Index
A B C D E F G J K L M N O P R S T U V W X Y
A
- accuracy, 3.5.2.1
- active learning, 18.1.4
- AI
-
- See attribute importance, 9.2
- algorithms
-
- Apriori, 10, 10.1, 10.1
- Decision Tree, 11
- Generalized Linear Models, 12
- k-Means, 13
- Minimum Description Length, 14
- Naive Bayes, 15
- Non-Negative Matrix Factorization, 16, 16.1
- O-Cluster, 17, 17.1
- supervised, 2.3.1
- Support Vector Machines, 18
- unsupervised, 2.3.2
- ALTER_REVERSE_EXPRESSION, 19.4.2.1
- anomaly detection, 2.2.3, 6
- Apriori, 2.3.2
- association models, 8.1
-
- algorithm, 10.1
- confidence, 8.1
- data preparation, 8.3
- rare events, 8.1.1.1
- sparse data, 8.3
- support, 8.1
- text mining, 20.3.4
- association rules
-
- See association models
- attribute importance, 2.2.1.2, 2.2.3, 9.2
- Automatic Data Preparation, 1.3.3, 2.4.1, 19.1
B
- Bayes' Theorem, 5.2, 15.1
- binary target, 5.1.1
- binning, Preface
C
- case table, 1.1.7, 19.1.1
- centroid, 7.1
- classification, 2.2.3, 5
-
- costs, 5.3.1
- one class, 6.2
- text mining, 20.3.1
- clustering, 2.2.3, 7.1, 13.1
-
- text mining, 20.3.2
- confidence, 1.1.2, 1.1.2, 8.1
- confidence bounds, 12.1.1.3
- confusion matrix, 1.3.3, 5.4.1
- cost/benefit matrix, 5.3.1, 11.1.3.2
- costs, 5.3.1
- counter-examples, 6.1
- CREATE_MODEL, 2.5.1
- cube, 1.1.6
D
- data
-
- dimensioned, 1.1.6, 2.4
- market basket, Preface, 1.3.3
- single record case, 1.1.7
- sparse, 8.3, 8.3
- unstructured, 2.4
- data mining process, 1.3
- data preparation, 1.2.2, 1.3.2, 2.4, 2.4, 19
-
- association models, 8.3
- clustering, 7.1
- missing values, 19.1
- data types, 19.1.2
- data warehouse, 1.1.7
- date data, 19.1.2.1
- DBMS_DATA_MINING, 2.5.1, 2.5.1
- DBMS_DATA_MINING_TRANSFORM, 2.5.1, 2.5.1, 2.7
- DBMS_FREQUENT_ITEMSET, 2.7
- DBMS_PREDICTIVE_ANALYTICS, 2.5.1, 2.5.1, 3.3.1
- DBMS_STAT_FUNCS, 2.7
- Decision Tree, 2.3.1, 5.2, 5.3.2
- demo programs, 2.6.1
- deployment, 1.3.4
- deprecated features, Preface
- distance-based clustering models, 13.1
- DMSYS schema
-
- See deprecated features, Preface
- documentation, 2.6
E
- embedded data preparation, 2.4.1, 19.1
- equal-width binning, 8.3
- Excel, 3.2
- EXPLAIN, 2.5.1, 3.1.3, 3.1.3, 3.2, 3.3.1, 3.5.1, 3.5.1
F
- feature, 9.1
- feature extraction, 2.2.3, 9.1
-
- Oracle Text, 20.3.3
- text, 20.3.3, 20.3.3
- text mining, 16.2
G
- generalization to new data, 18.1, 18.1, 18.1, 18.1
- Generalized Linear Models, 2.3.1, 4.2, 5.2
- GET_MODEL_DETAILS, 19.4
- GET_MODEL_TRANSFORMATIONS, 19.4.1
- grid-based clustering models, 17.1
J
- Java API, 2.5.3, 3.3.2
K
- KDD, 1.1
- kernel, 2.1
- k-Means, 2.3.2, 7.2, 13.1, 13.1, 13.1.1
- Knowledge-Discovery in Databases
-
- See KDD
L
- lift, 1.3.3, 5.4.2
- linear regression, 4.1.2.1, 4.2
- logistic regression, 5.2, 5.3.2
M
- market basket analysis, 8.1
- market-basket data, 1.3.3, 1.3.3
- MDL
-
- See Minimum Description Length
- Mean Absolute Error, 4.3.2
- Minimum Description Length, 2.3.1, 14.1
- mining functions, 2.2.3
- missing value treatment, Preface, 19.1
