
Monitor ing Oracle wi th ut lbsta t/ut lestat 27
This material is extracted from the second half of Chapter 22 of Configuring and Tun-
ing Databases on the Solaris Platform, by Allan N. Packer, (c) 2002, Sun Microsys-
tems Press. The first half of the chapter appeared in the July edition of Sun
BluePrints Online. Chapter 21, Drill-Down Monitoring of Database Servers, was pre-
sented in the June 2002 edition of Sun BluePrints Online.

M o n i t o r i n g O r a c l e w i t h u t l b s t a t / u t l e s t a t
In the first part of this chapter we considered ways of managing Oracle
behavior, including changing tunable parameters, monitoring error mes-
sages, generating explain plans, and calculating the buffer cache hit rate. We
then discussed monitoring Oracle with the utlbstat.sql and utl-
estat.sql scripts. We continue this theme with buffer busy wait statistics.

Buffer Busy Wait Statistics
The following statistics are useful if buffer busy wait events suggest high con-
tention on buffers. The issues are discussed earlier in this chapter in “Sys-
temwide Wait Events” on page 19.
SQL> Rem Buffer busy wait statistics. If the value for ‘buffer busy wait’ in
SQL> Rem the wait event statistics is high, then this table will identify
SQL> Rem which class of blocks is having high contention. If there are high
SQL> Rem ‘undo header’ waits, then add more rollback segments. If there are
SQL> Rem high ‘segment header’ waits, then adding freelists might help. Check
SQL> Rem v$session_wait to get the addresses of the actual blocks having
SQL> Rem contention.
SQL> select * from stats$waitstat
 2 where count != 0
 3 order by count desc;

CLASS COUNT TIME
data block 288 0
undo header 49 0
undo block 38 0
free list 4 0

MONITORING AND
TUNING ORACLE -

CHAPTER 22 PART 2

28 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
Rollback Segments
The v$rollstat view presents detailed information on rollback segment
behavior. The purpose of rollback segments is described in “Segments” on
page 112 of Configuring and Tuning Databases on the Solaris Platform.

As transactions proceed, rollback segments gradually grow in size. Oracle
reclaims this space periodically by automatically eliminating extents to
return a rollback segment to the optimal size (set by the OPTIMAL parameter
in the STORAGE clause of the rollback segment). A substantial number of
shrinks can indicate that the optimal rollback segment size is too small. Be
aware, though, that setting the OPTIMAL parameter too large wastes space.

If waits are more than 5% of gets, increase the number of rollback seg-
ments.

Note that I have abbreviated some of the column headings above for for-
matting purposes.

Modified init.ora Parameters
The following section of the report.txt file displays current init.ora
parameters that have been modified from the defaults.

SQL> set lines 159;
SQL> set numwidth 19;
SQL> Rem Waits_for_trans_tbl high implies you should add rollback segments.
SQL> select * from stats$roll;

UNDO_SEG

TRN_TBL_GETS

TRN_TBL_WAITS

UNDO_BYT_WR

SEG_SIZE_BYT

XACTS

SHRINKS

WRAPS

0 6 0 0 458752 0 0 0
1 36385 0 24940942 2762752 0 0 293
2 35993 0 24685736 2353152 1 0 289
3 35937 0 24726410 6858752 1 0 290

<< rows deleted >>

SQL> set lines 79;
SQL>
SQL> column name format a39 trunc;
SQL> column value format a39 trunc;
SQL> Rem The init.ora parameters currently in effect:
SQL> select name, value from v$parameter where isdefault = ‘FALSE’
 2 order by name;

NAME VALUE
db_block_buffers 605600
db_block_size 2048
db_file_multiblock_read_count 4
db_files 350
db_name accts
db_writer_processes 5
dml_locks 2500
log_buffer 8097792
log_checkpoint_interval 999999999
shared_pool_size 33554432
sort_area_size 1000000
transactions 1000
<< rows deleted >>

Monitor ing Oracle wi th ut lbsta t/ut lestat 29
Dictionary Cache Statistics

The dictionary cache stores data dictionary information for all objects in the
database. Consequently, it tends to be heavily accessed. Details of dictionary
cache statistics can also be queried with the v$rowcache view.

Once the database has been running for a while, look for a high proportion
of misses compared to gets. If misses are significant, increase the size of the
shared pool (the shared_pool_size parameter in init.ora).

Tablespace and Database File I/O Activity

The following section of report.txt shows I/O activity by tablespace and by
database file, including the number of physical reads and writes and the time
taken to complete each type of I/O (in hundredths of seconds). If times are
shown as 0, set the timed_statistics parameter in init.ora to TRUE.

