Erasing Part of a LOB
	C/C++ (Pro*C/C++): Erasing Part of a LOB
	Visual Basic (OO4O): Erasing Part of a LOB
	Java (JDBC): Erasing Part of a LOB

	Enabling LOB Buffering
	C (OCI): Enabling LOB Buffering
	COBOL (Pro*COBOL): Enabling LOB Buffering
	C/C++ (Pro*C/C++): Enabling LOB Buffering
	Visual Basic (OO4O): Enabling LOB Buffering

	Flushing the Buffer
	C (OCI): Flushing the Buffer
	COBOL (Pro*COBOL): Flushing the Buffer
	C/C++ (Pro*C/C++): Flushing the Buffer
	Visual Basic (OO4O): Flushing the Buffer

	Disabling LOB Buffering
	C (OCI): Disabling LOB Buffering
	COBOL (Pro*COBOL): Disabling LOB Buffering
	C/C++ (Pro*C/C++): Disabling LOB Buffering
	Visual Basic (OO4O): Disabling LOB Buffering

	Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	For Binds of More Than 4,000 Bytes
	SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

	Updating a Row by Selecting a LOB From Another Table
	SQL: Update a Row by Selecting a LOB From Another Table

	Updating by Initializing a LOB Locator Bind Variable
	PL/SQL: Updating by Initializing a LOB Locator Bind Variable
	C (OCI): Updating by Initializing a LOB Locator Bind Variable
	COBOL (Pro*COBOL): Updating by Initializing a LOB Locator Bind Variable
	C/C++ (Pro*C/C++): Updating by Initializing a LOB Locator Bind Variable
	Visual Basic (OO4O): Updating by Initializing a LOB Locator Bind Variable
	Java (JDBC): Updating by Initializing a LOB Locator Bind Variable

	Deleting the Row of a Table Containing a LOB
	SQL: Delete a LOB

	11 Temporary LOBs
	Use Case Model: Internal Temporary LOBs
	Programmatic Environments
	Locators
	Temporary LOB Locators Can be IN Values
	Can You Use the Same Functions for Temporary and Internal Persistent LOBs?
	DBMS_LOB.createtemporary() Parameter is a Hint
	Temporary LOB Data is Stored in Temporary Tablespace
	Lifetime and Duration of Temporary LOBs
	OCI Can Group Temporary LOBs into Logical Buckets

	Memory Handling
	LOB Buffering and CACHE, NOCACHE, CACHE READS
	Temporary Tablespace
	Explicitly Free Temporary LOB Space to Reuse It
	Selecting a Permanent LOB INTO a Temporary LOB Locator

	Locators and Semantics

	Features Specific to Temporary LOBs
	Security Issues with Temporary LOBs
	NOCOPY Restrictions
	Managing Temporary LOBs
	Using JDBC and Temporary LOBs
	Using JDBC and Temporary BLOBs
	Using JDBC and Temporary CLOBs

	Creating a Temporary LOB
	PL/SQL (DBMS_LOB Package): Creating a Temporary LOB
	C (OCI): Creating a Temporary LOB
	COBOL (Pro*COBOL): Creating a Temporary LOB
	C/C++ (Pro*C/C++): Creating a Temporary LOB
	Java (JDBC): Creating a Temporary BLOB
	Java (JDBC): Creating a Temporary CLOB

	Checking If a LOB is Temporary
	PL/SQL (DBMS_LOB Package): Checking If a LOB is Temporary
	C (OCI): Checking If a LOB is Temporary
	COBOL (Pro*COBOL): Checking If a LOB is Temporary
	C/C++ (Pro*C/C++): Checking If a LOB is Temporary
	Java (JDBC): Checking if a BLOB is Temporary
	Java (JDBC): Checking if a CLOB is Temporary

	Freeing a Temporary LOB
	PL/SQL (DBMS_LOB Package): Freeing a Temporary LOB
	C (OCI): Freeing a Temporary LOB
	COBOL (Pro*COBOL): Freeing a Temporary LOB
	C/C++ (Pro*C/C++): Freeing a Temporary LOB
	Java (JDBC): Freeing a Temporary BLOB
	Java (JDBC): Freeing a Temporary CLOB
	Java (JDBC): Creating and Freeing a Temporary CLOB Using TemporaryClob.java