- mixture model, 13.1.1
- models
-
- association, 8.1
- classification, 5.1
- clustering, 7.1
- supervised, 4, 5
- unsupervised, 7
- multiclass target, 5.1.1
- multicollinearity, 12.1.2
- multidimensional data, 1.1.6, 2.7
- multiple regression, 4.1.2.3
- multivariate regression, 4.1.2.3
N
- Naive Bayes, 2.3.1, 5.2
- nested data, 2.4
- neural networks, 18.1.1
- NMF
-
- See Non-Negative Matrix Factorization
- nonlinear regression, 4.1.2.2
- Non-Negative Matrix Factorization, 2.3.2
-
- data preparation, 16.3
- text, 20.3.3
- text mining, 16.2
- normalization, Preface
O
- O-Cluster, 2.3.2, 7.2, 17.2
- OLAP, 1.1.6, 1.1.6
- one-class classification, 6.2
- One-Class SVM, 2.3.2, 6.3, 18.5
- Oracle Data Mining discussion forum, 2.6.1
- Oracle Database analytics, 2.7
- Oracle Database statistical functions, 2.7
- Oracle OLAP, 2.7
- Oracle Spatial, 2.7
- Oracle Spreadsheet Add-In for Predictive Analytics, 3.2
- Oracle Text, 2.7, 2.7
- Orthogonal Partitioning Clustering
-
- See O-Cluster
- outliers, 6.1, 8.3
P
- PL/SQL API, 2.5.1
- PREDICT, 2.5.1, 3.1.3, 3.1.3, 3.2, 3.2, 3.3.1, 3.4, 3.4, 3.5.2, 3.5.2
- PREDICTION_PROBABILITY, 2.5.2
- predictive analytics, 3, 3
-
- Java API, 3.3.2
- PL/SQL API, 3.3.1
- See also EXPLAIN
- See also PREDICT
- See also PROFILE
- Spreadsheet Add-In, 3.2
- prior probabilities, 5.3.2
- PROFILE, 2.5.1, 3.1.3, 3.1.3, 3.2, 3.2, 3.3.1, 3.5.3, 3.5.3
R
- radial basis functions, 18.1.1
- rare events
-
- association models, 8.1.1.1
- Receiver Operating Characteristic, 5.4.3
- regression, 2.2.3, 4
-
- text mining, 20.3.5
- regression coefficients, 4.1.2.1
- regularization, 18.1, 18.1
- reverse transformations, 19.4.2
- ridge regression, 12.1.2
- ROC, 5.4.3
- Root Mean Squared Error, 4.3
- rules
-
- association model, 8.1
- decision trees, 11.1.1
- PROFILE, 3.5.3
S
- scoring, 1.1.1, 1.1.1, 1.3.4, 13.1.1
-
- O-Cluster, 17.2
- single-record case data, 1.1.7
- singularity, 12.1.2
- slope, 4.1.2.1
- sparse data, 8.3, 8.3, 19.1
- Spreadsheet Add-In, 3.2
- SQL data mining functions, 2.5.2
- star schema, 2.4
- statistical functions, 2.7
- statistics, 1.1.5, 1.1.5
- supermodel, 2.4.1
- support, 1.1.2, 1.1.2, 8.1
- Support Vector Machine, 2.3.1, 5.2
-
- active learning, 18.1.4
- classification, 5.3.2
-
- text, 20.3.1
- One-Class, 20.3.6
- regression, 4.2
-
- text, 20.3.5
- text mining, 20.3.6
T
- text features, 20.2
- text mining, 16.2
-
- association models, 20.3.4
- classification, 20.3.1
- clustering, 20.3.2
- feature extraction, 16.2, 20.3.3
- Non-Negative Matrix Factorization, 16.2
- Oracle support, 20.4
- regression, 20.3.5
- support (table), 20.4
- Support Vector Machine, 20.3.1
- timestamp data, 19.1.2.1
- transactional data, 1.3.3
- transformations, 2.4.1, 2.5.1, 19.1
- transparency, 11.1.1, 12.1.1.1, 19.1, 19.3.2, 19.4
U
- unstructured data, 2.4
- unsupervised models, 7
- UTL_NLA, 2.7
V
- Vapnik's theory, 4.2
W
- white papers, 2.6.1
- wide data, 4.2
X
- XML
-
- Decision Tree, 11.1.4
- PROFILE, 3.5.3
Y
- y intercept, 4.1.2.1