ORACLE

Oracle® C++ Call Interface
Programmer's Guide

10g Release 2 (10.2)
B14294-01

June 2005

Oracle C++ Call Interface Programmer’s Guide, 10g Release 2 (10.2)
B14294-01

Copyright © 1999, 2005, Oracle. All rights reserved.

Primary Author: Roza Leyderman

Contributors: Sandeepan Banerjee, Subhranshu Banergee, Kalyanji Chintakayala, Krishna Itikarlapalli,
Shankar Iyer, Maura Joglekar, Toliver Jue, Ravi Kasamsetty, Srinath Krishnaswamy, Shoaib Lari, Geoff Lee,
Chetan Maiya, Rekha Vallam

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUROIACE ...ttt ettt XXX
AN Lo < U< TR XXXi
Documentation AcCeSSIDILILYcciiiiiiiiiiiiiii e XXXi
Related DOCUITIEIESooviiieiieieeeeeeeteeeee ettt ettt et e e et e e eaaeeateeeaeeenteestesenasessesenseesseesnesenseesseeanees XXXii
(@F0) 7<) 415 o) V<IN XXXii

What's New in Oracle C++ Call Interface? ..., Xxxiii
New Features for Oracle Database 10g Release 2 (10.2)cccccoeveviiniiiiiiiiiiiiiinnes XXXili
New Features for Oracle Database 10g Release 1 (10.1)coouvviiiiininniniiniiniiiiccccccccnes XXXiV

1 Introduction to OCCI

OVEIVIEW Of OCCT ...ttt 1-1
Benefits Of OCCT ... 1-2
Building an OCCI APPLiCAtiON.......cccvuiiiiiieiiiiiiiciciccc s 1-2
Functionality of OCCTccccoiiiiiiiiiiiiiiiice e 1-2
Procedural and Nonprocedural Elements..........c.ccccccceuririiiiiiiiniiiiiinnceccreeeeeeeeeeeeeeeeeeenes 1-3

Processing of SQL Statementscccoooiiiiiiiiiiiiii s 1-3
DDL Statements........c.ooveuiviiiiiiiiciecicec e 1-4
Control StAtEMENES........cvviieiiicc s 1-4
DML SQL SEateImentscccuvuiuiueiiiiiiieiiiiiiciiceiesi s 1-4
QUBTIES ..ttt ettt ettt et e et e et e e tte e te e beeebe e beessbe e saessseesbeassseeaseessseenseasseeassaenssaasssanssasnseenssesssannseens 1-5

OVerview Of PLISQLL ...ttt ettt e ete e s te e v e e s e e e be e sbaeebeebeeeabeensaesaseanseessseenses 1-5

Special OCCI/SQL TEIIMScouiuiiiiiiiiiiiiiiiiiiiee et 1-6

ODbjJect SUPPOTIL ... 1-7
Client-Side Object CaChe.......cccccuiuiiiiriiiiieeieeceeeeee e 1-7
Runtime Environment for Objects.........coooiiiiiii 1-8
Associative and Navigational Interfacescoooeveviiiiiiiniiiice e, 1-8
Metadata Class. ..o 1-8
Object Type Translator Utyccooveiieiiiii 1-9

2 Installation and Upgrading

Installing Oracle C++ Call Interface............cccccocoiiiiiiiiiiiiiii s 2-1
Upgrading Considerationsccccorieieiininiicinnieieitneec ettt 2-1

Determining Client and Server Versions.............cccccooiiiiiiniiiiiiniicceccecnas 2-1

INStant CLIENt............oooiiiiiiii s 2-2
Benefits of Instant CLENtcovuiiiiiiiii s 2-2
Installing Instant CHeNt..........c.cooiiiiiiiiie 2-2

Oracle Technology NetWOIrkcooviiiiiiiiiii s 2-2
Complete Client Installation..........cccocciiiiiiiiiiiciceceeece e 2-3
Oracle Universal INStallerccoiiiiiiiiiiiiiiiiiiicc e 2-3
Instant Client CD.........cccoiiiiii s 2-4
Using INStANt CHENtcoviiieii e 2-4
Patching Instant Client Shared Libraries on UniX.........ccccoeeiiiiiiiiiiiiicc 2-4
Regenerating the Data Shared Library and Zip Filesc.cccoooiiiiniiicc 2-4
Database Connection Names for Instant Client............ccooeeviinnininniicnes 2-5
Environment Variables for OCCI Instant Clientcccoovvniiinininnnnne, 2-5

Instant Client Light (English) ..o 2-6
Globalization Settings for Instant Client Light (English)cccccccoeiiiiiiiiiiiiiiiices 2-6
Using Instant Client Light (English).........cccoooiioiiiiiii e, 2-7
Installing Instant Client Light (English)ccooooi e, 2-7

Oracle Technology Network Download..........cccccccciiiiiiiiiiiiiicccccccceeceeeenes 2-7
Client Admin Install ..o 2-7
Oracle Universal INStaller ..o 2-8

3 Relational Programming

Connecting to a Database ... 3-1
Creating and Terminating an ENvironment............ccccoooociiiiiiiiiiiiieeeeeeeeeneeenenenes 3-1
Opening and Closing a CONNECHONc.ooiuiiiiiiiieic e 3-2

P0ooling CONNECHONS...........coiiiiiiiiiiiic s 3-3
Creating a Connection POOL..........ccocuiiiiiiiiiieecceeeee e 3-3

Creating a Connection POOL...........cciiiiiiiiiiii e 3-3
Proxy ConNECHiONScooiiiiiiiiiicc s 3-4
Stateless ConNection POOLNEc.ccceuiiiiiiiiiiiiiieccccee e 3-5

Executing SQL DDL and DML Statements................ccccooooiiiiiiiiiiii 3-8
Creating a Statement ODJEct ... 3-8
Creating a Statement Object to Execute SQL Commandsc.cccccceucuereiriiinnnvennrnnereeenen. 3-8

Creating a Database Table ..., 3-8
Inserting Values into a Database Table............c.cccccoooiiiiiiiiiiiiies 3-9
Reusing a Statement ODJECtcccceuiiiiiiiiiiiiieeccceee e 3-9
Terminating a Statement ODbject..........ccccoviiiiiiiiiiic 3-9

Types of SQL Statements in the OCCI Environment...............cccoooviiiiiniininceceee 3-9
Standard STAtEMENESccovviiiiiiiii s 3-9
Parameterized Statements. ... 3-10
Callable StateIMENES......cccoviueueiirieicierieteet ettt 3-10

Callable Statements with Arrays as Parameters...........ccccccoeeuevrriiiniennnencrrceeeeenes 3-11
Streamed Reads and WIites...........ccooiuiiiiiiiiiiiiiiic s 3-11
Binding Data in a Streaming Mode; SELECT/DML and PL/SQL........c.ccccccccevivininnnnnen. 3-12
Fetching Data in a Streaming Mode: PL/SQL........cccccccoiiiiiiiiiiiiiccccceceeeeeees 3-13
Fetching Data in Streaming Mode: ResultSet ... 3-13
Working with Multiple Streams ..o 3-13

Modifying Rows Iteratively ... 3-14

Setting the Maximum Number of Iterations...........ccccoooreieiiiii 3-14

Setting the Maximum Parameter Size..........cccccoceiiiiiiiiiiicceceeceeeceeeeeeeees 3-14
Executing an Iterative Operation...........cocoiiiiiiiiiiiiiec 3-14
Iterative Execution Usage NOteSccceiiiiiiiiiiiiiiiiicic e 3-15
Executing SOL QUETIEScccccoiiiiiiiiiiiiic s 3-15
RESULL Set ..ot 3-15
Specifying the QUETY ... 3-16
Optimizing Performance by Setting Prefetch Countc.ccccceciiiiiiiiniiiccccceee 3-16
Executing Statements Dynamically ..o 3-17
Status DefiNitioNnscccuiiiiiiiiiiiiiii s 3-17
UNPREPARED ...ttt 3-17
PREPARED ..ottt 3-18
RESULT_SET_AVAILABLEcoceiiiiiiiiiiiiiicc st 3-18
UPDATE_COUNT_AVAILABLE.......cccooiitiiiiniiinc s 3-18
NEEDS_STREAM_DATA.....ccoiiiiiiiiiiiiiiis s 3-18
STREAM_DATA_AVAILABLEcccoiiiiiiiiiiiiiccie s 3-19
Committing a Transaction.............cccooiiiiiiiiiii s 3-19
Caching Statements. ... 3-19
Handling EXCePHONS............cccooviiiiiiiiiiiiiiic s 3-22
Handling Null and Truncated Data ... 3-23

Object Programming

Overview of Object Programming.............ccccccoviiiiiiiiiiiinii s 4-1
Working with Objects in OCCIccooiiiiiiiiiiiiic e 4-2
Persistent ODJECtScouoiiiieieiee 4-2
TransieNt ODJECESc.ccuiiiiiiiiiiccceceee et 4-3
VAIUES ...ttt 4-4
Representing Objects in C++ Applications ..o 4-4
Creating Persistent and Transient ODJECts ... 4-4
Creating Object Representations using the OTT Utility.......cccccocovmeiiiiiiiiiiiiie, 4-4
Developing an OCCI Object Applicationcccoovviiiiiiiiiiiniiiini e 4-5
Basic Object Program SEIUCIUIEcovviiviriririririireeecrer e 4-5
Basic Object Operational FLOW ... 4-6
Initialize OCCIin Object Mode.........ccccciiiiiiiiiiiiiiiccccee e 4-7

PIN ODJECE . 4-8
Operate on Object in Cache ... 4-8

Flush Changes to ObJECt.........ccccciuiiiiiiiiiiiiiiiiiiics e 4-8
Deletion of an ODJECtcccuiiiiiiiiiiiiiiiciecre e 4-9
Migrating C++ Applications Using OCCl.............ccccocoviviniiiniiininii, 4-9
Steps fOr MIGTationc.cccccuiuiiiiiiiiiiiiiiiic s 4-9
Overview 0f ASSOCIAtiVe ACCESS........couiuimiiiiiicicictccc s 4-9
Using SQL t0 Access ObJECScuoviuiiiiiiiiciet 4-9
Inserting and Modifying Values ... 4-10
Overview of Navigational AcCess ... 4-10
Retrieving an Object Reference (REF) from the Database Server ..., 4-10
PInning an ODJECtc.cciiiiiiiiiiiiiiiiiiii s 4-11

vi

Manipulating Object AttriDULeScceiiviiiiiiiiiiiccc s 4-12

Marking Objects and Flushing Changes............cc.coocruiiiiiciiiiiicecc e 4-12
Marking an Object as Modified (Dirty)........ccccccoceeiiiieiiiiicceeeeeceeeeeeeeeeeeeeeeeees 4-12
Recording Changes in the Databasecccccoiiiiiiii e, 4-12
Garbage Collection in the Object Cachecccooioiiiii e, 4-12
Transactional Consistency of References............cccococcccciieiriiiiicnneeecrrscseeeeeeese s 4-13
Overview of Complex Object Retrieval.............ccccocoiiiiiiiiiii 4-14
Retrieving Complex ObJects ..o 4-14
Prefetching Complex ODJECESc.ccoiuiuiiiiiiiiieicieccceeeee e esenes 4-16
Working with Collections.............ccccovviiiiiiiiiiiiiiiii s 4-16
Fetching Embedded Objectscooiiiii 4-17
INULINESS .o 4-17
Using Object References............cccooviiiiiiiiiiiiiiiiiiiiiccccs s 4-18
Deleting Objects from the Databasecccccccoviviiiiiniiiiiii 4-18
Type INheritance ... 4-18
SUbSHHULADILILYovveecee 4-19
NOT INSTANTIABLE Types and Methods...........ccccccoiiiiiiiniiic 4-19
OCCI Support for Type INNETItanCecccociiiiimiiiiceeicccee e 4-20
Connection:getMetaData().........cccoeeiiiiiiiiiiiiiiiic 4-20
Bind and Define FUNCLIONSccccciiiiiiiiiiiiiiicics 4-20
OTT Support for Type INheritanceccccoccciiiiiiiiiiccece s 4-20
A Sample OCCI APPLICALIONccovveuiriiiriiieiiieiciecee ettt aens 4-21
Datatypes
Overview of Oracle Datatypes...........ccccciiiiiiiiiiiiiii s 5-1
OCCI Type and Data CONVEISIONccueiiuiueieiicicie ettt 5-1
Internal DatatyPes.........cccccooiiiiiiiiiiiiiiii 5-2
Character Strings and Byte Arrays ... 5-3
Universal Rowid (UROWID)........ccccooiiiiiiiniiiiiiiiiiicieeici s 5-3
External Datatypes ... 5-4
Description of External Datatypes..........cccccovviiiiiiiiiiiiiiiiiii 5-6
BEILE ...ttt 5-6
BDOUBLE ..ottt e 5-6
BELOAT ..ot 5-7
BLOB ...ttt 5-7
CHAR oo e 5-7
CHARZ ..ot s 5-7
CLOB....c et 5-7
DATE .o 5-7
FLOAT ..ottt s 5-9
INTEGER ...ttt 5-9
INTERVAL DAY TO SECOND ...t 5-9
INTERVAL YEAR TO MONTH ...t 5-10
LONG. ..ottt 5-10
LONG RAW ...omiiiii s 5-10
LONG VARCHAR ..ot 5-11
LONG VARRAW ..ottt sttt 5-11

INUMBER ...t bbb 5-11
OCCI BEILE ...ttt et 5-12
OCCIBLOB ...t 5-12
OCCIBYTES ...t 5-12
OCCTI CLOB ...ttt 5-12
OCCIDATE ...ttt 5-12
OCCIINTERVALDS ..ot 5-12
OCCIINTERVALYM ..ottt 5-12
OCCINUMBER.......coiiiiiiiii e 5-12
OCCI POBJECT ..ot 5-12
OCCI REF ...t 5-12
OCCI REFANY .ot 5-12
OCCI STRING ..ottt 5-13
OCCITIMESTAMRP ..ottt 5-13
OCCI VECTOR. ...ttt 5-13
RAW L bbb 5-13
REF .ottt 5-13
ROWID ..ottt 5-13
STRING. ..ottt bbb 5-13
TIMESTAMP ..o 5-13
TIMESTAMP WITH LOCAL TIME ZONEcccoooiiiviiiiiniicnes 5-14
TIMESTAMP WITH TIME ZONE........ccceoviiiiiiiniiiiiniiice i 5-14
UNSIGNED INT ..ot 5-14
VARCHAR ...t 5-14
VARCHARZ ..ot 5-15
VARNUM. ..ottt 5-15
VARRAW ..ottt 5-15
NATIVE DOUBLE ..o 5-15
NATIVE FLOAT ..ot 5-15
Data CONVETISIONSc.cooviviiiiiiiiiiic s 5-16
Data Conversions for LOB Datatypes..........cccoeeiviiininiiiciicceeccc e 5-17
Data Conversions for Date, Timestamp, and Interval Datatypes...........cccccoeueeiivicrvccnnnnne. 5-17
Metadata
Overview of Metadata ... 6-1
Notes on Types and AttribULES ..ot 6-1
Describing Database Metadata.............cccccooviiiiiiiiiiii e 6-2
Metadata Code EXaAMPLESccccccuiiiiiiiiiiiiiiccccccc e 6-2

Object Type Translator Utility

Overview of the Object Type Translator Utility............cccccccooviii 7-1
Using the OTT UIItY......cocoiiiiiiiiiii e 7-2
Creating Types in the Database...............ccccccocoiiiiiiiiii s 7-2
Invoking the OTT Utility........cccocoiiiiiiiiiiii e 7-2

Specifying OTT Parameters...........ccooirieiiiiiiiiiicici e 7-3

vii

viii

Setting Parameters on the Command Linecccoouoiriioiiiiiie 7-3

Setting Parameters in the INTYPE File.........cccccoooiiiiii e 7-3

Setting Parameters in the Configuration File..........cccccccooiviiiiiiiiiiiiicceccceeeene 7-3
Invoking the OTT Utility on the Command Line..........cccooueiiiiiiiiiiiiiic 7-3
Elements Used on the OTT Command Lineccccccovvivinniininiine, 7-4

OTT Utility Parametersccccccucueuiueuriiiiieieieieieiceeeeeeieceeeeeeeeeeee e 7-4
ATTRACCESS ..ot 7-5

CASE ..o 7-5

CODE ...t e 7-6
CONEIG ..o s 7-6
CPPEILE ... 7-6
ERRTYPE ..ot e 7-6

HFILE oo s 7-7
INTYPE ..o 7-7
MAPEILE ... e 7-7
MAPFUNC ..ot s 7-7
OUTTYPE ..ot 7-7
SCHEMA_NAMES ..o 7-8
TRANSITIVE ..ot s 7-9
UNICODE ...t 7-9
USE_MARKER ..ottt s 7-11
USERID ...t 7-11

Where OTT Parameters Can APPEArccoceueiiiucieiiiiecice et 7-11
File Name Comparison ResStriction ... 7-12
Using the INTYPE Filecccocoiiiiiiiiiiiic s 7-12
Overview of the INTYPE File........cccooiiiiiiiiiiiiiiiiccc s 7-13
Structure of the INTYPE Filecccoiiiiiiiic e 7-14
INTYPE File Type Specificationscccceeieiiiiiiiniiiiiiiciiiicciccccs 7-14

Nested #include File Generation.............ccccoiiiiiiiiiiiiiiiiie s 7-15
OTT Utility Datatype Mappings.........cccocoiiiniiiiiiiiniiiiicc s 7-18
Default Name Mapping ... 7-22
Overview of the OUTTYPE File........ccocoiiiiiiiiiiicceeeereee et 7-23
The OTT Utility and OCCI Applications ... 7-24
C++ Classes Generated by the OTT Utilityccovoieueiiiiiiiii e, 7-26
Map Registry FUNCHONc.coiiiiiiiiic s 7-26
EXtending C+ CLasseS......ccueueuiuiuiiiuiiiiiieiciicicieieieieieieieie ettt ees 7-27
Carrying Forward User Added Code.............cooiiiiiiiiiiiiiiiiiii s 7-27
Properties of OTT Markersccccciuiiiiiiiiiiiiiiii s 7-28
USING OTT MATKETS ...ttt 7-29

Globalization and Unicode Support

Overview of Globalization and Unicode SUPPOTt..........ccoeiniininninncniccceeeeeeeeeeee 8-1
Specifying Charactersets.............ccooiiiiiiiiiiii s 8-1
Datatypes for Globalization and Unicode SUpport............ccccoovvvininnnniinnnncce, 8-2
USHrng DatatyPe......ccoviiiiiiiiiiii e 8-2
Multibyte and UTFL6 data.........ccouoiriiieiii 8-3
CLOB and NCLOB Datatypes........ccccccueiiriririiiiiiiniiiiiciriniiisrisiecesesesssisse s 8-3

10

11

Objects and OTT SUPPOIt ... 8-4

Oracle Streams Advanced Queuing

Overview of Oracle Streams Advanced QUeUing..........c.cccccceviiiiiiiiiiiiiii 9-1
AQ Implementation in OCCIcccoiiiiiiiiiiiiiiii s 9-2
IMIESSAEEvvviiiiiiii e 9-2
AZENE ..ottt e 9-3
PrOQUCET ...t 9-3
COMSUINIET ...t 9-3
LASEOIET ..ottt 9-3
SUDSCIIPHON «.evte e 9-4
Creating MESSAZES.........coiiiiiiiiiiiii e 9-4
Message Payloads ... 9-4
RAW .ot 9-4
ANYDALA .o s 9-4
User-definedcooiiiiiiiiiiii s 9-4
MeSSage PIOPEItIOSscuoviiiiiieieieiici s 9-5
COTTEIAtION ... s 9-5

SENAET ..ot 9-5

Delay and EXPiration........ccccueuiiiieiiiicieiecci et 9-5
RECIPIENES ..o s 9-5
Priority and Ordering............c.ooirieiiiiiiiiecc e 9-5
ENnqueting MEeSSAZESc.couiuiiiiiiiiiiiecicc et 9-6
Dequeting MeSSAZES............coiiiiiiiiiiiiic e 9-6
Dequeting OPtioNS.........ccociiiiiiiiiiiiiiiie s 9-7
COTTEIALION ... 9-7

MO .. 9-7
NaVIGATION. ...ttt 9-7
Listening for MeSSaGEs...........cccoiiiiiiiiiiiiii s 9-7
Registering for Notification ..o 9-8
Publish-Subscribe NOtificationsccocovviviviiiiiiiiiiiii s 9-8
Direct Registrationccceiiiiiiiiiiiicc s 9-8

Open Registration ..o s 9-9
Notification Callbackccceviiiiiiiiiiiiiiii s 9-11
Message Format Transformation ..o 9-11

Oracle XA Library

Application Development with XA and OCCI ..o 10-1
APIS £OI XA SUPPOTLLE ...ttt 10-2

Optimizing Performance of OCCI Applications

Reading and Writing Multiple LOBScccocoiiiiiniiiiiiic 11-1
Using the Interfaces for Reading and Writing Multiple LOBs..........cccccoviiiiiiiniine, 11-2
Transparent Application Failover ... 11-2
Using Transparent Application FailoVer ... 11-3
Objects and Transparent Application Failover ... 11-3

12

Connection Pooling and Transparent Application Failover...........ccccooiiiiinnniinnnn, 11-3

Connection SRATING ... 11-4
Introduction to Thread Safety ... 11-4
Implementing Thread Safety ... 11-4
SerIAlIZAtION.oviiiiiiiic s 11-5

Automatic Serialization..........coviiiiiiiiicc s 11-5
Application-Provided Serialization...........c.cccoeeveiiiiiiiiicininiiiiiiicc 11-6

Application Managed Data Buffering..............ccccccoviniiiiiinn 11-6
setDataBuffer() MEthOd.ccuvviiiiiiiiciieeee ettt sa e saesaeseesessenses 11-7
executeArrayUpdate() Method ... 11-8

Array Fetch Using next() Method ..o 11-8

Modifying Rows Iteratively ... 11-9

OCCI Application Programming Interface

OCCI Classes and Methods...........cccooeiireriririnineieieetetee ettt ettt ettt st sr s sae 12-2
USING OCCI CIASSESvuveieriiiiicicie ettt 12-3
OCCI Support for Windows NT ... 12-4

Common OCCT CONSEANLESccceoiiiiiriiririiriieere sttt ettt ettt st et et st et et et sbesaeesesbesaens 12-8

AGENt ClaSS ... s 12-9
AGENE() v s 12-9
GEEAAAIESS() ...ttt 12-9
GEENAINE() ..vvviiiiieee 12-10
GEIPTOtOCOL() .o.vvviiiiiii e 12-10
SINTIL() c-vventetetet ettt ettt ettt ettt ettt et etk et b et s et s et es et e st st e st s es e benessenensens 12-10
OPETALOT=() 1ot 12-10
SEEAATESS() +veveuerrenirreieiitet ettt ettt ettt b ettt eb b bt ns 12-10
LY=L 8 AN F= ' 4 U () TS 12-11
SEEINUIL() 1ottt ettt b e bbbttt et et eb e b e 12-11
SEEPTOLOCOL() +vvveneeteieiirietitet ettt ettt ettt ettt ettt sttt b ns 12-11

ANYData CIaSS ..o s 12-12
ANYDALA() covivviiii 12-14
GELASBDIOUDIE() ..o 12-15
GEEASBIILE() ..t 12-15
GELASBELOAt() ...vvvviiiicicicicc 12-15
GELASBYEES() c.ovviiiiiiiicicc e 12-15
GELASDALE() ..o 12-15
GELASINtEIVAIDS()...cvovviviiiiiiieiicc 12-15
GELASINEIVAIYIMU() ...vviiiiiiiciciii e 12-15
GELASNUMDET() ... 12-16
GELASODJECH() cvvvviiiicieiccce 12-16
GEEASREL() ... 12-16
GELASSEIING() co.vvviiiiiiicic e 12-16
GELASTIMESAIMP() ...vovveveveiiriiiieieiccee 12-16
GEETYPE() it 12-16
SINTIL() c-eventetetet ettt ettt ettt ettt etttk et b e e s e e st s e st b e st b et beseabenesbeneesens 12-16
SEtFrOMBIDIOUDIE() ...ttt et 12-17
SEEFTOMBEILE(). ettt ettt 12-17

SELFTOMBELOAT() vttt 12-17

SEtFrOMBYLES()coovviiiiiiiiiiiiiii e 12-17
Y1028 010 0] D= 1 (=T () PSRRI 12-18
SEtFrOmMINEErValDIS() ..coueeuieuieiiiiiiie ettt et 12-18
SEtFrOMINEEIVALYIM() .eoveueeeiiiiicieieteee ettt ettt 12-18
SEtFTOMNUIMDET()....vcvieeieiieiieiieiietetee ettt ettt sttt e bt et eseeseeseebessesbebessessessessessesensensenes 12-18
SEEFTOMODIECH() -..vvniiiiiiiiicici e 12-18
SEEFTOIMRETI() ..ttt ettt ettt ettt bbbt nes 12-19
SEEFTOMSHIING() ... 12-19
SetFromTImestamp()......ccvuvueiiiiiiiiiiiii e 12-19
SEEINTLL() ettt ettt ettt b ettt bbb nes 12-19
BatchSQLEXCEPLION CLASS.....c.coiieieieiiieiirieiereeereecrte ettt 12-21
GETEXCEPHION() 1.vivviiiiciiciciece 12-21
getFailedROWCOUNL() ...ovoviviiiiiiiiiiiciicc e 12-21
GEtROWINUINI() ..t 12-21
BAIle CLASS ...ttt bbbttt ettt h e bt b e s h e s bbbt e ettt b e bt bbb e 12-22
BFILE() 1venvevenieeeietitetestet ettt ettt ettt ettt ettt ettt s et s s et et et e b se b e s et ese b ese s ese b s e beneasenes 12-23
CLOSE() wrvreviererierteriet et et et et eteete et et et et esbessestesteseese et e sase s essessessestesseseaseaseeseeseesessesbaseeseeseeseesensensenes 12-23
CLOSESETEATII() ..ttt ettt st b bbbttt et e bt e bt eb e et ebe s b e se et et ebeebeebebe e 12-23
FILEEXISES() c-vevenvevenrerertererteertetrt ettt ettt ettt ettt ettt b e bbbt b e bt bt e bbb b ebeeenes 12-23
GEEDATALIAS() ... 12-24
GEtFILEINAME() «.vvevviiiiciicic 12-24
GEESETEAIMN() ...vvvviiiiiiic e 12-24
GEtUSLINGDITALIAS() ..vvvvveieieieieieieieeeree e 12-24
getUStriNgFIleName().......covveiviiiiiiiiicccc 12-24
ISINIHALIZEA() c-vvenverereerereeere ettt ettt ettt 12-25
ISINTULL() cevvitete ettt ettt ettt ettt et e st te s te st e b e b e s s estesaeseeseesaesesseasesessessasaesseseesensensenes 12-25
ISOPEII() vttt 12-25
LENGR() v 12-25
OPEII() wvvverriniieii ettt 12-25
OPETALOT=() .ot 12-26
OPETATOT==() ot 12-26
OPETALOTI=() covviviiiiiic s 12-26
TEA() ettt ettt a bbb bbbt a et h e a e bbb st et et e et et e st eae bt ebe bt ebe b ae 12-26
SEEINAIIIE() -euvvententrteeet ettt ettt ettt ettt et ettt et b e bbbt e bt e bbbt bbb ens 12-27
SEEINUIL() 1.veveieietete ettt ettt ettt e et et e b e b e s b esbesseseeseeseesesse s e s essessesseseassesseseesensensenns 12-27
BLOD CLaSS ...ttt st b b bt ettt et be bttt eb b nee 12-28
BIOD() 1veuteteeieteietetetete ettt ettt ettt ettt ettt s et e b et et s et a s et e st et ea bt e b te b ese b ese et ese s eseabesaaseneasanes 12-29
APPEIA() oot 12-29
CLOSE() +evetetetent ettt ettt ettt a bbbt ettt bt e a e h e e bbbt et et et eat bt ebeebe b b ee 12-29
CLOSESEIEAMN() ..t euvveereeeitrtei ettt ettt ettt b bbbttt bbbt st e sttt s b esebenes 12-29
COPT() ettt 12-30
GEtCRUNKSIZE() ...oviiiiiiiic e 12-30
GEESETEAIN() ...t 12-30
§T=) Fa ¥R =1 <o [RO PR U USRS 12-31
SINTIL() c-vventeveeetenteteet ettt ettt ettt ettt ettt ettt et et et et et es s e s esses et esensesenses e seseeseneaseneaseneasenensanes 12-31
ISOPEII() vovvviiriiiciicrce e 12-31

xi

Xii

OPEIL) oottt 12-31
OPETALOT=() .ovvvviiniiititiici e 12-32
OPETALOT==() oot 12-32
OPETALOT!= () oo 12-32
1= e L SRS 12-32
SEEEMPLY() cvvveviiiiic e 12-33
SEEINTLL() ¢ttt ettt ettt b ettt eb et be e 12-33
EEIIN() cveneetetet ettt ettt ettt ettt ettt ekttt b et s e st n et e st e et n et n et eneebenes 12-33
IWTTEE() s+ttt ettt ettt ettt ettt a bbbt b bbb e et e e et e st e bt e ae e bt e b e e bt sb et et e st e st eat e st ebeebeebeebesaen 12-34
WITEECHUNK() ettt bbb s 12-34
BYes Classc.cooiiiiiiiiiiiiiiii e 12-35
BYLES() cvvevieiieiete e 12-35
DYEEAL() c.vnieieiiiiici bbb 12-35
EEBYLES() ..viviiiiiiic e 12-36
SINTULL() ettt bbbttt ettt et et sb e s b b e st et et et et e ebe b e 12-36
LENGR() v 12-36
OPETALOT=() cvvvvviiiiiciic s 12-36
SEEINUIL() 1ottt ettt b ettt et ettt e b e b e 12-37
CLOD CLASS ...ttt ettt ettt ettt ettt et e e be st et et et ea b e st en e e st e st eb e e st ebeeb e besb et enbe s et ententeneeneebeebees 12-38
CLOD() ettt ettt ettt ettt ettt ettt s et ettt et et b et ekttt e b bbb n e st b e st et e et n et n e b eneesenes 12-39
APPEINA() cvvvverireieieieee st 12-39
CLOSE() +vvervemerretet ettt ettt ettt ettt ettt h et b bbbt b ettt b bbb ene e ns 12-40
ClOSESETEAIN() .. veuveverieieereteeteite e et et et et et et e st e st e st este st e st et e sesessessessessesseseaseaseaseasessessensessassesensensenes 12-40
COPY() wovererererereieteieiee ettt 12-40
getCharSetFOIM() ...ccovvvviiiiiiiiiiiic e 12-41
GEECNATSELIA() .. vt 12-41
getCharSetIdUSHIING ()ovveviveieieieicicciciececc e 12-41
etChUNKSIZE() ..o 12-41
EESIIEAIMN() ..ot 12-41
ASINTHIATIZEA() -ttt ettt st sttt et b e 12-42
SINTIL() c-ventet ettt ettt ettt ettt b ettt eb et e bt e et b b e b et ese b ns 12-42
ISOPEII() wovoviviiiiciiiit e 12-42
LENGEN() covviiiicici s 12-42
OPEIL) oottt 12-42
OPETALOT=() .ovvvvieiiiiiciiicc s 12-42
OPETALOT==() oot 12-43
OPETATOTT=() oot 12-43
TEAA() cvevververienrentetietetee et e e s e st et et et e st est et eest et ees e et e et e s essessessessessessessese et s ese et e esees e besbestentesteneeseesensenes 12-43
SEECRNATSEEIA() vttt ettt sttt ettt 12-44
5etCharSetIdUSLIING()ccveveviiriiiiiiiciiiiiicicrcc e 12-44
SEECNATSEEFOTIIN() . euvevieeieieieieeee ettt ettt ettt et b e b e st esbe st eseeseesessesbessessessensesensensenes 12-45
SEEEMPLY() cvvveiiiiicc e 12-45
SEEINTLL() 1ottt ettt ettt ettt ettt b bbb st 12-45
1010 o L) USSR 12-45
TWTTEE() s+ttt ettt ettt ettt et et h bbb e b st e et e e et e st e st e ae e bt e b e e bt sb et et et et ententeneebeebeebesben 12-46
WITEECUNK() ettt ettt b et 12-46

CONNECHON CLASSoooviiiieeiieeeeeeeeee ettt et e et e e et e e eaaeesaeeeesaeeeessseessraeessaaeesasesssnseeesnresesnes 12-48

changePassword() ..o 12-49
a0 4o 011 () PSSP 12-50
CrEATESTATEIMENIT() ...euveuienieiieiieitet ettt sttt ettt et et sbe et be s b et et bbb ee 12-50
FIUSRCACHIE() -ttt ettt ettt bbb ses 12-51
GELCLHENTCRATSE() ... vevveveiicicieic e 12-51
getClientCharSetUSHING ()ovvveueieiicieict e 12-51
getClientNCHARCHhAISE().....covvvivivviiiiiiiiiiiciiiciciii e 12-51
getClientNCHARChArSetUSLING() . .cvovevevereeeerieeieerireririrerr e 12-51
etCLENtVErSION()cveviviviiiieiciiiiciciic 12-51
getMetaData()cocovvviiiiiiiiii e 12-52
GELOCISEIVET() . vuviviviiiiiiiiiicic s 12-52
getOCIServiceCONtEXT()....ovviviririieieieieiciciicicc 12-52
GELOCISESSION() ..ot 12-53
etSeTVErVersion() ... 12-53
getServerVersionUSHING()......covovrueveiiiiieieiccie 12-53
getStMECAChESIZE() ...ovvviiiiiiii e 12-53
EETAG() o 12-53
ISCACKHEA () 1.ttt ettt ettt sttt b et e et et be bt bbb b e 12-53
PINVECtOTOfRELS() c..vvvviiiiiiiiiiiii s 12-54
POStTOSUDSCIIPHIONS() ...eeeeeieiciiicccc e 12-54
1€AAVECLOTOBILES() .eveviieiiieiieieieteete ettt ettt ettt s st et b e b e benensens 12-55
1eadVeCtOrOfBLODS() ..c.veuerueuiriiinieirieirierie ettt ettt ettt s e nes 12-55
1€adVeCtOrOFCIODS() ...cvveereeiiiieiiitiriiieieiet ettt ettt et et e e e eseesesseesessessessessessessesensesenes 12-56
registerSUbSCIIPIONS().....cviveveviiiiiiiiiiciciii 12-57
TOLIDACK() e+ttt ettt ettt sttt b bbbttt eb e b et bbb ebesenes 12-57
SEtSEMECACNESIZE() .. evveereeieeieeieieietieete ettt ettt ettt et et et esaeseebesseebesbesbessessessessesensansenes 12-57
SEtTAFINOLLY()...vviviiiiiiicciicc s 12-57
termMINAteStAtEMENT() . c.coveververirieririciricerte ettt 12-58
UNTEZIStErSUDSCIIPION().....viviiicicicicieiiccrr e 12-58
WITEEVECLOTOLBIODS() ...vvovinietenieieieteietetee ettt sttt st se s 12-59
WITEEVECLOTOFCLODS() .uvvinteriieiiiei ettt sttt s 12-59
ConNEctioNPOO] CLaSS.........cooiiiiiiiiiiiie ettt ettt sttt ettt sb e b 12-61
CrEATECONMNECHION() c.vututenteiiitieteet ettt ettt ettt sttt et et a e bt bt sb e se et et et et eateneebeebebenee 12-61
createProXyConNection().......ccocvuriiiriririiiiiiiiiiiiicn e 12-62
getBusyConnections()........coeeiiiiiiiiiiiiniiiii e 12-62
getINCICONNECHONS() ...ovvviiiiiiiiiici s 12-62
GetMaXCONNECHIONS()....vvvviviiiiiiiicicieii s 12-63
getMINCoNNECIONS() ...oovvviviviiiiiiiiii s 12-63
getOpenConnectionS()........coceviviviiiiiiiiiiiiii 12-63
GEEPOOINAIMNE() ...t 12-63
EtSIMECACNESIZE() ..vvevviiiiciiccc e 12-63
EtTIMEOUL()....vviiiiicic e 12-63
SEtEITOTONBUSY() ..o 12-63
SEEPOOISIZE() cveuvenvenrerieeieeieteietetee ettt ettt ettt e st e e tesbe b e b e s sessesaeseeseese et e et e es e b ebesesbeseeseeseesasenns 12-64
SESEMECACNESIZE() .. euveueeneeieeiietc ettt sttt sttt 12-64
SEETIMEOIUE() c-vveueeteieteeetetet ettt ettt ettt ettt eb ettt b bbb esesens 12-64

xiii

Xiv

termMiNateCONNECHON() . eoveueeuieuieieetietertet ettt ettt ettt et be st e e st et e ebe b e 12-64

CONSUMET CLASS ...ttt ettt sttt et et e e st et e st eb e e b e e bt ebeebe st et e tent et ententeneeseebeeaees 12-66
CONSUIMET(). e veenveereteeeeeteetesteesteteetessesseessesssessesssessesssanseessensesssessesssessesssessesssessenssensesssenseessensennes 12-67
getConsSUMErNAME() ...c.cvviviviiiiiiiiiieiei e 12-68
getCorrelationId()........cccovviiiiiiiiiiiii e 12-68
etDEQUEUEMOME() ... 12-68
getMessageldToODeqUEeUE()ocrueiiiiiciiicci 12-68
getPositioNOfMeSSAZE() ...cvveveiiiecieiiccie e 12-68
etQUEUEINAIME() .. cuvvviiiiiic e 12-69
getTransformation() ... 12-69
GEtVISIDILEY () ovveviiicicieiic 12-69
GEtWaItTIME() ..o 12-69
ISINTIL() c-vveneetentet ettt ettt ettt ettt ettt ettt ettt et et ebe st e be st et es e et en s es e e e s enbeseaseseaseseebenesesensesenseseesenesenes 12-69
OPETATOT=() coovviiiiiciiitci e 12-69
TECEIVE() 1uveuveeeeeteeeesteesteteestesteesteseestesseassesseesseseassenseessenseessansesssesseaneesseansenseensessennsenseensenseensensennes 12-70
SEEAGEIE() cvovvviiieieieieee e 12-70
SECONSUMETINAINIE() ...voveuverenretirteierteitrteitt ettt sttt ettt ettt b bbbt b et be sttt be b s esbenenaenes 12-70
SEtCOTTELAIONIA() .vvrevrerieririiiiirierietet ettt ettt ettt et et st et aeseesaeseebessessesbesseseessessessesensensenes 12-70
SetDeqUEUEMOME()cucuiuiiiiiiiiiiici e 12-71
setMessageldTODEqUEUE().........oceueiiiurieiiieciei et 12-71
SEEINUIL() 1.veveteieieie ettt ettt ettt et ettt et e b e b e s b esse st esaesaesaesaesebesessessesseseassesseseesensensenes 12-71
5etPOSItIONOIMESSAZE() ..vvovvveviviiiieieiciiiccc 12-71
SEQQUEUEINAINIE().ttt ettt ettt ettt ettt ettt st b et b et b et bt be s bbbt sbenenaenes 12-72
SEtTTANSIOTINATION() 1ovvevreeierieiieiiiieteetetetet ettt ettt sttt sb e e see st eseesesseesessebessessessesseseasansenes 12-72
SEEVISIDILEY () v.vvvvvviriniiciicci s 12-72
SEEWATETIINIE(). v ettt ettt ettt ettt b ettt b b e b e s 12-72

DAt CLaSScouiiuiriiriiiiiecte ettt ettt ettt sttt et ettt be b b e 12-74
DIALE() ettt ettt ettt bbbttt a bbbt bbb st et et et ebeebe e 12-75
AAADAYS() co.voveveiiiiiii e 12-76
oo La 11, (03 a1 d 4 T=1 (1SS USRS 12-76
daySBEtWeen()coovvviveiiiiiiiiiiic e 12-76
FTOMBYLES() ..o 12-76
FEOINTEXE() e vrrvrevieriieierieie et et et e ettt et et et e st este st et e et e bessessessessessessesseseaseaseasessessessessessessesensenes 12-77
GEEDIALE() cv.vviiiiici e 12-77
GEtSYSEMDALE() ...vvviiiiicii e 12-78
ISINTULL() vttt ettt ettt ettt et be s e e s e s essessessessesaesseseeseeseasesessessessesseseesensensenes 12-78
LASEDAY().vveveverereiieieieecc e 12-78
NEXEDAY() ovceieiiiiii s 12-78
OPETALOT=() 1evvvveiiiicicc s 12-79
OPETALOT==() 1ot 12-79
OPETATOTTZ() oo 12-79
OPETALOT () 1ot 12-80
OPETALOT>Z() 1.t 12-80
OPETATOTC() oottt 12-80
OPETALOTC=() 1.ttt 12-81
SEEDIALE() 1.ttt ettt st sh bttt et et eb e b e 12-81
SEEINTULL() 1ottt ettt ettt ettt b bbbttt b et e st ns 12-81

EOBYEES() vttt 12-82

BOTEXE() c-evenerrenerteneet ettt ettt ettt ettt sttt ettt b et bbbt b et bbbt ebe s enes 12-82
L0 Yo 1= (SRR 12-82
ENVIFONMENT CLaSSocuiiiiiiiiiiieietete ettt st sttt et be b bbb e 12-84
CreateCONNECHION() ..everveirieiriiirieietetet ettt ettt ettt b ettt bbbt et b et b e esesensenes 12-85
€reateConNECtiONPOOL()ccvccveiiirieiriiriertetet ettt ettt seeteeseesesbesbessessessesseseesesenns 12-86
CreateENVITONMENT() ..oouertiiiiiieieie ettt ettt b e sttt 12-87
createStatelessConnectionPOO0I()coeevveereirieirieirieiretrcrc ettt 12-88
€NableSUDSCIIPHION() ...uvvviiiiieieicicicicieec e 12-88
disableSubSCription() ..o 12-89
getCacheMaxSiZe()......cccvvuiiiiiiiiiiiiiiiii e 12-89
EtCAChEOPLSIZE()....vvveiiceeieieeic e 12-89
getCacheSortedFIUSN()coviiiiiiiiiiii e 12-89
getCurrentHeapSize ()coovveveiiurueieiicici 12-89
GEtLDAPAAMINCONIEXE() ..vvoveieiireecrer e 12-89
getLDAPAuthentication().......ccoovveieiiiiiiiiiiiiiii e 12-90
GEtLDAPHOSE() ...vviviiiiiiciiciii e 12-90
GELLDAPPOIL() ..vviviiiiiiiiiicc e 12-90
GEEMAP() cvovvviieii s 12-90
getOCIENVITONIMEN() ...oovviiiiiiiiiiiiiic e 12-90
GEtXACONNECHION() v.voviviriiiiiiiiiiicci e 12-90
GEtXAENVIIONMENT() ..vovoviviiiiiiiiiiiiic 12-91
1eleaseX ACONNECHION()...crveuerreirieirieirieinieirt ettt ettt ettt ettt b bbbt eb st ebe b b sesesenes 12-91
1elease X AENVITONIMENT().....ccviiiiiriieiiriiieieteieteie ettt ettt eeseesaeseeseebessessessessessessesenns 12-91
SELCACTEIMAXSIZE() «-vveeveemeeieeiietet ettt sttt ettt ettt sb et b e s b et et et ebe b 12-91
S€tCAChEOPISIZE() ...vvviiiiciciiiiic e 12-92
SetCaCheSOTtEAFIUSI() ...ouvevieeieeieiieieiec ettt ettt se et b e b e b e sbessessesaesansenns 12-92
SEtLDAPAAMINCONTEXE().vevintenteiieieiieiieeei ettt sttt sttt et 12-92
SEtLDAPAUeNtiCAtION() «..coveeerveeirieirieiricirictectetet ettt ettt 12-92
SEtLDAPHOSTANAPOTL() c.eovieviiiiiieieieieietetetetts ettt seete st b e sse b e b e s esaesaesseseesensansenns 12-93
setLDAPLoginNameANdPassword().........cocovuvirininiininininiiiiiiicccncccscsscsane 12-93
termMiNAtECONNECHION() . .eoveverrerirteiirieirietrte ettt ettt ettt ettt ettt b bbbt s bbb b esesenes 12-93
terminateConNECtioNPOO0I().....ccecieiririirerieieteteieet ettt et et et et eeseeseesessessessessesseseesensenns 12-93
terminate ENVIrONMENT().....cooteiririiriieieieee ettt ettt sttt st et 12-94
terminateStatelessConnNectionPOOI().......cccvveerueirieririenirieiieieeerteete ettt 12-94
INEEIVAIDIS CLaSS......couiiiiiiiiiiieteteeeet ettt ettt ettt st s b et st ettt e st be b ebe et b e 12-95
INEEIVAIDIS() c. ettt ettt ettt et s b e st b e b et be bbb 12-97
FTOMNTEXE() - vvenerentetetetetet ettt ettt ettt ettt ettt b et et b e bbb e bt e s eb bbb enensens 12-97
FEOIMUTEXE()eveeveveieieeieetet ettt ettt ettt ettt et e e e e testebesbessesbesseseessesaesessaasessessessessesseseesensensenes 12-98
GEEDIAY() 1vvvreicicieici st 12-98
GEEETACSEC() ..ot 12-98
GELHOUT() ..vviiiiic e 12-98
GEEIMINULE() ...t 12-98
GEESECOTIA() ... 12-98
SINTIL() c-e ettt ettt ettt ettt ettt ettt ekt b e bbb e st es e b et ese b e s ebeneasens 12-99
OPETALOT™() vttt 12-99
OPETATOTF=() .ot 12-99

XV

OPETALOT=() 1ot 12-99

OPETATOT==() coovviiiiiiiii e 12-99
OPETALOTI=() vt 12-100
OPETALOT /() 1ot 12-100
OPETALOT/=() covvviiiiiiii s 12-100
OPETALOT () 1ot 12-101
OPETALOT>=() 1.t 12-101
OPETALOTC() oottt s 12-101
OPETALOTC=() 1.t 12-102
OPETALOT() ..t 12-102
OPETATOT = =() coovviiiiiiii s 12-102
OPETALOTH() covvvviriiiiitcc e 12-102
OPETALOTH=() 1.t 12-103
SEE() +evereerereenertet sttt b bttt h et e a et bbbt e b e bbbt bbbt b s nnen 12-103
SEEINTULL() 1ottt ettt ettt ettt etttk et b et e e e s et ese b e st b en e b enenen 12-103
BOTEXE() s+ttt ettt ettt h bbbt bbb e et et bbbt s bt bbb et et et et et eas 12-103
BOUTEXE() ettt ettt ettt ettt sttt a st e st e bbb e s b et et et e b entent e st eae e bt ebesbeste s eseneeneenes 12-104
INEEIVALYIM CLaSS ..c.ueviiiiiiiieietetet ettt ettt ettt b e bbbt bbbt et ea e e eneenes 12-105
INEEIVALYIMI() .ttt ettt ettt et st b e bbbt et e eas 12-106
FLOMNITEXE() - enveveeeierteierte ettt ettt ettt b bbbttt bbbt s ettt be e b st esesennen 12-107
FEOIMUTEXE()e e eveereieieieiet ettt ettt et e sttt e et e st e s be st et e et e e s e bessessessessesbessesseseaseasassessessensessassesenses 12-107
GEMONEN() ... 12-108
GEEYRAT() 1vvvieieriete e 12-108
SINTIL() c-vventetent ettt ettt ettt ettt ettt ettt bbbt e s et e st e st et ese b e s e senessenenen 12-108
OPETALOT™() vttt 12-108
OPETATOT*=() vt s 12-108
OPETALOT=() cvvvvveiiiiiicic e 12-108
OPETALOT==() 1.t 12-109
OPETALOTT=() v 12-109
OPETALTOT /() <ottt 12-109
OPETALOT /=() .t 12-110
OPETALOT™ () oottt s 12-110
OPETALOT>=() 1.t 12-110
OPETALOTC() 1ottt 12-111
OPETATOTC=() cooviiiiiiiicii s 12-111
OPETALOT()..cveuvivieiiiiic e 12-111
OPETALOT = =() 1.ttt 12-111
OPETATOTH() oottt 12-112
OPETALOTH=() c.evveiiiiiicii e 12-112
SEE() +vevererrentrtentrte e te e te e te ettt e et ettt ettt e st e st et en e b e st et en et en e et e st ek en b e s eatesen s et et e st b esebeneaseneesenetn 12-112
SEEINTULL() 1ottt ettt ettt ettt ettt ettt e b bbb eb b eseaes 12-112
BOTEXE() sveevreveenreteeiesteeteet et et et st e e st e e st e e et e seest e seeneessesnsesseensesseensesseensenseensenssensesnsensesneenses 12-113
BOUTEXE() e+ttt ettt ettt b bbbt b bbb e et e b et e st et s bt e bt b e sbe st et et et eneens 12-113
LASTENET CLASSeouienieiieiieiieieeie ettt ettt et ettt e et be s e et et e b e s e st ensenbensestenteneeseesessesseesansessensensens 12-114
T3 < 4T3 TP 12-114
GELAZENTLIST() «.vovviviviiiiiiitciec 12-114
getTIMeOUtFOTLIStEN()cvoviuiiiiiiiiiiiiiiiiiiiccc s 12-115

XVi

LTESEEIU() +-vententetet ettt bbbttt ettt e h bbbttt et eb e bt ebe b ben 12-115

SELAGENELISE()...ooviviiiiiiiiiiiiciii 12-115
SEtTIMEOULFOILISEN() c.vveveeeieieeieie ettt et sttt sb e se e esaesseensesseensesseennas 12-115
IMAAP CLASS......ouiiiiiiiiiiii bbb s 12-116
PUEQ e 12-116
MESSAGE CLASSc.cviiiiiiiiiii s 12-117
IMESSAZE() ..vvvvviiiiiciiicc s 12-118
GELANYDAtA() .eovveieceeie 12-118
getAttemptsToDeqUEUE()covvviviviiiiiiiii e 12-118
GEEBYLES() vveieieeeeee 12-119
getCorrelationId()........cocovviviiiiiiiiiiii 12-119
GEEDIELAY() v 12-119
getExceptionQueueName()ccooevviiiiiiiiiiiiiii 12-119
GEtEXPITatioN() . .cvovieceeeeieiicee 12-119
getMessageENquetedTime()covvvvviirirrnncr e 12-119
getMeSSageStAte()......oeveviiecieieiectee e 12-120
GEEODJECE() w.vvvveiiiiiitic s 12-120
getOriginalMessageld().......cccoeururuiiiiririiicircrrr e 12-120
getPayloadType() ...cooceueviieieec 12-120
GEPTIOTIEY () ..voreieeiiicecee e 12-120
GEESENAETIA() vrvvveeeeeeee e 12-120
ISINULL() vttt ettt ettt bkttt et s bbbttt beseetenen 12-120
OPETATOT=() coovviiiiiiiiiii s 12-121
SELANYDALA() ..vcvviviiiiiciiii e 12-121
SEEBYLES().e.vvivriciiiicc s 12-121
SEtCOTTElatioNTA()erveuereeirieirieiricert ettt sttt ettt ettt n e 12-121
SEEDIELAY (). 12-122
setExceptionQUeUENAmME()ccoceuiiiiiiiiiiiiii s 12-122
SEtEXPITation() «.ovoveveveiiiiiiiiiiiciiiiiic 12-122
SEEINULL() 1.ttt ettt ettt ettt ettt e b e b e s bessesseseeseesaesessesessessessessessessessasenssasenses 12-123
SELODJECE() cv.vvvniiiiiiiicc e 12-123
setOriginalMessageld()cccovvririririiiiiiiiiii 12-123
SEEPTIOTIEY() ovviviiiiiciiicccc e 12-123
SEtRECIPIENLLASE()...cvivvieiiiiiiiiiiicicc e 12-124
SEESENAETLIA() - euvveeenerteirieirte ettt sttt st sttt ettt st ettt b et bt 12-124
MetaData CLasSccocovveuiiiiiieiirecereeerceeee ettt 12-125
IMEEADIALA() e veeentetet ettt bbbttt et b e bt bbb b bt ea et eaeeas 12-134
GEtALTIDULECOUNL() ... 12-134
GELARTIDULEIA() oo 12-134
GELAIIDULETYPE() vvovevviiieiciiicc 12-134
GEtBOOLEAN() ..o 12-135
GEEINE(). vt 12-135
getMetaData() ..o 12-135
GEENUMDET (). 12-135
GEEREL() e 12-136
GEESEIING() cvvvevvevieieiee e 12-136
GEtTIMESTAMP() ...vvviiiiiiii 12-136

xvii

xviii

GEEUIN() 1o 12-136

GELUSHIING() vt 12-137
GEEVECEOT() .vevvirieiiiiic 12-137
OPETALOT=() 1ottt 12-137
NOtfYReSULt CLaSS ... s 12-138
etCoNSUMETINAIME() ...cucvviviiiiiiiiiiicii e 12-138
GEEIMESSAZR() wvvvvvvevsirrieieiieicie ettt 12-138
EtMESSAZRLA()....vveieeeetei ittt 12-138
GEEPAYIOAA() .- 12-138
etQUEUENAME() ...ooviviiiiiiicicici s 12-138
INUIMDET CLASS ...ttt ettt ettt sttt st et et et et et eateseeseebeebeebesaebenbesensensentens 12-139
INUIMIDET () veveeetenieeieeteeieet ettt et et e e st et e et e e e st esteeneessesnsesseensesseesseseensenseensenseensesnsensenneenses 12-142
ADS() ettt h bbb bttt ettt e a e bt e bt s he bbb et et et et eneens 12-143
ATCCOS() vrveueremeereterertetert ettt ettt ettt ettt b bbb bt ea st et s bt b et e b et et et e bbb bbb bt e bbbt b et bt st enenen 12-143
= ot 2101 () [P 12-143
ATCTANI() -ttt st sttt ea bt eb e bbb bbb e b et et et e st e bt e bt e bt s bt e b e b et et et et et eaeeas 12-143
ATCTANZ() cveueteneeteeetet ettt ettt ettt sttt b ettt b et b bbbt bbb bbb bbb bt nen 12-143
CEIL() revreteetieterte ettt ettt et e et et et e st e et et e st e st et b e st et e et e et et e eh e b et e s b e s b e s b enbent e Rt et e eteeRe et eebebesbentensenteseenes 12-144
COS() +errenretententetet et et et et et e e bt st et e b st e st et et e a e eh e e bt e bt bbbt h et et e b et e a b e a b e a e Rt e bt e bt ehe b e b e b et et et et eneeas 12-144
EXP () vttt s 12-144
FLOOT() ettt ettt bbbttt ettt ettt et et e b et bt a ettt e st e st n et en et enenen 12-144
FTOMBYLES() covvvcvvviiriiicii 12-144
FLOMNITEXE() - enveveeenerteierte ettt ettt et b bt eb ettt bt a ettt s b b st e s st nes 12-145
RYPCOS() e 12-145
RYPSIN() coiiviiiiiii 12-145
RYPTAN() e 12-145
INEPOWET() 1ottt ettt sttt et e et e s e e st et e eseesseensessesasesseensaseensenseensensennsenses 12-146
SINTIL() c-vventeventetetetert ettt ettt ettt ettt ettt ettt et et et et ebe e s s es et en s et e e esen s et enbesensese s eseseneasesensenessanersan 12-146
INU0) ettt ettt ettt ettt ettt ettt s et s et et e Rt s en s et et ek en st et esen b et et et et eseabes e beseesenenen 12-146
LOZ() ettt 12-146
OPETALOTH4() 1.t 12-146
OPETATOT = = () covviiiiiii s 12-147
OPETALOT™() «.vevviirniiiitc e 12-147
OPETALOT /() 1ot 12-147
OPETATOTV0() ..ottt s 12-148
OPETALOTH() covvivvriiiiiicic e 12-148
OPETALOT()..ecniiiiiiiiiic e 12-148
OPETATOT() ..ttt s 12-148
OPETALOTC() vttt 12-149
OPETALOTCI() 1.t 12-149
OPETALOT () oottt s 12-149
OPETALOT>=() c.ovveiiiiiicic e 12-150
OPETALOT==() 1.t 12-150
OPETATOTT=() vt s 12-150
OPETALOT=() cvvviveiiiiicec e 12-151
OPETALOT™=() ..t 12-151
OPETALOT/=() covvviiiiiiicii s 12-151

OPETALOTVO=() oot 12-151

OPETATOTH=() 1ot 12-152
OPETALOT == () 1ot 12-152
OPETAtOr CHAT() ..vviviiiiiiiiicc e 12-152
operator signed Char() ..o 12-152
OPEratOr AOUDIE()....cucviiiiiiciiiccecr e 12-152
OPETAtOr flOAL()....evvivviiiiiiiiiiicc e 12-153
OPETALOr INE() ..vovviiiiiiiic 12-153
OPETALOL LONG() cvovviriiieieiicieie e 12-153
operator 1ong double()........cccoviiiiiiiiiiiii 12-153
OPErator SNOIH() . ..vieeeeiieiceci e 12-153
operator UNSigned Char().......ccccoeciiriiieicccc e 12-153
operator unsigned iNt().........coovieiiieiiiiiiiiii 12-154
operator Unsigned IoNg()ccoovreieiiiiieiec e 12-154
operator UNSigNed SROTE()ccccoeuiiiiiriiiiiiiiecrr e 12-154
POWET().veiiiiii bbb bbb bbb 12-154
PIEC() ceininininiiiiii bbb 12-154
TOUTIA() c1tviviiereieiesteetettee et ett et e be b esbesbesteseesaeseeseesaasessessessessassessessesaaseasensessessessansessassassaseasensanses 12-155
SEEINUIL() ettt et et bbb sttt et et eb e bbb bes 12-155
SIE() +ev etttk b ettt b ettt b et ene 12-155
SIEIU() cvcveiitrer e 12-155
SITU() e+ttt h bbb b ettt et e at et et e bt bt e bt b et b et e st ebtebeebeebeben 12-155
SQUATETOO() ..vovoviiiiiiiiiitiiic s 12-156
BATI() cvevemereemertenirt e ettt ettt ettt ettt b et b et s e sttt a et a et a ek e e b et b et b et e b et et et et et ebentetentas 12-156
EOBYEES() 1vvveveieciiee e 12-156
BOTEXE() covnvvenerertetet ettt etttk ettt bbb bttt b et ebe 12-156
£ g ol () PR SR 12-157
PODJeCt CLaSS ..ottt 12-158
PODJECE() vvvvveveiiiiii i 12-159
FIUSIL() vttt b sttt sttt et h ettt ettt et b et et ettt ebenees 12-159
EtCONNECHION() cv.vvvviieicieiecc s 12-159
GEERET() .o 12-159
etSQLTYPENAME() . .veuiiiiriiiiiiiiiic e 12-160
ISLLOCKEA() 1.ttt ettt ettt et bt s b st e et e st ebeebe bt beben 12-160
ESINULL() vttt ettt ettt etttk ettt bt e ettt ebe e sesebenene s eteseseesena 12-160
LOCK() vttt ettt sttt b sttt sttt b e sttt e ettt n et e et et et e et e e ebenees 12-160
MNATKDELIETE() +.nvententeneeieeitetee ettt sttt st ettt et ese b bt b bes 12-160
MATKIMOITIEA() c-veveeereeeieieietet ettt ettt sttt sttt b et 12-160
OPETALOT=() cuvvviviiiiicic e 12-161
operator delete()ooiiiiiiiiii e 12-161
OPETALOT TIEW () .ot 12-161
PANL() ot 12-162
SEEINULL() ¢ttt ettt ettt bbbttt b ettt b e etenen 12-162
UNINIATK() 1ttt ettt ettt et ettt b et et b e bt st b e st e bt st s et e bt st ese st et st et ebe e et et ebenees 12-162
UNPIN) covvriniiiie bbb 12-162
Producer CLass.......c..coiiiiiiiiiieeteeet ettt ettt et ettt bttt be st sttt et et ent et ebe s 12-164
PrOAUCET() .. eveueeeeteieieieteie ettt ettt sttt st sttt sttt st ettt sb et ettt et 12-165

Xix

etQUEUENAME()oviviviiiieicicicc s 12-165

getRelativeMessageld()ocovvirieiiicci e 12-165
getSequenceDeviation()........ocoviiiiiiiiiii s 12-165
getTransformation()........cceeeeieiiiniiiiic 12-165
GEtVISIDILEY () covvvvviiiicii e 12-166
ISINTIL() c-vventeteneet ettt ettt ettt ettt b ettt et et b e bbb e s et e st es e st b ese b esenbenessenesan 12-166
OPETALOT=() 1ottt 12-166
SEILA() vttt ettt ettt h et b et b et e b et bt b bbbt a bt nen 12-166
SEEINULL() 1.veveteteie ettt ettt et ettt e te et e et et b e b e b esbessessessesseseeseasessessessessessessensassensesanses 12-167
SEEQUEUEINAIINIE() ..ttt b et ettt ettt et beeb e s b sbe st et et et et et e e e s enes 12-167
setRelativeMessageld().........cccvviiiiiiiiiiniiiiiii 12-167
setSequenceDeviation()ccovviiiiiiiiiii s 12-167
SEtTTANSIOTMNATION() +.ueeutenieieriietirie ettt ettt e st eas 12-168
SEEVISTIDILIEY () ..vvvvveviniiiiiii e 12-168
REE CLaSS ...ttt ettt sttt ettt ettt et b e bt s a e bt e et et e b e e eneens 12-169
REL() ettt ettt ettt s ettt ettt e ettt en ekt ettt et st e st b e st et ese b e s e beneebenesn 12-170
CLEAT() vttt ettt ettt ettt ettt ettt b bbbt b et bbb bbbt b bt aen 12-170
EtCONNECHON() ..vovviiiiiiiiiic 12-170
ISCLEAT() ettt ettt ettt a bbb bbbttt et e et et e bt e bt sbe e bt b e s b e st et et et eneeas 12-170
SINTIL() c-vvenvevenreretetert ettt ettt ettt et st et et et et et e st et es e et e st ese e esansesessesensesensesensesenseseasesesesensesansasessasansan 12-170
IMNATKDELIETE() 1vvevverrerierieietetetiete et et e st e et et e st e e teseste st et e besbessessessessesaasessesseasessessessensassessassases 12-171
OPETALOT() ..ttt 12-171
OPETATOT™() 1.t s 12-171
OPETALOT==() 1. 12-171
OPETALOTI=() it 12-172
OPETATOT=() coovviiiiiiiciii s 12-172
PELQ) e 12-172
SEELOCK() ettt bbbttt et st ettt eas 12-172
SEEINTULL() 1.vevtveeietetetet ettt ettt ettt ettt ettt et e b e st et e s e et eneebessesensesensesensesensesensesansasessasansan 12-173
LYo 5 =1 (1 ol 1 () TS USROS UU USRI 12-173
UNMATKDIELEEE() ..ottt ettt et sttt s e eas 12-173
REFANY CLASS ...ttt 12-174
REFANIY() oottt s 12-174
CLEAT() ettt sttt et a bbbt bbbt ettt et et e h e bt bbb b b e st et et et eneens 12-174
ELCONNECHONI() ...vovviiiiiiici s 12-175
ISINTULL) cevvttiie ettt ettt ettt ettt et e st e st et e et e et et e bessessessessessessaseeseaseasensessessensensansesanses 12-175
MNATKDELETE() vttt ettt et et sbe bbb bt e e eas 12-175
OPETATOT=() oottt 12-175
OPETALOT==() 1.t 12-175
OPETALOTI=() it 12-176
UNMATKDIELEEE(). .ottt ettt ettt ettt eb e besesen 12-176
RESUILSEE CLaSS......coueiiiiiiiiiieietetet ettt ettt ettt et b st sttt a et et e e e e eneens 12-177
CAMICEL() vttt et b bbb bbbttt et a e bbb st et s et ens 12-179
CLOSESEIEAMM() c. v vttt ettt ettt b bbbttt et b et st et b et bebesbenenen 12-179
GEEBDIOUDIE() ..o s 12-180
GEEBIILE(). vttt 12-180

GEEBELOAL()vviiiiiiiiic s 12-180

GEEBLOD() oot 12-180

GEIBYLES() oviiiiiii 12-181
GEECRATSEL() c..vovviiieeeiee e 12-181
getCharSetUSHIING()....covveeeieiieiciee 12-181
GEECLOD() v 12-181
getColumnListMetaData()cccvvvvrererererirerrrirrre et 12-182
getCurrentStreamCoIUMIN()covveveviiiiiiiiiiiii 12-182
getCurrentStreamROW () ...c.coviiiiiiiiiiiiiii 12-182
GEECUTSOT() wovviviiiiiiiccc e 12-182
getDatabaseNCHARPAramy()cccooeviiiiiiiiiiiiiiiiiiiiccsc s 12-183
GEEDIALE() ..vvuieiiiiii s 12-183
EEDIOUDIE() ..o 12-183
GETFLOAL() w.vvviiiicicc s 12-183
GEEINE() vt 12-184
GEINEEIVAIDS() ...t 12-184
etINtErValYIMU() c.ooviviiiiicicicccc 12-184
getMaxCOIUMNSIZE() ..c.ovvviviviiiiiiiiiii 12-184
GEtNUMATTAYROWS() cooviiiiiiiiiicci e 12-185
GEENUMDET() ..vvviiiiiic s 12-185
GEEODJECE() vt 12-185
GEEREL() e 12-185
GEROWIA() cvvviiiiiiecc s 12-186
GEtROWPOSIHION() .oveeeieiice 12-186
getStatemMent() ..o 12-186
GEESEIEAIMN() ...vvvviiiiieee s 12-186
GESEIANG() wovveieieeeeteeeee s 12-186
etTimeStamP().....ccovviiiiiiiiiiiic e 12-187
GEEUINL() v 12-187
GELUSHIING () .eeeervteiecte e 12-187
EEVECEOT() wvovvviiiiiciccc e 12-188
EtVECLOTOLRELS() ...vovvviiieieieiicieecr et 12-189
ISINUIL() «veveereveeiereterertet et et ettt ettt ettt e te st et et et e st ese st eseebesessaseesaseebeseesessesasessansesassesansesensesensesanees 12-190
ISTTUNCALEA() 1evenverierieeieeeeeeet ettt ettt ettt te e st be b e b e st esseseeseesaasessessessassessessassaseasensenses 12-190
TIEXE() +vententetent ettt ettt ettt ettt ettt b et h e bbbttt et e a e bt bt e bt bt b ettt et et et e st et b e bt b e 12-190
preTruncationLengthi() ..o 12-191
setBINaryStreamMOde()........oouvveereririririririrr e 12-191
setCharacterStreamMOdE()eoerererereieiee ettt ettt 12-191
SEECIATSEE() vevenveverrenerteerte ettt ettt sttt s b e st sttt ettt st b et ettt ettt 12-192
SEtCRATSELUSEIING() ..vvvvveeeeieeceerrrre e 12-192
setDatabaseNCHARPATAM() ..ccververrerierienieieieieieeiesie ettt et et et sttt st sttt st et ese s b ebeaes 12-192
SEEDIATABULLET() ...ttt ettt sttt ettt ettt ettt b e 12-193
SELEITOTONINULL() c..ovvevieiieiieietietee ettt ettt ese e e sesse s e sbesbessessessessesseseasensanses 12-193
SEEITOrONTIUNCALE() «..eevevertirtiieitetetete ettt b e sttt et ebebes 12-194
SEtMAaXCOIUMNSIZE() .uvvereereieriieierteerie ettt sttt ettt ettt eb e st ettt ese st ebenees 12-194
L2211 611 (SRRSO 12-194
SQLEXCEPON Class.........cciiiiiiiiiiiiiiiiiii e 12-195
SQLEXCEPLION() ...ttt 12-195

XXi

XXii

GELEITOTCOAE() ..vvviviiiiiicicic s 12-195

GEEIMESSAZE() w-vvrvvevrircrereieiicie ettt 12-195
GEtINLSIMESSAZE() ..ovvvvviniiiiiciiiicc e 12-196
GetNLSUSHIINGMESSAZE()...cvvverereririeiiiiieieieiccie ittt 12-196
GEtUSHIINGMESSAZE()..vvevvrvrrereiiseirieie ittt 12-196
GEEXAEITOTCOAE() ...ttt 12-196
SEEETTOTCEX() -ttt ettt ettt ettt et et eb e e bt sbe e b b e sbe st e e e s et e s ens 12-197
TWRAL() 1ttt bbbkttt bbbkttt beben 12-197
StatelessConnectioNPO0] Class........ccccceviiiiirireriniieeetetet ettt sttt 12-198
getAnyTaggedConnection()ococeueiiiiieieiiiccc s 12-199
getAnyTaggedProxyConnection() ..ot 12-200
getBusyConnections()........coeeiviniiiiiiii s 12-201
GetBUSYOPHON() cv.voieieieie s 12-201
EtCONNECHION() 1.voviieietei et 12-201
getINCrCoNNECtiONS() ...oocviivieiiiiiiiii s 12-202
etMaXCONNECIONS()....voveveviviiiiiiiiiiiieieie s 12-202
getMINCOoNNECHONS() ...ovovviviiiiiiiiiiiiiii s 12-202
getOpenConnectionS()........ccoeiviiiiiiiiii s 12-202
GETPOOINAIME()vvviiiiiicic s 12-202
getProxXyConnection()........oceueieiirieieieiceie s 12-202
EtSIMECACESIZE() ...vvviiieiciciciccccc s 12-203
GETTIMEOUL()..vvvviviieiiiic s 12-203
1eleasSeCONNECION() w.veveverrererieririeirieirt ettt ettt ettt ettt b bbbttt bbbt saenenaes 12-204
SEtBUSYOPHON() ...cviniiiiiiiiiiiciic 12-204
SEEPOOISIZE() . vttt bbbttt ettt et 12-204
SEETIMEOIUE() c-veneeveeeteeetet ettt ettt ettt es bbb eseaen 12-205
SEtSIMECACNESIZE() . veveverierieeieiieeeiee ettt ettt ettt et e b e b esaeseeseeseeseesessessesessensessass 12-205
termMiNateCONNECHON() .. eoveeeuieuieieitietertert ettt sttt et ettt be bbb s e e ens 12-205
SHAtEMENE CLASS.....couiitiiiiiiiie ettt ettt et ae bt e b st st e st e b et et et et eneenis 12-207
AAAIEETATION() 1.vrvevereieieieietett ettt et sttt et et e st e st et eteesesbessessessessessessaseeseaseasensessessensessesseseases 12-211
CLOSERESUILSEL() ...ttt ettt et st st se e e eas 12-211
CLOSESEIEAMN() c. vttt ettt ettt e b ettt b ettt ettt et s b e eab bt besenen 12-211
diSableCaChING() ...ceveveueueieriieirieieicieeieteee et 12-211
EXECUEE() ettt ettt et ettt ettt s e e st et et et eh e e bt e bt e bt b e bt s b et et et et ea e ea b e st e bt e bt e bt she b et et e st et et et eneens 12-211
exeCUte ATTayUpdate()ccocvviiiiiiiiiiiiciciccc s 12-212
EXECULEQUETY() wovviriiiiiiiiiiiicc e 12-212
exeCUteUPdate() ... 12-213
GELAULOCOMIMIL() .vvviiiiiciciiicc s 12-213
etBatChEITOIMOE()vvviiieiiccc s 12-213
etBDOUDIE() ..o 12-213
GEEBIILE() oo 12-214
GEEBELOAL() ...oviiiiiiciicc s 12-214
GEEBLOD() oottt 12-214
GEEBYLES() oovviiiiicicce s 12-214
GEECATSEL(). .. vt 12-215
getCharSetUSLIING().....ovevevivireiiieieicicicciciecec s 12-215
GEECIOD() v s 12-215

ELCONNECHION() .v.vvvviiiieiicic s 12-215

getCurrentIteration() ... 12-215
getCurrentStreamIteration()cccocoeiiiiiiiinii e 12-216
getCurrentStreamParami()........cccoeveveveiiiiiiiiiii 12-216
GELCUISOT() w.vvviiiiiiiciic s 12-216
getDatabaseNCHARPATAM()......c.ceueieuiiiiiiriiiriiiiecreceeeeeeeeeee s seeas 12-216
GEEDIALE() w.vvviiiii s 12-217
EtDOUDIE() ..oviiiiiii 12-217
GEEFLOAL() vt 12-217
GEHINE() v 12-217
getINtervalDS()cccoviiiiiiiiiiiiii 12-218
GEtINEEIVALYIM() ..oviiiiiciiiciciceec e 12-218
etMaXItEratioNS()oeveveveiiieicicieiciccc 12-218
getMaxParamSize() ... 12-218
GELINUIMDET() oo 12-219
GELODTECH() vvvviiiiiiiccc s 12-219
etOCIStAtEMENt() ...ovoveviiiciiiiiiicicc 12-219
GEEREL() oo 12-219
GETRESUIESEL() w.vovvviiiciicicccc 12-220
GEROWIA() ..t 12-220
GEESQL() vttt 12-220
GELSQLUSLIING() +.vvevviveveieieiiieieieieieeee e 12-220
GEESETEAIMN() ...vviviiiiiiii s 12-220
GEESIIING() ..ovvviieeiiiiic e 12-220
etTIMEStAMP()...cveveveveieiiiiicieicc 12-221
GELUINE() oo 12-221
EtUPAAtECOUNE() ..vvriiciciciciieecccrcc s 12-221
GEEUSEIING().vvvivieieieieieieceee s 12-221
GEEVECTOT() vnieieieii e 12-222
EtVECLOTOLRELS() ...oovviiiiiciciicc e 12-224
SINTIL() c-vveneeteneeteetete et ettt ettt ettt sttt st s e bt ste st st et stene st e st st en e st eneetenssbenesseneebentesaneesensesensesannes 12-224
ISTIUNCATEA() c-evveeeereneeteietetetet ettt ettt sttt et sttt et et b et b ettt et 12-224
preTruncationLengthi() ... 12-225
registerOUIPATAIMN() ..ovoviveviveieiciiiicic 12-225
SELAULOCOMUIMIL() veveveniereieieieteteient ettt ettt sttt ettt sttt ettt et et e bt bt b et bt 12-226
SEtBAtChEITOIIMOME() . vieveveieieeieiieieiieteeettetete st ete ettt sessessesaesse b esbesaessessessessessesessessenss 12-226
SEEBIDIOUDLE() .ttt ettt et s sttt sttt et ben 12-226
SEEBIILE() ¢ttt sttt b e sttt ettt et 12-227
Y14 51 21 (oY= N () RO PERU TR 12-227
setBinaryStreamMOode().........ccovuviviiiiiiiiiiiiiii 12-227
SEEBLOD() ¢ttt ettt bttt ettt e b et bttt et 12-228
SEEBYLES() w.vviviiiiiiiiii e 12-228
setCharacterStreamMOdE() ...c..covererererieieiee ettt ettt 12-228
SEECIATSEE() 1vevervevertenerteerietet ettt bttt st b e sttt sttt sttt b et bttt 12-229
SEtCRATSELUSEIING() ..vvvevveeeriieeecerrcr s 12-229
SEECLOD() c.vvtveniieetetetrte ettt ettt ettt ettt st e st st e s b e st e st st e st st e st st e st ste st et ene et et ese e ebeneetennesenees 12-229
SEEDIALE() vevevenereerertetrt ettt b e st sttt ae sttt s b et bttt 12-229

xXiii

XXiv

setDatabaseNCHARPATAMI() ...coververierierieieieieieiieieei sttt ettt st st se e eene 12-230

SEEDAtABULLET() .veveveeeeiieietctet ettt 12-230
SetDataBUfErATTAY() . .ovvveereeieirrrcrrr s 12-231
SEEDIOUDIE() .ttt ettt eas 12-232
SELEITOTONNUIL() «.veueventeteteteet ettt bbb e 12-232
SELEITOTONTTUNCALE() -vevveiieeieiieieie ettt ettt ettt et sae e e s e e s e et e eseensesseensesneensesnnenss 12-233
SEEFLOAE() +enventetetetet ettt bbbttt ettt et b e sttt et eas 12-233
SEEIIIE() +vevenert ettt ettt b et bbbt eb e aebennen 12-233
SEEINEETVAIDIS() ...viveriieieieteiieteettette sttt et e st e st e st e st sestessessessebessessesseseessesensessessensessessassases 12-233
SEINEETVALYIVI() ..ottt ettt et ettt 12-234
SEEMAXIEETALIONS() w.vvervevererirteiirieirietrt ettt ettt ettt ettt bbbttt sttt bt nesenaes 12-234
SEEMAXPATAMSIZE() .vvevveeveerieeieriieeereetesee et et e et e e et e steestesseessesseessesseessesseensesseensesssensesnsenses 12-234
SEEINUIL() ettt ettt ettt a et be bbb st et e et eas 12-235
SEEINUIMDET() .veueeteieieieictet ettt ettt ettt bbbt b et bbb s s naes 12-235
SEEODJECE() +.vrvrereeeeereeeeeir e 12-236
setPrefetchMemorySiZe() ..o 12-236
SetPrefetChROWCOUINE() .evevereeririeirieiriciricentceree ettt ettt bbb 12-236
LYo XSS () I RSP UEUURTUSRR 12-237
SEEROWIA() vttt ettt bbbt et et b e bt bbb s b e st et et et eneens 12-237
SEESQILL() 1evevrvenerrerieretetetetet et ete e e et etet et et et e s e st et e st be s e s e st e b e st et e st eben s b entesen s et et esensesenbeseabeseesenesan 12-237
SEESQLUSHIING()..cvvvviniiiiiiciiiiiec s 12-238
SEESEIINE() cvveveveriieieieicee s 12-238
SEtTIMESTAMP() ..vvviviiiiiiic s 12-238
LT =101] g (SRR 12-239
SELUSTIINEG () v.vveveveviveiiieieieieeeee s 12-239
SEEVECEOT() woveeetenieieeeteiet ettt ettt ettt ettt ettt b e bbbt eb bbbt a b aen 12-239
SEEVECLOTOFRELS() .vovvevieiieiieiieeietieie sttt ettt ettt et et b e e b e s esaeseesesseesessessessesessenseseess 12-245
SEAEUS() e ettt ettt ettt ettt ea bt b e bbbt b bbbttt et e h e bt e he e bt bbb e st et et et eneeas 12-246
SHEEAIM CLASS ...ttt ettt b ettt t e et et et e st ent e st e bt ebe e bt sbe st e besse b entensententenis 12-247
TEAABUITET() c.vovvevieeieiieieeeee ettt ettt e b e b e st eseeseeseeseeseesesseesensenseneesaenes 12-247
1€AALASTBUILET()....veviieriieieee ettt nen 12-248
WITEEBUELET() +.evvenietieieteet ettt ettt ettt 12-248
WITELASTBULLET() 1vivviiieieeieieee ettt ettt ettt ettt st et e se s e s as e sessessesnans 12-248
SEAEUS() ettt ettt ettt ettt sttt et et eb e bbbt bbbt e bttt et e a e bt e he e bbb e b et et et et eneeas 12-248
SUDBSCHIPHON CLASS.......c.ouiiiiiiiiiiii e 12-249
SUDSCIIPHION() ..ottt 12-250
getCallbackContext()ccooiiiiiiiiiiii s 12-251
getDatabaseServersCount()cccceveiiiiiiiniiiiiiiiiiii s 12-251
getDatabaseServerNaAMES().......ccov i 12-251
getNOtIfYCallback()......oveviiiiiiiiiiiiiiiic e 12-251
GEtPAYIOAA() ...vvviiiiiiii s 12-251
getSUDSCIIPHONNAME()vvviiciiiciciciiiciccce s 12-252
getSubscriptioNNamMeSPACE()......coveveviriiiiiieiiiiieiiecc s 12-252
getRecipientNAME() ...c.cvoviviviiiiiiiii s 12-252
etPresentation() ... 12-252
GEEPTOOCOL() . ..vvieiiiiiiiic 12-252
ISINTIL() ceventet ettt ettt ettt ettt ettt ettt bbbt e bbb bbb enenen 12-252