	Loading a Temporary LOB with Data from a BFILE
	PL/SQL (DBMS_LOB Package): Loading a Temporary LOB with Data from a BFILE
	C (OCI): Loading a Temporary LOB with Data from a BFILE
	COBOL (Pro*COBOL): Loading a Temporary LOB with Data from a BFILE
	C/C++ (Pro*C/C++): Loading a Temporary LOB with Data from a BFILE

	Loading a Temporary BLOB with Binary Data from a BFILE
	PL/SQL (DBMS_LOB Package): Loading a Temporary BLOB with BFILE data

	Loading a Temporary CLOB/NCLOB with Character Data from a File
	PL/SQL (DBMS_LOB Package): Loading a Temporary CLOB/NCLOB with BFILE Data

	Determining If a Temporary LOB Is Open
	PL/SQL: Determining if a Temporary LOB is Open
	C (OCI) Determining if a Temporary LOB is Open
	COBOL (Pro*COBOL): Determining if a Temporary LOB is Open
	C/C++ (Pro*C/C++): Determining if a Temporary LOB is Open

	Displaying Temporary LOB Data
	PL/SQL (DBMS_LOB Package): Displaying Temporary LOB Data
	C (OCI): Displaying Temporary LOB Data
	COBOL (Pro*COBOL): Displaying Temporary LOB Data
	C/C++ (Pro*C/C++): Displaying Temporary LOB Data

	Reading Data from a Temporary LOB
	PL/SQL (DBMS_LOB Package): Reading Data from a Temporary LOB
	C (OCI): Reading Data from a Temporary LOB
	COBOL (Pro*COBOL): Reading Data from a Temporary LOB
	C/C++ (Pro*C/C++): Reading Data from a Temporary LOB

	Reading Portion of Temporary LOB (Substr)
	PL/SQL (DBMS_LOB Package): Reading a Portion of Temporary LOB (substr)
	COBOL (Pro*COBOL): Reading a Portion of Temporary LOB (substr)
	C/C++ (Pro*C/C++): Reading a Portion of Temporary LOB (substr)

	Comparing All or Part of Two Temporary LOBs
	PL/SQL (DBMS_LOB Package): Comparing All or Part of Two Temporary LOBs
	COBOL (Pro*COBOL): Comparing All or Part of Two Temporary LOBs
	C/C++ (Pro*C/C++): Comparing All or Part of Two Temporary LOBs

	Determining If a Pattern Exists in a Temporary LOB (instr)
	PL/SQL (DBMS_LOB Package): Determining If a Pattern Exists in a Temporary LOB
	COBOL (Pro*COBOL): Determining If a Pattern Exists in a Temporary LOB (instr)
	C/C++ (Pro*C/C++): Determining If a Pattern Exists in a Temporary LOB (instr)

	Finding the Length of a Temporary LOB
	PL/SQL (DBMS_LOB Package): Finding the Length of a Temporary LOB
	C (OCI): Finding the Length of a Temporary LOB
	COBOL (Pro*COBOL): Finding the Length of a Temporary LOB
	C/C++ (Pro*C/C++): Finding the Length of a Temporary LOB

	Copying All or Part of One Temporary LOB to Another
	PL/SQL (DBMS_LOB Package): Copying All or Part of One Temporary LOB
	C (OCI): Copying All or Part of One Temporary LOB to Another
	COBOL (Pro*COBOL): Copying All or Part of One Temporary LOB to Another
	C/C++ (Pro*C/C++): Copying All or Part of One Temporary LOB to Another

	Copying a LOB Locator for a Temporary LOB
	PL/SQL (DBMS_LOB Package): Copying a LOB Locator for a Temporary LOB
	C (OCI): Copying a LOB Locator for a Temporary LOB
	COBOL (Pro*COBOL): Copying a LOB Locator for a Temporary LOB
	C/C++ (Pro*C/C++): Copying a LOB Locator for a Temporary LOB