Mapping database files to physical disks can be complicated if a volume
manager is used to stripe the database files. Nonetheless, information about
the I/O activity for each file can be useful in data layout planning (discussed
in detail in Chapter 17). For more information about monitoring disk utiliza-
tion, refer to “STEP 2. Monitoring Disks” on page 289 of Configuring and

SQL> column name format a15 trunc;
SQL> column scan_reqs heading ‘SCAN_REQ’;
SQL> column scan_miss heading ‘SCAN_MIS’;
SQL> column cur_usage heading ‘CUR_USAG’;
SQL> set numwidth 8;
SQL> Rem get_miss and scan_miss should be very low compared to requests.
SQL> Rem cur_usage is the number of entries in the cache being used.
SQL> select * from stats$dc
 2 where get_reqs != 0 or scan_reqs != 0 or mod_reqs != 0;

NAME

GET_REQS

GET_MISS

SCAN_REQ

SCAN_MIS

MOD_REQS

COUNT

CUR_USAG

dc_tablespaces 39923 0 0 0 0 14 13
dc_free_extents 28 6 6 0 18 42 4
dc_segments 29 0 0 0 6 141 123
dc_rollback_seg 600 0 0 0 0 66 61
dc_used_extents 6 6 0 0 6 88 55
dc_tablespace_q 23 0 0 0 23 23 8
dc_users 56 0 0 0 0 14 6
dc_user_grants 52 0 0 0 0 14 4
dc_objects 18 0 0 0 0 313 301
dc_usernames 3 0 0 0 0 21 4
dc_object_ids 10 0 0 0 0 230 218
dc_profiles 1 0 0 0 0 3 1

12 rows selected.

30 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
Tuning Databases on the Solaris Platform.

SQL> set lines 157;
SQL> column table_space format a80 trunc;
SQL> set numwidth 10;
SQL> Rem Sum IO operations over tablespaces.
SQL> select
 2 table_space||’ ‘
 3 table_space,
 4 sum(phys_reads) reads, sum(phys_blks_rd) blks_read,
 5 sum(phys_rd_time) read_time, sum(phys_writes) writes,
 6 sum(phys_blks_wr) blks_wrt, sum(phys_wrt_tim) write_time,
 7 sum(megabytes_size) megabytes
 8 from stats$files
 9 group by table_space
 10 order by table_space;

TABLE_SPACE READS BLKS_READ READ_TIME WRITES BLKS_WRT WRITE_TIME MEGABYTES
------------ ----- --------- --------- ------ -------- ---------- ---------
SYSTEM 410 1528 2321 28333 28333 0 262
TABLESPACE1 415 415 1610 1331 1331 0 52
TABLESPACE10 22847 22847 62941 49582 49582 0 189
TABLESPACE12 15288 15287 51655 2 2 0 157
TABLESPACE15 2 2 0 5102 5102 0 31
TABLESPACE16 2 2 0 2 2 0 210
TABLESPACE5 291653 291643 916007 225756 225755 0 2310
TABLESPACE6 77249 77249 201654 116744 116746 0 2520
TABLESPACE7 252514 252506 961914 491426 491428 0 3528
<< rows deleted >>

SQL> set lines 196;
SQL> column table_space format a48 trunc;
SQL> column file_nameformat a48 trunc;
SQL> set numwidth 10;
SQL> Rem I/O should be spread evenly across drives. A big difference
between
SQL> Rem phys_reads and phys_blks_rd implies table scans are going on.
SQL> select table_space, file_name,
 2 phys_reads reads, phys_blks_rd blks_read, phys_rd_time read_time,
 3 phys_writes writes, phys_blks_wr blks_wrt, phys_wrt_tim write_time,
 4 megabytes_size megabytes,
 5 round(decode(phys_blks_rd,0,0,phys_rd_time/phys_blks_rd),2) avg_rt,
 6 round(decode(phys_reads,0,0,phys_blks_rd/phys_reads),2) “blocks/rd”
 7 from stats$files order by table_space, file_name;

TABLE_SPACE FILE_NAME READS BLKS_READ READ_TIME WRITES
BLKS_WRT WRITE_TIME MEGABYTES AVG_RT blocks/rd
-------------- ------------------------ ----- --------- --------- ------
-------- ---------- --------- ------ ---------
SYSTEM /home2/dbfiles/sys001 410 1528 2321 28333
 28333 0 262 1.52 3.73
TABLESPACE1 /home3/dbfiles/wdi001 415 415 1610 1331
 1331 0 52 3.88 1
TABLESPACE10 /home2/dbfiles/iord2001 22847 22847 62941 49582
 49582 0 189 2.75 1
TABLESPACE12 /home2/dbfiles/icust001 15288 15287 51655 2
 2 0 157 3.38 1
TABLESPACE15 /home2/dbfiles/roll001 2 2 0 5102
 5102 0 31 0 1
<< rows deleted >>

Monitor ing the Shared Pool 31
Date, Time, and Version Details

The final section of report.txt shows the start and end time of the report
and the Oracle version.

M o n i t o r i n g t h e S h a r e d P o o l
The Oracle shared memory area is called the System Global Area (SGA).
After the buffer cache, the shared pool is typically the largest component of
the SGA.

The shared pool includes memory for the library cache, which caches infor-
mation about database objects such as stored procedures and views, the cur-
sor cache, which caches SQL statements and, if the Shared Server (previously
known as the MultiThreaded Server, or MTS) is in use, a cache for session-
specific information such as the context area and the sort area.