OPETALOT=() et 12-252

SEtCAllDACKCONEEXE() ..euveveveuireeririeierteerte ettt ettt ettt ettt b et ee b 12-253
SetDatabaseServerNAMES()cecververieieieieieirtirrisesesiestesestesteseeassessessessessessessessessesseseesessenses 12-253
SEtNOfYCAIIDACK() ...vovevveveieieiiicicicicicicc 12-253
SEEINTULL() 1.vevtveeiteet ettt ettt ettt ettt ettt ete st e se st e s e s e s e stesesbeseesesassesessasessesessansesensesansesannes 12-254
SEEPAYIOAA() .. vttt 12-254
SEEPTESENTATION() 1..eueteiietietertietete ettt et e b e s bt bbb sttt ebe bt ebebes 12-254
SEEPTOLOCOL) +vvrveneeretetenteietect ettt ettt sttt et b et ettt n e 12-254
5etSUbSCIIPtIONINAME()vvviiiciiiciice e 12-255
setSubscriptionNameSPaCE()c.ovvveveveiiiiiiiiiiiiiii 12-255
setRecipientINAmMe().....cc.ovrrueiicie 12-255
TIMESEAINP CLaASS....c.ciiiiiiiiiicireceee ettt 12-256
TIMESTAINP() ..o 12-257
FLOMNITEXE() - evenereeeereeeteeei ettt ettt sttt sttt sttt st et sttt et b ettt st et sb ettt sbemeenenees 12-259
EDIALE() c..viviiii e 12-260
GETTIME() vvviiiciie s 12-260
getTimeZoneOSfSet()......ccovviiiiiiiiiiiiiiiic 12-261
INEEIVALAA() cvvevieeieeeieieeee ettt ettt ettt bbbt eseesaeseeseebeebesbesbassessessessaseasensanses 12-261
INEETVAISUD() ettt ettt st b e s sttt et et eb bbb bes 12-261
ISINUIL() c-vventereneetetetet et ettt et ete st e st e seste st et e st e st etesessenesseseeseseeseneesensesensesansesansesansesensesansesansas 12-262
OPETALOT=() cuvvvviiiiiiii e 12-262
OPETALOT==() 1o 12-262
OPETALOT!=() vt 12-262
OPETALOT () ceovvviiniiiiiiic e 12-263
OPETALOT>=() 1.t 12-263
OPETATOTC() oottt 12-263
OPETALOTC=() 1.t 12-264
SEEDIALE() ettt e ae et bbb st ettt et eb e ebe bt ebeben 12-264
SEEINTULL() 1.veveveeiteet ettt ettt ettt ettt et ete st e be st e s e s e s e sseseeteseesesessesessenessesessaneesansesensesannas 12-264
LY=o T 0 =T PR TOTRSR 12-264
SELTIMEZONEOSISEL() cvenvevinierinreriieiirteerteeste ettt sttt ettt be ettt et ese e esesesensesenees 12-265
SUDIDIS() «uveviieiiieeietetet ettt ettt te ettt ettt ese st et et e s b et e et et e et eseebe st ebe st et ens et est et et etens et ensesanees 12-265
SUDYIMI() tavniieiitei ettt ettt b bbbt sttt s et b st s e st et st e e bt et e et et bt et e et entebenees 12-265
BOTIEXE() s+ttt ettt ettt b bbb et et oot e bt e bt e aesh e bt e b e st et et et st eb e ebeebe b ben 12-266

Index

XXV

List of Examples

XXVi

[NS T 1o T G W N e O WS Ut G

PEY

AN W AR AR D ¢ |
OCONODOPLRWN—-2OONOOOALWON—-AN2OONOOOOGPA,WOWN =

4-10
4-11
4-12
4-13
4-14
4-15
5-1
5-2
61
6-2
6-3
6-4
7-1

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13

Creating and Specifying Access to a Table............cccoooiiiiiii e 1-4
Creating an Object Table............cccooiiiiiii e 1-4
Inserting Data through Input Bind Variables.............ccoooiiiiiiiie 1-5
Inserting Objects into the Oracle Databaseccccoiiiiiiici 1-5
Using the Simple SELECT Statement ..o 1-5
Using the SELECT Statement with Input Variables ... 1-5
Using PL/SQL to Obtain an Output Variable ..o 1-6
Using PL/SQL to Partial Records into Placeholders...........ccccoviiiiiiiiiiiiiiiins 1-6
Using SQL to Extract Partial Recordsccceuoiiiiiiiiiiiicc e 1-6
How to Determine the Major Client Version and set Performance Features..................... 2-1
Installing Instant Client Light (English) through Oracle Universal Installer..................... 2-8
Usage Scenario for a StatelessConnectionPool............c.ccooiiiiiiiiiie 3-6
How to Create and Use a Homogeneous Stateless Connection Pool............c.ccccoeueeeie. 3-6
How to Create and Use a Heterogeneous Stateless Connection Pool............cccccccvueinininnns 3-7
How to Bind Data in a Streaming Modecooooiiiiiiiiiiiicccc 3-12
How to Fetch Data in a Streaming Mode Using PL/SQL.........ccccocooiiiini 3-13
How to Work with Multiple Streams............cccoouoiiiiiiiiiii 3-13
How to Fetch Data in Streaming Mode Using ResultSetcccooooiiiiiii 3-15
Statement Caching without Connection POOLINGccooiiiiiiiiiieiiic 3-20
Statement Caching with Connection POOINGcccoviiiiiiiiiiiii 3-20
Creating Standalone ODbJects ..ot e 4-3
Creating Embedded Objects...........ooiiiiii s 4-3
Creating a Persistent ObJect..........cooeuiiiiuiiiiii e 4-4
Creating a Transient ObJectcoceuiiiiiiiiii e 4-4
OTT Support INNeritanceoooccieiiiciciec s 4-20
Listing of demo2.sql for a Sample OCCI Applicationccoceueveiicieieiiiiiiieiccieeae 4-21
Listing of demo2.typ for a Sample OCCI Applicationcocoeeueieiireiiiiiciiiice 4-21
Listing of OTT Command that Generates Files for a Sample OCCI Application........... 4-21
Listing of mappings.h for a Sample OCCI Applicationcccoeuevoiieiiiiiiiiiiinc 4-21
Listing of mappings.cpp for a Sample OCCI Application.........cccooeeeieiniiiieiiiinicieines 4-22
Listing of demo2.h for a Sample OCCI Application...........cocoooreieiiiiiciiiiiiiiiccice 4-22
Listing of demo2.cpp for a Sample OCCI Application.........cccceueveiicieieiiiiicieiccieeae 4-25
Listing of myDemo.h for a Sample OCCI Applicationc.cocoeueieiiiniiiiiniie, 4-34
Listing for myDemo.cpp for a Sample OCCI Application..........cccooereieiiiiiieinininicieines 4-35
Listing of main.cpp for a Sample OCCI Application..........ccccceuvueuriiiciiicirciiiiiciciiiniciee, 4-36
Definition of the BDOUBLE Datatype.........ccccoceuiiiiiviiiiiniiiiiiiiinicincininnncnesessne 5-6
Definition of the BELOAT Datatypecccccccevuriiiiiiiiiiiiiciiiciicrvscnnccnssne 5-7
How to Obtain Metadata About Attributes of a Simple Database Table............................ 6-2
How to Obtain Metadata from a Column Containing User-Defined Types...................... 6-3
How to Obtain Object Oetadata from a Reference...........ccccoooovriiniiiniiiinicn 6-4
How to Obtain Metadata About a Select List from a ResultSet Object..........cccccovvvuvienne. 6-5
How to Use the OTT UHLLYccooeuiiiiiiiiiiiiccccccccees e 7-2
Object Creation Statements of the OTT Utilityccooeveviiiiiiiiiiice 7-2
How to Invoke the OTT Utility to Generate C++ Classes..........cccoeviviivirnnnnnnnininnene. 7-4
How to use the SCHEMA_NAMES Parameter in OTT Utilityccccoooeniviiiiiiiniene. 7-8
How to Define a Schema for Unicode Support in OTTcccooeiniiiiiiiininicenes 7-10
How to Use UNICODE=ALL Parameter in OTT........ccccooeiiiiiiiicccee 7-10
How to Use UNICODE=ONLYCHAR Parameter in OTTcccccoeniiiininnnininnnenne. 7-10
How to Create a User Defined INTYPE File Using the OTT Utilitycccooevvvviiennnnnes 7-13
Listing of ott95a.h......ccovimiiiiiiiiiiiic s 7-16
Listing 0f OttI5D.1 ... 7-16
How to Represent Object Attributes Using the OTT Utility.......c.cocooeeriiviiiniiiiienes 7-18
How to Map Object Datatypes Using the OTT Utilitycccccccoeiiiiiiiiniiiiiiiininn 7-20
OUTTYPE File Generated by the OTT UtLityccccccceeuiiiiiiiiiiiiiicciccccccie, 7-23

- NOoOUuhwWN-—=LO

12-8

12-9

12-10
1211
12-12
12-13

How to Generate C++ Classes Using the OTT Utilityccccccooiiiiiiiiiiiiii 7-26

How to Extend C++ Classes Using the OTT Utilityccoooeveviiiiiiniiie 7-27
How to Add User Code to a Header File Using OTT Utilityccccooemiiiiiiiiiinn, 7-29
How to Add User Code to the Source File Using the OTT Utilitycccccoovrriininnennes 7-30
How to Use Globalization and Unicode SUPPOTIt ..o 8-1
Using wstring Datatypeccccoeeieiiiiii 8-2
Binding UTES8 Data Using the string Datatype...........ccccovvviiinniiniinii, 8-3
Binding UTF16 Data Using the UString Datatype.........cccocovvnnnvnininne, 8-3
Using CLOB and NCLOB Datatypesccccccveuiiiiniiiiiniiieeceieeeeeseeseesenenennns 8-3
Creating an AZeNt ..o 9-3
Setting the Agent on the CONSUMETccoiiiiiiiiiiiiiiiic e 9-3
Creating an AnyData Message with a String Payload ..o, 9-4
Determining the Type of the Payload in an AnyData Message.........cccccoceviiiiiiiiiinnnnnns 9-4
Creating an User-defined Payload ..o 9-4
Specifying the Correlation identifier............ccoooiiiii e 9-5
Specifying the Sender identifier..........c.ccooiiiiiiiiiii e 9-5
Specifying the Delay and Expiration times of the message............cccoooviriiiiin 9-5
Specifying message reCipients........c.ocouirueiiiicieieiiice e 9-5
Specifying the Priority of @ MeSSage.........ccevvueurieiiiiriiiciicic s 9-6
Creating a Producer, Setting Visibility, and Enqueuing the Messagec.ccoooeueunnne. 9-6
Creating a Consumer, Naming the Consumer, and Receiving a Message..............ccocu..... 9-6
Receiving @ MeSSAZe.......coceiiiiiiiiiiiiiiiiiiiiii s 9-7
Specifying dequeuting OPtioNS..........cviuiiiiiiiiciiiiiiic e 9-7
Listening fOr MeSSAZEScovueviriiiieiiiciici s 9-7
How to Register for Notifications; Direct Registrationccccecevvvvvninnnnnnninen, 9-8
How to Use Open Registration with LDAP ..o 9-10
How to Use Transaction Managers with XAcccoooiiiiiiiniiicee, 10-1
How to use Array Fetch with a ResultSet ... 11-8
How to Modify Rows Iteratively and Handle Errors..........ccoovvvivivviniiiininininnns 11-9
Converting From an SQL Pre-Defined Type To AnyData Type........ccccoeoevniiriernnnnnnen. 12-12
Creating an SQL Pre-Defined Type From AnyData Type.......ccccoeeuviirieiiiiiciiinne 12-12
Converting From a User-Defined Type To AnyData Typec.cccoooeeiniiiriiiiinirniennes 12-12
Converting From a User-Defined Type To AnyData Typecccccoeeviiiiiiiiiinnnnnes 12-13
How to Get a Date from Database and Use it in Standalone Calculations 12-74

How to Create, Assign Values, and Use an Empty IntervalDS Object through Direct
Assignment 12-95

How to Create, Assign Values, and Use an Empty IntervalDS Object through fromText()
and toText() Methods 12-95

How to Create, Assign Values, and Use an Empty IntervalYM Object through Direct
Assignment 12-105

How to Create, Assign Values, and Use an IntervalYM Object through ResultSet and
toText() method 12-105

How to Retrieve and Use a Number ODecCt..........coceveruirierenienierieieieiecnceesienieseseeeene 12-139
Using Default Timestamp CONStrucCtOr.........ocovvvviiiniiiiiiiiias 12-258
Using fromText() method to Initialize a NULL Timestamp Instance............cccccoeuevenes 12-259
Comparing Timestamps Stored in the Database...........cccccoooviinins 12-259

XXVii

List of Figures

1-1 The OCCI Development PrOCeSscccovviviiiiiiiiiiiiiiiiiiinnicnsnsss s

4-1 Basic Object Operational Flow

7-1 The OTT Utility with OCCI.....

XXViii

List of Tables

3-1

Normal Data - Not Null and Not Truncatedcccooeiiiiiiiiiii, 3-23
INUILDAta ..o 3-23
Truncated Data.........coooiiiiiiii s 3-24
Summary of Oracle Internal Datatypescocooueviieiiiiiiiii 5-2
External Datatypes and Corresponding C++ and OCCI Types........cccccevvvvviviviiinininnnnes 5-4
Format of the DATE Datatype ..o 5-8
VARNUM EXAMPIESooviviiiiiiiiiiiiiiiiccicee e 5-15
Data Conversions Between External and Internal datatypes.........cccccooooruiiiiiniiininnnnn, 5-16
Data Conversions for LOBS ... 5-17
Data Conversions for Date, Timestamp, and Interval Datatypes...........cccccccovvinininnee. 5-18
Summary of OTT Utility Parameters...........cccoooeioiiieiiiiiiiiccc 7-5
C++ Object Datatype Mappings for Object Type Attributes...........cccoevvvvirvnininininnen. 7-19
Notification Result Attributes; ANONYMOUS and AQ Namespace..........cccoceevvenennen. 9-11
Summary of OCCLCIASSESc.cuiuiueieiiiicieieicci e 12-2
Enumerated Values Used by All OCCI Classescccooueuriereiiurieiiiniiicie e, 12-8
Summary of Agent Methods ..o 12-9
OCCI Datatypes supported by AnyData Classccccoerueieiiicicieiiiccccce, 12-13
Summary of AnyData Methods..........ccoovuiiiiiiiiiiii e 12-14
Summary of BatchSQLException Methods...........cccooveiiiiiiiiiiice 12-21
Summary of Bfile Methods..........ccccoouiiiiiiiiiiii e 12-22
Summary of Blob Methods ..o 12-28
Summary of Bytes Methods ... 12-35
Summary of Clob Methods..........cccoiiiiiiniiiiiiii s 12-38
Enumerated Values Used by Connection Class..........cccooeeieiiiieiiiiiiiciiiiiiiiieecns 12-48
Summary of Connection Methods...........ccoouviviiininiiiiiiiies 12-48
Summary of ConnectionPool Methods...........ccccoviiniiiice, 12-61
Enumerated Values Used by Consumer Class...........ccccovvvvriiinininininniniinine, 12-66
Summary of Consumer Methods ..o 12-66
Summary of Date Methods...........cooeiiiiiiiiicii e 12-74
Enumerated Values Used by Environment Classcccoeevviniiiiiiiniiciiiiecns 12-84
Summary of Environment Methods..........cccccovviiinininiie, 12-84
Fields of IntervalDS Class..........ccocvviiimiiiiiiiiniiiiiicsss s 12-95
Summary of IntervalDS Methods..........ccccoviiiiiiniiiiiiiiins 12-96
Fields of IntervalYM Class.........cccocviviiiimiiniiiiniiiiiss s 12-105
Summary of IntervalYM Methods..........cccooivviviiiiiiiic, 12-106
Summary of Listener Methods..........c.ccooiiiiii 12-114
Enumerated Values Used by Message Classcccoeueueiirieieininicieiciicccne 12-117
Summary of Message Methods............ccceviiiiiiiiiniiici i 12-117
Enumerated Values Used by MetaData Classccccouoiirieiiiiiiciniiiccc 12-125
Summary of MetaData Methods.........cccccoviiniiiiniiiiin, 12-133
Summary of NotifyResult Methods ..o, 12-138
Summary of Number Methods.........ccccoviiiiiiiniiiiicn, 12-140
Enumerated Values Used by PObject Class...........cccceeveiiiiiiiiieiiiiiiiiciine, 12-158
Summary of PObject Methods ... 12-158
Enumerated Values Used by Producer Classccccovuiuiiiiiiiniieiiiiiiccicciccins 12-164
Summary of Producer Methods.........ccccoviiiiiiinniiiiiins 12-164
Enumerated Values Used by Ref Class..........ccoovuviiiiiniiniiiiiins 12-169
Summary of Ref Methods.........cccoviiiiniiiiiiiiiiie 12-169
Summary of RefAny Methodsccccoiiiiiiiiiii e 12-174
Enumerated Values Used by ResultSet Class..........ccoououiiiiiiieiiiiiciiiiiic 12-177
Summary of ResultSet Methodscoouiiiiiiiiiicii 12-177
Summary of SQLEXCEPHON ..o s 12-195
Enumerated Values Used by StatelessConnectionPool Class...........ccccccvvvvviiinininnnne. 12-198

XXiX

XXX

12-41
12-42
1243
12-44
12-45
12-46
12-47
12-48
12-49

Summary of StatelessConnectionPool Methods............cccooiiiiiiiiiiiiiiiiienns 12-198

Enumerated Values used by the Statement Class.............ooooeviiiiiiiiiiii, 12-207
Statement Methods ... 12-207
Enumerated Values Used by Stream Classccoovueiiiiiciiiiiiiiccc 12-247
Summary of Stream Methodscooiii 12-247
Enumerated Values Used by Subscription Classcccoooieieiiiiiiiiiiiiiic 12-249
Summary of Subscription Methods............ccooiiiiiiiiii 12-249
Fields of Timestamp and Their Legal Ranges............ccccooeueviiriniiiiiciicc 12-256
Summary of Timestamp Methods...........cceuiiiiiiiii 12-256

Audience

Preface

The Oracle C++ Call Interface (OCCI) is an application programming interface (API)
that allows applications written in C++ to interact with one or more Oracle database
servers. OCCI gives your programs the ability to perform the full range of database
operations that are possible with an Oracle database server, including SQL statement
processing and object manipulation.

The Oracle C++ Call Interface Programmer’s Guide is intended for programmers, system
analysts, project managers, and other Oracle users who perform, or are interested in
learning about, the following tasks:

= Design and develop database applications in the Oracle environment.
= Convert existing database applications to run in the Oracle environment.
= Manage the development of database applications.

To use this document, you need a basic understanding of object-oriented
programming concepts, familiarity with the use of Structured Query Language (SQL),
and a working knowledge of application development using C++.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

XXXi

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:

s Oracle C++ Call Interface product information page for white papers, additional
examples, and so on, at
http://www.oracle.com/technology/tech/oci/occi/index.html

s Discussion forum for all Oracle C++ Call Interface related information is at
http://forums.oracle.com/forums/forum. jsp?forum=168

s Demos at SORACLE_HOME/rdbms/demo

» Oracle Database Concepts

» Oracle Database SQL Reference

» Oracle Database Application Developer’s Guide - Object-Relational Features
» Oracle Database Application Developer’s Guide - Large Objects

» Oracle Database New Features

» Oracle Call Interface Programmer’s Guide

» Oracle Database Administrator's Guide

» Oracle Streams Advanced Queuing User’s Guide and Reference

» Oracle Database Globalization Support Guide

= Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXXii

What's New in Oracle C++ Call Interface?

This section describes new features in Oracle C++ Call Interface Programmer’s Guide and
supplies pointers to additional information.

New Features for Oracle Database 10g Release 2 (10.2)

The following features are new to this release:

Recompilation during Upgrades
Upgrading Considerations are discussed in Chapter 2, "Installation and Upgrading".

Reading and Writing Multiple LOBs

The description and usage notes for this feature are in Chapter 11, "Optimizing
Performance of OCCI Applications", section Reading and Writing Multiple LOBs on
page 11-1.

New APIs for this features are described in Chapter 12, "OCCI Application
Programming Interface", section on Connection Class:

s readVectorOfBfiles() on page 12-55
s readVectorOfBlobs() on page 12-55

s readVectorOfClobs() on page 12-56; this method is overloaded to support general
charactersets, and the UTF16 characterset in particular

= writeVectorOfBlobs() on page 12-59

» writeVectorOfClobs() on page 12-59; this method is overloaded to support general
charactersets, and the UTF16 characterset in particular

Transparant Application Failover

The description and usage notes for this feature are in Chapter 11, "Optimizing
Performance of OCCI Applications", section "Transparent Application Failover" on
page 11-2.

The callback registration method is described in Chapter 12, "OCCI Application
Programming Interface", section on Connection Class:

= setTAFNotify() on page 12-57
Instant Client Light (English)

Instant Client Light (English) further reduces the disk space and configuration
requirements of Instant Client, saving another 63 MB of disk space at installation. The

XXXxiii

description and usage notes for this feature are in Chapter 2, "Installation and
Upgrading", section "Instant Client Light (English)" on page 2-6.

Modifying Rows Iteratively

This release added batch handling for errors generated during multiple row inserts or
updates. The description and usage notes for this feature are documented in

Chapter 11, "Optimizing Performance of OCCI Applications", section "Modifying
Rows Iteratively" on page 11-9.

New APIs for this features are described in Chapter 12, "OCCI Application
Programming Interface", section on Statement Class:

» getBatchErrorMode() on page 12-213
= setBatchErrorMode() on page 12-226

This feature also introduces a new BatchSQLException Class, which extends the
SQLException Class. It is described in Chapter 12, "OCCI Application Programming
Interface", and has the following methods in addition to the ones it naturally inherits:

s getFailedRowCount() on page 12-21
s getRowNum() on page 12-21
= getException() on page 12-21

Determining the Version of the Client Library and the Oracle Server

This release added support for determining the version of the client library used at run
time and at compile time, and for determining the version of the Oracle server. The
description and usage notes for this feature are documented in Chapter 2, "Installation
and Upgrading", section "Determining Client and Server Versions" on page 2-1.

New APIs for this feature are described in Chapter 12, "OCCI Application
Programming Interface", section on Environment Class:

s getClientVersion() on page 12-51
m getServerVersion() on page 12-53
»n getServerVersionUString() on page 12-53

New Features for Oracle Database 10g Release 1 (10.1)

XXXiV

The following features are new to this release:

s OCCI Support for Windows NT on page 12-4 for accessing collections of Refs in
ResultSet Class and Statement Class, in Chapter 12, "OCCI Application
Programming Interface"

» This release provides OCCI libraries for Microsoft CRT debugging and for
developing applications with Microsoft Visual C++ 7.0 (.NET). Please see the
Windows platform Readme for details on supported compiler versions.

= NATIVE DOUBLE Datatype on page 5-15 in Chapter 5, "Datatypes" supports
IEEE754Double

= NATIVE FLOAT Datatype on page 5-15 in Chapter 5, "Datatypes” supports
IEEE754Float

» Instant Client on page 2-2 in Chapter 2, "Installation and Upgrading"

Enhancements in the base PObject Class on page 12-158 and in Chapter 7, "Object
Type Translator Utility"; OTT C++ classes must be re-generated after migrating to
this release

Stateless Connection Pooling on page 3-5 and StatelessConnectionPool Class on
page 12-198

Globalization and Unicode support in the new Chapter 8, "Globalization and
Unicode Support"

Oracle Streams Advanced Queuing in the new Chapter 9, "Oracle Streams
Advanced Queuing"

XA Compliance support in the new Chapter 10, "Oracle XA Library"
"Caching Statements" on page 3-19 in Chapter 3, "Relational Programming"

Array Pinning for Objects: Section "Transient Objects" on page 4-3 in Chapter 4,
"Object Programming".

Section in "Migrating C++ Applications Using OCCI" on page 4-9 in Chapter 4,
"Object Programming"

Timestamp Class on page 12-256 in Chapter 12, "OCCI Application Programming
Interface"behavior is enhanced:

= Users no longer need to convert to GMT when using Timestamp() constructor
on page 12-257, or in methods setDate() on page 12-264 and setTime() on
page 12-264

= New constructors that support timezone information as string or
Ustring(Unicode) enable users to pass a region name, such as "US/Eastern",
as a timezone. These provide daylight savings(DST) support. Using an empty
string, ", constructs a timestamp in the local timezone.

= New support for all three TIMESTAMP types in the database, for both
relational and objects access: TIMESTAMP, TIMESTAMP WITH TIME ZONE
and TIMESTAMP WITH LOCAL TIME ZONE.

XXXV

XXXVi

1

Introduction to OCCI

This chapter provides an overview of Oracle C++ Call Interface (OCCI) and introduces
terminology used in discussing OCCI. You are provided with the background
information needed to develop C++ applications that run in an Oracle environment.

This chapter contains these topics:
s Overview of OCCI

» Processing of SQL Statements
s Overview of PL/SQL

= Special OCCI/SQL Terms

s Object Support

Overview of OCCI

Oracle C++ Call Interface (OCCI) is an Application Programming Interface (API) that
provides C++ applications access to data in an Oracle database. OCCI enables C++
programmers to utilize the full range of Oracle database operations, including SQL
statement processing and object manipulation.

OCCI provides for:

= High performance applications through the efficient use of system memory and
network connectivity

= Scalable applications that can service an increasing number of users and requests

s Comprehensive support for application development by using Oracle database
objects, including client-side access to Oracle database objects

s Simplified user authentication and password management
= n-tiered authentication

= Consistent interfaces for dynamic connection management and transaction
management in two-tier client/server environments or multitiered environments

s Encapsulated and opaque interfaces

OCCI provides a library of standard database access and retrieval functions in the
form of a dynamic runtime library (OCCI classes) that can be linked in a C++
application at runtime. This eliminates the need to embed SQL or PL/SQL within
third-generation language (3GL) programs.

Introduction to OCCI 1-1

Overview of OCCI

Benefits of OCCI

OCCI provides these significant advantages over other methods of accessing an Oracle
database:

s Leverages C++ and the Object Oriented Programming paradigm
s Iseasytouse
= Iseasy to learn for those familiar with JDBC

» Has a navigational interface to manipulate database objects of user-defined types
as C++ class instances

Building an OCCI Application

As Figure 1-1 shows, you compile and link an OCCI program in the same way that
you compile and link a nondatabase application.

Figure 1-1 The OCCI Development Process

Source Files 17 OCCI Header Files

‘ Host Language Compiler

:

Object Files QCCI Library
l v
Host Linker
Application —p Oracle
PR Server
"~ .

Oracle supports most popular third-party compilers. The details of linking an OCCI
program vary from system to system. On some platforms, it may be necessary to
include other libraries, in addition to the OCCI library, to properly link your OCCI
programs.

See Also: Your operating system-specific Oracle documentation and
the Oracle Database Installation Guide for more information about
compiling and linking an OCCI application for your specific platform

Functionality of OCCI

OCCI provides the following functionality:

= APIs to design a scalable, multithreaded applications that can support large
numbers of users securely

= SQL access functions, for managing database access, processing SQL statements,
and manipulating objects retrieved from an Oracle database server

1-2 Oracle C++ Call Interface Programmer’s Guide

Processing of SQL Statements

s Datatype mapping and manipulation functions, for manipulating data attributes
of Oracle types

= Advanced Queuing for message management

= XA compliance for distributed transaction support

= Statement caching of SQL and PL/SQL queries

= Connection pooling for managing multiple connections

= Globalization and Unicode support to customize applications for international and
regional language requirement

= Object Type Translator Utility

s Transparent Application Failover support

Procedural and Nonprocedural Elements

Oracle C++ Call Interface (OCCI) enables you to develop scalable, multithreaded
applications on multitiered architectures that combine nonprocedural data access
power of structured query language (SQL) with the procedural capabilities of C++.

In a nonprocedural language program, the set of data to be operated on is specified,
but what operations will be performed, or how the operations are to be carried out, is
not specified. The nonprocedural nature of SQL makes it an easy language to learn
and use to perform database transactions. It is also the standard language used to
access and manipulate data in modern relational and object-relational database
systems.

In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them very flexible
and powerful.

The combination of both nonprocedural and procedural language elements in an
OCCI program provides easy access to an Oracle database in a structured
programming environment.

OCClI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example, an
OCCI program can run a query against an Oracle database. The queries can require the
program to supply data to the database by using input (bind) variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber

In this SQL statement, empnumber is a placeholder for a value that will be supplied by
the application.

In an OCCI application, you can also take advantage of PL/SQL, Oracle's procedural
extension to SQL. The applications you develop can be more powerful and flexible
than applications written in SQL alone. OCCI also provides facilities for accessing and
manipulating objects in an Oracle database server.

Processing of SQL Statements

One of the main tasks of an OCCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCCI application. Oracle
recognizes several types of SQL statements:

Introduction to OCCI 1-3

Processing of SQL Statements

= Data definition language (DDL) statements
= Control statements
= Transaction control statements
» Connection control statements
= System control statements
= Data manipulation language (DML) statements

s Queries

DDL Statements

DDL statements manage schema objects in the database. These statements create new
tables, drop old tables, and establish other schema objects. They also control access to
schema objects. Example 1-1 illustrates how to create a table, and grant and revoke
privileges.

Example 1-1 Creating and Specifying Access to a Table

CREATE TABLE employees (
name VARCHAR2 (20),
ssn VARCHAR2 (12),
empno NUMBER (6)
mgr NUMBER(6)
salary NUMBER(6))

GRANT UPDATE, INSERT, DELETE ON employees TO donna
REVOKE UPDATE ON employees FROM jamie

DDL statements also allow you to work with objects in the Oracle database, as in
Example 1-2, which illustrates how to create an object table.

Example 1-2 Creating an Object Table

CREATE TYPE person_t AS OBJECT (
name VARCHAR2 (30),
ssn VARCHAR2 (12),
address VARCHAR2 (50))

CREATE TABLE person_tab OF person_t

Control Statements

OCCI applications treat transaction control, connection control, and system control
statements like DML statements.

See Also: Oracle Database SQL Reference for information about
control statements.

DML SQL Statements

14

DML statements can change data in database tables. For example, DML statements are
used to perform the following actions:

» Insert new rows into a table

= Update column values in existing rows

Oracle C++ Call Interface Programmer’s Guide

Overview of PL/SQL

Queries

s Delete rows from a table
s Lock a table in the database
= Explain the execution plan for a SQL statement

DML statements can require an application to supply data to the database by using
input (bind) variables, as in example Example 1-3.

Example 1-3 Inserting Data through Input Bind Variables
INSERT INTO dept_tab VALUES(:1,:2,:3)

Either this statement can be executed several times with different bind values, or an
array insert can be performed to insert several rows in one round-trip to the server.

DML statements also enable you to work with objects in the Oracle Database, as in
Example 1-4, which shows the insertion of an instance of a type into the object table:

Example 1-4 Inserting Objects into the Oracle Database

INSERT INTO person_tab
VALUES (person_t('Steve May', '123-45-6789','146 Winfield Street'))

Queries are statements that retrieve data from tables in a database. A query can return
zero, one, or many rows of data. All queries begin with the SQL keyword SELECT, as
in Example 1-5:

Example 1-5 Using the Simple SELECT Statement

SELECT dname FROM dept
WHERE deptno = 42

Queries can require the program to supply data to the database server by using input
(bind) variables, as in Example 1-6:

Example 1-6 Using the SELECT Statement with Input Variables

SELECT name
FROM employees
WHERE empno = :empnumber

In this SQL statement, empnumber is a placeholder for a value that will be supplied by
the application.

Overview of PL/SQL

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes tasks
that are more complicated than simple queries and SQL data manipulation language
statements. PL/SQL allows a number of constructs to be grouped into a single block
and executed as a unit. Among these are the following constructs:

s One or more SQL statements
m Variable declarations
= Assignment statements

s Procedural control statements (IF ... THEN ... ELSE statements and loops)

Introduction to OCCI 1-5

Special OCCI/SQL Terms

= Exception handling

In addition to calling PL/SQL stored procedures from an OCCI program, you can use
PL/SQL blocks in your OCCI program to perform the following tasks:

= Call other PL/SQL stored procedures and stored functions.

s Combine procedural control statements with several SQL statements, to be
executed as a single unit.

m Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling .

s Use cursor variables
= Access and manipulate objects in an Oracle database

A PL/SQL procedure or function can also return an output variable. This is called an
out bind variable, as in Example 1-7:

Example 1-7 Using PL/SQL to Obtain an Output Variable

BEGIN
GET_EMPLOYEE_NAME (:1, :2);
END;

Here, the first parameter is an input variable that provides the ID number of an
employee. The second parameter, or the out bind variable, contains the return value of
employee name.

PL/SQL can also be used to issue a SQL statement to retrieve values from a table of
employees, given a particular employee number. Example 1-8 also demonstrates the
use of placeholders in PL/SQL statements.

Example 1-8 Using PL/SQL to Partial Records into Placeholders

SELECT ename, sal, comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename = :emp_number;

Note that the placeholders in this statement are not PL/SQL variables. They represent
input and output parameters passed to and from the database server when the
statement is processed. These placeholders need to be specified in your program.

Special OCCI/SQL Terms

This guide uses special terms to refer to the different parts of a SQL statement.
Consider Example 1-9:

Example 1-9 Using SQL to Extract Partial Records

SELECT customer, address
FROM customers
WHERE bus_type = 'SOFTWARE'
AND sales_volume = :sales;

This example contains these parts:
s A SQL command: SELECT
s Two select-list items: customer and address

s A table name in the FROM clause: customers

1-6 Oracle C++ Call Interface Programmer’s Guide

Object Support

s Two column names in the WHERE clause: bus_type and sales_volume
= A literal input value in the WHERE clause: 'SOFTWARE'
= A placeholder for an input (bind) variable in the WHERE clause: : sales

When you develop your OCCI application, you call routines that specify to the
database server the value of, or reference to, input and output variables in your
program. In this guide, specifying the placeholder variable for data is called a bind
operation. For input variables, this is called an in bind operation. For output
variables, this is called an out bind operation.

Object Support

OCCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object type
might have attributes, such as first_name, last_name, and age, which represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. By using the object type as a structural definition, a
person object could be created with the attributes John, Bonivento, and 30. Object
types may also contain methods, or programmatic functions that represent the
behavior of that object type.

OCCI provides a comprehensive API for programmers seeking to use the Oracle
database server's object capabilities. These features can be divided into several major
categories:

» Client-side object cache
= Runtime environment for objects
= Associative and navigational interfaces to access and manipulate objects
= Metadata class to describe object type metadata
» Object Type Translator (OTT) utility, which maps internal Oracle schema
information to client-side language bind variables
See Also:
» Oracle Database Concepts and

» Oracle Database Application Developer's Guide - Object-Relational
Features for a more detailed explanation of object types and
objects

Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects which have been fetched
by an OCCI application from the server to the client side. The client-side object cache is
created when the OCCI environment is initialized in object mode. Multiple
applications running against the same server will each have their own object cache.
The client-side object cache tracks the objects that are currently in memory, maintains
references to objects, manages automatic object swapping and tracks the
meta-attributes or type information about objects. The client-side object cache provides
the following benefits:

Introduction to OCCI 1-7

Object Support

= Improved application performance by reducing the number of client/server
round-trips required to fetch and operate on objects

= Enhanced scalability by supporting object swapping from the client-side cache
= Improved concurrency by supporting object-level locking

= Automatic garbage collection when cache thresholds are exceeded

Runtime Environment for Objects

OCCI provides a runtime environment for objects that offers a set of methods for
managing how Oracle objects are used on the client side. These methods provide the
necessary functionality for performing these tasks:

s Connecting to an Oracle database server in order to access its object functionality
= Allocating the client-side object cache and tuning its parameters

s Retrieving error and warning messages

= Controlling transactions that access objects in the database

= Associatively accessing objects through SQL

s Describing a PL/SQL procedure or function whose parameters or result are of
Oracle object type

Associative and Navigational Interfaces

Applications that use OCCI can access objects in the database through several types of
interfaces:

s SQL SELECT, INSERT, and UPDATE statements

= C++ pointers and references to access objects in the client-side object cache by
traversing the corresponding references

OCCI provides a set of methods to support object manipulation by using SQL
SELECT, INSERT, and UPDATE statements. To access Oracle objects, these SQL
statements use a consistent set of steps as if they were accessing relational tables. OCCI
provides methods to access objects by using SQL statements for:

= Binding object type instances and references as input and output variables of SQL
statements and PL/SQL stored procedures

= Executing SQL statements that contain object type instances and references
= Fetching object type instances and references

s Retrieving column values from a result set as objects

s Describing a select-list item of an Oracle object type

OCCI provides a seamless interface for navigating objects, enabling you to manipulate
database objects in the same way that you would operate on transient C++ objects. You
can dereference the overloaded arrow (->) operator on an object reference to
transparently materialize the object from the database into the application space.

Metadata Class

Each Oracle datatype is represented in OCCI by a C++ class. The class exposes the
behavior and characteristics of the datatype by overloaded operators and methods. For
example, the Oracle datatype NUMBER is represented by the Number class.

1-8 Oracle C++ Call Interface Programmer’s Guide

Object Support

OCCI provides a metadata class that enables you to retrieve metadata describing
database objects, including object types.

Object Type Translator Utility

The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings. That is, OTT translates object type
information into declarations of host language variables, such as structures and
classes. OTT takes an intype file which contains information about Oracle database
schema objects as input. OTT generates an out type file and the necessary header and
implementation files that must be included in a C++ application that runs against the
object schema. OTT has many benefits, including:

Improving application developer productivity OTT eliminates the need for
application developers to write by hand the host language variables that
correspond to schema objects.

Maintaining SQL as the data definition language of choice By providing the
ability to automatically map Oracle database schema objects that are created by
using SQL to host language variables, OTT facilitates the use of SQL as the data
definition language of choice. This in turn allows Oracle to support a consistent,
enterprise-wide model of the user's data.

Facilitating schema evolution of object types OTT provides the ability to
regenerate included header files when the schema is changed, allowing Oracle
applications to support schema evolution.

OTT is typically invoked from the command line by specifying the intype file, the
outtype file, and the specific database connection.

In summary, OCCI supports object handling in an Oracle database by:

Execution of SQL statements that manipulate object data and schema information
Passing object references and instances as input variables in SQL statements

Declaring object references and instances as variables to receive the output of SQL
statements

Fetching object references and instances from a database

Describing properties of SQL statements that return object instances and
references

Describing PL/SQL procedures or functions with object parameters or results

Extending commit and rollback calls to synchronize object and relational
functionality

Advanced queuing of objects

Introduction to OCCI 1-9

Object Support

1-10 Oracle C++ Call Interface Programmer’s Guide

2

Installation and Upgrading

This chapter provides an overview of installation and upgrading for Oracle C++ Call
Interface (OCCI).

This chapter contains these topics:

» Installing Oracle C++ Call Interface

» Upgrading Considerations

s Determining Client and Server Versions
= Instant Client

= Instant Client Light (English)

Installing Oracle C++ Call Interface

The Oracle C++ Call Interface is installed as part of the Oracle Database. To determine
additional configuration requirements, you should refer to the Oracle Database
Installation Guide and the Oracle Database Client Installation Guide that is specific to your
platform.

Upgrading Considerations

Because of compiler restrictions due to virtual table ordering, you must recompile and
relink all Oracle C++ Call Interface applications when upgrading for an earlier version
of an Oracle Database. This applies both for minor and major releases.

Determining Client and Server Versions

When an application uses several separate codepaths that utilize different server
versions or client patchsets, it can verify these options by checking the client and
server versions of the current Connection. Use the getClientVersion(),
getServerVersion(), and getServerVersionUString|()

To determine the client version, the OCCI header files also define OCCI_MAJOR__
VERSION and OCCI_MINOR_VERSION macros. illustrates one way to use these
macros:

Example 2-1 How to Determine the Major Client Version and set Performance Features

#if (OCCI_MAJOR_VERSION > 9)
env->setCacheSortedFlush(true) ;
// take the benefit of performance if available
#endif

Installation and Upgrading 2-1

Instant Client

Instant Client

The Instant Client feature makes it extremely easy and fast to deploy OCCI based
customer application by eliminating the need for ORACLE_HOME. The storage space
requirements are an additional benefit; Instant Client shared libraries occupy about
one-fourth of the disk space required for a full client installation.

Benefits of Instant Client

= Installation involves copying only four files.

= Storage space requirement for the client is minimal

= No loss of functionality or performance exists for deployed applications

» Simplified packaging with ISV applications

The OCCI Instant Client capability simplifies OCCI installation. Even though OCCl is
independent of ORACLE_HOME setting in the Instant Client mode, applications that
rely on ORACLE_HOME settings can continue operation by setting it to the appropriate
value. The activation of the Instant Client mode is only dependent on the ability to
load the Instant Client data shared library. In particular, this feature allows
interoperability with Oracle applications that use ORACLE_HOME for their data, but use

a newer release of OCCI. Other components such as shared libraries for network
protocols, or security options, must be installed separately.

Installing Instant Client

OCCI requires only four shared libraries (or dynamic link libraries, as they are called
on some operating systems) to be loaded by the dynamic loader of the operating
system. Oracle Database 10g Release 2 (10.2) library names are used; the number part
of library names will change to remain consistent with future release numbers.

= OCI Instant Client Data Shared Library (1ibociei . so on Linux and UNIX and
oraocieil0.dll on Windows); correct installation of this file determines if you
are operating in Instant Client mode

s Client Code Library (1ibclntsh.so.10.1 on Linux and UNIX and oci.dll
on Windows)

= Security Library (1ibnnz10.so on Linux and UNIX and orannzsbbl10.d11 on
Windows)

= OCCI Library (1ibocci.so.10.1 on Linux and UNIX and oraoccil0.d11l on
Windows)

Oracle Technology Network
The Instant Client libraries are also available on the Oracle Technology Network
(OTN) website at:

http://www.oracle.com/technology/tech/oci/instantclient/

If these four libraries are accessible through the directory on the OS Library Path
variable (LD_LIBRARY_PATH on Linux and UNIX and PATH on Windows), then OCCI
operates in the Instant Client mode. In this mode, there is no dependency on ORACLE_
HOME and none of the other code and data files provided in ORACLE_HOME are needed
by OCCI.

If you are installing Instant Client from the Oracle Technology Network,

2-2 Oracle C++ Call Interface Programmer’s Guide

Instant Client

Download and install the Instant Client libraries to an empty directory, such as
instantclient_10_2.

Set the operating system shared library path environment variable (LD_LIBRARY_
PATH on Linux and UNIX and PATH on Windows) to the directory used in step 1,
instantclient_10_2.

Instant Client SDK Instant Client can also be downloaded as an SDK package. The SDK
contains all necessary header files and a makefile for developing OCCI applications in
an Instant Client environment. Once developed, these applications can be deployed in
any client environment. The SDK has these additional features:

It contains C++ demonstration programs.

It includes libraries required to link applications on Windows, and a Make . bat
file is provided to build demos.

The Makefile demo . mk is provided to build the demos for Linux and UNIX. The
instantclient_10_2 directory must be on the LD_LIBRARY_PATH before
linking the application. These programs require symbolic links for the Client Code
Library and the OCClI library, 1ibclntsh.so and libocci . shrespectively, in
the instantclient_10_2 directory. The demo Makefile, demo . mk, generates
these before the link step. These symbolic links can also be created in a shell script:

cd instantclient_10_2
In -s libclntsh.so0.10.1 libclntsh.so
In -s libocci.so0.10.1 libocci.so

The SDK also contains the Object Type Translator (OTT) utility and its classes to
generate the application header files.

Complete Client Installation
If you performed a complete client installation by choosing the Admin option,

On Linux or UNIX platforms, the 1ibociei. so library can be copied from the
$ORACLE_HOME/instantclient directory. All the other libraries can be copied
from the SORACLE_HOME/1ib directory in a full Oracle installation.

On Windows, the oraocieil0.d11 library can be copied from the ORACLE_
HOME\instantclient directory. All other Windows libraries can be copied from
the ORACLE_HOME\bin directory. To use the Microsoft ODBC and OLEDB driver,
ociw32.d1l1 must also be copied from ORACLE_HOME\bin.

Oracle Universal Installer

If you did not install the database, you can install these libraries by choosing the
Instant Client option from the Oracle Universal Installer. After completing these steps,
you can begin running OCCI applications.

1.

Install the Instant Client shared libraries to a directory such as instantclient_
10_2.

Set the operating system shared library path environment variable to the directory
from step 1. For example, on Linux or UNIX, set the LD_LIBRARY_PATH to
instantclient_10_2.On Windows, set PATH to locate the instantclient_
10_2 directory.

Installation and Upgrading 2-3

Instant Client

Instant Client CD

You can also install Instant Client from the Instant Client CD. You must install Instant
Client either in an empty directory or on a different system.

There should be only one set of Oracle libraries on the operating system Library Path
variable; if you have several directories or copies of Instant Client libraries, only one
directory should be on the operating system Library Path.

Similarly, if you also have an installation on an ORACLE_HOME of the same machine,
do not place both the ORACLE_HOME/11ib and Instant Client directory on the
operating system Library Path, regardless of the order in which they appear on the
Library Path. Only one of ORACLE_HOME/ 1ib directory (for non-Instant Client
operation) or Instant Client directory (for Instant Client operation) should be on the
operating system Library Path variable.

Using Instant Client

The Instant Client feature is designed for running production applications. For
development, use either the Instant Client SDK or a full installation to access OCCI
header files, makefiles, demonstration programs, and so on. In general, all OCCI
functionality is available to an application being run in the Instant Client mode, except
for server-side external procedures.

Patching Instant Client Shared Libraries on Unix

This feature is not available on Windows platforms.

Because Instant Client is primarily a deployment feature, one of its design objectives is
to reduce the number and size of necessary files. Therefore, Instant Client deployment
does not include all files for patching shared libraries. You should use the OPATCH
utility on an ORACLE_HOME based full client to patch the Instant Client shared
libraries. The OPATCH utility stores the patching information of the ORACLE_HOME
installation in 1ibclntsh.so.10.1 for Linux and UNIX. This information can be
retrieved using the genezi utility:

genezi -v

If the genezi utility is not installed on the machine that deploys Instant Client, you
can copy it from the ORACLE_HOME/bin directory of the ORACLE_HOME machine.

After applying the patch in an ORACLE_HOME environment, copy the files listed
in"Installing Instant Client" on page 2-2 to the instant client directory.

Instead of copying individual files, you can generate Instant Client * . zip files, as
described in "Regenerating the Data Shared Library and Zip Files". Then, instead of
copying individual files, you can instead copy the zip files to the target machine and
unzip them.

Regenerating the Data Shared Library and Zip Files

This feature is not available on Windows platforms.

The Instant Client Data Shared Library, 1ibociei . so, can be regenerated in a Client
Admin Install of ORACLE_HOME. Executing the following two lines will create a new
libociei. so file based on current file in ORACLE_HOME and place it in the ORACLE_
HOME/rdbms/install/instantclient directory; the make target ilibociei
will generate 1ibociei.so:

mkdir -p SORACLE_HOME/rdbms/install/instantclient/light

2-4 Oracle C++ Call Interface Programmer’s Guide

Instant Client

cd SORACLE_HOME/rdbms/1lib
make -f ins_rdbms.mk ilibociei

Note: aThis location of the regenerated data shared library,
libociei. so, is different from the original location of ORACLE_
HOME/instantclient

s This script will also create a directory for Instant Client Light
(English)

Database Connection Names for Instant Client

All Oracle net naming methods that do not require use of ORACLE_HOME or TNS_
ADMIN to locate configuration files such as tnsnames.ora or sglnet.ora work in
the Instant Client mode.

The connectString parameter in the createConnection() call can be specified in the
following formats:

As an SQL Connect URL string, of the form:

//host: [port] [/service name]

such as:

//myserverll1:5521/bjava2l

As an Oracle Net keyword-value pair. For example:

(DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=myserverlll) (PORT=5521))
(CONNECT_DATA= (SERVICE_NAME=bjava2l)))

As a connection name that is resolved through Directory Naming when the site is
configured for LDAP server discovery.

As an entry in the tnsnames . ora file.

If the TNS_ ADMIN environment variable is not set, and TNSNAMES entries such as
instl are used, then the ORACLE_HOME variable must be set and the
configuration files are expected to be in the SORACLE_HOME/network/admin
directory.

Naming methods that require TNS_ADMIN to locate configuration files continue to
work if the TNS_ADMIN environment variable is set.

The ORACLE_HOME variable in this case is only used for locating Oracle Net
configuration files, and no other component of OCCI Client Code Library uses the
value of ORACLE_HOME.

The empty connectString parameter of createConnection() is supported by setting
the environment variable (TWO_TASK on Linux and UNIX, and LOCAL on Windows)
to one of the four values described earlier.

See Also: Oracle Net Services Administrator’s Guide chapter on
"Configuring Naming Methods" for more information on connect
descriptor

Environment Variables for OCCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of
Globalization Support, CORE, and error message files. An OCCl-only application

Installation and Upgrading 2-5

Instant Client Light (English)

should not require ORACLE_HOME to be set. However, if it is set, it does not have an
impact on OCCI's operation. OCCI will always obtain its data from the Data Shared
Library. If the Data Shared Library is not available, only then is ORACLE_HOME used
and a full client installation is assumed. When set, ORACLE_HOME should be a valid
operating system path name that identifies a directory.

Environment variables ORA_NLS33, ORA_NLS32, and ORA_NLS are ignored in the
Instant Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the smaller,
default, timezone.dat file from the Data Shared Library is used. If the larger
timezlrg.dat file is to be used from the Data Shared Library, then set the ORA_
TZFILE environment variable to the name of the file without any absolute or relative
path names. That is, on Linux and UNIX:

setenv ORA_TZFILE timezlrg.dat

On Windows:

set ORA_TZFILE timezlrg.dat

If OCCl is not operating in the Instant Client mode because the Data Shared Library is
not available, the ORA_TZFILE variable, if set, names a complete path name.

If TNSNAMES entries are used, then TNS_ADMIN directory must contain the TNSNAMES
configuration files. If TNS_ADMIN is not set, the ORACLE_HOME/network/admin
directory must contain Oracle Net Services configuration files.

Instant Client Light (English)

Instant Client Light (English) further reduces installation space requirements of the
client installation over Instant Client by another 63 MB. Specifically, the installation of
the Instant Client Light (English) shared library, 1ibociicus.so on Linux and UNIX
and oraociicus10.dl1 for Windows, occupies 4 MB on Unix platforms, when the
full Instant Client shared library, libociei.so, occupies 67 MB of disk space.

Instant Client Light (English), as the name implies, is geared toward applications that
require English-only error messages and use either US7TASCII, WE8DEC, or one of the
Unicode charactersets. Instant Client Light (English) also has no restrictions on the
TERRITORY field of the NL.S_LANG setting. As a result, applications that meet these
characterset and territory criteria can significantly reduce its footprint if they operate
in the Instant Client Light (English) environment.

Globalization Settings for Instant Client Light (English)
Instant Client Light (English) supports the following character sets:

= Single-byte character sets include US7ASCII, WE8DEC, WESMSWIN1252, and
WE8IS0O8859P1.

s Unicode character sets include UTF8, AL16UTF16, and AL32UTFS8.

Instant Client Light (English) returns an error message if the application attempts to
use a character set or a national character set not listed here, either on the client or on
the database. The possible error messages, listed here, are only available in English:

s ORA-12734 Instant Client Light: unsupported client national character set (NLS_
LANG value set)

s ORA-12735 Instant Client Light: unsupported client character set (NLS_LANG
value set)

2-6 Oracle C++ Call Interface Programmer’s Guide

Instant Client Light (English)

= ORA-12736 Instant Client Light: unsupported server national character set (NLS_
LANG value set)

s ORA-12737 Instant Client Light: unsupported server character set (NLS_LANG
value set)

When setting NL'S_LANG parameters, use the following;:

American_territory.charset

where territoryis any valid Territory that can be specified through NLS_LANG, and
charset is one of the character sets already listed in this section.

See Also: Oracle Database Globalization Support Guide for more
information about NLS settings.

Using Instant Client Light (English)

To determine whether to operate in the Instant Client mode, OCCI applications look
for the Data Shared Library on the LD_ LIBRARY_PATH for Linux and UNIX and PATH
on Windows. If this library is not found, OCCI attempts to load the Instant Client
Light (English) Data Shared Library, 1ibociicus.so for Linux and UNIX and
oraociicusl10.d1l1l on Windows. If neither is found, a full ORACLE_HOME
installation is assumed.

Installing Instant Client Light (English)

There are three ways to install Instant Client Light (English): from Oracle Technology
Network Download, through Client Admin Install, and through Oracle Universal
Installer.

Note: All Instant Client and Instant Client Light (English) files
should always be copied or installed into an empty directory to ensure
that there are no incompatible binaries in the final installation.

Oracle Technology Network Download

When installing Instant Client Light (English) from Oracle Technology Network
(OTN), download and unzip the basiclite. zip package instead of the usual
basic.zip package. You must ensure that the instantclient_10_2 directory is
empty before unzipping the libraries. The downloadable package is at the following
URL on OTN:

http://www.oracle.com/technology/tech/oci/instantclient/

Client Admin Install

Instead of copying the Instant Client Data Shared Library from the ORACLE_
HOME/instantclient directory, use the Instant Client Light (English) Data Shared
Library, 1ibociicus.so for Linux and UNIX and oraociicusl10.dlll for
Windows, from the ORACLE_HOME/instantclient/light directory. In other
words, the Instant Client directory on the LD_ LIBRARY_ PATH for Linux and UNIX
and PATH for Windows should contain the smaller Instant Client Light (English) Data
Shared Libraries.

Installation and Upgrading 2-7

Instant Client Light (English)

Oracle Universal Installer

If the Instant Client option is selected from the Oracle Universal Installer (OUI), the
full Instant Client is installed by default, but the libraries for Instant Client Light
(English) are also installed. To operate in Instant Client Light (English) mode, the
Instant Client Light (English) Data Shared Library must replace the Instant Client
library. Therefore, you must place libociicus.so on the LD_LIBRARY_PATH for Linux
and UNIX, and oraociicus10.d11 on the PATH for Windows. This design ensures
that the Instant Client Light (English) is not enabled by default.

The Instant Client Light (English) Data Shared Library is initially placed in the
ORACLE_HOME/instantclient/light directory. You must move it to the base
directory of the installation, ORACLE_HOME/ instantclient, and remove the Instant
Client Data Shared Library already in that directory.

Example 2-2 Installing Instant Client Light (English) through Oracle Universal Installer

If the OUI has installed the Instant Client inmy_oraic_10_2 directory on the LD_
LIBRARY_PATH, then the following commands would ensure operation in the Instant
Client Light (English) mode:

cd my_oraic_10_2
rm libociei.so
mv light/libociicus.so .

Note: To avoid use of incompatible binary files, all Instant Client
files should be copied and installed in an empty directory.

2-8 Oracle C++ Call Interface Programmer’s Guide

3

Relational Programming

This chapter describes the basics of developing C++ applications using Oracle C++
Call Interface (OCCI) to work with data stored in relational databases.

This chapter contains these topics:

= Connecting to a Database

= Pooling Connections

= Executing SQL DDL and DML Statements

» Types of SQL Statements in the OCCI Environment
s Executing SQL Queries

= Executing Statements Dynamically

s Committing a Transaction

s Caching Statements

» Handling Exceptions

Connecting to a Database

You have a number of different options with regard to how your application connects
to the database.

Creating and Terminating an Environment

All OCCI processing takes place in the context of the Environment class. An OCCI
environment provides application modes and user-specified memory management
functions. The following code example shows how you can create an OCCI
environment:

Environment *env = Environment::createEnvironment () ;
All OCCI objects created with the createxxx methods (connections, connection pools,
statements) must be explicitly terminated and so, when appropriate, you must also

explicitly terminate the environment. The following code example shows how you
terminate an OCCI environment.

Environment: :terminateEnvironment (env) ;

In addition, an OCCI environment should have a scope that is larger than the scope of
the following object types created in the context of that environment: Agent, Bytes,
Date, Message, IntervalDS, IntervalYM, Subscription and Timestamp. This

Relational Programming 3-1

Connecting to a Database

rule does not apply to BFile, Blob, and Clob objects. This concept is demonstrated
in the following code example:

const string userName = "SCOTT";
const string password = "TIGER";
const string connectString = "";

Environment *env = Environment::createEnvironment () ;
{
Connection *conn = env->createConnection (
userName, password, connectString);
Statement *stmt = conn->createStatement (
"SELECT blobcol FROM mytable");
ResultSet *rs = stmt->executeQuery();

rs->next () ;
Blob b = rs->getBlob(1l);
cout << "Length of BLOB : " << b.length();

stmt->closeResultSet (rs);
conn->terminateStatement (stmt) ;
env->terminateConnection(conn) ;

}

Environment: :terminateEnvironment (env) ;

If the application requires access to objects in the global scope, such as static or global
variables, these objects must be set to NULL before the environment is terminated. In
the preceding example, if b was a global variable, ab.setNull () call has to be made
prior to the terminateEnvironment () call

You can use the mode parameter of the createEnvironment method to specify that
your application:

= Runsin a threaded environment (THREADED_MUTEXED or THREADED
UNMUTEXED)

= Uses objects (OBJECT)

The mode can be set independently in each environment.

Opening and Closing a Connection

The Environment class is the factory class for creating Connection objects. You first
create an Environment instance, and then use it to enable users to connect to the
database by means of the createConnection () method.

The following code example creates an environment instance and then uses it to create
a database connection for a database user scott with the password tiger.

Environment *env = Environment::createEnvironment () ;
Connection *conn = env->createConnection("scott", "tiger");

You must use the terminateConnection () method shown in the following code
example to explicitly close the connection at the end of the working session. In
addition, the OCCI environment should be explicitly terminated.

You should remember that all objects (Refs, BEiles, Producers, Consumers, and so
on) created or named within a Connection instance must be within the inner scope
of that instance; the scope of these objects must be explicitly terminated before the
Connection is terminated.

3-2 Oracle C++ Call Interface Programmer’s Guide

Pooling Connections

env->terminateConnection (conn) ;
Environment: :terminateEnvironment (env) ;

Pooling Connections

This section discusses how to use the connection pooling feature of OCCI. The
information covered includes the following topics:

= Creating a Connection Pool
= Stateless Connection Pooling

The primary difference between the two is that StatelessConnectionPools are
used for applications that don't depend on state considerations; these applications can
benefit from performance improvements available through use of pre-authenticated
connections.

Creating a Connection Pool

For many middle-tier applications, connections to the database should be enabled for a
large number of threads. Since each thread exists for a relatively short time, opening a
connection to the database for every thread would result in inefficient utilization of
connections and poor performance.

By employing the connection pooling feature, your application can create a small set
of connections that can be used by a large number of threads. This enables you to use
database resources very efficiently.

Creating a Connection Pool
To create a connection pool, you use the createConnectionPool () method:

virtual ConnectionPool* createConnectionPool (
const string &poolUserName,
const string &poolPassword,
const string &connectString ="",
unsigned int minConn =0,
unsigned int maxConn =1,
unsigned int incrConn =1) = 0;

The following parameters are used in the previous method example:
» poolUserName: The owner of the connection pool
= poolPassword: The password to gain access to the connection pool

» connectString: The database name that specifies the database server to which
the connection pool is related

s minConn: The minimum number of connections to be opened when the
connection pool is created

= maxConn: The maximum number of connections that can be maintained by the
connection pool. When the maximum number of connections are open in the
connection pool, and all the connections are busy, an OCCI method call that needs
a connection waits until it gets one, unless setErrorOnBusy() was called on the
connection pool

s incrConn: The additional number of connections to be opened when all the
connections are busy and a call needs a connection. This increment is implemented
only when the total number of open connections is less than the maximum
number of connections that can be opened in that connection pool

Relational Programming 3-3

Pooling Connections

The following code example demonstrates how you can create a connection pool:

const string connectString = "";
unsigned int maxConn = 5;
unsigned int minConn = 3;
unsigned int incrConn = 2;

ConnectionPool *connPool = env->createConnectionPool (
poolUserName,
poolPassword,
connectString,
minConn,
maxConn,
incrConn) ;

You can also configure all these attributes dynamically. This lets you design an
application that has the flexibility of reading the current load (number of open
connections and number of busy connections) and tune these attributes appropriately.
In addition, you can use the setTimeOut () method to time out the connections that
are idle for more than the specified time. The OCCI terminates idle connections
periodically so as to maintain an optimum number of open connections.

There is no restriction that one environment must have only one connection pool.
There can be multiple connection pools in a single OCCI environment, and these can
connect to the same or different databases. This is useful for applications requiring
load balancing.

Proxy Connections

If you authorize the connection pool user to act as a proxy for other connections, then
no password is required to log in database users who use one of the connections in the
connection pool.

A proxy connection can be created by using either of the following methods:

ConnectionPool->createProxyConnection (
const string &username,
Connection: :ProxyType proxyType = Connection::PROXY_DEFAULT) ;

or

ConnectionPool->createProxyConnection (
const string &username,
string roles|],
int numRoles,
Connection: :ProxyType proxyType = Connection::PROXY_DEFAULT) ;

The following parameters are used in the previous method example:

s roles[]: The roles array specifies a list of roles to be activated after the proxy
connection is activated for the client

n Connection: : ProxyType proxyType = Connection: :PROXY_DEFAULT:
The enumeration Connection: : ProxyType lists constants representing the
various ways of achieving proxy authentication. PROXY_DEFAULT is used to
indicate that name represents a database username and is the only proxy
authentication mode currently supported.

3-4 Oracle C++ Call Interface Programmer’s Guide

Pooling Connections

Stateless Connection Pooling

Stateless Connection Pooling is specifically designed for use in applications that
require short connection times and don't need to deal with state considerations. The
primary benefit of Stateless Connection Pooling is increased performance, since the
time consuming connection and authentication protocols are eliminated.

Stateless Connection Pools create and maintain a group of stateless, authenticated
connection to the database that can be used by multiple threads. Once a thread finishes
using its connection, it should release the connection back to the pool. If no
connections are available, new ones are generated. Thus, the number of connections in
the pool can increase dynamically.

Some of the connections in the pool may be tagged with specific properties. The user
may request a default connection, set certain attributes, such as Globalization Support
settings, then tag it and return it to the pool. When a connection with same attributes is
needed, a request for a connection with the same tag can be made, and one of several
connections in the pool with the same tag can be reused. The tag on a connection can
be changed or reset.

Proxy connections may also be created and maintained through the Stateless
Connection Pooling interface.

Stateless connection pooling improves the scalability of the mid-tier applications by
multiplexing the connections. However, connections from a
StatelessConnectionPool should not be used for long transactions, as holding
connections for long periods leads to reduced concurrency.

Caution:

s OCCI will not check for the correctness of the connection-tag
pair. The user is responsible for ensuring that connections with
different client-side properties don't have the same tag.

= OCCl is not responsible for removing the state of the
connection either by a commit or a rollback before releasing. If
a state remains with a connection when it is released back to the
pool, it will still be present when the connection is reused. The
user is responsible for removing the state of the connection
before releasing it back to the pool.

There are two types of stateless connection pools:

= A homogeneous pool is one in which all the connections will be authenticated
with the username and password provided at the time of creation of the pool.
Therefore, all connections will have the same authentication context. Proxy
connections are not allowed in such pools.

» Different connections can be authenticated by different usernames in
heterogeneous pools. Proxy connections can also exist in heterogeneous pools,
provided the necessary privileges for creating them are granted on the server.

Example 3-1 illustrates a basic usage scenario for connection pools. Example 3-2
presents the usage scenario for creating and using a homogeneous stateless connection
pool, while Example 3-3 covers the use of heterogeneous pools.

Relational Programming 3-5

Pooling Connections

Example 3-1 Usage Scenario for a StatelessConnectionPool

Because the pool size is dynamic, in response to changing user requirements, up to the
specified maximum number of connections. Assume that a stateless connection pool is
created with following parameters:

s minConn = 5
m incrConn = 2
s maxConn = 10

Five connections are opened when the pool is created:
m openConn = 5

Using get [AnyTagged] [Proxy]Connection () methods, the user consumes all 5
open connection:

m openConn = 5
s busyConn = 5

When the user wants another connection, the pool will open 2 new connections and
return one of them to the user

m openConn = 7

6

s DbusyConn

The upper limit for the number of connections that can be pooled is maxConn
specified at the time of creation of the pool.

The user can also modify the pool parameters after the pool is created using the call to
setPoolSize () method.

If a heterogenous pool is created, the incrConn and minConn arguments are ignored.

Example 3-2 How to Create and Use a Homogeneous Stateless Connection Pool

To create a homogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HOMOGENEOUS mode of the
Environment with a createStatelessConnectionPool() call.

StatelessConnectionPool *scp =
env->createStatelessConnectionPool (
username, passwd, connectString, maxCon, minCon, incrCon,
StatelessConnectionPool: : HOMOGENEOUS) ;

2. Getanew or existing connection from the pool by calling the getConnection()
method.

Connection *conn=scp->getConnection(tag);

During the execution of this call, the pool is searched for a connection with a
matching tag. If such a connection exists, it is returned to the user. Otherwise, an
untagged connection authenticated by the pool username and password is
returned.

Alternatively, you can obtain a connection with getAnyTaggedConnection() call. It
will return a connection with a non-matching tag if neither a matching tag or NULL
tag connections are available. You should verify the tag returned by a getTag() call
on Connection.

Connection *conn=scp->getAnyTaggedConnection(tag);

3-6 Oracle C++ Call Interface Programmer’s Guide

Pooling Connections

string tag=conn->getTag();

3. Use the connection.

4. Release the connection to the StatelessConnectionPool through the
releaseConnection() call.

scp->releaseConnection(conn, tag);

"

An empty tag, ", untags the Connection.

You have an option of retrieving the connection from the
StatelessConnectionPool using the same tag parameter value in a
getConnection() call.

Connection *conn=scp->getConnection(tag);

Instead of returning the Connection to the StatelessConnectionPool, you
may wish to destroy it using the terminateConnection() call.

scp->terminateConnection (conn) ;

5. Destroy the pool through aterminateStatelessConnectionPool() call on the
Environment object.

env->terminateStatelessConnectionPool (scp) ;

Example 3-3 How to Create and Use a Heterogeneous Stateless Connection Pool

To create a heterogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HETEROGENEOUS mode of the
Environment with a createStatelessConnectionPool() call.

StatelessConnectionPool *scp =
env->createStatelessConnectionPool (
username, passwd, connectString, maxCon, minCon, incrCon,
StatelessConnectionPool: : HETEROGENEOUS) ;

2. Getanew or existing connection from the pool by calling the getConnection()
method of the StatelessConnectionPool that is overloaded for the
heterogeneous pool option.

Connection *conn=scp->getConnection(username, passwd, tag);

During the execution of this call, the heterogeneous pool is searched for a
connection with a matching tag. If such a connection exists, it is returned to the
user. Otherwise, an appropriately authenticated untagged connection with a NULL
tag is returned.

Alternatively, you can obtain a connection with getAnyTaggedConnection() call
that has been overloaded for heterogeneous pools. It will return a connection with
a non-matching tag if neither a matching tag or NULL tag connections are
available. You should verify the tag returned by a getTag() call on Connection.

Connection *conn=scp->getAnyTaggedConnection (username, passwd, tag);
string tag=conn->getTag();

You may also wish to use proxy connections by getProxyConnection() or
getAnyTaggedProxyConnection() calls on the StatelessConnectionPool.

Connection *pcon = scp->getProxyConnection (proxyName, roles{},

Relational Programming 3-7

Executing SQL DDL and DML Statements

nuRoles, tag, proxyType);
Connection *pcon = scp->getAnyTaggedProxyConnection(proxyName, tag,
proxyType) ;
3. Use the connection.

4. Release the connection to the StatelessConnectionPool through the
releaseConnection() call.

scp->releaseConnection(conn, tag);

"

An empty tag, "", untags the Connection.

You have an option of retrieving the connection from the
StatelessConnectionPool using the same tag parameter value in a
getConnection() call.

Connection *conn=scp->getConnection(tag);
Instead of returning the Connection to the StatelessConnectionPool, you

may wish to destroy it using the
terminateConnection()terminateStatelessConnectionPool() call.

scp->terminateConnection(conn) ;

5. Destroy the pool through a terminateStatelessConnectionPool() call on the
Environment object.

env->terminateStatelessConnectionPool (scp) ;

Executing SQL DDL and DML Statements

SQL is the industry-wide language for working with relational databases. In OCCI you
execute SQL commands by means of the Statement class.

Creating a Statement Object

To create a Statement object, call the createStatement () method of the
Connection object, as shown in the following example:

Statement *stmt = conn->createStatement () ;

Creating a Statement Object to Execute SQL Commands

Once you have created a Statement object, execute SQL commands by calling the
execute (), executeUpdate (), executeArrayUpdate (), or executeQuery ()
methods on the Statement. These methods are used for the following purposes:

s execute(): To execute all nonspecific statement types
s executeUpdate (): To execute DML and DDL statements
m executeQuery (): To execute a query

= executeArrayUpdate (): To execute multiple DML statements

Creating a Database Table

Using the executeUpdate () method, the following code example demonstrates how
you can create a database table:

stmt->executeUpdate ("CREATE TABLE basket_tab
(fruit VARCHAR2 (30), quantity NUMBER)");

3-8 Oracle C++ Call Interface Programmer’s Guide

Types of SQL Statements in the OCCI Environment

Inserting Values into a Database Table

Similarly, you can execute a SQL INSERT statement by invoking the
executeUpdate () method:

stmt->executeUpdate ("INSERT INTO basket_tab
VALUES ('MANGOES', 3)");

The executeUpdate () method returns the number of rows affected by the SQL
statement.

See Also: $ORACLE_HOME/rdbms/demo for a code example that
demonstrates how to perform insert, select, update, and delete
operations on the table row.

Reusing a Statement Object

You can reuse a Statement object to execute SQL statements multiple times. For
example, to repeatedly execute the same statement with different parameters, you
specify the statement by the set SQL method of the Statement object:

stmt->setSQL("INSERT INTO basket_tab VALUES(:1,:2)");
You may now execute this INSERT statement as many times as required. If at a later

time you wish to execute a different SQL statement, you simply reset the statement
object. For example:

stmt->setSQL ("SELECT * FROM basket_tab WHERE quantity >= :1");
Thus, OCCI statement objects and their associated resources are not allocated or freed

unnecessarily. You can retrieve the contents of the current statement object at any time
by means of the getSQL() method.

Terminating a Statement Object
You should explicitly terminate and deallocate a Statement:

Connection: :conn->terminateStatement (Statement *stmt);

Types of SQL Statements in the OCCI Environment
There are three types of SQL statements in the OCCI environment:
s Standard Statements use SQL commands with specified values
= Parameterized Statements have parameters, or bind variables
» Callable Statements call stored PL/SQL procedures

The statement methods are subdivided into those applicable to all statements, to
parameterized statements, and to callable statements. Standard statements are a
superset of parameterized statements, and parameterized statements are a superset of
callable statements.

Standard Statements
Previous sections describe examples of both DDL and DML commands. For example:

stmt->executeUpdate ("CREATE TABLE basket_tab
(fruit VARCHAR2 (30), quantity NUMBER)");

Relational Programming 3-9

Types of SQL Statements in the OCCI Environment

and
stmt->executeUpdate ("INSERT INTO basket_tab
VALUES ('MANGOES', 3)");

These are each an example of a standard statement in which you explicitly define the
values of the statement. So, in these examples, the CREATE TABLE statement specifies
the name of the table (basket_tab), and the INSERT statement stipulates the values
to be inserted ('MANGOES', 3).

Parameterized Statements

You can execute the same statement with different parameters by setting placeholders
for the input variables of the statement. These statements are referred to as
parameterized statements because they are able to accept input from a user or
program by using parameters.

For example, suppose you want to execute an INSERT statement with different
parameters. You first specify the statement by the set SQL () method of the
Statement object:

stmt->setSQL("INSERT INTO basket_tab VALUES(:1, :2)");
You then call the setxxx () methods to specify the parameters, where xxx stands for
the type of the parameter. The following example invokes the setString () and

setInt () methods to input the values of these types into the first and second
parameters.

To insert a row:

stmt->setString (1, "Bananas"); // value for first parameter
stmt->setInt (2, 5); // value for second parameter
Having specified the parameters, you insert values into the row:

stmt->executeUpdate () ; // execute statement

To insert another row:

stmt->setString (1, "Apples"); // value for first parameter

stmt->setInt (2, 9); // value for second parameter

Having specified the parameters, you again insert values into the row:
stmt->executeUpdate () ; // execute statement

If your application is executing the same statement repeatedly, then avoid changing

the input parameter types because a rebind is performed each time the input type
changes.

Callable Statements

PL/SQL stored procedures, as their name suggests, are procedures that are stored on
the database server for reuse by an application. By using OCCI, a call to a procedure
which contains other SQL statements is referred to as a callable statement.

For example, suppose you wish to call a procedure countFruit (), that returns the
quantity of a specified kind of fruit. To specify the input parameters of a PL/SQL
stored procedure, call the setxxx() methods of the Statement class as you would
for parameterized statements.

stmt->setSQL ("BEGIN countFruit(:1, :2); END:");

3-10 Oracle C++ Call Interface Programmer’s Guide

Types of SQL Statements in the OCCI Environment

int quantity;
stmt->setString(1l, "Apples"); // specify first (IN) parameter of procedure

However, before calling a stored procedure, you need to specify the type and size of
any OUT parameters by calling the registerOutParam () method. For IN/OUT
parameters, use the set xxx () methods to pass in the parameter, and get XXX ()
methods to retrieve the results.

stmt->registerOutParam(2, Type::0CCIINT, sizeof (quantity));
// specify type and size of the second (OUT) parameter

You now execute the statement by calling the procedure:

stmt->executeUpdate () ; // call the procedure

Finally, you obtain the output parameters by calling the relevant getxxx() method:

quantity = stmt->getInt(2); // get value of the second (OUT) parameter

Callable Statements with Arrays as Parameters

A PL/SQL stored procedure executed through a callable statement can have array of
values as parameters. The number of elements in the array and the dimension of
elements in the array are specified through the setDataBufferArray () method.

The following example shows the setDataBufferArray () method:

void setDataBufferArray (
unsigned int paramIndex,
void *buffer,
Type type,

ubd arraySize,

ub4 *arrayLength,

sb4d elementSize,

ub2 *elementLength,

sb2 *ind = NULL,

ub2 *rc = NULL);
The following parameters are used in the previous method example:
» paramIndex: Parameter number
» buffer: Data buffer containing an array of values
= Type: Type of data in the data buffer
» arraySize: Maximum number of elements in the array
» arrayLength: Number of elements in the array

s elementsSize: Size of the current element in the array

» elementLength: Pointer to an array of lengths. elementLength[i] has the
current length of the ith element of the array

s ind: Indicator information

m rc: Returns code

Streamed Reads and Writes

OCCI supports a streaming interface for insertion and retrieval of very large columns
by breaking the data into a series of small chunks. This approach minimizes client-side
memory requirements. This streaming interface can be used with parameterized

Relational Programming 3-11

Types of SQL Statements in the OCCI Environment

statements such as SELECT and various DML commands, and with callable statements
in PL/SQL blocks. The datatypes supported by streams are BLOB, CLOB, LONG, LONG
RAW, RAW, and VARCHAR?2.

Streamed data is of three kinds:

= A writable stream corresponds to a bind variable in a SELECT /DML statement or
an IN argument in a callable statement.

= Areadable stream corresponds to a fetched column value in a SELECT statement
or an OUT argument in a callable statement.

= A bidirectional stream corresponds to an IN/OUT bind variable.
Methods of the Stream Class support the stream interface.

The getStream() method of the Statement Class returns a stream object that supports
reading and writing for DML and callable statements:

s For writing, it passes data to a bind variable or to an IN or IN/OUT argument
s For reading, it fetches data from an OUT or IN/OUT argument

The getStream() method of the ResultSet Class returns a stream object that can be used
for reading data.

The status () method of these classes determines the status of the streaming
operation.

Binding Data in a Streaming Mode; SELECT/DML and PL/SQL

To bind data in a streaming mode, follow these steps and review Example 3—4:
1. Create a SELECT/DML or PL/SQL statement with appropriate bind placeholders.

2, (all the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position that will be used in the streaming mode. If
the bind position is a PL/SQL IN or IN/OUT argument type, indicate this by
calling the three-argument versions of these methods and setting the inArg
parameter to TRUE.

3. Execute the statement; the status() method of the Statement Class will return
NEEDS_STREAM_ DATA.

Obtain the stream object through a getStream() method of the Statement Class.
Use writeBuffer() and writeLastBuffer() methods of the Stream Class to write data.

Close the stream with closeStream() method of the Statement Class.

N o a &

After all streams are closed, the status() method of the Statement Class will change
to an appropriate value, such as UPDATE_COUNT_AVAILABLE.