	Is One Temporary LOB Locator Equal to Another
	C (OCI): Is One LOB Locator for a Temporary LOB Equal to Another
	C/C++ (Pro*C/C++): Is One LOB Locator for a Temporary LOB Equal to Another

	Determining if a LOB Locator for a Temporary LOB Is Initialized
	C (OCI): Determining If a LOB Locator for a Temporary LOB Is Initialized
	C/C++ (Pro*C/C++): Determining If a LOB Locator Is Initialized

	Finding Character Set ID of a Temporary LOB
	C (OCI): Finding Character Set ID of a Temporary LOB

	Finding Character Set Form of a Temporary LOB
	C (OCI): Finding Character Set Form of a Temporary LOB

	Appending One Temporary LOB to Another
	PL/SQL (DBMS_LOB Package): Appending One Temporary LOB to Another
	C (OCI): Appending One Temporary LOB to Another
	COBOL (Pro*COBOL): Appending One Temporary LOB to Another
	C/C++ (Pro*C/C++): Appending One Temporary LOB to Another

	Write-Appending to a Temporary LOB
	PL/SQL (DBMS_LOB Package): Writing-Appending to a Temporary LOB
	C (OCI): Writing-Appending to a Temporary LOB
	COBOL (Pro*COBOL): Write-Appending to a Temporary LOB
	C/C++ (Pro*C/C++): Write-Appending to a Temporary LOB

	Writing Data to a Temporary LOB
	PL/SQL (DBMS_LOB Package): Writing Data to a Temporary LOB
	C (OCI): Writing Data to a Temporary LOB
	COBOL (Pro*COBOL): Writing Data to a Temporary LOB
	C/C++ (Pro*C/C++): Writing Data to a Temporary LOB

	Trimming Temporary LOB Data
	PL/SQL (DBMS_LOB Package): Trimming Temporary LOB Data
	C (OCI): Trimming Temporary LOB Data
	COBOL (Pro*COBOL): Trimming Temporary LOB Data
	C/C++ (Pro*C/C++): Trimming Temporary LOB Data

	Erasing Part of a Temporary LOB
	PL/SQL (DBMS_LOB Package): Erasing Part of a Temporary LOB
	(OCI): Erasing Part of a Temporary LOB
	COBOL (Pro*COBOL): Erasing Part of a Temporary LOB
	C/C++ (Pro*C/C++): Erasing Part of a Temporary LOB

	Enabling LOB Buffering for a Temporary LOB
	C (OCI): Enabling LOB Buffering for a Temporary LOB
	COBOL (Pro*COBOL): Enabling LOB Buffering for a Temporary LOB
	C/C++ (Pro*C/C++): Enabling LOB Buffering for a Temporary LOB

	Flushing Buffer for a Temporary LOB
	C (OCI): Flushing Buffer for a Temporary LOB
	COBOL (Pro*COBOL): Flushing Buffer for a Temporary LOB
	C/C++ (Pro*C/C++): Flushing Buffer for a Temporary LOB

	Disabling LOB Buffering for a Temporary LOB
	C (OCI): Disabling LOB Buffering
	COBOL (Pro*COBOL): Disabling LOB Buffering for a Temporary LOB
	C/C++ (Pro*C/C++): Disabling LOB Buffering for a Temporary LOB

	12 External LOBs (BFILEs)
	Use Case Model: External LOBs (BFILEs)
	Accessing External LOBs (BFILEs)
	Directory Object
	Initializing a BFILE Locator
	How to Associate Operating System Files with Database Records
	Examples

	BFILENAME() and Initialization
	DIRECTORY Name Specification
	On Windows Platforms

	BFILE Security
	Ownership and Privileges
	Read Permission on Directory Object
	SQL DDL for BFILE Security
	SQL DML for BFILE Security
	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Shared Server (Multi-Threaded Server — MTS) Mode
	External LOB (BFILE) Locators
	Guidelines
	General Rule

	Creating a Table Containing One or More BFILE Columns
	SQL: Creating a Table Containing One or More BFILE Columns