If the shared pool is too small, performance can suffer. It can be increased
with the shared_pool_size parameter in init.ora . To monitor the shared
pool, run the following statements as sysdba :

If free memory is more than 40% of the shared pool, you may be able to
decrease the size of the shared pool. It is less easy to determine whether the
shared pool is too small; a system with only 10% free memory in the shared
pool might be running efficiently. Look for RELOADS in the library cache sta-
tistics to see how often objects have been aged out of the shared pool (see

SQL> set lines 79;
SQL>
SQL> column start_time format a25;
SQL> column end_time format a25;
SQL> Rem The times that bstat and estat were run.
SQL> select to_char(start_time, ‘dd-mon-yy hh24:mi:ss’) start_time,
 2 to_char(end_time,‘dd-mon-yy hh24:mi:ss’) end_time
 3 from stats$dates;

START_TIME END_TIME
------------------------- -------------------------
17-aug-01 10:01:30 17-aug-01 10:31:24

SQL> column banner format a75 trunc;
SQL> Rem Versions
SQL> select * from v$version;

BANNER
--
Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
PL/SQL Release 9.0.1.0.0 - Production
CORE 9.0.1.0.0 - Production
TNS for Solaris: Version 9.0.1.0.0 - Production
NLSRTL Version 9.0.1.0.0 - Production

SQL> spool off;

select value from v$parameter where name = ’shared_pool_size’;
select name, bytes from v$sgastat where name = ’free memory’;

32 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
“The Library Cache” on page 13 for details). Frequent reloads can indicate
that the shared pool is too small.

Tu n i n g O r a c l e
Once the system has been appropriately configured (see Chapters 13 through
17, and especially the data layout recommendations in Chapter 17 of Config-
uring and Tuning Databases on the Solaris Platform), it is appropriate to find
out if Oracle is properly configured. Oracle tuning is carried out with
init.ora parameters, of which there are many; we focus on the most impor-
tant parameters.

Tuning init.ora
When Oracle is installed, the init.ora file assumes a “small model” with
just 400 Kbytes set aside for database buffers. For many end-user sites, sev-
eral init.ora parameters will need to be changed in order for Oracle to
work effectively.

A number of general tunable parameters unrelated to performance need to
be assigned values large enough to support the required number of users and
transactions:

• processes : The number of concurrent processes supported.
• sessions : The number of concurrent sessions supported.

• dml_locks : The number of locks that can be set. Needs to be set high
enough to avoid “DML Lock” error. Try eight times the number of trans-
actions.

• db_files : The number of database files that can be open while the
database is running.

• transactions : The number of concurrent transactions supported.

Setting Tunable Parameters for OLTP Workloads
The most important init.ora tunable parameters for OLTP workloads are
the following:

• db_block_size : Database block size in bytes. This parameter must be
set when the database is created. You cannot change the block size once
it is set without exporting and reimporting the data. All database blocks
use this size. Use 2 Kbytes (set db_block_size to 2048), 4 Kbytes
(4096), or 8 Kbytes (8192) for OLTP workloads.
As of Oracle9i, different block sizes can be used for different tablespaces.
The blocksize clause of the create tablespace statement can be
used to achieve this effect.

Tuning Oracle 33
• db_block_buffers : The amount of memory in database blocks set
aside for the database buffer cache. The block size is defined by the
db_block_size parameter. For OLTP workloads, this parameter is
probably the most important tunable for performance. If you change it,
monitor the buffer cache hit rate before and after to see how much
improvement you have gained. Refer to “Calculating the Buffer Cache
Hit Rate” on page 11 for details.

• buffer_pool_keep and buffer_pool_recycle : Parameters that
reset the recycle and keep pools, described in “System Global Area
(SGA)” on page 108 of Configuring and Tuning Databases on the Solaris
Platform. These pools can be especially useful for improving the perfor-
mance of OLTP workloads. Set the buffer_pool_keep and
buffer_pool_recycle parameters in init.ora to the number of
blocks that should be reserved for the keep and recycle pools, respec-
tively. The number of blocks in the main (default) buffer pool will con-
sist of those assigned to db_block_buffers minus those assigned to
buffer_pool_keep and buffer_pool_recycle .

To assign a table to the keep pool, for example, add the storage
(buffer_pool keep) clause to either a create table or an alter
table statement. The following statement illustrates the required syn-
tax:

• db_cache_size : Replacement for db_block_buffers in Oracle9i,
although the older parameter is still supported for backward compatibil-
ity. The recommended approach is now to use db_cache_size , which
uses a unit of bytes rather than blocks, making it easier to understand.
If you use db_block_buffers , you won't be able to dynamically resize
the buffer cache (described in “Reconfiguring Oracle9i Dynamically” on
page 40).

As previously stated, Oracle9i also supports different block sizes for dif-
ferent tablespaces. Consequently, separate caches must be configured for
these tablespaces. The following new parameters are used to configure
caches for tablespaces with 2-, 4-, 8-, 16-, and 32-Kbyte block sizes,
respectively:

db_2k_cache_size
db_4k_cache_size
db_8k_cache_size
db_16k_cache_size
db_32k_cache_size

Any new caches will be configured in addition to the cache that is sized
according to the db_cache_size parameter. One parameter must be
avoided, though: the cache size parameter corresponding to the current
block size. For example, if the standard db_block_size is set to 4096 ,
the db_4k_cache_size parameter cannot be used. The appropriate

alter table customer storage (buffer_pool keep);

34 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
parameter for tablespaces using the standard block size is
db_cache_size .

• shared_pool_size : The size in bytes of the shared pool in the SGA.
The shared pool stores the library cache, the shared SQL area, and ses-
sion-specific data (only when the Shared Server is being used). This
parameter is also important for performance. Depending on the environ-
ment and the amount of memory available, set it to a minimum of 20
Mbytes. Larger sites will require much more memory for the shared
pool.