Example 3-4 How to Bind Data in a Streaming Mode

Statement *stmt = conn->createStatement (

"Insert Into testtab(longcol) values (:1)"); //longcol is LONG type column
stmt->setCharacterStreamMode (1, 100000) ;
stmt->executeUpdate() ;

Stream *instream = stmt->getStream(l);
char buffer[1000];

instream->writeBuffer (buffer, len); //write data
instream->writeLastBuffer (buffer, len); //repeat
stmt->closeStream(instream) ; //stmt->status () 1is

3-12 Oracle C++ Call Interface Programmer’s Guide

Types of SQL Statements in the OCCI Environment

//UPDATE_COUNT_AVAILABLE
Statement *stmt = conn->createStatement ("BEGIN testproc(:1); END;");

//if the argument type to testproc is IN or IN/OUT then pass TRUE to
//setCharacterStreamMode or setBinaryStreamMode
stmt->setBinaryStreamMode (1, 100000, TRUE);

Fetching Data in a Streaming Mode: PL/SQL

To fetch data from a streaming mode, follow these steps and review Example 3-5:
1. Create a SELECT/DML statement with appropriate bind placeholders.

2, (all the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position into which data will be retrieved from the
streaming mode.

3. Execute the statement; the status() method of the Statement Class will return
STREAM_DATA_AVAILABLE

4. Obtain the stream object through a getStream() method of the Statement Class.
5. Use readBuffer() and readLastBuffer() methods of the Stream Class to read data.

6. Close the stream with closeStream() method of the Statement Class.

Example 3-5 How to Fetch Data in a Streaming Mode Using PL/SQL

Statement *stmt = conn->createStatement ("BEGIN testproc(:1); END;");
//argument 1 is OUT type

stmt->setCharacterStreamMode (1, 100000) ;

stmt->execute() ;

Stream *outarg = stmt->getStream(l);
//use Stream::readBuffer/readlLastBuffer to read data

Fetching Data in Streaming Mode: ResultSet

Executing SQL Queries and Example 3-7 on page 3-15 provide an explanation of how
to use the streaming interface with result sets.

Working with Multiple Streams

If you have to work with multiple read and write streams, you have to ensure that the
read or write of one stream is completed prior to reading or writing on another stream.
To determine stream position, use the getCurrentStreamParam() method of the
Statement Class or Statement Class. Example 3-6 illustrates how to work with
concurrent streams.

Example 3-6 How to Work with Multiple Streams

Statement *stmt = conn->createStatement (
"Insert into testtab(longcoll, longcal2) values (:1,:2)");
//longcoll AND longcol2 are 2 columns
//inserted in streaming mode
stmt->setBinaryStreamMode (1, 100000) ;
stmt->setBinaryStreamMode (2, 100000);
stmt->executeUpdate () ;

Stream *coll = stmt->getStream(l);
Stream *col2 = stmt->getStream(2);

Relational Programming 3-13

Types of SQL Statements in the OCCI Environment

coll->writeBuffer (buffer, len); //first stream

- //complete writing coll stream
coll->writeLastBuffer (buffer, len); //first and then move to col2
col2->writeBuffer (buffer, len); //second stream

Modifying Rows Iteratively

While you can issue the executeUpdate method repeatedly for each row, OCCI
provides an efficient mechanism for sending data for multiple rows in a single
network round-trip. To do this, use the addIteration () method of the Statement
class to perform batch operations that modify a different row with each iteration.

To execute INSERT, UPDATE, and DELETE operations iteratively, you must:
= Set the maximum number of iterations

= Set the maximum parameter size for variable length parameters

Setting the Maximum Number of Iterations

For iterative execution, first specify the maximum number of iterations that would be
done for the statement by calling the setMaxIterations () method:

Statement->setMaxIterations (int maxIterations);

You can retrieve the current maximum iterations setting by calling the
getMaxIterations () method.

Setting the Maximum Parameter Size

If the iterative execution involves variable length datatypes, such as string and
Bytes, then you must set the maximum parameter size so that OCCI can allocate the
maximum size buffer:

Statement->setMaxParamSize (int parameterIndex, int maxParamSize);
You do not need to set the maximum parameter size for fixed length datatypes, such as
Number and Date, or for parameters that use the setDataBuffer () method.

You can retrieve the current maximum parameter size setting by calling the
getMaxParamSize () method.

Executing an Iterative Operation

Once you have set the maximum number of iterations and (if necessary) the maximum
parameter size, iterative execution using a parameterized statement is straightforward,
as shown in the following example:

stmt->setSQL ("INSERT INTO basket_tab VALUES(:1, :2)");

stmt->setString(1l, "Apples"); // value for first parameter of first row
stmt->setInt (2, 6); // value for second parameter of first row
stmt->addIteration(); // add the iteration

stmt->setString(1l, "Oranges"); // value for first parameter of second row
stmt->setInt (1, 4); // value for second parameter of second row
stmt->executeUpdate() ; // execute statement

3-14 Oracle C++ Call Interface Programmer’s Guide

Executing SQL Queries

As shown in the example, you call the addIteration () method after each iteration
except the last, after which you invoke executeUpdate () method. Of course, if you
did not have a second row to insert, then you would not need to call the
addIteration () method or make the subsequent calls to the setxxx () methods.

lterative Execution Usage Notes

= Iterative execution is designed only for use in INSERT, UPDATE and DELETE
operations that use either standard or parameterized statements. It cannot be used
for callable statements and queries.

= The datatype cannot be changed between iterations. For example, if you use
setInt () for parameter 1,then you cannotuse setString() for the same
parameter in a later iteration.

Executing SQL Queries

Result Set

SQL query statements allow your applications to request information from a database
based on any constraints specified. A result set is returned as a result of a query.

Execution of a database query puts the results of the query into a set of rows called the
result set. In OCCI, a SQL SELECT statement is executed by the executeQuery
method of the Statement class. This method returns an ResultSet object that
represents the results of a query.

ResultSet *rs = stmt->executeQuery("SELECT * FROM basket_tab");

Once you have the data in the result set, you can perform operations on it. For
example, suppose you wanted to print the contents of this table. The next () method
of the ResultSet is used to fetch data, and the getxxx () methods are used to
retrieve the individual columns of the result set, as shown in the following code
example:

cout << "The basket has:" << endl;

while (rs->next())

{

string fruit = rs->getString(1); // get the first column as string
int quantity = rs->getInt(2); // get the second column as int
cout << quantity << " " << fruit << endl;

}

The next () and status () methods of the ResultSet class return Status, as
defined in Table 12-37.

If data is available for the current row, then the status is DATA_AVAILABLE. After all
the data has been read, the status changes to END_OF_FETCH. If there are any output
streams to be read, then the status is STREAM_DATA_AVAILABLE, until all the
streamed data are read succcessfully.

Example 3-7 illustrates how to fetchstreaming data into a result set, while section
"Streamed Reads and Writes" on page 3-11 provides the general backgound.

Example 3-7 How to Fetch Data in Streaming Mode Using ResultSet
char buffer[4096];

Relational Programming 3-15

Executing SQL Queries

ResultSet *rs = stmt->executeQuery
("SELECT coll, col2 FROM tabl WHERE coll = 11");
rs->setCharacterStreamMode (2, 10000);

while (rs->next ())
{
unsigned int length = 0;
unsigned int size = 500;
Stream *stream = rs->getStream (2);
while (stream->status () == Stream::READY FOR_READ)
{
length += stream->readBuffer (buffer +length, size);
}

cout << "Read " << length << " bytes into the buffer" << endl;

Specifying the Query

The IN bind variables can be used with queries to specify constraints in the WHERE
clause of a query. For example, the following program prints only those items that
have a minimum quantity of 4:

stmt->setSQL ("SELECT * FROM basket_tab WHERE quantity >= :1");
int minimumQuantity = 4;

stmt->setInt (1, minimumQuantity); // set first parameter
ResultSet *rs = stmt->executeQuery();

cout << "The basket has:" << endl;

while (rs->next())
cout << rs->getInt(2) << " " << rs->getString(l) << endl;

Optimizing Performance by Setting Prefetch Count

Although the ResultSet method retrieves data one row at a time, the actual fetch of
data from the server need not entail a network round-trip for each row queried. To
maximize the performance, you can set the number of rows to prefetch in each
round-trip to the server.

You effect this either by setting the number of rows to be prefetched through the
setPrefetchRowCount () method, or by setting the memory size to be used for
prefetching through the setPrefetchMemorySize () method.

If you set both of these attributes, then the specified number of rows are prefetched
unless the specified memory limit is reached first. If the specified memory limit is
reached first, then the prefetch returns as many rows as will fit in the memory space
defined by the call to the setPrefetchMemorySize () method.

By default, prefetching is turned on, and the database fetches an extra row all the time.
To turn prefetching off, set both the prefetch row count and memory size to 0.

Note: Prefetching is not in effect if LONG columns are part of the
query. Queries containing LOB columns can be prefetched, because
the LOB locator, rather than the data, is returned by the query.

3-16 Oracle C++ Call Interface Programmer’s Guide

Executing Statements Dynamically

Executing Statements Dynamically

When you know that you need to execute a DML operation, you use the
executeUpdate method. Similarly, when you know that you need to execute a query,
you use executeQuery () method.

If your application needs to allow for dynamic events and you cannot be sure of which
statement will need to be executed at run time, then OCCI provides the execute ()
method. Invoking the execute () method returns one of the following statuses:

= UNPREPARED

= PREPARED

s RESULT_SET_AVAILABLE

» UPDATE_COUNT_AVAILABLE
= NEEDS_STREAM_DATA

» STREAM_DATA_AVAILABLE

While invoking the execute () method will return one of these statuses, you can also
interrogate the statement by using the status method.

Statement stmt = conn->createStatement();
Statement::Status status = stmt->status(); // status is UNPREPARED

stmt->setSQL ("select * from emp");
status = stmt->status(); // status is PREPARED

If a statement object is created with a SQL string, then it is created in a PREPARED
state. For example:

Statement stmt = conn->createStatement ("insert into foo(id) values(99)");
Statement::Status status = stmt->status();// status is PREPARED
status = stmt->execute(); // status is UPDATE_COUNT_AVAILABLE

When you set another SQL statement on the Statement, the status changes to
PREPARED. For example:

stmt->setSQL ("select * from emp"); // status is PREPARED
status = stmt->execute(); // status is RESULT_ SET_AVAILABLE

Status Definitions
This section describes the possible values of Status related to a statement object:
= UNPREPARED
= PREPARED
s RESULT_SET_AVAILABLE
s UPDATE_COUNT_AVAILABLE
= NEEDS_STREAM_DATA
s STREAM_DATA_AVAILABLE

UNPREPARED

If you have not used the setSQL () method to attribute a SQL string to a statement
object, then the statement is in an UNPREPARED state.

Statement stmt = conn->createStatement();
Statement::Status status = stmt->status(); // status is UNPREPARED

Relational Programming 3-17

Executing Statements Dynamically

PREPARED

If a Statement is created with an SQL string, then it is created in a PREPARED state. For
example:

Statement stmt = conn->createStatement ("INSERT INTO demo_tab(id) VALUES(99)");
Statement::Status status = stmt->status(); // status i1s PREPARED

Setting another SQL statement on the Statement will also change the status to
PREPARED. For example:

status = stmt->execute(); // status is UPDATE_COUNT_ AVAILABLE
stmt->setSQL ("SELECT * FROM demo_tab"); // status is PREPARED

RESULT_SET_AVAILABLE

A status of RESULT_SET_AVAILABLE indicates that a properly formulated query has
been executed and the results are accessible through a result set.

When you set a statement object to a query, it is PREPARED. Once you have executed
the query, the statement changes to RESULT_SET_AVAILABLE. For example:

stmt->setSQL ("SELECT * from EMP"); // status is PREPARED
status = stmt->execute(); // status is RESULT_SET AVAILABLE
To access the data in the result set, issue the following statement:

ResultSet *rs = Statement->getResultSet();

UPDATE_COUNT_AVAILABLE
When a DDL or DML statement in a PREPARED state is executed, its state changes to
UPDATE_COUNT_AVAILABLE, as shown in the following code example:

Statement stmt = conn->createStatement ("INSERT INTO demo_tab(id) VALUES(99)");
Statemnt::Status status = stmt->status(); // status is PREPARED
status = stmt->execute(); // status is UPDATE_COUNT AVAILABLE

This status refers to the number of rows affected by the execution of the statement. It
indicates that:

» The statement did not include any input or output streams.

» The statement was not a query but either a DDL or DML statement.

You can obtain the number of rows affected by issuing the following statement:
Statement->getUpdateCount () ;

Note that a DDL statement will result in an update count of zero (0). Similarly, an
update that does not meet any matching conditions will also produce a count of zero

(0). In such a case, you cannot infer the kind of statement that has been executed from
the reported status.

NEEDS_STREAM_DATA

If there are any output streams to be written, the execute does not complete until all
the stream data is completely provided. In this case, the status changes to NEEDS_
STREAM_DATA to indicate that a stream must be written. After writing the stream, call
the status() method to find out if more stream data should be written, or whether the
execution has completed.

In cases where your statement includes multiple streamed parameters, use the
getCurrentStreamParam() method to discover which parameter needs to be written.

3-18 Oracle C++ Call Interface Programmer’s Guide

Caching Statements

If you are performing an iterative or array execute, the getCurrentStreamlIteration()
method reveals to which iteration the data is to be written.

Once all the stream data has been processed, the status changes to either RESULT_
SET_ AVAILABLE or UPDATE_COUNT_AVAILABLE.

STREAM_DATA_AVAILABLE

This status indicates that the application requires some stream data to be read in OUT
or IN/OUT parameters before the execution can finish. After reading the stream, call
the status method to find out if more stream data should be read, or whether the
execution has completed.

In cases in which your statement includes multiple streamed parameters, use the
getCurrentStreamParam () method to discover which parameter needs to be read.

If you are performing an iterative or array execute, then the
getCurrentStreamIteration () method reveals from which iteration the data is
to be read.

Once all the stream data has been handled, the status changes to UPDATE_COUNT_
REMOVE_AVAILABLE.

The ResultsSet class also has readable streams and it operates similar to the readable
streams of the Statement class.

Committing a Transaction

All SQL DML statements are executed in the context of a transaction. An application
causes the changes made by these statement to become permanent by either
committing the transaction, or undoing them by performing a rollback. While the SQL
COMMIT and ROLLBACK statements can be executed with the executeUpdate ()
method, you can also call the Connection: :commit () and

Connection: :rollback () methods.

If you want the DML changes that were made to be committed immediately, you can
turn on the auto commit mode of the Statement class by issuing the following
statement:

Statement: :setAutoCommit (TRUE) ;

Once auto commit is in effect, each change is automatically made permanent. This is
similar to issuing a commit right after each execution.

To return to the default mode, auto commit off, issue the following statement:

Statement: :setAutoCommit (FALSE) ;

Caching Statements

The statement caching feature establishes and manages a cache of statements within a
session. It improves performance and scalability of application by efficiently using
prepared cursors on the server side and eliminating repetitive statement parsing.

Statement caching can be used with connection and session pooling, and also without
connection pooling. Please review Example 3-8 and Example 3-9 for typical usage
scenarios.

Relational Programming 3-19

Caching Statements

Example 3-8 Statement Caching without Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
without use of connection pools:

1. Create a Connection by making a createConnection() call on the Environment
object.

Connection *conn = env->createConnection (
username, password, connecstr);
2. Enable statement caching on the Connection object by using a nonzero size
parameter in the setStmtCacheSize() call.
conn->setStmtCacheSize (10) ;
Subsequent calls to getStmtCacheSize() would determine the size of the cache,

while setStmtCacheSize() call changes the size of the statement cache, or disables
statement caching if the size parameter is set to zero.

3. Create a Statement by making a createStatement() call on the Connection
object; the Statement is returned if it is in the cache already, or a new
Statement with a NULL tag is created for the user.

Statement *stmt = conn->createStatement (sql);
To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sqgl, tag);

4. Use the statement to execute SQL commands and obtain results.

5. Return the statement to cache.
conn->terminateStatement (stmt, tag);
If you don't want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

stmt->disableCaching() ;
conn->terminateStatement (stmt) ;

If you need to verify whether a statement has been cached, issue an isCached() call
on the Connection object.

You can choose to tag a statement at release time and then re-use it for another
statement with the same tag. The tag will be used to search the cache. An
untagged statement, where tag is NULL, is a special case of a tagged statement.
Two statements are considered different if they only differ in their tags, and if only
one of them is tagged.

6. Terminate the connection.

Example 3-9 Statement Caching with Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
with connection pooling:

1. Create a ConnectionPool by making a call to the createConnectionPool() of the
Environment object.

ConnectionPool *conPool = env->createConnectionPool (
username, password, connecstr,

3-20 Oracle C++ Call Interface Programmer’s Guide

Caching Statements

minConn, maxConn, incrConn);

If using a StatelessConnectionPool, call createStatelessConnectionPool()
instead. Subsequent operations are the same for ConnectionPool and
StatelessConnectionPool objects.

Stateless ConnectionPool *conPool = env->createStatelessConnectionPool (
username, password, connecstr,
minConn, maxConn, incrConn, mode);

Enable statement caching for all Connections in the ConnectionPool by using
a nonzero size parameter in the setStmtCacheSize() call.
conPool->setStmtCacheSize (10) ;

Subsequent calls to getStmtCacheSize() would determine the size of the cache,

while setStmtCacheSize() call changes the size of the statement cache, or disables
statement caching if the size parameter is set to zero.

Get a Connection from the pool by making a createConnection() call on the
ConnectionPool object; the Statement is returned if it is in the cache already,
or a new Statement with a NULL tag is created for the user.

Connection *conn = conPool->createConnection(username, password, connecstr);
To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sqgl, tag);

Create a Statement by making a createStatement() call on the Connection

object; the Statement is returned if it is in the cache already, or a new
Statement with a NULL tag is created for the user.

Statement *stmt = conn->createStatement (sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement (sqgl, tag);

Use the statement to execute SQL commands and obtain results.
Return the statement to cache.

conn->terminateStatement (stmt, tag);

If you don't want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

stmt->disableCaching() ;
conn->terminateStatement (stmt) ;

If you need to verify whether a statement has been cached, issue an isCached() call
on the Connection object.

Release the connection terminateConnection().

conPool->terminateConnection(conn) ;

Relational Programming 3-21

Handling Exceptions

Note:

= Statement caching is enabled only for connection created after the
setStmtCacheSize () call.

= If statement cac.hing is not enabled at the pool level, it can still be
implemented for individual connections in the pool.

Handling Exceptions

Each OCCI method is capable of generating an exception if it is not successful. This
exception is of type SQLException. OCCI uses the C++ Standard Template Library
(STL), so any exception that can be thrown by the STL can also be thrown by OCCI
methods.

The STL exceptions are derived from the standard exception class. The
exception: :what () method returns a pointer to the error text. The error text is
guaranteed to be valid during the catch block

The SQLException class contains Oracle specific error numbers and messages. It is
derived from the standard exception class, so it too can obtain the error text by using
the exception: :what () method.

In addition, the SQLException class has two methods it can use to obtain error
information. The getErrorCode () method returns the Oracle error number. The
same error text returned by exception: :what () can be obtained by the
getMessage () method. The getMessage () method returns an STL string so that it
can be copied like any other STL string.

Based on your error handling strategy, you may choose to handle OCCI exceptions
differently from standard exceptions, or you may choose not to distinguish between
the two.

If you decide that it is not important to distinguish between OCCI exceptions and
standard exceptions, your catch block might look similar to the following;:

catch (exception &excp)
{
cerr << excp.what() << endl;

}

Should you decide to handle OCCI exceptions differently than standard exceptions,
your catch block might look like the following:

catch (SQLException &sglExcp)
{

cerr <<sqglExcp.getErrorCode << ": " << sqglExcp.getErrorMessage() << endl;
}
catch (exception &excp)
{

cerr << excp.what() << endl;

}

In the preceding catch block, SQL exceptions are caught by the first block and
non-SQL exceptions are caught by the second block. If the order of these two blocks
were to be reversed, SQL exceptions would never be caught. Since SQLException is
derived from the standard exception, the standard exception catch block would handle
the SQL exception as well.

3-22 Oracle C++ Call Interface Programmer’s Guide

Handling Exceptions

See Also:

s Description of a special feature for handling errors that arise
during batch updates, described in section "Modifying Rows
Iteratively” on page 11-9 in Chapter 11, "Optimizing
Performance of OCCI Applications"

» Oracle Database Error Messages for more information about
Oracle error messages.

Handling Null and Truncated Data

In general, OCCI does not cause an exception when the data value retrieved by using
the getxxx () methods of the ResultSet class or Statement class is NULL or
truncated. However, this behavior can be changed by calling the setErrorOnNull ()
method or setErrorOnTruncate () method. If the setErrorxxx() methods are
called with causeException=TRUE, then an SQLException is raised when a data
value is NULL or truncated.

The default behavior is not to raise an SQLException. A column or parameter value
can also be NULL, as determined by a call to isNull () for a ResultSet or
Statement object returning TRUE:

rs->1sNull (columnIndex) ;
stmt->isNull (paramIndex) ;

If the column or parameter value is truncated, it will also return TRUE as determined
by a isTruncated() call on aResultSet or Statement object:

rs->isTruncated (columnIndex) ;
stmt->isTruncated (paramIndex) ;

For data retrieved through the setDataBuffer () method and
setDataBufferArray () method, exception handling behavior is controlled by the
presence or absence of indicator variables and return code variables as shown in
Table 3-1, Table 3-2, and Table 3-3.

Table 3—-1 Normal Data - Not Null and Not Truncated

Return Code Indicator - not provided Indicator - provided
Not provided error = 0 error = 0
indicator = 0
Provided error = 0 error = 0
return code = 0 indicator = 0
return code = 0

Table 3-2 Null Data

Return Code Indicator - not provided Indicator - provided
Not provided ISQLException error = 0

error = 1405 indicator = -1
Provided ISQLException error = 0

error = 1405 indicator = -1

return code = 1405 return code = 1405

Relational Programming 3-23

Handling Exceptions

Table 3-3 Truncated Data

Return Code

Indicator - not provided

Indicator - provided

Not provided

Provided

ISQLExXception
error = 1406

error = 24345
return code = 1405

SQLException
error = 1406
indicator = data_len

error = 24345
indicator = data_len
return code = 1406

In Table 3-3, data_len is the actual length of the data that has been truncated if this
length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

3-24 Oracle C++ Call Interface Programmer’s Guide

4

Object Programming

This chapter provides information on how to implement object-relational
programming using the Oracle C++ Call Interface (OCCI).

This chapter contains these topics:

s Overview of Object Programming

= Working with Objects in OCCI

= Representing Objects in C++ Applications
= Developing an OCCI Object Application
= Migrating C++ Applications Using OCCI
» Overview of Associative Access

s Overview of Navigational Access

s Overview of Complex Object Retrieval

= Working with Collections

= Using Object References

= Deleting Objects from the Database

= Type Inheritance

= A Sample OCCI Application

Overview of Object Programming

OCCI supports both the associative and navigational style of data access. Traditionally,
third-generation language (3GL) programs manipulate data stored in a database by
using the associative access based on the associations organized by relational database
tables. In associative access, data is manipulated by executing SQL statements and
PL/SQL procedures. OCCI supports associative access to objects by enabling your
applications to execute SQL statements and PL/SQL procedures on the database
server without incurring the cost of transporting data to the client.

Object-oriented programs that use OCCI can also make use of navigational access that
is a key aspect of this programming paradigm. Object relationships between objects
are implemented as references (REFs). Typically, an object application that uses
navigational access first retrieves one or more objects from the database server by
issuing a SQL statement that returns REFs to those objects. The application then uses
those REF's to traverse related objects, and perform computations on these other
objects as required. Navigational access does not involve executing SQL statements,
except to fetch the references of an initial set of objects. By using OCCI's API for

Object Programming 4-1

Working with Objects in OCCI

navigational access, your application can perform the following functions on Oracle
objects:

s Creating, accessing, locking, deleting, copying and flushing objects
= Getting references to objects and navigating through the references

This chapter gives examples that show you how to create a persistent object, access an
object, modify an object, and flush the changes to the database server. It discusses how
to access the object using both navigational and associative approaches.

Working with Objects in OCCI

Many of the programming principles that govern a relational OCCI applications are
identical for object-relational applications. An object-relational application uses the
standard OCCI calls to establish database connections and process SQL statements.
The difference is that the SQL statements that are issued retrieve object references,
which can then be manipulated with OCCI's object functions. An object can also be
directly manipulated as a value (without using its object reference).

Instances of an Oracle type are categorized into persistent objects and transient
objects based on their lifetime. Instances of persistent objects can be further divided
into standalone objects and embedded objects depending on whether or not they are
referenced by way of an object identifier.

Persistent Objects

A persistent object is an object which is stored in an Oracle database. It may be
fetched into the object cache and modified by an OCCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. There are two
types of persistent objects:

= A standalone instance is stored in a database table row, and has a unique object
identifier. An OCCI application can retrieve a reference to a standalone object, pin
the object, and navigate from the pinned object to other related objects. Standalone
objects may also be referred to as referenceable objects.

It is also possible to select a persistent object, in which case you fetch the object by
value instead of fetching it by reference.

= An embedded instance is not stored in a database table row, but rather is
embedded within another object. Examples of embedded objects are objects which
are attributes of another object, or objects that exist in an object column of a
database table. Embedded objects do not have object identifiers, and OCCI
applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as nonreferenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

Note:

= Users don't have to explicitly delete persistent objects that have been
materialized through references.

= Users should delete persistent objects created by application when the
transactions are rolled back

4-2 Oracle C++ Call Interface Programmer’s Guide

Working with Objects in OCCI

The following SQL examples demonstrate the difference between these two types of
persistent objects.

Example 4-1 Creating Standalone Objects

This code example demonstrates how a standalone object is created:

CREATE TYPE person_t AS OBJECT
(name varchar2 (30),
age number (3)) ;
CREATE TABLE person_tab OF person_t;

Objects that are stored in the object table person_tab are standalone objects. They
have object identifiers and can be referenced. They can be pinned in an OCCI
application.

Example 4-2 Creating Embedded Objects

This code example demonstrates how an embedded object is created:

CREATE TABLE department

(deptno number,
deptname varchar2 (30),
manager person_t);

Objects which are stored in the manager column of the department table are
embedded objects. They do not have object identifiers, and they cannot be referenced.
This means they cannot be pinned in an OCCI application, and they also never need to
be unpinned. They are always retrieved into the object cache by value.

The Array Pin feature allows a vector of references to be dereferenced in one
round-trip to return a vector of the corresponding objects. A new global method,
pinVectorOfRefs (), takes a vector of Refs and populates a vector of PObjects in
a single round-trip, saving the cost of pinning n-1 references in n-1 round-trips.

Transient Objects

A transient object is an instance of an object type. Its lifetime cannot exceed that of the
application. The application can also delete a transient object at any time.

The Object Type Translator (OTT) utility generates two operator new methods for
each C++ class, as demonstrated in this code example:

class Person : public PObject {
public:

dvoid *operator new(size_t size); // creates transient instance

dvoid *operator new(size_t size, Connection &conn, string table);

// creates persistent instance

}
The following code example demonstrates how a transient object can be created:
Person *p = new Person();
Transient objects cannot be converted to persistent objects. Their role is fixed at the

time they are instantiated. It is also the user's responsibility to free memory by deleting
transient objects.

Object Programming 4-3

Representing Objects in C++ Applications

See Also:

» Oracle Database Concepts for more information about objects

Values

In the context of this manual, a value refers to either:

= A scalar value which is stored in a nonobject column of a database table. An OCCI
application can fetch values from a database by issuing SQL statements.

= An embedded (nonreferenceable) object.

The context should make it clear which meaning is intended.

Note: Itis possible to SELECT a referenceable object into the object
cache, rather than pinning it, in which case you fetch the object by
value instead of fetching it by reference.

Representing Objects in C++ Applications

Before an OCCI application can work with object types, those types must exist in the
database. Typically, you create types with SQL DDL statements, such as CREATE TYPE.

Creating Persistent and Transient Objects

The following sections discuss how persistent and transient objects are created.

Example 4-3 Creating a Persistent Object

Before you create a persistent object, you must have created the environment and
opened a connection. The following example shows how to create a persistent object,
addr, in the database table, addr_tab, created by means of a SQL statement:

CREATE TYPE ADDRESS AS OBJECT (
state CHAR(2),
zip_code CHAR(5));
CREATE TABLE ADDR_TAB of ADDRESS;
ADDRESS *addr = new(conn, "ADDR_TAB") ADDRESS("CA", "94065");
The persistent object is created in the database only when one of the following occurs:
s The transaction is committed (Connection: :commit ())
= The object cache is flushed (Connection: : flushCache())

» The object itself is flushed (PObject: : flush())

Example 4-4 Creating a Transient Object

An instance of the transient object ADDRESS is created in the following manner:

ADDRESS *addr_trans = new ADDRESS ("MD", "94111");

Creating Object Representations using the OTT Utility

When your C++ application retrieves instances of object types from the database, it
needs to have a client-side representation of the objects. The Object Type Translator
(OTT) utility generates C++ class representations of database object types for you. For
example, consider the following declaration of a type in your database:

4-4 Oracle C++ Call Interface Programmer’s Guide

Developing an OCCI Object Application

CREATE TYPE address AS OBJECT (state CHAR(2), zip_code CHAR(5));

The OTT utility produces the following C++ class:

class ADDRESS : public PObject {

protected:
string state;
string zip;

public:
void *operator new(size_t size);
void *operator new(size_t size,
const Connection* conn,
const string& table);
string getSQLTypeName () const;
void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNamelLen) const;
ADDRESS (void *ctx) : PObject(ctx) { };
static void *readSQL(void *ctx);
virtual void readSQL(AnyData& stream);
static void writeSQL(void *obj, void *ctx);
virtual void writeSQL (AnyData& stream);

}

These class declarations are automatically written by OTT to a header (. h) file that

you name. This header file is included in the source files for an application to provide
access to objects. Instances of a PObject (as well as instances of classes derived from
PObjects) can be either transient or persistent. The methods writeSQL () and
readSQL () are used internally by the OCCI object cache to linearize and delinearize
the objects and are not to be used or modified by OCCI clients.

See Also: Chapter 7, "Object Type Translator Utility" for more
information about the OTT utility

Developing an OCCI Object Application

This section discusses the steps involved in developing a basic OCCI object
application.

Basic Object Program Structure

The basic structure of an OCCI application that uses objects is similar to a relational
OCCI application, the difference being object functionality. The steps involved in an

OCCI object program include:

1. Initialize the Environment. Initialize the OCCI programming environment in
object mode. Your application will most likely need to include C++ class

representations of database objects in a header file. You can create these classes by

using the Object Type Translator (OTT) utility, as described in Chapter 7, "Object
Type Translator Utility".

2. Establish a Connection. Use the environment handle to establish a connection to
the database server.

3. Prepare a SQL statement. This is a local (client-side) step, which may include
binding placeholders. In an object-relational application, this SQL statement
should return a reference (REF) to an object.

Object Programming 4-5

Developing an OCCI Object Application

4. Access the object.

a. Associate the prepared statement with a database server, and execute the
statement.

b. By using navigational access, retrieve an object reference (REF) from the
database server and pin the object. You can then perform some or all of the
following:

Manipulate the attributes of an object and mark it as dirty (modified)
Follow a reference to another object or series of objects

Access type and attribute information

Navigate a complex object retrieval graph

Flush modified objects to the database server

c. By using associative access, you can fetch an entire object by value by using
SQL. Alternately, you can select an embedded (nonreferenceable) object. You
can then perform some or all of the following:

Insert values into a table

Modify existing values

5. Commit the transaction. This step implicitly writes all modified objects to the
database server and commits the changes.

6. Free statements and handles; the prepared statements should not be used or
executed again.

See Also:

Chapter 3, "Relational Programming" for information about
using OCCI to connect to a database server, process SQL
statements, and allocate handles

Chapter 7, "Object Type Translator Utility" for information
about the OTT utility

Chapter 12, "OCCI Application Programming Interface" for
descriptions of OCCI relational functions and the Connect
class and the getMetaData method

Basic Object Operational Flow

Figure 3-1 shows a simple program logic flow for how an application might work with
objects. For simplicity, some required steps are omitted.

4-6 Oracle C++ Call Interface Programmer’s Guide

Developing an OCCI Object Application

Figure 4-1 Basic Object Operational Flow

Initialize OCCI N
Object Mode

v

Pin Object (Brings object into
client-side cache)

Operate on Object
in Cache

v

Mark Cbject
as Dirtied

v

Flush Changes
o Object

¥

Refresh Cbject

The steps shown in Figure 3-1 are discussed in the following sections:

Initialize OCCI in Object Mode

If your OCCI application accesses and manipulates objects, then it is essential that you
specify a value of OBJECT for the mode parameter of the createEnvironment ()
method, the first call in any OCCI application. Specifying this value for mode indicates
to OCCI that your application will be working with objects. This notification has the
following important effects:

= The object run-time environment is established

= The object cache is set up

Note: If the mode parameter is not set to OBJECT, any attempt to
use an object-related function will result in an error.

The following code example demonstrates how to specify the OBJECT mode when
creating an OCCI environment:

Environment *env;
Connection *con;
Statement *stmt;

env = Environment::createEnvironment (Environment: :OBJECT) ;
con = env->createConnection(userName, password, connectString);

Your application does not have to allocate memory when database objects are loaded
into the object cache. The object cache provides transparent and efficient memory
management for database objects. When database objects are loaded into the object
cache, they are transparently mapped into the host language (C++) representation.

The object cache maintains the association between the object copy in the object cache
and the corresponding database object. Upon commit, changes made to the object
copy in the object cache are automatically propagated back to the database.

The object cache maintains a look-up table for mapping references to objects. When an
application dereferences a reference to an object and the corresponding object is not
yet cached in the object cache, the object cache automatically sends a request to the

Object Programming 4-7

Developing an OCCI Object Application

database server to fetch the object from the database and load it into the object cache.
Subsequent dereferences of the same reference are faster since they are to the object
cache itself and do not incur a round-trip to the database server.

Subsequent dereferences of the same reference fetch from the cache instead of
requiring a round-trip. The exception to this is in the case of a dereferencing operation
that occurs just after a commit. In this case, the latest object copy from the server is
returned. This ensures that the latest object from the database is cached after each
transaction.

The object cache maintains a pin count for each persistent object in the object cache.
When an application dereferences a reference to an object, the pin count of the object is
incremented. The subsequent dereferencing of the same reference to the object does
not change the pin count. Until the reference to the object goes out of scope, the object
will continue to be pinned in the object cache and be accessible by the OCCI client.

The pin count functions as a reference count for the object. The pin count of the object
becomes zero (0) only when there are no more references referring to this object,
during which time the object becomes eligible for garbage collection. The object cache
uses a least recently used algorithm to manage the size of the object cache. This
algorithm frees objects with a pin count of 0 when the object cache reaches the
maximum size.

Pin Object

In most situations, OCCI users do not need to explicitly pin or unpin the objects
because the object cache automatically keeps track of the pin counts of all the objects in
the cache. As explained earlier, the object cache increments the pin count when a
reference points to the object and decrements it when the reference goes out of scope
or no longer points to the object.

But there is one exception. If an OCCI application uses Ref<T>: : ptr () method to
get a pointer to the object, then the pin and unpin methods of the PObject class can
be used by the application to control pinning and unpinning of the objects in the object
cache.

Operate on Object in Cache

Note that the object cache does not manage the contents of object copies; it does not
automatically refresh object copies. Your application must ensure the validity and
consistency of object copies.

Flush Changes to Object

Whenever changes are made to object copies in the object cache, your application is
responsible for flushing the changed object to the database.

Memory for the object cache is allocated on demand when objects are loaded into the
object cache.

The client-side object cache is allocated in the program's process space. This object
cache is the memory for objects that have been retrieved from the database server and
are available to your application.

Note: If you initialize the OCCI environment in object mode, your
application allocates memory for the object cache, whether or not
the application actually uses object calls.

4-8 Oracle C++ Call Interface Programmer’s Guide

Overview of Associative Access

There is only one object cache allocated for each OCCI environment. All objects
retrieved or created through different connections within the environment use the
same physical object cache. Each connection has its own logical object cache.

Deletion of an Object

For objects retrieved into the cache by dereferencing a reference, you should not
perform an explicit delete. For such objects, the pin count is incremented when a
reference is dereferenced for the first time and decremented when the reference goes
out of scope. When the pin count of the object becomes 0, indicating that all references
to that object are out of scope, the object is automatically eligible for garbage collection
and subsequently deleted from the cache.

For persistent objects that have been created by calling the new operator, you must call
a delete if you do not commit the transaction. Otherwise, the object is garbage
collected after the commit. This is because when such an object is created using new,
its pin count is initially 0. However, because the object is dirty it remains in the cache.
After a commit, it is no longer dirty and thus garbage collected. Therefore, a delete is
not required.

If a commit is not performed, then you must explicitly call delete to destroy that
object. You can do this as long as there are no references to that object. For transient
objects, you must delete explicitly to destroy the object.

You should not call a delete operator on a persistent object. A persistent object that is
not marked /dirty is freed by the garbage collector when its pin count is 0. However,
for transient objects you must delete explicitly to destroy the object.

Migrating C++ Applications Using OCCI

This section will describe how to migrate existing C++ applications using OCCI.

Steps for Migration

s Determine object model and class hierarchy
= Use JDeveloper9i to map to Oracle object schema
= Generate C++ header files using Oracle Type Translator

= Modify old C++ access classes as required to work with new object type
definitions

= Add functionality for transient and persistent object management, as required.

Overview of Associative Access
You can employ SQL within OCCI to retrieve objects, and to perform DML operations:

= Using SQL to Access Objects
s Inserting and Modifying Values

See Also: complete code listing of the demonstration programs

Using SQL to Access Objects

In the previous sections we discussed navigational access, where SQL is used only to
fetch the references of an initial set of objects and then navigate from them to the other
objects. Here we will discuss how to fetch the objects using SQL.

Object Programming 4-9

Overview of Navigational Access

The following example shows how to use the ResultSet: :getObject () method to
fetch objects through associative access where it gets each object from the table, addr_
tab, using SQL.:

string sel_addr_val = "SELECT VALUE (address) FROM ADDR_TAB address";
ResultSet *rs = stmt->executeQuery(sel_addr_val);

while (rs->next())
{
ADDRESS *addr_val = rs->getObject(l);
cout << "state: " << addr_val->getState();

}

The objects fetched through associative access are termed value instances and they
behave just like transient objects. Methods such as markModified (), flush(), and
markDeleted () are applicable only for persistent objects.

Any changes made to these objects are not reflected in the database.

Since the object returned is a value instance, it is the user's responsibility to free
memory by deleting the object pointer.

Inserting and Modifying Values

We have just seen how to use SQL to access objects. OCCI also provides the ability to
use SQL to insert new objects or modify existing objects in the database server through
the Statement: : setObject method interface.

The following example creates a transient object Address and inserts it into the
database table addr_tab:

ADDRESS *addr_val = new address("NV", "12563"); // new a transient instance
stmt->setSQL ("INSERT INTO ADDR_TAB values(:1)");

stmt->setObject (1, addr_val);

stmt->execute() ;

Overview of Navigational Access

By using navigational access, you engage in a series of operations:
= Retrieving an Object Reference (REF) from the Database Server
= Pinning an Object

= Manipulating Object Attributes

= Marking Objects and Flushing Changes

See Also: complete code listing of the demonstration programs

Retrieving an Object Reference (REF) from the Database Server

4-10

In order to work with objects, your application must first retrieve one or more objects
from the database server. You accomplish this by issuing a SQL statement that returns
references (REFs) to one or more objects.

Note: It is also possible for a SQL statement to fetch value
instances, rather than REFs, from a database.

Oracle C++ Call Interface Programmer’s Guide

Overview of Navigational Access

The following SQL statement retrieves a REF to a single object address from the
database table addr_tab:

string sel_addr = "SELECT REF (address)
FROM addr_tab address
WHERE zip_code = '94065'";

The following code example illustrates how to execute the query and fetch the REF
from the result set.

ResultSet *rs = stmt->executeQuery(sel_addr);
rs->next () ;
Ref<address> addr_ref = rs->getRef(l);

At this point, you could use the object reference to access and manipulate the object or
objects from the database.

See Also: "Executing SQL DDL and DML Statements" on page 3-8
for general information about preparing and executing SQL
statements

Pinning an Object

Upon completion of the fetch step, your application has a REF to an object. The actual
object is not currently available to work with. Before you can manipulate an object, it
must be pinned. Pinning an object loads the object into the object cache, and enables
you to access and modify the object's attributes and follow references from that object
to other objects. Your application also controls when modified objects are written back
to the database server.

Note: This section deals with a simple pin operation involving a
single object at a time. For information about retrieving multiple
objects through complex object retrieval, see the section Overview
of Complex Object Retrieval on page 4-14.

OCCl requires only that you dereference the REF in the same way you would
dereference any C++ pointer. Dereferencing the REF transparently materializes the
object as a C++ class instance.

Continuing the Address class example from the previous section, assume that the
user has added the following method:

string Address::getState()
{

return state;

}

To dereference this REF and access the object's attributes and methods:

string state = addr_ref->getState(); // -> pins the object

The first time Ref<T> (addr_ref) is dereferenced, the object is pinned, which is to
say that it is loaded into the object cache from the database server. From then on, the
behavior of operator -> on Ref<T> is just like that of any C++ pointer (T *).The
object remains in the object cache until the REF (addr_ref) goes out of scope. It then
becomes eligible for garbage collection.

Now that the object has been pinned, your application can modify that object.

Object Programming 4-11

Overview of Navigational Access

Manipulating Object Attributes

Manipulating object attributes is no different from that of accessing them as shown in
the previous section. Let us assume the Address class has the following user defined
method that sets the state attribute to the input value:

void Address::setState(string new_state)

{

state = new_state;

}

The following example shows how to modify the state attribute of the object, addr:
addr_ref->setState("PA");

As explained earlier, the first invocation of the operator -> on Ref<T> loads the
object if not already in the object cache.

Marking Objects and Flushing Changes

In the example in the previous section, an attribute of an object was changed. At this
point, however, that change exists only in the client-side cache. The application must
take specific steps to ensure that the change is written to the database.

Marking an Object as Modified (Dirty)

The first step is to indicate that the object has been modified. This is done by calling
the markModified () method on the object (derived method of PObject). This
method marks the object as dirty (modified).

Continuing the previous example, after object attributes are manipulated, the object
referred to by addr_ref can be marked dirty as follows:

addr_ref->markModified() ;

Recording Changes in the Database

Objects that have had their dirty flag set must be flushed to the database server for the
changes to be recorded in the database. This can be done in three ways:

» Flush a single object marked dirty by calling the method £1ush, a derived method
of PObject.

» Flush the entire object cache using the Connection: : flushCache () method. In
this case, OCCI traverses the dirty list maintained by the object cache and flushes
all the dirty objects.

s Commit a transaction by calling the Connection: :commit () method. Doing
so also traverses the dirty list and flushes the objects to the database server. The
dirty list includes newly created persistent objects.

Garbage Collection in the Object Cache

The object cache has two important associated parameters:
s The maximum cache size percentage
= The optimal cache size

These parameters refer to levels of cache memory usage, and they help to determine
when the cache automatically "ages out" eligible objects to free up memory.

4-12 Oracle C++ Call Interface Programmer’s Guide

Overview of Navigational Access

If the memory occupied by the objects currently in the cache reaches or exceeds the
maximum cache size, the cache automatically begins to free (or age out) unmarked
objects which have a pin count of zero. The cache continues freeing such objects until
memory usage in the cache reaches the optimal size, or until it runs out of objects
eligible for freeing.

Note: The cache can grow beyond the specified maximum cache
size.

The maximum object cache size (in bytes) is computed by incrementing the optimal
cache size (optimal_size) by the maximum cache size percentage (max_size_
percentage), as follows:

Maximum cache size = optimal_size + optimal_size * max_size_percentage / 100;

The default value for the maximum cache size percentage is 10%. The default value for
the optimal cache size is S8MB. When a persistent object is created through the
overloaded PObject: :new () operator, the newly created object is marked dirty and
its pin count is set to 0.

These parameters can be set or retrieved using the following member functions of the
Environment class:

s void setCacheMaxSize(unsigned int maxSize) ;
s unsigned int getCacheMaxSize() const;
m void setCacheOptSize(unsigned int OptSize) ;
m unsigned int getCacheOptSize() const;

"Pin Object" on page 4-8 describes how pin count of an object functions as a reference
count and how an unmarked object with a 0 pin count can become eligible for
garbage collection. In the case of a newly created persistent object, the object is
unmarked after the transaction is committed or aborted and if the object has a 0 pin
count, in other words there are no references referring to it. The object then becomes a
candidate for being aged out.

If you are working with several object that have a large number of string or collection
attributes, most of the memory is allocated from the C++ heap; this is because OCCI
uses STLs. You should therefore set the cache size to a low value to avoid high
memory use before garbage collection activates.

See Also: Chapter 12, "OCCI Application Programming Interface"
for details.

Transactional Consistency of References

As described in the previous section, dereferencing a Ref<T> for the first time results
in the object being loaded into the object cache from the database server. From then on,
the behavior of operator -> on Ref<T> is the same as any C++ pointer and it provides
access to the object copy in the cache. But once the transaction commits or aborts, the
object copy in the cache can no longer be valid because it could be modified by any
other client. Therefore, after the transaction ends, when the Ref<T> is again
dereferenced, the object cache recognizes the fact that the object is no longer valid and
fetches the most recent copy from the database server.

Object Programming 4-13

Overview of Complex Object Retrieval

Overview of Complex Object Retrieval

In the examples discussed earlier, only a single object was fetched or pinned at a time.
In these cases, each pin operation involved a separate database server round-trip to
retrieve the object.

Object-oriented applications often model their problems as a set of interrelated objects
that form graphs of objects. These applications process objects by starting with some
initial set of objects and then using the references in these objects to traverse the
remaining objects. In a client/server setting, each of these traversals could result in
costly network round-trips to fetch objects.

The performance of such applications can be increased through the use of complex
object retrieval (COR). This is a prefetching mechanism in which an application
specifies some criteria (content and boundary) for retrieving a set of linked objects in a
single network round-trip.

Note: Using COR does not mean that these prefetched objects are
pinned. They are fetched into the object cache, so that subsequent
pin calls are local operations.

A complex object is a set of logically related objects consisting of a root object, and a
set of objects each of which is prefetched based on a given depth level. The root object
is explicitly fetched or pinned. The depth level is the shortest number of references
that need to be traversed from the root object to a given prefetched object in a complex
object.

An application specifies a complex object by describing its content and boundary. The
fetching of complex objects is constrained by an environment's prefetch limit, the
amount of memory in the object cache that is available for prefetching objects.

Note: The use of complex object retrieval does not add
functionality; it only improves performance, and so its use is
optional.

Retrieving Complex Objects

An OCCI application can achieve COR by setting the appropriate attributes of a
Ref<T> before dereferencing it using the following methods:

// prefetch attributes of the specified type name up to the specified depth
Ref<T>::setPrefetch(const string &typeName, unsigned int depth);

// prefetch all the attribute types up to the specified depth.
Ref<T>::setPrefetch(unsigned int depth);

The application can also choose to fetch all objects reachable from the root object by
way of REFs (transitive closure) to a certain depth. To do so, set the level parameter to
the depth desired. For the preceding two examples, the application could also specify
(PO object REF, OCCI_MAX_PREFETCH_DEPTH) and (PO object REF, 1)
respectively to prefetch required objects. Doing so results in many extraneous fetches
but is quite simple to specify, and requires only one database server round-trip.

As an example for this discussion, consider the following type declaration:

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item_varray as VARRAY(100) of REF line_item;

4-14 Oracle C++ Call Interface Programmer’s Guide

Overview of Complex Object Retrieval

CREATE TYPE purchase_order AS OBJECT

(po_number NUMBER,

cust REF customer,
related_orders REF purchase_order,
line_items line_item_varray) ;

The purchase_order type contains a scalar value for po_number, a VARRAY of
line_items, and two references. The first is to a customer type and the second is to
apurchase_order type, indicating that this type can be implemented as a linked
list.

When fetching a complex object, an application must specify the following;:
= A reference to the desired root object

= One or more pairs of type and depth information to specify the boundaries of the
complex object. The type information indicates which REF attributes should be
followed for COR, and the depth level indicates how many levels deep those links
should be followed.

In the case of the purchase_oxrder object in the preceding example, the application
must specify the following:

n The reference to the root purchase_order object

= One or more pairs of type and depth information for customer, purchase_
order,or line_item

An application prefetching a purchase order will very likely need access to the
customer information for that purchase order. Using simple navigation, this would
require two database server accesses to retrieve the two objects.

Through complex object retrieval, customer can be prefetched when the application
pins the purchase_order object. In this case, the complex object would consist of the
purchase_order object and the customer object it references.

In the previous example, if the application wanted to prefetch a purchase order and
the related customer information, the application would specify the purchase_
order object and indicate that customer should be followed to a depth level of one
as follows:

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("CUSTOMER", 1) ;

If the application wanted to prefetch a purchase order and all objects in the object
graph it contains, the application would specify the purchase_order object and
indicate that both customer and purchase_order should be followed to the
maximum depth level possible as follows:

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("CUSTOMER", OCCI_MAX_PREFETCH_DEPTH) ;
poref.setPrefetch ("PURCHASE_ORDER", OCCI_MAX_ PREFETCH_DEPTH) ;

where OCCI_MAX_PREFETCH_DEPTH specifies that all objects of the specified type
reachable through references from the root object should be prefetched.

If an application wanted to prefetch a purchase order and all the line items associated
with it, the application would specify the purchase_order object and indicate that
line_items should be followed to the maximum depth level possible as follows:

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("LINE_ITEM", 1);

Object Programming 4-15

Working with Collections

Prefetching Complex Objects

After specifying and fetching a complex object, subsequent fetches of objects contained
in the complex object do not incur the cost of a network round-trip, because these
objects have already been prefetched and are in the object cache. Keep in mind that
excessive prefetching of objects can lead to a flooding of the object cache. This
flooding, in turn, may force out other objects that the application had already pinned
leading to a performance degradation instead of performance improvement.

Note: If there is insufficient memory in the object cache to hold all
prefetched objects, some objects may not be prefetched. The
application will then incur a network round-trip when those objects
are accessed later.

The SELECT privilege is needed for all prefetched objects. Objects in the complex
object for which the application does not have SELECT privilege will not be
prefetched.

An entire vector of Refs can be prefetched into object cache in a single round-trip by
using the global pinVectorOfRefs() method of the Connection Class. This method
reduces the number of round-trips for an n-sized vector of Refs from n to 1, and
tracks the newly pinned objects through an OUT parameter vector.

Working with Collections

Oracle supports two kinds of collections - variable length arrays (ordered collections)
and nested tables (unordered collections). OCCI maps both of them to a Standard
Template Library (STL) vector container, giving you the full power, flexibility, and
speed of an STL vector to access and manipulate the collection elements. The following
is the SQL DDL to create a VARRAY and an object that contains an attribute of type
VARRAY.

CREATE TYPE ADDR_LIST AS VARRAY(3) OF REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (name VARCHAR2(20), addr_1 ADDR_LIST);

Here is the C++ class declaration generated by OTT:

class PERSON : public PObject
{
protected:
string name;
vector< Ref< ADDRESS > > addr_1;

public:

void *operator new(size_t size);

void *operator new(size_t size,

const Connection* conn,

const string& table);

string getSQLTypeName () const;

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

PERSON (void *ctx) : PObject(ctx) { };

static void *readSQL(void *ctx);

virtual void readSQL(AnyData& stream);

static void writeSQL(void *obj, void *ctx);

virtual void writeSQL(AnyData& stream);

4-16 Oracle C++ Call Interface Programmer’s Guide

Working with Collections

See Also: complete code listing of the demonstration programs

Fetching Embedded Objects

Nullness

If your application needs to fetch an embedded object, which is an object stored in a
column of a regular table rather than an object table, you cannot use the REF retrieval
mechanism. Embedded instances do not have object identifiers, so it is not possible to
get a reference to them. This means that they cannot serve as the basis for object
navigation. There are still many situations, however, in which an application will want
to fetch embedded instances.

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT

(streetl varchar2 (50),
street2 varchar2 (50),
city varchar2 (30),
state char (2),
zip number (5)) ;

You could then use that type as the datatype of a column in another table:

CREATE TABLE clients
(name varchar2 (40),
addr address) ;

Your OCCI application could then issue the following SQL statement:
SELECT addr FROM clients

WHERE name='BEAR BYTE DATA MANAGEMENT';

This statement would return an embedded address object from the clients table.
The application could then use the values in the attributes of this object for other
processing. The application should execute the statement and fetch the object in the
same way as described in the section "Overview of Associative Access" on page 4-9.

If a column in a row of a database table has no value, then that column is said to be
NULL, or to contain a NULL. Two different types of NULLs can apply to objects:

= Any attribute of an object can have a NULL value. This indicates that the value of
that attribute of the object is not known.

= An object may be atomically NULL. This means that the value of the entire object
is unknown.

Atomic NULLness is not the same thing as nonexistence. An atomically NULL object
still exists, its value is just not known. It may be thought of as an existing object with
no data.

For every type of object attribute, OCCI provides a corresponding class. For instance,
NUMBER attribute type maps to the Number class, REF maps to RefAny, and so on.
Each and every OCCI class that represents a data type provides two methods:

= 1sNull () — returns whether the object is NULL
= setNull () — sets the object to NULL

Similarly, these methods are inherited from the PObject class by all the objects and
can be used to access and set atomically NULL information about them.

Object Programming 4-17

Using Object References

Using Object References

OCCI provides the application with the flexibility to access the contents of the objects
using their pointers or their references. OCCI provides the PObject: :getRef ()
method to return a reference to a persistent object. This call is valid for persistent
objects only.

Deleting Objects from the Database

OCCT users can use the overloaded PObject: :operator new() to create the
persistent objects. However, to delete the object from the database server, it is best to
call ref.markDelete() directly on the Ref; this will prevent the object from getting into
the client cache. If the object is in the client cache already, it can be removed by an
obj.markDelete() call on the object. The object marked for deletion is permanently
removed once the transaction commits.

Type Inheritance

Type inheritance of objects has many similarities to inheritance in C++ and Java. You
can create an object type as a subtype of an existing object type. The subtype is said to
inherit all the attributes and methods (member functions and procedures) of the
supertype, which is the original type. Only single inheritance is supported; an object
cannot have more than one supertype. The subtype can add new attributes and
methods to the ones it inherits. It can also override (redefine the implementation) of
any of its inherited methods. A subtype is said to extend (that is, inherit from) its

supertype.

See Also: Oracle Database Application Developer’s Guide -
Object-Relational Features for a more complete discussion of this
topic

As an example, a type Person_t can have a subtype Student_t and a subtype
Employee_t.In turn, Student_t can have its own subtype, PartTimeStudent_t.
A type declaration must have the flag NOT FINAL so that it can have subtypes. The
default is FINAL, which means that the type can have no subtypes.

All types discussed so far in this chapter are FINAL. All types in applications
developed before release 8.1.7 are FINAL. A type that is FINAL can be altered to be
NOT FINAL. ANOT FINAL type with no subtypes can be altered to be FINAL.
Person_ tisdeclared as NOT FINAL for our example:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
name VARCAHR2 (30),
address VARCHAR2 (100)) NOT FINAL;

A subtype inherits all the attributes and methods declared in its supertype. It can also
declare new attributes and methods, which must have different names than those of
the supertype. The keyword UNDER identifies the supertype, like this:

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
major VARCHAR2(30)) NOT FINAL;

The newly declared attributes deptid and major belong to the subtype Student_t.
The subtype Employee_t is declared as, for example:

CREATE TYPE Employee_t UNDER Person_t

4-18 Oracle C++ Call Interface Programmer’s Guide

Type Inheritance

(empid NUMBER,
mgr VARCHAR2 (30)) ;

See Also:

s "OTT Support for Type Inheritance" on page 4-20 for the classes
generated by OTT for this example.

Subtype Student_t can have its own subtype, such as PartTimeStudent_t:

CREATE TYPE PartTimeStuden_t UNDER Student_t (numhours NUMBER) ;

Substitutability

The benefits of polymorphism derive partially from the property substitutability.
Substitutability allows a value of some subtype to be used by code originally written
for the supertype, without any specific knowledge of the subtype being needed in
advance. The subtype value behaves to the surrounding code just like a value of the
supertype would, even if it perhaps uses different mechanisms within its
specializations of methods.

Instance substitutability refers to the ability to use an object value of a subtype in a
context declared in terms of a supertype. REF substitutability refers to the ability to use
a REF to a subtype in a context declared in terms of a REF to a supertype.

REF type attributes are substitutable, that is, an attribute defined as REF T can hold a
REF to an instance of T or any of its subtypes.

Object type attributes are substitutable, that is, an attribute defined to be of (an object)
type T can hold an instance of T or any of its subtypes.

Collection element types are substitutable, that is, if we define a collection of elements
of type T, then it can hold instances of type T and any of its subtypes. Here is an
example of object attribute substitutability:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),
author Person_t /* substitutable */);

Thus, a Book_t instance can be created by specifying a title string and a Person_t (or
any subtype of Person_t) object:

Book_t ('My Oracle Experience',
Employee_ t (12345, 'Joe', 'SF', 1111, NULL))

NOT INSTANTIABLE Types and Methods

A type can be declared NOT INSTANTIABLE, which means that there is no constructor
(default or user defined) for the type. Thus, it will not be possible to construct
instances of this type. The typical usage would be to define instantiable subtypes for
such a type. Here is how this property is used:

CREATE TYPE Address_t AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE IntlAddress_t UNDER Address_t(...);

A method of a type can be declared to be NOT INSTANTIABLE. Declaring a method as
NOT INSTANTIABLE means that the type is not providing an implementation for that
method. Further, a type that contains any NOT INSTANTIABLE methods must
necessarily be declared as NOT INSTANTIABLE. For example:

Object Programming 4-19

Type Inheritance

CREATE TYPE T AS OBJECT
(x NUMBER,

NOT INSTANTIABLE MEMBER FUNCTION funcl() RETURN NUMBER
) NOT INSTANTIABLE;

A subtype of NOT INSTANTIABLE can override any of the NOT INSTANTIABLE
methods of the supertype and provide concrete implementations. If there are any NOT
INSTANTIABLE methods remaining, the subtype must also necessarily be declared as
NOT INSTANTIABLE.

ANOT INSTANTIABLE subtype can be defined under an instantiable supertype.
Declaring a NOT INSTANTIABLE type to be FINAL is not useful and is not allowed.

OCCI Support for Type Inheritance

The following calls support type inheritance.

Connection::getMetaData()

This method provides information specific to inherited types. Additional attributes
have been added for the properties of inherited types. For example, you can get the
supertype of a type.

Bind and Define Functions

The setRef (), setObject () and setVector () methods of the Statement class
are used to bind REF, object, and collections respectively. All these functions support
REF, instance, and collection element substitutability. Similarly, the corresponding
getxxx () methods to fetch the data also support substitutability.

OTT Support for Type Inheritance

Class declarations for objects with inheritance are similar to the simple object
declarations except that the class is derived from the parent type class and only the
fields corresponding to attributes not already in the parent class are included. The
structure for these declarations is listed in Example 4-5:

Example 4-5 OTT Support Inheritance

class <typename> : public <parentTypename>
{
protected:
<OCCItypel> <attributenamel>;

<0CCItypen> <attributenamen>;

public:

void *operator new(size_t size);

void *operator new(size_t size, const Connection* conn,
const string& table);

string getSQLTypeName() const;

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

<typename> (void *ctx) : <parentTypename>(ctx) { };

static void *readSQL(void *ctx);

virtual void readSQL (AnyData& stream);

static void writeSQL(void *obj, void *ctx);

virtual void writeSQL (AnyData& stream);

4-20 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

}

In this structure, all variables are the same as in the simple object case.
parentTypename refers to the name of the parent type, that is, the class name of the
type from which typename inherits.

A Sample OCCI Application

This section describes a sample OCCI application that uses some of the features
discussed in this chapter.

Example 4-6 Listing of demo2.sql for a Sample OCCI Application

drop table ADDR_TAB

/

drop table PERSON_TAB

/

drop type STUDENT

/

drop type PERSON

/

drop type ADDRESS_TAB

/

drop type ADDRESS

/

drop type FULLNAME

/

CREATE TYPE FULLNAME AS OBJECT (first_name CHAR(20), last_name CHAR(20)
/

CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20))
/

CREATE TYPE ADDRESS_TAB AS VARRAY(3) OF REF ADDRESS

/

CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULLNAME, curr_addr REF ADDRESS,
prev_addr_1 ADDRESS_TAB) NOT FINAL

/

CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20))

/

CREATE TABLE ADDR_TAB OF ADDRESS

/

CREATE TABLE PERSON_TAB OF PERSON

/

Example 4-7 Listing of demo2.typ for a Sample OCCI Application

TYPE FULLNAME GENERATE CFullName as MyFullName
TYPE ADDRESS GENERATE CAddress as MyAddress
TYPE PERSON GENERATE CPerson as MyPerson

TYPE STUDENT GENERATE CStudent as MyStudent

Example 4-8 Listing of OTT Command that Generates Files for a Sample OCCI
Application

ott userid=scott/tiger intype=demo2.typ code=cpp hfile=demo2.h
cppfile=demo2.cpp mapfile= mappings.cpp attraccess=private

Example 4-9 Listing of mappings.h for a Sample OCCI Application

#ifndef MAPPINGS_ORACLE
define MAPPINGS_ORACLE

Object Programming 4-21

A Sample OCCI Application

#ifndef OCCI_ORACLE
include <occi.h>
#endif

#ifndef DEMO2_ORACLE
include "demo2.h"
#endif

void mappings (oracle::occi: :Environment* envOCCI_);

#endif

Example 4-10 Listing of mappings.cpp for a Sample OCCI Application

#ifndef MAPPINGS_ORACLE
include "mappings.h"
#endif

void mappings (oracle::occi::Environment* envOCCI_)

{
oracle::occi::Map *mapOCCI_ = envOCCI_->getMap();
mapOCCI_->put ("SCOTT.FULLNAME", &CFullName::readSQL, &CFullName::writeSQL);
mapOCCI_->put ("SCOTT.ADDRESS", &CAddress::readSQL, &CAddress::writeSQL);
mapOCCI_->put ("SCOTT.PERSON", &CPerson::readSQL, &CPerson::writeSQL);
mapOCCI_->put ("SCOTT.STUDENT", &CStudent::readSQL, &CStudent::writeSQL);

Example 4-11 Listing of demo2.h for a Sample OCCI Application

#ifndef DEMO2_ORACLE
define DEMO2_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

/* Make the foll changes to the generated file */
using namespace std;
using namespace oracle::occi;

class MyFullName;

class MyAddress;

class MyPerson;

/* Changes ended here */

/* GENERATED DECLARATIONS FOR THE FULLNAME OBJECT TYPE. */
class CFullName : public oracle::occi::PObject {

private:
OCCI_STD_NAMESPACE: :string FIRST_NAME;
OCCI_STD_NAMESPACE: :string LAST_NAME;

public:
OCCI_STD_NAMESPACE: :string getFirst_name() const;
void setFirst_name(const OCCI_STD_NAMESPACE::string &value);
OCCI_STD_NAMESPACE: :string getLast_name() const;
void setLast_name (const OCCI_STD_NAMESPACE::string &value);
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

4-22 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

void *operator new(size_t, void *ctxOCCI_);
void *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema);
string getSQLTypeName () const;
void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;
CFullName() ;
CFullName (void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
static void *readSQL(void *ctxOCCI_);
virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
static void writeSQL(void *objOCCI_, void *ctxOCCI_);
virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
~CFullName () ;
}i

/* GENERATED DECLARATIONS FOR THE ADDRESS OBJECT TYPE. */
class CAddress : public oracle::occi::PObject {

private:
OCCI_STD_NAMESPACE: :string STATE;
OCCI_STD_NAMESPACE: :string ZIP;

public:

OCCI_STD_NAMESPACE: :string getState() const;

void setState(const OCCI_STD_NAMESPACE::string &value);

OCCI_STD_NAMESPACE: :string getZip() const;

void setZip(const OCCI_STD_NAMESPACE::string &value);

void *operator new(size_t size);

void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

void *operator new(size_t, void *ctxOCCI_);

void *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema) ;

string getSQLTypeName () const;

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNamelLen) const;

CAddress () ;

CAddress (void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };

static void *readSQL(void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL(void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

~CAddress () ;

}i

/* GENERATED DECLARATIONS FOR THE PERSON OBJECT TYPE. */
class CPerson : public oracle::occi::PObject {

private:
oracle::occi: :Number ID;
MyFullName * NAME;
oracle::occi::Ref< MyAddress > CURR_ADDR;

Object Programming 4-23

A Sample OCCI Application

OCCI_STD_NAMESPACE: :vector< oracle::occi::Ref< MyAddress > > PREV_ADDR_L;

public:

oracle::occi: :Number getId() const;

void setId(const oracle::occi: :Number &value);

MyFullName * getName() const;

void setName (MyFullName * value);

oracle::occi::Ref< MyAddress > getCurr_addr() const;

void setCurr_addr (const oracle::occi::Ref< MyAddress > &value);

OCCI_STD_NAMESPACE: :vector<oracle: :occi: :Ref< MyAddress>>&
getPrev_addr_1();

const OCCI_STD_NAMESPACE: :vector<oracle::occi: :Ref<MyAddress>>&
getPrev_addr_1() const;

void setPrev_addr_1 (const OCCI_STD_NAMESPACE: :vector
<oracle::occi::Ref< MyAddress > > &value);

void *operator new(size_t size);

void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

void *operator new(size_t, void *ctxOCCI_);

void *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema) ;

string getSQLTypeName () const;

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

CPerson() ;

CPerson (void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };

static void *readSQL(void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL(void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL (oracle::occi::AnyData& streamOCCI_);

~CPerson() ;

}i

/* GENERATED DECLARATIONS FOR THE STUDENT OBJECT TYPE. */
/* changes to the generated file - declarations for the MyPerson class. */
class MyPerson : public CPerson (

public:
MyPerson (Number id_i, MyFullName *name_i, const Ref<MyAddress>& addr_i) ;
MyPerson (void *ctxOCCI_);
void move (const Ref<MyAddress>& new_addr) ;
void displayInfo();
MyPerson() ;
}i
/* changes end here */

class CStudent : public MyPerson {
private:
OCCI_STD_NAMESPACE: :string SCHOOL_NAME;

public:
OCCI_STD_NAMESPACE: :string getSchool_name() const;
void setSchool_name (const OCCI_STD_NAMESPACE::string &value);\
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,\
const OCCI_STD_NAMESPACE::string& table);

4-24 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

void *operator new(size_t, void *ctxOCCI_);

void *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema);

string getSQLTypeName () const;

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

CStudent () ;

CStudent (void *ctxOCCI_) : MyPerson (ctxOCCI_) { };

static void *readSQL(void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL(void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

~CStudent () ;

}i

/*changes made to the generated file */

/* declarations for the MyFullName class. */

class MyFullName : public CFullName

{ public:
MyFullName (string first_name, string last_name);
void displayInfo();
MyFullName (void *ctxOCCI_);

}i

// declarations for the MyAddress class.

class MyAddress : public CAddress

{ public:
MyAddress (string state_i, string zip_i);
void displayInfo();
MyAddress (void *ctxOCCI_);

}i

class MyStudent : public CStudent
{
public
MyStudent (void *ctxOCCI_) ;
}i
/* changes end here */
#endif

Example 4-12 Listing of demo2.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
include "demo2.h"
#endif

/* GENERATED METHOD IMPLEMENTATIONS FOR THE FULLNAME OBJECT TYPE. */
OCCI_STD_NAMESPACE::string CFullName::getFirst_name() const
{

return FIRST NAME;

void CFullName: :setFirst_name (const OCCI_STD_NAMESPACE::string &value)
{
FIRST_NAME = value;

Object Programming 4-25

A Sample OCCI Application

OCCI_STD_NAMESPACE: :string CFullName::getLast_name() const

{
return LAST_NAME;

void CFullName::setLast_name (const OCCI_STD NAMESPACE::string &value)
{
LAST NAME = value;

void *CFullName: :operator new(size_t size)
{

return oracle::occi::PObject: :operator new(size);

void *CFullName::operator new(size_t size, const oracle::occi::Connection *
sess, const OCCI_STD_NAMESPACE::string& table)

return oracle::occi::PObject::operator new(size, sess, table,
(char *) "SCOTT.FULLNAME") ;

void *CFullName::operator new(size_t size, void *ctxOCCI_)
{
return oracle::occi::PObject: :operator new(size, ctxOCCI_);

}

void *CFullName: :operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema)

return oracle::occi::PObject::operator new(size, sess, tableName,
typeName, tableSchema, typeSchema);

OCCI_STD_NAMESPACE: :string CFullName: :getSQLTypeName () const
{
return OCCI_STD_NAMESPACE::string("SCOTT.FULLNAME") ;

void CFullName: :getSQLTypeName (oracle: :occi: :Environment *env,
void **schemaName, unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const

PObject: :getSQLTypeName (env, &CFullName::readSQL, schemaName,
schemaNameLen, typeName, typeNameLen) ;

CFullName: :CFullName ()
{
}

void *CFullName: :readSQL (void *ctxOCCI_)

{
MyFullName *objOCCI_ = new(ctxOCCI_) MyFullName (ctxOCCI_);
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);

4-26 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

try
{
if (streamOCCI_.isNull())
0bjOCCI_->setNull();
else
0bjOCCI_->readSQL (streamOCCI_) ;
}
catch (oracle::occi::SQLException& excep)
{
delete objOCCI_;
excep.setErrorCtx (ctx0OCCI_) ;
return (void *)NULL;
}
return (void *)objOCCI_;

void CFullName: :readSQL(oracle::occi: :AnyData& streamOCCI_)
{

FIRST NAME = streamOCCI_.getString();

LAST NAME = streamOCCI_.getString();

void CFullName: :writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
CFullName *0objOCCI_ = (CFullName *) objectOCCI_;
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);

try
{
if (objOCCI_->isNull())
streamOCCI_.setNull();
else
0bjOCCI_->writeSQL (streamOCCI_);
}
catch (oracle::occi::SQLException& excep)

{
excep.setErrorCtx (ctx0CCI_) ;

}

return;

void CFullName: :writeSQL(oracle::occi: :AnyData& streamOCCI_)

{
streamOCCI_.setString (FIRST NAME) ;
streamOCCI_.setString (LAST_NAME) ;

CFullName: : ~CFullName ()
{

int 1;

/* GENERATED METHOD IMPLEMENTATIONS FOR THE ADDRESS OBJECT TYPE. */
OCCI_STD_NAMESPACE: :string CAddress::getState() const

{
return STATE;

void CAddress::setState(const OCCI_STD_NAMESPACE::string &value)

Object Programming 4-27

A Sample OCCI Application

STATE = value;

OCCI_STD_NAMESPACE: :string CAddress::getZip() const
{

return ZIP;

void CAddress::setZip(const OCCI_STD_NAMESPACE::string &value)
{

ZIP = value;

void *CAddress::operator new(size_t size)

{

return oracle::occi::PObject::operator new(size);

void *CAddress::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table)

return oracle::occi::PObject::operator new(size, sess, table,
(char *) "SCOTT.ADDRESS");

void *CAddress::operator new(size_t size, void *ctxOCCI_)
{
return oracle::occi::PObject::operator new(size, ctxOCCI_);

}

void *CAddress::operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema)

return oracle::occi::PObject::operator new(size, sess, tableName,
typeName, tableSchema, typeSchema);

OCCI_STD_NAMESPACE: :string CAddress::getSQLTypeName () const

{
return OCCI_STD_NAMESPACE::string("SCOTT.ADDRESS") ;

void CAddress::getSQLTypeName (oracle: :occi: :Environment *env,
void **schemaName,
unsigned int &schemaNameLen,
void **typeName,
unsigned int &typeNameLen) const

PObject: :getSQLTypeName (env, &CAddress::readSQL, schemaName,
schemaNameLen, typeName, typeNameLen);

CAddress: :CAddress ()
{

4-28 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

void *CAddress::readSQL (void *ctxOCCI_)

{
MyAddress *objOCCI_ = new(ctxOCCI_) MyAddress (ctxOCCI_);
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);

try
{
if (streamOCCI_.isNull())
0bjOCCI_->setNull();
else
0bjOCCI_->readSQL (streamOCCI_) ;
}
catch (oracle::occi::SQLException& excep)
{
delete objOCCI_;
excep.setErrorCtx (ctx0OCCI_) ;
return (void *)NULL;
}
return (void *)objOCCI_;

void CAddress::readSQL (oracle::occi::AnyData& streamOCCI_)
{

STATE = streamOCCI_.getString();

ZIP = streamOCCI_.getString();

void CAddress::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
CAddress *objOCCI_ = (CAddress *) objectOCCI_;
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);

try
{
if (objOCCI_->isNull())
streamOCCI_.setNull();
else
objOCCI_->writeSQL (streamOCCI_);
}
catch (oracle::occi::SQLException& excep)
{
excep.setErrorCtx (ctx0CCI_) ;
}

return;

void CAddress::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
streamOCCI_.setString (STATE) ;
streamOCCI_.setString (ZIP);

CAddress: :~CAddress ()
{

int 1;

/* GENERATED METHOD IMPLEMENTATIONS FOR THE PERSON OBJECT TYPE. */

Object Programming 4-29

A Sample OCCI Application

oracle::occi: :Number CPerson::getId() const
{

return ID;

void CPerson::setId(const oracle::occi::Number &value)
{

ID = value;

MyFullName * CPerson::getName() const
{
return NAME;

void CPerson: :setName (MyFullName * value)

{
NAME = value;

oracle::occi: :Ref< MyAddress > CPerson::getCurr_addr () const

{
return CURR_ADDR;

void CPerson::setCurr_addr (const oracle::occi::Ref< MyAddress > &value)

{
CURR_ADDR = value;

OCCI_STD_NAMESPACE: :vector< oracle::occi::Ref< MyAddress > >&
CPerson: :getPrev_addr_1()

return PREV_ADDR_L;

const OCCI_STD_NAMESPACE::vector< oracle::occi::Ref< MyAddress > >&
CPerson: :getPrev_addr_1() const

return PREV_ADDR_L;

void CPerson::setPrev_addr_1 (const OCCI_STD_NAMESPACE: :vector<
oracle::occi: :Ref< MyAddress > > &value)
{
PREV_ADDR_L = value;
}
void *CPerson::operator new(size_t size)

{

return oracle::occi::PObject: :operator new(size);

void *CPerson::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table)

return oracle::occi::PObject::operator new(size, sess, table,
(char *) "SCOTT.PERSON") ;

4-30 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

void *CPerson::operator new(size_t size, void *ctxOCCI_)
{
return oracle::occi::PObject::operator new(size, ctxOCCI_);

}

void *CPerson::operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema)

return oracle::occi::PObject::operator new(size, sess, tableName,
typeName, tableSchema, typeSchema);

OCCI_STD_NAMESPACE::string CPerson::getSQLTypeName () const
{
return OCCI_STD_NAMESPACE::string("SCOTT.PERSON") ;

void CPerson: :getSQLTypeName (oracle: :occi: :Environment *env,
void **schemaName,
unsigned int &schemaNameLen,
void **typeName,
unsigned int &typeNameLen) const

PObject: :getSQLTypeName (env, &CPerson::readSQL, schemaName,
schemaNameLen, typeName, typeNameLen);

CPerson: :CPerson ()

{
NAME = (MyFullName *) O0;

void *CPerson::readSQL(void *ctxOCCI_)
{
MyPerson *objOCCI_ = new(ctxOCCI_) MyPerson (ctxOCCI_);
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);
try
{
if (streamOCCI_.isNull())
0bjOCCI_->setNull();
else
o0bjOCCI_->readSQL (streamOCCI_) ;
}
catch (oracle::occi::SQLException& excep)
{
delete objOCCI_;
excep.setErrorCtx (ctx0CCI_) ;
return (void *)NULL;
}
return (void *)objOCCI_;

void CPerson::readSQL(oracle::occi: :AnyData& streamOCCI_)

{
ID = streamOCCI_.getNumber () ;
NAME = (MyFullName *) streamOCCI_.getObject (&MyFullName: :readSQL) ;

Object Programming 4-31

A Sample OCCI Application

CURR_ADDR = streamOCCI_.getRef();
oracle::occi: :getVectorOfRefs (streamOCCI_, PREV_ADDR_L);

void CPerson: :writeSQL (void *objectOCCI_, void *ctxOCCI_)
{

CPerson *0objOCCI_ = (CPerson *) objectOCCI_;
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);
try

{

if (objOCCI_->isNull())
streamOCCI_.setNull();
else
0bjOCCI_->writeSQL (streamOCCI_) ;
}
catch (oracle::occi::SQLException& excep)
{
excep.setErrorCtx (ctx0OCCI_) ;
}

return;

void CPerson: :writeSQL (oracle::occi::AnyData& streamOCCI_)
{
streamOCCI_.setNumber (ID) ;
streamOCCI_.setObject (NAME) ;
streamOCCI_.setRef (CURR_ADDR) ;
oracle::occi::setVectorOfRefs (streamOCCI_, PREV_ADDR_L);

CPerson: : ~CPerson ()
{

int 1i;

delete NAME;

/* GENERATED METHOD IMPLEMENTATIONS FOR THE STUDENT OBJECT TYPE. */
OCCI_STD_NAMESPACE: :string CStudent::getSchool_name() const

{
return SCHOOL_NAME;

void CStudent::setSchool_name (const OCCI_STD_NAMESPACE::string &value)
{
SCHOOL_NAME = value;

void *CStudent::operator new(size_t size)
{

return oracle::occi::PObject::operator new(size);

void *CStudent::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCI_STD _NAMESPACE::string& table)

return oracle::occi::PObject::operator new(size, sess, table,
(char *) "SCOTT.STUDENT") ;

4-32 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

void *CStudent::operator new(size_t size, void *ctxOCCI_)
{
return oracle::occi::PObject::operator new(size, ctxOCCI_);

}

void *CStudent::operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema)

return oracle::occi::PObject::operator new(size, sess, tableName,
typeName, tableSchema, typeSchema);

OCCI_STD_NAMESPACE::string CStudent::getSQLTypeName () const
{
return OCCI_STD_NAMESPACE::string("SCOTT.STUDENT") ;

void CStudent::getSQLTypeName (oracle::occi::Environment *env,
void **schemaName,
unsigned int &schemaNameLen,
void **typeName,
unsigned int &typeNameLen) const

PObject: :getSQLTypeName (env, &CStudent::readSQL, schemaName,
schemaNameLen, typeName, typeNameLen);

CStudent: :CStudent ()

{

}

void *CStudent::readSQL (void *ctxOCCI_)

{
MyStudent *objOCCI_ = new(ctxOCCI_) MyStudent (ctxOCCI_);
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);

try
{
if (streamOCCI_.isNull())
0bjOCCI_->setNull();
else
0bjOCCI_->readSQL (streamOCCI_) ;
}
catch (oracle::occi::SQLException& excep)
{
delete objOCCI_;
excep.setErrorCtx (ctx0CCI_) ;
return (void *)NULL;
}
return (void *)objOCCI_;

void CStudent::readSQL(oracle::occi::AnyData& streamOCCI_)
{

CPerson: : readSQL (streamOCCI_) ;

SCHOOL_NAME = streamOCCI_.getString();

Object Programming 4-33

A Sample OCCI Application

void CStudent::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{

CStudent *objOCCI_ = (CStudent *) objectOCCI_;
oracle::occi::AnyData streamOCCI_ (ctxOCCI_);
try

{
if (objOCCI_->isNull())
streamOCCI_.setNull();
else
objOCCI_->writeSQL (streamOCCI_) ;
}
catch (oracle::occi::SQLException& excep)
{
excep.setErrorCtx (ctx0CCI_) ;

}

return;

void CStudent::writeSQL(oracle::occi: :AnyData& streamOCCI_)

{
CPerson: :writeSQL (streamOCCI_) ;
streamOCCI_.setString (SCHOOL_NAME) ;

CStudent: : ~CStudent ()
{

int 1i;

Let us assume OTT generates FULL_NAME, ADDRSESS, PERSON, and PFGRFDENT class
declarations in demo2 . h. The following sample OCCI application will extend the
classes generated by OTT, as specified in demo2 . typ file in Example 4-7, and will add
some user defined methods. Note that these class declaration have been incorporated
into demo2 . h to ensure correct compilation.

