Skip Headers
Oracle® Data Mining Concepts
11g Release 1 (11.1)

Part Number B28129-01
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Master Index
Master Index
Go to Feedback page
Contact Us

Go to previous page
Previous
View PDF

Index

A  B  C  D  E  F  G  J  K  L  M  N  O  P  R  S  T  U  V  W  X  Y 

A

accuracy, 3.5.2.1
active learning, 18.1.4
AI
See attribute importance, 9.2
algorithms
Apriori, 10, 10.1, 10.1
Decision Tree, 11
Generalized Linear Models, 12
k-Means, 13
Minimum Description Length, 14
Naive Bayes, 15
Non-Negative Matrix Factorization, 16, 16.1
O-Cluster, 17, 17.1
supervised, 2.3.1
Support Vector Machines, 18
unsupervised, 2.3.2
ALTER_REVERSE_EXPRESSION, 19.4.2.1
anomaly detection, 2.2.3, 6
Apriori, 2.3.2
association models, 8.1
algorithm, 10.1
confidence, 8.1
data preparation, 8.3
rare events, 8.1.1.1
sparse data, 8.3
support, 8.1
text mining, 20.3.4
association rules
See association models
attribute importance, 2.2.1.2, 2.2.3, 9.2
Automatic Data Preparation, 1.3.3, 2.4.1, 19.1

B

Bayes' Theorem, 5.2, 15.1
binary target, 5.1.1
binning, Preface

C

case table, 1.1.7, 19.1.1
centroid, 7.1
classification, 2.2.3, 5
costs, 5.3.1
one class, 6.2
text mining, 20.3.1
clustering, 2.2.3, 7.1, 13.1
text mining, 20.3.2
confidence, 1.1.2, 1.1.2, 8.1
confidence bounds, 12.1.1.3
confusion matrix, 1.3.3, 5.4.1
cost/benefit matrix, 5.3.1, 11.1.3.2
costs, 5.3.1
counter-examples, 6.1
CREATE_MODEL, 2.5.1
cube, 1.1.6

D

data
dimensioned, 1.1.6, 2.4
market basket, Preface, 1.3.3
single record case, 1.1.7
sparse, 8.3, 8.3
unstructured, 2.4
data mining process, 1.3
data preparation, 1.2.2, 1.3.2, 2.4, 2.4, 19
association models, 8.3
clustering, 7.1
missing values, 19.1
data types, 19.1.2
data warehouse, 1.1.7
date data, 19.1.2.1
DBMS_DATA_MINING, 2.5.1, 2.5.1
DBMS_DATA_MINING_TRANSFORM, 2.5.1, 2.5.1, 2.7
DBMS_FREQUENT_ITEMSET, 2.7
DBMS_PREDICTIVE_ANALYTICS, 2.5.1, 2.5.1, 3.3.1
DBMS_STAT_FUNCS, 2.7
Decision Tree, 2.3.1, 5.2, 5.3.2
demo programs, 2.6.1
deployment, 1.3.4
deprecated features, Preface
distance-based clustering models, 13.1
DMSYS schema
See deprecated features, Preface
documentation, 2.6

E

embedded data preparation, 2.4.1, 19.1
equal-width binning, 8.3
Excel, 3.2
EXPLAIN, 2.5.1, 3.1.3, 3.1.3, 3.2, 3.3.1, 3.5.1, 3.5.1

F

feature, 9.1
feature extraction, 2.2.3, 9.1
Oracle Text, 20.3.3
text, 20.3.3, 20.3.3
text mining, 16.2

G

generalization to new data, 18.1, 18.1, 18.1, 18.1
Generalized Linear Models, 2.3.1, 4.2, 5.2
GET_MODEL_DETAILS, 19.4
GET_MODEL_TRANSFORMATIONS, 19.4.1
grid-based clustering models, 17.1

J

Java API, 2.5.3, 3.3.2

K

KDD, 1.1
kernel, 2.1
k-Means, 2.3.2, 7.2, 13.1, 13.1, 13.1.1
Knowledge-Discovery in Databases
See KDD

L

lift, 1.3.3, 5.4.2
linear regression, 4.1.2.1, 4.2
logistic regression, 5.2, 5.3.2