• sort_area_size : The maximum size in bytes of user memory avail-
able for sorting. Sorting is required during index creation and as a
result of the group by and order by clauses of the select statement.
Increase this parameter if sorts (disk) in v$sysstat (or
report.txt) is more than 5% of sorts (memory) and disk sorts are
occurring frequently. Note that the statspack report calculates the In-
memory sort % . The sort_area_size parameter determines the
memory allocation per user, so a large setting can quickly consume
memory. Use 64 Kbytes, or more if plenty of memory is available.

• log_buffer : The size in bytes of the redo log buffer in the SGA. Log
data is cached here before being written to the redo logs. Try 1 Mbyte.

• db_writer_processes (db_writers in Oracle7): The number of
DBWR processes available to flush dirty pages from the buffer cache.
For small systems you can use the default of 1, although for large OLTP
systems more than one will probably be necessary. Increase the number
of DBWR processes if free buffer waits appears as one of the most
frequent wait events or the dirty buffers inspected statistic is
much greater than zero in the report.txt file. Note that you should
increase db_writer_processes rather than the dbwr_io_slaves
parameter.

In Oracle7, multiple db_writers could be used only if async_write
was set to FALSE.

• rollback_segments : The rollback segments available for transac-
tions. Rollback segments need to be big enough to complete large trans-
actions, and you need enough of them to support multiple concurrent
transactions without undue contention. Increase the number of rollback
segments if undo header waits in v$waitstat is high and increasing.

• disk_async_io : A boolean parameter designating whether or not asyn-
chronous I/O should be used. Use the default of TRUE. In Oracle7, set
async_read and async_write to TRUE. In combination with raw parti-
tions, asynchronous I/O allows the use of Kernel Asynchronous I/O
(KAIO). Note, however, the recommendations and limitations on the use
of asynchronous I/O explained in “Using Oracle with File Systems” on
page 36.

Tuning Oracle 35
Setting Tunable Parameters for DSS Workloads

Following are the most important tunable parameters for DSS workloads:

• db_block_size : Database block size in bytes. Set when the database is
created. All database blocks use this size. Use 16 or 32 Kbytes for DSS
workloads.

• db_block_buffers : The amount of memory in database blocks (as
defined by db_block_size) set aside for the database buffer cache. For
DSS workloads, large buffer caches are less useful and this parameter is
usually set much lower than for OLTP workloads. As described above in
“Setting Tunable Parameters for OLTP Workloads” on page 32, a new
parameter, db_cache_size , is provided as of Oracle9i.

• shared_pool_size : The size in bytes of the shared pool in the SGA.
The shared pool stores the library cache and the shared SQL area. This
parameter is also important for performance. Depending on the amount
of memory available, set shared_pool_size to a minimum of 20
Mbytes.

• sort_area_size : The maximum size in bytes of user memory avail-
able for sorting. Increase if sorts (disk) in v$sysstat is more than
10% of sorts (memory) . This amount of memory can be allocated per
user, so large values can cause Oracle to quickly consume memory. Set
to 1 Mbyte or more if you have the memory available.

• sort_direct_writes : A boolean parameter designating whether or
not writes to temporary segments should bypass the buffer cache (as of
Oracle 7.2). Set to TRUE for DSS workloads to improve performance.
This parameter was made obsolete in Oracle8i; direct writes now occur
automatically.

• log_buffer : The size in bytes of the redo log buffer in the SGA. Buff-
ers log data before writing to the redo logs. This parameter can be
important for performance, especially during database updates. Try 1
Mbyte.

• db_file_multiblock_read_count : The number of database blocks
read at once when a tablescan is performed. Set it to 64 to get 1 Mbyte
reads with a db_block_size of 16 Kbytes.

• rollback_segments : The rollback segments available for transac-
tions. Rollback segments need to be big enough to complete large trans-
actions, and you need enough of them to support multiple concurrent
transactions without undue contention. Increase if undo header waits
in v$waitstat is high and increasing.

• hash_area_size : The maximum size in bytes that will be used for
hash joins (the default is twice sort_area_size). This parameter is
per user and is private memory, so multiple users can easily consume

36 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
more than 4 Gbytes, even with 32-bit databases on 32-bit Solaris. A
large hash area can make a big difference to hash join performance for
large tables. If you have a lot of memory, make it larger than 2 Mbytes.

• parallel_max_servers : The maximum size of the query server pool.
This parameter determines the degree of parallelism during table scans.
Use an upper limit of four times the number of CPUs. Set
parallel_min_servers to the same value.

• optimizer_percent_parallel : A weighting factor used by the opti-
mizer to determine how much weight to give to query parallelism. For
fastest, greedy use of resources, set to 100 (favors table scans). Lower
settings favor index scans.

• query_rewrite_enabled : A boolean parameter designating whether
or not the optimizer should rewrite queries to take advantage of previ-
ously created materialized views. Set to TRUE to enable materialized
views (Oracle 8i onwards). The query rewrite option can also be set by
an alter system or alter session SQL command.

A p p l y i n g O t h e r Tu n i n g T i p s
This section presents a number of miscellaneous tuning tips related to file
systems, load and index performance, and relinking of the oracle binary to
allow shared memory segments larger than 2 Gbytes in size.

Using Oracle with File Systems

The issues associated with using database files on file systems are discussed
elsewhere in this book:

• “Unix File System Enhancements” on page 21 of Configuring and Tun-
ing Databases on the Solaris Platform outlines the enhancements made
in Solaris to improve UFS database performance.