Example 4-13 Listing of myDemo.h for a Sample OCCI Application

#ifndef MYDEMO_ORACLE
#define MYDEMO_ORACLE

#include <string>

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

using namespace std;
using namespace oracle::occi;

// declarations for the MyFullName class.

class MyFullName : public CFullName

{ public:
MyFullName (string first_name, string last_name);
void displayInfo();

}i

// declarations for the MyAddress class.
class MyAddress : public CAddress
{ public:

4-34 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

MyAddress (string state_i, string zip_i);
void displayInfo();
}i

// declarations for the MyPerson class.

class MyPerson : public CPerson

{ public:
MyPerson (Number id_i, MyFullname *name_i,

const Ref<MyAddress>& addr_i);

void move (const Ref<MyAddress>& new_addr) ;
void displayInfo();

}i

#endif

Example 4-14 Listing for myDemo.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

/* initialize MyFullName */
MyFullName: :MyFullName (string first_name, string last_name)
{

setFirst_name (first_name) ;

setLast_name (last_name) ;

}

/* display all the information in MyFullName */
void MyFullName: :displayInfo()

{
cout << "FIRST NAME is" << getFirst_name() << endl;
cout << "LAST NAME is" << getLast_name() << endl;

MyFullName: :MyFullName (void *ctxOCCI_) :CFullName (ctxOCCI_)
{
}

/* METHOD IMPLEMENTATIONS FOR MyAddress CLASS. */

/* initialize MyAddress */
MyAddress: :MyAddress (string state_i, string zip_i)
{

setState(state_1);

setZip(zip_1i);

/* display all the information in MyAddress */
void MyAddress::displayInfo()
{
cout << "STATE is" << getState() << endl;
cout << "ZIP is" << getZip() << endl;

MyAddress: :MyAddress (void *ctxOCCI_) :CAddress(ctxOCCI_)
{
}

/* METHOD IMPLEMENTATIONS FOR MyPerson CLASS. */

Object Programming 4-35

A Sample OCCI Application

/* initialize MyPerson */
MyPerson: :MyPerson (Number id_i, MyFullName* name_i,
const Ref<MyAddress>& addr_i)

setId(id_1);
setName (name_1) ;
setCurr_addr (addr_1i) ;

MyPerson: :MyPerson (void *ctxOCCI_) :CPerson(ctxOCCI_)
{
}

/* move Person from curr_addr to new_addr */

void MyPerson: :move (const Ref<MyAddress>& new_addr)

{
// append curr_addr to the vector //
getPrev_addr_1() .push_back (getCurr_addr());
setCurr_addr (new_addr) ;

// mark the object as dirty
this->markModified();

/* display all the information of MyPerson */
void MyPerson::displayInfo()
{
cout << "ID is" << (int)getId() << endl;
getName () ->displayInfo();

// de-referencing the Ref attribute using -> operator
getCurr_addr ()->displayInfo();

cout << "Prev Addr List: " << endl;
for (int i = 0; i1 < getPrev_addr_1().size(); i++)
{
// access the collection elements using [] operator

(getPrev_addr_1()) [1]->displayInfo();

MyPerson: :MyPerson ()
{
}

MyStudent: :MyStudent (void *ctxOCCI_) : CStudent (ctxOCCI_)
{
}

Example 4-15 Listing of main.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

#ifndef MAPPINGS_ORACLE
#include <mappings.h>

#endif

#include <iostream>
using namespace std;

4-36 Oracle C++ Call Interface Programmer’s Guide

A Sample OCCI Application

int main()

{
Environment *env = Environment::createEnvironment (Environment: :0BJECT) ;
mappings (env) ;

try {
Connec tion *conn = env->createConnection("SCOTT", "TIGER");

/* Call the OTT generated function to register the mappings */

/* create a persistent object of type ADDRESS in the database table,
ADDR_TAB */

MyAddress *addrl = new(conn, "ADDR_TAB") MyAddress("CA", "94065");

conn->commit () ;

Statement *st = conn->createStatement ("select ref(a) from addr_tab a");
ResultSet *rs = st->executeQuery();
Ref<MyAddress> rl;
if (rs->next())
rl = rs->getRef (1);
st->closeResultSet (rs) ;
conn->terminateStatement (st) ;

MyFullName * namel = new MyFullName ("Joe", "Black");

/* create a persistent object of type Person in the database table
PERSON_TAB */

MyPerson *personl = new(conn, "PERSON_TAB") MyPerson(l,namel,rl);

conn->commit () ;

/* selecting the inserted information */
Statement *stmt = conn->createStatement () ;
ResultSet *resultSet =
stmt->executeQuery ("SELECT REF (a) from person_tab a where id = 1");

if (resultSet->next())

Ref<MyPerson> joe_ref = (Ref<MyPerson>) resultSet->getRef(1);
joe_ref->displayInfo();

/* create a persistent object of type ADDRESS in the database table
ADDR_TAB */

MyAddress *new_addrl = new(conn, "ADDR_TAB") MyAddress("PA", "92140");

joe_ref->move (new_addrl->getRef());

joe_ref->displayInfo();

/* commit the transaction which results in the newly created object
new_addr and the dirty object joe to be flushed to the server.
Note that joe was marked dirty in move(). */

conn->commit () ;

conn->terminateStatement (stmt) ;
env->terminateConnection (conn) ;
catch (exception &x)

{

cout << x.what () << endl;

Object Programming 4-37

A Sample OCCI Application

}
Environment: :terminateEnvironment (env) ;
return 0;

4-38 Oracle C++ Call Interface Programmer’s Guide

O

Datatypes

This chapter is a reference for Oracle datatypes used by Oracle C++ Interface
applications. This information will help you understand the conversions between
internal and external representations of data that occur when you transfer data
between your application and the database server.

This chapter contains these topics:
s Overview of Oracle Datatypes
» Internal Datatypes
» External Datatypes

s Data Conversions

Overview of Oracle Datatypes

Accurate communication between your C++ program and the Oracle database server
is critical. OCCI applications can retrieve data from database tables by using SQL
queries or they can modify existing data through the use of SQL INSERT, UPDATE,
and DELETE functions. To facilitate communication between the host language C++
and the database server, you must be aware of how C++ datatypes are converted to
Oracle datatypes and back again.

In the Oracle database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats called internal datatypes. NUMBER, VARCHAR2,
and DATE are examples of Oracle internal datatypes.

OCCI applications work with host language datatypes, or external datatypes,
predefined by the host language. When data is transferred between an OCCI
application and the database server, the data from the database is converted from
internal datatypes to external datatypes.

OCCI Type and Data Conversion

OCCI defines an enumerator called Type that lists the possible data representation
formats available in an OCCI application. These representation formats are called
external datatypes. When data is sent to the database server from the OCCI
application, the external datatype indicates to the database server what format to
expect the data. When data is requested from the database server by the OCCI
application, the external datatype indicates the format of the data to be returned.

For example, on retrieving a value from a NUMBER column, the program may be set to
retrieve it in OCCIINT format (a signed integer format into an integer variable). Or, the

Datatypes 5-1

Internal Datatypes

client might be set to send data in OCCIFLOAT format (floating-point format) stored in
a C++ float variable to be inserted in a column of NUMBER type.

An OCCI application binds input parameters to a Statement, by calling a setxxx ()
method (the external datatype is implicitly specified by the method name), or by
calling the registerOutParam(), setDataBuffer (), or

setDataBufferArray () method (the external datatype is explicitly specified in the
method call). Similarly, when data values are fetched through a ResultSet object, the
external representation of the retrieved data must be specified. This is done by calling
a getxxx () method (the external datatype is implicitly specified by the method
name) or by calling the setDataBuffer () method (the external datatype is explicitly
specified in the method call).

Note: There are more external datatypes than internal datatypes.
In some cases, a single external datatype maps to a single internal
datatype; in other cases, many external datatypes map to a single
internal datatype. The many-to-one mapping provides you with
added flexibility.

See Also: External Datatypes on page 5-4

Internal Datatypes

The internal (built-in) datatypes provided by Oracle are listed in this section. A brief
summary of internal Oracle datatypes, including description, code, and maximum
size, appears in Table 5-1.

Table 5-1 Summary of Oracle Internal Datatypes

Internal Datatype Maximum Size

BFILE 4 gigabytes
BINARY_DOUBLE 8 bytes

BINARY_FLOAT 4 bytes

CHAR 2,000 bytes

DATE 7 bytes

INTERVAL DAY TO SECOND REF 11 bytes

INTERVAL YEAR TO MONTH REF 5 bytes

LONG 2 gigabytes (2/31-1 bytes)
LONG RAW 2 gigabytes (2/31-1 bytes)
NCHAR 2,000 bytes

NUMBER 21 bytes

NVARCHAR2 4,000 bytes

RAW 2,000 bytes

REF

BLOB 4 gigabytes

CLOB 4 gigabytes

NCLOB 4 gigabytes

5-2 Oracle C++ Call Interface Programmer’s Guide

Internal Datatypes

Table 5-1 (Cont.) Summary of Oracle Internal Datatypes

Internal Datatype Maximum Size
ROWID 10 bytes
TIMESTAMP 11 bytes
TIMESTAMP WITH LOCAL TIME ZONE 7 bytes
TIMESTAMP WITH TIME ZONE 13 bytes
UROWID 4000 bytes

User-defined type (object type, VARRAY,
nested table)

VARCHAR2 4,000 bytes

See Also:
» Oracle Database SQL Reference

» Oracle Database Concepts

Character Strings and Byte Arrays

You can use five Oracle internal datatypes to specify columns that contain either
characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG
RAW hold bytes that are not interpreted as characters, for example, pixel values in a
bitmapped graphics image. Character data can be transformed when passed through a
gateway between networks. For example, character data passed between machines by
using different languages (where single characters may be represented by differing
numbers of bytes) can be significantly changed in length. Raw data is never converted
in this way.

The database designer is responsible for choosing the appropriate Oracle internal
datatype for each column in a table. You must be aware of the many possible ways
that character and byte-array data can be represented and converted between variables
in the OCCI program and Oracle database tables.

Universal Rowid (UROWID)

The universal rowid (UROWID) is a datatype that can store both the logical and the
physical rowid of rows in Oracle tables and in foreign tables, such as DB2 tables
accessed through a gateway. Logical rowid values are primary key-based logical
identifiers for the rows of index organized tables.

To use columns of the UROWID datatype, the value of the COMPATIBLE initialization

parameter must be set to 8. 1 or higher.
The following OCCI_SQLT types can be bound to universal rowids:
m OCCI_SQLT_CHR (VARCHAR2)
m OCCI_SQLT_VCS (VARCHAR)
s OCCI_SQLT_STR (NULL terminated string)
s OCCI_SQLT LVC (long VARCHAR)
s OCCI_SQLT_AFC (CHAR)
(

s OCCI_SQLT_AVC (CHARZ)

Datatypes 5-3

External Datatypes

s OCCI_SQLT_ VST (string)

= OCCI_SQLT_RDD (ROWID descriptor)

External Datatypes

Communication between the host OCCI application and the Oracle database server is
through the use of external datatypes. Specifically, external datatypes are mapped to
C++ datatypes.

Table 5-2 lists the Oracle external datatypes, the C++ equivalent (what the Oracle
internal datatype is usually converted to), and the corresponding OCCI type. Note the
following conditions:

s In C++ Datatype column, n stands for variable length and depends on program
requirements or operating system.

= The usage of types in Statement class methods is as follows:

» setDataBuffer () and setDataBufferArray ():Only types of the form
OCCI_SQLT_ xxx (for example, OCCI_SQLT_INT) in the occiCommon.h file
are permitted. All types used with these methods are marked with an asterisk,
*

» registerOutParam(): Only types of the form OCCIxxx (for example,
OCCIDOUBLE, OCCICURSOR, and so on) on the occiCommon. h file are
permitted. However, there are some exceptions: OCCIANYDATA,
OCCIMETADATA, OCCISTREAM, and OCCIBOOL are not permitted. All types
used with this method are marked with a double asterisk, **.

s Inthe ResultsSet class, only types of the form OCCI_SQLT_ xxx (for example,
OCCI_SQLT_INT)in the occiCommon.h file are permitted for use in
setDataBuffer () and setDataBufferArray () methods. These types are
marked with an asterisk, *.

s The TIMESTAMP and TIMESTAMP WITH TIME ZONE datatypes are collectively
known as datetimes. The INTERVAL YEAR TO MONTH and INTERVAL DAY TO
SECOND are collectively known as intervals.

Table 5-2 External Datatypes and Corresponding C++ and OCCI Types

External Datatype C++ Type OCCI Type

16 bit signed INTEGER * signed short, signed int OCCIINT

32 bit signed INTEGER * signed int, signed long OCCIINT

8 bit signed INTEGER * signed char OCCIINT

BFILE ** Bfile OCCIBFILE
Binary FILE * OCILobLocator OCCI_SQLT FILE
Binary LOB* OCILobLocator OCCI_SQLT_BLOB
BLOB ** Blob OCCIBLOB

BOOL ** bool OCCIBOOL
BYTES ** Bytes OCCIBYTES
CHAR * char[n] OCCI_SQLT AFC
CHAR ** string OCCICHAR
Character LOB * OCILobLocator OCCI_SQLT_CLOB

5-4 Oracle C++ Call Interface Programmer’s Guide

External Datatypes

Table 5-2 (Cont.) External Datatypes and Corresponding C++ and OCCI Types

External Datatype C++ Type OCCI Type

CHARZ * char[n+1] OCCI_SQLT_RDD

CLOB ** Clob OCCICLOB

CURSOR ** ResultSet OCCICURSOR

DATE * char[7] 0CCI_SQLT_DAT

DATE ** Date OCCIDATE

DOUBLE ** double OCCIDOUBLE

FLOAT * float, double OCCIFLOAT

FLOAT ** float OCCIFLOAT

INT ** int OCCIINT

INTERVAL DAY TO char[11] OCCI_SQLT_INTERVAL_DS
SECOND *

INTERVAL YEAR TO char[5] OCCI_SQLT_INTERVAL_YM
MONTH *

INTERVALDS ** IntervalDS OCCIINTERVALDS
INTERVALYM ** IntervalYM OCCIINTERVALYM

LONG * char[n] OCCI_SQLT_LNG

LONG RAW* unsigned char[n] OCCI_SQLT_LBI

LONG VARCHAR *

LONG VARRAW *

METADATA **

NAMED DATA TYPE*
NATIVE DOUBLE *
NATIVE DOUBLE **
NATIVE FLOAT*

NATIVE FLOAT **

null terminated STRING *

NUMBER *
NUMBER **

POBJECT **

RAW *

REF *

REF **

REFANY **
ROWID *

ROWID **

ROWID descriptor *

STRING **

char[n+siezeof (integer)]

unsigned
char [n+siezeof (integer)]

MetaData

struct

double

Bdouble, double
float

BFloat, float
char[n+1]
unsigned char([21]
Number

User defined types generated
by OTT utility.

unsigned char[n]
OCIRef

Ref

RefAny

OCIRowid

Bytes

OCIRowid

STL string

OCCI_SQLT_LVC

OCCI_SQLT LVB

OCCIMETADATA
0CCI_SQLT_NTY
OCCIBDOUBLE
OCCIBDOUBLE
OCCIBFLOAT
OCCIBFLOAT
OCCI_SQLT_STR
0CCI_SQLT_NUM
OCCINUMBER

OCCIPOBJECT

OCCI_SQLT_BIN
0CCI_SQLT_REF
OCCIREF
OCCIREFANY
0CCI_SQLT_RID
OCCIROWID
OCCI_SQLT_RDD

OCCISTRING

Datatypes 5-5

External Datatypes

Table 5-2 (Cont.) External Datatypes and Corresponding C++ and OCCI Types

External Datatype C++ Type OCCI Type

TIMESTAMP * char[11] OCCI_SQLT_TIMESTAMP

TIMESTAMP ** Timestamp OCCITIMESTAMP

TIMESTAMP WITH char[7] OCCI_SQLT_TIMESTAMP_LTZ

LOCAL TIME ZONE *

TIMESTAMP WITH char[13] OCCI_SQLT_TIMESTAMP_TZ

TIME ZONE *

UNSIGNED INT * unsigned int OCCIUNSIGNED_INT

UNSIGNED INT ** unsigned int OCCIUNSIGNED_INT

VARCHAR * char[n+sizeof(short OCCI_SQLT_VCS
integer)]

VARCHAR2 * char[n] OCCI_SQLT CHR

VARNUM * char[22] OCCI_SQLT_VNU

VARRAW * unsigned char[n+sizeof (OCCI_SQLT VBI

short integer)]

VECTOR ** STL vector OCCIVECTOR

Description of External Datatypes

This section provides a description for each of the external datatypes.

BFILE

The external datatype BFILE allows read-only byte stream access to large files on the
file system of the database server. A BFILE is a large binary data object stored in
operating system files outside database tablespaces. These files use reference
semantics. The Oracle server can access a BFILE provided the underlying server
operating system supports stream-mode access to these operating system files.

BDOUBLE

The BDouble interface in OCCI encapsulates the native double data and the NULL
information of a column or object attribute of the type binary_double. The OCCI
methods in AnyData Class, ResultSet Class and Statement Class, and the global
methods that take these class objects as parameters, use the following definition for the
BDOUBLE datatype:

Example 5-1 Definition of the BDOUBLE Datatype

struct BDouble

{
double value;
bool isNull;

BDouble ()
{

isNull = false;
value = 0.;

5-6 Oracle C++ Call Interface Programmer’s Guide

External Datatypes

BFLOAT

The BFloat interface in OCCI encapsulates the native float data and the NULL
information of a column or object attribute of the type binary_float. The OCCI
methods in AnyData Class, ResultSet Class and Statement Class, and the global
methods that take these class objects as parameters, use the following definition for the
BFLOAT datatype:

Example 5-2 Definition of the BFLOAT Datatype

struct BFloat
{

float value;
bool isNull;

BFloat ()
{
isNull = false;
value = 0.;
}
I

BLOB

The external datatype BLOB stores unstructured binary large objects. A BLOB can be
thought of as a bitstream with no character set semantics. BLOBs can store up to 4
gigabytes of binary data.

BLOB datatypes have full transactional support. Changes made through OCCI
participate fully in the transaction. BLOB value manipulations can be committed or
rolled back. You cannot save a BLOB locator in a variable in one transaction and then
use it in another transaction or session.

CHAR

The external datatype CHAR is a string of characters, with a maximum length of 2000
characters. Character strings are compared by using blank-padded comparison
semantics.

CHARZ

The external datatype CHARZ is similar to the CHAR datatype, except that the string
must be NULL terminated on input, and Oracle places a NULL terminator character at
the end of the string on output. The NULL terminator serves only to delimit the string
on input or output. It is not part of the data in the table.

CLOB

The external datatype CLOB stores fixed-width or varying-width character data. A
CLOB can store up to 4 gigabytes of character data. CLOBs have full transactional
support. Changes made through OCCI participate fully in the transaction. CLOB value
manipulations can be committed or rolled back. You cannot save a CLOB locator in a
variable in one transaction and then use it in another transaction or session.

DATE

The external datatype DATE can update, insert, or retrieve a date value using the
Oracle internal seven byte date binary format, as listed in Table 5-3:

Datatypes 5-7

External Datatypes

Table 5-3 Format of the DATE Datatype

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Example Century Year Month Day Hour Minute Second
1: 01-JUN-2000, 3:17PM 120 100 6 1 16 18 1
2: 01-JAN-4712 BCE 53 88 1 1 1 1 1

Example 1, 01-JUN-2000, 3:17PM:

The century and year bytes (1 and 2) are in excess-100 notation. Dates BCE
(Before Common Era) are less than 100. Dates in the Common Era (CE), 0 and
after, are greater than 100. For dates 0 and after, the first digit of both bytes 1 and 2
merely signifies that it is of the CE.

For byte 1, the second and third digits of the century are calculated as the year (an
integer) divided by 100. With integer division, the fractional portion is discarded.
The following calculation is for the year 1992: 1992 / 100 = 19.

For byte 1, 119 represents the twentieth century, 1900 to 1999. A value of 120
would represent the twenty-first century, 2000 to 2099.

For byte 2, the second and third digits of the year are calculated as the year
modulo 100: 1992 % 100 = 92.

For byte 2, 192 represents the ninety-second year of the current century. A value
of 100 would represent the zeroth year of the current century.

The year 2000 would yield 120 for byte 1 and 100 for byte 2.

For bytes 3 through 7, valid dates begin at 01-JAN of the year. The month byte
ranges from 1 to 12, the date byte ranges from 1 to 31, the hour byte ranges from
1 to 24, the minute byte ranges from 1 to 60, and the second byte ranges from 1 to
60.

Example 2, 01-JAN-4712 BCE:

For years prior to 0 CE, centuries and years are represented by the difference
between 100 and the number.

For byte 1, 01-JAN-4712 BCE is century 53: 100 - 47 = 53.
For byte 2, 01-JAN-4712 BCE is year 88: 100 - 12 = 88.

5-8 Oracle C++ Call Interface Programmer’s Guide

External Datatypes

Notes:

= If no time is specified for a date, the time defaults to midnight
and bytes 5 through 6 are setto 1: 1,1, 1.

= When you enter a date in binary format by using the external
datatype DATE, the database does not perform consistency or
range checking. All data in this format must be validated before
input.

» There is little need for the external datatype DATE. It is more
convenient to convert DATE values to a character format,
because most programs deal with dates in a character format,
such as DD-MON-YYYY. Instead, you may use the Date
datatype.

= When a DATE column is converted to a character string in your
program, it is returned in the default format mask for your
session, or as specified in the INIT.ORA file.

= This datatype is different from OCCTI DATE which corresponds
to a C++ Date datatype.

FLOAT

The external datatype FLOAT processes numbers with fractional parts. The number is
represented in the host system's floating-point format. Normally, the length is 4 or 8
bytes.

The internal format of an Oracle number is decimal. Most floating-point
implementations are binary. Oracle, therefore, represents numbers with greater
precision than floating-point representations.

INTEGER

The external datatype INTEGER is used for converting numbers. An external integer is
a signed binary number. Its size is operating system-dependent. If the number being
returned from Oracle is not an integer, then the fractional part is discarded, and no
error is returned. If the number returned exceeds the capacity of a signed integer for
the system, then Oracle returns an overflow on conversion error.

Note: A rounding error may occur when converting between
FLOAT and NUMBER. Using a FLOAT as a bind variable in a query
may return an error. You can work around this by converting the
FLOAT to a string and using the OCCI type OCCI_SQLT_CHR or the
OCCI type OCCI_SQLT_STR for the operation.

INTERVAL DAY TO SECOND

The external datatype INTERVAL DAY TO SECOND stores the difference between two
datetime values in terms of days, hours, minutes, and seconds. Specify this datatype as
follows:

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

This example uses the following placeholders:

Datatypes 5-9

External Datatypes

s day_precision: Number of digits in the DAY datetime field. Accepted values are
1 to 9. The default is 2.

» fractional_ seconds_precision: Number of digits in the fractional part of
the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

To specify an INTERVAL DAY TO SECOND literal with nondefault day and second
precisions, you must specify the precisions in the literal. For example, you might
specify an interval of 100 days, 10 hours, 20 minutes, 42 seconds, and 22 hundredths
of a second as follows:

INTERVAL '100 10:20:42.22' DAY(3) TO SECOND(2)

You can also use abbreviated forms of the INTERVAL DAY TO SECOND literal. For
example:

= INTERVAL '90' MINUTE maps to INTERVAL '00 00:90:00.00' DAY TO
SECOND (2)

s INTERVAL '30:30' HOUR TO MINUTE maps to INTERVAL '00
30:30:00.00" DAY TO SECOND(2)

s INTERVAL '30' SECOND(2,2) mapsto INTERVAL '00 00:00:30.00"
DAY TO SECOND(2)

INTERVAL YEAR TO MONTH

The external datatype INTERVAL YEAR TO MONTH stores the difference between two
datetime values by using the YEAR and MONTH datetime fields. Specify INTERVAL
YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

The placeholder year precisionis the number of digits in the YEAR datetime field.
The default value of year. precisionis 2. To specify an INTERVAL YEAR TO MONTH
literal with a nondefault year_ precision, you must specify the precision in the
literal. For example, the following INTERVAL YEAR TO MONTH literal indicates an
interval of 123 years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

You can also use abbreviated forms of the INTERVAL YEAR TO MONTH literal. For
example,

= INTERVAL '10' MONTH maps to INTERVAL '0-10' YEAR TO MONTH

L] INTERVAL '123' YEAR(3) maps to INTERVAL '123-0' YEAR(3) TO
MONTH

LONG

The external datatype LONG stores character strings longer than 4000 bytes and up to 2
gigabytes in a column of datatype LONG. Columns of this type are only used for
storage and retrieval of long strings. They cannot be used in methods, expressions, or
WHERE clauses. LONG column values are generally converted to and from character
strings.

LONG RAW

The external datatype LONG RAW is similar to the external datatype RAW, except that it
stores up to 2 gigabytes.

5-10 Oracle C++ Call Interface Programmer’s Guide

External Datatypes

LONG VARCHAR

The external datatype LONG VARCHAR stores data from and into an Oracle LONG
column. The first four bytes contain the length of the item. The maximum length of a
LONG VARCHAR is 2 gigabytes.

LONG VARRAW

The external datatype LONG VARRAW store data from and into an Oracle LONG RAW
column. The length is contained in the first four bytes. The maximum length is 2
gigabytes.

NCLOB

The external datatype NCLOB is a national character version of a CLOB. It stores
fixed-width, multibyte national character set character (NCHAR), or varying-width
character set data. An NCLOB can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support. Changes made through OCCI participate fully
in the transaction. NCLOB value manipulations can be committed or rolled back. You
cannot save an NCLOB locator in a variable in one transaction and then use it in
another transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB
parameters in methods.

NUMBER

You should not need to use NUMBER as an external datatype. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and will expect this
format on input. The following discussion is included for completeness only.

Oracle stores values of the NUMBER datatype in a variable-length format. The first byte
is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the
exponent byte is the sign bit; it is set for positive numbers and it is cleared for negative
numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an
offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e)-128-65 = 0xcl-128-65 =
193-128-65 = 0.

Each mantissa byte is a base-100 digit, in the range 1 to 100. For positive numbers,
the digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is: 101-5 = 96. Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa bytes
do not have the trailing 102 byte. Because the mantissa digits are stored in base-100,
each byte can represent two decimal digits. The mantissa is normalized; leading zeroes
are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an internal datatype NUMBER.

Note that this datatype is different from 0OCCI NUMBER which corresponds to a C++
Number datatype.

Datatypes 5-11

External Datatypes

OCCI BFILE

See Also: Chapter 12, "OCCI Application Programming
Interface", Bfile Class on page 12-22

OCCi BLOB

See Also: Chapter 12, "OCCI Application Programming
Interface", Blob Class on page 12-28

OCCI BYTES

See Also: Chapter 12, "OCCI Application Programming
Interface", Bytes Class on page 12-35

OoCCiCcLOB

See Also: Chapter 12, "OCCI Application Programming
Interface", Clob Class on page 12-38

OCCI DATE

See Also: Chapter 12, "OCCI Application Programming
Interface"”, Date Class on page 12-74

OCCI INTERVALDS

See Also: Chapter 12, "OCCI Application Programming
Interface", IntervalDS Class on page 12-95

OCCI INTERVALYM

See Also: Chapter 12, "OCCI Application Programming
Interface", IntervalYM Class on page 12-105

OCCI NUMBER

See Also: Chapter 12, "OCCI Application Programming
Interface", Number Class on page 12-139

OCCI POBJECT

See Also: Chapter 12, "OCCI Application Programming
Interface", PObject Class on page 12-158

OCCI REF

See Also: Chapter 12, "OCCI Application Programming
Interface", Ref Class on page 12-169

OCCI REFANY

See Also: Chapter 12, "OCCI Application Programming
Interface", RefAny Class on page 12-174

5-12 Oracle C++ Call Interface Programmer’s Guide

External Datatypes

OCCI STRING
The external datatype OCCI STRING corresponds to an STL string.

OCCI TIMESTAMP

See Also: Chapter 12, "OCCI Application Programming
Interface", Timestamp Class on page 12-256

OCCI VECTOR

The external datatype OCCI VECTOR is used to represent collections, for example, a
nested table or VARRAY. CREATE TYPE num_type as VARRAY OF NUMBER(10)
can be represented in a C++ application as vector<int>, vector<Number>, and so
on.

RAW

The external datatype RAW is used for binary data or byte strings that are not to be
interpreted or processed by Oracle. RAW could be used, for example, for graphics
character sequences. The maximum length of a RAW column is 2000 bytes.

When RAW data in an Oracle table is converted to a character string, the data is
represented in hexadecimal code. Each byte of RAW data is represented as two
characters that indicate the value of the byte, ranging from 00 to FF. If you input a
character string by using RAW, then you must use hexadecimal coding.

REF

The external datatype REF is a reference to a named datatype. To allocate a REF for use
in an application, declare a variable as a pointer to a REF.

ROWID

The external datatype ROWID identifies a particular row in a database table. The
ROWID is often returned from a query by issuing a statement similar to the following
example:

SELECT ROWID, varl, var2 FROM db;

You can then use the returned ROWID in further DELETE statements.

If you are performing a SELECT for an UPDATE operation, then the ROWID is implicitly
returned.

STRING

The external datatype STRING behaves like the external datatype VARCHAR2 (datatype
code 1), except that the external datatype STRING must be NULL-terminated.

Note that this datatype is different from OCCI STRING which corresponds to a C++
STL string datatype.

TIMESTAMP

The external datatype TIMESTAMP is an extension of the DATE datatype. It stores the
year, month, and day of the DATE datatype, plus hour, minute, and second values.
Specify the TIMESTAMP datatype as follows:

TIMESTAMP [(fractional_seconds_precision)]

Datatypes 5-13

External Datatypes

The placeholder fractional seconds_precision optionally specifies the number
of digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6. For example, you specify TIMESTAMP (2) as a literal as
follows:

TIMESTAMP '1997-01-31 09:26:50.10"

Note that this datatype is different from OCCI TIMESTAMP.

TIMESTAMP WITH LOCAL TIME ZONE

The external datatype TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of
TIMESTAMP that includes an explicit time zone displacement in its value. The time
zone displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly Greenwich Mean Time. Specify the
TIMESTAMP WITH TIME ZONE datatype as follows:

TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE

The placeholder fractional seconds_precision optionally specifies the number
of digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent
the same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH TIME ZONE

The external datatype TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that
includes a time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and Coordinated Universal Time
(UTC), formerly Greenwich Mean Time. Specify the TIMESTAMP WITH TIME ZONE
datatype as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

The placeholder fractional seconds_precisionoptionally specifies the number
of digits in the fractional part of the SECOND datetime field and can be a number in
the range 0 to 9. The default is 6. For example, you might specify TIMESTAMP (0)
WITH TIME ZONE as a literal as follows:

TIMESTAMP '1997-01-31 09:26:50+02.00"

UNSIGNED INT

The external datatype UNSIGNED INT is used for unsigned binary integers. The size
in bytes is operating system dependent. The host system architecture determines the
order of the bytes in a word. If the number being output from Oracle is not an integer,
the fractional part is discarded, and no error is returned. If the number to be returned
exceeds the capacity of an unsigned integer for the operating system, Oracle returns an
overflow on conversion error.

VARCHAR

The external datatype VARCHAR store character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
actual string. The specified length of the string in a bind or a define call must include
the two length bytes, meaning the largest VARCHAR string is 65533 bytes long, not
65535. For converting longer strings, use the LONG VARCHAR external datatype.

5-14 Oracle C++ Call Interface Programmer’s Guide

External Datatypes

VARCHAR2

The external datatype VARCHAR?2 is a variable-length string of characters up to 4000
bytes.

VARNUM

The external datatype VARNUM is similar to the external datatype NUMBER, except that
the first byte contains the length of the number representation. This length value does
not include the length byte itself. Reserve 22 bytes to receive the longest possible
VARNUM. You must set the length byte when you send a VARNUM value to the database.

Table 5-4 VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte
0 1 128 N/A N/A

5 2 193 6 N/A

-5 3 62 96 102

2767 3 194 28, 68 N/A

-2767 4 61 74, 34 102

100000 2 195 11 N/A

1234567 5 196 2, 24, 46, 68 N/A

VARRAW

The external datatype VARRAW is similar to the external datatype RAW, except that the
first two bytes contain the length of the data. The specified length of the string in a
bind or a define call must include the two length bytes. So the largest VARRAW string
that can be received or sent is 65533 bytes, not 65535. For converting longer strings,
use the LONG VARRAW datatype.

NATIVE DOUBLE

This external datatype implements the IEEE 754 standard double-precision floating
point datatype. It is represented in the host system's native floating point format. The
datatype is stored in the Oracle Server in a byte comparable canonical format, and
requires 8 bytes for storage, including the length byte. It is an alternative to Oracle
NUMBER and has the following advantages over NUMBER:

= Fewer bytes used in storage
= Matches datatypes used by RDBMS Clients

= Supports a wider range of values used in scientific calculations.

NATIVE FLOAT

This external datatype implements the IEEE 754 single-precision floating point
datatype. It is represented in the host system's native floating point format. The
datatype is stored in the Oracle Server in a byte comparable canonical format, and
requires 4 bytes for storage, including the length byte. It is an alternative to Oracle
NUMBER and has the following advantages over NUMBER:

» Fewer bytes used in storage
= Matches datatypes used by RDBMS Clients

= Supports a wider range of values used in scientific calculations

Datatypes 5-15

Data Conversions

Data Conversions

Table 5-5 lists the supported conversions from Oracle internal datatypes to external
datatypes, and from external datatypes to internal column representations. Note the
following conditions:

= A REF stored in the database is converted to OCCI_SQLT_REF on output
s OCCI_SQLT_REF is converted to the internal representation of a REF on input

= A named datatype stored in the database is converted to OCCI_SQLT_NTY (and
represented by a C structure in the application) on output

m OCCI_SQLT_NTY (represented by a C structure in an application) is converted to
the internal representation of the corresponding datatype on input

= A LOBand a BFILE are represented by descriptors in OCCI applications, so there
are no input or output conversions

Table 5-5 Data Conversions Between External and Internal datatypes

Internal Datatypes

External VARCHAR

Datatypes 2 NUMBER LONG ROWID DATE RAW LONG RAW CHAR BFLOAT BDOUBLE
CHAR 1/0 1/0 1/0 I/0 I/O* 1/0° PB° 1/0 1/0 I/0
CHARZ I/0 1/0 1I/0 I/0! 1/0? 1/0° 1S 1/0 - -
DATE 1I/0 - I - I/0 - - 1I/0 - -
DECIMAL 1/0* /0 I - - - - /0t - -
FLOAT /0% 1/0 I - - - - /0% 1/0 I/0
INTEGER /0% 1/0 I - - - - 1/0* 1/0 I/0
LONG I/0 I/0 1I/0 1/0 /0 1/0° 1/0%5 1/0 1/0 11/0
LONG RAW o - 6 - - I/O 1/0 of - -
LONG VARCHAR 1/0 1/0 1/0 /0! 1/0? I/O® 1/0%° 1/0 1/0 1/0
LONG VARRAW 1/0° - 2 - - I/0 1/0 /0% - -
NUMBER /0% 1/0 I - - - - /0% 1/0 I/0
OCCI BDouble I/0 1/0 I - - - - 1/0 1/0 I/0
OCCI BFloat 1I/0 1/0 I - - - - I/0 I/0 I/0
OCCI Bytes 1/0° - %6 - - 1/0 1I/0 1/0°% - -
OCCI Date 170 - I - 170 - - 1/0 - -
OCCI Number /04 1/0 I - - - - /04 1/0 1/0
OCCI Timestamp - - - - - - - - - -
RAW 1/06 - 56 - - I/0 I/0 1/0°% - -
ROWID I - I I/0 - - - I - -
STL string I/0 1/0 1/0 170! /0> 1/0° 1/0° - 1/0* 1/0*
STRING 1I/0 I/0 I/0 I/0 /0 1/0° 1/0%5 1/0 1/0 1/0
UNSIGNED I/04 1I/0 I - - - - 170t 1/0 1I/0
VARCHAR 1I/0 1I/0 1I/0 /0! I/0* 1/0° 1/0° - 1/0 1I/0

5-16 Oracle C++ Call Interface Programmer’s Guide

Data Conversions

Table 5-5 (Cont.) Data Conversions Between External and Internal datatypes

Internal Datatypes

External VARCHAR

Datatypes 2 NUMBER LONG ROWID DATE RAW LONGRAW CHAR BFLOAT BDOUBLE
VARCHAR2 1I/0 I/0 1I/0 /0! /0 1/0® 1/0%5 1/0 1/0 1I/0
VARNUM /04 I/0 I - - - - /0t 1/0 1/0
VARRAW 1/0% - IR - - /0 1I/O0 /0 - -

Note: Conversions valid for I (Input only), O (Output Only), I/O
(Input or Output)

1. Must be in Oracle ROWID format for input; returned in Oracle
ROWID format on output.

2. Must be in Oracle DATE format for input; returned in Oracle DATE
format on output.

3. Must be in hexadecimal format for input; returned in hexadecimal
format on output.

4. Must represent a valid number for output.
Length must be less than or equal to 2000 characters.

6. Stored in hexadecimal format on output; must be in hexadecimal
format on output.

Data Conversions for LOB Datatypes

Table 5-6 Data Conversions for LOBs
INTERNAL DATATYPES

EXTERNAL DATATYPES CLOB BLOB
VARCHAR 1/0 -
CHAR 1/0 -
LONG I/0 -
LONG VARCHAR I/0 -
STL String I/0 -
RAW - I/0
VARRAW - 1/0
LONG RAW - I/0
LONG VARRAW - /O
OCCI Bytes - I/0

See Also: Oracle Database Application Developer’s Guide - Large Objects
for an introduction to LOB datatypes.

Data Conversions for Date, Timestamp, and Interval Datatypes

You can also use one of the character data types for the host variable used in a fetch or
insert operation from or to a datetime or interval column. Oracle will do the
conversion between the character data type and datetime/interval data type for you.

Datatypes 5-17

Data Conversions

Table 5-7 Data Conversions for Date, Timestamp, and Interval Datatypes

External Types

Internal Types

VARCHAR2, CHAR
STL String
DATE

OCCI Date

ANSI DATE

TIMESTAMP (TS)
OCCI Timestamp

TIMESTAMP WITH
TIME ZONE (TSTZ)

TIMESTAMP WITH
LOCAL TIME ZONE
(TSLTZ)

INTERVAL YEAR TO
MONTH

OCCI IntervalYM

INTERVAL DAY TO
SECOND

OCCI IntervalDS

VARCHAR, INTERVAL YEAR INTERVAL DAY
CHAR DATE TS TSTZ TSLTZ TO MONTH TO SECOND
1/0 I/0 I/0 I/0 I/0 1I/0 I/0

I/0 I/0 I/0 I/0 I/0 1/0 I/0

1/0 1I/0 1I/0 170 1/0 - -

I/0 I/0 I/0 I/0 I/0 - -

I/0 I/0 I/0 I/0 I/0 - -

I/0 1/0 1/0 I/0 I/0 - -

I/0 I/0 I/0 I/0 I/0 - -

I/0 I/0 I/0 I/0 1I/0 - -

I/0 I/0 I/0 I/0 I/0 - -

I/0 - - - - 1/0 -

1/0 - - - - 1/0 -

1/0 - - - - - I/0

I/0 - - - - - I/0

These consideration apply when converting between Date, Timestamp and Interval
datatypes:

When assigning a source with time zone to a target without a time zone, the time
zone portion of the source is ignored. On assigning a source without a time zone to
a target with a time zone, the time zone of the target is set to the session's default
time zone.

When assigning an Oracle DATE to a TIMESTAMP, the TIME portion of the DATE is
copied over to the TIMESTAMP. When assigning a TIMESTAMP to Oracle DATE, the
TIME portion of the result DATE is set to zero. This is done to encourage migration
of Oracle DATE to ANST compliant DATETIME data types.

(When assigning an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME
portion of the Oracle DATE and the TIMESTAMP are set to zero. When assigning an
Oracle DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored.

When assigning a DATETIME to a character string, the DATETIME is converted
using the session's default DATETIME format. When assigning a character string to
a DATETIME, the string must contain a valid DATETIME value based on the
session's default DATETIME format.

When assigning a character string to an INTERVAL, the character string must be a
valid INTERVAL character format.

When converting from TSLTZ to CHAR, DATE, TIMESTAMP and TSTZ, the value
will be adjusted to the session time zone.

When converting from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time
zone will be stored in memory.

5-18 Oracle C++ Call Interface Programmer’s Guide

Data Conversions

When assigning TSLTZ to ANSI DATE, the time portion will be 0.

When converting from TSTZ, the time zone which the time stamp is in will be
stored in memory.

When assigning a character string to an interval, the character string must be a
valid interval character format.

Datatypes 5-19

Data Conversions

5-20 Oracle C++ Call Interface Programmer’s Guide

6

Metadata

This chapter describes how to retrieve metadata about result sets or the database as a
whole.

This chapter contains these topics:
s Overview of Metadata

= Describing Database Metadata

Overview of Metadata

Database objects have various attributes that describe them; you can obtain
information about a particular schema object by performing a DESCRIBE operation.
The result can be accessed as an object of the Metadata class by passing object
attributes as arguments to the various methods of the Metadata class.

You can perform an explicit DESCRIBE operation on the database as a whole, on the
types and properties of the columns contained in a ResultsSet class, or on any of the
following schema and subschema objects, such as tables, types, sequences, views, type
attributes, columns, procedures, type methods, arguments, functions, collections,
results, packages, synonyms, and lists

You must specify the type of the attribute you are looking for. By using the
getAttributeCount (), getAttributeId(), and getAttributeType ()
methods of the MetaData class, you can scan through each available attribute.

All DESCRIBE information is cached until the last reference to it is deleted. Users are
in this way prevented from accidentally trying to access DESCRIBE information that is
already freed.

You obtain metadata by calling the getMetaData () method on the Connection
class in case of an explicit describe, or by calling the getColumnListMetaData ()
method on the ResultSet class to get the metadata of the result set columns. Both
methods return a MetaData object with the describing information. The MetaData
class provides the getxxx () methods to access this information.

See Also: Table 12-26, " Enumerated Values Used by MetaData
Class" on page 12-125

Notes on Types and Attributes

When performing DESCRIBE operations, be aware of the following issues:

s The ATTR_TYPECODE returns typecodes that represent the type supplied when
you created a new type by using the CREATE TYPE statement. These typecodes are

Metadata 6-1

Describing Database Metadata

of the enumerated type TypeCode, which are represented by OCCI_TYPECODE
constants.

Note: Internal PL/SQL types (boolean, indexed table) are not
supported.

» The ATTR_DATA_TYPE returns types that represent the datatypes of the database
columns. These values are of enumerated type Type. For example, LONG types
return OCCI_SQLT_LNG types.

Describing Database Metadata

Describing database metadata is equivalent to an explicit DESCRIBE operation. The
object to describe must be an object in the schema. In describing a type, you call the
getMetaData () method from the connection, passing the name of the object or a
RefAny object. To do this, you must initialize the environment in the OBJECT mode.
The getMetaData () method returns an object of type MetaData. Each type of
MetaData object has a list of attributes that are part of the describe tree. The describe
tree can then be traversed recursively to point to subtrees containing more
information. More information about an object can be obtained by calling the
getxxx () methods.

If you need to construct a browser that describes the database and its objects
recursively, then you can access information regarding the number of attributes for
each object in the database (including the database), the attribute ID listing, and the
attribute types listing. By using this information, you can recursively traverse the
describe tree from the top node (the database) to the columns in the tables, the
attributes of a type, the parameters of a procedure or function, and so on.

For example, consider the typical case of describing a table and its contents. You call
the getMetaData () method from the connection, passing the name of the table to be
described. The MetaData object returned contains the table information. Since you are
aware of the type of the object that you want to describe (table, column, type,
collection, function, procedure, and so on), you can obtain the attribute list. You can
retrieve the value into a variable of the type specified in the table by calling the
corresponding getxxx () method.

Metadata Code Examples

This section provides code examples for using metadata:

s Example 6-1, "How to Obtain Metadata About Attributes of a
Simple Database Table" on page 6-2

m Example 6-2, "How to Obtain Metadata from a Column Containing
User-Defined Types" on page 6-3

m Example 6-3, "How to Obtain Object Oetadata from a Reference"
on page 6-4

m Example 6-4, "How to Obtain Metadata About a Select List from
a ResultSet Object" onpage 6-5

Example 6-1 How to Obtain Metadata About Attributes of a Simple Database Table

This example demonstrates how to obtain metadata about attributes of a simple
database table:

6-2 Oracle C++ Call Interface Programmer’s Guide

Describing Database Metadata

/* Create an environment and a connection to the HR database */

/* Call the getMetaData method on the Connection object obtainedv*/
MetaData emptab_metaData = connection->getMetaData (
"EMPLOYEES", MetaData::PTYPE_TABLE) ;
/* Now that you have the metadata information on the EMPLOYEES table,
call the getxxx methods using the appropriate attributes */

/* Call getString */
cout<<"Schema: "<<
(emptab_metaData.getString (MetaData: :ATTR_OBJ_SCHEMA))<<endl;

if (emptab_metaData.getInt (
emptab_metaData: :ATTR_PTYPE)==MetaData: : PTYPE_TABLE)
COut<<"EMPLOYEES is a table"<<endl;
else
Ccout<<"EMPLOYEES is not a table"<<endl;

/* Call getInt to get the number of columns in the table */
int columnCount=emptab_metaData.getInt (MetaData: :ATTR_NUM_COLS) ;
cout<<"Number of Columns:"<<columnCount<<endl;

/* Call getTimestamp to get the timestamp of the table object */
Timestamp tstamp = emptab_metaData.getTimestamp (MetaData: :ATTR_TIMESTAMP) ;
/* Now that you have the value of the attribute as a Timestamp object,

you can call methods to obtain the components of the timestamp */
int year;
unsigned int month, day;
tstamp.getData (year, month, day);

/* Call getVector for attributes of list type, e.g. ATTR_LIST COLUMNS */
vector<MetaData>1istOfColumns;
listOfColumns=emptab_metaData.getVector (MetaData: :ATTR_LIST_COLUMNS) ;

/* Each of the list elements represents a column metadata,
SO now you can access the column attributes*/
for (int 1=0;i<listOfColumns.size();i++
{
MetaData columnObj=1istOfColumns([i];
cout<<"Column Name: "<<(columnObj.getString (MetaData: :ATTR_NAME))<<endl;
cout<<"Data Type: "<<(columnObj.getInt (MetaData: :ATTR_DATA_TYPE))<<endl;

/* and so on to obtain metadata on other column specific attributes */

Example 6-2 How to Obtain Metadata from a Column Containing User-Defined Types

This example demonstrates how to obtain metadata from a column that contains
user-defined types database table.

/* Create an environment and a connection to the HR database */
/* Call the getMetaData method on the Connection object obtained */

MetaData custtab_metaData = connection->getMetaData (
"CUSTOMERS", MetaData::PTYPE_TABLE) ;

/* Have metadata information on CUSTOMERS table; call the getxxx methods */

/* Call getString */
cout<<"Schema: "<<(custtab_metaData.getString (MetaData: :ATTR_OBJ_SCHEMA))

Metadata 6-3

Describing Database Metadata

<<endl;
if (custtab_metaData.getInt (custtab_metaData::ATTR_PTYPE)==MetaData: :PTYPE_TABLE)
COut<<"CUSTOMERS is a table"<<endl;
else
Ccout<<"CUSTOMERS is not a table"<<endl;

/* Call getVector to obtain list of columns in the CUSTOMERS table */
vector<MetaData>1istOfColumns;
listOfColumns=custtab_metaData.getVector (MetaData: :ATTR_LIST_COLUMNS) ;

/* Assuming metadata for column cust_address_typ is fourth element in list*/
MetaData customer_address=1istOfColumns[3];

/* Obtain the metadata for the customer_address attribute */
int typcode = customer_address.getInt (MetaData: :ATTR_TYPECODE) ;
if (typcode==0CCI_TYPECODE_OBJECT)

cout<<"customer_address is an object type"<<endl;
else

cout<<"customer_address is not an object type"<<endl;

string objectName=customer_address.getString (MetaData: :ATTR_OBJ_NAME) ;

/* Now that you have the name of the address object,
the metadata of the attributes of the type can be obtained by using
getMetaData on the connection by passing the object name

*/

MetaData address = connection->getMetaData (objectName) ;

/* Call getVector to obtain the list of the address object attributes */
vector<MetaData> attributeList =
address.getVector (MetaData: :ATT_LIST TYPE_ATTRS) ;

/* and so on to obtain metadata on other address object specific attributes */

Example 6-3 How to Obtain Object Oetadata from a Reference

This example demonstrates how to obtain metadata about an object when using a
reference to it:

Type ADDRESS (street VARCHAR2(50), city VARCHAR2(20));
Table Person(id NUMBER, addr REF ADDRESS) ;

/* Create an environment and a connection to the HR database */

/* Call the getMetaData method on the Connection object obtained */
MetaData perstab_metaData = connection->getMetaData (
"Person", MetaData::PTYPE TABLE) ;

/* Now that you have the metadata information on the Person table,
call the getxxx methods using the appropriate attributes */
/* Call getString */
cout<<"Schema: "<< (perstab_metaData.getString (MetaData: :ATTR_OBJ_SCHEMA)) <<endl;

if (perstab_metaData.getInt (perstab_metaData::ATTR_PTYPE)==MetaData: :PTYPE TABLE)
cout<<"Person is a table"<<endl;

else
cout<<"Person is not a table"<<endl;

/* Call getVector to obtain the list of columns in the Person table*/
vector<MetaData>1istOfColumns;

6-4 Oracle C++ Call Interface Programmer’s Guide

Describing Database Metadata

listOfColumns=perstab_metaData.getVector (MetaData: :ATTR_LIST COLUMNS) ;

/* Each of the list elements represents a column metadata,
so now get the datatype of the column by passing ATTR_DATA_TYPE
to getInt */
for (int 1=0;i<numCols;i++)
{
int dataType=colList[i].getInt (MetaData::ATTR_DATA_TYPE);
/* If the datatype is a reference, get the Ref and obtain the metadata
about the object by passing the Ref to getMetaData */
if (dataType==SQLT_REF)
RefAny refTdo=colList[i].getRef (MetaData: :ATTR_REF_TDO) ;

/* Now you can obtain the metadata about the object as shown
MetaData tdo_metaData=connection->getMetaData (refTdo) ;

/* Now that you have the metadata about the TDO, you can obtain the metadata
about the object */

Example 6—-4 How to Obtain Metadata About a Select List from a ResultSet Object

This example demonstrates how to obtain metadata about a select list from a
ResultsSet.

/* Create an environment and a connection to the database */
/* Create a statement and associate it with a select clause */
string sqglStmt="SELECT * FROM EMPLOYEES";

Statement *stmt=conn->createStatement (sqlStmt) ;

/* Execute the statement to obtain a ResultSet */
ResultSet *rset=stmt->executeQuery();

/* Obtain the metadata about the select list */
vector<MetaData>cmd=rset->getColumnListMetaData() ;

/* The metadata is a column list and each element is a column metaData */
int dataType=cmd[i].getInt (MetaData: :ATTR_DATA_TYPE) ;

The getMetaData method is called for the ATTR_COLLECTION_ELEMENT attribute
only.

Metadata 6-5

Describing Database Metadata

6-6 Oracle C++ Call Interface Programmer’s Guide

7

Object Type Translator Utility

This chapter discusses the Object Type Translator (OTT) utility, which is used to map
database object types, LOB types, and named collection types to C++ class declarations
for use in OCCI applications.

This chapter contains these topics:
» Overview of the Object Type Translator Utility
= Using the OTT Utility
» Creating Types in the Database
s Invoking the OTT Utility
= Using the INTYPE File
» OTT Utility Datatype Mappings
s Overview of the OUTTYPE File
s The OTT Utility and OCCI Applications
» Carrying Forward User Added Code
See Also: $ORACLE_HOME/rdbms/demo for a complete code

listing of the demonstration program used in this chapter and the
class and method implementation generated by the OTT utility.

Overview of the Object Type Translator Utility

The Object Type Translator (OTT) utility assists in the development of applications
that make use of user-defined types in an Oracle database server.

Through the use of SQL CREATE TYPE statements, you can create object types. The
definitions of these types are stored in the database and can be used in the creation of
database tables. Once these tables are populated, an OCCI programmer can access
objects stored in the tables.

An application that accesses object data must be able to represent the data in a host
language format. This is accomplished by representing object types classes in C++.

You could code structures or classes manually to represent database object types, but
this is time-consuming and error-prone. The OTT utility simplifies this step by
automatically generating the appropriate classes for C++.

For OC(J, the application must include and link the following files:

= Include the header file containing the generated class declarations

Object Type Translator Utility 7-1

Using the OTT Utility

= Include the header file containing the prototype for the function to register the
mappings

s Link with the C++ source file containing the static methods to be called by OCCI
while instantiating the objects

= Link with the file containing the function to register the mappings with the
environment and call this function

Using the OTT Utility

To translate database types to C++ representation, you must explicitly invoke the OTT
utility. OCCI programmers must register the mappings with the environment. This
function is generated by the OTT utility.

On most operating systems, the OTT utility is invoked on the command line. It takes
as input an INTYPE file, and generates an OUTTYPE file, one or more C++ header files
that contain the prototype information, and additional C++ method files that register
generated mappings.

Example 7-1 How to Use the OTT Utility

The following command invokes the OTT utility and generates C++ classes:

ott userid=scott/tiger intype=demoin.typ outtype=demoout.typ code=cpp
hfile=demo.h cppfile=demo.cpp mapfile=RegisterMappings.cpp

This command causes the OTT utility to connect to the database as username scott
with password tiger, and use the demoin. typ file as the INTYPE file, and the
demoout. typ file as the OUTTYPE file. The resulting declarations are output to the file
demo . h in C++, specified by the CODE=cpp parameter, the method implementations
written to the file demo . cpp, and the functions to register mappings is written to
RegisterMappings.cpp with its prototype written to RegisterMappings.h.

See Also: Extending C++ Classes on page 7-27 for a complete
C++ example

Creating Types in the Database

The first step in using the OTT utility is to create object types or named collection
types and store them in the database. This is accomplished through the use of the SQL
CREATE TYPE statement.

Example 7-2 Object Creation Statements of the OTT Utility

CREATE TYPE FULL_NAME AS OBJECT (first_name CHAR(20), last_name CHAR(20));

CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));

CREATE TYPE ADDRESS_TAB AS VARRAY(3) OF REF ADDRESS;

CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULL_NAME, curr_addr REF ADDRESS,
prev_addr_1 ADDRESS_TAB) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20));

Invoking the OTT Utility

After creating types in the database, the next step is to invoke the OTT utility.

7-2 Oracle C++ Call Interface Programmer’s Guide

Invoking the OTT Utility

Specifying OTT Parameters

You can specify OTT parameters either on the command line or in a configuration file.
Certain parameters can also be specified in the INTYPE file.

If you specify a parameter in more than one place, then its value on the command line
takes precedence over its value in the INTYPE file. The value in the INTYPE file takes

precedence over its value in a user-defined configuration file, which takes precedence
over its value in the default configuration file.

Parameter precedence then is as follows:
1. OTT command line

2. Valuein INTYPE file

3. User-defined configuration file

4. Default configuration file

For global options (that is, options on the command line or options at the beginning of
the INTYPE file before any TYPE statements), the value on the command line overrides
the value in the INTYPE file. (The options that can be specified globally in the INTYPE
file are CASE, INITFILE, INITFUNC, MAPFILE and MAPFUNC, but not HFILE or
CPPFILE.) Anything in the INTYPE file in a TYPE specification applies to a particular
type only and overrides anything on the command line that would otherwise apply to
the type. So if you enter TYPE person HFILE=p.h, then it applies to person only
and overrides the HFILE on the command line. The statement is not considered a
command line parameter.

Setting Parameters on the Command Line

Parameters (also called options) set on the command line override any parameters or
option set elsewhere.

Setting Parameters in the INTYPE File
The INTYPE file gives a list of types for the OTT utility to translate.

The parameters CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE, and
MAPFUNC can appear in the INTYPE file.

Setting Parameters in the Configuration File

A configuration file is a text file that contains OTT parameters. Each nonblank line in
the file contains one parameter, with its associated value or values. If more than one
parameter is put on a line, then only the first one will be used. No blank space is
allowed on any nonblank line of a configuration file.

A configuration file can be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist, but
can be empty. The name of the default configuration file is ot tcfg. cfg, and the
location of the file is operating system-specific.

See Also: Your operating system-specific documentation for more
information about the location of the default configuration file.

Invoking the OTT Utility on the Command Line

On most platforms, the OTT utility is invoked on the command line. You can specify
the input and output files and the database connection information at the command
line, among other things.

Object Type Translator Utility 7-3

Invoking the OTT Utility

See Also: Your operating system-specific documentation to see
how to invoke the OTT utility on your operating system

Example 7-3 How to Invoke the OTT Utility to Generate C++ Classes

ott userid=scott/tiger intype=demoin.typ outtype=demoout.typ code=cpp
hfile=demo.h cppfile=demo.cpp mapfile=RegisterMappings.cpp

Caution: No spaces are permitted around the equals sign (=) on
the OTT command line.

An OTT command line statement consists of the command OTT, followed by a list of
OTT utility parameters.

The HFILE parameter is almost always used. If omitted, then HF ILE must be specified
individually for each type in the INTYPE file. If the OTT utility determines that a type
not listed in the INTYPE file must be translated, then an error will be reported.
Therefore, it is safe to omit the HFILE parameter only if the INTYPE file was
previously generated as an OTT OUTTYPE file.

If the INTYPE file is omitted, then the entire schema will be translated. See the
parameter descriptions in the following section for more information.

Elements Used on the OTT Command Line
Elements used on the OTT command line are:

s OTT command that invokes the OTT utility. It must be the first item on the
command line.

s USERID parameter on page 7-11

= INTYPE parameter on page 7-7

s OUTTYPE parameter on page 7-7.
s CODE parameter on page 7-6.

s HFILE parameter on page 7-7.

s CPPFILE parameter on page 7-6.
s MAPFILE parameter on page 7-7.

OTT Utility Parameters

To generate C++ using the OTT utility, the CODE parameter must be set to CODE=CPP.
Once CODE=CPP is specified, you are required to specify the CPPFILE and MAPFILE
parameters to define the filenames for the method implementation file and the
mappings registration function file. The name of the mapping function is derived by
the OTT utility from the MAPFILE or you may specify the name with the MAPFUNC
parameter. ATTRACCESS is also an optional parameter that can be specified to change
the generated code. These parameters control the generation of C++ classes.

= Enter parameters on the OTT command line where parameter is the literal
parameter string and value is a valid parameter setting. The literal parameter
string is not case sensitive:

parameter=value

= Separate command line parameters by using either spaces or tabs.

7-4 Oracle C++ Call Interface Programmer’s Guide

Invoking the OTT Utility

= Parameters can also appear within a configuration file, but, in that case, no
whitespace is permitted within a line, and each parameter must appear on a
separate line. Additionally, the parameters CASE, CPPFILE, HFILE, INITFILE,
INTFUNC, MAPFILE, and MAPFUNC can appear in the INTYPE file.

Table 7-1 lists all OTT Utility parameters:

Table 7-1 Summary of OTT Utility Parameters

Parameter Description

ATTRACCESS Specifies whether the access to type attributes will be PROTECTED
or PRIVATE.

CASE Affects the letter case of generated C++ identifiers

CODE Specifies the target language for the translation. Use CPP.

CONFIG Specifies the name of the OTT configuration file that lists
commonly used parameter specifications.

CPPFILE Specifies the name of the C++ source file into which the method
implementations are written.

ERRTYPE Specifies the name of the error message output file.

HFILE Specifies the name of the C++ header file to which the generated
C++ classes are written.

INTYPE Specifies the name of the INTYPE file.

MAPFILE Specifies the name of the mapping file and the corresponding
header file generated by the OTT utility.

MAPFUNC Specifies the name of the function used to register generated
mappings.

OUTTYPE Specifies the name of the OUTTYPE file.

SCHEMA_NAMES

Controls the qualifying the database name of a type from the
default schema

TRANSITIVE Indicates whether to translate type dependency that are not
explicitly listed in the INTYPE.

UNICODE Indicates whether the application should provide UTF16 support
generate UString types.

USE_MARKER Indicates whether OTT markers should be supported to carry
forward user added cod

USERID Specifies the database connection information that the OTT utility
will use.

ATTRACCESS

This parameter specifies access to type attributes:

m PROTECTED is the default.

= PRIVATE indicates that the OTT utility generates accessory and mutator methods
for each type attribute, get XXX () and setXXX().

CASE

This parameter affects the letter case of generated C++ identifiers. The valid values of

CASE are:

= SAME is the case of letters remains unchanged when converting database type and
attribute names to C++ identifiers.

Object Type Translator Utility 7-5

Invoking the OTT Utility

= LOWER indicates that all uppercase letters are converted to lowercase.
= UPPER indicates that all lowercase letters are converted to uppercase.

» OPPOSITE indicates that all uppercase letters are converted to lowercase, and all
lowercase letters are converted to uppercase.

This parameter affects only those identifiers (attributes or types not explicitly listed)
not mentioned in the INTYPE file. Case conversion takes place after a legal identifier
has been generated.

Note: Case insensitive SQL identifiers not mentioned in the
INTYPE file will appear in uppercase if CASE=SAME, and in
lowercase if CASE=0PPOSITE. A SQL identifier is case insensitive if
it was not quoted when it was declared.

CODE

This parameter specifies the host language to be output by the OTT utility. CODE=CPP
must be specified for the OTT utility to generate C++ code for OCCI applications.

CONFIG

This parameter specifies the name of the OTT configuration file that lists commonly
used parameter specifications. Parameter specifications are also read from a system
configuration file found in an operating system-dependent location. All remaining

parameter specifications must appear either on the command line or in the INTYPE

file.
Note: The CONFIG parameter can only be specified on the OTT
command line. It is not allowed in the CONFIG file.

CPPFILE

This parameter specifies the name of the C++ source file that will contain the method
implementations generated by the OTT utility. The methods generated in this file are
called by OCCI while instantiating the objects and are not to be called directly in the
an application.

This parameter is required under the following conditions:

= A type not mentioned in the INTYPE file must be generated and two or more
CPPFILESs are being generated. In this case, the unmentioned type goes in the
CPPFILE specified on the command line.

s The INTYPE parameter is not specified, and you want the OTT utility to translate
all the types in the schema.

This parameter is optional when the CPPFILE is specified for individual types in the
INTYPE file.

ERRTYPE

This parameter specifies the name of the error message output file. Information and
error messages are sent to the standard output whether or not the ERRTYPE parameter
is specified. Essentially, the ERRTYPE file is a copy of the INTYPE file with error
messages added. In most cases, an error message will include a pointer to the text that
caused the error.

7-6 Oracle C++ Call Interface Programmer’s Guide

Invoking the OTT Utility

If the filename specified for the ERRTYPE parameter on the command line does not
include an extension, a platform-specific extension such as .TLS or .t 1s is added
automatically.

HFILE

This parameter specifies the name of the header (.h) file to be generated by the OTT
utility. The HFILE specified on the command line contains the declarations of types
that are mentioned in the INTYPE file but whose header files are not specified there.

This parameter is required unless the header file for each type is specified individually
in the INTYPE file. This parameter is also required if a type not mentioned in the
INTYPE file must be generated because other types require it, and these other types
are declared in two or more different files.

If the filename specified for the HFILE parameter on the command line or in the
INTYPE file does not include an extension, a platform-specific extension such as .H or
.his added automatically.

INTYPE

This parameter specifies the name of the file from which to read the list of object type
specifications. The OTT utility translates each type in the list. If the INTYPE parameter
is not specified, all types in the user's schema will be translated.

If the filename specified for the INTYPE parameter on the command line does not
include an extension, a platform-specific extension such as . TYP or . typ is
automatically added.

INTYPE= may be omitted if USERID and INTYPE are the first two parameters, in that
order, and USERID= is omitted.

The INTYPE file can be thought of as a makefile for type declarations. It lists the types
for which C++ classes are needed.

See Also: "Structure of the INTYPE File" on page 7-14 for more
information about the format of the INTYPE file

MAPFILE

This parameter specifies the name of the mapping file (xxX. cpp) and corresponding
header file (xxXx.h) that are generated by the OTT utility. The XXX . cpp file contains
the implementation of the functions to register the mappings, while the XxxX.h file
contains the prototype for the function.

This parameter may be specified either on the command line or in the INTYPE file.

MAPFUNC

This parameter specifies the name of the function to be used to register the mappings
generated by the OTT utility.

If this parameter is omitted, then the name of the function to register the mappings is
derived from the filename specified in the MAPFILE parameter.

This parameter may be specified either on the command line or in the INTYPE file.

OUTTYPE

This parameter specifies the name of the file into which the OTT utility writes type
information for all the object datatypes it processes. This file includes all types
explicitly named in the INTYPE file, and may include additional types that are

Object Type Translator Utility 7-7

Invoking the OTT Utility

translated because they are used in the declarations of other types that need to be
translated. This file may be used as an INTYPE file in a future invocation of the OTT
utility.

If the INTYPE and OUTTYPE parameters refer to the same file, then the new INTYPE
information replaces the old information in the INTYPE file. This provides a
convenient way for the same INTYPE file to be used repeatedly in the cycle of altering
types, generating type declarations, editing source code, precompiling, compiling, and
debugging.

If the filename specified for the OUTTYPE parameter on the command line or in the
INTYPE file does not include an extension, a platform-specific extension such as . TYP
or . typ is automatically added.

SCHEMA_NAMES

This parameter offers control in qualifying the database name of a type from the
default schema that is named in the OUTTYPE file. The OUTTYPE file generated by
the OTT utility contains information about the types processed by the OTT utility,
including the type names. Valid values include:

= ALWAYS (default) indicates that all type names in the OUTTYPE file are qualified
with a schema name.

= IF_NEEDED indicates that the type names in the OUTTYPE file that belong to the
default schema are not qualified with a schema name. Type names belonging to
other schemas are qualified with the schema name.

= FROM_INTYPE indicates that a type mentioned in the INTYPE file is qualified with
a schema name in the OUTTYPE file only if it was qualified with a schema name
in the INTYPE file. A type in the default schema that is not mentioned in the
INTYPE file but generated because of type dependency is written with a schema
name only if the first type encountered by the OTT utility that depends on it is also
written with a schema name. However, a type that is not in the default schema to
which the OTT utility is connected is always written with an explicit schema
name.

The name of a type from a schema other that the default schema is always qualified
with a schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found
during program execution.

Example 7-4 How to use the SCHEMA_NAMES Parameter in OTT Utility

Consider an example where the SCHEMA_NAMES parameter is set to FROM_INTYPE,
and the INTYPE file contains the following;:

TYPE Person
TYPE joe.Dept
TYPE sam.Company

If the OTT utility and the application both connect to schema joe, then the application
uses the same type (joe . Person) that the OTT utility uses. If the OTT utility connects
to schema joe but the application connects to schema mary, then the application uses
the type mary . Person. This behavior is appropriate only if the same CREATE TYPE
Person statement has been executed in schema joe and schema mary.

On the other hand, the application uses type joe.Dept regardless of which schema
the application is connected to. If this is the behavior you want, then be sure to include
schema names with your type names in the INTYPE file.

7-8 Oracle C++ Call Interface Programmer’s Guide

Invoking the OTT Utility

In some cases, the OTT utility translates a type that the user did not explicitly name.
For example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT

(
street VARCHAR2 (40) ,
city VARCHAR (30)
state CHAR(2),
zip_code CHAR(10)

)i

CREATE TYPE Person AS OBJECT
(

name CHAR(20),
age NUMBER,
addr ADDRESS

)i

Suppose that the OTT utility connects to schema joe, SCHEMA_NAMES=FROM_INTYPE
is specified, and the user's INTYPE files include either TYPE Person or TYPE
joe.Person. The INTYPE file does not mention the type joe.Address, which is
used as a nested object type in type joe.Person.

s If Type Person appears in the INTYPE file, then TYPE Person and TYPE
Address appears in the OUTTYPE file.

s If TYPE joe.Person appears in the INTYPE file, then TYPE joe.Person and
TYPE joe.Address appear in the OUTTYPE file.

» Ifthe joe.Address type is embedded in several types translated by the OTT
utility, but it is not explicitly mentioned in the INTYPE file, then the decision of
whether to use a schema name is made the first time the OTT utility encounters
the embedded joe.Address type. If, for some reason, the user wants type
joe.Address to have a schema name but does not want type Person to have
one, then you must explicitly request this in the INTYPE file: TYPE
joe.Address.

In the usual case in which each type is declared in a single schema, it is safest for you
to qualify all type names with schema names in the INTYPE file.

TRANSITIVE

This parameter indicates whether type dependencies not explicitly listed in the
INTYPE file are to be translated. Valid values are:

= TRUE (default): types needed by other types and not mentioned in the INTYPE file
are generated

= FALSE: types not mentioned in the INTYPE file are not generated, even if they are
used as attribute types of other generated types.

UNICODE
This parameter specifies whether the application provides unicode (UTF16) support.

s NONE (default) --

= ALL-- All CHAR (CHAR/VARCHAR) and NCHAR (NCHAR/NVARCHAR?2) type
attributes are declared as UString type in the OTT generated C++ class files. The
corresponding get XXX () /set XXX () return values or parameters are UString
types. The generated persistent operator new would also take only UString
arguments.

Object Type Translator Utility 7-9

Invoking the OTT Utility

Note: This setting should be used when both the client
characterset and the national characterset is UTF16.

= ONLYNCHAR -- Similar to the ALL option, but only NCHAR type attributes will be
declared as UString.

Note: This setting should be used when the application sets only
the Environment's national characterset to UTF16.

Example 7-5 How to Define a Schema for Unicode Support in OTT

create type CitiesList as varray(100) of varchar2(100);

create type Country as object

(CNo Number (10),
CName Varchar2(100),
CNationalName NVarchar2(100),
MainCities CitiesList);

Example 7-6 How to Use UNICODE=ALL Parameter in OTT

class Country : public oracle::occi::PObject
{
private:
oracle: :occi: :Number CNO;
oracle::occi::UString CNAME;
oracle::occi::UString CNATIONALNAME;
OCCI_STD_NAMESPACE:::vector< oracle::occi::UString > MAINCITIES;

public:

oracle::occi: :Number getCno() const;
void setCno(const oracle::occi::Number &value);

oracle::occi::UString getCname() const;
void setCname (const oracle::occi::UString &value);

oracle::occi::UString getCnationalname() const;
void setCnationalname (const oracle::occi::UString &value);

OCCI_STD_NAMESPACE: :vector< oracle::occi::UString >& getMaincities();
const OCCI_STD_NAMESPACE::vector< oracle::occi::UString >&
getMaincities() const;
void setMaincities(const OCCI_STD_NAMESPACE::vector< oracle::occi::UString
> &value) ;

Example 7-7 How to Use UNICODE=ONLYCHAR Parameter in OTT

class Country : public oracle::occi::PObject
{
private:
oracle: :occi: :Number CNO;
oracle::occi::string CNAME;
oracle::occi::UString CNATIONALNAME;
OCCI_STD_NAMESPACE: :vector< std::string > MAINCITIES;

7-10 Oracle C++ Call Interface Programmer’s Guide

Invoking the OTT Utility

public:

oracle::occi: :Number getCno() const;
void setCno(const oracle::occi::Number &value);

oracle::occi::string getCname() const;
void setCname (const OCCI_STD_NAMESPACE::string &value);

oracle::occi::UString getCnationalname() const;
void setCnationalname (const oracle::occi::UString &value);

OCCI_STD_NAMESPACE: :vector< OCCI_STD_NAMESPACE::string>&
getMaincities();
const OCCI_STD _NAMESPACE::vector< OCCI_STD_NAMESPACE::string >&
getMaincities() const;
void setMaincities(const OCCI_STD_NAMESPACE: :vector
< OCCI_STD_NAMESPACE::string > &value);

USE_MARKER

This parameter indicates whether to support OTT markers for carrying forward user
added code. Valid values are:

» FALSE (default) -- user added code will not be carried forward, even if the code is
added between OTT_USERCODE_START and OTT_USERCODE_END markers.

s TRUE -- code added between the markers OTT USER_CODESTART and OTT__
USERCODE_END will be carried forward when the same file is generated again.

USERID

This parameter specifies the Oracle username, password, and optional database name
(Oracle Net database specification string). If the database name is omitted, the default
database is assumed.

USERID=username/password[@db_name]

If this is the first parameter, then USERID= may be omitted as shown:
OTT username/password ...
This parameter is optional. If omitted, the OTT utility automatically attempts to

connect to the default database as user OPSSusername, where username is the user's
operating system username.

Where OTT Parameters Can Appear

Supply OTT parameters on the command line, in a CONFIG file named on the
command line, or both. Some parameters are also allowed in the INTYPE file.

The OTT utility is invoked as follows:

OTT parameters

You can name a configuration file on the command line with the CONFIG parameter as
follows:

CONFIG=filename

Object Type Translator Utility 7-11

Using the INTYPE File

If you name this parameter on the command line, then additional parameters are read
from the configuration file named filename.

In addition, parameters are also read from a default configuration file that resides in
an operating system-dependent location. This file must exist, but can be empty. If you
choose to enter data in the configuration file, note that no white space is allowed on a
line and parameters must be entered one to a line.

If the OTT utility is executed without any arguments, then an online parameter
reference is displayed.

The types for the OTT utility to translate are named in the file specified by the INTYPE
parameter. The parameters CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE,
and MAPFNC may also appear in the INTYPE file. OUTTYPE files generated by the OTT
utility include the CASE parameter, and include the INITFILE, and INITFUNC
parameters if an initialization file was generated or the MAPFILE and MAPFUNC
parameters if C++ codes was generated. The OUTTYPE file, as well as the CPPFILE for
C++, specifies the HFILE individually for each type.

The case of the OTT command is operating system-dependent.

File Name Comparison Restriction

Currently, the OTT utility determines if two files are the same by comparing the
filenames provided by the user either on the command line or in the INTYPE file. But
one potential problem can occur when the OTT utility needs to know if two filenames
refer to the same file. For example, if the OTT-generated file foo.h requires a type
declaration written to fool.h, and another type declaration written to
/private/smith/fool.h, then the OTT utility should generate one #include if
the two files are the same, and two #includes if the files are different. In practice,
though, it concludes that the two files are different, and generates two #includes as
follows:

#ifndef FOO1_ORACLE

#include "fool.h"

#endif

#ifndef FOO1_ORACLE

#include "/private/smith/fool.h"
#endif

If fool.hand /private/smith/fool.h are different files, then only the first one
will be included. If fool.h and /private/smith/fool.h are the same file, then a
redundant #include will be written.

Therefore, if a file is mentioned several times on the command line or in the INTYPE
file, then each mention of the file should use exactly the same filename.

Using the INTYPE File

When you run the OTT utility, the INTYPE file tells the OTT utility which database
types should be translated. The INTYPE file also controls the naming of the generated
structures or classes. You can either create an INTYPE file or use the OUTTYPE file of a
previous invocation of the OTT utility. If you do not use an INTYPE file, then all types
in the schema to which the OTT utility connects are translated.

7-12 Oracle C++ Call Interface Programmer’s Guide

Using the INTYPE File

Overview of the INTYPE File

Example 7-8 How to Create a User Defined INTYPE File Using the OTT Utility

CASE=LOWER
TYPE employee
TRANSLATE SALARYS AS salary
DEPTNO AS department

TYPE ADDRESS

TYPE item

TYPE "Person"

TYPE PURCHASE_ORDER AS p_o

= In the first line, the CASE parameter indicates that generated C identifiers should
be in lowercase. However, this CASE parameter is only applied to those identifiers
that are not explicitly mentioned in the INTYPE file. Thus, employee and
ADDRESS would always result in C structures employee and ADDRESS,
respectively. The members of these structures are named in lowercase.

s The lines that begin with the TYPE keyword specify which types in the database
should be translated. In this case, the EMPLOYEE, ADDRESS, ITEM, PERSON, and
PURCHASE_ORDER types are set to be translated.

s The TRANSLATE ... AS keywords specify that the name of an object attribute
should be changed when the type is translated into a C structure. In this case, the
SALARYS attribute of the employee type is translated to salary.

= The AS keyword in the final line specifies that the name of an object type should
be changed when it is translated into a structure. In this case, the purchase_
order database type is translated into a structure called p_o.

