Index
A B C D E F G I J K L M N O P R S T U
A
- ADD_COST_MATRIX, 4.4
- ADP, 2.1.2, 3.3.2, 5.1.2
- ALGO_NAME, 3.2
- algorithms, 3.2.2
- ALL_MINING_MODEL_ATTRIBUTES, 2.2, 5.2.4.1
- ALL_MINING_MODEL_SETTINGS, 2.2, 3.2.3
- ALL_MINING_MODELS, 2.2
- anomaly detection, 1.1.3, 3.2.2, 3.3.1, 3.3.1, 4.5
- APPLY, 2.1.1.2, 2.1.1.2, 2.3, 4.5, 7.3.9
- ApplySettings object, 7.3.9
- Apriori, 3.2.2, 3.2.2
- association rules, 3.2.2, 3.3.1, 3.4
- attribute importance, 3.2.2, 3.3.1, 3.4, 5.2.6
- attribute name, 5.2.5
- attribute subname, 5.2.5
- attributes, 5, 5.2
- Automatic Data Preparation
-
- See ADP
B
- binning, 7.3.14.1
- build data, 5.1.2
- BuildSettings object, 7.3.2
- BuildTask object, 7.3.7
C
- case ID, 4.5.1
- case table, 5
- catalog views, 2.2
- categorical, 5.2.3
- centroid, 3.4
- classes, 5.2.3
- classification, 3.2.2, 3.3.1
- CLASSPATH, 7.1
- clipping, 7.3.14.3
- CLUSTER_ID, 1.1.1, 2.3, 4.3.2.1
- CLUSTER_PROBABILITY, 2.3, 4.3.2.2
- CLUSTER_SET, 2.3, 4.3.2.3
- clustering, 2.3, 3.2.2, 4.3.2
- collection types, 5.3.1, 6.3
- constants, 3.3.1
- cost matrix, 4.4, 7.3.10
- costs, 4.3.1.3, 4.4
- CREATE_MODEL, 2.1.1.1, 3.1, 3.3
- CTXSYS.DRVODM, 6.1
D
- data
-
- dimensioned, 5.3.2
- missing values, 5.4
- multi-record case, 5.3.2
- nested, 5.3
- preparing, 2.1.2
- sparse, 5.4
- transactional, 5.3.2, 5.3.4
- transformations, 3.3.2
- data dictionary views, 2.2
- Data Mining Engine, 7.2
- data preparation, 2.1.2, 3.1, 7.3.14
- data types, 5.1.1
- DBMS_DATA_MINING, 2.1, 3.3
- DBMS_DATA_MINING_TRANSFORM, 2.1, 2.1.2, 3.3.2
- DBMS_PREDICTIVE_ANALYTICS, 1.3, 2.1, 2.1.3
- Decision Tree, 2.3, 3.2.2, 3.3.1, 3.4, 4.3, 4.3.1.4
- demo programs, 3.5.3
- dimensioned data, 5.3.2
- DM_NESTED_CATEGORICALS, 5.2.3, 5.3.1.2
- DM_NESTED_NUMERICALS, 5.2.3, 5.3.1.1, 5.3.3, 6.3, 6.3, 6.4.6
- dmsh.sql, 6.2
- dmtxtfe.sql, 6.2
E
- embedded transformations, 2.1.2, 3.3.2, 5.1.2
- EXPLAIN, 2.1.3
F
- feature extraction, 2.3, 3.2.2, 3.3.1, 4.3.3, 4.3.3
- FEATURE_EXPLAIN table function, 6.1, 6.4.1, 6.4.5.1
- FEATURE_ID, 2.3, 4.3.3.1
- FEATURE_PREP table function, 6.1, 6.4.1, 6.4.4.1
- FEATURE_SET, 2.3, 4.3.3.3
- FEATURE_VALUE, 2.3, 4.3.3.2
G
- Generalized Linear Models
-
- See GLM
- GET_MODEL_DETAILS, 2.1.1.1, 3.4
- GET_MODEL_DETAILS_XML, 4.3.1.4
- GLM, 3.2.2, 3.4
I
- index preference, 6.1
J
- Java API, 1, 1, 2.4, 7
-
- data, 7.3.1
- data transformations, 7.3.14
- setting up the development environment, 7.1
- text transformation, 7.3.14.4
- JDM, 2.4, 7
