Skip Headers
Oracle® Data Mining Application Developer's Guide
11g Release 1 (11.1)

Part Number B28131-01
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Master Index
Master Index
Go to Feedback page
Contact Us

Go to previous page
Previous
View PDF

Index

A  B  C  D  E  F  G  I  J  K  L  M  N  O  P  R  S  T  U 

A

ADD_COST_MATRIX, 4.4
ADP, 2.1.2, 3.3.2, 5.1.2
ALGO_NAME, 3.2
algorithms, 3.2.2
ALL_MINING_MODEL_ATTRIBUTES, 2.2, 5.2.4.1
ALL_MINING_MODEL_SETTINGS, 2.2, 3.2.3
ALL_MINING_MODELS, 2.2
anomaly detection, 1.1.3, 3.2.2, 3.3.1, 3.3.1, 4.5
APPLY, 2.1.1.2, 2.1.1.2, 2.3, 4.5, 7.3.9
ApplySettings object, 7.3.9
Apriori, 3.2.2, 3.2.2
association rules, 3.2.2, 3.3.1, 3.4
attribute importance, 3.2.2, 3.3.1, 3.4, 5.2.6
attribute name, 5.2.5
attribute subname, 5.2.5
attributes, 5, 5.2
Automatic Data Preparation
See ADP

B

binning, 7.3.14.1
build data, 5.1.2
BuildSettings object, 7.3.2
BuildTask object, 7.3.7

C

case ID, 4.5.1
case table, 5
catalog views, 2.2
categorical, 5.2.3
centroid, 3.4
classes, 5.2.3
classification, 3.2.2, 3.3.1
CLASSPATH, 7.1
clipping, 7.3.14.3
CLUSTER_ID, 1.1.1, 2.3, 4.3.2.1
CLUSTER_PROBABILITY, 2.3, 4.3.2.2
CLUSTER_SET, 2.3, 4.3.2.3
clustering, 2.3, 3.2.2, 4.3.2
collection types, 5.3.1, 6.3
constants, 3.3.1
cost matrix, 4.4, 7.3.10
costs, 4.3.1.3, 4.4
CREATE_MODEL, 2.1.1.1, 3.1, 3.3
CTXSYS.DRVODM, 6.1

D

data
dimensioned, 5.3.2
missing values, 5.4
multi-record case, 5.3.2
nested, 5.3
preparing, 2.1.2
sparse, 5.4
transactional, 5.3.2, 5.3.4
transformations, 3.3.2
data dictionary views, 2.2
Data Mining Engine, 7.2
data preparation, 2.1.2, 3.1, 7.3.14
data types, 5.1.1
DBMS_DATA_MINING, 2.1, 3.3
DBMS_DATA_MINING_TRANSFORM, 2.1, 2.1.2, 3.3.2
DBMS_PREDICTIVE_ANALYTICS, 1.3, 2.1, 2.1.3
Decision Tree, 2.3, 3.2.2, 3.3.1, 3.4, 4.3, 4.3.1.4
demo programs, 3.5.3
dimensioned data, 5.3.2
DM_NESTED_CATEGORICALS, 5.2.3, 5.3.1.2
DM_NESTED_NUMERICALS, 5.2.3, 5.3.1.1, 5.3.3, 6.3, 6.3, 6.4.6
dmsh.sql, 6.2
dmtxtfe.sql, 6.2

E

embedded transformations, 2.1.2, 3.3.2, 5.1.2
EXPLAIN, 2.1.3

F

feature extraction, 2.3, 3.2.2, 3.3.1, 4.3.3, 4.3.3
FEATURE_EXPLAIN table function, 6.1, 6.4.1, 6.4.5.1
FEATURE_ID, 2.3, 4.3.3.1
FEATURE_PREP table function, 6.1, 6.4.1, 6.4.4.1
FEATURE_SET, 2.3, 4.3.3.3
FEATURE_VALUE, 2.3, 4.3.3.2

G

Generalized Linear Models
See GLM
GET_MODEL_DETAILS, 2.1.1.1, 3.4
GET_MODEL_DETAILS_XML, 4.3.1.4
GLM, 3.2.2, 3.4