The OTT utility may need to translate additional types that are not listed in the
INTYPE file. This is because the OTT utility analyzes the types in the INTYPE file for
type dependencies before performing the translation, and it translates other types as
necessary. For example, if the ADDRESS type were not listed in the INTYPE file, but
the Person type had an attribute of type ADDRESS, then the OTT utility would still
translate ADDRESS because it is required to define the Person type.

Note: To specify that the OTT utility should not generate required
object types that are not specified in the INTYPE file, set
TRANSITIVE=FALSE. The default is TRANSITIVE=TRUE.

A normal case insensitive SQL identifier can be spelled in any combination of
uppercase and lowercase in the INTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person" to reference SQL identifiers that have
been created in a case sensitive manner, for example, CREATE TYPE "Person".A
SQL identifier is case sensitive if it was quoted when it was declared. Quotation marks
can also be used to refer to a SQL identifier that is an OTT-reserved word, for example,
TYPE "CASE".In this case, the quoted name must be in uppercase if the SQL
identifier was created in a case insensitive manner, for example, CREATE TYPE Case.
If an OTT-reserved word is used to refer to the name of a SQL identifier but is not
quoted, then the OTT utility will report a syntax error in the INTYPE file.

Object Type Translator Utility 7-13

Using the INTYPE File

See Also:

s "Structure of the INTYPE File" on page 7-14 for a more detailed
specification of the structure of the INTYPE file and the
available options.

s "CASE" on page 7-5 for further information regarding the CASE
parameter

Structure of the INTYPE File

The INTYPE and OUTTYPE files list the types translated by the OTT utility and provide
all the information needed to determine how a type or attribute name is translated to a
legal C or C++ identifier. These files contain one or more type specifications, and may
also contain specifications of CASE, CPPFILE, HFILE, INITFILE, INITFUNC,
MAPFILE, or MAPFUNC.

If the CASE, INITFILE, INITFUNC, MAPFILE, or MAPFUNC options are present, then
they must precede any type specifications. If these options appear both on the
command line and in the INTYPE file, then the value on the command line is used.

See Also: "Overview of the OUTTYPE File" on page 7-23 for an
example of a simple user-defined INTYPE file and of the full
OUTTYPE file that the OTT utility generates from it

INTYPE File Type Specifications

A type specification in the INTYPE file names an object datatype that is to be
translated. The following is an example of a user-created INTYPE file:

TYPE employee
TRANSLATE SALARYS AS salary
DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows:

TYPE type_name
GENERATE type_identifier]
AS type_identifier]

VERSION [=] version_string]
CPPFILE [=] cppfile_name]

[

[

[

[HFILE [=] hfile_name]

[

[TRANSLATE {member_name [AS identifier]}...]

The type_name syntax follows this form:

[schema_name.] type_name

In this syntax, schema_name is the name of the schema that owns the given object
datatype, and type_name is the name of the type. The default schema, if one is not

specified, is that of the userID invoking the OTT utility. To use a specific schema, you
must use schema_name.

The components of the type specification are:
= type_name: Name of the object datatype.

» type identifier: C / C++ identifier used to represent the class. The
GENERATE clause is used to specify the name of the class that the OTT utility
generates. The AS clause specifies the name of the class that you write. The

7-14 Oracle C++ Call Interface Programmer’s Guide

Using the INTYPE File

GENERATE clause is typically used to extend a class. The AS clause, when
optionally used without the GENERATE clause, specifies the name of the C
structure or the C++ class that represents the user-defined type.

s version_string: Version string of the type that was used when the code was
generated by the previous invocation of the OTT utility. The version string is
generated by the OTT utility and written to the OUTTYPE file, which can later be
used as the INTYPE file in later invocations of the OTT utility. The version string
does not affect how the OTT utility operates, but can be used to select which
version of the object datatype is used in the running program.

s hfile name: Name of the header file into which the declarations of the
corresponding class are written. If you omit the HFILE clause, then the file
specified by the command line HF ILE parameter is used.

s cppfile_name: Name of the C++ source file into which the method
implementations of the corresponding class is written. If you omit the CPPFILE
clause, the file specified by the command line CPPFILE parameter is used.

s member_name: Name of an attribute (data member) that is to be translated to the
identifier.

s Iidentifier:C / C++ identifier used to represent the attribute in the program.
You can specify identifiers in this way for any number of attributes. The default
name mapping algorithm is used for the attributes not mentioned.

An object datatype may need to be translated for one of two reasons:
s Itappears in the INTYPE file.

s Itisrequired to declare another type that must be translated, and the TRANSITIVE
parameter is set to TRUE.

If a type that is not mentioned explicitly is required by types declared in exactly one
file, then the translation of the required type is written to the same files as the
explicitly declared types that require it.

If a type that is not mentioned explicitly is required by types declared in two or more
different files, then the translation of the required type is written to the global HFILE
file.

Note: You may indicate whether the OTT utility should generate
required object types that are not specified in the INTYPE file. Set
TRANSITIVE=FALSE so the OTT utility will not to generate
required object types. The default is TRANSITIVE=TRUE.

Nested #include File Generation

HFILE files generated by the OTT utility #include other necessary files, and
#define asymbol constructed from the name of the file. This symbol #defined can
then be used to determine if the related HFILE file has already been #included.
Consider, for example, a database with the following types:

create type pxl AS OBJECT (coll number, col2 integer);
create type px2 AS OBJECT (coll px1);
create type px3 AS OBJECT (coll px1);

The INTYPE file contains the following information:

CASE=lower
type pxl

Object Type Translator Utility 7-15

Using the INTYPE File

hfile tott95a.h

type px3
hfile tott95b.h

You invoke the OTT utility as follows:

ott scott/tiger intype=tott95i.typ outtype=tott950.typ code=cpp

The OTT utility then generates the following two header files, named tott95a.h and
tott95b.h. They are listed in

Example 7-9 Listing of ott95a.h

#ifndef TOTT95A_ORACLE
define TOTT95A_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

/**/

// generated declarations for the PX1 object type.
/**/

class pxl : public oracle::occi::PObject {

protected:
oracle::occi: :Number coll;
oracle::occi: :Number col2;

public:

void *operator new(size_t size);

void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

void *operator new(size_t, void *ctxOCCI_);

void *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD _NAMESPACE::string &typeSchema);

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNamelLen) const;

px1();

px1 (void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };

static void *readSQL(void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL(void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

~px1();

I

#endif

Example 7-10 Listing of ott95b.h

#ifndef TOTT95B_ORACLE
define TOTT95B_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>

7-16 Oracle C++ Call Interface Programmer’s Guide

Using the INTYPE File

#endif

#ifndef TOTT95A_ORACLE
include "tott95a.h"
#endif

/**/

// generated declarations for the PX3 object type.
/**/

class px3 : public oracle::occi::PObject {

protected:
pxl * coll;

public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);
void *operator new(size_t, void *ctxOCCI_);
void *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,
const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema) ;
void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;
px3();
px3 (void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
static void *readSQL(void *ctxOCCI_);
virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
static void writeSQL(void *objOCCI_, void *ctxOCCI_);
virtual void writeSQL (oracle::occi::AnyData& streamOCCI_);
~px3();
}i
#endif

In the tott95b.h file, the symbol TOTT95B_ORACLE is #define d at the beginning
of the file. This enables you to conditionally #include this header file in another file.
To accomplish this, you would use the following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

By using this technique, you can #include tott95b.hin, say foo.h, without
having to know whether some other file #included in foo.h also #includes
tott95b.h.

Next, the file tott95a.his included because it contains the declaration of struct
px1, that tott95b. h requires. When the INTYPE file requests that type declarations
be written to more than one file, the OTT utility determines which other files each
HFILE must #include, and generates each necessary #include.

Note that the OTT utility uses quotes in this #include. When a program including
tott95b.his compiled, the search for tott95a.h begins where the source program
was found, and will thereafter follow an implementation-defined search rule. If
tott95a.h cannot be found in this way, then a complete filename (for example, a

Object Type Translator Utility 7-17

OTT Utility Datatype Mappings

UNIX absolute path name beginning with a slash character (/)) should be used in the
INTYPE file to specify the location of tott95a.h.

OTT Utility Datatype Mappings

When the OTT utility generates a C++ class from a database type, the structure or class
contains one element corresponding to each attribute of the object type. The datatypes
of the attributes are mapped to types that are used in Oracle object data types. The
datatypes found in Oracle include a set of predefined, primitive types and provide for
the creation of user-defined types, like object types and collections.

The set of predefined types includes standard types that are familiar to most
programmers, including number and character types. It also includes large object
datatypes (for example, BLOB or CLOB).

Example 7-11 How to Represent Object Attributes Using the OTT Utility

Oracle also includes a set of predefined types that are used to represent object type
attributes in C++ classes. Consider the following object type definition, and its
corresponding OTT-generated structure declarations:

CREATE TYPE employee AS OBJECT

(name VARCHAR2 (30) ,
empno NUMBER,
deptno NUMBER,
hiredate DATE,
salary NUMBER

)i

The OTT utility, assuming that the CASE parameter is set to LOWER and there are no
explicit mappings of type or attribute names, produces the following output:

#ifndef DATATYPES_ ORACLE
define DATATYPES ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

/**/

// generated declarations for the EMPLOYEE object type.

/**/

class employee : public oracle::occi::PObject {

protected:
OCCI_STD_NAMESPACE::string NAME;
oracle::occi: :Number EMPNO;
oracle: :occi: :Number DEPTNO;
oracle::occi: :Date HIREDATE;
oracle::occi: :Number SALARY;

public:

void *operator new(size_t size);

void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

void *operator new(size_t, void *ctxOCCI_);

void *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCI_STD_NAMESPACE::string &tableName,
const OCCI_STD_NAMESPACE::string &typeName,

7-18 Oracle C++ Call Interface Programmer’s Guide

OTT Utility Datatype Mappings

const OCCI_STD_NAMESPACE::string &tableSchema,
const OCCI_STD_NAMESPACE::string &typeSchema) ;

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,

unsigned int &typeNamelLen) const;
employee() ;
employee (void *ctxOCCI_)
static void *readSQL(void *ctxOCCI_);

: oracle::occi::PObject (ctxOCCI_) { };

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
static void writeSQL(void *objOCCI_, void *ctxOCCI_);
virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

~employee () ;

Y

#endif

Table 7-2 lists the mappings from types that can be used as attributes to object

datatypes that are generated by the OTT utility.

Table 7-2 C++ Object Datatype Mappings for Object Type Attributes

Object Attribute Types C++ Mapping
BFILE Bfile

BLOB Blob
BINARY_DOUBLE BDouble
BINARY_FLOAT BFloat
CHAR (n), CHARACTER (n) string
CLOB Clob

DATE Date

DEC, DEC(n), DEC(n,n) Number
DECIMAL, DECIMAL(n), DECIMAL(n,n) Number
FLOAT, FLOAT(n), DOUBLE PRECISION Number
INT, INTEGER, SMALLINT Number
INTERVAL DAY TO SECOND IntervalDS
INTERVAL YEAR TO MONTH Interval¥YM

Nested Object Type

NESTED TABLE

NUMBER, NUMBER(n), NUMBER(n,n)
NUMERIC, NUMERIC(n), NUMERIC(n,n)
RAW

REAL

REF

TIMESTAMP, TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE

VARCHAR (n)

VARCHAR2 (n)

C++ name of the nested object type
vector<attribute_type>
Number

Number

Bytes

Number

Ref<attribute_type>

Timestamp

string

string

Object Type Translator Utility 7-19

OTT Utility Datatype Mappings

Table 7-2 (Cont.) C++ Object Datatype Mappings for Object Type Attributes

Object Attribute Types C++ Mapping

VARRAY vector<attribute_type>

Example 7-12 How to Map Object Datatypes Using the OTT Utility
The example assumes that the following database types are created:

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
(object_name VARCHAR2 (20));

CREATE TYPE other_type AS OBJECT
(object_number NUMBER) ;

CREATE TYPE my_table AS TABLE OF object_type;
CREATE TYPE many_types AS OBJECT

(
the_varchar VARCHAR2 (30),

the_char CHAR (3),
the_blob BLOB,

the_clob CLOB,
the_object object_type,
another_ref REF other_type,
the_ref REF many_types,
the_varray my_varray,
the_table my_table,
the_date DATE,

the _num NUMBER,

the_raw RAW (255)

)i

An INTYPE file should already exists, and include the following:

CASE = LOWER
TYPE many_types

The following is an example of the OTT type mappings for C++, given the types
created in the example in the previous section, and an INTYPE file that includes the
following:

CASE = LOWER
TYPE many_types

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCCI_ORACLE
#include <occi.h>
#endif

/**/

// generated declarations for the OBJECT_TYPE object type.

/**/

class object_type : public oracle::occi::PObject
{
protected:

7-20 Oracle C++ Call Interface Programmer’s Guide

OTT Utility Datatype Mappings

OCCI_STD_NAMESPACE::string object_name;

public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

object_type();

object_type(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };

static void *readSQL(void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL(void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

Y

/**/

// generated declarations for the OTHER_TYPE object type.

/**/

class other_type : public oracle::occi::PObject
{
protected:
oracle: :occi: :Number object_number;

public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

other_type();

other_type(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };

static void *readSQL(void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL(void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

}i

/**/

// generated declarations for the MANY TYPES object type.

/**/

class many_types : public oracle::occi::PObject
{
protected:

OCCI_STD_NAMESPACE::string the_varchar;
OCCI_STD_NAMESPACE: :string the_char;
oracle::occi::Blob the_blob;
oracle::occi::Clob the_clob;
object_type * the_object;
oracle::occi::Ref< other_type > another_ref;
oracle::occi::Ref< many_types > the_ref;
OCCI_STD_NAMESPACE: :vector< oracle::occi::Number > the_varray;
OCCI_STD_NAMESPACE: :vector< object_type * > the_table;
oracle::occi::Date the_date;
oracle: :occi: :Number the_num;
oracle::occi::Bytes the_raw;

Object Type Translator Utility 7-21

OTT Utility Datatype Mappings

public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCI_STD_NAMESPACE::string& table);

void getSQLTypeName (oracle::occi::Environment *env, void **schemaName,
unsigned int &schemaNameLen, void **typeName,
unsigned int &typeNameLen) const;

many_types () ;

many_types (void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };

static void *readSQL(void *ctxOCCI_);

virtual void readSQL(oracle::occi::AnyData& streamOCCI_);

static void writeSQL(void *objOCCI_, void *ctxOCCI_);

virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);

i
#endif

The OTT utility generates the following C++ class declarations (comments are not part
of the OTT output, and are added only to clarify the example):

For C++, when TRANSITIVE=TRUE, the OTT utility automatically translates any types
that are used as attributes of a type being translated, including types that are only
being accessed by a pointer or REF in an object type attribute. Even though only the
many_types object was specified in the INTYPE file for the C++ example, a class
declaration was generated for all the object types, including the other_type object,
which was only accessed by a REF in the many_types object.

Default Name Mapping

When the OTT utility creates a C or C++ identifier name for an object type or attribute,
it translates the name from the database character set to a legal C or C++ identifier.
First, the name is translated from the database character set to the character set used
by the OTT utility. Next, if a translation of the resulting name is supplied in the
INTYPE file, that translation is used. Otherwise, the OTT utility translates the name
character-by-character to the compiler character set, applying the character case
specified in the CASE parameter. The following text describes this in more detail.

When the OTT utility reads the name of a database entity, the name is automatically
translated from the database character set to the character set used by the OTT utility.
In order for the OTT utility to read the name of the database entity successfully, all the
characters of the name must be found in the OTT character set, although a character
may have different encodings in the two character sets.

The easiest way to guarantee that the character set used by the OTT utility contains all
the necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character set.
That is, if the compiler character set is 7-bit ASCII, then the OTT character set must
include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC, then
the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the
character set that the OTT utility uses by setting the NL.S_LANG environment variable,
or by some other operating system-specific mechanism.

Once the OTT utility has read the name of a database entity, it translates the name
from the character set used by the OTT utility to the compiler's character set. If a
translation of the name appears in the INTYPE file, then the OTT utility uses that
translation.

Otherwise, the OTT utility attempts to translate the name as follows:

7-22 Oracle C++ Call Interface Programmer’s Guide

Overview of the OUTTYPE File

1. If the OTT character set is a multibyte character set, all multibyte characters in the
name that have single-byte equivalents are converted to those single-byte
equivalents.

2. The name is converted from the OTT character set to the compiler character set.
The compiler character set is a single-byte character set such as US7ASCII.

3. The case of letters is set according to how the CASE parameter is defined, and any
character that is not legal in a C or C++ identifier, or that has no translation in the
compiler character set, is replaced by an underscore character (_). If at least one
character is replaced by an underscore, then the OTT utility gives a warning
message. If all the characters in a name are replaced by underscores, the OTT
utility gives an error message.

Character-by-character name translation does not alter underscores, digits, or
single-byte letters that appear in the compiler character set, so legal C or C++
identifiers are not altered.

Name translation may, for example, translate accented single-byte characters such as o
with an umlaut or an 2 with an accent grave to o or 4, with no accent, and may
translate a multibyte letter to its single-byte equivalent. Name translation will typically
fail if the name contains multibyte characters that lack single-byte equivalents. In this
case, the user must specify name translations in the INTYPE file.

The OTT utility will not detect a naming clash caused by two or more database
identifiers being mapped to the same C name, nor will it detect a naming problem
where a database identifier is mapped to a C keyword.

Overview of the OUTTYPE File

The OUTTYPE file is named on the OTT command line. When the OTT utility generates
a C++ header file, it also writes the results of the translation into the OUTTYPE file.
This file contains an entry for each of the translated types, including its version string
and the header file to which its C++ representation was written.

The OUTTYPE file from one OTT utility run can be used as the INTYPE file for a
subsequent invocation of the OTT utility.

Example 7-13 OUTTYPE File Generated by the OTT Utility

In this INTYPE file, the programmer specifies the case for OTT-generated C++
identifiers, and provides a list of types that should be translated. In two of these types,
naming conventions are specified. This is what the OUTTYPE file looks like after
running the OTT utility:

The following example shows what t:

CASE = LOWER
TYPE EMPLOYEE AS employee
VERSION = "$8.0"
HFILE = demo.h
TRANSLATE SALARYS AS salary
DEPTNO AS department
TYPE ADDRESS AS ADDRESS
VERSION = "$8.0"
HFILE = demo.h
TYPE ITEM AS item
VERSION = "$8.0"
HFILE = demo.h
TYPE "Person" AS Person

Object Type Translator Utility 7-23

The OTT Utility and OCCI Applications

VERSION = "$8.0"
HFILE = demo.h
TYPE PURCHASE_ORDER AS p_o
VERSION = "$8.0"
HFILE = demo.h

When examining the contents of the OUTTYPE file, you might discover types listed that
were not included in the INTYPE file specification. For example, consider the case
where the INTYPE file only specified that the person type was to be translated:

CASE = LOWER
TYPE PERSON

If the definition of the person type includes an attribute of type address, then the
OUTTYEE file includes entries for both PERSON and ADDRESS. The person type
cannot be translated completely without first translating address.

The OTT utility analyzes the types in the INTYPE file for type dependencies before
performing the translation, and translates other types as necessary.

Note: To specify that the OTT utility should not generate required
object types that are not specified in the INTYPE file, set
TRANSITIVE=FALSE. The default is TRANSITIVE=TRUE.

The OTT Utility and OCCI Applications

The OTT utility generates objects and maps SQL datatypes to C++ classes. The OTT
utility also implements a few methods called by OCCI when instantiating objects and
a function that is called in the OCCI application to register the mappings with the
environment. These declarations are stored in a header file that you include
(#include) in your OCCI application. The prototype for the function that registers
the mappings is written to a separate header file that you also include in your OCCI
application.The method implementations are stored in a C++ source code file (with
extension . cpp) that is linked with the OCCI application. The function that registers
the mappings is stored in a separate C++ (xxx. cpp) file that is also linked with the
application.

Figure 7-1 shows the steps involved in using the OTT utility with OCCI. These steps
are described following the figure.

7-24 Oracle C++ Call Interface Programmer’s Guide

The OTT Utility and OCCI Applications

Figure 7-1 The OTT Utility with OCCI

SQLDDL INTYPE fila
Type
Definljtions l
¥ T ¥
Database
Server QUTTYPE file CPPFILE file MAPFILE file HFILE file
QCCl
sourca
L ‘
QCCI library - ‘ Linkar - Object fils
¥

Exacutable

1. Create the type definitions in the database by using the SQL DLL.

2. Create the INTYPE file that contains the database types to be translated by the
OTT utility.

3. Specify that C++ should be generated and invoke the OTT utility.
The OTT utility then generates the following files:

= A header file (with the extension .h) that contains C++ class representations
of object types. The filename is specified on the OTT command line by the
HFILE parameter.

= A header file containing the prototype of the function (MAPFUNC) that registers
the mappings.

» A C++ source file (with the extension . cpp) that contains the static methods to
be called by OCCI while instantiating the objects. Do not call these methods
directly from your OCCI application. The filename is specified on the OTT
command line by the CPPFILE parameter.

= A file that contains the function used to register the mappings with the
environment (with the extension . cpp). The filename is specified on the OTT
command line by the MAPFILE parameter.

= A file (the OUTTYPE file) that contains an entry for each of the translated types,
including the version string and the file into which it is written. The filename
is specified on the OTT command line by the OUTTYPE parameter.

4. Write the OCCI application and include the header files created by the OTT utility
in the OCCI source code file.

The application declares an environment and calls the function MAPFUNC to
register the mappings.

5. Compile the OCCI application to create the OCCI object code, and link the object
code with the OCClI libraries to create the program executable.

Object Type Translator Utility 7-25

The OTT Utility and OCCI Applications

C++ Classes Generated by the OTT Utility

When the OTT utility generates a C++ class from a database object type, the class
declaration contains one element corresponding to each attribute of the object type.
The datatypes of the attribute are mapped to types that are used in Oracle object
datatypes, as defined in Table 7-2 on page 7-19.

For each class, two new operators, readSQL () and writeSQL () methods are
generated. They are used by OCCI to marshall and unmarshall objects.

By default, the C++ classes generated by the OTT utility for an object type are derived

from the PObject class, so the generated constructor in the class also derives from the
PObject class. For inherited database types, the class is derived from the parent type

class as is the generated constructor and only the elements corresponding to attributes
not already in the parent class are included.

Class declarations that include the elements corresponding to the database type
attributes and the method declarations are included in the header file generated by the
OTT utility. The method implementations are included in the CPPFILE file generated
by the OTT utility.

Example 7-14 How to Generate C++ Classes Using the OTT Ultility
This example demonstrates how to generate C++ classes using the OTT utility:

1. Define the types:

CREATE TYPE FULL_NAME AS OBJECT (first_name CHAR(20),
last_name CHAR(20));

CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));

CREATE TYPE ADDRESS_TAB AS VARRAY(3) of REF ADDRESS;

CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULL_NAME,
curr_addr REF ADDRESS, prev_addr_1l ADDRESS_TAB) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20));

2. Provide an INTYPE file:

CASE = SAME
MAPFILE = RegisterMappings_3.cpp
TYPE FULL_NAME AS FullName

TRANSLATE first_name as FirstName

last_name as LastName

TYPE ADDRESS
TYPE PERSON
TYPE STUDENT

3. Invoke the OTT utility:

ott userid=scott/tiger intype=demoin_3.typ outype=demoout_3.typ
code=cpp hfile=demo_3.h cppfile=demo_3.cpp

Map Registry Function

One function to register the mappings with the environment is generated by the OTT
utility. The function contains the mappings for all the types translated by the
invocation of the OTT utility. The function name is either specified in the MAPFUNC
parameter or, if that parameter is not specified, derived from MAPFILE parameter.
The only argument to the function is the pointer to Environment.

The function uses the provided Environment to get Map and then registers the
mapping of each translated type.

7-26 Oracle C++ Call Interface Programmer’s Guide

Carrying Forward User Added Code

Extending C++ Classes

To enhance the functionality of a class generated by the OTT utility, you can derive
new classes. You can also add methods to a class, but Oracle does not recommend
doing so due to an inherent risk.

See Also: "Carrying Forward User Added Code" on page 7-27 for
details on how to use OTT markers to retain code you want to add
in OTT generated files

Assume that you want to generate the both CAddress and MyAddress classes from
the SQL object type ADDRESS. MyAddress class can be derived from CAddress class.
To do this, the OTT utility must alter the code it generates:

» By using the MyAddress class instead of the CAddress class to represent
attributes whose database type is ADDRESS

» By using the MyAddress class instead of the CAddress class to represent vector
and REF elements whose database type is ADDRESS

» By using the MyAddress class instead of the CAddress class as the base class for
database object types that are inherited from ADDRESS. Even though a derived
class is a subtype of MyAddress, the readsQL() and writeSQL () methods called
are those of the CAddress class.

Caution: When a class is both extended and used as a base class
for another generated class, the inheriting type class and the
inherited type class must be generated in separate files.

Example 7-15 How to Extend C++ Classes Using the OTT Utility

To use the OTT utility to generate the CAddress class, which is derived from
MyAddress class), the following clause must be specified in the TYPE statement:

TYPE ADDRESS GENERATE CAdress AS MyAddress

Given the database types FULL_NAME, ADDRESS, PERSON, and PFGRFDENT as they
were created before and changing the INTYPE file to include the GENERATE ... AS
clause:

CASE = SAME
MAPFILE = RegisterMappings_5.cpp

TYPE FULL_NAME GENERATE CFullName AS MyFullName
TRANSLATE first_name as FirstName
last_name as LastName

TYPE ADDRESS GENERATE CAddress AS MyAddress
TYPE PERSON GENERATE CPerson AS MyPerson
TYPE STUDENT GENERATE CStudent AS MyStudent

Carrying Forward User Added Code

To extend the functionality of OTT generated code, at times programmers may want to
add code in the OTT generated file. The way OTT can distinguish between OTT
generated code and code added by the user is by looking for some predefined markers
(tags). OTT recognizes OTT_USERCODE_START as the "start of user code marker", and
OTT_USERCODE_END as the "end of user code marker".

Object Type Translator Utility 7-27

Carrying Forward User Added Code

For OTT marker support, a user block is defined as

OTT_USERCODE_START + user added code + OTT_USERCODE_END

OTT marker support enables carrying forward the user added blocks in *.h and *.cpp
files.

Properties of OTT Markers
These items describe the properties of OTT Markers Support:

1. User must use the command line option USE_MARKER=TRUE from the very first
time OTT is invoked to generate a file.

2. User should treat markers like other C++ statements; a marker will be defined by
OTT in the generated file as follows when the command line option USE_
MARKER=TRUE is used:

#ifndef OTT_USERCODE_START
#define OTT_USERCODE_START
#endif

#ifndef OTT_USERCODE_END
#define OTT_USERCODE_END
#endif

3. The markers, OTT_USERCODE_START and OTT_USERCODE_END, must be
preceded and followed by white space.

4. OTT will copy the text/code given within markers verbatim along with the
markers while generating the code next time,

User modified code:

// --- modified generated code
OTT_USERCODE_START

// --- including "myfullname.h"
#ifndef MYFULLNAME_ORACLE
#include "myfullname.h"

#endif

OTT_USERCODE_END

// --- end of code addition

0~ o Ul W N

Carried forward code:

OTT_USERCODE_START

// --- including "myfullname.h"
#ifndef MYFULLNAME_ORACLE
#include "myfullname.h"

#endif

OTT_USERCODE_END

o Ul i W N

5. OTT will not be able to carry forward user added code properly if the database
TYPE or INTYPE file undergoes changes as shown in the following cases:

s If user modifies the case of the type name, OTT will fail to find out the class
name with which the code was associated earlier as the case of the class name
got modified by the user in the INTYPE file.

CASE=UPPER CASE=LOWER

TYPE employee TYPE employee

TRANSLATE SALARYS AS salary TRANSLATE SALARYS AS salary
DEPTNO AS department DEPTNO AS department

TYPE ADDRESS TYPE ADDRESS

7-28 Oracle C++ Call Interface Programmer’s Guide

Carrying Forward User Added Code

TYPE item TYPE item
TYPE "Person" TYPE "Person"
TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS p_o

If user asks to generate the class with different name (GENERATE AS clause of
INTYPE file), OTT will fail to find out the class name with which the code was
associated earlier as the class name got modified by the user in the INTYPE
file.

CASE=LOWER CASE=LOWER

TYPE employee TYPE employee

TRANSLATE SALARYS AS salary TRANSLATE SALARYS AS salary
DEPTNO AS department DEPTNO AS department

TYPE ADDRESS TYPE ADDRESS

TYPE item TYPE item

TYPE "Person" TYPE "Person"

TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS

purchase_order

6. If OTT encounters an error while parsing an .h or .cpp file, it reports the error and
leaves the file having error as it is so that the user can go back and correct the error
reported, and rerun OTT.

7. OTT will flag an error if:

Using OTT Markers

it does not find a matching OTT_USERCODE_END for OTT_USERCODE_START
encountered

markers are nested (OTT finds next OTT_USERCODE_START before OTT_
USERCODE_END is found for the previous OTT_USERCODE_START)

OTT_USERCODE_END is encountered before OTT_USERCODE_START

The user must use command line option USE_MARKER=TRUE to turn on marker

support. There are two general ways in which OTT markers can carry forward user
added code:

1. User code added in .h file.

User code added in global scope. This is typically the case when user needs to
include different header files, forward declaration, and so on. Refer to the code
example provided later.

User code added in class declaration. At any point of time OTT generated
class declaration will have private scope for data members and public scope
for methods, or protected scope for data members and public scope for
methods. User blocks can be added after all OTT generated declarations in
either access specifiers.

Example 7-16 How to Add User Code to a Header File Using OTT Utility

#ifndef OTT_USERCODE_START
#define OTT_USERCODE_START
#endif

#ifndef OTT_USERCODE_END
#define OTT_USERCODE_END
#endif

#ifndef OCCI_ORACLE

Object Type Translator Utility 7-29

Carrying Forward User Added Code

#include <occi.h>
#endif

OTT_USERCODE_START // user added code

OTT_USERCODE_END

#ifndef ... // OTT generated include
#include " ... "

#endif

OTT_USERCODE_START // user added code

OTT_USERCODE_END

class <class_name_1> : public oracle::occi::PObject

{ protected:
. // OTT generated data members
OTT_USERCODE_START // user added code for data member / method
.. // declaration / inline method
OTT_USERCODE_END

public:
void *operator new(size_t size);

OTT_USERCODE_START // user added code for data member / method
.. // declaration / inline method definition
OTT_USERCODE_END

}i

OTT_USERCODE_START // user added code
OTT_USERCODE_END

class <class_name_2> : public oracle::occi::PObject

{

}i

OTT_USERCODE_START // user added code
6%&_USERCODE_END

#éﬁdif // end of .h file

2. User code added in .cpp file. OTT will support adding a new user defined
method within OTT markers. The user block must be added at the beginning of
the file, just after the includes and before the definition of OTT generated methods.
If there are more than one OTT generated includes, user code can also be added
between OTT generated includes. User code added in any other part of a xxx. cpp
file will not be carried forward.

Example 7-17 How to Add User Code to the Source File Using the OTT Utility

#ifndef OTT_USERCODE_START
#define OTT_USERCODE_START
#endif

#ifndef OTT_USERCODE_END
#define OTT_USERCODE_END

7-30 Oracle C++ Call Interface Programmer’s Guide

Carrying Forward User Added Code

#endif
..OTT_USERCODE_START // user added code
OTT;['JéERCODE_END
"OTT_USERCODE_START // user added code

OTT_USERCODE_END

/***

/ generated method implementations for the ... object type.
/***/

void *<class_name_1>::operator new(size_t size)
{
return oracle::occi::PObject::operator new(size);

}

// end of .cpp file

Object Type Translator Utility 7-31

Carrying Forward User Added Code

7-32 Oracle C++ Call Interface Programmer’s Guide

8

Globalization and Unicode Support

This chapter describes OCCI support for multibyte and Unicode charactersets.
This chapter contains these topics:

» Overview of Globalization and Unicode Support

= Specifying Charactersets

= Datatypes for Globalization and Unicode Support

= Objects and OTT Support

Overview of Globalization and Unicode Support

OCCI now enables application development in all Oracle supported multibyte and
Unicode charactersets. The UTF16 encoding of Unicode is fully supported. Application
programs can specify their charactersets when the OCCI Environment is created.
OCCl interfaces that take character string arguments (such as SQL statements,
username/passwords, error messages, object names, and so on) have been extended to
handle data in any characterset. Character data from relational tables or objects can be
in any characterset. OCCI can be used to develop multi-lingual, global and Unicode
applications.

Specifying Charactersets

OCCI applications need to specify the client characterset and client national
characterset when initializing the OCCI Environment. The client characterset specifies
the characterset for all SQL statements, object/user names, error messages, and data of
all CHAR datatype (CHAR, VARCHAR2, LONG) columns/attributes. The client national
characterset specifies the characterset for data of all NCHAR datatype (NCHAR,
NVARCHAR?2) columns/attributes.

A new createEnvironment () interface that takes the client characterset and client
national characterset is now provided. This allows OCCI applications to set
characterset information dynamically, independent of the NLS_ LANG and NLS_CHAR
initialization parameter.

Example 8—1 How to Use Globalization and Unicode Support

Environment *env = Environment:createEnvironment ("JA16SJIS", "UTF8");

This statement creates a OCCI Environment with JA16SJIS as the client characterset
and UTEFS as the client national characterset.

Globalization and Unicode Support 8-1

Datatypes for Globalization and Unicode Support

Any valid Oracle characterset name (except 'AL16UTF16') can be passed to
createEnvironment(). A OCCI specific string "OCCIUTF16" (in uppercase) can be
passed to specify UTF16 as the characterset.

Environment *env = Environment::createEnvironment ("OCCIUTF16","OCCIUTF16");
Environment *env = Environment::createEnvironment ("US7ASCII", "OCCIUTF1l6");

Note: If an application specifies "OCCIUTF16" as the client
characterset (first argument), then the application should use only
the UTF16 interfaces of OCCI. These interfaces take UString
argument types

The charactersets in the OCCI Environment are client-side only.
They indicate the charactersets the OCCI application uses to
interact with Oracle. The database characterset and database
national characterset are specified when the database is created.
Oracle converts all data from the client characterset/national
characterset to the database characterset/national characterset
before the server processes the data.

Datatypes for Globalization and Unicode Support

The datatypes used for supporting globalization and use of unicode include
UString Datatype, Multibyte and UTF16 data, and CLOB and NCLOB Datatypes.

UString Datatype

UString is a datatype that enables applications and the OCCI library to pass and
receive Unicode data in UTF-16 encoding. UString is templated from the C++ STL
basic_string with Oracle's utext datatype.

typedef basic_string<utext> UString;

Oracle's utext datatype is a 2 byte short datatype and represents Unicode characters
in the UTF-16 encoding. A Unicode character's codepoint can be represented in 1
utext or 2 utexts (2 or 4 bytes). Characters from European and most Asian scripts
are represented in a single utext. Supplementary characters defined in the Unicode 3.1
standard are represented with 2 utext elements.

In Microsoft Windows platforms, UString is equivalent to the C++ standard
wstring datatype. This is because the wchar_t datatype is type defined to a 2 byte
short in these platforms, which is same as Oracle's utext, allowing applications to
use a wstring type variable where a UString would be normally required.
Consequently, applications can also pass wide-character string literals, created by
prefixing the literal with the letter 'L', to OCCI Unicode APIs.

Example 8-2 Using wstring Datatype

//bind Unicode data using wstring datatype
//binding the Euro symbol, UTF16 codepoint 0x20AC
wchar_t eurochars[] = {0x20AC,0x00};

wstring eurostr (eurochars);
stmt->setUString (1, eurostr) ;

//Call the Unicode version of createConnection by

//passing widechar literals
Connection *conn = env->createConnection(L"SCOTT",L"TIGER",L"");

8-2 Oracle C++ Call Interface Programmer’s Guide

Datatypes for Globalization and Unicode Support

OCCI applications should use the UString datatype for data in UTF16 characterset

Multibyte and UTF16 data

For data in multibyte charactersets like JA16S]IS and UTES, applications should use
the C++ string type. The existing OCCI APIs that take string arguments can
handle data in any multibyte characterset. Due to the use of string type, OCCI
supports only byte length semantics for multibyte characterset strings.

Example 8-3 Binding UTF8 Data Using the string Datatype

//bind UTF8 data

//binding the Euro symbol, UTF8 codepoint : 0xE282AC
char eurochars[] = {0xE2,0x82,0xAC,0x00};

string eurostr (eurochars)
stmt->setString (1, eurostr);//use the string interface

For Unicode data in the UTF16 characterset, the OCCI specific datatype: UString and
the OCCI UTF16 interfaces should be used.

Example 8-4 Binding UTF16 Data Using the UString Datatype

//bind Unicode data using UString datatype

//binding the Euro symbol, UTF16 codepoint 0x20AC

utext eurochars[] = {0x20AC,0x00};

UString eurostr (eurochars) ;
stmt->setUString (1, eurostr);//use the UString interface

CLOB and NCLOB Datatypes

Oracle provides the CLOB and NCLOB datatypes for storing and processing large
amounts of character data. CLOBs represent data in the database characterset and
NCLOBs represent data in the database national characterset. CLOBs and NCLOBs can be
used as column types in relational tables and as attributes in object types.

The OCCI Clob class is used to work with both CLOB and NCLOB datatypes. If the
database type is NCLOB, then the C1lob set CharSetForm () method should be called
with OCCI_SQLCS_NCHAR before reading/writing from the LOB.

The OCCI Clob class has support for multibyte and UTF16 charactersets. By default,
the C1ob interfaces assume the data is encoded in the client-side characterset (for both
CLOBs and NCLOBs). To specify a different characterset or to specify the client-side
national characterset for a NCLOB, call the setCharSetId() or
setCharSetIdUString () methods with the appropriate characterset. The OCCI
specific string 'OCCIUTF16' can be passed to indicate UTF16 as the characterset.

Example 8-5 Using CLOB and NCLOB Datatypes

//client characterset - ZHT16BIG5, national characterset - UTF16
Environment *env = Environment::createEnvironment ("ZHT16BIG5", "OCCIUTF16");

Clob nclobvar;
//for NCLOBs, need to call setCharSetForm method.
nclobvar.setCharSetForm (OCCI_SQLCS_NCHAR) ;

//if reading/writing data in UTF16 for this NCLOB, still need to

//explicitly call setCharSetId
nclobvar.setCharSetId("OCCIUTF16")

Globalization and Unicode Support 8-3

Objects and OTT Support

To read or write data in multibyte charactersets, use the existing read and write
interfaces that take a char buffer. New overloaded interfaces that take utext buffers for
UTF16 data have been added to the Clob Class as read (), write () and
writeChunk () methods. The arguments and return values for these methods are
either bytes or characters, depending on the characterset of the LOB.

Objects and OTT Support

Multibyte and UTF16 charactersets are supported for handling character data in object
attributes. All CHAR datatype (CHAR/VARCHAR?2) attributes hold data in the client-side
characterset, while all NCHAR datatype (NCHAR/NVARCHAR?2) attributes hold data in
the client-side national characterset. A member variable of UString datatype
represents an attribute in UTF16 characterset.

See Also:

s Chapter 12, "OCCI Application Programming Interface": two new
versions of operator new() on page 12-161 that have been added to the
PObject Class for object support

= Chapter 7, "Object Type Translator Utility": a new UNICODE
parameter on page 7-9 that has been added for OTT utility support.

8-4 Oracle C++ Call Interface Programmer’s Guide

9

Oracle Streams Advanced Queuing

This chapter describes the OCCI implementation of Oracle Streams Advanced
Queuing (AQ) for messages.

This chapter contains these topics:

Overview of Oracle Streams Advanced Queuing
AQ Implementation in OCCI

Creating Messages

Enqueuing Messages

Dequeuing Messages

Listening for Messages

Registering for Notification

Message Format Transformation

See Also:

s Oracle Streams Advanced Queuing User’s Guide and Reference for basic
concepts of Advanced Queuing

s Chapter 12, "OCCI Application Programming Interface"

Overview of Oracle Streams Advanced Queuing

Oracle Streams is a new information sharing feature that provides replication, message
queuing, data warehouse loading, and event notification. It is also the foundation
behind Oracle Streams Advanced Queuing (AQ).

Advanced Queuing is the integrated message queuing feature that exposes message
queuing capabilities of Oracle Streams. AQ enables applications to:

Perform message queuing operations similar to SQL operations from the Oracle
database

Communicate asynchronously through messages in AQ queues

Integrate with database for unprecedented levels of operational simplicity,
reliability, and security to message queuing

Audit and track messages

Supports both synchronous and asynchronous modes of communication

Oracle Streams Advanced Queuing 9-1

AQ Implementation in OCCI

See Also:

http://www.oracle.com/technology/products/dataint/
for more information about the Advanced Queuing feature

The advantages of using AQ in OCCI applications include:

= Create applications that communicate with each other in a consistent, reliable,
secure, and autonomous manner

= Store messages in database tables, bringing the reliability and recoverability of the
database to your messaging infrastructure

= Retain messages in the database automatically for auditing and business
intelligence

» Create applications that leverage messaging without having to deal with a
different security, data type, or operational mode

= Leverage transactional characteristics of the database

Since traditional messaging solutions have single subscriber queues, a queue must be
created for each pair of applications that communicate with each other. The
publish/subscribe protocol of the AQ makes it easy to add additional applications
(subscribers) to a conversation between multiple applications.

AQ Implementation in OCCI

Message

OCCI AQ is a set of interfaces that allows messaging clients to access the Advanced
Queuing feature of Oracle for enterprise messaging applications. Currently, OCCI AQ
supports only the operational interfaces and not the administrative interface, but
administrative operations can be accessed through embedded PL/SQL calls.

See Also: Package DBMS_AQADM in PL/SQL Packages and Types
Reference for administrative operations in AQ support through
PL/SQL

The AQ feature can be used in conjunction with other interfaces available through
OCCI for sending, receiving, publishing, and subscribing in a message-enabled
database. Synchronous and asynchronous message consumption is available based on
a message selection rule.

Enqueuing refers to sending a message to a queue and dequeuing refers to receiving
one. A client application can create a message, set the desired properties on it and
enqueue it by storing the message in the queue, a table in the database. When
dequeuing a message, an application can either dequeue it synchronously by calling
receive methods on the queue, or asynchronously by waiting for a notification from
the database.

The AQ feature is implemented through the abstractions Message, Agent, Producer,
Consumer, Listener and Subscription.

A message is the basic unit of information being inserted into and retrieved from a
queue. A message consists of control information and payload data. The control
information represents message properties used by AQ to manage messages. The
payload data is the information stored in the queue and is transparent to AQ.

9-2 Oracle C++ Call Interface Programmer’s Guide

AQ Implementation in OCCI

Agent

Producer

Consumer

Listener

See Also: Message Class documentation in Chapter 12, "OCCI
Application Programming Interface"

An Agent represents and identifies a user of the queue, either producer or consumer
of the message, either an end-user or an application. An Agent is identified by a
name, an address and a protocol. The name can be either assigned by the application,
or be the application itself. The address is determined in terms of the communication
protocol. If the protocol is 0 (default), the address is of the

form [schema.] queuename [@dblink], a database link.

Agents on the same queue must have a unique combination of name, address, and
protocol. Example 9-1 demonstrates an instantiation of a new Agent object in a client
program.

Example 9—1 Creating an Agent
Agent agt(env, "Billing_app", "billqueue", 0);

See Also: Agent Class documentation in Chapter 12, "OCCI
Application Programming Interface"

A client uses a Producer object to enqueue Messages into a queue. It is also used to
specify various enqueue options.

See Also: Producer Class documentation in Chapter 12, "OCCI
Application Programming Interface"

A client uses a Consumer object to dequeue Messages that have been delivered to a
queue. It also specifies various dequeuing options.

Before a consumer can receive messages,

Example 9-2 Setting the Agent on the Consumer
Consumer cons (conn) ;
cons.setAgent (ag) ;

cons.receive();

See Also: Consumer Class documentation in Chapter 12, "OCCI
Application Programming Interface"

A Listener listens for Messages for registered Agents at specified queues.

See Also: Listener Class documentation in Chapter 12, "OCCI
Application Programming Interface"

Oracle Streams Advanced Queuing 9-3

Creating Messages

Subscription

A Subscription encapsulates the information and operations necessary for
registeringa subscriber for notifications.

Creating Messages

As mentioned previously, a Message is a basic unit of information that contains both
the properties of the message and its content, or payload. Each message is enqueued
by the Producer and dequeued by the Consumer objects.

Message Payloads
OCCI supports three types of message payloads: RAW, AnyData, and User-defined.

RAW
RAW payloads are mapped as objects of the Bytes Class in OCCL

AnyData

The AnyData type models self-descriptive data encapsulation; it contains both the
type information and the actual data value. Data values of most SQL types can be
converted to AnyData, and then be converted to the original data type. AnyData also
supports user-defined data types. The advantage of using AnyData payloads is that it
ensures both type preservation after an enqueue and dequeue process, and that it
allows the user to use a single queue for all types used in the application. Example 9-3
demonstrates how to create an AnyData message. Example 9—4 shows how to
retrieve the original data type from the message.

Example 9-3 Creating an AnyData Message with a String Payload

AnyData any(conn) ;
any.setFromString ("iteml") ;
Message mes (env) ;
mes.setAnyData (any) ;

Example 9-4 Determining the Type of the Payload in an AnyData Message
TypeCode tc = any.getTypel();

User-defined

OCCI supports enqueuing and dequeuing of user-defined types as payloads.
Example 9-5 demonstrates how to create a payload with a user-defined Employee
object.

Example 9-5 Creating an User-defined Payload

// Assuming type Employee (name varchar2(25),

// deptid number (10),

// manager varchar2(25))
Employee *emp = new Employee();

emp . setName ("Scott") ;

emp.setDeptid(10) ;

emp . setManager ("James") ;

Message mes (env) ;

9-4 Oracle C++ Call Interface Programmer’s Guide

Creating Messages

mes.setObject (emp) ;

Message Properties

Aside from payloads, the user can specify several additional message properties, such
as Correlation, Sender, Delay and Expiration, Recipients, and Priority and Ordering.

Correlation

Applications can specify a correlation identifier of the message during the enqueuing
process, as demonstrated in Example 9-6. This identifier can then be used by the
dequeuing application.

Example 9-6 Specifying the Correlation identifier

mes.setCorrelationId("eng corr_di");

Sender

Applications can specify the sender of the message, as demonstrated in Example 9-7.
The sender identifier can then be used by the receiver of the message.

Example 9-7 Specifying the Sender identifier

mes.setSenderId(agt) ;

Delay and Expiration

Time settings control the delay and expiration times of the message in seconds, as
demonstrated in Example 9-8.

Example 9-8 Specifying the Delay and Expiration times of the message

mes.setDelay (10) ;
mes.setExpirationTime (60);

Recipients

The agents for whom the message is intended can be specified during message
encoding, as demonstrated in Example 9-9. This ensures that only the specified
recipients can access the message.

Example 9-9 Specifying message recipients

vector<Agent> agt_list;

for (i=0; i<num_recipients; i++)
agt_list.push_back(Agent (name, address, protocol));

mes.setRecipientList(agt_list);

Priority and Ordering

By assigning a priority level to a message, the sender can control the order in which
the messages are dequeued by the receiver. Example 9-10 demonstrates how to set the
priority of a message.

Oracle Streams Advanced Queuing 9-5

Enqueuing Messages

Example 9-10 Specifying the Priority of a Message

mes.setPriority(3);

Enqueuing Messages

Messages are enqueued by the Producer. The Producer Class is also used to specify
enqueue options. A Producer object can be created on a valid connection where
enqueuing will be performed, as illustrated in Example 9-11.

The transactional behavior of the enqueue operation can be defined based on
application requirements. The application can make the effect of the enqueue
operation visible externally either immediately after it is completed, as in
Example 9-11, or only after the enclosing transaction has been committed.

To enqueue the message, use the send () method, as demonstrated in Example 9-11.
A client may retain the Message object after it is sent, modify it, and send it again.

Example 9-11 Creating a Producer, Setting Visibility, and Enqueuing the Message

Producer prod(conn) ;
prod.setVisibility (Producer: :ENQ IMMEDIATE) ;
Message mes (env) ;

mes.setBytes (obj) ; // obj represents the content of the message
prod.send(mes, queueName) ; // queueName is the name of the queue

Dequeuing Messages

Messages delivered to a queue are dequeued by the Consumer. The Consumer Class is
also used to specify dequeue options. A Consumer object can be created on a valid
connection to the database where a queue exists, as demonstrated in Example 9-12.

In applications that support multiple consumers in the same queue, the name of the
consumer has to be specified as a registered subscriber to the queue, as shown in
Example 9-12.

To dequeue the message, use the receive () method, as demonstrated in
Example 9-12. The typeName and schemaName parameters of the receive ()
method specify the type of payload and the schema of the payload type.

Example 9-12 Creating a Consumer, Naming the Consumer, and Receiving a Message
Consumer cons (conn) ;

// Name must be registered with the queue through administrative interface
cons.setConsumerName ("BillApp") ;

cons.setQueueName (queueName) ;

Message mes = cons.receive(Message::0BJECT, "BILL_TYPE", "BILL_PROCESSOR");

// obj is is assigned the content of the message
obj = mes.getObject();

9-6 Oracle C++ Call Interface Programmer’s Guide

Listening for Messages

When the queue payload type is either RAW or AnyData, schemaName and
typeName are optional, but you must specify these parameters explicitly when
working with user-defined payloads. This is illustrated in Example 9-13.

Example 9-13 Receiving a Message

//receiving a RAW message
Message mes = cons.receive (Message: :RAW) ;

//receiving an ANYDATA message
Message mes = cons.receive (Message: :ANYDATA) ;

Dequeuing Options

The dequeuing application can specify several dequeuing options before it begins to
receive messages. These include Correlation, Mode, and Navigation.

Correlation

The message can be dequeued based on the value of its correlation identifier using the
setCorrelationId() method, as shown in Example 9-14.

Mode

Based on application requirements, the user can choose to only browse through
messages in the queue, remove the messages from the queue, or lock messages using
the setDequeueMode () method, as shown in Example 9-14.

Navigation

Messages enqueued in a single transaction can be viewed as a single group by
implementing the setPositionOfMessage () method, as shown in Example 9-14.

Example 9-14 Specifying dequeuing options
cons.setCorrelationId(corrId);
cons.setDequeueMode (degMode) ;

cons.setPositionOfMessage (Consumer: :DEQ_NEXT_TRANSACTION) ;

Listening for Messages

The Listener listens for messages on queues on behalf of its registered clients. The
Listener Class implements the 1isten () method, which is a blocking call that returns
once a queue has a message for one of the registered agents, or throws an error when
the time out period expires. Example 9-15 illustrates the listening protocol.

Example 9-15 Listening for messages
Listener listener (conn);
vector<Agent> agtList;

for(int 1i=0; i<num_agents; 1i++)

agtList.push_back(Agent(name, address, protocol);

listener.setAgentList (agtList);

Oracle Streams Advanced Queuing 9-7

Registering for Notification

listener.setTimeOutForListen (10);
Agent agt(env);

try{
agt = listener.listen();

}

catch{
cout<<e.getMessage () <<endl;

}

Registering for Notification

The Subscription Class implements the publish-subscribe notification feature. It allows
an OCCI AQ application to receive client notifications directly, register an e-mail
address to which notifications can be sent, register an HTTP URL to which
notifications can be posted, or register a PL/SQL procedure to be invoked on a
notification. Registered clients are notified asynchronously when events are triggered
or on an explicit AQ enqueue. Clients do not need to be connected to a database.

An OCCI application can do all of the following:

= Register interest in notification in the AQ namespace, and be notified when an
enqueue occurs.

= Register interest in subscriptions to database events, and receive notifications
when these events are triggered.

= Manage registrations, such as disable registrations temporarily, or dropping
registrations entirely.

= Post (or send) notifications to registered clients.

Publish-Subscribe Notifications

Notifications can work in several ways. They can be:

= received directly by the OCCI application

= sent to a pre-specified e-mail address

= sent to a pre-defined HTTP URL

= invoke a pre-specified database PL/SQL procedure

Registered clients are notified asynchronously when events are triggered, or on an
explicit AQ enqueue. Clients do not need to be connected to a database for
notifications to work. Registration can be accomplished either as Direct Registration or
Open Registration.

Direct Registration

You can register directly with the database. This is relatively simple, and the
registration takes effect immediately. Example 9-16 outlines the required steps to
successfully register for direct event notification. It is assumed that the appropriate
event trigger or queue is in existence, and that the initialization parameter
COMPATIBLE is set to 8.1 or higher.

Example 9-16 How to Register for Notifications; Direct Registration

1. Create the environment in Environment : : EVENTS mode.

9-8 Oracle C++ Call Interface Programmer’s Guide

Registering for Notification

2. Create the Subscription object.

3. Set these Subscription attributes.

The namespace can be set to these options:

To receive notifications from AQ queues, namespace must be set to
Subscription: :NS_AQ. The subscription name is then either of the form
SCHEMA . QUEUE when registering on a single consumer queue, or

SCHEMA . QUEUE : CONSUMER_NAME when registering on a multi-consumer
queue.

To receive notifications from other applications that use
conn->postToSubscription () method, namespace must be set to
Subscription: :NS_ANONYMOUS

The protocol can be set to these options:

If an OCCI client needs to receive an event notification, this attribute should

be set to Subscription: : PROTO_CBK. You also need to set the notification
callback and the subscription context before registering the Subscription.
The notification callback will be called when the event occurs.

For an e-mail notification, set the protocol to Subscription: : PROTO_MATIL.
You must set the recipient name prior to subscribing to avoid an application
error.

For an HTTP URL notification, set the protocol to Subscription: : HTTP.
You must set the recipient name prior to subscribing to avoid an application
error.

To invoke PL/SQL procedures in the database on event notification, set
protocol to Subscription: : PROTO_SERVER. You must set the recipient
name prior to subscribing to avoid an application error.

4. Register the subscriptions using connection->registerSubscriptions().

Open Registration

You can also register through an intermediate LDAP that sends the registration request
to the database. This is used when the client cannot have a direct database connection;
for example, the client wants to register for an open event while the database is down.
This approach is also used when a client wants to register for the same event(s) in
multiple databases, concurrently.

Example 9-17 outlines the LDAP open registration using the Oracle Enterprise
Security Manager (OESM). Open registration has these prerequisites:

» The client must be an enterprise user

In each enterprise domain, create an enterprise role ENTERPRISE_AQ_ USER_
ROLE

For each database in the enterprise domain, add a global role GLOBAL_AQ__
USER_ROLE to enterprise role ENTERPRISE_AQ_ USER_ROLE.

For each enterprise domain, add enterprise role ENTERPRISE_AQ_USER_
ROLE to privilege group cn=0OracleDBAQUsers under cn=oraclecontext
in the administrative context

For each enterprise user that is authorized to register for events in the
database, grant enterprise role ENTERPRISE_AQ_USER_ROLE

» The compatibility of the database must be 9.0 or higher

Oracle Streams Advanced Queuing 9-9

Registering for Notification

s LDAP_REGISTRATION_ENABLED must be set to TRUE (default is FALSE):
ALTER SYSTEM SET LDAP_REGISTRATION_ENABLED=TRUE
s LDAP_REG_SYNC_INTERVAL must be set to the time_interval (in seconds) to
refresh registrations from LDAP (default is 0, "do not refresh"):
ALTER SYSTEM SET LDAP_REG_SYNC_INTERVAL = time_interval
To force a database refresh of LDAP registration information immediately, issue this
command:

ALTER SYSTEM REFRESH LDAP_REGISTRATION

Example 9-17 How to Use Open Registration with LDAP

1. Create the environment in Environment: : EVENTS |Environment: : USE_LDAP
mode.

2. Setthe Environment object for accessing LDAP:
s The host and port on which the LDAP server is residing and listening

s The authentication method; only simple username and password
authentication is currently supported

s The username (distinguished name) and password for authentication with the
LDAP server

s The administrative context for Oracle in the LDAP server
3. Create the Subscription object.

4. Set the distinguished names of the databases in which the client wants to receive
notifications on the Subscription object.

5. Set these Subscription attributes.
The namespace can be set to these options:

= To receive notifications from AQ queues, namespace must be set to
Subscription: :NS_AQ. The subscription name is then either of the form
SCHEMA . QUEUE when registering on a single consumer queue, or
SCHEMA . QUEUE : CONSUMER_NAME when registering on a multi-consumer
queue.

= To receive notifications from other applications that use
conn->postToSubscription () method, namespace must be set to
Subscription: :NS_ANONYMOUS

The protocol can be set to these options:

s If an OCCI client needs to receive an event notification, this attribute should
be set to Subscription: : PROTO_CBK. You also need to set the notification
callback and the subscription context before registering the Subscription.
The notification callback will be called when the event occurs.

= For an e-mail notification, set the protocol to Subscription: : PROTO_MAIL.
You must then set the recipient name to the e-mail address to which the
notifications will be sent.

s For an HTTP URL notification, set the protocol to Subscription: : HTTP.
You must set the recipient name to the URL to which the notification will be
posted.

9-10 Oracle C++ Call Interface Programmer’s Guide

Message Format Transformation

s Toinvoke PL/SQL procedures in the database on event notification, set
protocol to Subscription: : PROTO_SERVER. You must set the recipient
name to the database procedure invoked on notification.

6. Register the subscription: environment->registerSubscriptions ().

Open registration will take effect when the database accesses LDAP to pick up new
registrations. The frequency of pick-ups is determined by the value of REG_SYNC_
INTERVAL.

Clients can temporarily disable subscriptions, re-enable them, or permanently
unregister from future notifications.

Notification Callback

The client needs to register a notification callback. This callback is invoked only when
there is some activity on the registered subscription. In the Streams AQ namespace,
this happens when a message of interest is enqueued.

The callback must return 0, and it must have this specification:

typedef unsigned int (*callbackfn) (Subscription &sub, NotifyResult *nr);

where:
= sub- Subscription object which was used when the callback was registered.

= nr - NotifyResult object holding the notification info.

Note: Ensure that the subscription object used to register for
notifications is not destroyed until it explicitly unregisters the
subscription.

The user can retrieve the payload, message, message id, queue name and consumer
name from the NotifyResult object, depending on the source of notification. These
results are summarized in Table 9-1. Only a bytes payload is currently supported, and
you must explicitly dequeue messages rom persistent queues in the AQ namespace. If
notifications come from non-persistent queues, messages are available to the callback
directly; only RAW payloads are supported. If notifications come from persistent
queues, the message has to be explicitly dequeued; all payload types are supported.

Table 9—1 Notification Result Attributes; ANONYMOUS and AQ Namespace
Notification Result ANONYMOUS AQ Namespace, AQ Namespace,

Attribute Namespace Persistent Queue Non-Persistent Queue
payload valid invalid invalid

message invalid invalid valid

messagelD invalid valid valid

consumer name invalid valid valid

queue name invalid valid valid

Message Format Transformation

Applications often use data in different formats, and this requires a type
transformation. A transformation is implemented as a SQL function that takes the
source data type as input and returns an object of the target data type.

Oracle Streams Advanced Queuing 9-11

Message Format Transformation

Transformations can be applied when message are enqueued, dequeued, or when they
are propagated to a remote subscriber.

See Also: The following chapters of the Oracle Streams Advanced
Queuing User’s Guide and Reference for information of format
transformation:

s Oracle Streams AQ Administrative Interface
s Oracle Streams AQ Administrative Interface: Views

= Oracle Streams AQ Operational Interface: Basic Operations

9-12 Oracle C++ Call Interface Programmer’s Guide

10

Oracle XA Library

The Oracle XA library is an external interface that allows transaction managers other
than the Oracle server to coordinate global transactions. XA library use supports
non-Oracle resource managers, in distributed transactions. This is particularly useful
in transactions between several databases and resources.

The implementation of the Oracle XA library conforms to the X/Open Distributed
Transaction Processing (DTP) software architecture's XA interface specification. The
Oracle XA Library is installed as part of the Oracle Database Enterprise Edition.

This chapter contains these topics:
= Application Development with XA and OCCI
= APIs for XA Support

See Also:

. http://www.opengroup.org

s Oracle Database Application Developer’s Guide - Fundamentals for more
details on the Oracle XA library and architecture

s Chapter 12, "OCCI Application Programming Interface"

Application Development with XA and OCCI

For connection, disconnection, and transaction control on Oracle databases,
applications must interface with a transaction manager. OCCI has APIs for interacting
with Environment and Connection objects within XA and make them available for
Oracle database access, such as SELECT queries, DML statements, object access, and so
on.

Example 10-1 How to Use Transaction Managers with XA

/* Transaction manager opens connection to the Oracle server*/

tpopen ("oracle_xa+acc=p/SCOTT/TIGER+sestm=10", 1, TMNOFLAGS) ;

/* Transaction manager issues XA commands to start a global transaction*/
tpbegin() ;

/* Access the underlying Oracle database using OCCI */

Environment *xaenv = Environment::getXAEnvironment (
"oracle_xa+acc=p/SCOTT/TIGER+sestm=10") ;

Connection *xaconn = xaenv->getXAConnection (
"oracle_xa+acc=p/SCOTT/TIGER+sestm=10") ;

/* Use the Environment & Connection objects */

Oracle XA Library 10-1

APIs for XA Support

Statement *stmt = xaconn->createStatement (
"Update Emp set sal = sal * 0.2");

/* Release the Environment & Connection objects */
xaenv->releaseXAConnection (xaconn) ;
Environment: :releaseXAEnvironment (xaenv) ;

APIs for XA Support

The following methods of the Environment Class support use of XA libraries:
s getXAConnection() on page 12-90

= releaseXAEnvironment() on page 12-91

» releaseXAConnection() on page 12-91

= releaseXAEnvironment() on page 12-91

In addition, the getXAErrorCode() method of SQLException Class on page 12-196,
should be used by XA enabled applications to determine if thrown exceptions are due
to an SQL error (XA_OK) or an XA error (an XA error code).

10-2 Oracle C++ Call Interface Programmer’s Guide

11

Optimizing Performance of OCCI
Applications

This chapter describes a few suggestions that will lead to better performance for your
OCCI custom applications.

This chapter contains these topics:

s Reading and Writing Multiple LOBs
s Transparent Application Failover

= Connection Sharing

= Application Managed Data Buffering
= Array Fetch Using next() Method

= Modifying Rows Iteratively

See Also:

s Chapter 12, "OCCI Application Programming Interface"

Reading and Writing Multiple LOBs

As of Oracle Database 10g Release 2, OCCI has new interfaces that enhance
application performance while reading and writing multiple LOBs, such as Bfiles,
Blobs, Clobs and NClobs.

These interfaces have several advantages over the standard methods for reading and
writing a single LOB at a time:

= Reading and writing multiple LOBs through OCCl in a single server round-trip
improves performance by decreasing I/O time between the application and the
back end.

» The new APIs provide support for LOBs that are larger than the previous limit of 4
GB. The new interfaces accept the oraub8 datatype for amount, offsets, buffer and
length parameters. These parameters are mapped to the appropriate 64-bit native
datatype, which is determined by the compiler and the operating system.

» For Clob-related methods, the user can specify the data amount read or written in
terms of character counts or byte counts.

New APIs for this features are described in Chapter 12, "OCCI Application
Programming Interface", section on Connection Class, and include
read VectorOfBfiles() on page 12-55, read VectorOfBlobs() on page 12-55,

Optimizing Performance of OCCI Applications 11-1

Transparent Application Failover

readVectorOfClobs() on page 12-56 (overloaded to support general charactersets, and
the UTF16 characterset in particular), writeVectorOfBlobs() on page 12-59, and
writeVectorOfClobs() on page 12-59 (overloaded to support general charactersets, and
the UTF16 characterset in particular).

Using the Interfaces for Reading and Writing Multiple LOBs

Each of the readVectorOfxxx() and writeVectorOfxxx () interface uses the
following parameters:

= conn, a Connection class object
= vec, a vector of LOB objects: Bfile, Blob, or Clob
= DbyteAmts, array of amounts, in bytes, for reading or writing

» charAmts, array of amounts, in characters, for reading or writing (only applicable
for Clobs and NC1lobs)

s offsets, array of offsets, in bytes for Bfiles and Blobs, in characters for Clobs)
= buffers, array of buffer pointers
s bufferLengths, array of buffer lengths.

If there are errors in either reading or writing of one of the LOBs in the vector, the
whole operation is cancelled. The byteAmts or charAmts parameters should be
checked to determine the actual number of bytes or characters read or written.

Transparent Application Failover

OCCI Transparent Application Failover enables OCCI to be more robust in handling
database instance failures in distributed applications at run time. If a server node
becomes unavailable, applications will automatically reconnect to another surviving
node.

Some design options should be considered when including Transparent Application
Failover in an application:

= Because of the delays inherent to failover processing, the design of the application
may include a notice to the user that a failover is in progress and that normal
operation should resume shortly.

» If the session on the initial instance received ALTER SESSION commands before
the failover began, they will not be automatically replayed on the second instance.

Consequently, the developer may wish to replay these ALTER SESSION
commands on the second instance.

Note: It is the user's responsibility to track changes to the SESSION
parameters.

To address these problems, the application can register a failover callback function. In
the event of failover, the callback function is invoked at different times during the
course of reestablishing the user's session.

» The first call to the callback function occurs when Oracle first detects an instance
connection loss. This callback is intended to allow the application to inform the
user of an upcoming delay.

11-2 Oracle C++ Call Interface Programmer’s Guide

Transparent Application Failover

s If failover is successful, a second call to the callback function occurs when the
connection is reestablished and usable. At this time the client may wish to replay
ALTER SESSION commands and inform the user that failover has happened.
Note that you must keep track of SESSION parameter changes and then replay
them after the failover is complete.

If failover is unsuccessful, then the callback function is called to inform the
application that failover will not take place.

= Aninitial attempt at failover may not always successful. The failover callback
should return FO_RETRY to indicate that the failover should be attempted again.

See Also:

s Definition of FailOverType and FailOverEventType in
Table 12-11, " Enumerated Values Used by Connection Class" in
Chapter 12, "OCCI Application Programming Interface"

» Oracle Net Services Reference Guide for more detailed information
about application failover.

Using Transparent Application Failover

To enable TAF, the connect string has to be configured for failover and registered on
Connection (created from Environment, ConnectionPool and
StatelessConnectionPool). To register the callback function, use the Connection
Class interface setTAFNotify() on page 12-57.

void Connection::setTAFNotify(
int (*notifyFn) (
Environment *env,
Connection *conn,
void *ctx,
FailOverType foType,
FailOverEventType foEvent),
void *CctxTAF);

Note that TAF support for ConnectionPools does not include BACKUP and
PRECONNECT clauses; these should not be used in the connect string.

Objects and Transparent Application Failover

Transparent application failover works with the OCCI navigational and associative
access models and the object cache. In a non-RAC setup, you must ensure that the
object type definitions and object OIDs in primary and backup instances are identical.

If the application receives ORA-25402: transaction must roll back error
after the failover, then it must initiate a rollback to correctly reset the object cache on
the client. If a transaction has not started before the failover, the application should
still initiate a rollback after the failover to refresh the objects on the client object cache
from the new instance.

Connection Pooling and Transparent Application Failover

If the transparent application failover feature is activated, connections created in a
connection pool are also failed over. The application failover callback needs to be
specified for each connection obtained from the connection pool; these connections
will be failed over when used after the primary instance failure.

Optimizing Performance of OCCI Applications 11-3

Connection Sharing

Connection Sharing
This section covers the following topics:
= Introduction to Thread Safety
= Implementing Thread Safety

m Serialization

Introduction to Thread Safety

Threads are lightweight processes that exist within a larger process. Threads each
share the same code and data segments, but have their own program counters,
machine registers, and stack. Global and static variables are common to all threads,
and a mutual exclusivity mechanism may be required to manage access to these
variables from multiple threads within an application.

Once spawned, threads run asynchronously to one another. They can access common
data elements and make OCCI calls in any order. Because of this shared access to data
elements, a mechanism is required to maintain the integrity of data being accessed by
multiple threads. The mechanism to manage data access takes the form of mutexes
(mutual exclusivity locks), which ensure that no conflicts arise between multiple
threads that are accessing shared resources within an application. In OCCI, mutexes
are granted on an OCCI environment basis.

This thread safety feature of the Oracle database server and OCCI library enables
developers to use OCCI in a multithreaded application with these added benefits:

= Multiple threads of execution can make OCCI calls with the same result as
successive calls made by a single thread.

= When multiple threads make OCCI calls, there are no side effects between threads.

= Even if you do not write a multithreaded program, you do not pay any
performance penalty for including thread-safe OCCI calls.

= Use of multiple threads can improve program performance. You can discern gains
on multiprocessor systems where threads run concurrently on separate processors,
and on single processor systems where overlap can occur between slower
operations and faster operations.

In addition to client/server applications, where the client can be a multithreaded
program, thread safety is typically used in three-tier or client/agent/server
architectures. In this architecture, the client is concerned only with presentation
services. The agent (or application server) processes the application logic for the client
application. Typically, this relationship is a many-to-one relationship, with multiple
clients sharing the same application server.

The server tier in the three-tier architecture is an Oracle database server. The
applications server (agent) supports multithreading, with each thread serving a
separate client application. In an Oracle environment, this middle-tier application
server is an OCCI or precompiler program.

Implementing Thread Safety

In order to take advantage of thread safety by using OCCI, an application must be
running in a thread-safe operating system. Then the application must inform OCCI
that the application is running in multithreaded mode by specifying THREADED_
MUTEXED or THREADED_UNMUTEXED for the mode parameter of the

11-4 Oracle C++ Call Interface Programmer’s Guide

Connection Sharing

Serialization

createEnvironment () method. For example, to turn on mutual exclusivity locking,
issue the following statement:

Environment *env = Environment::createEnvironment (
Environment : : THREADED MUTEXED) ;

Note that once createEnvironment is called with THREADED_ MUTEXED or
THREADED_UNMUTEXED, all subsequent calls to the createEnvironment method
must also be made with THREADED_MUTEXED or THREADED_UNMUTEXED modes.

If a multithreaded application is running in a thread-safe operating system, then the
OCCl library will manage mutexes for the application on a for
each-OCCl-environment basis. However, you can override this feature and have your
application maintain its own mutex scheme. This is done by specifying a mode value
of THREADED_UNMUTEXED to the createEnvironment () method.

Note:

= Applications running on non-thread-safe platforms should not
pass a value of THREADED_MUTEXED or THREADED_
UNMUTEXED to the createEnvironment () method.

= If an application is single threaded, whether or not the platform
is thread safe, the application should pass a value of
Environment: : DEFAULT to the createEnvironment
method. This is also the default value for the mode parameter.
Single threaded applications which run in THREADED_
MUTEXED mode may incur performance degradation.

As an application programmer, you have two basic options regarding concurrency in a
multithreaded application:

= Automatic serialization, in which you utilize OTIS's transparent mechanisms

= Application-provided serialization, in which you manage the contingencies
involved in maintaining multiple threads

Automatic Serialization

In cases where there are multiple threads operating on objects (connections and
connection pools) derived from an OCCI environment, you can elect to let OCCI
serialize access to those objects. The first step is to pass a value of THREADED_
MUTEXED to the createEnvironment method. At this point, the OCCI library
automatically acquires a mutex on thread-safe objects in the environment.

When the OCCI environment is created with THREADED_MUTEXED mode, then only
the Environment, Map, ConnectionPool, StatelessConnectionPool and
Connection objects are thread-safe. That is, if two threads make simultaneous calls
on one of these objects, then OCCI serializes them internally. However, note that all
other OCCI objects, such as Statement, ResultSet, SQLException, Stream, and
so on, are not thread-safe as, applications should not operate on these objects
simultaneously from multiple threads.

Note that the bulk of processing for an OCCI call happens on the server, so if two
threads that use OCCI calls go to the same connection, then one of them could be
blocked while the other finishes processing at the server.

Optimizing Performance of OCCI Applications 11-5

Application Managed Data Buffering

Application-Provided Serialization

In cases where there are multiple threads operating on objects derived from an OCCI
environment, you can chose to manage serialization. The first step is to pass a value of
THREADED_UNMUTEXED for the createEnvironment mode. In this case the
application must mutual exclusively lock OCCI calls made on objects derived from the
same OCCI environment. This has the advantage that the mutex scheme can be
optimized based on the application design to gain greater concurrency.

When an OCCI environment is created in this mode, OCCI recognizes that the
application is running in a multithreaded application, but that OCCI need not acquire
its internal mutexes. OCCI assumes that all calls to methods of objects derived from
that OCCI environment are serialized by the application. You can achieve this two
different ways:

= Each thread has its own environment. That is, the environment and all objects
derived from it (connections, connection pools, statements, result sets, and so on)
are not shared across threads. In this case your application need not apply any
mutexes.

= If the application shares an OCCI environment or any object derived from the
environment across threads, then it must serialize access to those objects (by using
a mutex, and so on) such that only one thread is calling an OCCI method on any of
those objects.

Basically, in both cases, no mutexes are acquired by OCCIL. You must ensure that only
one OCCI call is in process on any object derived from the OCCI environment at any
given time when THREADED_UNMUTEXED is used.

Note:

s OCCl is optimized to reuse objects as much as possible. Since
each environment has its own heap, multiple environments
result in increased consumption of memory. Having multiple
environments may imply duplicating work with regard to
connections, connection pools, statements, and result set
objects. This will result in further memory consumption.

» Having multiple connections to the server results in more
resource consumptions on the server and network. Having
multiple environments would normally entail more
connections.

Application Managed Data Buffering

When you provide data for bind parameters by the setxxx methods in parameterized
statements, the values are copied into an internal data buffer, and the copied values are
then provided to the database server for insertion. To reduce overhead of copying
string type data that is available in user buffers, use the setDataBuffer() and next()
methods of the ResultSet Class and the execute() method of the Statement Class.

11-6 Oracle C++ Call Interface Programmer’s Guide

Application Managed Data Buffering

setDataBuffer() Method

For high performance applications, OCCI provides the setDataBuffer method
whereby the data buffer is managed by the application. The following example shows
the setDataBuffer() method:

void setDataBuffer (int paramIndex,
void *buffer,
Type type,
sbd size,
ub2 *length,
sb2 *ind = NULL,
ub2 *rc = NULL) ;

The following parameters are used in the previous method example:
s paramIndex: Parameter number

= buffer: Data buffer containing data

= type: Type of the data in the data buffer

= size:Size of the data buffer

= length: Current length of data in the data buffer

s ind: Indicator information. This indicates whether the data is NULL or not. For
parameterized statements, a value of -1 means a NULL value is to be inserted. For
data returned from callable statements, a value of -1 means NULL data is
retrieved.

» rc: Return code. This variable is not applicable to data provided to the
Statement method. However, for data returned from callable statements, the
return code specifies parameter-specific error numbers.

Not all datatypes can be provided and retrieved by means of the setDataBuffer ()
method. For instance, C++ Standard Library strings cannot be provided with the
setDataBuffer () interface.

See Also: Table 5-2, " External Datatypes and Corresponding C++
and OCCI Types" in Chapter 5, "Datatypes" for specific cases

There is an important difference between the data provided by the setxxx ()
methods and setDataBuffer () method. When data is copied in the setxxx ()
methods, the original can change once the data is copied. For example, you can use a
setString (strl) method, then change the value of str1 prior to execute. The
value of stril that is used is the value at the time setString (strl) is called.
However, for data provided by means of the setDataBuffer () method, the buffer
must remain valid until the execution is completed.

If iterative executes or the executeArrayUpdate () method is used, then data for
multiple rows and iterations can be provided in a single buffer. In this case, the data
for the ith iteration is at buffer + (i-1) *size address and the length,
indicator, and return codes are at * (length + i), *(ind + i),and * (rc + 1)
respectively.

This interface is also meant for use with array executions and callable statements that
have array or OUT bind parameters.

The same method is available in the ResultSet class to retrieve data without
re-allocating the buffer for each fetch.

Optimizing Performance of OCCI Applications 11-7

Array Fetch Using next() Method

executeArrayUpdate() Method

If all data is provided with the setDataBuffer () methods or output streams (that is,
no setxxx() methods besides setDataBuffer () or getStream() are called), then
there is a simplified way of doing iterative execution.

In this case, you should not call setMaxIterations () and setMaxParamSize().
Instead, call the setDataBuffer () or getStream() method for each parameter
with the appropriate size arrays to provide data for each iteration, followed by the
executeArrayUpdate (int arrayLength) method. The arrayLength parameter
specifies the number of elements provided in each buffer. Essentially, this is same as
setting the number of iterations to arrayLength and executing the statement.

Since the stream parameters are specified only once, they can be used with array
executes as well. However, if any setxxx () methods are used, then the
addIteration () method is called to provide data for multiple rows. To compare the
two approaches, consider an example that inserts two employees in the emp table:

Statement *stmt = conn->createStatement ("insert into emp (id, ename)
values(:1, :2)");

char enames[2][] = {"SMITH", "MARTIN"};

ub2 enameLen([2];

for (int 1 = 0; 1 < 2; 1i++)

enameLen[i] = strlen(enames[i] + 1);
stmt->setMaxIteration(2); // set maximum number of iterations
stmt->setInt (1, 7369); // specify data for the first row
stmt->setDataBuffer (2, enames, OCCI_SQLT_ STR, sizeof (ename[0]), &enameLen);
stmt->addIteration();
stmt->setInt (1, 7654); // specify data for the second row

// a setDatBuffer is unnecessary for the second bind parameter as data
// provided through setDataBuffer is specified only once.
stmt->executeUpdate() ;

However, if the first parameter could also be provided through the
setDataBuffer () interface, then, instead of the addIteration () method, you
would use the executeArrayUpdate () method:

stmt ->setSQL("insert into emp (id, ename) values (:1, :2)");

char enames[2][] = {"SMITH", "MARTIN"};

ub2 enameLen([2];

for (int 1 = 0; 1 < 2; 1++)
enamelen[i] = strlen(enames[i] + 1);

int ids[2] = {7369, 7654};

ub2 idLen[2] = {sizeof(ids[0], sizeof(ids[1])};

stmt->setDataBuffer(l, ids, OCCIINT, sizeof(ids[0]), &idLen);

stmt->setDataBuffer (2, enames, OCCI_SQLT STR, sizeof (ename[0]), &len);

stmt->executeArrayUpdate(2) ; // data for two rows is inserted.

Array Fetch Using next() Method

If the application is fetching data with only the setDataBuffer () interface or the
stream interface, then an array fetch can be executed. The array fetch is implemented
through the next () method of the ResultSet class. You must process the results
obtained through next() before calling it again.