• “Raw Devices vs. UFS” on page 242 of the book discusses the perfor-
mance implications of UFS.

• “UFS Files and Paging” on page 284 of the book explores UFS files in
the context of system monitoring.

The bottom line is that if you decide to place your data files on UFS, use
Direct I/O as of the 1/01 release of Solaris 8, especially for redo log files.

Asynchronous I/O with File Systems
Although all recent versions of Oracle support asynchronous I/O on Solaris
raw devices, not all support asynchronous I/O on Unix file systems. Asynchro-
nous I/O and its benefits are described in “Kernel Asynchronous I/O” on
page 21 of Configuring and Tuning Databases on the Solaris Platform.

Applying Other Tuning Tips 37
The use of asynchronous I/O by Oracle is controlled by the
disk_async_io parameter in init.ora (in Oracle7, the async_read and
async_write parameters are used instead). The default of TRUE should be
used for raw devices.

Versions of Oracle before Oracle8.1.5 also support asynchronous I/O for
database files residing on file systems. The Oracle8.1.5 and 8.1.6 releases,
however, automatically disable asynchronous I/O for database files on file sys-
tems, whatever the setting of disk_async_io .

For releases as of Oracle8.1.7 (including Oracle9i), asynchronous I/O is
once again supported on file systems, and a hidden parameter,
_filesystemio_options , has been introduced to control its behavior. This
parameter accepts the following values:

• async . This is the default setting, and means that asynchronous I/O is
enabled for database files on Unix file systems.

• directIO . Enable Direct I/O, but not asynchronous I/O, for database
files on Unix file systems.

• setall . Enable both Direct I/O and asynchronous I/O for database files
on Unix file systems. You can also achieve this effect with the default
setting of async and by mounting file systems with the
forcedirectio option.

• none . Do not enable either asynchronous I/O or Direct I/O for database
files on Unix file systems.

Recommended Settings with File Systems

For database files on Unix file systems, use asynchronous I/O whenever it is
supported, since asynchronous I/O allows the database writers to work more
effectively by issuing multiple writes simultaneously. In addition, use Direct
I/O as of the 1/01 release of Solaris 8.

For database files on raw devices, always use asynchronous I/O, the default
setting.

To remain consistent with my earlier caution about the use of hidden
parameters (see “Viewing and Changing Hidden Parameters” on page 5), it
would seem reasonable to leave the default for _filesystemio_options as
async and enable Direct I/O (as of Solaris 8 1/01) by mounting file systems
with the forcedirectio option. This combination will result in the same
effect as the setall option.

In fact, as of the second release of Oracle9i, the parameter becomes a nor-
mal parameter (filesystemio_options). Nonetheless, I still suggest using
the parameter default and enabling Direct I/O.

The usefulness of Direct I/O is enhanced by the fact that it can be dynami-
cally turned on and off for any mounted file system, as the following com-
mands illustrate:

mount -o remount,forcedirectio /my/filesystem

mount -o remount,noforcedirectio /my/filesystem

38 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
Optimizing Oracle Load Performance
DSS workloads in particular tend to require periodic loads, often of large vol-
umes of data.

To reduce load times, use the sequence outlined in the following steps.

Load the Database Tables
You save significant time by avoiding access to the online redo log and archive
logs during data loading. You can run Oracle in NOARCHIVELOG mode. Alter-
natively, you can disable redo generation with the alter table statement
before loading the data and use the same statement to reenable generation of
redo data after the load has completed. Remember to back up the database
files after the load completes. An example is given below.

Presorting the data according to index columns and loading with the
SORTED INDEX option can also save time if indexes already exist.

Use direct path loading to bypass SQL processing and buffer cache access
(the direct=true parameter). Note that direct path loading imposes some
restrictions, such as requiring exclusive access to the table during load; check
any restrictions for your version of Oracle before attempting to use the direct
path load feature.

Use load parallelism if possible to shorten the load time. The load com-
mands for a two-way parallel load are shown in the following example:

Note that each load session requires its own control file.

Analyze the Database Tables
This step is important to allow the optimizer to recognize data skew. Analyze
all columns that are likely to be queried (but not comment or description col-
umns unless you know they will be queried). Analyze commands are shown in
the following examples:

The second example illustrates a command that might be appropriate for
very large tables in which the distribution of data in a subset of the table can
be expected to represent the overall data distribution.

Note that the DBMS_STATS package can also be used to gather statistics.

SQL> alter table customer nologging;
Table altered.
SQL>
< -- Load data into table -- >
SQL> alter table customer logging;
Table altered.

sqlldr userid=id/pwd control=c1.ctl direct=true parallel=true
sqlldr userid=id/pwd control=c2.ctl direct=true parallel=true

analyze table item compute statistics;
analyze table stock estimate statistics sample 15000 rows;

Applying Other Tuning Tips 39
Create the Indexes
Index creation is fastest if done after the tables have been loaded rather than
during load. Index creation is also 10% to 15% faster after the tables have
been analyzed. Drop indexes before the load to ensure that index creation
does not take place during the load.

Use the parallel option when creating indexes if multiple CPUs are avail-
able. For example:

Analyze the Indexes
The final step is to analyze the indexes for the benefit of the optimizer. Exam-
ples of the analyze index command are shown below.

Note that the DBMS_STATS package can also be used to gather index statis-
tics, and that the compute statistics keywords can be applied to the
create index statement, eliminating the need for a separate analyze step.