	Creating a Table of an Object Type with a BFILE Attribute
	SQL: Creating a Table of an Object Type with a BFILE Attribute

	Creating a Table with a Nested Table Containing a BFILE
	SQL: Creating a Table with a Nested Table Containing a BFILE

	INSERT a Row Using BFILENAME()
	Ways BFILENAME() is Used to Initialize BFILE Column or Locator Variable
	SQL: Inserting a Row by means of BFILENAME()
	C (OCI): Inserting a Row by means of BFILENAME()
	COBOL (Pro*COBOL): Inserting a Row by means of BFILENAME()
	C/C++ (Pro*C/C++): Inserting a Row by means of BFILENAME()
	Visual Basic (OO4O): Inserting a Row by means of BFILENAME()
	Java (JDBC): Inserting a Row by means of BFILENAME()

	INSERT a BFILE Row by Selecting a BFILE From Another Table
	SQL: Inserting a Row Containing a BFILE by Selecting a BFILE From Another Table

	Inserting a Row With BFILE by Initializing a BFILE Locator
	PL/SQL: Inserting a Row Containing a BFILE by Initializing a BFILE Locator
	C (OCI): Inserting a Row Containing a BFILE by Initializing a BFILE Locator
	C/C++ (Pro*C/C++): Inserting a Row Containing a BFILE by Initializing a BFILE Locator
	Java (JDBC): Inserting a Row Containing a BFILE by Initializing a BFILE Locator

	Loading Data Into External LOB (BFILE)
	Loading Data Into BFILES: File Name Only is Specified Dynamically
	Control File
	Data file (sample9.dat)

	Loading Data into BFILES: File Name and DIRECTORY Object Dynamically Specified
	Control File
	Data file (sample10.dat)

	Loading a LOB with BFILE Data
	Specify Amount Parameter to be Less than the Size of the BFILE!
	PL/SQL (DBMS_LOB Package): Loading a LOB with BFILE Data
	C (OCI): Loading a LOB with BFILE Data
	COBOL (Pro*COBOL): Loading a LOB with BFILE Data
	C/C++ (Pro*C/C++): Loading a LOB with BFILE Data
	Visual Basic (OO4O): Loading a LOB with BFILE Data

	Loading a BLOB with BFILE Data
	PL/SQL (DBMS_LOB Package): Loading an Internal Persistent BLOB with BFILE Data

	Loading a CLOB with BFILE Data
	PL/SQL (DBMS_LOB Package): Loading a CLOB/NCLOB with BFILE Data

	Ways to Open a BFILE
	Recommendation: Use OPEN to Open BFILE
	Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES
	Close Files After Use

	Opening a BFILE with FILEOPEN
	PL/SQL: Opening a BFILE with FILEOPEN
	C (OCI): Opening a BFILE with FILEOPEN
	Visual Basic (OO4O): Opening a BFILE with FILEOPEN
	Java (JDBC): Opening a BFILE with FILEOPEN

	Opening a BFILE with OPEN
	PL/SQL: Opening a BFILE with OPEN
	C (OCI): Opening a BFILE with OPEN
	COBOL (Pro*COBOL): Opening a BFILE with OPEN
	C/C++ (Pro*C/C++): Opening a BFILE with OPEN
	Visual Basic (OO4O) Opening a BFILE with OPEN
	Java (JDBC): Opening a BFILE with OPEN

	Ways to See If a BFILE is Open
	Recommendation: Use OPEN to Open BFILE
	Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES

	Checking If the BFILE is Open with FILEISOPEN
	PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with FILEISOPEN
	C (OCI): Checking If the BFILE is Open with FILEISOPEN
	Visual Basic (OO4O): Checking If the BFILE is Open with FILEISOPEN
	Java (JDBC): Checking If the BFILE is Open with FILEISOPEN

	Checking If a BFILE is Open Using ISOPEN
	PL/SQL (DBMS_LOB Package): Checking If the BFILE is Open with ISOPEN
	C (OCI): Checking If the BFILE is Open with ISOPEN
	COBOL (Pro*COBOL): Checking If the BFILE is Open with ISOPEN
	C/C++ (Pro*C/C++): Checking If the BFILE is Open with ISOPEN
	Visual Basic (OO4O): Checking If the BFILE is Open with ISOPEN
	Java (JDBC): Checking If the BFILE is Open with ISOPEN