Example 11-1 How to use Array Fetch with a ResultSet

ResultSet *resultSet = stmt->executeQuery(...);

11-8 Oracle C++ Call Interface Programmer’s Guide

Modifying Rows lteratively

resultSet->setDataBuffer(...);
while (resultSet->next (numRows) == DATA_ AVAILABLE)
process (resultSet->getNumArrayRows ());

This causes up to numRows amount of data to be fetched for each column. The buffers
specified with the setDataBuffer () interface should large enough to hold at least
numRows of data.

Modifying Rows Iteratively

To process batch errors, specify that the Statement object is in a batchMode of
execution using the setBatchErrorMode() method. Once the batchMode is set and a
batch update runs, any resulting errors are reported through the BatchSQLException
Class.

The BatchSQLException class provides methods that handle batch errors.
Example 11-2 illustrates how batch handling can be implemented within any OCCI
application.

Example 11-2 How to Modify Rows lteratively and Handle Errors
1. Create the Statement object and set its batch error mode to TRUE.

Statement *stmt = conn->createStatement ("...");
stmt->setBatchErrorMode (true);

2. Perform programmatic changes necessary by the application.
3. Update the statement.

try {
updateCount = stmt->executeUpdate ();

}

4. Catch and handle any errors generated during the batch insert or update.

catch (BatchSQLException &batchEx)
{
cout<<"Batch Exception: "<<batchEx.what ()<<endl;
int errCount = batchEx.getFailedRowCount();
cout << "Number of rows failed " << errCount <endl;
for (int 1 = 0; 1 < errCount; i++)
{
SQLException err = batchEx.getException(i);
unsigned int rowIndex = batchEx.getRowNum (i) ;
cout<<"Row " << rowIndex << " failed because of "
<< err.getErrorCode() << endl;

// take recovery action on the failed rows

}

5. Catch and handle other errors generated during the statement update. Note that
statement-level errors are still thrown as instances of a SQLException.

catch(SQLException &ex) // to catch other SQLExceptions.
{
cout << "SQLException: " << e.what() << endl;

}

Optimizing Performance of OCCI Applications 11-9

Modifying Rows lteratively

11-10 Oracle C++ Call Interface Programmer’s Guide

12

OCCI Application Programming Interface

This chapter describes the OCCI classes and methods for C++.

See Also:
= Format Models in Oracle Database SQL Reference
» Table A-1in Oracle Database Globalization Support Guide

OCCI Application Programming Interface 12-1

OCCI Classes and Methods

OCCI Classes and Methods

Table 12-1 provides a brief description of all the OCCI classes. This section is followed
by detailed descriptions of each class and its methods.

Table 12-1 Summary of OCCI Classes

Class Description
Agent Class on page 12-9 Represents an agent in the Advanced Queuing context.
AnyData Class on page 12-12 Provides methods for the Object Type Translator (OTT)

utility, read and write SQL methods for linearization of
objects, and conversions to and from other datatypes.

BatchSQLException Class on Provides methods for handling batch processing errors;

page 12-21 extends the SQLException Class.

Bfile Class on page 12-22 Provides access to a SQL BFILE value.

Blob Class on page 12-28 Provides access to a SQL BLOB value.

Bytes Class on page 12-35 Examines individual bytes of a sequence for comparing
bytes, searching bytes, and extracting bytes.

Clob Class on page 12-38 Provides access to a SQL CLOB value.

Connection Class on page 12-48 Represents a connection with a specific database.

ConnectionPool Class on Represents a connection pool with a specific database.

page 12-61

Consumer Class on page 12-66 Supports dequeuing of Messages and controls the

dequeuing options.

Date Class on page 12-74 Specifies abstraction for SQL DATE data items. Also
provides formatting and parsing operations to support the
OCCI escape syntax for date values.

Environment Class on page 12-84 Provides an OCCI environment to manager memory and
other resources of OCCI objects. An OCCI driver manager
maps to an OCCI environment handle.

IntervalDS Class on page 12-95 Represents a period of time in terms of days, hours,
minutes, and seconds.

IntervalYM Class on page 12-105 Represents a period of time in terms of year and months.

Listener Class on page 12-114 Listens on behalf of one or more agents on one or more
queues.

Map Class on page 12-116 Used to store the mapping of the SQL structured type to
C++ classes.

Message Class on page 12-117 A unit that is enqueued or dequeued.

MetaData Class on page 12-125 Used to determine types and properties of columns in a

ResultsSet, that of existing schema objects in the
database, or the database as a whole.

NotifyResult Class on page 12-138 Used to hold notification information from the Streams
AQ callback function.

Number Class on page 12-139 Models the numerical datatype.

12-2 Oracle C++ Call Interface Programmer’s Guide

OCCI Classes and Methods

Table 12-1 (Cont.) Summary of OCCI Classes

Class

Description

PObject Class on page 12-158

Producer Class on page 12-164
Ref Class on page 12-169

RefAny Class on page 12-174
ResultSet Class on page 12-177
SQLException Class on

page 12-195

StatelessConnectionPool Class on
page 12-198
Statement Class on page 12-207

Stream Class on page 12-247

Subscription Class on page 12-249

Timestamp Class on page 12-256

When defining types, enables specification of persistent or
transient instances. Class instances derived from PObject
can be either persistent or transient. If persistent, a class
instance derived from PObiject inherits from the
PObject class; if transient, there is no inheritance.

Supports enqueuing options and enqueues Messages.

The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

Provides access to a table of data generated by executing
an OCCI Statement.

Provides information on database access errors.

Represents a pool of stateless, authenticated connections to
the database.

Used for executing SQL statements, including both query
statements and insert / update / delete statements.

Used to provide streamed data (usually of the LONG
datatype) to a prepared DML statement or stored
procedure call.

Encapsulates the information and operations necessary for
registering a subscriber for notification.

Specifies abstraction for SQL TIMESTAMP data items.
Also provides formatting and parsing operations to
support the OCCI escape syntax for time stamp values.

Using OCCI Classes

OCCI classes are defined in the oracle: : occi namespace. An OCCI class name
within the oracle: : occi namespace can be referred to in one of three ways:

» Use the scope resolution operator (: :) for each OCCI class name.

s Use the using declaration for each OCCI class name.

m Use the using directive for all OCCI class name.

Using Scope Resolution Operator for OCCI

The scope resolution operator (: :) is used to explicitly specify the oracle: :occi
namespace and the OCCI class name. To declare myConnection, a Connection
object, using the scope resolution operator, you would use the following syntax:

oracle::occi: :Connection myConnection;

Using Declaration in OCCI

The using declaration is used when the OCCI class name can be used in a
compilation unit without conflict. To declare the OCCI class name in the
oracle: :occi namespace, you would use the following syntax:

using oracle::occi::Connection;

OCCI Application Programming Interface 12-3

OCCI Support for Windows NT

Connection now refers to oracle: :occi: :Connection, and myConnection can
be declared as Connection myConnection;.

Using Directive in OCCI

The using directive is used when all OCCI class names can be used in a compilation
unit without conflict. To declare all OCCI class names in the oracle: :occi
namespace, you would use the following syntax:

using oracle::occi;

Then, just as with the using declaration, the following declaration would now refer to
the OCCI class Connection as Connection myConnection;.

Using Advanced Queuing in OCCI

The Advanced Queuing classes Producer, Consumer, Message, Agent, Listener,
Subscription and NotifyResult are defined in oracle: : occi: : ag namespace.

OCCI Support for Windows NT

The following global methods are designed for accessing collections of Refs in
ResultSet Class and Statement Class on Windows NT. While method names changed,
the number of parameters and their types remain the same.

s UsegetVectorOfRefs () in place of getVector () on Windows NT.
s Use setVectorOfRefs () in place of setVector () on Windows NT.

Applications on Windows NT should be calling these new methods only for retrieving
and inserting collections of references. Applications not running on Windows NT can
use either set of accessors. However, Oracle recommends the use of the new methods
for any vector operations with Refs.

Working with Collections of Refs
Collections of Refs can be fetched and inserted using methods of the following classes:

ResultSet Class

Fetching Collection of Refs Use the following version of getVectorOfRefs() on
page 12-189 to return a column of references:

void getVectorOfRefs (
ResultSet *rs,
unsigned int index,
vector<Ref<T> > &vect);

Statement Class

Fetching Collection of Refs Use getVectorOfRefs() on page 12-224 to return a
collection of references from a column:

void getVectorOfRefs (
Statement *stmt,
unsigned int index,
vector<Ref<T> > &vect);

Inserting a Collection of Refs Use setVectorOfRefs() on page 12-245 to insert a
collection of references into a column:

12-4 Oracle C++ Call Interface Programmer’s Guide

OCCI Classes and Methods

template <class T>

void setVectorOfRefs (
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const string &sqgltype);

Inserting a Collection of Refs: Multibyte Support The following method should be
used for multibyte support:

void setVectorOfRefs (
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const string &schemaName,
const string &typeName) ;

Inserting a Collection of Refs: UString (UTF16) Support The following method
should be used for UString support:

template <class T>

void setVectorOfRefs (
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const UString &schemaName,
const UString &typeName) ;

Working with Collections of Objects

The global methods for the fetching or inserting of collections of objects have been
changed for Windows NT. The interface remains the same with respect to the method
names and the number of parameters and the datatypes, but differs in the template
parameter definition for Windows NT. Specifically, the template parameter for the
template methods of getVector () and setVector () of objects (object pointers) on
Windows NT have a T instead of a T* as shown in the following APIs.

The methods are used in the same way on different operating systems, and you don't
need to modify the call to these methods. On Windows NT, the template arguments
passed as object pointers in the method call are specialized for parameter T, instead of
a T* on other operating systems.

Collections of objects can be fetched and inserted using methods of the following
classes:

ResultSet Class

Fetching a Collection of objects This method fetches a collection of objects from a
Resultset for the column specified by the index.

#ifdef WIN32COMMON
template <class T>
void getVector(ResultSet *rs, unsigned int index,
vector< T > &vect);
#telse
template <class T>
void getVector(ResultSet *rs, unsigned int index,
vector< T* > &vect);
#endif

OCCI Application Programming Interface 12-5

OCCI Support for Windows NT

Statement Class

Fetching a Collection of Objects This method fetches a collection of objects from a

statement for the column specified by the index. This method is used in case of OUT
binds.

#ifdef WIN32COMMON
template <class T>
void getVector(Statement *stmt, unsigned int index,
vector< T > &vect);
#else
template <class T>
void getVector(Statement *stmt, unsigned int index,
vector< T* > &vect);
#endif

Inserting a Vector of Objects This method inserts a collection of objects into a
statement for the column specified by the index.

#ifdef WIN32COMMON
template <class T>
void setVector(Statement *stmt, unsigned int paramIndex,
const vector< T > &vect,
const string &sqgltype);
#telse
template <class T>
void setVector(Statement *stmt, unsigned int paramIndex,
const vector<T* > &vect,
const string &sqgltype);
#endif

Inserting a Vector of Objects: Multibyte Support The following method should be
used for multibyte support:

#ifdef WIN32COMMON

template <class T>

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector< T > &vect,
const string &schemaName,
const string &typeName) ;

#telse

template <class T>

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector< T*> &vect,
const string &schemaName,
const string &typeName) ;

#endif

Inserting a Collection of Objects: UString (UTF16) Support The following method
should be used for UString support:

#ifdef WIN32COMMON

template <class T>

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector< T > &vect,

12-6 Oracle C++ Call Interface Programmer’s Guide

OCCI Classes and Methods

const UString &schemaName,
const UString &typeName) ;
#telse
template <class T>
void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector< T*> &vect,
const UString &schemaName,
const USring &typeName) ;
#endif

OCCI Application Programming Interface 12-7

Common OCCI Constants

Common OCCI Constants

Table 12-2 defines the common constants used by all OCCI classes. Constants that are
defined for use within specific classes are summarized at the beginning of
class-specific sections.

Table 12-2 Enumerated Values Used by All OCCI Classes

Attribute Options

LockOptions = OCCI_LOCK_NONE clears the lock setting on the Ref object.

= OCCI_LOCK_X indicates that the object should be locked, and to wait for
the lock to be available if the object is locked by another session.

= OCCI_LOCK_X_NOWAIT indicates that the object should be locked, and
returns an error if it is locked by another session.

CharSetForm s OCCI_SQLCS_IMPLICIT indicates that the local database character set

should be used.

s OCCI_SQLCS_NCHAR indicates that the local database NCHAR set
should be used.

= OCCI_SQLCS_EXPLICIT indicates that the charcter set is specified
explicitly.

s OCCI_SQLCS_FLEXIBLE means that the character setis a PL/SQL
flexible flexible parameter.

LobOpenMode = OCCI_LOB_READONLY indicates that the LOB is in a read-only mode.

s OCCI_LOB_READWRITE indicates that the LOB is both in read and write
mode.

ReturnStatus w OCCI_SUCCESS indicates that the call has been made successfully
(transaction failover mode).

s FO_RETRY indicates that the call should be retried (transaction failover
mode).

12-8 Oracle C++ Call Interface Programmer’s Guide

Agent Class

Agent Class

Agent()

The Agent class represents an agent in the Advanced Queuing context.

Table 12-3 Summary of Agent Methods

Method

Summary

Agent() on page 12-9
getAddress() on page 12-9
getName() on page 12-10
getProtocol() on page 12-10
isNull() on page 12-10
operator=() on page 12-10
setAddress() on page 12-10
setName() on page 12-11
setNull() on page 12-11
setProtocol() on page 12-11

Agent class constructor.

Returns the address of the Agent.
Returns the name of the Agent.
Returns the protocol of the Agent.
Tests whether the Agent object is NULL.
Assignment operator for Agent.

Sets address of the Agent object.

Sets name of the Agent object.

Sets Agent object to NULL.

Sets protocol of the Agent object.

Agent class constructor.

Syntax

Description

Agent (
const Environment *env);

Agent (
const Agent& agent);

Agent (
const Environment *env,
const string& name,
const string& address,

Creates an Agent object initialized to its default
values.

Copy constructor.

Creates an Agent object with specified Agent's
name, address, and protocol.

unsigned int protocol = 0);

Parameter Description
env Environment
name Name

agent Original agent
address Address
protocol Protocol

getAddress()

Returns a string containing Agent's address.

OCCI Application Programming Interface 12-9

getName()

Syntax

string getAddress() const;

getName()
Returns a string containing Agent's name.

Syntax

string getName() const;

getProtocol()
Returns a numeric code representing Agent's protocol.

Syntax

unsigned int getProtocol() const;

isNull()

Tests whether the Agent object is NULL. If the Agent object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

operator=()
Assignment operator for Agent class.

Syntax

void operator=(
const Agent& agent);

Parameter Description

agent The original Agent object.

setAddress|()

Sets the address of the Agent object.

Syntax

void setAddress (
const string& addr);

Parameter Description

addr The name of the Agent object.

12-10 Oracle C++ Call Interface Programmer’s Guide

Agent Class

setName()

setNull()

setProtocol()

Sets the name of the Agent object.

Syntax

void setName (
const string& name) ;

Parameter Description

name The name of the Agent object.

Sets the Agent object to NULL. Unless operating in an inner scope, this call should be
made before terminating the Connection used to create this Agent.

Syntax
void setNull();

Sets the protocol of the Agent object.

Syntax

void setProtocol (
unsigned int protocol = 0);

Parameter Description

protocol The protocol of the Agent object.

OCCI Application Programming Interface 12-11

AnyData Class

AnyData Class

The AnyData class models self-descriptive data by encapsulating the type information
with the actual data. AnyData is used primarily with OCCI Advanced Queuing
feature, to represent and enqueue data and to receive messages from queues as
AnyData instances.

Most SQL and user-defined types can be converted into an AnyData type using the
setFromxxx () methods. An AnyData object can be converted into most SQL and
user-defined types using getAsxxx () methods. SYS.ANYDATA type models
AnyData both in SQL and PL/SQL.

Note: See Table 12—4, " OCCI Datatypes supported by AnyData
Class" for supported datatypes.

The getType() call returns the TypeCode represented by an AnyData object, while the
isNull() call determines if AnyData contains a NULL value. The setNull() method sets
the value of AnyData to NULL.

To use the OCCI AnyData type, the environment has to be initiated in OBJECT mode.

Example 12-1 Converting From an SQL Pre-Defined Type To AnyData Type
This example demonstrates how to convert types from string to AnyData.

Connection *conn;

AnyData any (conn) ;
string str("Hello World");
any.setFromString(str);

Example 12-2 Creating an SQL Pre-Defined Type From AnyData Type

This example demonstrates how to convert an AnyData object back to a string
object. Note the use of getType() and isNull() methods to validate AnyData prior to
conversion.

Connection *conn;
string str;

if (lany.isNULL())
{ if (any.getType()==0CCI_TYPECODE_VARCHAR2)
{
str = any.getAsString();
cout<<str;

Example 12-3 Converting From a User-Defined Type To AnyData Type
This example demonstrates how to convert from a user-defined type to AnyData type.

Connection *conn;

// Assume an OBJECT of type Person with the following defined fields
// CREATE TYPE person as OBJECT (

12-12 Oracle C++ Call Interface Programmer’s Guide

AnyData Class

// FRIST_NAME VARCHAR2 (20),

// LAST_NAME VARCHAR2 (25),

// EMAIL VARCHAR2 (25),

// SALARY NUMBER(8,2)

//)i

// Assume relevant classes have been generated by OTT.

Person *pers new Person("Steve", "Addams",
"steve.addams@anycompany.com", 50000.00) ;

AnyData anyObj (conn) ;

anyObj.setFromObject (pers) ;

Example 12-4 Converting From a User-Defined Type To AnyData Type

This example demonstrates how to convert an AnyData object back to a user-defined
type. Note the use of getType() and isNull() methods to validate AnyData prior to
conversion.

Connection *conn;
// Assume an OBJECT of type Person with the following defined fields
// CREATE TYPE person as OBJECT (
// FRIST_NAME VARCHAR2 (20),
// LAST_NAME VARCHAR2 (25),
// EMAIL VARCHAR2 (25),
// SALARY NUMBER(8,2)
//)
// Assume relevant classes have been generated by OTT.
Person *pers = new Person();
If(!'anyObj.isNull())
{ if (anyObj.getType ()==0CCI_TYPECODE_OBJECT)
pers = anyObj.getAsObject();

Table 12-4 OCCI Datatypes supported by AnyData Class

Datatype TypeCode

BDouble OCCI_TYPECODE_BDOUBLE
BFile OCCI_TYPECODE_BFILE
BFloat OCCI_TYPECODE_BFLOAT
Bytes OCCI_TYPECODE_RAW

Date OCCI_TYPECODE_DATE
IntervalDS OCCI_TYPECODE_INTERVAL_DS
IntervalYM OCCI_TYPECODE_INTERVAL_YM
Number OCCI_TYPECODE_NUMBERB
PObject OCCI_TYPECODE_OBJECT

Ref OCCI_TYPECODE_REF

string OCCI_TYPECODE_VARCHAR2
TimeStamp OCCI_TYPECODE_TIMESTAMP

OCCI Application Programming Interface 12-13

AnyData()

AnyData()

12-14 Oracle C++ Call Interface Programmer’s Guide

Table 12-5 Summary of AnyData Methods

Method

Summary

AnyData() on page 12-14
getAsBDouble() on page 12-15
getAsBfile() on page 12-15
getAsBFloat() on page 12-15
getAsBytes() on page 12-15
getAsDate() on page 12-15
getAsIntervalDS() on page 12-15
getAsIntervalYM() on page 12-15
getAsNumber() on page 12-16
getAsObject() on page 12-16
getAsRef() on page 12-16
getAsString() on page 12-16
getAsTimestamp() on page 12-16
getType() on page 12-16

isNull() on page 12-16
setFromBDouble() on page 12-17
setFromBfile() on page 12-17
setFromBFloat() on page 12-17
setFromBytes() on page 12-17
setFromDate() on page 12-18

setFromIntervalDS() on
page 12-18

setFromIntervalYM() on
page 12-18

setFromNumber() on page 12-18
setFromObject() on page 12-18
setFromRef() on page 12-19
setFromString() on page 12-19

setFromTimestamp() on
page 12-19

setNull() on page 12-19

AnyData class constructor.

Converts an AnyData object into BDouble.
Converts an AnyData object into Bfile.
Converts an AnyData object into BFloat.
Converts an AnyData object into Bytes.
Converts an AnyData object into Date.
Converts an AnyData object into IntervalDs.
Converts an AnyData object into IntervalYM.
Converts an AnyData object into Number.
Converts an AnyData object into PObject.

Converts an AnyData object into RefAny.

Converts an AnyData object into a namespace string.

Converts an AnyData object into Timestamp.

Retrieves the DataType held by the AnyData object. See

Table 12—4.

Tests whether AnyData object is NULL.
Converts a BDouble into Anydata.
Converts a Bfile into Anydata.
Converts a BFloat into Anydata.
Converts a Bytes into Anydata.
Converts a Date into Anydata.

Converts an IntervalDS into Anydata.
Converts an IntervalYM into Anydata.

Converts a Number into Anydata.

Converts a PObject into Anydata.

Converts a RefAny into Anydata.

Converts a namespace string into Anydata.

Converts a Timestamp into Anydata.

Sets AnyData object to NULL.

AnyData constructor.

Syntax

AnyData (
const Connection *conn);

AnyData Class

Parameter Description
conn The connection.
getAsBDouble()

Converts an AnyData object into BDouble.

Syntax

BDouble getAsBDouble() const;

getAsBfile()

Converts an AnyData object into Bfile.

Syntax
Bfile getAsBfile() const;

getAsBFloat()
Converts an AnyData object into BFloat.

Syntax

BFloat getAsBFloat() const;

getAsBytes()

Converts an AnyData object into Bytes.

Syntax

Bytes getAsBytes() const;
getAsDate()

Converts an AnyData object into Date.

Syntax

Date getAsDate() const;
getAsintervalDS()

Converts an AnyData object into IntervalDS.

Syntax

IntervalDS getAsIntervalDS() const;
getAsinterval YM()

Converts an AnyData object into IntervalYM.

OCCI Application Programming Interface 12-15

getAsNumber()

Syntax
IntervalYS getAsIntervalYM() const;

getAsNumber()
Converts an AnyData object into Number.

Syntax

Number getAsNumber () const;

getAsObiject()

Converts an AnyData object into PObject.

Syntax
PObject* getAsObject() const;

getAsRef()

Converts an AnyData object into RefAny.

Syntax

RefAny getAsRef () const;

getAsString()

Converts an AnyData object into a namespace string.

Syntax

string getAsString() const;

getAsTimestamp()
Converts an AnyData object into Timestamp.

Syntax

Timestamp getAsTimestamp() const;

getType()

Retrieves the data type held by the AnyData object. Refer to Table 12—4 on page 12-13
for valid values for TypeCode.

Syntax
TypeCode getType();

isNull()

Tests whether the AnyData object is NULL. If the AnyData object is NULL, then TRUE
is returned; otherwise, FALSE is returned.

12-16 Oracle C++ Call Interface Programmer’s Guide

AnyData Class

Syntax

bool isNull() const;
setFromBDouble()

Converts a BDouble into AnyData.

Syntax

void setFromBDouble (
const BDouble& bdouble);

Parameter Description
bdouble The BDouble that will be converted into AnyData.
setFromBfile()
Converts a Bf i1e into AnyData.
Syntax
void setFromBfile(
const Bfile& bfile);
Parameter Description
bfile The Bfile that will be converted into AnyData.
setFromBFloat()
Converts a BFloat into AnyData.
Syntax
void setFromBFloat (
const BFloat& bfloat);
Parameter Description
bfloat The BFloat that will be converted into AnyData.
setFromBytes()

Converts a Bytes into AnyData.

Syntax

void setFromBytes (
const Bytes& bytes);

Parameter Description

bytes The Bytes that will be converted into AnyData.

OCCI Application Programming Interface 12-17

setFromDate()

setFromDate()
Converts a Date into AnyData.
Syntax

void setFromDate (
const Date& date);

Parameter Description

date The Date that will be converted into AnyData

setFromintervalDS()
Converts an ITntervalDS into AnyData
Syntax

void setFromIntervalDS (
const IntervalDS& intervalds);

Parameter Description

invtervalds The IntervalDS that will be converted into AnyData.

setFrominterval YM()
Converts an IntervalYM into AnyData.

Syntax

void setFromIntervalYM (
const IntervalYM& intervalym);

Parameter Description
invalym The IntervalYM that will be converted into AnyData.
setFromNumber()

Converts a Number into AnyData.

Syntax

void setFromNumber (
const Number& num) ;

Parameter Description
num The Number that will be converted into AnyData
setFromObject()

Converts a PObject into AnyData.

12-18 Oracle C++ Call Interface Programmer’s Guide

AnyData Class

Syntax

void setFromObject (
const PObject* objptr);

Parameter Description

objptr The PObject that will be converted into AnyData.

setFromRef()

Converts a PObject into AnyData.

Syntax

void setFromRef (
const RefAny& ref
const string &typeName,
const string &schema);

Parameter Description

ref The RefAny that will be converted into AnyData.

typeName The name of the type.

schema Th name of the schema where the type is defined.
setFromString()

Converts a namespace string into AnyData.

Syntax

void setFromString (
string& str);

Parameter Description
str The namespace string that will be converted into AnyData.
setFromTimestamp()

Converts a Timestamp into AnyData.

Syntax

void setFromTimestamp (
const Timestamp& timestamp);

Parameter Description

timestamp The Timestamp that will be converted into AnyData.

setNull()

Sets AnyData object to NULL.

OCCI Application Programming Interface 12-19

setNull()

Syntax
void setNull();

12-20 Oracle C++ Call Interface Programmer’s Guide

BatchSQLException Class

BatchSQLException Class

The BatchSQLException class provides methods for handling batch processing
errors. Because BatchSQLException class is derived from the SQLException Class,
all BatchSQLException instances support all methods of SQLException, in addition
to the methods summarized in Table 12—-6.

See Also: "Modifying Rows Iteratively" section in Example 11,
"Optimizing Performance of OCCI Applications".

Table 12-6 Summary of BatchSQLException Methods

Method Summary

getException() on page 12-21 Returns the exception.

getFailedRowCount() on page 12-21 Returns the number of rows with failed inserts or
updates.

getRowNum() on page 12-21 Returns the number of the row that has an insert or

updated error

getException()

Returns the exception that matches the specified index.

Syntax

SQLException getSQLException (
unsigned int index) const;

Parameter Description

index The index into the list of errors returned by the batch process.

getFailedRowCount()

Returns the number of rows for which the statement insert or update failed.

Syntax

unsigned int getFailedRowCount() const;

getRowNum()
Returns the number of the row with an error, matching the specified index.
Syntax

unsigned int getRowNum (
unsigned int index) const;

Parameter Description

index The index into the list of errors returned by the batch process.

OCCI Application Programming Interface 12-21

Bfile Class

Bfile Class

The Bfile class defines the common properties of objects of type BFILE. A BFILE is
a large binary file stored in an operating system file outside of the Oracle database. A
Bfile object contains a logical pointer to a BFILE, not the BFILE itself.

Methods of the Bfile class enable you to perform specific tasks related to Bfile

objects.

Methods of the ResultSet and Statement classes, such as getBfile () and
setBfile (), enable you to access an SQL BFILE value.

The only methods valid on a NULL Bfile object are setName(), isNull(), and

operator=().

An uninitialized Bfile object can be initialized by:

s The setName() method. The BFILE can then be modified by inserting this BFILE

into the table and then retrieving it using SELECT ...

FOR UPDATE. The

write () method will modify the BFILE; however, the modified data will be
flushed to the table only when the transaction is committed. Note that an insert is

not required.

= Assigning an initialized Bfile object to it.

See Also:

In-depth discussion of LOBs in the introductory chapter

of Oracle Database Application Developer’s Guide - Large Objects,

Table 12-7 Summary of Bfile Methods

Method

Summary

Bfile() on page 12-23

close() on page 12-23
closeStream() on page 12-23
fileExists() on page 12-23
getDirAlias() on page 12-24
getFileName() on page 12-24
getStream() on page 12-24

getUStringDirAlias() on
page 12-24

getUStringFileName() on
page 12-24

isInitialized() on page 12-25
isNull() on page 12-25
isOpen() on page 12-25
length() on page 12-25
open() on page 12-25
operator=() on page 12-26
operator==() on page 12-26
operator!=() on page 12-26

12-22 Oracle C++ Call Interface Programmer’s Guide

Bfile class constructor.

Closes a previously opened BFILE.

Closes the stream obtained from the BFILE.
Tests whether the BFILE exists.

Returns the directory object of the BFILE.
Returns the name of the BFILE.

Returns data from the BFILE as a Stream object.

Returns a UString containing the directory object
associated with the BFILE.

Returns a UString containing the file name associated
with the BFILE.

Tests whether the Bf i 1e object is initialized.

Tests whether the Bf i 1e object is atomically NULL.
Tests whether the BFILE is open.

Returns the number of bytes in the BFILE.

Opens the BFILE with read-only access.

Assigns a BFILE locator to the Bfile object.

Tests whether two Bfile objects are equal.

Tests whether two Bfile objects are not equal.

Bfile Class

Table 12-7 (Cont.) Summary of Bfile Methods

Method Summary

operator==() on page 12-26 Reads a specified portion of the BFILE into a buffer.
setName() on page 12-27 Sets the directory object and file name of the BFILE.
setNull() on page 12-27 Sets the Bf i 1e object to atomically NULL.

Bfile()

Bfile class constructor.

Syntax Description
Bfile(); Creates a NULL Bfile object.
Bfile(Creates an uninitialized Bfile object.

const Connection *connectionp);

Bfile(Creates a copy of a Bf i 1e object.
const Bfile &srcBfile);

Parameter Description
connectionp The connection pointer
srcBfile The source Bfile object

close()
Closes a previously opened Bfile.

Syntax

void close();
closeStream()

Closes the stream obtained from the Bfile.

Syntax

void closeStream(
Stream *stream) ;

Parameter Description

stream The stream to ne closed.

fileExists()

Tests whether the BFILE exists. If the BFILE exists, then TRUE is returned; otherwise,
FALSE is returned.

OCCI Application Programming Interface 12-23

getDirAlias()

Syntax

bool fileExists() const;

getDirAlias()

Returns a string containing the directory object associated with the BFILE.

Syntax

string getDirAlias() const;

getFileName()

Returns a string containing the file name associated with the BFILE.

Syntax

string getFileName() const;

getStream()

Returns a Stream object read from the BFILE. If a stream is already open, it is
disallowed to open another stream on the Bfile object. The stream must be closed
before performing any Bfile object operations.

Syntax

Stream* getStream(
unsigned int offset
unsigned int amount = 0);

1]
=

Parameter Description

offset The starting position at which to begin reading data from the BFILE. If of fset
is not specified, the data is written from the beginning of the BLOB. Valid values
are numbers greater than or equal to 1.

amount The total number of bytes to be read from the BFILE; if amount is 0, the data
will be read in a streamed mode from input of fset until the end of the BFILE.

getUStringDirAlias()

Returns a UString containing the directory object associated with the BFILE.

Note: The UString object is in UTF16 character set. The
environment associated with BFILE should be associated with
UTF16 charset.

Syntax
UString getUStringDirAlias() const;

getUStringFileName()

Returns a UString containing the file name associated with the BFILE.

12-24 Oracle C++ Call Interface Programmer’s Guide

Bfile Class

isInitialized()

isNull()

isOpen()

length()

open()

Note: The UString object is in UTF16 charset. The environment
associated with BFILE should be associated with UTF16 charset.

Syntax

UString getUStringFileName () const;

Tests whether the Bfile object has been initialized. If the Bf i 1e object has been
initialized, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isInitialized() const;

Tests whether the Bfi1e object is atomically NULL. If the Bfile object is atomically
NULL, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

Tests whether the BFILE is open. The BFILE is considered to be open only if it was
opened by a call on this Bfi1e object. (A different Bfile object could have opened
this file as more than one open can be performed on the same file by associating the
file with different Bfile objects). If the BFILE is open, then TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool isOpen() const;

Returns the number of bytes (inclusive of the end of file marker) in the BFILE.

Syntax

unsigned int length() const;

Opens an existing BFILE for read-only access. This function is meaningful the first
time it is called for a Bfile object.

Syntax

void open();

OCCI Application Programming Interface 12-25

operator=()

operator=()

operator==()

operator!=()

read()

Assigns a Bf 11e object to the current Bf i 1e object. The source Bfile object is
assigned to this Bf i 1le object only when this Bfile object gets stored in the database.

Syntax

Bfile& operator=(
const Bfile &srcBfile);

Parameter Description

srcBfile The Bfile object to be assigned to the current Bfile object.

Compares two Bfile objects for equality. The Bfile objects are equal if they both
refer to the same BFILE. If the Bfile objects are NULL, then FALSE is returned. If the
Bfile objects are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator==(
const Bfile &srcBfile) const;

Parameter Description

srcBfile The Bfile object to be compared with the current Bfile object.

Compares two Bfile objects for inequality. The Bfile objects are equal if they
both refer to the same BFILE. If the Bfi1le objects are not equal, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
const Bfile &srcBfile) const;

Parameter Description

srcBfile The Bfile object to be compared with the current Bf ile object.

Reads a part or all of the BFILE into the buffer specified, and returns the number of
bytes read.

Syntax

unsigned int read(
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1) const;

12-26 Oracle C++ Call Interface Programmer’s Guide

Bfile Class

Parameter Description

amt The number of bytes to be read. Valid values are numbers greater
than or equal to 1.

buffer The buffer that the BFILE data is to be read into. Valid values are
numbers greater than or equal to amt.

buffsize The size of the buffer that the BFILE data is to be read into. Valid
values are numbers greater than or equal to amt.

offset The starting position at which to begin reading data from the
BFILE. If of £set is not specified, the data is written from the
beginning of the BFILE.

setName()
Sets the directory object and file name of the BFILE.
Syntax Description
void setName (Sets the directory object and file name of
const string &dirAlias, the BFILE.
const string &fileName);
void setName (Sets the directory object and file name of
const UString &dirAlias, the BFILE (Unicode support). The client
const UString &fileName):; Environment should be initialized in
OCCIUTIF16 mode.
Parameter Description
dirAlias The directory object to be associated with the BFILE.
fileName The file name to be associated with the BFILE.
setNull()

Sets the Bfile object to atomically NULL.

Syntax
void setNull();

OCCI Application Programming Interface 12-27

Blob Class

Blob Class

12-28 Oracle C++ Call Interface Programmer’s Guide

The Blob class defines the common properties of objects of type BLOB. A BLOB is a
large binary object stored as a column value in a row of a database table. A Blob
object contains a logical pointer to a BLOB, not the BLOB itself.

Methods of the B1ob class enable you to perform specific tasks related to B1ob objects.

Methods of the ResultSet and Statement classes, such as getBlob () and
setBlob (), enable you to access an SQL BLOB value.

The only methods valid on a NULL Blob object are setName(), isNull(), and

operator=().

An uninitialized Blob object can be initialized by:

s The setEmpty() method. The BLOB can then be modified by inserting this BL.OB
into the table and then retrieving it using SELECT ... FOR UPDATE. The write()
method will modify the BLOB; however, the modified data will be flushed to the
table only when the transaction is committed. Note that an update is not required.

= Assigning an initialized B1ob object to it.

See Also:

s In-depth discussion of LOBs in the introductory chapter of
Oracle Database Application Developer’s Guide - Large Objects,

Table 12-8 Summary of Blob Methods

Method

Summary

Blob() on page 12-29
append() on page 12-29
close() on page 12-29
closeStream() on page 12-29
copy() on page 12-30

getChunkSize() on page 12-30
getStream() on page 12-30
isInitialized() on page 12-31
isNull() on page 12-31
isOpen() on page 12-31
length() on page 12-31
open() on page 12-31
operator=() on page 12-32
operator==() on page 12-32
operator!= () on page 12-32
read() on page 12-32
setEmpty() on page 12-33
setNull() on page 12-33

Blob class constructor.

Appends a specified BLOB to the end of the current BLOB.
Closes a previously opened BLOB.

Closes the Stream object obtained from the BLOB.

Copies a specified portion of a BFILE or BLOB into the
current BLOB.

Returns the chunk size of the BLOB.

Returns data from the BLOB as a Stream object.
Tests whether the B1ob object is initialized

Tests whether the B1ob object is atomically NULL.
Tests whether the BLOB is open.

Returns the number of bytes in the BLOB.

Opens the BLOB with read or read/write access.
Assigns a BLOB locator to the B1ob object.

Tests whether two B1ob objects are equal.

Tests whether two B1ob objects are not equal.
Reads a portion of the BLOB into a buffer.

Sets the B1lob object to empty.

Sets the B1ob object to atomically NULL.

Blob Class

Bloh()

append()

close()

closeStream()

Table 12-8 (Cont.) Summary of Blob Methods

Method Summary

trim() on page 12-33 Truncates the BLOB to a specified length.
write() on page 12-34 Writes a buffer into an unopened BLOB.
writeChunk() on page 12-34 Writes a buffer into an open BLOB.

Blob class constructor.

Syntax Description
Blob(); Creates a NULL Blob object.
Blob(Creates an uninitialized Blob object.

const Connection *connectionp);

Blob (Creates a copy of a B1ob object.
const Blob &srcBlob) ;

Parameter Description
connectionp The connection pointer
srcBlob The source Blob object.

Appends a BLOB to the end of the current BLOB.

Syntax

void append (
const Blob &srcBlob);

Parameter Description

srcBlob The BLOB object to be appended to the current BLOB object.

Closes a BLOB.

Syntax

void close();

Closes the Stream object obtained from the BLOB.

Syntax

void closeStream(

OCCI Application Programming Interface 12-29

copy()

Stream *stream) ;

Parameter Description

stream The Stream to be closed.

copy()

Copies a part or all of a BFILE or BLOB into the current BLOB.

Syntax Description
void copy (Copies a part of a BFILE into the current
const Bfile &srcBfile, BLOB.

unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

void copy (Copies a part of a BLOB into the current BLOB.
const Blob &srcBlob,
unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

Parameter Description

srcBfile The BFILE from which the data is to be copied.

srcBlob The BLOB from which the data is to be copied.

numBytes The number of bytes to be copied from the source BFILE or BLOB. Valid

values are numbers greater than 0.

dstOffset The starting position at which to begin writing data into the current BLOB.
Valid values are numbers greater than or equal to 1.

srcOffset The starting position at which to begin reading data from the source BFILE
or BLOB. Valid values are numbers greater than or equal to 1.

getChunkSize()

Returns the chunk size of the BLOB. When creating a table that contains a BLOB, the
user can specify the chunking factor, which can be a multiple of Oracle blocks. This
corresponds to the chunk size used by the LOB data layer when accessing or
modifying the BLOB.

Syntax

unsigned int getChunkSize() const;

getStream()

Returns a Stream object from the BLOB. If a stream is already open, it is disallowed to
open another stream on Blob object, so the user must always close the stream
before performing any Blob object operations.

12-30 Oracle C++ Call Interface Programmer’s Guide

Blob Class

isInitialized()

isNull()

isOpen()

length()

open()

Syntax

Stream* getStream(

unsigned int offset =1,
unsigned int amount = 0);
Parameter Description
offset The starting position at which to begin reading data from the BLOB. If offset is

not specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

amount The total number of bytes to be read from the BLOB; if amount is 0, the data will
be read in a streamed mode from input of £set until the end of the BLOB.

Tests whether the B1ob object is initialized. If the B1ob object is initialized, then TRUE
is returned; otherwise, FALSE is returned.

Syntax

bool isInitialized() const;

Tests whether the B1ob object is atomically NULL. If the B1ob object is atomically
NULL, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

Tests whether the BLOB is open. If the BLOB is open, then TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool isOpen() const;

Returns the number of bytes in the BLOB.

Syntax

unsigned int length() const;

Opens the BLOB in read /write or read-only mode.
Syntax

void open (
LobOpenMode mode = OCCI_LOB_READWRITE) ;

OCCI Application Programming Interface 12-31

operator=()

operator=()

operator==()

operator!= ()

read()

Parameter Description

mode The mode the BLOB is to be opened in. Valid values are:
] OCCI_LOB_READWRITE
] OCCI_LOB_READONLY

Assigns a BLOB to the current BLOB. The source BLOB gets copied to the destination
BLOB only when the destination BLOB gets stored in the table.

Syntax

Blob& operator=(
const Blob &srcBlob);

Parameter Description

srcBlob The source BLOB from which to copy data.

Compares two Blob objects for equality. Two Blob objects are equal if they
both refer to the same BLOB. Two NULL Blob objects are not considered equal. If
the Blob objects are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator==(
const Blob &srcBlob) const;

Parameter Description

srcBlob The source BLOB to be compared with the current BLOB.

Compares two Blob objects for inequality. Two Blob objects are equal if they
both refer to the same BLOB. Two NULL Blob objects are not considered equal. If the
Blob objects are not equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
const Blob &srcBlob) const;

Parameter Description

srcBlob The source BLOB to be compared with the current BLOB.

Reads a part or all of the BLOB into a buffer. The actual number of bytes read is
returned.

12-32 Oracle C++ Call Interface Programmer’s Guide

Blob Class

setEmpty()

setNull()

trim()

Syntax

unsigned int read(
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1) const;

Parameter Description

amt The number of bytes to be read. Valid values are numbers greater than or equal
to 1.
buffer The buffer that the BLOB data is to be read into. Valid values are numbers

greater than or equal to amt.

buffsize The size of the buffer that the BLOB data is to be read into. Valid values are
numbers greater than or equal to amt.

offset The starting position at which to begin reading data from the BLOB. If of fset is
not specified, the data is written from the beginning of the BLOB.

Sets the B1ob object to empty.

Syntax Description
void setEmpty(); Sets the B1lob object to empty.
void setEmpty (Sets the B1lob object to empty and initializes
const Connection* connectionp); the connection pointer to the passed
parameter.
Parameter Description
connectionp The new connection pointer for the BLOB object.

Sets the B1ob object to atomically NULL.

Syntax

void setNull();

Truncates the BLOB to the new length specified.

Syntax

void trim(
unsigned int newlen);

Parameter Description

newlen The new length of the BLOB. Valid values are numbers less than or
equal to the current length of the BLOB.

OCCI Application Programming Interface 12-33

write()

write()

Writes data from a buffer into a BLOB. This method implicitly opens the BLOB, copies
the buffer into the BLOB, and implicitly closes the BLOB. If the BLOB is already open,
use writeChunk() instead. The actual number of bytes written is returned.

Syntax

unsigned int write(
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1);

Parameter Description

amt The number of bytes to be written to the BLOB.
buffer The buffer containing the data to be written to the BLOB.
buffsize The size of the buffer containing the data to be written to the

BLOB. Valid values are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the BLOB. If offset is
not specified, the data is written from the beginning of the BLOB. Valid values
are numbers greater than or equal to 1.

writeChunk()

Writes data from a buffer into a previously opened BLOB. The actual number of bytes
written is returned.

Syntax

unsigned int writeChunk (
unsigned int amount,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset = 1);

Parameter Description

amt The number of bytes to be written to the BLOB.
buffer The buffer containing the data to be written to the BLOB.

buffsize The size of the buffer containing the data to be written to the BLOB. Valid values
are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the BLOB. If of fset is
not specified, the data is written from the beginning of the BLOB. Valid values
are numbers greater than or equal to 1.

12-34 Oracle C++ Call Interface Programmer’s Guide

Bytes Class

Bytes Class

Bytes()

byteAt()

Methods of the Bytes class enable you to perform specific tasks related to Bytes

objects.

Table 12-9 Summary of Bytes Methods

Method Summary

Bytes() on page 12-35 Bytes class constructor.

byteAt() on page 12-35 Returns the byte at the specified position of the Bytes object.
getBytes() on page 12-36 Returns a byte array from the Bytes object.

isNull() on page 12-36 Tests whether the Bytes object is NULL.

length() on page 12-36 Returns the number of bytes in the Bytes object.

operator=() on page 12-36 Assignment operator for Bytes class.

setNull() on page 12-37 Sets the Bytes object to NULL.

Bytes class constructor.

Syntax

Description

Bytes (
Environment *env = NULL) ;

Bytes (
unsigned char *value,
unsigned int count
unsigned int offset = 0,
const Environment *env = NULL);

Bytes (
const Bytes &e);

Creates a Bytes object.

Creates a Bytes object that contains a subarray of
bytes from a character array.

Creates a copy of a Bytes object, use the syntax

Parameter Description

env Environment

value Initial value of the new object

count The size of the subset of the character array that will be copied into the new
bytes object

offset The first position from which to begin copying the character array

e The source Bytes object.

Returns the byte at the specified position in the Bytes object.

Syntax

unsigned char byteAt (

OCCI Application Programming Interface 12-35

getBytes()

getBytes()

isNull()

length()

operator=()

unsigned int index) const;

Parameter Description

index The position of the byte to be returned from the Bytes object; the
first byte of the Bytes object is at 0.

Copies bytes from a Bytes object into the specified byte array.

Syntax

void getBytes (
unsigned char *dst,
unsigned int count,
unsigned int srcBegin = 0,
unsigned int dstBegin = 0) const;

Parameter Description

dst The destination buffer into which data from the Bytes object is to be written.
count The number of bytes to copy.

srcBegin The starting position at which data is to be read from the Bytes object; the
position of the first byte in the Bytes object is at 0.

dstBegin The starting position at which data is to be written in the destination buffer; the
position of the first byte in dst is at 0.

Tests whether the Bytes object is atomically NULL. If the Bytes object is atomically
NULL, then TRUE is returned; otherwise FALSE is returned.

Syntax

bool isNull() const;

This method returns the length of the Bytes object.

Syntax

unsigned int length() const;

Assignment operator for Bytes class.

Syntax

void operator=(
const Bytes& bytes);

12-36 Oracle C++ Call Interface Programmer’s Guide

Bytes Class

Parameter Description

bytes The original Bytes.

setNull()

This method sets the Bytes object to atomically NULL.

Syntax
void setNull();

OCCI Application Programming Interface 12-37

Clob Class

Clob Class

12-38 Oracle C++ Call Interface Programmer’s Guide

The Clob class defines the common properties of objects of type CLOB. A Clobisa
large character object stored as a column value in a row of a database table. A C1ob
object contains a logical pointer to a CLOB, not the CLOB itself.

Methods of the C1ob class enable you to perform specific tasks related to C1ob objects,
including methods for getting the length of a SQL CLOB, for materializing a CLOB on
the client, and for extracting a part of the CLOB.

The only methods valid on a NULL CLOB object are setName(), isNull(), and

operator=().

Methods in the ResultSet and Statement classes, such as getClob () and
setClob (), enable you to access an SQL CLOB value.

An uninitialized CLOB object can be initialized by:

s The setEmpty() method. The CLOB can then be modified by inserting this CLOB
into the table and retrieving it using SELECT ... FOR UPDATE. The write() method
will modify the CLOB; however, the modified data will be flushed to the table only
when the transaction is committed. Note that an insert is not required.

= Assigning an initialized C1ob object to it.

See Also:

s In-depth discussion of LOBs in the introductory chapter of
Oracle Database Application Developer’s Guide - Large Objects,

Table 12-10 Summary of Clob Methods

Method

Summary

Clob() on page 12-39
append() on page 12-39
close() on page 12-40
closeStream() on page 12-40
copy() on page 12-40

getCharSetForm() on page 12-41
getCharSetld() on page 12-41

getCharSetldUString() on
page 12-41

getChunkSize() on page 12-41
getStream() on page 12-41
isInitialized() on page 12-42
isNull() on page 12-42
isOpen() on page 12-42
length() on page 12-42

open() on page 12-42
operator=() on page 12-42

Clob class constructor.

Appends a Clob at the end of the current Clob.

Closes a previously opened Clob.

Closes the Stream object obtained from the current Clob.

Copies all or a portion of a C1ob or BFILE into the current
Clob.

Returns the character set form of the Clob.
Returns the character set ID of the Clob.

Retrieves the characterset name associated with the Clob;
UString version.

Returns the chunk size of the Clob.

Returns data from the CLOB as a Stream object.

Tests whether the C1ob object is initialized.

Tests whether the C1ob object is atomically NULL.
Tests whether the C1ob is open.

Returns the number of characters in the current CLOB.
Opens the CLOB with read or read /write access.

Assigns a CLOB locator to the current C1lob object.

Clob Class

Clob()

append()

Table 12-10 (Cont.) Summary of Clob Methods

Method

Summary

operator==() on page 12-43
operator!=() on page 12-43
read() on page 12-43
setCharSetld() on page 12-44

setCharSetldUString() on
page 12-44

setCharSetForm() on page 12-45
setEmpty() on page 12-45
setNull() on page 12-45

trim() on page 12-45

write() on page 12-46
writeChunk() on page 12-46

Tests whether two Clob objects are equal.

Tests whether two C1ob objects are not equal.
Reads a portion of the CLOB into a buffer.

Sets the character set ID associated with the Clob.

Sets the character set ID associated with the C1lob; used
when the environment character set is UTF16.

Sets the character set form associated with the Clob.
Sets the C1ob object to empty.

Sets the C1ob object to atomically NULL.

Truncates the C1ob to a specified length.

Writes a buffer into an unopened CLOB.

Writes a buffer into an open CLOB.

Clob class constructor.

Syntax Description
Clob(); Creates a NULL Clob object.
Clob(Creates an uninitialized C1ob object.

const Connection *connectionp);

Clob(
const Clob *srcClob);

Creates a copy of a C1ob object.

Parameter Description
connectionp Connection pointer
srcClob The source C1ob object

Appends a CLOB to the end of the current CLOB.

Syntax

void append (
const Clob &srcClob) ;

Parameter Description

srcClob

The CLOB to be appended to the current CLOB.

OCCI Application Programming Interface 12-39

close()

close()
Closes a CLOB.
Syntax
void close();
closeStream()

Closes the Stream object obtained from the CLOB.

Syntax

void closeStream(
Stream *stream) ;

Parameter Description

stream The Stream object to be closed.

copy()

Copies a part or all of a BFILE or CLOB into the current CLOB.

Syntax Description

void copy (Copies a BFILE into the current CLOB.
const Bfile &srcBfile,
unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

void copy (Copies a CLOB into the current CLOB.
const Clob &srcClob,
unsigned int numBytes,
unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

Parameter Description

srcBfile The BFILE from which the data is to be copied.
srcClob The CLOB from which the data is to be copied.

numBytes The number of characters to be copied from the source BFILE or CLOB. Valid
values are numbers greater than 0.

dstoffset The starting position at which data is to be is at 0.

The starting position at which to begin writing data into the current CLOB Valid
values are numbers greater than or equal to 1 written in the destination buffer;
the position of the first byte.

srcOffset The starting position at which to begin reading data from the source BFILE or
CLOB. Valid values are numbers greater than or equal to 1.

12-40 Oracle C++ Call Interface Programmer’s Guide

Clob Class

getCharSetForm()

Returns the character set form of the CLOB.

Syntax

CharSetForm getCharSetForm() const;

getCharSetld()

Returns the character set ID of the CLOB, in string form.

Syntax
string getCharSetId() const;

getCharSetldUString()

Retrieves the characterset name associated with the Clob; UString version.

Syntax

UString getCharSetIdUString() const;

getChunkSize()

Returns the chunk size of the CLOB. When creating a table that contains a CLOB, the
user can specify the chunking factor, which can be a multiple of Oracle blocks. This
corresponds to the chunk size used by the LOB data layer when accessing and
modifying the CLOB.

Syntax

unsigned int getChunkSize() const;

getStream()

Returns a Stream object from the CLOB. If a stream is already open, it is disallowed to
open another stream on CLOB object, so the user must always close the stream before
performing any Clob object operations. The client's character set id and form will be
used by default, unless they are explicitly set through setCharSetld() and setEmpty()
calls.

Syntax

Stream* getStream(
unsigned int offset
unsigned int amount = 0);

1]
=

Parameter Description

offset The starting position at which to begin reading data from the CLOB. If offset is
not specified, the data is written from the beginning of the CLOB. Valid values are
numbers greater than or equal to 1.

amount The total number of consecutive characters to be read. If amount is 0, the data
will be read from the of fset value until the end of the CLOB.

OCCI Application Programming Interface 12-41

isInitialized()

isInitialized()

Tests whether the Clob object is initialized. If the C1ob object is initialized, TRUE is
returned; otherwise, FALSE is returned.

Syntax
bool isInitialized() const;
isNull()
Tests whether the C1ob object is atomically NULL. If the C1lob object is atomically
NULL, TRUE is returned; otherwise, FALSE is returned.
Syntax
bool isNull() const;
isOpen()
Tests whether the CLOB is open. If the CLOB is open, TRUE is returned; otherwise,
FALSE is returned.
Syntax
bool isOpen() const;
length()
Returns the number of characters in the CLOB.
Syntax
unsigned int length() const;
open()

Opens the CLOB in read/write or read-only mode.

Syntax

void open(
LObOpenMode mode = OCCI_LOB_READWRITE) ;

Parameter Description

mode The mode the CLOB is to be opened in. Valid values are:
] OCCI_LOB_READWRITE
] OCCI_LOB_READONLY

operator=()

Assigns a CLOB to the current CLOB. The source CLOB gets copied to the destination
CLOB only when the destination CLOB gets stored in the table.

12-42 Oracle C++ Call Interface Programmer’s Guide

Clob Class

operator==()

operator!=()

read()

Syntax

Clob& operator=(
const Clob &srcClob);

Parameter Description

srcClob The C1lob from which the data must be copied.

Compares two Clob objects for equality. Two C1lob objects are equal if they both refer
to the same CLOB. Two NULL Clob objects are not considered equal. If the B1ob
objects are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator==(
const Clob &srcClob) const;

Parameter Description

srcClob The C1lob object to be compared with the current C1ob object.

Compares two Clob objects for inequality. Two Clob objects are equal if they both
refer to the same CLOB. Two NULL C1lob objects are not considered equal. If the C1ob
objects are not equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
const Clob &srcClob) const;

Parameter Description

srcClob The C1ob object to be compared with the current C1ob object.

Reads a part or all of the CLOB into a buffer.

Returns the actual number of characters read for fixed-width charactersets, such as
UTF16, or the number of bytes read for multibyte charactersets, including UTFS.

The client's character set id and form will be used by default, unless they are explicitly
set through setCharSetld(), setCharSetldUString() and setCharSetForm() calls.

Syntax Description

unsigned int read(Reads a part or all of the CLOB into a buffer.
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset=1) const;

OCCI Application Programming Interface 12-43

setCharSetld()

Syntax Description

unsigned int read(Reads a part or all of the CLOB into a
unsigned int amt, buffer; globalization enabled. Should be
unsigned utext *buffer, called after setting character set to
unsigned int bufsize, OCCIUTF16 using setCharSetId()

unsigned int offset=1) const; method.

Note: For the second version of the method, the return value
represents either the number of characters read for fixed-width
charactersets (UTF16), or the number of bytes read for multibyte
charactersets (including UTES).

Parameter Description

amt The number of bytes to be read. from the CLOB.

buffer The buffer that the CLOB data is to be read into.

buffsize The size of the buffer. Valid values are numbers greater than or

setCharSetld()

equal to amt.

offset The starting position at which to begin reading data from the CLOB.
If of fset is not specified, the data is written from the beginning of
the CLOB. Valid values are numbers greater than or equal to 1.

Sets the Character set Id associated with C1ob. The charset id set will be used for
read /write and getStream() operations. If no value is set explicitly, the default client's
character set id is used. List of character sets supported is given in Globalization
Support Guide Appendix A.

Syntax

void setCharSetId(
const string &charset);

Parameter Description

charset Oracle supported characterset name, such as ESDEC, ZHT16BIG5,
or OCCIUTF16.

setCharSetldUString()

Sets the Character set Id associated with C1ob; used when the environment's charset is
UTF16. The charset id set will be used for read, write and getStream() operations.

Syntax

void setCharSetIdUSString (
const string &charset);

12-44 Oracle C++ Call Interface Programmer’s Guide

Clob Class

Parameter Description

charset Oracle supported characterset name, such as WE8DEC, ZHT16BIGS5,
or OCCIUTF16 in UString (UTF16 characterset).

setCharSetForm()

setEmpty()

setNull()

trim()

Sets the character set form associated with the CLOB. The charset form set will be used
for read, write and getStream() operations. If no value is set explicitly, by default,
OCCI_SQLCS_IMPLICIT will be used.

Syntax

void setCharSetForm(
CharSetForm csfrm);

Parameter Description

csfrm The charset form for Clob.

Sets the C1ob object to empty.

Syntax Description

void setEmpty(); Sets the C1ob object to empty.

void setEmpty (Sets the C1ob object to empty and initializes the
const Connection* connectionp); connection pointer to the passed parameter.

Parameter Description

connectionp The new connection pointer for the C1ob object.

Sets the C1ob object to atomically NULL.

Syntax
void setNull();

Truncates the CLOB to the new length specified.
Syntax

void trim(
unsigned int newlen);

OCCI Application Programming Interface 12-45

write()

Parameter Description

newlen The new length of the CLOB. Valid values are numbers less than or equal to the
current length of the CLOB.

write()

Writes data from a buffer into a CLOB.

This method implicitly opens the CLOB, copies the buffer into the CLOB, and implicitly
closes the CLOB. If the CLOB is already open, use writeChunk() instead. The actual
number of characters written is returned. The client's character set id and form will be
used by default, unless they are explicitly set through setCharSetld() and
setCharSetForm() calls.

Syntax Description

unsigned int write(Writes data from a buffer into a CLOB.
unsigned int amt,
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset=1);

unsigned int write(Writes data from a UTF16 buffer into a CLOB;
unsigned int amt, globalization enabled. Should be called after setting
utext *buffer, character set to OCCIUTF16 using

unsigned int bufsize, setCharSetldUString() method.

unsigned int offset=1);

Parameter Description

amt The amount parameter represents:
= number of characters written for fixed-width charactersets (UTF16)

= number of bytes written for multibyte charactersets (including UTF8)
buffer The buffer containing the data to be written to the CLOB.

buffsize The size of the buffer containing the data to be written to the CLOB. Valid
values are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the CLOB. If offset is
not specified, the data is written from the beginning of the CLOB. Valid values
are numbers greater than or equal to 1.

writeChunk()

Writes data from a buffer into a previously opened CLOB.

The actual number of characters written is returned. The client's character set id and
form will be used by default, unless they are explicitly set through setCharSetld() and
setCharSetForm() calls.

12-46 Oracle C++ Call Interface Programmer’s Guide

Clob Class

Syntax Description

unsigned int writeChunk (Writes data from a buffer into a previously
unsigned int amt, opened CLOB.
unsigned char *buffer,
unsigned int bufsize,
unsigned int offset=1);

unsigned int writeChunk (Writes data from a UTF16 buffer into a
unsigned int amt, CLOB; globalization enabled. Should be
utext *buffer, called after setting characterset to

unsigned int bufsize,
unsigned int offset=1);

OCCIUTF16 using setCharSetldUString()
method.

Parameter Description
amt The amount parameter represents
= number of characters written for fixed-width charactersets (UTF16)
= number of bytes written for multibyte charactersets (including UTF8)
buffer The buffer containing the data to be written to the CLOB.
buffsize The size of the buffer containing the data to be written to the CLOB. Valid
values are numbers greater than or equal to amt.
offset The starting position at which to begin writing data into the CLOB. If offset is

not specified, the data is written from the beginning of the CLOB. Valid values
are numbers greater than or equal to 1.

OCCI Application Programming Interface 12-47

Connection Class

Connection Class

The Connection class represents a connection with a specific database. Within the
context of a connection, SQL statements are executed and results are returned.

Table 12-11 Enumerated Values Used by Connection Class

Attribute Options

ProxyType s PROXY_DEFAULT is the database user name.

FailOverType = FO_NONE indicates that the user requested no protection for

failover.

s FO_SESSION indicates that the user requested only session failover.

= FO_SELECT indicates that the use requested select failover.

FailOverEventType =

FO_BEGIN indicates that a lost connection has been detected;

failover is starting.

= FO_END indicates that a failover completed successfully; the
Connection is ready for use.

s FO_ABORT indicates that the failover was unsuccessful; it will not be
attempted again.

s FO_REAUTH indicates that the user session has been
reauthenticated.

s FO_ERROR indicates that a failover was unsuccessful; the
application can handle the error and retry failover..

Table 12-12 Summary of Connection Methods

Method

Summary

changePassword() on page 12-49
commit() on page 12-50

createStatement() on page 12-50
flushCache() on page 12-51
getClientCharSet() on page 12-51

getClientCharSetUString() on
page 12-51

getClientNCHARCharSet() on
page 12-51

getClientNCHARCharSetUString|()
on page 12-51

getClientVersion() on page 12-51
getMetaData() on page 12-52

getOClIServer() on page 12-52

getOCIServiceContext() on
page 12-52

12-48 Oracle C++ Call Interface Programmer’s Guide

Changes the password for the current user.

Commits changes made since the previous commit or
rollback and release any database locks held by the

session.

Creates a Statement object to execute SQL statements.
Flushes the object cache associated with the connection.
Returns the default client character set.

Returns the globalization enabled client character set in
UString.

Returns the default client NCHAR character set.

Returns the globalization enabled client NCHAR character
setin UString.

Returns the version of the client used.

Returns the metadata for an object accessible from the
connection.

Returns the OCI server context associated with the
connection.

Returns the OCI service context associated with the
connection.

Connection Class

Table 12-12 (Cont.) Summary of Connection Methods

Method

Summary

getOClISession() on page 12-53
getServerVersion() on page 12-53

getServerVersionUString() on
page 12-53

getStmtCacheSize() on page 12-53
getTag() on page 12-53

isCached() on page 12-53
pinVectorOfRefs() on page 12-54

postToSubscriptions() on
page 12-54

read VectorOfBfiles() on page 12-55
read VectorOfBlobs() on page 12-55
readVectorOfClobs() on page 12-56

registerSubscriptions() on
page 12-57

rollback() on page 12-57

setStmtCacheSize() on page 12-57
setTAFNotify() on page 12-57

terminateStatement() on page 12-58

unregisterSubscription() on
page 12-58

writeVectorOfBlobs() on page 12-59
writeVectorOfClobs() on page 12-59

Returns the OCI session context associated with the
connection.

Returns the version of the Oracle server used, as
string.

Returns the version of the Oracle server used, as a
UString.

Retrieves the size of the statement cache.
Returns the tag associated with the connection.
Determines if the specified statement is cached.

Pins an entire vector of Ref objects into object cache in a
single round trip; pinned objects are available through an
OUT parameter vector.

Posts notifications to subscriptions.

Reads multiple Bfiles in a single server round-trip.
Reads multiple Blobs in a single server round-trip.
Reads multiple C1obs in a single server round-trip.

Registers several Subscriptions for notification.

Rolls back all changes made since the previous commit or
rollback and release any database locks held by the
session.

Enables or disables statement caching.

Registers failover callback function on the Connection
object.

Closes a Statement object and free all resources
associated with it.

Unregisters a Subscription, turning off its notifications

Writes multiple Blobs in a single server round-trip.

Writes multiple Clobs in a single server round-trip.

changePassword()

Changes the password of the user currently connected to the database.

Syntax

Description

void changePassword (
const string &user,
const string &oldPassword,
const string &newPassword)=0;

void changePassword (
const UString &user,
const UString &oldPassword,

Changes the password of the user.

Changes the password of the user (Unicode support).
The client Environment should be initialized in
OCCIUTIF16 mode.

const UString &newPassword)=0;

OCCI Application Programming Interface 12-49

commit()

Parameter Description

user The user currently connected to the database.
oldpassword The current password of the user.

newPassword The new password of the user.

commit()
Commits all changes made since the previous commit or rollback, and releases any
database locks currently held by the session.
Syntax
void commit ()=0;
createStatement()

Creates a Statement object with the SQL statement specified.

Syntax Description

Statement* createStatement (Searches the cache for a specified SQL
const string &sql="")=0; statement and returns it; if not found,

creates a new statement.

Statement* createStatement (Searches the cache for a statement with a
const string &sql, matching tag; if not found, creates a new
const string &tag)=0; statement with the specified SQL content.

Statement* createStatement (Searches the cache for a specified SQL
const UString &sqgl)=0; statement and returns it; if not found,

creates a new statement. Globalization
enabled.

Statement* createStatement (Searches the cache for a matching tag and
const Ustring &sql, returns it; if not found, creates a new
const Ustring &tag)=0; statement with the specified SQL content.

Globalization enabled.

Parameter Description
sql The SQL string to be associated with the statement object.
tag The tag whose associated statement needs to be retrieved from the

cache. Ignored if statement caching is disabled.

Note:

= For the caching enabled version of this method, the cache is initially
searched for a statement with a matching tag, which is returned. If no
match is found, the cache is searched again for a statement that
matches the sqgl parameter, which is returned. If no match is found, a
new statement with a NULL tag is created and returned. If the sql
parameter is empty and the tag search fails, this call generates an
ERROR.

= Non-caching versions of this method always create and return a new
statement.

12-50 Oracle C++ Call Interface Programmer’s Guide

Connection Class

flushCache()

Flushes the object cache associated with the connection.

Syntax
void flushCache()=0;

getClientCharSet()

Returns the session's character set.

Syntax
string getClientCharSet() const=0;

getClientCharSetUString()

Returns the globalization enabled client character set in UString.

Syntax

UString getClientCharSetUString() const=0;

getClientNCHARCharSet()

Returns the session's NCHAR character set.

Syntax
string getClientNCHARCharSet () const=0;

getClientNCHARCharSetUString()

Returns the globalization enabled client NCHAR character set in UString.

Syntax

UString getClientNCHARCharSetUString() const=0;

getClientVersion()

Returns the version of the client library the application is using at runtime.

This is used by applications to determine the version of the OCCI client at runtime,
and if the application uses several separate codepaths that use several different client
patchsets.

The values of parameters majorvVersion and minorVersion use macros OCCI_
MAJOR_VERSION and OCCI_MINOR_VERSION, respectively. These macros define the
mahor and minor versions of the OCCI client library. Compares the versions returned.

Syntax

void getClientVersion (
int &majorVersion,
int &minorVersion,
int &updateNum,

OCCI Application Programming Interface 12-51

getMetaData()

getMetaData()

int &patchNumber,
int &portUpdateNum)

Parameter Description

majorVersion The major version of the client library.
minorVersion The minor version of the client library.
updateNum The update number.

patchNumber The number of the patch applied to the library.

portUpdateNumber The number of the port-specific port update applied to the library.

Returns metadata for an object in the database.

Syntax

Description

MetaData getMetaData (
const string &object,

MetaData: : ParamType prmtyp=MetaData::PTYPE_UNK) const=0;

MetaData getMetaData (
const UString &object,

MetaData: : ParamType prmtyp=MetaData::PTYPE_UNK) const=0;

MetaData getMetaData (
const RefAny &ref) const=0;

Returns metadata for
an object in the
database.

Returns metadata for a
globalization enabled
object in the database.

Returns metadata for
an object in the
database through a
reference.

Parameter Description

object The SQL string to be associated with the statement object.

prmtyp The type of the schema object being described, as defined by the
enumerated ParamType of the MetaData class, Table 12-26 on
page 12-125

ref A REF to the Type Descriptor Object (TDO) of the type to be
described.

getOClIServer()

Returns the OCI server context associated with the connection.

Syntax

OCIServer* getOCIServer() const=0;

getOCIServiceContext()

Returns the OCI service context associated with the connection.

12-52 Oracle C++ Call Interface Programmer’s Guide

Connection Class

Syntax
OCISveCtx* getOCIServiceContext () const=0;

getOCISession()

Returns the OCI session context associated with the connection.

Syntax

0OCISession* getOCISession() const=0;

getServerVersion()

Returns the version of the databse server, as a string, used by the current
Connection object. This can be used when an application uses several separate
codepaths and connects to several different server versions.

Syntax

string getServerVersion() const;

getServerVersionUString()

Returns the version of the databse server, as a UString, used by the current
Connection object. This can be used when an application uses several separate
codepaths and connects to several different server versions.

Syntax

UString getServerVersionUString() const;

getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax

unsigned int getStmtCacheSize() const=0;

getTag()

Returns the tag associated with the connection. Valid only for connections from a
stateless connection pool.

Syntax

string getTag() const=0;

isCached()

Determines if the specified statement is cached.

OCCI Application Programming Interface 12-53

pinVectorOfRefs()

Syntax Description

bool isCached(Searches the cache for a statement with a
const string &sql, matching tag. If the tag is not specified,
const string &tag="")=0; the cache is searched for a matching SQL

statement.

bool isCached (Searches the cache for a statement with a
const Ustring &sql, matching tag. If the tag is not specified,
const Ustring &tag)=0; the cache is searched for a matching SQL

statement. Globalization enabled.

Parameter Description
sql The SQL string to be associated with the statement object.
tag The tag whose associated statement needs to be retrieved from the

cache. Ignored if statement caching is disabled.

pinVectorOfRefs()

Pins an entire vector of Ref objects into object cache in a single round-trip. Pinned
objects are available through an OUT parameter vector.

Syntax Description
template <class T> void Returns the objects.
pinVectorOfRefs (

const Connection *conn,

vector <Ref<T>> & vect,

vector <T*> &vectObj,

LockOptions lockOpt=0CCI_LOCK_NONE) ;

template <class T> void Does not explicitly return the objects; an
pinVectorOfRefs (application needs to dereference a particular
const Connection *conn, Ref object by a ptr () call, which returns a

vector <Ref<T>> & vect, previously pinned object.

LockOptions lockOpt=0CCI_LOCK_NONE) ;

Parameter Description

conn Connection

vect Vector of Ref objects that will be pinned.

vectObj Vector that will contain objects after the pinning operation is complete; an OUT
parameter.

lockOpt Lock option used during the pinning of the array, as defined by LockOptions in

Table 12-2 on page 12-8. The only supported value is OCCI_LOCK_NONE.

postToSubscriptions()

Posts notifications to subscriptions.

The Subscription object needs to have a valid subscription name, and the
namespace should be set to NS_ANONYMOUS. The payload needs to be set before
invoking this call; otherwise, the payload is assumed to be NULL and is not delivered.

12-54 Oracle C++ Call Interface Programmer’s Guide

Connection Class

The caller has to preserve the payload until the posting call is complete. This call
provides a best-effort guarantee; a notification is sent to registered clients at most once.

This call is primarily used for light-weight notification and is useful in the case of
several system events. If the application needs more rigid guarantees, it can use the
Oracle Streams Advanced Queuing functionality.

Syntax

void postToSubscriptions (
const vector<aq::Subscription>& sub)=0;

Parameter Description
sub The vector of subscriptions that receive postings.
readVectorOfBfiles()

Reads multiple Bfiles in a single server round-trip. All Bfiles must already be open
for reading.

Syntax

void readVectorOfBfiles(
const Connection *conn,
vector<Bfile> &vec,
oraub8 *byteAmts,
oraub8 *offsets,
unsigned char *buffers|],
oraub8 *bufferLengths);

Parameter Description

conn Connection.

vec Vector of Bfile objects; each Bfi1le must be open for reading.

byteAmts Array of amount of bytes to read from the individual Bfiles. The actual
number of bytes read from each Bfile is returned in this array.

offsets Array of offsets, starting position where reading from the Bf i 1es starts.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

readVectorOfBlobs()

Reads multiple BLOBs in a single server round-trip.

Syntax

void readVectorOfBlobs (
const Connection *conn,
vector<Blob> &vec,
oraub8 *byteAmts,
oraub8 *offsets,
unsigned char *buffers|],
oraub8 *bufferLengths);

OCCI Application Programming Interface 12-55

readVectorOfClobs()

Parameter Description

conn Connection.

vec Vector of B1ob objects.

byteAmts Array of amount of bytes to read from the individual Blobs. The actual
number of bytes read from each Blob is returned in this array.

offsets Array of offsets, starting position where reading from the Blobs starts.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

readVectorOfClobs()

Reads multiple C1obs in a single server round-trip. All Clobs should be in the same
characterset form and belong to the same characterset ID.

Syntax

Description

void readVectorOfClobs (General form of the method.
const Connection *conn,
vector<Clob> &vec,
oraub8 *byteAmts,
araub8 *charAmts,
oraub8 *offsets,

voi

unsigned char *buffers|],
oraub8 *bufferLengths);

d readVectorOfClobs (
const Connection *conn,

Form of the method used with utext
buffers, when data is in UTF16

vector<Clob> &vec, characterset encoding.
oraub8 *byteAmts,

araub8 *charAmts,

oraub8 *offsets,

utext *buffers(],

oraub8 *bufferLengths);

Parameter Description

conn Connection.

vec Vector of C1ob objects.

byteAmts Array of amount of bytes to read from the individual C1obs. Only used if
the charAmts is NULL, or 0 for any Clob index. Returns the number of
bytes read for each Clob.

charAmts Array of amount of characters to read from individual Clobs. Returns the
number of characters read for each Clob.

offsets Array of offsets, starting position where reading from the C1lobs starts, in
characters.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

12-56 Oracle C++ Call Interface Programmer’s Guide

Connection Class

registerSubscriptions()

Registers Subscriptions for notification.

New client processes and existing processes that restart after a shut down must
register for all subscriptions of interest. If the client stays up during a server shut
down and restart, this client will continue to receive notifications for DI SCONNECTED
registrations, but not for CONNECTED registrations because they are lost during the
server down time.

Syntax

void registerSubscriptions(
const vector<aq::Subscription>& sub)=0;

Parameter Description

sub Vector of subscriptions that will be registered for notification.
roliback()

Drops all changes made since the previous commit or rollback, and releases any

database locks currently held by the session.

Syntax

void rollback()=0;
setStmtCacheSize()

Enables or disables statement caching. A nonzero value will enable statement caching,

with a cache of specified size. A zero value will disable caching.

Syntax

void setStmtCacheSize(

unsigned int cacheSize)=0;

Parameter Description

cacheSize The maximum number of statements in the cache.
setTAFNotify()

Registers the failover callback function on the Connection object for which failover is
configured and must be detected.

The failover callback should return OCCI_SUCCESS to indicate that OCCI can
continue with default processing. The failover event, foEvent, is defined in
Table 12-11 on page 12-48. When the foEvent is FO_ERROR, the callback function
may return eiher FO_RETRY to indicate that failover must be attempted again, or
OCCI_SUCCESS to end failover attempts.

Syntax

void setTAFNotify(
int (*notifyFn) (

OCCI Application Programming Interface 12-57

terminateStatement()

Environment *env,

Connection *conn,

void *ctx,

FailOverType foType,

FailOverEventType foEvent),
void *ctxTAF)

Parameter Description

notifyFn The user difined callback function invoked during failover events.

env Environment object from which the failing Connection was created.
conn The failing Connection on which the callback function is registered.
ctx Context supplied by the user when registering the callback.

foType The configured FailOverType, values FO_SESSION or FO_SELECT, as

defined in Table 12-11 on page 12-48.

foEvent Failover event type that is triggering the callback; the FailOverEventType,
values FO_BEGIN, FO_END, FO_ABORT and FO_ERROR as defined in
Table 12-11 on page 12-48.

CtXTAF User context passed back to the callback function at invocation.

terminateStatement()

Closes a Statement object.

Syntax Description

void terminateStatement (Closes a Statement object and frees all
Statement *stmt)=0; resources associated with it.

void terminateStatement (Releases statement back to the cache after
Statement *stmt, adding an optional tag, a string.

const string &tag)=0;

void terminateStatement (Releases statement back to the cache after
Statement* stmt, adding an optional tag, a UString.

const UString &tag) = 0;

Parameter Description
stmt The Statement to be closed.
tag The tag associated with the statement, either a string or a UString.

unregisterSubscription()

Unregisters a Subscription, turning off its notifications.

Syntax

void unregisterSubscription (
const aq::Subscription& sub)=0;

12-58 Oracle C++ Call Interface Programmer’s Guide

Connection Class

Parameter Description
sub Subscription whose notifications will be turned off.
writeVectorOfBlobs()

Writes multiple Blobs in a single server round-trip.

Syntax

void writeVectorOfBlobs (
const Connection *conn,
vector<Blob> &vec,
oraub8 *byteAmts,
oraub8 *offsets,
unsigned char *buffers[],
oraub8 *bufferLengths);

Parameter Description
conn Connection.
vec Vector of B1ob objects.
byteAmts Array of amount of bytes to write to the individual Blobs.
offsets Array of offsets, starting position where writing to the Blobs starts.
buffers Array of pointers to buffers from which the data is written.
bufferLengths Array of sizes of each buffer, in bytes.
writeVectorOfClobs()

Writes multiple Clobs in a single server round-trip. All C1obs should be in the same
characterset form and belong to the same characterset ID.

Syntax Description

void writeVectorOfClobs (General form of the method.
const Connection *conn,
vector<Clob> &vec,
oraub8 *byteAmts,
araub8 *charAmts,
oraub8 *offsets,
unsigned char *buffers[],
oraub8 *bufferLengths);

OCCI Application Programming Interface 12-59

writeVectorOfClobs()

Syntax Description

void writeVectorOfClobs (Form of the method used with utext
const Connection *conn, buffers, when data is in UTF16
vector<Clob> &vec, characterset encoding.

oraub8 *byteAmts,
araub8 *charAmts,
oraub8 *offsets,
utext *buffers(],
oraub8 *bufferLengths);

Parameter Description

conn Connection.

vec Vector of C1ob objects.

byteAmts Array of amount of bytes to write to the individual Clobs. Only used if
the charAmts is NULL or 0 for any Clob index. Returns the number of
bytes written for each Clob.

charAmts Array of amount of characters to write to individual Clobs. Returns the
number of characters read for each Clob.

offsets Array of offsets, starting position where writing to the C1obs starts, in
characters.

buffers Array of pointers to buffers from which the data is written.

bufferLengths Array of sizes of each buffer, in bytes.

12-60 Oracle C++ Call Interface Programmer’s Guide

ConnectionPool Class

ConnectionPool Class

The ConnectionPool class represents a pool of connections for a specific database.

Table 12-13 Summary of ConnectionPool Methods

Method

Summary

createConnection() on page 12-61

createProxyConnection() on
page 12-62

getBusyConnections() on
page 12-62

getIncrConnections() on
page 12-62

getMaxConnections() on
page 12-63

getMinConnections() on
page 12-63

getOpenConnections() on
page 12-63

getPoolName() on page 12-63
getStmtCacheSize() on page 12-63
getTimeOut() on page 12-63

setErrorOnBusy() on page 12-63

setPoolSize() on page 12-64

setStmtCacheSize() on page 12-64
setTimeOut() on page 12-63

terminateConnection() on
page 12-64

Creates a pooled connection.

Creates a proxy connection.

Returns the number of busy connections in the connection
pool.