I

index preference, 6.1

J

Java API, 1, 1, 2.4, 7
data, 7.3.1
data transformations, 7.3.14
setting up the development environment, 7.1
text transformation, 7.3.14.4
JDM, 2.4, 7

K

k-Means, 3.2.2, 3.3.1, 3.4, 7.3.14.2

L

linear regression, 2.3, 3.3.1
logistic regression, 2.3, 3.3.1

M

market basket data, 5.3.4, 5.3.4
MDL, 3.2.2
Minimum Description Length
See MDL
mining model schema objects, 2.2, 3.5
missing value treatment, 5.4.3
missing values, 5.4
model details, 3.1, 3.4, 5.2.6, 7.3.7
model signature, 5.2.4
models
algorithms, 3.2.2
building, 7.3.6
deploying, 4.2
privileges for, 3.5.2
scoring, 7.3.9
settings, 3.2, 3.2.3, 7.3.2
steps in creating, 3.1
testing, 7.3.8

N

Naive Bayes, 3.2.2, 3.3.1, 3.4
nested data, 5.3, 6.3, 6.4.6, 7.3.14.4
NMF, 3.3.1, 3.4, 6.1, 7.3.14.2
Non-Negative Matrix Factorization
See NMF
normalization, 7.3.14.2
numerical, 5.2.3

O

O-Cluster, 3.2.2, 3.3.1
One-Class SVM, 1.1.3, 3.3.1, 3.3.1
OraBinningTransformation, 7.3.14.1
Oracle Text, 6, 6.1
OraClippingTransformation, 7.3.14.3
OraNormalizeTransformation, 7.3.14.2
OraTextTransformation, 7.3.14.4
outliers, 1.1.3.1

P

PIPELINED, 5.2.6
PL/SQL API, 1, 1, 2.1
PREDICT, 2.1.3
PREDICTION, 1.1.2, 1.1.3.3, 2.3, 4.3.1.1, 4.4
PREDICTION_BOUNDS, 2.3
PREDICTION_COST, 2.3, 4.3.1.3
PREDICTION_DETAILS, 1.2, 2.3
PREDICTION_PROBABILITY, 1.1.1, 1.1.2, 1.1.3.1, 2.3, 4.3, 4.3.1.5
PREDICTION_SET, 2.3, 4.3.1.6
predictive analytics, 1.3, 2.1.3
PREP_AUTO, 3.3.2
prior probabilities, 7.3.11
privileges, 3.5.2
PROFILE, 1.3, 2.1.3

R

regression, 3.2.2, 3.3.1
RegressionTestMetrics, 7.3.8
REMOVE_COST_MATRIX, 4.4
reverse transformations, 3.4, 5.2.4.1, 5.2.6, 5.2.6
rules, 4.3.1.4

S

sample programs, 3.5.3
scoring, 1.1.1, 2.1.1.2, 2.3, 4
batch, 4.5
data, 5.1.2
Java API, 7.3.9
real-time, 4.3
saving results, 4.3.4
scoring of attribute name, 5.2.5
settings table, 3.2, 7.3.2
sparse data, 5.4, 5.4
SQL AUDIT, 3.5
SQL COMMENT, 3.5
SQL data mining functions, 1, 2.3
STACK, 2.1.2, 3.3.2
supermodels, 5.1.2
supervised mining functions, 3.3.1
Support Vector Machines
See SVM
SVM, 3.2.2, 3.3.1, 3.3.1, 3.4, 7.3.14.2
SVM_CLASSIFIER index preference, 6.1, 6.4.1, 6.4.3

T

target, 5.2.2, 5.2.4.1
test data, 5.1.2
text mining, 6, 6, 6.2.1
text transformation, 6
Java, 6.1, 7.3.14.4
PL/SQL, 6.1
transactional data, 5.3.2, 5.3.2, 5.3.4, 5.3.4
transformation list, 3.3.2
transformations, 2.1.2, 3.3.2, 5, 5.2.4.1, 5.2.6, 5.2.6
transparency, 3.4, 5.2.6

U

unsupervised mining functions, 3.3.1