M

market basket analysis, 8.1
market-basket data, 1.3.3, 1.3.3
MDL
See Minimum Description Length
Mean Absolute Error, 4.3.2
Minimum Description Length, 2.3.1, 14.1
mining functions, 2.2.3
missing value treatment, Preface, 19.1
mixture model, 13.1.1
models
association, 8.1
classification, 5.1
clustering, 7.1
supervised, 4, 5
unsupervised, 7
multiclass target, 5.1.1
multicollinearity, 12.1.2
multidimensional data, 1.1.6, 2.7
multiple regression, 4.1.2.3
multivariate regression, 4.1.2.3

N

Naive Bayes, 2.3.1, 5.2
nested data, 2.4
neural networks, 18.1.1
NMF
See Non-Negative Matrix Factorization
nonlinear regression, 4.1.2.2
Non-Negative Matrix Factorization, 2.3.2
data preparation, 16.3
text, 20.3.3
text mining, 16.2
normalization, Preface

O

O-Cluster, 2.3.2, 7.2, 17.2
OLAP, 1.1.6, 1.1.6
one-class classification, 6.2
One-Class SVM, 2.3.2, 6.3, 18.5
Oracle Data Mining discussion forum, 2.6.1
Oracle Database analytics, 2.7
Oracle Database statistical functions, 2.7
Oracle OLAP, 2.7
Oracle Spatial, 2.7
Oracle Spreadsheet Add-In for Predictive Analytics, 3.2
Oracle Text, 2.7, 2.7
Orthogonal Partitioning Clustering
See O-Cluster
outliers, 6.1, 8.3

P

PL/SQL API, 2.5.1
PREDICT, 2.5.1, 3.1.3, 3.1.3, 3.2, 3.2, 3.3.1, 3.4, 3.4, 3.5.2, 3.5.2
PREDICTION_PROBABILITY, 2.5.2
predictive analytics, 3, 3
Java API, 3.3.2
PL/SQL API, 3.3.1
See also EXPLAIN
See also PREDICT
See also PROFILE
Spreadsheet Add-In, 3.2
prior probabilities, 5.3.2
PROFILE, 2.5.1, 3.1.3, 3.1.3, 3.2, 3.2, 3.3.1, 3.5.3, 3.5.3

R

radial basis functions, 18.1.1
rare events
association models, 8.1.1.1
Receiver Operating Characteristic, 5.4.3
regression, 2.2.3, 4
text mining, 20.3.5
regression coefficients, 4.1.2.1
regularization, 18.1, 18.1
reverse transformations, 19.4.2
ridge regression, 12.1.2
ROC, 5.4.3
Root Mean Squared Error, 4.3
rules
association model, 8.1
decision trees, 11.1.1
PROFILE, 3.5.3

S

scoring, 1.1.1, 1.1.1, 1.3.4, 13.1.1
O-Cluster, 17.2
single-record case data, 1.1.7
singularity, 12.1.2
slope, 4.1.2.1
sparse data, 8.3, 8.3, 19.1
Spreadsheet Add-In, 3.2
SQL data mining functions, 2.5.2
star schema, 2.4
statistical functions, 2.7
statistics, 1.1.5, 1.1.5
supermodel, 2.4.1
support, 1.1.2, 1.1.2, 8.1
Support Vector Machine, 2.3.1, 5.2
active learning, 18.1.4
classification, 5.3.2
text, 20.3.1
One-Class, 20.3.6
regression, 4.2
text, 20.3.5
text mining, 20.3.6

T

text features, 20.2
text mining, 16.2
association models, 20.3.4
classification, 20.3.1
clustering, 20.3.2
feature extraction, 16.2, 20.3.3
Non-Negative Matrix Factorization, 16.2
Oracle support, 20.4
regression, 20.3.5
support (table), 20.4
Support Vector Machine, 20.3.1
timestamp data, 19.1.2.1
transactional data, 1.3.3
transformations, 2.4.1, 2.5.1, 19.1
transparency, 11.1.1, 12.1.1.1, 19.1, 19.3.2, 19.4

U

unstructured data, 2.4
unsupervised models, 7
UTL_NLA, 2.7

V

Vapnik's theory, 4.2

W

white papers, 2.6.1
wide data, 4.2

X

XML
Decision Tree, 11.1.4
PROFILE, 3.5.3

Y

y intercept, 4.1.2.1