Returns the number of incremental connections in the
connection pool.

Returns the maximum number of connections in the
connection pool.

Returns the minimum number of connections in the
connection pool.

Returns the number of open connections in the connection
pool.

Returns the name of the connection pool.
Retrieves the size of the statement cache.

Returns the time out period for a connection in the
connection pool.

Specifies that a SQLException should be generated when
all connections in the connection pool are busy and no
further connections can be opened.

Sets the minimum, maximum, and incremental number of
pooled connections for the connection pool.

Enables or disables statement caching.

Sets the time out period, in seconds, for a connection in the
connection pool.

Destroys the connection.

createConnection()

Creates a pooled connection.

Syntax

Description

Connection* createConnection (
const string &userName,
const string &password)=0;

Connection* createConnection (
const UString &username,
const UString &password)=0;

Creates a pooled
connection.

Creates a globalization
enabled pooled

connection.

OCCI Application Programming Interface 12-61

createProxyConnection()

Parameter Description

userName The name of the user with which to connect.

password The password of the user.

createProxyConnection()

Creates a proxy connection from the connection pool.

Syntax Description

Connection* createProxyConnection (Creates a proxy connection.
const string &name,
Connection: :ProxyType
proxyType=Connection: : PROXY_DEFAULT)=0;

Connection* createProxyConnection Creates a globalization enabled proxy
const UString &name, connection.
Connection: : ProxyType
proxyType=Connection: : PROXY_DEFAULT)=0;

Connection* createProxyConnection (Creates a proxy connection for several
const string &name, roles.
string roles|],
int numRoles,
Connection: : ProxyType
proxyType=Connection: : PROXY_DEFAULT)=0;

Connection* createProxyConnection | Creates a globalization enabled proxy
const UString &name, connection for several roles.
string roles[],
unsigned int numRoles,
Connection: : ProxyType
proxyType=Connection: : PROXY_DEFAULT)=0;

Parameter Description

name The user name to connect with.
roles The roles to activate on the database server.
numRoles The number of roles to activate on the database server.

proxyType The type of proxy authentication to perform, ProxyType, defined in Table 12-11
on page 12-48. Valid values are:

= PROXY_DEFAULT representing a database user name.

getBusyConnections()

Returns the number of busy connections in the connection pool.

Syntax

unsigned int getBusyConnections() const=0;

getincrConnections()

Returns the number of incremental connections in the connection pool.

12-62 Oracle C++ Call Interface Programmer’s Guide

ConnectionPool Class

Syntax

unsigned int getIncrConnections() const=0;

getMaxConnections()
Returns the maximum number of connections in the connection pool.

Syntax

unsigned int getMaxConnections() const=0;

getMinConnections()
Returns the minimum number of connections in the connection pool.

Syntax

unsigned int getMinConnections() const=0;

getOpenConnections()
Returns the number of open connections in the connection pool.

Syntax

unsigned int getOpenConnections() const=0;
getPoolName()
Returns the name of the connection pool.

Syntax

string getPoolName () const=0;

getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax
unsigned int getStmtCacheSize() const=0;
getTimeOut()
Returns the time out period of a connection in the connection pool.
Syntax
unsigned int getTimeOut () const=0;
setErrorOnBusy()

Specifies that a SQLException is to be generated when all connections in the
connection pool are busy and no further connections can be opened.

OCCI Application Programming Interface 12-63

setPoolSize()

setPoolSize()

Syntax

void setErrorOnBusy()=0;

Sets the minimum, maximum, and incremental number of pooled connections for the
connection pool.

Syntax

void setPoolSize(
unsigned int minConn = 0,
unsigned int maxConn = 1

unsigned int incrConn = 1)=0;

Parameter Description

minConn The minimum number of connections for the connection pool.

maxConn The maximum number of connections for the connection pool.

incrConn The incremental number of connections for the connection pool.
setStmtCacheSize()

setTimeOut()

Enables or disables statement caching. A nonzero value will enable statement caching,
with a cache of specified size. A zero value will disable caching.

Syntax

void setStmtCacheSize(
unsigned int cacheSize)=0;

Parameter Description

cacheSize The size of the statement cache.

Sets the time out period for a connection in the connection pool. OCCI will terminate
any connections related to this connection pool that have been idle for longer than the
time out period specified.

Syntax

void setTimeOut (
unsigned int connTimeOut = 0)=0;

Parameter Description

connTimeOut The timeout period in number of seconds.

terminateConnection()

Terminates the pooled connection or proxy connection.

12-64 Oracle C++ Call Interface Programmer’s Guide

ConnectionPool Class

Syntax

void terminateConnection (
Connection *connection)=0;

Parameter Description

connection The pooled connection or proxy connection to terminate.

OCCI Application Programming Interface 12-65

Consumer Class

Consumer Class

The Consumer class supports dequeuing of Messages and controls the dequeuing

options.

Table 12-14 Enumerated Values Used by Consumer Class

Attribute Options

DequeMode n

Navigation .

Visibility .

DequeWaitOption .

DEQ_BROWSE indicates that the message should be read without
acquiring a lock; equivalent to a SELECT.

DEQ_LOCKED indicates that the message should be read. Get its
write lock, which lasts s for the duration of the transaction;
equivalent toa SELECT FOR UPDATE.

DEQ_REMOVE indicates that the message should be read. Update or
delete it; the message can be retained in the queue table based on
the retention properties. This is the default setting.

DEQ_REMOVE_NODATA indicates that the receipt of the message
should be confirmed, but its actual content should not be delivered.

DEQ_FIRST_MSG indicates that the first available message on the
queue that matches the search criteria must be retrieved. Resets the
position to the beginning of the queue.

DEQ_NEXT_TRANSACTION indicates that the next available
message on the queue that matches the search criteria must be
retrieved. If the previous message belongs to a message group, AQ
will retrieve the next available message that matches the search
criteria and belongs to the message group. This is the default
setting.

DEQ_NEXT_MSG indicates that the remainder of the current
transaction group, if any, should be skipped. The first message of
the next transaction group will then be retrieved. This option can
only be used if message grouping is enabled for the current queue.

DEQ_IMMEDIATE indicates that the dequeued message is not part
of the current transaction. It constitutes a transaction on its own.

DEQ_ON_COMMIT indicates that the dequeue will be part of the
current transaction. This is the default setting.

DEQ_WAIT_FOREVER indicates that the consumer will wait for the
Message indefinitely.

DEQ_NO_WAIT indicates that there should be not wait if there are
no messages on the queue.

Table 12-15 Summary of Consumer Methods

Method

Description

Consumer() on page 12-67

Consumer class constructor.

getConsumerName() on page 12-68 Retrieves the name of the Consumer.

getCorrelationld() on page 12-68 Retrieves she correlation id of the message that is to be
dequeued.

getDequeueMode() on page 12-68 Retrieves the dequeue mode of the Consumer.

getMessageldToDequeue() on Retrieves the id of the message that will be dequeued.

page 12-68

getQueueName() on page 12-69 Gets the name of the queue used by the consumer.

12-66 Oracle C++ Call Interface Programmer’s Guide

Consumer Class

Table 12-15 (Cont.) Summary of Consumer Methods

Method Description

getPositionOfMessage() on Retrieves the position of the Message that will be

page 12-68 dequeued.

getTransformation() on page 12-69 Retrieves the transformation applied before a Message is
dequeued.

getVisibility() on page 12-69 Retrieves the transactional behavior of the dequeue
operation.

getWaitTime() on page 12-69 Retrieves the specified behavior of the Consumer when
waiting for a Message with matching search criteria.

isNull() on page 12-69 Tests whether the Consumer object is NULL.

operator=() on page 12-69 Assignment operator for the Consumer class..

receive() on page 12-70 Receives and dequeues a Message

setAgent() on page 12-70 Sets the Agent's name and address (queue name) on the
consumer.

setConsumerName() on page 12-70 Sets the Consumer name.

setCorrelationld() on page 12-70 Specifies the correlation identifier of the message to be
dequeued.

setDequeueMode() on page 12-71 Specifies the locking behavior associated with dequeuing.

setMessageldToDequeue() on Specifies the identifier of the Message to be dequeued.

page 12-71

setNull() on page 12-71 Nullifies the Consumer; frees the memory associated
with this object.

setPositionOfMessage() on Specifies position of the Message to be retrieved.

page 12-71

setQueueName() on page 12-72 Specifies the name of a queue prior to dequeuing
Messages.

setTransformation() on page 12-72 Specifies transformation applied before dequeuing a
Message.

setVisibility() on page 12-72 Specifies if Message should be dequeued as part of the
current transaction.

setWaitTime() on page 12-72 Specifies wait conditions if there are no Messages with
matching criteria.

Consumer()

Consumer class constructor.

Syntax Description

Consumer (Creates a new Consumer object with
const Connection *conn); the specified Connection handle.

Consumer (Creates a new Consumer object with
const Connection *conn specified Connection and properties
const Agent& agent); of the specified Agent.

Consumer (Creates a new Consumer object with
const Connection *conn, specified Connection and queue.

const string& queue);

OCCI Application Programming Interface 12-67

getConsumerName()

Syntax Description

Consumer (Copy constructor.
const Consumer& consumer) ;

Parameter Description

conn The connection in which the Consumer is created.

agent Agent assigned to the Consumer.

queue Queue at which the Consumer retrieves messages.

consumer Original Consumer object.
getConsumerName()

Retrieves the name of the Consumer.

Syntax

string getConsumerName () const;
getCorrelationld()
Retrieves she correlation id of the message that is to be dequeued

Syntax

string geCorrelationId() const;

getDequeueMode()

Retrieves the dequeue mode of the Consumer. DequeueMode is defined in
Table 12-14 on page 12-66.

Syntax

DequeueMode getDequeueMode () const;
getMessageldToDequeue()
Retrieves the id of the message that will be dequeued.

Syntax

Bytes getMessageToDequeue () const;

getPositionOfMessage()

Retrieves the position, or navigation, of the message that will be dequeued.
Navigation is defined in Table 12-14 on page 12-66.

Syntax

Navigation getPositionOfMessage() const;

12-68 Oracle C++ Call Interface Programmer’s Guide

Consumer Class

getQueueName()

Gets the name of the queue used by the consumer.

Syntax

string getQueueName () const;

getTransformation()
Retrieves the transformation applied before a Message is dequeued.

Syntax

string getTransformation() const;
getVisibility()

Retrieves the transactional behavior of the dequeue operation, or visibility.
Visibility is defined in Table 12-14 on page 12-66.

Syntax

Visibility getVisibility() const;
getWaitTime()

Retrieves the specified behavior of the Consumer when waiting for a Message with
matching search criteria. DequeWaitOption is defined in Table 12-14 on page 12-66.

Syntax
DequeWaitOption getWaitTime () const;
isNull()
Tests whether the Consumer object is NULL. If the Consumer object is NULL, TRUE is
returned; otherwise, FALSE is returned.
Syntax
bool isNull() const;
operator=()

Assignment operator for Consumer class.

Syntax

void operator=(
const Consumer& consumer) ;

Parameter Description

consumer The original Consumer.

OCCI Application Programming Interface 12-69

receive()

receive()
Receives and dequeues a Message.
Syntax
Message receive(
Message: : PayloadType pType,
const string& type="",
const string& schema="");
Parameter Description
pType The type of payload expected. Payload Type is defined in
Table 12-14 on page 12-66.
type The type of the payload when pType is OBJECT.
schema The schema in which the type is defined when pType is OBJECT.
setAgent()
Sets the Agent's name and address (queue name) on the consumer.
Syntax
void setAgent (
const Agent& agent);
Parameter Description
agent Name of the Agent.
setConsumerName()

Sets the Consumer name. Only messages with matching consumer name can be
accessed. If a queue is not set up for multiple consumer, this option should be set to
NULL.

Syntax

void setConsumerName (
const string& name) ;

Parameter Description

name Name of the Consumer.

setCorrelationld()

Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore(_) can be used. If
several messages satisfy the pattern, the order of dequeuing is undetermined.

12-70 Oracle C++ Call Interface Programmer’s Guide

Consumer Class

Syntax

void setCorrelationId
const string& id);

Parameter Description
id The identifier of the Message.
setDequeueMode()

Specifies the locking behavior associated with dequeuing.

Syntax

void setDequeueMode (
DequeueMode mode) ;

Parameter Description

mode Behavior of enqueuing. DequeMode is defined in Table 12-14 on page 12-66.

setMessageldToDequeue()

setNull()

Specifies the identifier of the Message to be dequeued.

Syntax

void setMessageIdToDequeue (
const Bytes& msgid);

Parameter Description

msgid Identifier of the Message to be dequeued.

Nullifies the Consumer; frees the memory associated with this object.

Syntax
void setNull();

setPositionOfMessage()

Specifies position of the Message to be retrieved.

Syntax

void setPositionOfMessage (
Navigation pos);

OCCI Application Programming Interface 12-71

setQueueName()

Parameter Description

pos Position of the message, Navigation, is defined in Table 12-14 on page 12-66.

setQueueName()

Specifies the name of a queue prior to dequeuing Messages. Typically used when
dequeuing multiple messages from the same queue.

Syntax

void setQueueName (
const string& queue);

Parameter Description
queue The name of a valid queue in the database.
setTransformation()

setVisibility()

setWaitTime()

Specifies transformation applied before dequeuing the Message.

Syntax

void setTransformation (
string &fName) ;

Parameter Description

fName SQL transformation function.

Specifies if Message should be dequeued as part of the current transaction. Visibility
parameter is ignored when in DEQ_BROWSE mode.

Syntax

void setVisibility(
Visibility option);

Parameter Description

option Visibility option being set, defined in Table 12-14 on page 12-66.

Specifies wait conditions if there are no Messages with matching criteria. The wait
parameter is ignored if messages in the same group are being dequeued.

Syntax

void setWaitTime (
DequeWaitOption wait);

12-72 Oracle C++ Call Interface Programmer’s Guide

Consumer Class

Parameter Description

wait Waiting conditions. DequeWaitOption is defined in Table 12-14 on page 12-66.

OCCI Application Programming Interface 12-73

Date Class

Date Class

The Date class specifies the abstraction for a SQL DATE data item. The Date class also
adds formatting and parsing operations to support the OCCI escape syntax for date
values.

Since SQL92 DATE is a subset of Oracle Date, this class can be used to support both.

Objects from the Date class can be used as standalone class objects in client side
numerical computations and also used to fetch from, and set to, the database.

Example 12-5 How to Get a Date from Database and Use it in Standalone Calculations

This example demonstrates a Date column value being retrieved from the database, a
bind using a Date object, and a computation using a standalone Date object.

/* Create a connection */
Environment *env = Environment::createEnvironment (Environment: :DEFAULT) ;
Connection *conn = env->createConnection(user, passwd, db);

/* Create a statement and associate a DML statement to it */

string sqglStmt = "SELECT job-id, start_date from JOB_HISTORY
where end_date = :x";

Statement *stmt = conn->createStatement (sqlStmt) ;

/* Create a Date object and bind it to the statement */
Date edate(env, 2000, 9, 3, 23, 30, 30);
stmt->setDate (1, edate);

ResultSet *rset = stmt->executeQuery();

/* Fetch a date from the database */
while(rset->next())
{
Date sd = rset->getDate(2);
Date temp = sd; /*assignment operator */
/* Methods on Date */
temp.getDate (year, month, day, hour, minute, second);
temp.setMonths (2) ;
IntervalDS inter = temp.daysBetween (sd);

Table 12-16 Summary of Date Methods

Method Summary

Date() on page 12-75 Date class constructor.

addDays() on page 12-76 Returns a Date object with n days added.
addMonths() on page 12-76 Returns a Date object with n months added.
daysBetween() on page 12-76 Returns the number of days between the current Date

object and the date specified.

fromBytes() on page 12-76 Convert an external By tes representation of a Date object
to a Date object.

fromText() on page 12-77 Convert the date from a given input string with format
and nls parameters specified.

12-74 Oracle C++ Call Interface Programmer’s Guide

Date Class

Date()

Table 12-16 (Cont.) Summary of Date Methods

Method

Summary

getDate() on page 12-77()
getSystemDate() on page 12-78
isNull() on page 12-78

lastDay() on page 12-78
nextDay() on page 12-78
operator=() on page 12-79
operator==() on page 12-79
operator!=() on page 12-79
operator>() on page 12-80
operator>=() on page 12-80

operator=() on page 12-79
operator>() on page 12-80

setDate() on page 12-81
setNull() on page 12-81
toBytes() on page 12-82

toText() on page 12-82
toZone() on page 12-82

Returns the date and time components of the Date object.
Returns a Date object containing the system date.

Returns TRUE if Date is NULL; otherwise returns
false.

Returns a Date that is the last day of the month.

Returns a Date that is the date of the next day of the week.
Assigns the values of a date to another.

Returns TRUE if a and b are the same, false otherwise.
Returns TRUE if a and b are unequal, false otherwise.
Returns TRUE if a is past b, false otherwise.

Returns TRUE if a is pastb or equal to b, false
otherwise.

Returns TRUE if a is before b, false otherwise.

Returns TRUE if a is before b, or equal tob, false
otherwise.

Sets the date from the date components input.
Sets the object state to NULL.

Converts the Date object into an external Bytes
representation.

Returns the Date object as a string.

Returns a Date object converted from one time zone to
another.

Date class constructor.

Syntax Description
Date(); Creates a NULL Date object.
Date (Creates a copy of a Date object.

const Date &srcDate);

Date (
const Environment *envp,
int year = 1,
unsigned int month =
unsigned int day = 1,
unsigned int hour = 0,
unsigned int minute =

1,

0

unsigned int seconds = 0);

Creates a Date object using integer parameters.

Parameter

Description

year -4712 t0 9999, except 0

OCCI Application Programming Interface 12-75

addDays()

addDays()
Adds a specified number of days to the Date object and returns the new date.
Syntax
Date addDays (
int val) const;
Parameter Description
val The number of days to be added to the current Date object.
addMonths()
Adds a specified number of months to the Date object and returns the new date.
Syntax
Date addMonths (
int val) const;
Parameter Description
val The number of months to be added to the current Date object.
daysBetween()
Returns the number of days between the current Date object and the date
specified.
Syntax
IntervalDS daysBetween (
const Date &date) const;
Parameter Description
date The date to be used to compute the days between.
fromBytes()

Parameter Description
month 1to 12
day 1to 31
minutes 0to 59
seconds 0to 59

Converts a Bytes object to a Date object.

Syntax

void fromBytes (

12-76 Oracle C++ Call Interface Programmer’s Guide

Date Class

fromText()

getDate()

const Bytes &byteStream,
const Environment *envp = NULL);

Parameter Description

byteStream Date in external format in the form of Bytes.

envp The OCCI environment.

Sets Date object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Reference for information on TO_
DATE

Syntax Description

void fromText (Sets Date object to value represented by a string.
const string &datestr,
const string &fmt = "",
const string &nlsParam = "",
const Environment *envp = NULL);

void fromText (Sets Date object to value represented by a
const UString &datestr, UString; globalization enabled.
const UString &fmt,
const UString &nlsParam,
const Environment *envp = NULL);

Parameter Description

envp The OCCI environment.

datestr The date string to be converted to a Date object.

fmt The format string; default is DD-MON-YY.

nlsParam The nls parameters string. If nlsParam is specified, this determines

the nls parameters to be used for the conversion. If nlsParam is not
specified, the nls parameters are picked up from envp.

Returns the date in the form of the date components year, month, day, hour, minute,
seconds.

Syntax

void getDate(
int &year,
unsigned int &month,
unsigned int &day,
unsigned int &hour,
unsigned int &min,

OCCI Application Programming Interface 12-77

getSystemDate()

unsigned int &seconds) const;

Parameter Description

year The year component of the date.

month The month component of the date.

day The day component of the date.

hour The hour component of the date.

min The minutes component of the date.

seconds The seconds component of the date.
getSystemDate()

Returns the system date.

Syntax

static Date getSystemDate (
const Environment *envp);

Parameter Description

envp The environment in which the system date is returned.

isNull()

Tests whether the Date is NULL. If the Date is NULL, TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool isNull() const;

lastDay()

Returns a date representing the last day of the current month.

Syntax

Date lastDay() const;

nextDay()

Returns a date representing the day after the day of the week specified.

See Also: Oracle Database SQL Reference for information on TO_

DATE
Syntax Description
Date nextDay (Returns a date representing the day after the day of the
const string &dow) const; week specified.

12-78 Oracle C++ Call Interface Programmer’s Guide

Date Class

operator=()

operator==()

operator!=()

Syntax Description

Date nextDay (Returns a date representing the day after the day of the
const UString &dow) const; week specified.; globalization enabled. The parameter
should be in the character set associated with the
environment from which the date was created.

Parameter Description

dow A string representing the day of the week.

Assigns the date object on the right side of the equal (=) sign to the date object on the
left side of the equal (=) sign.

Syntax

Date& operator=(
const Date &d);

Parameter Description

date The date object that is assigned.

Compares the dates specified. If the dates are equal, TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool operator==(
const Date &first,
const Date &second) ;

Parameter Description
first The first date to be compared.
second The second date to be compared.

Compares the dates specified. If the dates are not equal then TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool operator!=(
const Date &first,
const Date &second) ;

Parameter Description

first The first date to be compared.

OCCI Application Programming Interface 12-79

operator>()

Parameter Description

second The second date to be compared.

operator>()
Compares the dates specified. If the first date is in the future relative to the second
date then TRUE is returned; otherwise, FALSE is returned. If either date is NULL then
FALSE is returned. If the dates are not the same type then FALSE is returned.
Syntax
bool operator>(
const Date &first,
const Date &second);
Parameter Description
first The first date to be compared.
second The second date to be compared.
operator>=()
Compares the dates specified. If the first date is in the future relative to the second
date or the dates are equal then TRUE is returned; otherwise, FALSE is returned. If
either date is NULL then FALSE is returned. If the dates are not the same
type then FALSE is returned.
Syntax
bool operator>=(
const Date &first,
const Date &second) ;
Parameter Description
first The first date to be compared.
second The second date to be compared.
operator<()

Compares the dates specified. If the first date is in the past relative to the second date
then TRUE is returned; otherwise, FALSE is returned. If either date is NULL then FALSE
is returned. If the dates are not the same type then FALSE is returned.

Syntax

bool operator<(
const Date &first,
const Date &second) ;

Parameter Description

first The first date to be compared.

12-80 Oracle C++ Call Interface Programmer’s Guide

Date Class

operator<=()

setDate()

setNull()

Parameter Description

second The second date to be compared.

Compares the dates specified. If the first date is in the past relative to the second date
or the dates are equal then TRUE is returned; otherwise, FALSE is returned. If either
date is NULL then FALSE is returned. If the dates are not the same type then FALSE is

returned.

Syntax

bool operator<=(
const Date &first,
const Date &second) ;

Parameter Description
first The first date to be compared.
second The second date to be compared.

Sets the date to the values specified.

Syntax

void setDate(
int year = 1,
unsigned int month =
unsigned int day = 1,
unsigned int hour = 0,
unsigned int minute = 0,
unsigned int seconds = 0);

1,

Parameter Description

year The argument specifying the year value. Valid values are -4713 through 9999.
month The argument specifying the month value. Valid values are 1 through 12.

day The argument specifying the day value. Valid values are 1 through 31.

hour The argument specifying the hour value. Valid values are 0 through 23.

min The argument specifying the minutes value. Valid values are 0 through 59.
seconds The argument specifying the seconds value. Valid values are 0 through 59.

Sets the Date to atomically NULL.

Syntax
void setNull();

OCCI Application Programming Interface 12-81

toBytes()

toBytes()

toText()

toZone()

Returns the date in Bytes representation.

Syntax

Bytes toBytes() const;

Returns a string or UString with the value of this date formatted using fmt and
nlsParam.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Reference for information on TO_

DATE
Syntax Description
string toText (Returns a string with the value of this date
const string &fmt = "", formatted using fmt and nlsParam.
const string &nlsParam = "") const;
UString toText (Returns a UString with the value of this date
const UString &fmt, formatted using fmt and nlsParam.

const UString &nlsParam) const;

Parameter Description

fmt The format string; default is DD-MON-YY.

nlsParam The nls parameters string. If n1sParam is specified, this determines the nls
parameters to be used for the conversion. If n1sParam is not specified, the nls
parameters are picked up from envp.

Returns Date value converted from one time zone to another.

Syntax

Date toZone(
const string &zonel,
const string &zone2) const;

Parameter Description
zonel A string representing the time zone to be converted from.
zone?2 A string representing the time zone to be converted to.

Valid time zone codes are:

12-82 Oracle C++ Call Interface Programmer’s Guide

Date Class

Zone code Value

AST, ADT Atlantic Standard or Daylight Time
BST, BDT Bering Standard or Daylight Time
CST, CDT Central Standard or Daylight Time
EST, EDT Eastern Standard or Daylight Time
GMT Greenwich Mean Time

HST, HDT Alaska-Hawaii Standard Time or Daylight Time
MST, MDT Mountain Standard or Daylight Time
NST Newfoundland Standard Time

PST, PDT Pacific Standard or Daylight Time
YST, YDT Yukon Standard or Daylight Time

OCCI Application Programming Interface 12-83

Environment Class

Environment Class

The Environment class provides an OCCI environment to manage memory and other
resources for OCCI objects.

The application can have multiple OCCI environments. Each environment would have
its own heap and thread-safety mutexes.

Table 12-17 Enumerated Values Used by Environment Class

Attribute

Options

Mode

DEFAULT is used for creating an Environment object; it has no thread safety
or object support.

OBJECT is for creating an Environment object; it uses object features.
SHARED is for creating an Environment object.

NO_USERCALLBACKS is for creating an Environment object; it does not
support user callbacks.

THREADED_MUTEXED is a thread safe mode for creating an Environment
object, mutexed internally by OCCI.

THREADED_UNMUTEXED is a thread safe mode for creating an Environment
object; the client is responsible for mutexing.

EVENTS supports registration for event notification used in Oracle Streams
Advanced Queuing.

USE_LDAP supports registration with LDAP.

Table 12-18 Summary of Environment Methods

Method Summary

createConnection() on page 12-85 Establishes a connection to the specified database.
createConnectionPool() on Creates a connection pool.

page 12-86

createEnvironment() on page 12-87 Creates an Environment object.

createStatelessConnectionPool() on Creates a stateless connection pool.

page 12-88

enableSubscription() on page 12-88 Enables subscription notification

disableSubscription() on page 12-89 Disables subscription notification

getCacheMaxSize() on page 12-89 Retrieves the Cache Max heap size.

getCacheOptSize() on page 12-89 Retrieves the cache optimal heap size.

getCacheSortedFlush() on Retrieves the setting of the cache sorting flag.
page 12-89
getClientVersion() on page 12-51 Returns the version of the client library.

getCurrentHeapSize() on page 12-89 Returns the current amount of memory allocated to all

objects in the current environment.

getLDAPAdminContext() on Returns the administrative context when using LDAP
page 12-89 open notification registration.
getLDAPAuthentication() on Returns the authentication mode when using LDAP
page 12-90 open notification registration.

getLDAPHost() on page 12-90 Returns the host on which the LDAP server runs.

12-84 Oracle C++ Call Interface Programmer’s Guide

Environment Class

Table 12-18 (Cont.) Summary of Environment Methods

Method

Summary

getLDAPPort() on page 12-90
getMap() on page 12-90()
getOCIEnvironment() on page 12-90

getServerVersion() on page 12-53
getXAConnection() on page 12-90
getXAEnvironment() on page 12-91

releaseXAConnection() on
page 12-91

releaseXAEnvironment() on
page 12-91

setCacheMaxSize() on page 12-91
setCacheOptSize() on page 12-92

setCacheSortedFlush() on
page 12-92

setLDAPAdminContext() on
page 12-92
setLDAPAuthentication() on
page 12-92
setLDAPHostAndPort() on
page 12-93
setLDAPLoginNameAndPassword()
on page 12-93
terminateConnection() on
page 12-93
terminateConnectionPool() on
page 12-93
terminateEnvironment() on
page 12-94

terminateStatelessConnectionPool()
on page 12-94

Returns the port on which the LDAP server is listening.
Returns the Map for the current environment.

Returns the OCI environment associated with the
current environment.

Returns the version of the Oracle server used.
Creates an XA connection to a database.
Creates an XA Environment object.

Releases all resources allocated by a getXAConnection()
call.

Releases all resources allocated by a
getXAEnvironment() call.

Specifies the maximum size for the client-side object
cache as a percentage of the optimal size.

Specifies the optimal size for the client-side object cache
in bytes.

Specifies whether to sort cache in table order prior to
flushing.

Specifies the administrative context for the LDAP client.
Specifies the LDAP authentication mode.

Specifies the LDAP server host and port.

Specifies the login name and password when connecting
to an LDAP server.

Closes the connection pool and free all related resources.
Closes the connection pool and free all related resources.

Destroys the environment.

Closes the stateless connection pool and free all related
resources.

createConnection()

This method establishes a connection to the database specified.

Syntax

Description

Connection * createConnection (
const string &userName,
const string &password,

Creates a default connection.

const string &connectString="")=0;

OCCI Application Programming Interface 12-85

createConnectionPool()

Syntax Description

Connection * createConnection(Creates a connection (Unicode support).
const UString &userName, The client Environment should be
const UString &password, initialized in OCCIUTIF16 mode.

const UString &connectString)=0;

Parameter

Description

userName
password

connectString

The name of the user with which to connect.
The password of the user.

The database to which the connection is made.

createConnectionPool()

Creates a connection pool based on the parameters specified.

Syntax Description

ConnectionPool* createConnectionPool (Creates a default connection pool.
const string &poolUserName,
const string &poolPassword,
const string &connectString = "",
unsigned int minConn = 0,
unsigned int maxConn = 1,
unsigned int incrConn = 1)=0;

ConnectionPool* createConnectionPool (Creates a connection pool (Unicode
const UString &poolUserName, support). The client Environment should
const UString &poolPassword, be initialized in OCCIUTIF16 mode.

const UString &connectString,

unsigned int
unsigned int
unsigned int

minConn = 0,
maxConn = 1,
incrConn = 1)=0;

Parameter

Description

poolUserName
poolPassword
connectString

minConn

maxConn

incrConn

The pool user name.
The pool password.
The connection string for the server

The minimum number of connections in the pool. The minimum number
of connections are opened by this method. Additional connections are
opened only when necessary. Generally, minConn should be set to the
number of concurrent statements the application is expected to run.

The maximum number of connections in the pool. Valid values are 1 and
greater.

The increment by which to increase the number of connections to be
opened if the current number of connections is less than maxConn. Valid
values are 1 and greater.

12-86 Oracle C++ Call Interface Programmer’s Guide

Environment Class

createEnvironment()

Creates an Environment object. It is created with the specified memory management
functions specified in the setMemMgrFunctions () method. If no memory manager
functions are specified, then OCCI uses its own default functions. An Environment
object must eventually be closed to free all the system resources it has acquired.

If the Mode is specified is either THREADED_MUTEXED or THREADED_UNMUTEXED as
defined in Table 12-17 on page 12-84, then all three memory management functions
must be thread-safe.

Syntax Description

static Environment * createEnvironment (Creates a default environment.
Mode mode = DEFAULT,
void *ctxp = 0,
void *(*malocfp) (void *ctxp,
size_t size) = 0,
void *(*ralocfp) (void *ctxp,
void *memptr,

size_t newsize) = 0,
void (*mfreefp) (void *ctxp,
void *memptr) = 0);
static Environment * createEnvironment (Creates an environment with the specified
const string &charset, character set and NCHAR character set ids
const string &ncharset, (Unicode support). The client
Mode mode = DEFAULT, Environment should be initialized in

void *ctxp = 0, OCCIUTIF16 mode.

void *(*malocfp) (void *ctxp,
size_t size) = 0,
void *(*ralocfp) (void *ctxp,
void *memptr,
size_t newsize) = 0,
void (*mfreefp) (void *ctxp,
void *memptr) = 0);

Parameter Description

mode Values are defined as part of Mode in Table 12-17 on page 12-84: DEFAULT,
THREADED_MUTEXED, THREADED_UNMUTEXED, OBJECT.

ctxp Context pointer for user-defined memory management function.

size The size of the memory allocated by user-defined memory allocation function.

newsize The new size of the memory to be reallocated.

memptr the existing memory that needs to be reallocated to new size.

malocfp User-defined memory allocation function.

ralocfp User-defined memory reallocation function.

mfreefp User-defined memory free function.

charset Character set id that will replace the one specified in NLS_LANG.

ncharset Character set id that will replace the one specified in NL.S_NCHAR.

OCCI Application Programming Interface 12-87

createStatelessConnectionPool()

createStatelessConnectionPool()

Creates a StatelessConnectionPool object with specified pool attributes.

Syntax Description

StatelessConnectionPool* createStatelessConnectionPool(Support for string.
const string &poolUserName,
const string &poolPassword,
const string connectString="",
unsigned int maxConn=1,
unsigned int minConn=0,
unsigned int incrConn=1,
StatelessConnectionPool: :PoolType
pType=StatelessConnectionPool: : HETEROGENEOUS) ;

StatelessConnectionPool* createStatelessConnectionPool (SupportﬂnfUString.
const UString &poolUserName,
const UString &poolPassword,
const UString &connectString,
unsigned int maxConn = 1,
unsigned int minConn = 0,
unsigned int incrConn = 1,
StatelessConnectionPool: :PoolType
pType=StatelessConnectionPool : : HETEROGENEOUS) ;

Parameter Description

poolUserName The pool user name.

poolPassword The pool password.

connectString The connection string for the server.

maxConn The maximum number of connections that can be opened the pool;

additional sessions cannot be open.

minConn The number of connections initially created in a pool. This parameter is
considered only if the PoolType is set to HOMOGENEOUS, as defined in
Table 12-40 on page 12-198.

incrConn The number of connections by which to increment the pool if all open
connections are busy, up to a maximum open connections specified by
maxConn parameter. This parameter is considered only if the PoolType is
set to HOMOGENEOUS, as defined in Table 12-40 on page 12-198.

pType The PoolType of the connection pool, defined in Table 12-40 on
page 12-198.

enableSubscription()

Enables subscription notification.

Syntax

void enableSubscription(
const aq::Subscription &sub);

Parameter Description

sub The Subscription.

12-88 Oracle C++ Call Interface Programmer’s Guide

Environment Class

disableSubscription()
Disables subscription notification.

Syntax

void disableSubscription(
Subscription &subscr);

Parameter Description
subscr The Subscription.
getCacheMaxSize()

Retrieves the maximum size of the cache.

Syntax

unsigned int getCacheMaxSize() const;

getCacheOptSize()

Retrieves the Cache optimal heap size.

Syntax

unsigned int getCacheOptSize() const;

getCacheSortedFlush()

Retrieves the current setting of the cache sorting flag; TRUE or FALSE.

Syntax
bool getCacheSortedFlush() const;

getCurrentHeapSize()
Returns the amount of memory currently allocated to all objects in this environment.

Syntax

unsigned int getCurrentHeapSize() const;

getLDAPAdminContext()

Returns the administrative context when using LDAP open notification registration.

Syntax

string getLDAPAdminContext () const;

OCCI Application Programming Interface 12-89

getLDAPAuthentication()

getLDAPAuthentication()

Returns the authentication mode when using LDAP open notification registration.

Syntax

unsigned int getLDAPAuthentication() const;
getLDAPHost()
Returns the host on which the LDAP server runs.

Syntax

string getLDAPHost () const;
getLDAPPort()
Returns the port on which the LDAP server is listening.

Syntax

unsigned int getLDAPPort() const;
getMap()

Returns a pointer to the map for this environment.

Syntax
Map *getMap() const;

getOCIEnvironment()

Returns a pointer to the OCI environment associated with this environment.

Syntax

OCIEnv *getOCIEnvironment () const;
getXAConnection()

Returns a pointer to an OCCI Connection object that corresponds to the one opened by
the XA library.

Syntax

Connection* getXAConnection (
const string &dbname);

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String (and used in connection to the Resource Manager).

12-90 Oracle C++ Call Interface Programmer’s Guide

Environment Class

getXAEnvironment()

Returns a pointer to an OCCI Environment object that corresponds to the one opened
by the XA library.

Syntax

Environment *getXAEnvironment (
const string &dbname) ;

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String (and used in connection to the Resource Manager).

releaseXAConnection()
Release/deallocate all resources allocated by the getXAConnection() method.

Syntax

void releaseXAConnection (
Connection* conn);

Parameter Description

conn The connection returned by the getXAConnection() method.

releaseXAEnvironment()
Release/deallocate all resources allocated by the getXAEnvironment() method.
Syntax

void releaseXAEnvironment (
Environment* env) ;

Parameter Description
env The environment returned by the getXAEnvironment() method.
setCacheMaxSize()

Sets the maximum size for the client-side object cache as a percentage of the optimal
size. The default value is 10%.

Syntax

void setCacheMaxSize (
unsigned int maxSize);

Parameter Description

maxSize The value of the maximum size, as a percentage.

OCCI Application Programming Interface 12-91

setCacheOptSize()

setCacheOptSize()

Sets the optimal size for the client-side object cache in bytes. The default value is SMB.

Syntax

void setCacheOptSize(
unsigned int optSize);

Parameter Description

optSize The value of the optimal size, in bytes.

setCacheSortedFlush()

Sets the cache flushing protocol. By default, objects in cache are flushed in the order
they are modified; £1ag=FALSE. To improve server-side performance, set
f1ag=TRUE, so that the objects in cache are sorted in table order prior to flushing from
client cache.

Syntax
void setCacheSortedFlush (
bool flag);
Parameter Description
flag FALSE (default) -- no sorting; TRUE -- sorting in table order

setLDAPAdminContext()

Sets the administrative context of the client. This is usually the root of the Oracle
RDBMS LDAP schema in the LDAP server.

Syntax

void setLDAPAdminContext (
const string &ctx);

Parameter Description

ctx The client context

setLDAPAuthentication()

Specifies the authentication mode. Currently the only supported value is 0x1: Simple
authentication; username/password authentication.

Syntax

void setLDAPAuthentication(
unsigned int mode) ;

12-92 Oracle C++ Call Interface Programmer’s Guide

Environment Class

Parameter Description
mode The authentication mode
setLDAPHostAndPort()

Specifies the host on which the LDAP server is running, and the port on which it is
listening for requests.

Syntax

void setLDAPHostAndPort (
const string &host,
unsigned int port);

Parameter Description
host The host for LDAP
port The port for LDAP

setLDAPLoginNameAndPassword()

Specifies the login distinguished name and password used when connecting to an
LDAP server.

Syntax

void setLDAPLoginNameAndPassword (
const string &login,
const &passwd) ;

Parameter Description
login The login name
passwd The login password

terminateConnection()
Closes the connection to the environment, and frees all related system resources.

Syntax

void terminateConnection (
Connection *connection);

Parameter Description

connection A pointer to the connection instance to be terminated.

terminateConnectionPool()

Closes the connections in the connection pool, and frees all related system resources.

OCCI Application Programming Interface 12-93

terminateEnvironment()

Syntax

void terminateConnectionPool (
ConnectionPool *poolPointer);

Parameter Description

poolPointer A pointer to the connection pool instance to be terminated.

terminateEnvironment()
Closes the environment, and frees all related system resources.

Syntax

void terminateEnvironment (
Environment *env);

Parameter Description

env Environment to be closed.

terminateStatelessConnectionPool()
Destroys the specified StatelessConnectionPool.

Syntax

void termimnateStatelessConnectionPool (
StatelessConnectionPool* poolPointer,
StatelessConnectionPool: :DestroyMode mode=StatelessConnectionPool: :DEFAULT) ;

Parameter Description

poolPointer The StatelessConnectionPool to be destroyed.

mode DestroyMode as defined Table 1240 on page 12-198: DEFAULT or SPF_FORCE.

12-94 Oracle C++ Call Interface Programmer’s Guide

IntervalDS Class

IntervalDS Class

The IntervalDS class encapsulates time interval calculations in terms of days, hours,
minutes, seconds, and fractional seconds. Leading field precision will be determined
by number of decimal digits in day input. Fraction second precision will be
determined by number of fraction digits on input.

Table 12-19 Fields of IntervalDS Class

Field Type Description

day int Day component. Valid values are -10"9 through 10°9.

hour int Hour component. Valid values are -23 through 23.

minute int Minute component. Valid values are -59 through 59.

second int Second component. Valid values are -59 through 59.

fs int Fractional second component. Constructs a NULL IntervalDS

object. A NULL intervalDSs can be initialized by assignment or
calling fromText method. Methods that can be called on NULL
intervalDS objects are setName() and isNull().

Example 12-6 How to Create, Assign Values, and Use an Empty IntervalDS Object
through Direct Assignment

This example demonstrates how the default constructor creates a NULL value, and how
you can assign a non NULL value to a day-second interval and then perform
operations on it.

Environment *env = Environment::createEnvironment () ;

// Create a NULL day-second interval
IntervalDS ds;
if(ds.isNull())

cout << "\n ds is null";

// Assign a non-NULL value to ds
IntervalDS anotherDS(env, "10 20:14:10.2");
ds = anotherDS;

// Now all operations on IntervalDS are valid
int DAY = ds.getDay();

Example 12-7 How to Create, Assign Values, and Use an Empty IntervalDS Object
through fromText() and toText() Methods

This example demonstrates how to create a NULL day-second interval, initialize the
day-second interval by using the fromText () method, add to the day-second interval
by using the += operator, multiply by using the * operator, compare 2 day-second
intervals, and convert a day-second interval to a string by using the toText method:

Environment *env = Environment::createEnvironment () ;

// Create a null day-second interval
IntervalDS dsl

// Initialize a null day-second interval by using the fromText method
dsl.fromText ("20 10:20:30.9","",env) ;

OCCI Application Programming Interface 12-95

IntervalDS Class

IntervalDS addWith(env,2,1);
dsl += addwWith; //call +=

operator

IntervalDS mulDsl=dsl * Number (env,10);
//call * operator

if (dsl==mulDsl)

string strds=dsl.toText(2,4);

//call == operator

//2 is leading field precision
//4 is the fractional field precision

Table 12-20 Summary of IntervalDS Methods

Method

Summary

IntervalDS() on page 12-97
fromText() on page 12-97
fromUText() on page 12-98
getDay() on page 12-98
getFracSec() on page 12-98
getFracSec() on page 12-98
getMinute() on page 12-98
getSecond() on page 12-98
isNull() on page 12-99
operator*() on page 12-99
operator*=() on page 12-99
operator=() on page 12-99
operator==() on page 12-99
operator!=() on page 12-100
operator/() on page 12-100
operator/=() on page 12-100
operator>() on page 12-101
operator>=() on page 12-101
operator<() on page 12-101
operator<=() on page 12-102
operator-() on page 12-102
operator-=() on page 12-102
operator+() on page 12-102
operator+=() on page 12-103
set() on page 12-103
setNull() on page 12-103
toText() on page 12-103
toUText() on page 12-104

IntervalDS class constructor.

Returns an IntervalDS converted from a string.
Returns an IntervalDS converted from a UString.
Returns day interval values.

Returns fractional second interval values.

Returns hour interval values.

Returns minute interval values.

Returns second interval values.

Returns true if IntervalDS is NULL, false otherwise.

Returns the product of two IntervalDS values.
Multiplication assignment.

Simple assignment.

Checks if a and b are equal.

Checks if a and b are not equal.

Returns an IntervalDsS with value (a / b).
Division assignment.

Checks if a is greater than b

Checks if a is greater than or equal to b.

Checks if a is less than b.

Checks if a is less than or equal to b.

Returns an IntervalDS with value (a - b).
Subtraction assignment.

Returns the sum of two IntervalDS values.
Addition assignment.

Sets day-second interval.

Sets day-second interval to NULL.

Converts to a string representation for the interval.

Converts to a UString representation for the interval.

12-96 Oracle C++ Call Interface Programmer’s Guide

IntervalDS Class

IntervalD$()

fromText()

IntervalDS class constructor.

Syntax Description

IntervalDS(); Constructs a NULL IntervalDS object. A NULL
IntervalDS can be initialized by assignment or calling
fromText() method. Methods that can be called on NULL
IntervalDS objects are setName() and isNull().

IntervalDS (Constructs an IntervalDS object within a specified
const Environment *env, Environment.
int day = 0

int hour = 0,
int minute 0,
int second = 0,
int fs = 0);

IntervalDS (Constructs an IntervalYM object from src.
const IntervalDS &src);

Parameter Description

env The Environment.

day The day field of IntervalDs.

hour The hour field of IntervalDs.

minute The minute field of IntervalDS.

second The second field of IntervalDs.

fs The f£s field of IntervalDs.

src The source that the IntervalDS object will be copied from.

Creates the interval from the string specified. The string is converted using the nls
parameters associated with the relevant environment. The nls parameters are picked
up from env. If env is NULL, the nls parameters are picked up from the environment
associated with the instance, if any.

Syntax

void fromText (
const string &inpstr,
const string &nlsParam = "",
const Environment *env = NULL);

Parameter Description

inpstr Input string representing a day second interval of the form 'days
hours:minutes:seconds', for example, '10 20:14:10.2'

nlsParam The nls parameters string. If n1sParam is specified, this determines the
nls parameters to be used for the conversion. If nlsParam is not specified,
the nls parameters are picked up from envp.

env Environment whose nls parameters will be used.

OCCI Application Programming Interface 12-97

fromUText()

fromUText()

Creates the interval from the UString specified.

Syntax

void fromUText (
const UString &inpstr,
const Environment *env=NULL);

Parameter Description

inpstr Input UString representing a day second interval of the form 'days
hours:minutes:seconds', for example, '10 20:14:10.2'

env The Environment.

getDay()

Returns the day component of the interval.

Syntax

int getDay() const;
getFracSec()

Returns the fractional second component of the interval.

Syntax
int getFracSec() const;
getHour()
Returns the hour component of the interval.
Syntax
int getHour () const;
getMinute()

Returns the minute component of this interval.

Syntax

int getMinute() const;
getSecond()
Returns the seconds component of this interval.

Syntax

int getSecond() const;

12-98 Oracle C++ Call Interface Programmer’s Guide

IntervalDS Class

isNull()

operator*()

operator*=()

operator=()

operator==()

Tests whether the interval is NULL. If the interval is NULL then TRUE is returned,;
otherwise, FALSE is returned.

Syntax

bool isNull() const;

Multiplies an interval by a specified value and returns the result.

Syntax

const IntervalDS operator* (
const IntervalDS &interval,
const Number &val);

Parameter Description
interval Interval to be multiplied.
val Value by which interval is to be multiplied.

Assigns the product of IntervalDS and a to IntervalDs.

Syntax

IntervalDS& operator*=(
const IntervalDS &factor);

Parameter Description

factor A day second interval.

Assigns the specified value to the interval.

Syntax

IntervalDS& operator=(
const IntervalDS &src);

Parameter Description

src Value to be assigned.

Compares the intervals specified. If the intervals are equal, then TRUE is returned;
otherwise, FALSE is returned. If either interval is NULL then SQLException is thrown.

OCCI Application Programming Interface 12-99

operator!=()

operator!=()

operator/()

operator/=()

Syntax

bool operator==(
const IntervalDS &first,
const IntervalDS &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

Compares the intervals specified. If the intervals are not equal then TRUE is returned;
otherwise, FALSE is returned. If either interval is NULL then SQLException is thrown.

Syntax

bool operator!=(
const IntervalDS &first,
const IntervalDS &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

Returns the result of dividing an interval by a constant value.

Syntax

const IntervalDS operator/ (
const IntervalDS ÷nd,
const Number &factor);

Parameter Description
dividend The interval to be divided.
factor Value by which interval is to be divided.

Assigns the quotient of IntervalDS and val to IntervalDS.

Syntax

IntervalDS& operator/=(
const IntervalDS &factor);

Parameter Description

factor A day second interval.

12-100 Oracle C++ Call Interface Programmer’s Guide

IntervalDS Class

operator>()

operator>=()

operator<()

Compares the intervals specified. If the first interval is greater than the second interval
then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax

bool operator>(
const IntervalDS &first,
const IntervalDS &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

Compares the intervals specified. If the first interval is greater than or equal to the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval
is NULL then SQLException is thrown.

Syntax

bool operator>=(
const IntervalDS &first,
const IntervalDS &first);

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

Compares the intervals specified. If the first interval is less than the second interval
then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax

bool operator<(
const IntervalDS &first,
const IntervalDS &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

OCCI Application Programming Interface 12-101

operator<=()

operator<=()
Compares the intervals specified. If the first interval is less than or equal to the second
interval then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL
then SQLException is thrown.
Syntax
bool operator<=(
const IntervalDS &first,
const IntervalDS &second);
Parameter Description
first The first interval to be compared.
second The second interval to be compared.
operator-()

Returns the difference between the intervals first and second.

Syntax

const IntervalDS operator-(
const IntervalDS &first,
const IntervalDS &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

operator-=()

Assigns the difference between IntervalDS and val to IntervalDs.

Syntax

IntervalDS& operator-=(
const IntervalDS &val);

Parameter Description

val A day second interval.

operator+()

12-102

Returns the sum of the intervals specified.

Syntax

const IntervalDS operator+(
const IntervalDS &first,
const IntervalDS &second) ;

Oracle C++ Call Interface Programmer’s Guide

IntervalDS Class

operator+=()

set()

setNull()

toText()

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

Assigns the sum of IntervalDS and val to IntervalDS.

Syntax

IntervalDS& operator+=(
const IntervalDS &val);

Parameter Description

val A day second interval.

Sets the interval to the values specified.

Syntax

void set(
int day,
int hour,
int minute,
int second,
int fracsec);

Parameter Description

day Day component.

hour Hour component.

min Minute component.

second Second component.

fracsec Fractional second component.

Sets the IntervalDS to NULL.

Syntax
void setNull();

Converts to a string representation for the interval.

OCCI Application Programming Interface 12-103

toUText()

toUText()

Syntax

string toText (
unsigned int lfprec,
unsigned int fsprec,

const string &nlsParam = "") const;
Parameter Description
lfprec Leading field precision.
fsprec Fractional second precision.
nlsParam The nls parameters string. If n1sParam is specified, this

determines the nls parameters to be used for the conversion. If
nlsParam is not specified, the nls parameters are picked up from
envp.

Converts to a UString representation for the interval.

Syntax

UString toUText (
unsigned int lfprec,
unsigned int fsprec) cosnt;

Parameter Description
1fprec Leading field precision.
fsprec Fractional second precision.

12-104 Oracle C++ Call Interface Programmer’s Guide

IntervalYM Class

IntervalYM Class

IntervalYM supports the SQL92 datatype Year-Month Interval.

Leading field precision will be determined by number of decimal digits on input.

Table 12-21 Fields of IntervalYM Class

Field Type Description
year int Year component. Valid values are -10°9 through 10"9.
month int Month component. Valid values are -11 through 11.

Example 12-8 How to Create, Assign Values, and Use an Empty IntervalYM Object
through Direct Assignment

This example demonstrates that the default constructor creates a NULL value, and how
you can assign a non NULL value to a year-month interval and then perform
operations on it:

Environment *env = Environment::createEnvironment () ;

// Create a NULL year-month interval
IntervalYM ym
if (ym.isNull())

cout << "\n ym is null";

// Assign a non-NULL value to ym
IntervalYM anotherYM(env, "10-30");
ym=anotherYM;

// Now all operations on YM are valid
int yr = ym.getYear();

Example 12-9 How to Create, Assign Values, and Use an IntervalYM Object through
ResultSet and toText() method

This example demonstrates how to get the year-month interval column from a result
set, add to the year-month interval by using the += operator, multiply by using the *
operator, compare 2 year-month intervals, and convert a year-month interval to a
string by using the toText () method.

//SELECT WARRANT_ PERIOD from PRODUCT_INFORMATION
//obtain result set
resultset->next () ;

//get interval value from resultset
IntervalYM yml = resultset->getIntervalYM(1);

IntervalYM addwWith(env, 10, 1);

yml += addwith; //call += operator

IntervalYM mulYml = yml * Number (env, 10); //call * operator

if (yml<mulYml) //comparison

string strym = yml.toText(3); //3 1s the leading field precision

OCCI Application Programming Interface 12-105

IntervalYM()

Table 12-22 Summary of IntervalYM Methods

Method

Summary

IntervalYM() on page 12-106
fromText() on page 12-107
fromUText() on page 12-107
getMonth() on page 12-108
getYear() on page 12-108
isNull() on page 12-108
operator*() on page 12-108
operator*=() on page 12-108
operator=() on page 12-108
operator==() on page 12-109
operator!=() on page 12-109
operator/() on page 12-109
operator/=() on page 12-110
operator>() on page 12-110
operator>=() on page 12-110
operator<() on page 12-111
operator<=() on page 12-111
operator-() on page 12-111
operator-=() onpage 12-111
operator+() on page 12-112
operator+=() on page 12-112
set() on page 12-112
setNull() on page 12-112
toText() on page 12-113
toUText() on page 12-113

IntervalYM class constructor.

Converts a string into an IntervalYM.
Converts a UString into an IntervalYM.
Returns month interval value.

Returns year interval value.

Checks if the interval is NULL.

Returns the product of two IntervalYM values.
Multiplication assignment.

Simple assignment.

Checks if a and b are equal.

Checks if a and b are not equal.

Returns an interval with value (a/b).
Division assignment.

Checks if a is greater than b.

Checks if a is greater than or equal to b.
Checks if a is less than b.

Checks if a is less than or equal to b.

Returns an interval with value (a - b).
Subtraction assignment.

Returns the sum of two IntervalYM values.
Addition assignment.

Sets the interval to the values specified.

Sets the interval to NULL.

Converts to a string representation of the interval.

Converts to a UString representation of the interval.

Interval YM()

IntervalYM class constructor.

Syntax Description

IntervalYM() ; Constructs a NULL IntervalYM object. A NULL
IntervalYM can be initialized by assignment or calling
operator*() method. Methods that can be called on NULL
IntervalYM objects are setName() and isNull().

IntervalYM(Creates an IntervalYM object within the specified

const Environment *env,
int year = 0,
int month = 0);

Environmen.

12-106 Oracle C++ Call Interface Programmer’s Guide

IntervalYM Class

fromText()

fromUText()

Syntax Description

IntervalDS (Copy constructor.
const IntervalYM &src);

Parameter Description

env The Environment.

year The year field of the IntervalYM object.

month The month field of the IntervalYM object.

src The source that the IntervalYM object will be copied from.

This method initializes the interval to the values in inpstr. The string is interpreted
using the nls parameters set in the environment.

The nls parameters are picked up from env. If env is NULL, the nls parameters are
picked up from the environment associated with the instance, if any.

Syntax

void fromText (
const string &inpStr,
const string &nlsParam = "",
const Environment *env = NULL);

Parameter Description
inpStr Input string representing a year month interval of the form 'year-month'.
nlsParam The nls parameters string. If n1sParam is specified, this determines the

nls parameters to be used for the conversion. If n1 sParam is not specified,
the nls parameters are picked up from envp.

env Environment whose nls parameters will be used.

Creates the interval from the UString specified.

Syntax

void fromUText (
const UString &inpStr,
const Environment *env=NULL);

Parameter Description

inpStr Input UString representing a year month interval of the form 'year-month'.

env The Environment.

OCCI Application Programming Interface 12-107

getMonth()

getMonth()

getYear()

isNull()

operator*()

operator*=()

operator=()

This method returns the month component of the interval.

Syntax

int getMonth() const;

This method returns the year component of the interval.

Syntax

int getYear() const;

This method tests whether the interval is NULL. If the interval is NULL then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

This method multiplies the interval by a factor and returns the result.

Syntax

const IntervalYM operator* (
const IntervalDS &interval
const Number &val);

Parameter Description
interval Interval to be multiplied.
val Value by which interval is to be multiplied.

This method multiplies the interval by a specified value.
Syntax

IntervalYM& operator*=(
const Number &factor);

Parameter Description

factor Value to be multiplied.

This method assigns the specified value to the interval.

12-108 Oracle C++ Call Interface Programmer’s Guide

IntervalYM Class

operator==()

operator!=()

operator/()

Syntax

IntervalYM& operator=(
const IntervalYM &src);

Parameter Description

src Value to be assigned.

This method compares the intervals specified. If the intervals are equal then TRUE is
returned; otherwise, FALSE is returned. If either interval is NULL then SQLException is
thrown.

Syntax

bool operator==(
const Interval¥YM &first,
const IntervalYM &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

This method compares the intervals specified. If the intervals are not equal then TRUE
is returned; otherwise, FALSE is returned. If either interval is NULL then SQLException
is thrown.

Syntax

bool operator!=(
const Interval¥YM &first,
const IntervalYM &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

This method returns the result of dividing the interval by a factor.

Syntax

const IntervalYM operator/ (
const IntervalYM ÷nd,
const Number &factor);

Parameter Description

dividend The interval to be divided.

OCCI Application Programming Interface 12-109

operator/=()

Parameter Description
factor Value by which interval is to be divided.
operator/=()
This method divides the interval by a factor.
Syntax
IntervalYM& operator/=(
const Number &factor);
Parameter Description
factor A day second interval.
operator>()
This method compares the intervals specified. If the first interval is greater than the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval
is NULL then SQLException is thrown.
Syntax
bool operator>(
const Interval¥YM &first,
const IntervalYM &second) ;
Parameter Description
first The first interval to be compared.
second The second interval to be compared.
operator>=()

This method compares the intervals specified. If the first interval is greater than or
equal to the second interval then TRUE is returned; otherwise, FALSE is returned. If
either interval is NULL then SQLException is thrown.

Syntax

bool operator>=(
const Interval¥YM &first,
const IntervalYM &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

12-110 Oracle C++ Call Interface Programmer’s Guide

IntervalYM Class

operator<()

operator<=()

operator-()

operator-=()

This method compares the intervals specified. If the first interval is less than the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval
is NULL then SQLException is thrown.

Syntax

bool operator<(
const Interval¥YM &first,
const IntervalYM &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

This method compares the intervals specified. If the first interval is less than or equal
to the second interval then TRUE is returned; otherwise, FALSE is returned. If either
interval is NULL then SQLException is thrown

Syntax

bool operator<=(
const Interval¥YM &first,
const IntervalYM &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

This method returns the difference between the intervals specified.

Syntax

const IntervalYM operator-(
const Interval¥YM &first,
const IntervalYM &second) ;

Parameter Description
first The first interval to be compared.
second The second interval to be compared.

This method computes the difference between itself and another interval.

OCCI Application Programming Interface 12-111

operator+()

Syntax

IntervalYM& operator-=(
const IntervalYM &val);

Parameter Description

val A day second interval.

operator+()
This method returns the sum of the intervals specified.

Syntax

const IntervalYM operator+(
const Interval¥YM &first,
const IntervalYM &second) ;

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

operator+=()
This method assigns the sum of IntervalYM and val to IntervalYM.

Syntax

IntervalYM& operator+=(
const IntervalYM &val);

Parameter Description

val A day second interval.

set()

This method sets the interval to the values specified.

Syntax

void set(
int year,
int month) ;

Parameter Description

year Year component. Valid values are -10"9 through 10"9.

month Month component. Valid values are -11 through 11.

setNull()

This method sets the interval to NULL.

12-112 Oracle C++ Call Interface Programmer’s Guide

IntervalYM Class

Syntax
void setNull();
toText()
This method returns the string representation of the interval.
Syntax
string toText (
unsigned int lfprec,
const string &nlsParam = "") const;
Parameter Description
lfprec Leading field precision.
nlsParam The nls parameters string. If nlsParam is specified, this determines
the nls parameters to be used for the conversion. If nlsParam is not
specified, the nls parameters are picked up from envp.
toUText()

Converts to a UString representation for the interval.

Syntax

UString toUText (
unsigned int lfprec) cosnt;

Parameter Description

lfprec Leading field precision.

OCCI Application Programming Interface 12-113

Listener Class

Listener Class

The Listener class encapsulates the ability to listen for Messages, on behalf of
registered Agents, at specified queues.

Table 12-23 Summary of Listener Methods

Method

Summary

Listener() on page 12-114
getAgentList() on page 12-114
getTimeOutForListen() on
page 12-115

listen() on page 12-115

setAgentList() on page 12-115

Listener class constructor.

Retrieves the list of Agents for which the Listener
provides its services.

Retrieves the time out for a call.

Listens for Messages and returns the name of the
Agent for whom a Message is intended.

Specifies the list of Agents for which the Listener
provides its services.

setTimeOutForListen() on page 12-115 Specifies the time out for a listen() call.

Listener()

Listener class constructor.

Syntax

Description

Listener (
const Connection* conn);

Listener (
const Connection* conn
vector<Agent> &aglist,

Creates a Listener object.

Creates a Listener object and sets the list
of Agents on behalf of which it listens on
queues. Also sets the waiting time; default:

int waitTime=0); no waiting.
Parameter Description
conn The connection of the new Listener object.
aglist The list of agents on behalf of which the Listener object waits on queues;
clients of this Listener.
waitTime The time to wait on queues for messages of interest for the clients; in

seconds.

getAgentList()

Retrieves the list of Agents for which the Listener provides its services.

Syntax

vector<Agent> getAgentList() const;

12-114 Oracle C++ Call Interface Programmer’s Guide

Listener Class

getTimeOutForListen()

Retrieves the time out for a call.

Syntax

int getTimeOutForListen() const;
listen()

Listens for Messages on behalf of specified Agents for the amount of time specified
by a previous setTimeOutForListen() call. Returns the Agent for which there is a
Message.

Syntax

Agent listen();

Note: This is a blocking call. Prior to this call, complete the
following steps:

= Registers each Agent listener through a setAgentList() call.

= Make a blocking call to setTimeOutForListen() that will return
when a Message for one of the Agents on the list arrives. If no
Messages arrive before the wait time expires, the call returns
an error.

setAgentList()

Specifies the list of Agents for which the Listener provides its services.

Syntax

void setAgentList(
vector<Agent>& agList);

Parameter Description

agList The list of Agents.

setTimeOutForListen()

Specifies the time out for a listen() call.

Syntax

void setTimeOutForListen (
int waitTime);

Parameter Description

waitTime The time interval, in seconds, during which the Listener is waiting for
Messages at specified queues.

OCCI Application Programming Interface 12-115

Map Class

Map Class

put()

The Map class is used to store the mapping of the SQL structured type to C++ classes.

For each user defined type, the Object Type Translator (OTT) generates a C++ class
declaration and implements the static methods readsSQL () and writesSQL (). The
readsQL () method is called when the object from the server appears in the
application as a C++ class instance. The writeSQL () method is called to marshal the
object in the application cache to server data when it is being written / flushed to the
server. The readsQL () and writeSQL () methods generated by OTT are based upon
the OCCI standard C++ mappings.

If you want to override the standard OTT generated mappings with customized
mappings, you must implement a custom C++ class along with the readSQL () and
writeSQL () methods for each SQL structured type you need to customize. In
addition, you must add an entry for each such class into the Map member of the
Environment.

Adds a map entry for the type, type_name, that you want to customize; you must
implement the type_name C++ class.

You must then add this information into a map object, which should be registered with
the connection if the user wants the standard mappings to overridden.This registration
can be done by calling the this method after the environment is created passing the
environment.

Syntax Description
void put (Registers a type and its corresponding C++
const string &schemaType, readsQL and writeSQL functions.

void *(*rSQL) (void *),
void (*wSQL) (void *, void *));

void put (Registers a type and its corresponding C++
const string& schName, readsSQL and writeSQL functions;
const string& typName, multibyte support.

void * (*rSQL) (void *),
void (*wSQL) (void *, wvoid *));

void put(Registers a type and its corresponding C++
const UString& schName, readSQL and writeSQL functions;
const UString& typName, unicode support.

void *(*rSQL) (void *),
void (*wSQL) (void *, wvoid *));

Parameter Description

schemaType The schema and typename, separated by ".", like SCOTT. TYPE1

schName Name of the scema

typName Name of the type

rDQL The readsQL function ponter of the C++ class that corresponds to the type
wSQL The writeSQL function ponter of the C++ class that corresponds to the typ

12-116 Oracle C++ Call Interface Programmer’s Guide

Message Class

Message Class

A message is the unit that is enqueued dequeued. A Message object holds both its
content, or payload, and its properties. This class provides methods to get and set
message properties.

Table 12-24 Enumerated Values Used by Message Class

Attribute Options
MessageState s MSG_WAITING indicates that the message delay time has not been
reached

= MSG_READY indicates that the message is ready to be processed

= MSG_PROCESSED indicates that the message has been processed,
and is being retained

= MSG_EXPIRED indicates that the message has been moced to the
exception queue.

PayloadType u RAW
= ANYDATA
[OBJECT

Table 12-25 Summary of Message Methods

Method Summary

Message() on page 12-118 Message class constructor.

getAnyData() on page 12-118 Retrieves AnyData payload of the message.
getAttemptsToDequeue() on Retrieves the number of attempts made to dequeue the
page 12-118 message.

getBytes() on page 12-119 Retrieves Bytes payload of the message.

getCorrelationld() on page 12-119 Retrieves the identification string.

getDelay() on page 12-119 Retrieves delay with which message was enqueued.
getExceptionQueueName() on Retrieves name of queue to which Message is moved
page 12-119 when it cannot be processed.

getExpiration() on page 12-119 Retrieves the expiration of the message.
getMessageEnqueuedTime() on Retrieves time at which message was enqueued.

page 12-119

getMessageState() on page 12-120 Retrieves state of the message at time of enqueuing.
getObject() on page 12-120 Retrieves object payload of the message.
getOriginalMessageld() on Retrieves the Id of the message that generated this
page 12-120 message on the last queue.

getPayloadType() on page 12-120 Retrieves the type of the payload..

getPriority() on page 12-120 Retrieves the priority of the message.
getSenderId() on page 12-120 Retrieves the agent who send the Message.
isNull() on page 12-120 Tests whether the Message object is NULL.
operator=() on page 12-121 Assignment operator for Message.
setAnyData() on page 12-121 Specifies AnyData payload of the message.

OCCI Application Programming Interface 12-117

Message()

Table 12-25 (Cont.) Summary of

Message Methods

Method

Summary

setBytes() on page 12-121
setCorrelationId() on page 12-121
setDelay() on page 12-122

setExceptionQueueName() on
page 12-122
setExpiration() on page 12-122

setNull() on page 12-123
setObject() on page 12-123

setOriginalMessageld() on
page 12-123

setPriority() on page 12-123
setRecipientList() on page 12-124

setSenderld() on page 12-124

Specifies Bytes payload of the message.
Specifies the identification string.

Specifies the number of seconds to delay the enqueued
Message.

Specifies the name of the queue to which the Message
object will be moved if it cannot be precessed.

Specifies the duration of time that Message can be
dequeued before it expires.

Sets the Message object to NULL.
Specifies object payload of the message.

Specifies id of last queue that generated the Message.

Specifies priority of the Message object.

Specifies the list of agents for whom the message is
intended.

Specifies the sender of the Message.

Message()
Message class constructor.
Syntax Description
Message (Creates a Message object within the
const Environment *env); specified Environment.
Message (Copy constructor.
const Message& mes) ;
Parameter Description
env The environment of the Message.
mes The original Message..
getAnyData()

Retrieves the AnyData payload of the Message.

Syntax

AnyData getAnyData() const;

getAttemptsToDequeue()

Retrieves the number of attempts made to dequeue the message. This property cannot

be retrieved while enqueuing.

12-118 Oracle C++ Call Interface Programmer’s Guide

Message Class

getBytes()

Syntax

int getAttemptsToDequeue() const;

Retrieves Bytes payload of the Message.

Syntax
Bytes getBytes() const;

getCorrelationld()

getDelay()

Retrieves the identification string.

Syntax

string getCorrelationId() const;

Retrieves the delay (in seconds) with which the Message was enqueued.

Syntax

int getDelay() const;

getExceptionQueueName()

Retrieves the name of the queue to which the Message is moved, in cases when the
Message cannot be processed successfully.

Syntax

string getExceptionQueueName () const;

getExpiration()

Retrieves the expiration time of the Message (in seconds). This is the duration for
which the message is available for dequeuing.

Syntax

int getExpiration() const;

getMessageEnqueuedTime()

Retrieves the time at which the message was enqueued, in Date format. This value is
determined by the system, and cannot be set by the user.

Syntax

Date getMessageEnqueuedTime () const;

OCCI Application Programming Interface 12-119

getMessageState()

getMessageState()

getObject()

Retrieves the state of the message at the time of enqueuing. This parameter cannot be
set an enqueuing time. MessageState is defined in Table 12-24 on page 12-117.

Syntax

MessageState getMessageState() const;

Retrieves object payload of the Message.

Syntax
PObject* getObject();

getOriginalMessageld()

Retrieves the original message Id. When a message is propogated from one queue to
another, gets the ID to the last queue that generated this message.

Syntax

Bytes getOriginalMessageId() const;

getPayloadType()

getPriority()

getSenderld()

isNull()

Retrieves the type of the payload, as defined for PayloadType in Table 12-24 on
page 12-117.

Syntax
PayloadType getPayloadType() const;

Retrieves the priority of the Message.

Syntax

int getPriority() const;

Retrieves the agent who send the Message.

Syntax
Agent getSenderId() const;

Tests whether the Message object is NULL. If the Message object is NULL, then TRUE
is returned; otherwise, FALSE is returned.

12-120 Oracle C++ Call Interface Programmer’s Guide

Message Class

operator=()

setAnyData()

setBytes()

Syntax

bool isNull() const;

Assignment operator for Message.

void operator=(
const Message& mes) ;

Parameter Description

mes Original message..

Specifies AnyData payload of the Message.

Syntax

void setAnyData (
const AnyData& anydata);

Parameter Description

anydata Data content of the Message.

Specifies Bytes payload of the Message.

Syntax

void setBytes(
const Bytes& bytes);

Parameter Description

bytes Data content of the Message.

setCorrelationld()

Specifies the identification string. This parameter is set at enqueuing time by the
Producer. Messages can be dequeued with this id. The id can contain wildcard
characters.

Syntax

void setCorrelationId(
const string& id);

OCCI Application Programming Interface 12-121

setDelay()

setDelay()

Parameter Description

id The id; upper limit of 128 bytes.

Specifies the time (in seconds) to delay the enqueued Message. After the delay ends,
the Message is available for dequeuing.

Note: Dequeuing by msgid overrides the delay specification. A
Message enqueued with delay will be in the WAITING state. Delay
is set by the producer of the Message.

Syntax
void setDelay (
int delay);
Parameter Description
delay The delay.

setExceptionQueueName()

Specifies the name of the queue to which the Message object will be moved if it
cannot be processed successfully. The queue name must be valid.

Note:

» If the exception queue does not exist at the time of the move,
the Message will be moved to the default exception queue
associated with the queue table; a warning will be logged in the
alert file.

» If the default exception queue is used, the parameter will return
a NULL value at enqueuing time; the attribute must refer to a
valid queue name.

Syntax

void setExceptionQueueName (
const string& queue);

Parameter Description

queue The name of the exception queue.

setExpiration()

Specifies the duration time (in seconds) that the Message object is available for
dequeuing. A Message expires after this time.

12-122 Oracle C++ Call Interface Programmer’s Guide

Message Class

Syntax
void setExpiration(
int exp);
Parameter Description
exp The duration of expiration.

setNull()
Sets the Message object to NULL. Before the Connection is destroyed by the
terminateConnection() call of the Environment Class, all Message objects need to be
set to NULL.
Syntax
void setNull();

setObject()

Specifies object payload of the Message.

Syntax

void setObject (
PObject& pobj);

Parameter Description

pobj Content of the data

setOriginalMessageld()

Sets the Id of the last queue that generated the message, when a message is
propogated from one queue to another.

Syntax

void setOriginalMessageId (
const Bytes& queue);

Parameter Description

queue The last queue.

setPriority()

Specifies the priority of the Message object. This property is set during enqueuing
time, and can be negative. Default is 0.

Syntax

void setPriority(
int priority);

OCCI Application Programming Interface 12-123

setRecipientList()

Parameter Description
priority The priority of the Message.
setRecipientList()

Specifies the list of Agents for whom the Message is intended. These recipients are
not identical to subscribers of the queue. The property is set during enqueuing. All
Agents in the list must be valid. The recipient list will override the default subscriber
list.

Syntax

void setRecipientList(
vector<Agent>& agentList);

Parameter Description

agentList The list of Agents.

setSenderld()

Specifies the sender of the Message.

Syntax

void setSenderId(
const Agent& sender);

Parameter Description

sender Sender id.

12-124 Oracle C++ Call Interface Programmer’s Guide

MetaData Class

MetaData Class

A MetaData object can be used to describe the types and properties of the columns in
a ResultSet or the existing schema objects in the database. It also provides
information about the database as a whole. The enumerated values of MetaData are in
Table 12-26, and the summary of its methods is in Table 12-27 on page 12-133.

Table 12-26 Enumerated Values Used by MetaData Class

Attribute Options

ParamType The parameter types for objects are:
= PTYPE_ ARG is the argument of a function or procedure.
m PTYPE_COL is the column of a table or view.
= PTYPE_ DATABASE is the database.
= PTYPE_FUNC is the function.
= PTYPE_PKG is the package.
= PTYPE_PROC is the procedure.
= PTYPE_SCHEMA is the schema.
= PTYPE_SEQ is the sequence.
= PTYPE_SYNis the synonym.
s PTYPE_TABLE is the table.
= PTYPE_TYPE is the type.
= PTYPE_TYPE_ARG is the argument of a type method.
= PTYPE_TYPE_ATTR is the attribute of a type.
= PTYPE_TYPE_COLL is the collection type information.
= PTYPE_TYPE_METHOD is the method of a type.
s PTYPE_TYPE_RESULT is the results of a method.
= PTYPE_UNK is the object of an unknown type.
m PTYPE_VIEW is the view.

AttrIdcommonto Attributes of all parameters:
all parameters = ATTR_OBJ_ID is the object or schema id.

= ATTR_OBJ_NAME is either the database name, or the object name in
a schema.

= ATTR_OBJ_SCHEMA is the name of the schema describing the object.

= ATTR_PTYPE is the type of information described by a parameter,
ParamType

= ATTR_TIMESTAMP is the timestamp of an object.

OCCI Application Programming Interface 12-125

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class

Attribute

Options

AttrId for Tables
and Views

AttrId for Tables
only

AttrIdfor
Functions and
Procedures

AttrId for
Packages

Parameters for a table or view (ParamType of PTYPE_TABLE and
PTYPE_VIEW) have the following type-specific attributes:

ATTR_OBJID is the object id
ATTR_NUM_COLS is the number of columns
ATTR_LIST_ COLUMNS is the column list

ATTR_REF_TDO is the REF to the TDO of the base type in case of
extent tables

ATTR_IS_TEMPORARY indicates the table is temporary
ATTR_IS_TYPED indicates the table is typed

ATTR_DURATION is the duration of a temporary table. Values can be
DURATION_SESSION, DURATION_TRANS, and DURATION_NULL, as
defined for attribute AttrValues

Parameters for a tables only (ParamType of PTYPE_TABLE):

ATTR_RDBA indicates the data block address of the segment header
ATTR_TABLESPACE indicates the tablespace the table resides in
ATTR_CLUSTERED indicates the table is clustered
ATTR_PARTITIONED indicates the table is partitioned
ATTR_INDEX_ONLY indicates the table is index-only

Parameters for functions and procedures (ParamType of PTYPE_FUNC
and PTYPE_PROC, respectively):

ATTR_LIST_ ARGUMENTS indicates the argument list

ATTR_IS_INVOKER_RIGHTS indicates the procedure or function
has invoker's rights

ATTR_NAME indicates the name of the procedure or function

ATTR_OVERLOAD_ID indicates the overloading ID number,
relevant when the procedure or function is part of a class and it is
overloaded; values returned may be different from direct query of a
PL/SQL function or procedure

Parameters for packages (ParamType of PTYPE_PKG):

ATTR_LIST_SUBPROGRAMS indicates the subprogram list

ATTR_IS_INVOKER_RIGHTS indicates the procedure or function
has invoker's rights

12-126 Oracle C++ Call Interface Programmer’s Guide

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class
Attribute Options

AttrIdfor Types Parameter is for types (ParamType of PTYPE_TYPE):

= ATTR_REF_TDO indicates the in-memory REF of the type descriptor
for the type, if the column type is an object type. If space has not
been reserved, then it is allocated implicitly in the cache. The caller
can then pin the object.

= ATTR_TYPECODE indicates the datatype code

= ATTR_COLLECTION_TYPECODE indicates the typecode of
collection, if type is collection

= ATTR_IS_INCOMPLETE_TYPE indicates that this is an incomplete

type

= ATTR_IS_SYSTEM TYPE indicates that this is a system generated
type

= ATTR_IS_PREDEFINED_TYPE indicates that this is a predefined
type

= ATTR_IS_TRANSIENT_ TYPE indicates that this is a transient type

s ATTR_IS_SYSTEM_GENERATED_TYPE indicates that thisis a
system generated type

= ATTR_HAS_NESTED_TABLE indicates that this type contains a
nested table attribute

= ATTR_HAS_LOB indicates that this type contains a LOB attribute

= ATTR_HAS_FILE indicates that this type contains a BFILE
attribute

s ATTR_COLLECTION_ELEMENT indicates a reference to a collection
element

= ATTR_NUM_TYPE_ATTRS indicates the number of type attributes

= ATTR_LIST_TYPE_ATTRS indicates the list of type attributes

= ATTR_NUM_TYPE_METHODS indicates the number of type methods
= ATTR_LIST_TYPE_METHODS indicates the list of type methods

= ATTR_MAP_METHOD indicates the map method of the type

= ATTR_ORDER_METHOD indicates the order method of the type

= ATTR_IS_INVOKER_RIGHTS indicates the type has invoker's
rights

= ATTR_NAME indiccates the type attribute name

= ATTR_SCHEMA_NAME indicates the schema where the type is
created

= ATTR_IS_FINAL_TYPE indicates this is a final type

s ATTR_IS_INSTANTIABLE_TYPE indicates this is an instantiable
type
= ATTR_IS_SUBTYPE indicates this is a subtype

s ATTR_SUPERTYPE_SCHEMA_NAME indicates the name of the
schema that contains the supertype

= ATTR_SUPERTYPE_NAME indicates the name of the supertype

OCCI Application Programming Interface 12-127

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for Type Parameter is for attributes of types (ParamType of PTYPE_TYPE_ATTR):

Attributes

ATTR_DATA_SIZE indicates the maximum size of the type attribute
ATTR_TYPECODE indicates the datatype code

ATTR_DATA_TYPE indicates the datatype of the type attribute
ATTR_NAME indicates the name of the procedure or function

ATTR_PRECISION indicates the precision of numeric type
attributes.