	Displaying BFILE Data
	PL/SQL: Displaying BFILE Data
	C (OCI): Displaying BFILE Data
	COBOL (Pro*COBOL): Displaying BFILE Data
	C/C++ (Pro*C/C++): Displaying BFILE Data
	Visual Basic (OO4O): Displaying BFILE Data
	Java (JDBC): Displaying BFILE Data

	Reading Data from a BFILE
	The Amount Parameter
	PL/SQL (DBMS_LOB Package): Reading Data from a BFILE
	C (OCI): Reading Data from a BFILE
	COBOL (Pro*COBOL): Reading Data from a BFILE
	C/C++ (Pro*C/C++): Reading Data from a BFILE
	Visual Basic (OO4O): Reading Data from a BFILE
	Java (JDBC): Reading Data from a BFILE

	Reading a Portion of BFILE Data (substr)
	PL/SQL (DBMS_LOB Package): Reading a Portion of BFILE Data (substr)
	COBOL (Pro*COBOL): Reading a Portion of BFILE Data (substr)
	C/C++ (Pro*C/C++): Reading a Portion of BFILE Data (substr)
	Visual Basic (OO4O): Reading a Portion of BFILE Data (substr)
	Java (JDBC): Reading a Portion of BFILE Data (substr)

	Comparing All or Parts of Two BFILES
	PL/SQL (DBMS_LOB Package): Comparing All or Parts of Two BFILES
	COBOL (Pro*COBOL): Comparing All or Parts of Two BFILES
	C/C++ (Pro*C/C++): Comparing All or Parts of Two BFILES
	Visual Basic (OO4O): Comparing All or Parts of Two BFILES
	Java (JDBC): Comparing All or Parts of Two BFILES

	Checking If a Pattern Exists (instr) in the BFILE
	PL/SQL (DBMS_LOB Package): Checking If a Pattern Exists (instr) in the BFILE
	COBOL (Pro*COBOL): Checking If a Pattern Exists (instr) in the BFILE
	C/C++ (Pro*C/C++): Checking If a Pattern Exists (instr) in the BFILE
	Java (JDBC): Checking If a Pattern Exists (instr) in the BFILE

	Checking If the BFILE Exists
	PL/SQL (DBMS_LOB Package): Checking If the BFILE Exists
	C (OCI): Checking If the BFILE Exists
	COBOL (Pro*COBOL): Checking If the BFILE Exists
	C/C++ (Pro*C/C++): Checking If the BFILE Exists
	Visual Basic (OO4O): Checking If the BFILE Exists
	Java (JDBC): Checking If the BFILE Exists

	Getting the Length of a BFILE
	PL/SQL (DBMS_LOB Package): Getting the Length of a BFILE
	C (OCI): Getting the Length of a BFILE
	COBOL (Pro*COBOL): Getting the Length of a BFILE
	C/C++ (Pro*C/C++): Getting the Length of a BFILE
	Visual Basic (OO4O): Getting the Length of a BFILE
	Java (JDBC): Getting the Length of a BFILE

	Copying a LOB Locator for a BFILE
	PL/SQL: Copying a LOB Locator for a BFILE
	C (OCI): Copying a LOB Locator for a BFILE
	COBOL (Pro*COBOL): Copying a LOB Locator for a BFILE
	C/C++ (Pro*C/C++): Copying a LOB Locator for a BFILE
	Java (JDBC): Copying a LOB Locator for a BFILE

	Determining If a LOB Locator for a BFILE Is Initialized
	C (OCI): Determining If a LOB Locator for a BFILE Is Initialized
	C/C++ (Pro*C/C++): Determining If a LOB Locator for a BFILE Is Initialized

	Determining If One LOB Locator for a BFILE Is Equal to Another
	C (OCI): Determining If One LOB Locator for a BFILE Is Equal to Another
	C/C++ (Pro*C/C++): Determining If One BFILE LOB Locator Is Equal to Another
	Java (JDBC): Determining If One LOB Locator for a BFILE Is Equal to Another