Planning for Indexes
The primary key of a table normally has an associated index. Apart from
that, deciding when to create an index is not always easy. Here are some gen-
eral guidelines:

• If between one-half of 1% and 2% or more of the data in a table will be
retrieved as a result of a query predicate, a table scan will be faster than
retrieving the data from the base table with an index. So in this case
you may be better off without an index, since an optimizer will often
choose to use an index if one is present.

• If you know which columns are usually accessed in a table, consider a
concatenated index to bypass the base table.

• If a query is stable and frequently run, consider the materialized view
feature in Oracle8i.

Using an SGA Larger Than 2 Gbytes
Some applications need all the shared memory they can get, especially in
high-throughput environments where extra memory in the buffer cache can
benefit performance significantly. With 32-bit versions of Oracle, though, you
will need to change the base address of the Oracle shared memory segment
(sgabeg) and relink the oracle binary before you can use an SGA larger

create index custname_idx on customer (cust_name)
parallel (degree 8);

analyze index w_idx compute statistics;
analyze index d_idx compute statistics;
analyze index custname_idx estimate statistics sample 2 percent;

40 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
than 2 Gbytes. The method varies slightly with different versions of Oracle;
the procedure for Oracle8 and later releases is documented in this section.

The standard oracle binary ships with sgabeg = 0x80000000 , which
allows a little less than 2 Gbytes of SGA shared memory. To allow for an SGA
of around 3.75 Gbytes in size, lower sgabeg to 0x08000000 .

The procedure outlined below will rebuild the oracle binary with sgabeg
set to 0x08000000 :

The make -f ins_rdbms.mk ksms.o line is only needed for some older
Oracle8 releases, but it does no harm on later releases, including Oracle9i.

To allow for the maximum possible shared memory segment size, ensure
that the shmmax parameter in /etc/system is set high enough. Use the fol-
lowing line, which sets shmmax to the largest possible setting for 32-bit data-
bases:

For 64-bit versions of Oracle, set shmmax as shown in the following line:

When increasing the size of the SGA, remember to leave enough room for
your applications so that the system does not page. Any performance benefits
from a large buffer cache will be more than outweighed by the negative per-
formance impact of paging. Refer to “STEP 1. Monitoring Memory” on
page 282 of Configuring and Tuning Databases on the Solaris Platform for
information about how to recognize memory paging.

R e c o n f i g u r i n g O r a c l e 9 i D y n a m i c a l l y
Dynamic Reconfiguration (DR) support in Solaris and on Sun hardware is
described under “Dynamic Reconfiguration” on page 26 of Configuring and
Tuning Databases on the Solaris Platform, along with a discussion on its
implications for databases.

Oracle9i Dynamic System Global Area
Oracle’s Dynamic System Global Area (SGA) capability, released with
Oracle9i, for the first time offers the capability of altering the size of the SGA

oracle$ nm -P $ORACLE_HOME/bin/oracle | grep sgabeg
sgabeg n 80000000 0
oracle$ cd $ORACLE_HOME/rdbms/lib
oracle$ genksms -s 0x08000000 > ksms.s
oracle$ make -f ins_rdbms.mk ksms.o
oracle$ make -f ins_rdbms.mk ioracle
<< various messages deleted >>
oracle$ nm -P $ORACLE_HOME/bin/oracle | grep sgabeg
sgabeg n 8000000 0
oracle$

set shmsys:shminfo_shmmax = 0xffffffff

set shmsys:shminfo_shmmax = 0xffffffffff

Reconfigur ing Oracle9i Dynamical ly 41
while the database is live. In particular, Oracle9i supports changes to the
sizes of the buffer cache and shared pool, the two major components of the
SGA. When intimate shared memory (ISM) is used for the SGA, the amount
of memory allocated to the buffer cache and the shared pool can be traded off
against each other, although the total amount of memory allocated to the
SGA cannot change. For example, the buffer cache can first be reduced in
size, and then the shared pool increased by the same amount (and vice versa).
When Dynamic ISM (DISM) is used for the SGA, the total size of the SGA can
be changed dynamically.

After connecting to Oracle as sysdba , you can change the buffer cache and
shared pool with the following statements:

The db_cache_size tunable parameter is the recommended way of set-
ting the size of the buffer cache. The old db_block_buffers parameter is
still supported for backward compatibility, but it cannot be used if dynamic
SGA capabilities are required.

Oracle9i also introduces a new optional init.ora parameter:
sga_max_size . If sga_max_size is not set, Oracle will calculate it automat-
ically in accordance with the user-supplied settings for shared_pool_size ,
either db_cache_size or db_block_buffers , and other SGA memory
requirements. More significantly, on Solaris, if sga_max_size is not set, then
ISM rather than DISM will be used for shared memory attaches. ISM will
also be used if sga_max_size is set less than or equal to the total of
db_cache_size and shared_pool_size .

How Oracle Chooses Between ISM and DISM

When the sga_max_size parameter is set larger than the total of
db_cache_size, shared_pool_size , and the other smaller SGA compo-
nents used by Oracle, Oracle9i automatically uses DISM. In this case, the
amount of memory initially locked will be equal to db_cache_size plus
shared_pool_size plus the other SGA components. When the buffer cache
or shared pool is resized later, Oracle will either lock additional memory or
unlock and release existing memory, depending on whether the change
results in an increase or decrease in size.