K
- k-Means, 3.2.2, 3.3.1, 3.4, 7.3.14.2
L
- linear regression, 2.3, 3.3.1
- logistic regression, 2.3, 3.3.1
M
- market basket data, 5.3.4, 5.3.4
- MDL, 3.2.2
- Minimum Description Length
-
- See MDL
- mining model schema objects, 2.2, 3.5
- missing value treatment, 5.4.3
- missing values, 5.4
- model details, 3.1, 3.4, 5.2.6, 7.3.7
- model signature, 5.2.4
- models
-
- algorithms, 3.2.2
- building, 7.3.6
- deploying, 4.2
- privileges for, 3.5.2
- scoring, 7.3.9
- settings, 3.2, 3.2.3, 7.3.2
- steps in creating, 3.1
- testing, 7.3.8
N
- Naive Bayes, 3.2.2, 3.3.1, 3.4
- nested data, 5.3, 6.3, 6.4.6, 7.3.14.4
- NMF, 3.3.1, 3.4, 6.1, 7.3.14.2
- Non-Negative Matrix Factorization
-
- See NMF
- normalization, 7.3.14.2
- numerical, 5.2.3
O
- O-Cluster, 3.2.2, 3.3.1
- One-Class SVM, 1.1.3, 3.3.1, 3.3.1
- OraBinningTransformation, 7.3.14.1
- Oracle Text, 6, 6.1
- OraClippingTransformation, 7.3.14.3
- OraNormalizeTransformation, 7.3.14.2
- OraTextTransformation, 7.3.14.4
- outliers, 1.1.3.1
P
- PIPELINED, 5.2.6
- PL/SQL API, 1, 1, 2.1
- PREDICT, 2.1.3
- PREDICTION, 1.1.2, 1.1.3.3, 2.3, 4.3.1.1, 4.4
- PREDICTION_BOUNDS, 2.3
- PREDICTION_COST, 2.3, 4.3.1.3
- PREDICTION_DETAILS, 1.2, 2.3
- PREDICTION_PROBABILITY, 1.1.1, 1.1.2, 1.1.3.1, 2.3, 4.3, 4.3.1.5
- PREDICTION_SET, 2.3, 4.3.1.6
- predictive analytics, 1.3, 2.1.3
- PREP_AUTO, 3.3.2
- prior probabilities, 7.3.11
- privileges, 3.5.2
- PROFILE, 1.3, 2.1.3
R
- regression, 3.2.2, 3.3.1
- RegressionTestMetrics, 7.3.8
- REMOVE_COST_MATRIX, 4.4
- reverse transformations, 3.4, 5.2.4.1, 5.2.6, 5.2.6
- rules, 4.3.1.4
S
- sample programs, 3.5.3
- scoring, 1.1.1, 2.1.1.2, 2.3, 4
-
- batch, 4.5
- data, 5.1.2
- Java API, 7.3.9
- real-time, 4.3
- saving results, 4.3.4
- scoring of attribute name, 5.2.5
- settings table, 3.2, 7.3.2
- sparse data, 5.4, 5.4
- SQL AUDIT, 3.5
- SQL COMMENT, 3.5
- SQL data mining functions, 1, 2.3
- STACK, 2.1.2, 3.3.2
- supermodels, 5.1.2
- supervised mining functions, 3.3.1
- Support Vector Machines
-
- See SVM
- SVM, 3.2.2, 3.3.1, 3.3.1, 3.4, 7.3.14.2
- SVM_CLASSIFIER index preference, 6.1, 6.4.1, 6.4.3
T
- target, 5.2.2, 5.2.4.1
- test data, 5.1.2
- text mining, 6, 6, 6.2.1
- text transformation, 6
-
- Java, 6.1, 7.3.14.4
- PL/SQL, 6.1
- transactional data, 5.3.2, 5.3.2, 5.3.4, 5.3.4
- transformation list, 3.3.2
- transformations, 2.1.2, 3.3.2, 5, 5.2.4.1, 5.2.6, 5.2.6
- transparency, 3.4, 5.2.6
U
- unsupervised mining functions, 3.3.1