	Getting DIRECTORY Alias and Filename
	PL/SQL (DBMS_LOB Package): Getting Directory Alias and Filename
	C (OCI): Getting Directory Alias and Filename
	COBOL (Pro*COBOL): Getting Directory Alias and Filename
	C/C++ (Pro*C/C++): Getting Directory Alias and Filename
	Visual Basic (OO4O): Getting Directory Alias and Filename
	Java (JDBC): Getting Directory Alias and Filename

	Updating a BFILE Using BFILENAME()
	SQL: Updating a BFILE by means of BFILENAME()

	Updating a BFILE by Selecting a BFILE From Another Table
	SQL: Updating a BFILE by Selecting a BFILE From Another Table

	Updating a BFILE by Initializing a BFILE Locator
	PL/SQL: Updating a BFILE by Initializing a BFILE Locator
	C (OCI): Updating a BFILE by Initializing a BFILE Locator
	COBOL (Pro*COBOL): Updating a BFILE by Initializing a BFILE Locator
	C/C++ (Pro*C/C++): Updating a BFILE by Initializing a BFILE Locator
	Visual Basic (OO4O): Updating a BFILE by Initializing a BFILE Locator
	Java (JDBC): Updating a BFILE by Initializing a BFILE Locator

	Closing a BFILE with FILECLOSE
	PL/SQL (DBMS_LOB Package): Closing a BFile with FILECLOSE
	C (OCI): Closing a BFile with FILECLOSE
	Visual Basic (OO4O): Closing a BFile with FILECLOSE
	Java (JDBC): Closing a BFile with FILECLOSE

	Closing a BFILE with CLOSE
	PL/SQL (DBMS_LOB Package): Closing a BFile with CLOSE
	C (OCI): Closing a BFile with CLOSE
	COBOL (Pro*COBOL): Closing a BFILE with CLOSE
	C/C++ (Pro*C/C++): Closing a BFile with CLOSE
	Visual Basic (OO4O): Closing a BFile with CLOSE
	Java (JDBC): Closing a BFile with CLOSE

	Closing All Open BFILEs with FILECLOSEALL
	PL/SQL (DBMS_LOB Package): Closing All Open BFiles
	C (OCI): Closing All Open BFiles
	COBOL (Pro*COBOL): Closing All Open BFiles
	C/C++ (Pro*C/C++): Closing All Open BFiles
	Visual Basic (OO4O): Closing All Open BFiles
	Java (JDBC): Closing All Open BFiles with FILECLOSEALL

	Deleting the Row of a Table Containing a BFILE
	SQL: Deleting a Row from a Table

	13 Using OraOLEDB to Manipulate LOBs
	Introducing OLE DB
	OraOLEDB: OLE DB and Oracle Large Object (LOB) Support
	Rowset Object

	Manipulating LOBs Using ADO Recordsets and OLE DB Rowsets
	Use Explicit Transactions
	ADO Recordsets and LOBs
	GetChunk()
	Writing Data to a LOB Column With AppendChunk()

	OLE DB Rowsets and LOBs

	Manipulating LOBs Using OraOLEDB Commands
	ADO and LOBs Example 1: Inserting LOB Data From a File

	14 LOBs Case Studies
	Building a Multimedia Repository
	How this Application Uses LOBs
	Populating the Repository
	Example 1: Inserting a Word document into a BLOB Column using PL/SQL
	Searching the Repository
	How the Index Was Built on Table sam_emp, resume Column
	MyServletCtx Servlet
	MyServletCtx.java

	Retrieving Data from the Repository
	MyServlet.java

	Summary

	Building a LOB-Based Web Site: First Steps
	Problem
	First Steps Solution

	A Unified Modeling Language Diagrams
	Use Case Diagrams
	State Diagrams

	B The Multimedia Schema
	A Typical Multimedia Application
	The Multimedia Schema
	Table Multimedia_Tab
	Script for Creating the Multimedia Schema

	Index