Oracle also makes available a sample Reconfiguration Coordination Man-
ager (RCM) script to allow the buffer cache and shared pool to be automati-
cally resized if a DR event takes place. A sample script is included on the
book website. Database administrators should modify the script according to
local requirements. For example, if a DR operation that will remove 2 Gbytes
of memory is attempted, the script should decide which instances should be
adjusted and by how much.

alter system set db_cache_size = new_size_in_bytes;
alter system set shared_pool_size = new_size_in_bytes;

42 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
Oracle9i program global area (PGA) memory can also be resized. This
memory is local to each Oracle process rather than allocated as shared mem-
ory, so neither ISM nor DISM is used for PGA memory.

The Benefits of Using Dynamic SGA
When memory must be removed from a running system, a DR operation can
be attempted. The DR event may fail, though, for example, if locked memory
cannot be relocated onto other system boards. Consequently, there are times
when the only alternative to dynamic SGA resizing is to disconnect all users
from the database, shut it down, modify the SGA size, restart the database,
and reconnect the users. Application availability is clearly compromised with-
out the flexibility to resize SGA segments. For this reason, Oracle9i repre-
sents a significant leap forward in database availability.

Two scenarios can be considered to illustrate the impact of DR events on
the database administrator. The first scenario covers the case where no RCM
script has been configured to allow automatic reconfiguration of the SGA. If
memory is to be removed, the buffer cache or shared pool must first be
resized with the appropriate alter system commands. Once the resizing is
done, the system board can be removed. If memory has been increased by
addition of a system board, the buffer cache and the shared pool can be
increased at any time with a suitable alter system command.

The second scenario covers the case where an RCM script has been config-
ured to automatically issue the alter system commands in response to
memory changes in the system. In this case, the DR event can take place
without operator intervention.

In summary, Oracle9i effectively leverages the DR and RCM features in
Solaris 8 (starting from the 4/01 release) to provide a significant boost to
application availability.

R e c o v e r i n g O r a c l e
When you configure Oracle, it is wise to take into account recovery time as
well as performance. In this section we focus on crash recovery, rather than
database restore and roll-forward recovery after media failure.

Crash recovery should not happen often, but when it does you’ll probably
be grateful for any steps you took with a view to reducing the recovery time.
In this section we explore Oracle tunables that relate to checkpoints and
recovery and consider the trade-off between performance and recovery time.
Checkpoints are described briefly in “Pagecleaners” on page 55 of Configur-
ing and Tuning Databases on the Solaris Platform, and crash recovery is
described in “Database Recovery Process”, also on page 55.

Checkpoints and recovery time are an issue in environments where insert,
update, and delete database operations feature prominently, so the discus-
sion that follows has less relevance to read-only and read-mostly environ-

Recover ing Oracle 43
ments. OLTP workloads are typically good candidates for consideration of the
implications of crash recovery.

The Influence of Checkpoints on Recovery Time
Recovery time is influenced significantly by checkpoint frequency. Oracle
checkpoints are triggered when one of the following events takes place:

• An online redo log fills, causing a log file switch to occur.

• The checkpoint interval expires.

• A database administrator manually requests a checkpoint (alter sys-
tem checkpoint) or redo log switch (alter system switch logfile).

Recovery is fastest when a system crash occurs immediately after a check-
point, since all modified pages will have been flushed to disk. The longer the
interval between a checkpoint and a crash, the more work will be required to
recover the database.

Oracle does not wait until a checkpoint to flush its dirty buffers, so the
recovery time is not directly proportional to the interval between a check-
point and a crash. The graph in Figure 4 shows read and write I/O activity for
an Oracle8.1.5 data disk with checkpoints near the start and end of the moni-
toring period.

 Figure 4 Data disk activity during and between checkpoints

Reads
Writes
Checkpoint Start
Checkpoint End

100

80

60

40

20

0
0 500 1000 1500

Seconds

Data Disk l/O Activity

2000 2500

K
by

te
s/

se
c

44 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
The graph shows that writes to disk continue sporadically between check-
points. This write activity is needed to maintain a supply of clean buffers for
applications as well as to reduce recovery time.

The Influence of Checkpoints on Performance

Checkpoint frequency affects system performance as well as recovery time.
Table 1 shows results from a series of tests that measured performance and
recovery time as the checkpoint interval was varied. By “checkpoint inter-
val,” I mean the period of time between the start of successive checkpoints.
Checkpoints were initiated manually with the alter system checkpoint
command as sysdba .

Some of the conclusions that can be drawn from these results are listed
below.

• Transaction throughput for the workload improves as the checkpoint
interval increases. Throughput increases by 27% if checkpoints are only
run every 900 seconds instead of every 150 seconds. Further increases in
the checkpoint time beyond 900 seconds resulted only in minor through-
put improvements.

The reason for the performance improvement is that dirty buffers are
flushed less frequently, freeing CPU cycles to do application work. As
expected, monitoring shows that the average number of I/Os per trans-
action drops with longer checkpoint intervals, as does the average num-
ber of CPU cycles consumed per transaction.

• Recovery time does not increase as much as you might expect when
checkpoints are run less frequently. For example, quadrupling the check-
point time does not quadruple the recovery time. Nonetheless, com-
pared to 150-second checkpoints, the recovery time more than doubles
with 600-second checkpoints and more than triples with 900-second
checkpoints.

CPU utilization during recovery for the four tests ranged between 42% and
45% on a four-CPU server, comprising 7% to 8% user activity and 35% to 38%

Table 1 Checkpoint interval, performance, and crash recovery time

Checkpoint
Interval (secs)

Checkpoint
Interval

Relative to
Baseline

Transaction
Throughput
Relative to

Baseline

Recovery
Time (secs)

Recovery
Time

Relative to
Baseline

150 1 1.00 252 1.0
300 2 1.06 242 1.0
600 4 1.19 646 2.6
900 6 1.27 963 3.8

Recover ing Oracle 45
system activity. The high system utilization reflects the heavy I/O activity
during recovery.

The v$instance_recovery view
Oracle8i introduced a new v$ view, the v$instance_recovery view. This
view offers an estimate of how long it would take to complete crash recovery
if the database crashed at the moment of the query.

The following example from an Oracle8.1.7 instance shows the estimated
number of I/Os that would be required to recover the instance following a
crash.

The recovery_estimated_ios statistic is actually a measure of the
number of dirty buffers in the buffer cache.

The number of I/Os required for recovery goes only partway toward
answering the question. Most database administrators will be more inter-
ested to know how long it will take to recover. Database Engineering carried
out tests to answer this question by deliberately crashing a database immedi-
ately after querying the v$instance_recovery view. Table 2 shows the
results of the tests.

The tests showed that for this instance, the recovery_estimated_ios
statistic from the v$instance_recovery view could be divided by approxi-
mately 800 to estimate the recovery time in seconds. The results will differ in
other environments because of differences in the hardware configuration, the
Oracle version, and other local differences.

Oracle8i also introduced an init.ora parameter related to the
v$instance_recovery view. The fast_start_io_target parameter,
available only in Oracle8i Enterprise Edition, allows a database administra-
tor to set a high-water mark for the number of I/Os that will be required to
carry out instance recovery. Once this mark is reached, the Database Writers
will begin flushing dirty buffers without waiting for a checkpoint. If the
default value of 0 is used, the parameter will be ignored. The

SQL> select recovery_estimated_ios from v$instance_recovery;

RECOVERY_ESTIMATED_IOS

 814540

Table 2 Recovery estimated I/Os and recovery time

Recovery
Estimated I/Os

Actual Recovery Time (secs) Estimated I/Os per
Recovery Time

1,500,160 1,802 833
868,745 1,011 859
814,540 981 830
284,210 340 836
187,520 249 753

46 Monitor ing and Tuning Oracle - Chapter 22 Par t 2
db_block_max_dirty_target fulfills a similar function in Oracle Stan-
dard Edition.

In one Database Engineering test, fast_start_io_target was set to a
value equivalent to 200 Kbytes. The result was a 27% hit in throughput, but
recovery finished 20 times faster compared to recovery after no recent check-
points and without this parameter set.

In Oracle9i, another more useful metric was added to the
v$instance_recovery view: estimated_mttr , the estimated mean time to
recover (MTTR) in seconds. An example from an environment running
Oracle9.0.1 is shown below:

Oracle9i also introduced a new init.ora parameter to complement the
new v$instance_recovery column: fast_start_mttr_target , the maxi-
mum desired recovery time, in seconds. This new parameter allows the data-
base administrator to set the approximate maximum recovery time that is
acceptable for this instance.

Once this high-water mark is reached, the Database Writers will begin
flushing dirty buffers. The default value of 0 means that the parameter is
ignored. If the fast_start_mttr_target parameter is set, then refer to the
target_mttr column instead of estimated_mttr in the
v$instance_recovery view (that is, use select target_mttr from
v$instance_recovery). Note that the db_block_max_dirty_target
init.ora parameter in Oracle8i has been converted to an underscore (hid-
den) parameter in Oracle9i (_db_block_max_dirty_target). For more
information on hidden parameters, including caveats, refer to “Viewing and
Changing Hidden Parameters” on page 5.

Other Parameters Influencing Recovery
Apart from the parameters already discussed, the main init.ora parame-
ters that influence recovery are outlined in the following list:

• log_checkpoint_interval : The number of blocks in the redo log file
that will be written before a checkpoint is triggered. This parameter has
no effect if it is set larger than the size of a redo log file, since every log
switch automatically triggers a checkpoint. If redo log files are sized
appropriately, this parameter can simply be set to a very high number
and ignored. Note that redo log files should all be set to the same size to
ensure consistency in checkpoint frequency.

• log_checkpoint_timeout : The maximum number of seconds that
should expire before a checkpoint is triggered. If the default value of 0 is
used, this parameter will be ignored. In read-mostly environments this

SQL> select estimated_mttr from v$instance_recovery;

ESTIMATED_MTTR

 1714

Recover ing Oracle 47
parameter can be used to ensure that checkpoints do happen regularly,
even if the write activity is not sufficient to trigger frequent redo log
switches.

Carefully sizing redo log files offers a good way of managing the check-
point interval. Set the log_checkpoints_to_alert parameter to true to
allow Oracle to report redo log switches in the alert.log file. You can moni-
tor redo activity by running the following command as sysdba :

The value reported is cumulative, so you will need to run the command
multiple times and calculate the difference.

SQL> select name, value from v$sysstat
 2 where name = 'redo blocks written';

NAME VALUE
--- ----------
redo blocks written 1489089

48 Monitor ing and Tuning Oracle - Chapter 22 Par t 2