ATTR_SCALE indicates the scale of the numeric type attributes
ATTR_TYPE_NAME indicates a type name

ATTR_SCHEMA_NAME indicates the name of the schema where the
type has been created

ATTR_REF_TDO indicates the in-memory REF of the type, if the
column type is an object type. If the space has not been reserved, it
is allocated implicityly in the cache. The caller can then pin the
object.

ATTR_CHARSET_ID indicates the characterset ID
ATTR_CHARSET_FORM indicates the characterset form

ATTR_FSPRECISION indicates the fractional seconds precision of a
Timestamp, IntervalDS or Interval¥YM

ATTR_LFPRECISION indicates the leading field precision of an
IntervalDS or IntervalYM

AttrId for Type Parameter is for methods of types (ParamType of PTYPE_TYPE_
Methods METHOD):

ATTR_NAME indicates the name of the procedure or function

ATTR_ENCAPSULATION indicates the method's level of
encapsulation

ATTR_LIST_ ARGUMENTS indicates the argument list
ATTR_IS_CONSTRUCTOR indicates the method is a constructor
ATTR_IS_DESTRUCTOR indicates the method is a destructor
ATTR_IS_OPERATOR indicates the method is an operator
ATTR_IS_SELFISH indicates the method is selfish

ATTR_IS_MAP indicates the method is a map method
ATTR_IS_ORDER indicates the method is an order method
ATTR_IS_RNDS indicates that the method is in "read no data" state

ATTR_IS_RNPS indicates that the method is in a "read no process"
state

ATTR_IS_WNDS indcates that the method is in "write no data" state

ATTR_IS_WNPS indicates that the method is in "write no process"
state

ATTR_IS_FINAL_METHOD indicates that this is a final method

ATTR_IS_INSTANTIABLE_METHOD indicates that this is an
instantiable method

ATTR_IS_OVERRIDING_METHOD indicates that this is an
overriding method

12-128 Oracle C++ Call Interface Programmer’s Guide

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options
AttrId for Parameter is for collections (ParamType of PTYPE_TYPE_COLL):
Collections

ATTR_DATA_SIZE indicates

ATTR_TYPECODE indicates

ATTR_DATA_TYPE indicates the datatype of the type attribute
ATTR_NUM_ELEMS indicates the number of elements in a collection
ATTR_NAME indicates the name of the type attribute
ATTR_PRECISION indicates the precision of a numeric attribute
ATTR_SCALE indicates the scale of a numberic attribute
ATTR_TYPE_NAME indicates the type name

ATTR_SCHEMA_NAME indicates the schema where the type has been
created

ATTR_REF_TDO indicates the in-memory REF of the type, if the
column type is an object type. If the space has not been reserved, it
is allocated implicityly in the cache. The caller can then pin the
object.

ATTR_CHARSET_ID indicates the characterset id
ATTR_CHARSET_FORM indicates the characterset form

AttrId for Parameter is for synonyms (ParamType of PTYPE_SYN):

Synonyms .

ATTR_OBJID indicates the object id

ATTR_SCHEMA_NAME indicates the schema name of the synonym
translation

ATTR_NAME indicates indicates a NULL-terminated object name of
the synonym translation

ATTR_LINK indicates a NULL-terminated database link name of the
synonym installation

Attrid for Parameter is for sequences (ParamType of PTYPE_SEQ):

Sequences .

ATTR_OBJID indicates the object id
ATTR_MIN indicates the minimum value
ATTR_MAX indicates the maximum value
ATTR_INCR indicates the increment

ATTR_CACHE indicates the number of sequence numbers cached; 0
if the sequence is not cahced

ATTR_ORDER indicates whether the sequence is ordered
ATTR_HW_MARK indicates the "high-water mark"

OCCI Application Programming Interface 12-129

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options
AttrId for Parameter is for columns of tables or views (ParamType of PTYPE_COL):
Columns

ATTR_CHAR_USED indicates the type of length semantics of the
column. 0 means byte-length semanitcs and 1 means
character-length semantics.

ATTR_CHAR_SIZE indicates the column character length, or
number of characters allowed in a column

ATTR_DATA_SIZE indicates the maximum size of a column , or
number of bytes allowed in a column

ATTR_DATA_TYPE indicates the dtatype of the column
ATTR_NAME indicates indicates the column name
ATTR_PRECISION indicates the precision of numeric columns
ATTR_SCALE indicates indicates the scale of numeric columns

ATTR_IS_NULL indicates 0 if NULL values are not permitted for the
column

ATTR_TYPE_NAME indicates a type name

ATTR_SCHEMA_NAME indicates the schema where the type was
created

ATTR_REF_TDO indicates the REF for the type, if the colum is of
object type

ATTR_CHARSET_ID indicates the characterset ID

ATTR_CHARSET_FORM indicates the characterset form

12-130 Oracle C++ Call Interface Programmer’s Guide

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for Parameter for arguments of a procedure or function (PTYPE_ARG), a
Arguments and method (PTYPE_TYPE_ARG), or a result (PTYPE_TYPE_RESULT)
Results

= ATTR_NAME indicates the argument name

= ATTR_POSITION indicates the position of the argument in the list
= ATTR_TYPECODE indicates the typecode

= ATTR_DATA_TYPE indicates the datatype

= ATTR_DATA_SIZE indicates the size of the datatype

= ATTR_PRECISION indicates the precision of a numeric argument
= ATTR_SCALE indicates the scale of a numeric argument

= ATTR_LEVEL indicates the datatype level

= ATTR_HAS_DEFAULT indicates whether an argument has a default

= ATTR_LIST_ARGUMENTS indicates the list of arguments at the next
level, for records or table types

= ATTR_IOMODE indicates the argument mode: 0 for IN, 1 for OUT, 2
for IN/OUT

= ATTR_RADIX indicates the radix of a number type
= ATTR_IS_NULL indicates 0 if NULL values are not permitted
= ATTR_TYPE_NAME indicates the type name

= ATTR_SCHEMA_NAME indicates the schema name where the type
was created

= ATTR_SUB_NAME indicates the type name for packate local types

= ATTR_LINK indicates a NULL-terminated database link name
where the type is defined, for package local types when the package
is remote

= ATTR_REF_TDO is the REF to the TDO of the type if the argument is
an object

s ATTR_CHARSET_ID indicates the characterset ID

s ATTR_CHARSET_ FORM indicates the characterset form

AttrId for Schemas Parameter is for schemas (ParamType of PTYPE_SCHEMA):

= ATTR_LIST_OBJECTS indicates the list of objects in the schema

AttrId for Lists Parameter is for list of columns, arguments or subprograms:
= ATTR_LIST_COLUMNS indicates a column list

= ATTR_LIST ARGUMENTS indicates a procedure or function
argument list

= ATTR_LIST_SUBPROGRAMS indicates a subprogram list

= ATTR_LIST_TYPE_ATTRIBS indicates a type attribute list
= ATTR_TYPE_METHODS indicates a type method list

= ATTR_TYPE_OBJECTS indicates a list of objects in a shcema

s ATTR_LIST_SCHEMAS indicates a list of schemas in a database

OCCI Application Programming Interface 12-131

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options
AttrId for Parameter is for list of columns, arguments or subprograms (ParamType
Databases of PTYPE_DATABASE):

ATTR_VERSION indicates the database version
ATTR_CHARSET_ID indicates the characterset ID of the database

ATTR_NCHARSET_ID indicates the national characterset of the
database

ATTR_LIST_SCHEMAS indicates the list of schemas, PTYPE_
SCHEMA

ATTR_MAX_PROC_LEN indicates the maximum length of a
procedure name

ATTR_MAX_COLUMN_LEN indicates the maximum length of a
column name

ATTR_CURSOR_COMMIT_ BEHAVIOR indicates how a commit affects
cursors and prepared statements. Values can be CURSOR_OPEN and
CURSER_CLOSED, as defined for attribute AttrValues

ATTR_MAX_CATALOG_NAMELEN indicates the maximum length of a
database (catalog) name

ATTR_CATALOG_LOCATION indicates the position of the catalog in
a qualified table. Values can be CL._START and CL_END, as defined
for attribute AttrValues

ATTR_SAVEPOINT_SUPPORT indicates whether the database
supports savepoints. Values can be SP_SUPPORTED and SP_
UNSUPPORTED, as defined for attribute AttrValues

ATTR_NOWAIT_SUPPORT indicates whether the database suports
the "no wait" condition. Values can be NW_SUPPORTED and NW__
UNSUPPORTED, as defined for attribute AttrValues

ATTR_AUTOCOMMIT_DDL indicates if an autocommit mode is
required for DDL statements. Values can be AC_DDL and NO_AC_
DDL, as defined for attribute AttrValues

ATTR_LOCKING_MODE indicates the locking mode for the database.
Values can be LOCK_IMMEDIATE and LOCK_DELAYED, as defined
for attribute AttrValues

12-132 Oracle C++ Call Interface Programmer’s Guide

MetaData Class

Table 12-26 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrValues Attribute values are returned on executing a get xxx () method and
passing in an attribute, for which these are the results:

= DURATION_SESSION is the duration of a temporary table: session.
= DURATION_TRANS is the duration of a temporary table: transaction.

= DURATION_NULL is the duration of a temporary table: table not
temporary.

= TYPEENCAP_PRIVATE is the encapsulation level of the method:
private.

= TYPEENCAP_PUBLIC is the encapsulation level of the method:
public.

= TYPEPARAM_IN is the argument mode: IN.
= TYPEPARAM_OUT is the argument mode: OUT.
= TYPEPARAM_INOUT is the argument mode: IN/OUT.

= CURSOR_OPEN is the effect of COMMIT operation on cursors and
prepared statements in the database: preserve cursor state as before
the COMMIT operation.

= CURSER_CLOSED is the effect of COMMIT operation on cursors and
prepared statements in the database: cursors are closed on COMMIT,
but the applicaton can still rerun the statement without preparing it
again.

= CL_START is the position of the catalog in a qualified table: start.

= CL_END is the position of the catalog in a qualified table: end.

= SP_SUPPORTED is the database supports savepoints.

= SP_UNSUPPORTED is the database does not support savepoints.

= NW_SUPPORTED is the database supports nowait clause.

= NW_UNSUPPORTED is the database does not supports nowait clause.
= AC_DDL is the autocommit mode required for DDL statements.

= NO_AC_DDL is the autocommit mode not required for DDL
statements.

= LOCK_IMMEDIATE is the locking mode for the database: immediate.
= LOCK_DELAYED is the locking mode for the database: delayed.

Table 12-27 Summary of MetaData Methods

Method Description

MetaData() on page 12-134 MetaData class constructor.

getAttributeCount() on page 12-134 Gets the count of the attribute as a MetaData object

getAttributeld() on page 12-134 Gets the ID of the specified attribute
getAttributeType() on page 12-134 Gets the type of the specified attribute.
getBoolean() on page 12-135 Gets the value of the attribute as a C++ boolean.
getInt() on page 12-135 Gets the value of the attribute as a C++ int.
getMetaData() on page 12-135 Gets the value of the attribute as a MetaData object
getNumber() on page 12-135 Returns the specified attribute as a Number object.
getRef() on page 12-136 Gets the value of the attribute as a Ref<T>.

OCCI Application Programming Interface 12-133

MetaData()

Table 12-27 (Cont.) Summary of MetaData Methods

Method Description

getString() on page 12-136 Gets the value of the attribute as a string.

getTimeStamp() on page 12-136 Gets the value of the attribute as a Timestamp object

getUInt() on page 12-136 Gets the value of the attribute as a C++ unsigned int.

getUString() on page 12-137 Returns the value of the attribute as a UString in the
character set associated with the metadata.

getVector() on page 12-137 Gets the value of the attribute as an C++ vector.

operator=() on page 12-137 Assigns one metadata object to another.

MetaData()

MetaData class constructor.

Syntax

MetaData (

const MetaData &omd) ;

Parameter Description

cmd The source that the MetaData object will be copied from.
getAttributeCount()

This method returns the number of attributes related to the metadata object.

Syntax

unsigned int getAttributeCount () const;
getAttributeld()

This method returns the attribute ID (ATTR_NUM_COLS, ...) of the attribute

represented by the attribute number specified.

Syntax

AttrId getAttributeId(

unsigned int attributeNum) const;

Parameter Description

attributeNum The number of the attribute for which the attribute ID is to be returned.
getAttributeType()

This method returns the attribute type (NUMBER, INT, ...) of the attribute represented
by attribute number specified.

12-134 Oracle C++ Call Interface Programmer’s Guide

MetaData Class

getBoolean()

getint()

getMetaData()

getNumber()

Syntax

Type getAttributeType (
unsigned int attributeNum) const;

Parameter Description

attributeNum The number of the attribute for which the attribute type is to be returned.

This method returns the value of the attribute as a C++ boolean. If the value is a SQL
NULL, the result is FALSE.

Syntax

bool getBoolean (
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

This method returns the value of the attribute as a C++ int. If the value is SQL NULL,
the result is 0.

Syntax

int getInt(
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

This method returns a MetaData instance holding the attribute value. A metadata
attribute value can be retrieved as a MetaData instance. This method can only be
called on attributes of the metadata type.

Syntax

MetaData getMetaData (
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

This method returns the value of the attribute as a Number object. If the value is a SQL
NULL, the result is NULL.

OCCI Application Programming Interface 12-135

getRef()

Syntax

Number getNumber (
MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getRef()

This method returns the value of the attribute as a RefAny, or Ref to a TDO. If the
value is SQL NULL, the result is NULL.

Syntax

RefAny getRef (
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getString()

This method returns the value of the attribute as a string. If the value is SQL NULL, the
result is NULL.

Syntax

string getString (
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getTimeStamp()

This method returns the value of the attribute as a Timestamp object. If the value is a
SQL NULL, the result is NULL.

Syntax

Timestamp getTimestamp (
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

getUint()

This method returns the value of the attribute as a C++ unsigned int.If the valueisa
SQL NULL, the result is 0.

12-136 Oracle C++ Call Interface Programmer’s Guide

MetaData Class

getUString()

getVector()

operator=()

Syntax

unsigned int getUInt(
MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

Returns the value of an attribute as a UString in the character set associated with the
metadata.

Syntax

UString getUString(
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

This method returns a C++ vector containing the attribute value. A collection attribute
value can be retrieved as a C++ vector instance. This method can only be called on
attributes of a list type.

Syntax

vector<MetaData> getVector (
MetaData: :AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

This method assigns one MetaData object to another. This increments the reference
count of the MetaData object that is assigned.

Syntax

void operator=(
const MetaData &omd) ;

Parameter Description

cmd MetaData object to be assigned

OCCI Application Programming Interface 12-137

NotifyResult Class

NotifyResult Class

A NotifyResult object holds the notification information in the Streams AQ notification
callback. It is created by OCCI before invoking a user-callback, and is destroyed after
the user-callback returns.

Table 12-28 Summary of NotifyResult Methods

Method Summary

getConsumerName() on page 12-138 Returns the name of the notification consumer.

getMessage() on page 12-138 Returns the message.

getMessageld() on page 12-138 Returns the message ID.

getPayload() on page 12-138 Returns the payload.

getQueueName() on page 12-138 Returns the name of the queue.
getConsumerName()

Gets the name of the consumer for which the message has been enqueued. In case of a
single consumer queue, this is a empty string.

string getConsumerName () const;

getMessage()

Gets the message which has been enqueued into the non-persistent queue.

Message getMessage() const;

getMessageld()

Gets the id of the message which has been enqueued.

Bytes getMessageId() const;

getPayload()

Gets the payload in case of a notification from NS_ANONYMOUS namespace.

Bytes getPayload() const;

getQueueName()

Gets the name of the queue on which the enqueue has happened

string getQueueName () const;

12-138 Oracle C++ Call Interface Programmer’s Guide

Number Class

Number Class

The Number class handles limited-precision signed base 10 numbers. A Number
guarantees 38 decimal digits of precision. All positive numbers in the range displayed
here can be represented to a full 38-digit precision:

107-130

and

9.99999999999999999999999999999999999999*107125

The range of representable negative numbers is symmetrical.

The number zero can be represented exactly. Also, Oracle numbers have
representations for positive and negative infinity. These are generally used to indicate
overflow.

The internal storage type is opaque and private. Scale is not preserved when Number
instances are created.

Number does not support the concept of NaN and is not IEEE-754-85 compliant.
Number does support +Infinity and -Infinity.

Objects from the Number class can be used as standalone class objects in client side
numerical computations. They can also be used to fetch from and set to the database.

Example 12-10 How to Retrieve and Use a Number Obect

This example demonstrates a Number column value being retrieved from the database,
a bind using a Number object, and a comparison using a standalone Number object.

/* Create a connection */
Environment *env = Environment::createEnvironment (Environment: :DEFAULT) ;
Connection *conn = env->createConnection(user, passwd, db);

/* Create a statement and associate a select clause with it */
string sqlStmt = "SELECT department_id FROM DEPARTMENTS";
Statement *stmt = conn->createStatement (sglStmt) ;

/* Run the statement to get a result set */

ResultSet *rset = stmt->executeQuery();

while(rset->next())

{
Number deptId = rset->getNumber (1) ;
/* Display the department id with the format string 9,999 */
cout << "Department Id" << deptId.toText(env, "9,999");

/* Use the number obtained as a bind value in the following query */
stmt->setSQL ("SELECT * FROM EMPLOYEES WHERE department_id = :x");
stmt->setNumber (1, deptId);

ResultSet *rset2 = stmt->executeQuery();

}
/* Using a Number object as a standalone and the operations on them */
/* Create a number to a double value */

double value = 2345.123;
Number nul (value);

OCCI Application Programming Interface 12-139

Number Class

/* Some common Number methods */

Number abs = nul.abs();

/* absolute value */
Number sqgrt = nul.squareroot();

/* square root */

Environment *env = Environment::createEnvironment () ;

//create a null year-month interval

IntervalYM ym
if(ym.isNull())

cout << "\n ym is null";

//assign a non null value to ym

IntervalYM anotherYM(env,

ym = anotherYM;

"10-30");

//now all operations are valid on ym

int yr = ym.getYear();

Table 12-29 Summary of Number Methods

Method

Summary

Number() on page 12-142
abs() on page 12-143
arcCos() on page 12-143
arcSin() on page 12-143
arcTan() on page 12-143
arcTan2() on page 12-143

ceil() on page 12-144

cos() on page 12-144
exp() on page 12-144
floor() on page 12-144

fromBytes() on page 12-144
fromText() on page 12-145

hypCos() on page 12-145
hypSin() on page 12-145
hypTan() on page 12-145
intPower() on page 12-146
isNull() on page 12-146
In() on page 12-146

log() on page 12-146

operator++() on page 12-146

operator-- () on page 12-147

operator*() on page 12-99

Number class constructor.

Returns the absolute value of the number.
Returns the arcCosine of the number.
Returns the arcSine of the number.
Returns the arcTangent of the number.

Returns the arcTangent? of the input number y and this
number x.

Returns the smallest integral value not less than the value of
the number.

Returns the cosine of the number.
Returns the natural exponent of the number.

Returns the largest integral value not greater than the value
of the number.

Returns a Number derived from a Bytes object.

Returns a Number from a given number string, format
string and nls parameters specified.

Returns the hyperbolic cosine of the number.

Returns the hyperbolic sine of the number.

Returns the hyperbolic tangent of the number.

Returns the number raised to the integer value specified.
Checks if Number is NULL.

Returns the natural logarithm of the number.

Returns the logarithm of the number to the base value
specified.

Increments the number.
Decrements the number.

Returns the product of two Numbers.

12-140 Oracle C++ Call Interface Programmer’s Guide

Number Class

Table 12-29 (Cont.) Summary of Number Methods

Method

Summary

operator/() on page 12-147
operator%() on page 12-148
operator+() on page 12-148
operator-() on page 12-148
operator-() on page 12-148
operator<() on page 12-149
operator<=() on page 12-149
operator>() on page 12-149
operator>=() on page 12-80

operator=() on page 12-79
operator==() on page 12-79
operator!=() on page 12-79
operator*=() on page 12-99
operator/=() on page 12-100
operator%=() on page 12-151
operator+=() on page 12-152

operator-=() on page 12-152

operator char() on page 12-152

operator signed char() on
page 12-152

operator double() on
page 12-152

operator float() on page 12-153

operator int() on page 12-153

operator long() on page 12-153

operator long double() on
page 12-153

operator short() on page 12-153

operator unsigned char() on
page 12-153

operator unsigned int() on
page 12-154

operator unsigned long() on
page 12-154

operator unsigned short() on
page 12-154

power() on page 12-154

prec() on page 12-154

Returns the quotient of two Numbers.

Returns the modulo of two Numbers.

Returns the sum of two Numbers.

Returns the negated value of Number .

Returns the difference between two Numbers.

Checks if a number is less than an other number.

Checks if a number is less than or equal to an other number.
Checks if a number is greater than an other number.

Checks if a number is greater than or equal to an other
number.

Assigns one number to another.

Checks if two numbers are equal.

Checks if two numbers are not equal.
Multiplication assignment.

Division assignment.

Modulo assignment.

Addition assignment.

Subtraction assignment.

Returns Number converted to native char.

Returns Number converted to native signed char.
Returns Number converted to a native double.

Returns Number converted to a native float.
Returns Number converted to native integer.
Returns Number converted to native long.

Returns Number converted to a native long double.

Returns Number converted to native short integer.

Returns Number converted to an unsigned native char.
Returns Number converted to an unsigned native integer.
Returns Number converted to an unsigned native long.
Returns Number converted to an unsigned native short

integer.

Returns Number raised to the power of another number
specified.

Returns Number rounded to digits of precision specified.

OCCI Application Programming Interface 12-141

Number()

Number()

Table 12-29 (Cont.) Summary of Number Methods

Method

Summary

round() on page 12-155

setNull() on page 12-155
shift() on page 12-155

sign() on page 12-155

sin() on page 12-155
squareroot() on page 12-156
tan() on page 12-156
toBytes() on page 12-156
toText() on page 12-156

trunc() on page 12-157

Returns Number rounded to decimal place specified.
Negative values are allowed.

Sets Number to NULL.

Returns a Number that is equivalent to the passed value *
10"n, where n may be positive or negative.

Returns the sign of the value of the passed value: -1 for the
passed value < 0, 0 for the passed value == 0, and 1 for the
passed value > 0.

Returns sine of the number.

Returns the square root of the number.

Returns tangent of the number.

Returns a Bytes object representing the Number.

Returns the number as a string formatted based on the
format and nls parameters.

Returns a Number with the value truncated at n decimal
place(s). Negative values are allowed.

Number class constructor.

Syntax Description
Number () ; Default constructor.
Number (Creates a copy of a Number.

const Number &srcNum) ;

Number (
long double &val);

Number (
double val);

Number (
float val);

Number (
long val);

Number (
int val);

Number (
shot val);

Number (
char val);

Number (
signed char val);

Number (
unsigned long val);

Translates a native long double into a Number. The Number is
created using the precision of the platform-specific constant
LDBL_DIG

Translates a native double into a Number. The Number is
created using the precision of the platform-specific constant
DBL_DIG.

Translates a native float into a Number. The Number is created
using the precision of the platform-specific constant FL.T_DIG.
Translates a native long into a Number.

Translates a native int into a Number.

Translates a native short into a Number.

Translates a native char into a Number.

Translates a native signed char into a Number.

Translates an native unsigned long into a Number.

12-142 Oracle C++ Call Interface Programmer’s Guide

Number Class

abs()

arcCos()

arcSin()

arcTan()

arcTan2()

Syntax Description

Number (Translates a native unsigned int into a Number.
unsigned int val);

Number (Translates a native unsigned short into a Number.
unsigned short val);

Number (Translates the unsigned character array into a Number.
unsigned char val);

Parameter Description
srcNum The source Number copied into the new Number object.
val The value assigned to the Number object.

This method returns the absolute value of the Number object.

Syntax

const Number abs() const;

This method returns the arccosine of the Number object.

Syntax

const Number arcCos() const;

This method returns the arcsine of the Number object.

Syntax

const Number arcSin() const;

This method returns the arctangent of the Number object.

Syntax

const Number arcTan() const;

This method returns the arctangent of the Number object with the parameter specified.
It returns atan2 (val, x) where val is the parameter specified and x is the current
number object.

OCCI Application Programming Interface 12-143

ceil()

ceil()

cos()

exp()

floor()

fromBytes()

Syntax

const Number arcTan2 (
const Number &val) const;

Parameter Description

val Number parameter val to the arcTangent function atan2 (val, x).

This method returns the smallest integer that is greater than or equal to the Number
object.

Syntax

const Number ceil() const;

This method returns the cosine of the Number object.

Syntax

const Number cos() const;

This method returns the natural exponential of the Number object.

Syntax

const Number exp() const;

This method returns the largest integer that is less than or equal to the Number object.

Syntax

const Number floor() const;

This method returns a Number object represented by the byte string specified.

Syntax

void fromBytes (
const Bytes &str);

Parameter Description

str A byte string.

12-144 Oracle C++ Call Interface Programmer’s Guide

Number Class

fromText()

hypCos()

hypSin()

hypTan()

Sets Number object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Reference for information on TO_

NUMBER
Syntax Description
void fromText (Sets Number object to value represented by
const Environment *envp, a string.

const string &number,
const string &fmt,
const string &nlsParam = "");

void fromText (Sets Number object to value represented by
const Environment *envp, aUString.
const UString &number,
const UString &fmt,
const UString &nlsParam);

Parameter Description

envp The OCCI environment.

number The number string to be converted to a Number object.
fmt The format string.

nlsParam The nls parameters string. If n1sParam is specified, this

determines the nls parameters to be used for the conversion. If
nlsParam is not specified, the nls parameters are picked up
from envp.

This method returns the hypercosine of the Number object.

Syntax

const Number hypCos() const;

This method returns the hypersine of the Number object.

Syntax

const Number hypSin() const;

This method returns the hypertangent of the Number object.

OCCI Application Programming Interface 12-145

intPower()

intPower()

isNull()

In()

log()

operator++()

Syntax

const Number hypTan() const;

This method returns a Number whose value is the number object raised to the power
of the value specified.

Syntax

const Number intPower (
int val) const;

Parameter Description

val Power to which the number is raised.

This method tests whether the Number object is NULL. If the Number object is NULL,
then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

This method returns the natural logarithm of the Number object.

Syntax

const Number 1n() const;

This method returns the logarithm of the Number object with the base provided by the
parameter specified.

Syntax

const Number log(
const Number &val) const;

Parameter Description

val The base to be used in the logarithm calculation.

Unary operator++ (). This is a postfix operator.

Syntax Description

Number& operator++(); This method returns the Number object incremented by 1.

12-146 Oracle C++ Call Interface Programmer’s Guide

Number Class

operator-—()

operator*()

operator/()

Syntax Description

const Number operator++(This method returns the Number object incremented by the
int incr); integer specified.

Parameter Description

incr The number by which the Number object is incremented.

Unary operator-- (). This is a prefix operator.

Syntax Description

Number& operator--(); This method returns the Number object decremented by 1.

const Number operator--(This method returns the Number object decremented by the
int decr); integer specified.

Parameter Description

decr The number by which the Number object is decremented.

This method returns the product of the parameters specified.

Syntax

Number operator* (
const Number &first,
const Number &second);

Parameter Description
first First multiplicand.
second Second multiplicand.

This method returns the quotient of the parameters specified.

Syntax

Number operator/ (
const Number ÷nd,
const Number &divisor);

Parameter Description

dividend The number to be divided.

OCCI Application Programming Interface 12-147

operator%)

Parameter Description

divisor The number by which to divide.

operator%)
This method returns the remainder of the division of the parameters specified.

Syntax

Number operator$ (
const Number ÷nd,
const Number ÷r);

Parameter Description

dividend The number to be divided.

divizor The number by which to divide.

operator+()
This method returns the sum of the parameters specified.

Syntax

Number operator+ (
const Number &first,
const Number &second) ;

Parameter Description

first First number to be added.

second Second number to be added.

operator-()
Unary operator- (). This method returns the negated value of the Number object.

Syntax

const Number operator-();

operator-()
This method returns the difference between the parameters specified.

Syntax

Number operator- (
const Number &subtrahend,
const Number &subtractor);

Parameter Description

subtrahend The number to be reduced.

12-148 Oracle C++ Call Interface Programmer’s Guide

Number Class

operator<()

operator<=()

operator>()

Parameter Description

subtractor The number to be subtracted.

This method checks whether the first parameter specified is less than the second
parameter specified. If the first parameter is less than the second parameter, then TRUE
is returned; otherwise, FALSE is returned. If either parameter is equal to infinity, then
FALSE is returned.

Syntax

bool operator<(
const Number &first,
const Number &second) ;

Parameter Description
first First number to be compared.
second Second number to be compared.

This method checks whether the first parameter specified is less than or equal to the
second parameter specified. If the first parameter is less than or equal to the second
parameter, then TRUE is returned; otherwise, FALSE is returned. If either parameter
is equal to infinity, then FALSE is returned.

Syntax

bool operator<=(
const Number &first,
const Number &second);

Parameter Description
first First number to be compared.
second Second number to be compared.

This method checks whether the first parameter specified is greater than the second
parameter specified. If the first parameter is greater than the second parameter, then
TRUE is returned; otherwise, FALSE is returned. If either parameter is equal to infinity,
then FALSE is returned.

Syntax

bool operator>(
const Number &first,
const Number &second);

OCCI Application Programming Interface 12-149

operator>=()

operator>=()

operator==()

operator!=()

Parameter Description
first First number to be compared.
second Second number to be compared.

This method checks whether the first parameter specified is greater than or equal to
the second parameter specified. If the first parameter is greater than or equal to the
second parameter, then TRUE is returned; otherwise, FALSE is returned. If either
parameter is equal to infinity, then FALSE is returned.

Syntax

bool operator>=(
const Number &first,
const Number &second);

Parameter Description
first First number to be compared.
second Second number to be compared.

This method checks whether the parameters specified are equal. If the parameters are
equal, then TRUE is returned; otherwise, FALSE is returned. If either parameter is
equal to +infinity or -infinity, then FALSE is returned.

Syntax

bool operator==(
const Number &first,
const Number &second);

Parameter Description
first First number to be compared.
second Second number to be compared.

This method checks whether the first parameter specified is equal to the second
parameter specified. If the parameters are not equal, TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool operator!=(
const Number &first,
const Number &second) ;

12-150 Oracle C++ Call Interface Programmer’s Guide

Number Class

operator=()

operator*=()

operator/=()

operator%=()

Parameter Description
first First number to be compared.
second Second number to be compared.

This method assigns the value of the parameter specified to the Number object.

Syntax

Number& operator=(
const Number &num);

Parameter Description

num A parameter of type Number.

This method multiplies the Number object by the parameter specified, and assigns the
product to the Number object.

Syntax

Numberé& operator*=(
const Number &num);

Parameter Description

num A parameter of type Number.

This method divides the Number object by the parameter specified, and assigns the
quotient to the Number object.

Syntax

Number& operator/=(
const Number &num) ;

Parameter Description

num A parameter of type Number.

This method divides the Number object by the parameter specified, and assigns the
remainder to the Number object.

Syntax

Number& operator$=(
const Number &num) ;

OCCI Application Programming Interface 12-151

operator+=()

operator+=()

operator-=()

Parameter Description

num A parameter of type Number.

This method adds the Number object and the parameter specified, and assigns the
sum to the Number object.

Syntax

Number& operator+=(
const Number &num);

Parameter Description

num A parameter of type Number.

This method subtracts the parameter specified from the Number object, and assigns
the difference to the Number object.

Syntax

Numberé& operator-=(
const Number &num);

Parameter Description
num A parameter of type Number.
operator char()

This method returns the value of the Number object converted to a native char.

Syntax

operator char() const;

operator signed char()

This method returns the value of the Number object converted to a native signed
char.

Syntax

operator signed char() const;

operator double()

This method returns the value of the Number object converted to a native double.

12-152 Oracle C++ Call Interface Programmer’s Guide

Number Class

Syntax

operator double() const;

operator float()

operator int()

This method returns the value of the Number object converted to a native f1loat.

Syntax

operator float() const;

This method returns the value of the Number object converted to a native int.

Syntax

operator int() const;

operator long()

This method returns the value of the Number object converted to a native long.

Syntax

operator long() const;

operator long double()

This method returns the value of the Number object converted to a native long
double.

Syntax

operator long double() const;

operator short()

This method returns the value of the Number object converted to a native short
integer.

Syntax

operator short() const;

operator unsigned char()

This method returns the value of the Number object converted to a native unsigned
char.

Syntax

operator unsigned char() const;

OCCI Application Programming Interface 12-153

operator unsigned int()

operator unsigned int()

This method returns the value of the Number object converted to a native unsigned
int.

Syntax

operator unsigned int() const;

operator unsigned long()

This method returns the value of the Number object converted to a native unsigned
long.

Syntax

operator unsigned long() const;

operator unsigned short()

power()

prec()

This method returns the value of the Number object converted to a native unsigned
short integer.

Syntax

operator unsigned short() const;

This method returns the value of the Number object raised to the power of the value
provided by the parameter specified.

Syntax

const Number power (
const Number &val) const;

Parameter Description

val The power to which the number has to be raised.

This method returns the value of the Number object rounded to the digits of precision
provided by the parameter specified.

Syntax

const Number prec(
int digits) const;

Parameter Description

digits The number of digits of precision.

12-154 Oracle C++ Call Interface Programmer’s Guide

Number Class

round()

setNull()

shift()

sign()

sin()

This method returns the value of the Number object rounded to the decimal place
provided by the parameter specified.

Syntax

const Number round (
int decPlace) const;

Parameter Description

decPlace The number of digits to the right of the decimal point.

This method sets the value of the Number object to NULL.

Syntax
void setNull();

This method returns the Number object multiplied by 10 to the power provided by the
parameter specified.

Syntax

const Number shift (
int val) const;

Parameter Description

val An integer value.

This method returns the sign of the value of the Number object. If the Number object is
negative, then create a Date object using integer parameters is returned. If the Number
object is equal to 0, then create a Date object using integer parameters is returned. If
the Number object is positive, then 1 is returned.

Syntax

const int sign() const;

This method returns the sin of the Number object.

Syntax

const Number sin() const;

OCCI Application Programming Interface 12-155

squareroot()

squareroot()

This method returns the square root of the Number object.

Syntax

const Number squareroot() const;
tan()

This method returns the tangent of the Number object.

Syntax

const Number tan() const;
toBytes()

This method converts the Number object into a Bytes object. The bytes representation
is assumed to be in length excluded format, that is, the Byte . length () method gives
the length of valid bytes and the 0th byte is the exponent byte.

Syntax

Bytes toBytes() const;
toText()

Convert the Number object to a formatted string or UString based on the
parameters specified.

See Also: Oracle Database SQL Referencefor information on TO_

NUMBER

Syntax Description

string toText (Convert the Number object to a formatted
const Environment *envp, string based on the parameters specified.
const string &fmt,
const string &nlsParam = "") const;

UString toText (Convert the Number object to a UString
const Environment *envp, based on the parameters specified.

const UString &fmt,
const UString &nlsParam) const;

Parameter Description

envp The OCCI environment.

fmt The format string.

nlsParam The nls parameters string. If n1sParam is specified, this

determines the nls parameters to be used for the conversion. If
nlsParam is not specified, the nls parameters are picked up
from envp.

12-156 Oracle C++ Call Interface Programmer’s Guide

Number Class

trunc()

This method returns the Number object truncated at the number of decimal places
provided by the parameter specified.

Syntax

const Number trunc (
int decPlace) const;

Parameter Description

decPlace The number of places to the right of the decimal place at which
the value is to be truncated.

OCCI Application Programming Interface 12-157

PObject Class

PObject Class

OCCI provides object navigational calls that enable applications to perform any of the
following on objects:

» Creating, accessing, locking, deleting, copying, and flushing objects
= Getting references to the objects

This class enables the type definer to specify when a class is capable of having
persistent or transient instances. Instances of classes derived from PObject are either
persistent or transient. A class (called "A") that is persistent-capable inherits from the
PObject class:

class A : PObject { ... }

The only methods valid on a NULL PObject are setName(), isNull(), and operator=().

Some of the methods provided, such as lock(), apply only for persistent instances, not
for transient instances.

Table 12-30 Enumerated Values Used by PObject Class

Attribute Options

LockOption = OCCI_LOCK_WAIT instructs the cache to pin the object only after
acquiring a lock; if the object is locked by another user, the pin call
with this option will wait until it can acquire the lock before
returning to the caller; equivalent to SELECT FOR UPDATE

= OCCI_LOCK_NOWAIT instructs the cache to pin the object only after
acquiring a lock; will not wait if the object is currently locked by
another user; equivalent to SELECT FOR UPDATE WITH NOWAIT

UnpinOption = OCCI_PINCOUNT_RESET resets the object's pin count to 0
= OCCI_PINCOUNT_DECR decrements the object's pin count by 1

Table 12-31 Summary of PObject Methods

Method Summary
PObject() on page 12-159 PObject class constructor.
flush() on page 12-159 Flushes a modified persistent object to the database server.

getConnection() on page 12-159 Returns the connection from which the PObject object
was instantiated.

getRef() on page 12-159 Returns a reference to a given persistent object.
getSQLTypeName() on Returns the Oracle database typename for this class.

page 12-160

isLocked() on page 12-160 Tests whether the persistent object is locked.

isNull() on page 12-160 Tests whether the object is NULL.

lock() on page 12-160 Lock a persistent object on the database server. The default

mode is to wait for the lock if not available.
markDelete() on page 12-160 Marks a persistent object as deleted.
markModified() on page 12-160 Marks a persistent object as modified or dirty.

operator=() on page 12-161 Assigns one PObject to another.

12-158 Oracle C++ Call Interface Programmer’s Guide

PObject Class

Table 12-31 (Cont.) Summary of PObject Methods

Method Summary

operator delete() on page 12-161 = Remove the persistent object from the application cache
only.

operator new() on page 12-161 Creates a new persistent / transient instance.

pin() on page 12-162 Pins an object.

setNull() on page 12-162 Sets the object value to NULL.

unmark() on page 12-162 Unmarks an object as dirty.

unpin() on page 12-162 Unpins an object. In the default mode, the pin count of the

object is decremented by one.

PObject()
PObject class constructor.
Syntax Description
PObject () ; Creates a NULL, PObject.
PObject (Creates a copy of PObject.
const PObject &obj);
Parameter Description
obj The source object.
flush()
This method flushes a modified persistent object to the database server.
Syntax
void flush();
getConnection()
Returns the connection from which the persistent object was instantiated.
Syntax
const Connection *getConnection() const;
getRef()

This method returns a reference to the persistent object.

Syntax
RefAny getRef () const;

OCCI Application Programming Interface 12-159

getSQLTypeName()

getSQLTypeName()

isLocked()

isNull()

lock()

markDelete()

Returns the Oracle database typename for this class.

Syntax

string getSQLTypeName () const;

This method test whether the persistent object is locked. If the persistent object is
locked, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isLocked() const;

This method tests whether the persistent object is NULL. If the persistent object is
NULL, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

Locks a persistent object on the database server.

Syntax

void lock(
PObject: :LockOption lock_option);

Parameter Description

lock_option Locking options; see Table 12-30.

This method marks a persistent object as deleted.

Syntax

void markDelete();

markModified()

This method marks a persistent object as modified or dirty.

Syntax

void mark_Modified();

12-160 Oracle C++ Call Interface Programmer’s Guide

PObject Class

operator=()
This method assigns the value of a persistent object this PObject object. The nature
(transient or persistent) of the object is maintained. NULL information is copied from
the source instance.
Syntax
PObject& operator=(
const PObject& obj);
Parameter Description
obj The object from which the assigned value is obtained.
operator delete()

Deletes a persistent or transient object. The delete operator on a persistent object
removes the object from the application cache only. To delete the object from the
database server, invoke the markDelete() method.

Syntax

void operator delete(
void *obj,
size_t size);

Parameter Description
obj The pointer to object to be deleted
size (Optional) Size is implicityly obtained from the object

operator new()

This method is used to create a new object. A persistent object is created if the
connection and table name are provided. Otherwise, a transient object is created.

Syntax Description

void *operator new(Creates a defualt new object, with a size
size_t size); specification only

void *operator new (Used for creating transient objects when client
size_t size, side characterset is multibyte.

const Connection *conn,
const string& tableName,
const char *typeName) ;

void *operator new(Used for creating persistent objects when
size_t size, client side characterset is multibyte.
const Connection *conn,
const string& tableName,
const string& typeName,
const string& schTableName="",
const string& schTypeName="");

OCCI Application Programming Interface 12-161

pin()

pin()

setNull()

unmark()

unpin()

Syntax Description
void *operator new (Used for creating persistent objects when
size_t size, client side characterset is unicode (UTF16).

const Connection *conn,

const UString& tableName,

const UString& typeName,

const UString& schTableName="",
const UString& schTypeName="");

Parameter Description

size size of the object

conn The connection to the database in which the persistent object is to
be created.

tableName The name of the table in the database server.

typeName The SQL type name corresponding to this C++ class. The format is
<schemaname> . <typename>.

schTableName The schema table name.

schTypeName The schema type name.

This method pins the object and increments the pin count by one. As long as the object
is pinned, it will not be freed by the cache even if there are no references to this object
instance.

Syntax

void pin();

This method sets the object value to NULL.

Syntax
void setNull();

This method unmarks a persistent object as modified or deleted.

Syntax

void unmark();

This method unpins a persistent object. In the default mode, the pin count of the object
is decremented by one. When this method is invoked with OCCI_PINCOUNT_RESET,
the pin count of the object is reset. If the pin count is reset, this method invalidates all

12-162 Oracle C++ Call Interface Programmer’s Guide

PObject Class

the references (Refs) pointing to this object. The cache sets the object eligible to be
freed, if necessary, reclaiming memory.

Syntax

void unpin (
UnpinOption mode=0CCI_PINCOUNT_DECR) ;

Parameter Description

mode Specifies whether the UnpinOption mode, or the pin count, should
be decremented or reset to 0. See Table 12-30. Valid values are
OCCI_PINCOUNT_RESET and OCCI_PINCOUNT_DECR.

OCCI Application Programming Interface 12-163

Producer Class

Producer Class

The Producer enqueues Messages into a queue and defines the enqueue options.

Table 12-32 Enumerated Values Used by Producer Class
Attribute Options
EnqueueSequence = ENQ_BEFORE indicates that the message is enqueued before the
message specified by the related message id.
= ENQ_TOP indicates that the message is enqueued before any other
messages.
Visibility = ENQ_IMMEDIATE indicates that the enqueue is not part of the

current transaction. The operation constitutes a transaction of its

own.

ENQ_ON_COMMIT indicates that the enqueue is part of the

current transaction. The operation is complete when the transaction
commits. This is the default setting.

Table 12-33 Summary of Producer Methods

Method

Summary

Producer() on page 12-165
getQueueName() on page 12-165
getRelativeMessageld() on

page 12-165
getSequenceDeviation() on

page 12-165

getTransformation() on page 12-165

getVisibility() on page 12-166

isNull() on page 12-166
send() on page 12-166
operator=() on page 12-166
setNull() on page 12-167

setQueueName() on page 12-167

setRelativeMessageld() on
page 12-167

setSequenceDeviation() on
page 12-167

setTransformation() on page 12-168

setVisibility() on page 12-168

Producer class constructor.

Retrieves the name of a queue on which the Messages
will be enqueued.

Retrieves the Message id that is referenced in a sequence
deviation operation.

Retrieves information regarding whether the Message
should be dequeued ahead of other Messages in the
queue.

Retrieves the transformation applied before a Message is
enqueued.

Retrieves the transactional behavior of the enqueue
request.

Tests whether the Producer is NULL.
Enqueues and sends a Message.
Assignment operator for Producer..

Frees memory if the scope of the Producer extends
beyond the Connection on which it was created.

Specifies the name of a queue on which the Messages
will be enqueued.

Specifies the Message id to be referenced in the sequence
deviation operation.

Specifies whether Message should be dequeued before
other Messages already in the queue.

Specifies transformation applied before enqueuing a
Message.

Specifies transaction behavior of the enqueue request.

12-164 Oracle C++ Call Interface Programmer’s Guide

Producer Class

Producer()

Producer object constructor.

Syntax Description

Producer (Creates a Producer object with the
const Connection *conn); specified Connection.

Producer (Creates a Producer object with the
const Connection *conn, specified Connection and queue
const string& queue); name.

Parameter Description

conn The connection of the new Producer object.

queue The queue that will be used by the new Producer object.

getQueueName()

Retrieves the name of a queue on which the Messages will be enqueued.

Syntax

string getQueueName () cosnt;

getRelativeMessageld)

Retrieves the Message id that is referenced in a sequence deviation operation. Used

only if a sequence deviation is specified; ignored otherwise.

Syntax

Bytes getRelativeMessageId() const;

getSequenceDeviation()

Retrieves information regarding whether the Message should be dequeued ahead of

other Messages in the queue. Valid return values are ENQ_BEFORE and ENQ_TOP, as

defined in Table 12-32 on page 12-164.

Syntax

EnqueueSequence getSequenceDeviation() const;

getTransformation()

Retrieves the transformation applied before a Message is enqueued.

Syntax

string getTransformation() const;

OCCI Application Programming Interface 12-165

getVisibility()

getVisibility()

Retrieves the transactional behavior of the enqueue request. Visiblity is defined in
Table 12-32 on page 12-164.

Syntax
Visibility getVisibility() const;
isNull()
Tests whether the Producer is NULL. If the Producer is NULL, then TRUE is returned;
otherwise, FALSE is returned.
Syntax
bool isNull() const;
operator=()

The assignment operator for Producer.

Syntax

void operator=(
const Producer& prod);

Parameter Description

prod The original Producer

send()

Enqueues and sends a Message.

Syntax Description

Bytes send(Used when queueName has been previously set by
Message& msg) ; the setQueueName() method.

Bytes send(Enqueue the Message to the specified queueName.

Message& msg,
string& queue);

Parameter Description
msg The Message that will be enqueued.
queue The name of a valid queue in the database.

12-166 Oracle C++ Call Interface Programmer’s Guide

Producer Class

setNull()
Frees memory associated with the Producer. Unless working in inner scope, this call
should be made before terminating the Connection.
Syntax
void setNull();
setQueueName()
Specifies the name of a queue on which the Messages will be enqueued. Typically
used when enqueuing multiple messages to the same queue.
Syntax
void setQueueName (
const string& queue);
Parameter Description
queue The name of a valid queue in the database, to which the Messages
will be enqueued.
setRelativeMessageld()
Specifies the Message id to be referenced in the sequence deviation operation. If the
sequence deviation is not specified, this parameter will be ignored. Can be set for each
enqueuing of a Message.
Syntax
void setRelativeMessagelId (
const Bytes& msgid) ;
Parameter Description
msgid The id of the relative Message.
setSequenceDeviation()

Specifies whether Message being enqueued should be dequeued before other
Message(s) already in the queue. Can be set for each enqueuing of a Message.

Syntax

void setSequenceDeviation (
EnqueueSequence option);

Parameter Description

option The enque sequence being set, defined in Table 12-32 on page 12-164.

OCCI Application Programming Interface 12-167

setTransformation()

setTransformation()
Specifies transformation function applied before enqueuing the Message.
Syntax

void setTransformation (
string &fName);

Parameter Description

fName SQL transformation function.

setVisibility()

Specifies transaction behavior of the enqueue request. Can be set for each enqueuing
of a Message.

Syntax

void setVisibility(
Visibility option);

Parameter Description

option Visibility option being set, defined in Table 12-32 on page 12-164.

12-168 Oracle C++ Call Interface Programmer’s Guide

Ref Class

Ref Class

The mapping in the C++ programming language of an SQL REF value, which is a
reference to an SQL structured type value in the database.

Each REF value has a unique identifier of the object it refers to. An SQL REF value
may be used in place of the SQL structured type it references; it may be used as either
a column value in a table or an attribute value in a structured type.

Because an SQL REF value is a logical pointer to an SQL structured type, a Ref object is
by default also a logical pointer; thus, retrieving an SQL REF value as a Ref object does
not materialize the attributes of the structured type on the client.

The only methods valid on a NULL Re £ object are isNull(), and operator=().

A Ref object can be saved to persistent storage and is de-referenced through
operator*(), operator->() or ptr() methods. T must be a class derived from PObject. In
the following sections, T* and PObject* are used interchangeably.

Table 12-34 Enumerated Values Used by Ref Class

Attribute Options

LockOptions = OCCI_LOCK_NONE clears the lock setting on the Ref object.

= OCCI_LOCK_X indicates that the object should be locked, and to
wait for the lock to be available if the object is locked by another
session.

= OCCI_LOCK_X_NOWAIT indicates that the object should be locked,
and returns an error if it is locked by another session.

PrefetchOption s OCCI_MAX_PREFETCH_DEPTH indicates that the fetch should be
done to maximum depth.

Table 12-35 Summary of Ref Methods

Method Summary

Ref() on page 12-170 Ref object constructor.

clear() on page 12-170 Clears the reference.

getConnection() on page 12-170 Returns the connection this ref was created from.

isClear() on page 12-170 Checks if the Ref is cleared.

isNull() on page 12-170 Checks if the Ref is NULL.

markDelete() on page 12-171 Marks the referred object as deleted.

operator->() on page 12-171 Dereferences the Ref and pins the object if necessary.

operator*() on page 12-171 Dereferences the Ref and pins or fetches the object if
necessary.

operator==() on page 12-171 Checks if the Ref and the pointer refer to the same object.

operator!=() on page 12-172 Checks if the Ref and the pointer refer to different objects.

operator=() on page 12-172 Assignment operator.

ptr() on page 12-172 Dereferences the Ref and pins or fetches the object if
necessary.

setPrefetch() on page 12-173 Specifies type and depth of the object attributes to be

followed for prefetching.

OCCI Application Programming Interface 12-169

Ref()

Table 12-35 (Cont.) Summary of Ref Methods

Method Summary

setLock() on page 12-172 Sets the lock option for the object referred from this.
setNull() on page 12-173 Sets the Ref to NULL.

setPrefetch() on page 12-173 Sets the prefetch options.

unmarkDelete() on page 12-173 Unmarks for delete the object referred by this.

Ref()

Ref object constructor.

Syntax Description

Ref () ; Creates a NULL Ref.

Ref (Creates a copy of Ref .
const Ref<T> &src);

Parameter Description

src The Ref that is being copied.

clear()
This method clears the Ref object.

Syntax

void clear();
getConnection()
Returns the connection from which the Re £ object was instantiated.

Syntax

const Connection *getConnection() const;
isClear()
This method checks if Ref object is cleared.

Syntax

bool isClear () const;
isNull()

This method tests whether the Ref object is NULL. If the Re £ object is NULL, then TRUE
is returned; otherwise, FALSE is returned.

12-170 Oracle C++ Call Interface Programmer’s Guide

Ref Class

markDelete()

operator->()

operator*()

operator==()

Syntax

bool isNull() const;

This method marks the referenced object as deleted.

Syntax

void markDelete();

This method dereferences the Ref object and pins, or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of
the referenced object are set.

Syntax Description

T *operator->(); Dereferenes and pins or fetches a non-const Ref object.

const T *operator->() const; Dereferences and pins or fetches a const Ref object.

This method dereferences the Ref object and pins or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of
the referenced object are set. The object does not need to be deleted. Destructor would
be automatically called when it goes out of scope.

Syntax Description

T& operator*(); Dereferenes and pins or fetches a non-const Ref object.

const T& operator*() const; Dereferences and pins or fetches a const Ref object.

This method tests whether two Ref objects are referencing the same object. If the Ref
objects are referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool operator == (
const Ref<T> &ref) const;

Parameter Description

ref The Ref object of the object to be compared.

OCCI Application Programming Interface 12-171

operator!=()

operator!=()

operator=()

ptr()

setLock()

This method tests whether two Ref objects are referencing the same object. If the Ref
objects are not referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool operator!= (
const Ref<T> &ref) const;

Parameter Description

ref The Ref object of the object to be compared.

Assigns the Ref or the object to a Ref. For the first case, the Refs are assigned and for
the second case, the Ref is constructed from the object and then assigned.

Syntax Description

Ref<T>& operator=(Assigns a Ref to a Ref.
const Ref<T> &src);

Ref<T>& operator=(Assigns a Ref to an object.
const T *)obj;

Parameter Description
src The source Ref object to be assigned.
obj The source object pointer whose Ref object is to be assigned.

Returns a pointer to a PObject. This operator dereferences the Ref and pins or
fetches the object if necessary. This might result in prefetching a graph of objects if
prefetch attributes of the Ref are set.

Syntax Description
T *ptr(); Returns a pointer of a non-const Ref object.
const T *ptr() const; Returns a pointer of a const Ref object.

This method specifies how the object should be locked when dereferenced.

Syntax

void setLock(lockOptions);

12-172 Oracle C++ Call Interface Programmer’s Guide

Ref Class

Argument Description

lockOptions The lock options as defined by LockOptions in Table 12-34 on page 12-169.

setNull()
This method sets the Ref object to NULL.
Syntax
void setNull();
setPrefetch()
Sets the prefetching options for complex object retrieval. This method specifies depth
up to which all objects reachable from this object through Refs (transitive closure)
should be prefetched. If only selected attribute types are to be prefetched, then the first
version of the method should be used. This method specifies which Ref attributes of
the object it refers to should be followed for prefetching of the objects (complex object
retrieval) and how many levels deep those links should be followed.
Syntax Description
void setPrefetch(Sets the prefetching options for complex object
const string &typeName, retrieval, using type name and depth.
unsigned int depth);
void setPrefetch(Sets the prefetching options for complex object
unsigned int depth); retrieval, using depth only.
void setPrefetch(Sets the prefetching options for complex object
const string &schName, retrieval, using scheman, type name, and depth.
const string &typeName,
unsigned int depth);
void setPrefetch(Sets the prefetching options for complex object
const UString &schName, retrieval, using scheman, type name, and depth, and
const UString &typeName, UString support.
unsigned int depth);
Parameter Description
typeName Type of the Ref attribute to be prefetched.
schName Schema name of the Ref attribute to be prefetched.
depth Depth level to which the links should be followed; can use
PrefetchOption as defined in Table 12-34 on page 12-169.
unmarkDelete()

This method unmarks the referred object as dirty and available for deletion.

Syntax

void unmarkDelete();

OCCI Application Programming Interface 12-173

RefAny Class

RefAny Class

The RefAny class is designed to support a reference to any type. Its primary purpose
is to handle generic references and allow conversions of Ref in the type hierarchy. A
RefAny object can be used as an intermediary between any two types, Ref<x> and
Ref<y>, where x and y are different types.

Table 12-36 Summary of RefAny Methods

Method Summary

RefAny() on page 12-174 Constructor for RefAny class.

clear() on page 12-174 Clears the reference.

getConnection() on page 12-175 Returns the connection this ref was created from.

isNull() on page 12-175 Checks if the RefAny object is NULL.

markDelete() on page 12-175 Marks the object as deleted.

operator=() on page 12-175 Assignment operator for RefAny.

operator==() on page 12-175 Checks if this RefAny object is equal to a specified
RefAny.

operator!=() on page 12-176 Checks if not equal.

unmarkDelete() on page 12-176 Unmarks the object as deleted.

RefAny()

A Ref<T> can always be converted to a RefAny; there is a method to perform the
conversion in the Ref<T> template. Each Ref<T> has a constructor and assignment
operator that takes a reference to RefAny.

Syntax Description
RefAny () ; Creates a NULL RefAny.
RefAny (Creates a RefAny from a session pointer and a

const Connection *sessptr, reference.
const OCIRef *ref);

RefAny (Creates a RefAny as a copy of another RefAny object.
const RefAny& src);

Parameter Description

sessptr Session pointer

ref A reference

src The source RefAny object to be assigned

clear()

This method clears the reference.

12-174 Oracle C++ Call Interface Programmer’s Guide

RefAny Class

Syntax

void clear();

getConnection()

Returns the connection from which this reference was instantiated.

Syntax
const Connection* getConnection() const;
isNull()
Returns TRUE if the object pointed to by this ref is NULL else FALSE.
Syntax
bool isNull() const;
markDelete()
This method marks the referred object as deleted.
Syntax
void markDelete();
operator=()
Assignment operator for RefAny.
Syntax
RefAny& operator=(
const RefAny& src);
Parameter Description
src The source RefAny object to be assigned.
operator==()

Compares this ref with a RefAny object and returns TRUE if both the refs are
referring to the same object in the cache, otherwise it returns FALSE.

Syntax

bool operator== (
const RefAny &refAnyR) const;

Parameter Description

refAnyR RefAny object to which the comparison is made.

OCCI Application Programming Interface 12-175

operator!=()

operator!=()

Compares this ref with the RefAny object and returns TRUE if both the refs are not

referring to the same object in the cache, otherwise it returns FALSE.

Syntax

bool operator!= (

const RefAny &refAnyR) const;

Parameter Description

refAnyR RefAny object to which the comparison is made.
unmarkDelete()

This method unmarks the referred object as dirty.

Syntax

void unmarkDelete();

12-176 Oracle C++ Call Interface Programmer’s Guide

ResultSet Class

ResultSet Class

A ResultsSet provides access to a table of data generated by executing a Statement.
Table rows are retrieved in sequence. Within a row, column values can be accessed in
any order.

A ResultSet maintains a cursor pointing to its current row of data. Initially the
cursor is positioned before the first row. The next method moves the cursor to the
next row.

The getxxx () methods retrieve column values for the current row. You can retrieve
values using the index number of the column. Columns are numbered beginning at 1.
For the getxxx () methods, OCCI attempts to convert the underlying data to the
specified C++ type and returns a C++ value. SQL types are mapped to C++ types with
the ResultSet: :getxxx () methods.

The number, types and properties of a ResultSet's columns are provided by the
MetaData object returned by the getColumnListMetaData() method.

Table 12-37 Enumerated Values Used by ResultSet Class

Attribute Options

Status = DATA_AVAILABLE indicates that data for one or more rows was successfully
fetched from the server; up to the requested number of rows (numRows) were
returned. When in streamed mode, use the getNumArrayRows() method to
determine the exact number of rows retrieved when numRows is greater than
1.

= STREAM_DATA_AVAILABLE indicates that the application should call the
getCurrentStreamColumn() method and read stream.

= END_OF_FETCH indicates that no data was available for fetching.

Table 12-38 Summary of ResultSet Methods

Method Description

cancel() on page 12-179 Cancels the ResultSet.

closeStream() on page 12-179 Closes the specified Stream.

getBDouble() on page 12-180 Returns the value of a column in the current row as a
BDouble.

getBfile() on page 12-180 Returns the value of a column in the current row as a
Bfile.

getBFloat() on page 12-180 Returns the value of a column in the current row as a
BFloat.

getBlob() on page 12-180 Returns the value of a column in the current row as a
Blob object.

getBytes() on page 12-181 Returns the value of a column in the current row as a
Bytes array.

getCharSet() on page 12-181 Returns the character set in which data would be
fetched.

getCharSetUString() on page 12-181 Returns the character set in which data would be
fetched as a UString.

getClob() on page 12-181 Returns the value of a column in the current row as a
Clob object.

OCCI Application Programming Interface 12-177

ResultSet Class

Table 12-38 (Cont.) Summary of ResultSet Methods

Method

Description

getColumnListMetaData() on
page 12-182

getCurrentStreamColumn() on
page 12-182

getCurrentStreamRow() on
page 12-182

getCursor() on page 12-182
getDate() on page 12-183

getDatabaseNCHARParam() on
page 12-183

getDouble() on page 12-183
getFloat() on page 12-183

getInt() on page 12-184
getIntervalDS() on page 12-184
getInterval YM() on page 12-184
getMaxColumnSize() on page 12-184
getNumArrayRows() on page 12-185
getNumber() on page 12-185
getObject() on page 12-185

getRef() on page 12-185

getRowid() on page 12-186

getRowPosition() on page 12-186
getStatement() on page 12-186
getStream() on page 12-186

getString() on page 12-186
getTimestamp() on page 12-187
getUInt() on page 12-187
getUString() on page 12-187

getVector() on page 12-188

12-178 Oracle C++ Call Interface Programmer’s Guide

Returns the describe information of the result set
columns as a MetaData object.

Returns the column index of the current readable
Stream.

Returns the current row of the ResultSet being
processed.

Returns the nested cursor as a ResultSet.

Returns the value of a column in the current row as a
Date object.

Returns whether data is in NCHAR character set or not.

Returns the value of a column in the current row as a
C++ double.

Returns the value of a column in the current row as a
C++ float.

Returns the value of a column in the current row as a
C++ int.

Returns the value of a column in the current row as a
IntervalDS.

Returns the value of a column in the current row as a
IntervalYM.

Returns the maximum amount of data to read from a
column.

Returns the actual number of rows fetched in the last
array fetch.

Returns the value of a column in the current row as a
Number object.

Returns the value of a column in the current row as a
PObject.

Returns the value of a column in the current row as a
Ref.

Returns the current ROWID for a SELECT FOR UPDATE
statement.

Returns the row id of the current row position.
Returns the Statement of the ResultSet.

Returns the value of a column in the current row as a
Stream.

Returns the value of a column in the current row as a
string.

Returns the value of a column in the current row as a
Timestamp object.

Returns the value of a column in the current row as a
C++ unsigned int

Returns the value of a column in the current row as a
UString.

Returns the specified collection parameter as a vector.

ResultSet Class

Table 12-38 (Cont.) Summary of ResultSet Methods

Method

Description

getVectorOfRefs() on page 12-189

isNull() on page 12-190
isTruncated() on page 12-190
next() on page 12-190

preTruncationLength() on
page 12-191

setBinaryStreamMode() on
page 12-191

setCharacterStreamMode() on
page 12-191

setCharSet() on page 12-192
setCharSetUString() on page 12-192

setDatabaseNCHARParam() on
page 12-192

setDataBuffer() on page 12-193
setErrorOnNull() on page 12-193

setErrorOnTruncate() on page 12-194
setMaxColumnSize() on page 12-194

status() on page 12-194

Returns the column in the current position as a vector
of Refs.

Checks whether the value is NULL.
Checks whether truncation has occurred.
Makes the next row the current row in a ResultSet.

Returns the actual length of the parameter before
truncation.

Specifies that a column is to be returned as a binary
stream.

Specifies that a column is to be returned as a character
stream.

Specifies the character set in which the data is to be
returned.

Specifies the character set in which the data is to be
returned.

If the parameter is going to be retrieved from a column
that contains data in the database's NCHAR character
set, then OCCI must be informed by passing a true
value.

Specifies the data buffer into which data is to be read.

Enables Or Disables exception when NULL value is
read.

Enables Or Disables exception when truncation occurs.

Specifies the maximum amount of data to read from a
column.

Returns the current status of the ResultSet.

cancel()
This method cancels the result set.
Syntax
void cancel();

closeStream()

This method closes the stream specified by the parameter stream.

Syntax

void closeStream(
Stream *stream) ;

Parameter

Description

stream

The Stream to be closed.

OCCI Application Programming Interface 12-179

getBDouble()

getBDouble()

getBfile()

getBFloat()

getBlob()

This method returns the value of a column in the current row as a BDouble. If the
value is SQL NULL, the result is NULL.

Syntax

BDouble getBDouble (
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

This method returns the value of a column in the current row as a Bfile. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

Bfile getBfile(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

This method returns the value of a column in the current row as a BFloat. If the value
is SQL NULL, the result is NULL.

Syntax

BFloat getBFloat (
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Get the value of a column in the current row as an Blob. Returns the column value; if
the value is SQL NULL, the result is NULL.

Syntax

Blob getBlob(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

12-180 Oracle C++ Call Interface Programmer’s Guide

ResultSet Class

getBytes()

getCharSet()

Get the value of a column in the current row as a Bytes array. The bytes represent the
raw values returned by the server. Returns the column value; if the value is SQL NULL,
the result is NULL array

Syntax

Bytes getBytes|(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Gets the character set in which data would be fetched, as a string.

Syntax

string getCharSet (
unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

getCharSetUString()

getClob()

Gets the character set in which data would be fetched, as a string.

Syntax

UString getCharSetUString(
unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Get the value of a column in the current row as a Clob. Returns the column value; if
the value is SQL NULL, the result is NULL.

Syntax

Clob getClob(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

OCCI Application Programming Interface 12-181

getColumnListMetaData()

getColumnListMetaData()

The number, types and properties of a ResultSet's columns are provided by the
getMetaData method. Returns the description of a ResultSet's columns. This
method will return the value of the given column as a PObject. The type of the C++
object will be the C++ PObject type corresponding to the column's SQL type
registered with Environment's map. This method is used to materialize data of SQL
user-defined types.

Syntax

vector<MetaData> getColumnListMetaData() const;

getCurrentStreamColumn()

If the result set has any input Stream parameters, this method returns the column
index of the current input St ream that must be read. If no output Stream needs to be
read, or there are no input Stream columns in the result set, this method returns 0.
Returns the column index of the current input Stream column that must be read.

Syntax

unsigned int getCurrentStreamColumn() const;

getCurrentStreamRow()

getCursor()

If the result has any input Streams, this method returns the current row of the result
set that is being processed by OCCI. If this method is called after all the rows in the set
of array of rows have been processed, it returns 0. Returns the row number of the
current row that is being processed. The first row is numbered 1 and so on.

Syntax

unsigned int getCurrentStreamRow() const;

Get the nested cursor as an ResultSet. Data can be fetched from this result set. A
nested cursor results from a nested query with a CURSOR (SELECT ...) clause:

SELECT ename,
CURSOR (SELECT dname, loc FROM dept)
FROM emp WHERE ename = 'JONES'

Note that if there are multiple REF CURSORs being returned, data from each cursor
must be completely fetched before retrieving the next REF CURSOR and starting fetch
on it. Returns A ResultSet for the nested cursor.

Syntax

ResultSet * getCursor (
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

12-182 Oracle C++ Call Interface Programmer’s Guide

ResultSet Class

getDatabaseNCHARParam()

getDate()

getDouble()

getFloat()

Returns whether data is in NCHAR character set or not.

Syntax

bool getDatabaseNCHARParam (
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

Get the value of a column in the current row as a Date object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax

Date getDate(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Gets the value of a column in the current row as a C++ double. Returns the column
value; if the value is SQL NULL, the result is 0.

Syntax

double getDouble (
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Get the value of a column in the current row as a C++ float. Returns the column value;
if the value is SQL NULL, the result is 0.

Syntax

float getFloat(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

OCCI Application Programming Interface 12-183

getint()

getint()

Get the value of a column in the current row as a C++ int. Returns the column value; if
the value is SQL NULL, the result is 0.

Syntax

int getInt(
unsigned int colIndex);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
getintervalD$()

Get the value of a column in the current row as a IntervalDS object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

IntervalDS getIntervalDS (
unsigned int colIndex);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
getintervalYM()

Get the value of a column in the current row as a IntervalYM object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

IntervalYM getIntervalYM(
unsigned int colIndex);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
getMaxColumnSize()

Get the maximum amount of data to read for a column.

Syntax

unsigned int getMaxColumnSize (
unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

12-184 Oracle C++ Call Interface Programmer’s Guide

ResultSet Class

getNumArrayRows()

getNumber()

getObject()

getRef()

Returns the actual number of rows fetched in the last array fetch. Used in conjunction
with the next() method. This method cannot be used for non-array fetches.

Syntax

unsigned int getNumArrayRows () const;

Get the value of a column in the current row as a Number object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax

Number getNumber (
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Returns a pointer to a PObject holding the column value.

Syntax

PObject * getObject (
unsigned int colIndex);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

Get the value of a column in the current row as a RefAny. Retrieving a Ref value does
not materialize the data to which Ref refers. Also the Ref value remains valid while
the session or connection on which it is created is open. Returns a RefAny holding the
column value.

Syntax

RefAny getRef (
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

OCCI Application Programming Interface 12-185

getRowid()

getRowid()

Get the current row id for a SELECT ... FOR UPDATE statement. The row id can be
bound to a prepared DELETE statement and so on. Returns current rowid for a
SELECT ... FOR UPDATE statement.

Syntax

Bytes getRowid(
unsigned int colIndex);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
getRowPosition()

Get the rowid of the current row position.

Syntax

Bytes getRowPosition() const;

getStatement()

getStream()

getString()

This method returns the statement of the ResultSet.

Syntax

Statement* getStatement () const;

This method returns the value of a column in the current row as a Stream.

Syntax

Stream * getStream(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Get the value of a column in the current row as a string. Returns the column value; if
the value is SQL NULL, the result is an empty string.

Syntax

string getString(
unsigned int colIndex);

12-186 Oracle C++ Call Interface Programmer’s Guide

ResultSet Class

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
getTimestamp()

getUint()

getUString()

Get the value of a column in the current row as a Timestamp object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

Timestamp getTimestamp (
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Get the value of a column in the current row as a C++ int. Returns the column value;
if the value is SQL NULL, the result is 0.

Syntax

unsigned int getUInt(
unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Returns the value as a UString.

Note: This method should be called only if the environment's
character set is UTF16, or if setCharset () method has been
called to explicitly retrieve UTF16 data.

Syntax

UString getUString(
unsigned int colIndex);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

OCCI Application Programming Interface 12-187

getVector()

getVector()

This method returns the column in the current position as a vector. The column should
be a collection type (varray or nested table). The SQL type of the elements in the
collection should be compatible with the data type of the objects in the vector.

12-188 Oracle C++ Call Interface Programmer’s Guide

Syntax

Description

void getVector (
ResultSet *rs,
unsigned int colIndex,

vector<BDouble> &vect) ;

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<Bfile> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<BFloat> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<Blob> &vect) ;

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<Clob> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<Date> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<double> &vect) ;

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<float> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<int> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,

vector<IntervalDS> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,

vector<IntervalYM> &vect);

Used for BDouble vectors.

Used for Bfile vectors.

Used for BFloat vectors.

Used for Blob vectors.

Used for Clob vectors.

Used for vectors of Date Class.

Used for vectors of double type.

Used for vectors of float type.

Used for vectors of int type.

Used for vectors of IntervalDS Class.

Used for vectors of IntervalYM Class.

ResultSet Class

Syntax

Description

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<Number> &vect) ;

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<Ref<T>> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<RefAny> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<string> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<T *> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<T> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<Timestamp> &vect) ;

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<unsigned int> &vect);

void getVector (
ResultSet *rs,
unsigned int colIndex,
vector<UString> &vect) ;

Used for vectors of Number Class.

Available only on platforms where partial ordering
of function templates is supported. This function
may be deprecated in the future. getVectorOfRefs()
can be used instead.

Used for vectors of RefAny Class.

Used for vectors of string type.

Intended for use on platforms where partial
ordering of function templates is supported.

Intended for use on platforms where partial
ordering of function templates is not supported,
such as Windows NT.

Used for vectors of Timestamp Class.

Used for vectors of unsigned int type.

Used for vectors of UString Class; globalization
enabled.

Parameter Description

rs The result set

colIndex Column index, first column is 1, second is 2, and so on.
vect The reference to the vector (OUT parameter).

getVectorOfRefs()

Returns the column in the current position as a vector of REFs. The column should be
a collection type (varray or nested table) of REFs. It is recommend to use this function
instead of specialized method getVector() for Ref<T>.

OCCI Application Programming Interface 12-189

isNull()

isNull()

isTruncated()

next()

Syntax

void getVectorOfRefs (
ResultSet *rs,
unsigned int colIndex,
vector< Ref<T> > &vect);

Parameter Description

rs The result set

colIndex Column index, first column is 1, second is 2, and so on.
vect The reference to the vector of REFs (OUT parameter).

A column may have the value of SQL NULL; isNull () reports whether the last
column read had this special value. Note that you must first call getxxx() ona
column to try to read its value and then call 1sNull () to find if the value was the
SQL NULL. Returns TRUE if last column read was SQL NULL.

Syntax

bool isNull(
unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isTruncated(
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

This method fetches a specified number of rows, numRows, from a previously executed
query, and reports the Status of this fetch as definded in Table 12-37.

For non-streamed mode, next() will only return the status of DATA_AVAILABLE or
END_OF_FETCH.

= When fetching one row at a time (numRows=1), process the data using getxxx ()
methods.

12-190 Oracle C++ Call Interface Programmer’s Guide

ResultSet Class

= When fetching several rows at once (numRows>1), as in an Array Fetch, you must
use the setDataBuffer() method to specify the location of your preallocated buffers
before invoking next().

Up to numRows data records would populate the buffers specified by the
setDataBuffer() call. To determine exactly how many records were returned, use the
getNumArrayRows() method.

Syntax

Status next (
unsigned int numRows =1);

Parameter Description

numRows Number of rows to fetch for array fetches.

preTruncationLength()
Returns the actual length of the parameter before truncation.
Syntax

int preTruncationLength (
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

setBinaryStreamMode()
Defines that a column is to be returned as a binary stream by the get Stream method.

Syntax

void setBinaryStreamMode (
unsigned int colIndex,
unsigned int size);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
size The amount of data to be read as a binary stream.

setCharacterStreamMode()

Defines that a column is to be returned as a character stream by the getStream()
method.

Syntax

void setCharacterStreamMode (
unsigned int colIndex,
unsigned int size);

OCCI Application Programming Interface 12-191

setCharSet()

setCharSet()

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
size The amount of data to be read as a character stream.

Overrides the default character set for the specified column. Data is converted from
the database character set to the specified character set for this column.

Syntax

void setCharSet (
unsigned int colIndex,
string charSet);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
charSet Desired character set, as a string.

setCharSetUString()

Specifies the character set value as a UString in which the data is returned.

Syntax

UString setCharSetUString (
unsigned int colIndex,
const UString &charSet) ;

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
charSet Desired character set, as a string.

setDatabaseNCHARParam()

If the parameter is going to be retrieved from a column that contains data in the
database's NCHAR character set, then OCCI must be informed by passing a TRUE value.
A FALSE can be passed to restore the default.

Syntax

void setDatabaseNCHARParam (
unsigned int paramIndex,
bool isNCHAR) ;

Parameter Description
paramIndex Parameter index, first parameter is 1, second is 2, and so on.
1sNCHAR TRUE or FALSE.

12-192 Oracle C++ Call Interface Programmer’s Guide

ResultSet Class

setDataBuffer()

Specifies a data buffer where data would be fetched. The buffer parameter is a
pointer to a user allocated data buffer. The current length of data must be specified in
the length parameter. The amount of data should not exceed the size parameter.
Finally, type is the data type of the data. Only non OCCI and non C++ specific types
can be used, such as STL string. OCCI classes like Bytes and Date cannot be used.

If setDataBuffer() is used to fetch data for array fetches, it should be called only once
for each result set. Data for each row is assumed to be at buffer (i- 1)location,
where i is the row number. Similarly, the length of the data would be assumed to be at
(length+(1i-1)) .

Syntax

void setDataBuffer (
unsigned int colIndex,
void *buffer,
Type type,
sb4d size = 0,
ub2 *length = NULL,
sb2 *ind = NULL,
ub2 *rc = NULL) ;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer; if array fetches are done, it should
have numRows * size bytes in it.

type Type of the data that is provided (or retrieved) in the buffer.

size Size of the data buffer; for array fetches, it is the size of each

element of the data items.

length Pointer to the length of data in the buffer; for array fetches, it
should be an array of length data for each buffer element; the size of
the array should be equal to arrayLength.

ind Pointer to an indicator variable or array (IN/OUT).
rc Pointer to array of column level return codes (OUT).
setErrorOnNull()

This method enables/disables exceptions for reading of NULL values on colIndex
column of the result set.

Syntax

void setErrorOnNull (
unsigned int colIndex,
bool causeException);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
causeException Enable exceptions if TRUE. Disable if FALSE.

OCCI Application Programming Interface 12-193

setErrorOnTruncate()

setErrorOnTruncate()

This method enables/disables exceptions when truncation occurs.

Syntax

void setErrorOnTruncate (
unsigned int paramIndex,
bool causeException);

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.
setMaxColumnSize()

status()

12-194 Oracle C+

Sets the maximum amount of data to read for a column.

Syntax

void setMaxColumnSize (
unsigned int colIndex,
unsigned int max);

Parameter Description
colIndex Column index, first column is 1, second is 2, and so on.
max The maximum amount of data to be read.

Returns the current Status of the result set, as definded in Table 12-37. This method
can be called repeatedly.

Syntax

Status status() const;

+ Call Interface Programmer’s Guide

SQLException Class

SQLException Class

The SQLException class provides information on generated errors, their codes and
associated messages.

Table 12-39 Summary of SQLException

Method Description

SQLException() on page 12-195 SQLException constructor.

getErrorCode() on page 12-195 Returns the database error code.

getMessage() on page 12-195 Returns the error message string for this exception.

getNLSMessage() on page 12-196 Returns the error message string for this exception
(Unicode support).

getNLSUStringMessage() on Returns the error message UString for this exception

page 12-196 (Unicode)support.

getUStringMessage() on Returns the error message UString for this exception.

page 12-196

getXAErrorCode() on page 12-195 Returns the error message string for this exception.

setErrorCtx() on page 12-197 Sets the error context.

what() on page 12-197 Returns the error message associated with the
SQLException.

SQLEXxception()

This is the SQLException constructor.

Syntax Description
SQLException() ; Constructs a NULL SQLException object.
SQLException (Constructs an SQLException object as a copy of another
const SQLException &e); SQLException object.
Parameter Description
e The SQLException to be copied.
getErrorCode()

getMessage()

Gets the database error code.

Syntax

int getErrorCode() const;

Returns the error message string of this SQLException if it was created with an error
message string. Returns NULL if the SQLException was created with no error
message.

OCCI Application Programming Interface 12-195

getNLSMessage()

Syntax

string getMessage() const;

getNLSMessage()

Returns the error message string of this SQLException if it was created with an
error message string. Passes the globalization enabled environment. Returns a NULL
string if the SQLException was created with no error message. The error message
will be in the character set associated with the environment.

Syntax

string getNLSMessage (
Environment *env) const;

Parameter Description

env The globalization enabled environment.

getNLSUStringMessage()

Returns the error message UString of this SQLException if it was created with an
error message UString. Passes the globalization enabled environment. Returns a
NULL UString if the SQLException was created with no error message. The error
message will be in the character set associated with the environment.

Syntax

UString getNLSUStringMessage (
Environment *env) const;

Parameter Description
env The globalization enabled environment.
getUStringMessage()

Returns the error message UString of this SQLException if it was created with an
error message UString. Returns a NULL UString if the SQLException was created
with no error message. The error message will be in the character set associated with
the environment.

Syntax
UString getUStringMessage() const;

getXAErrorCode()

Determine if the thrown exception is due to an XA or an SQL error.

Used by C++ XA applications with dynamic registration. Returns an XA error code if
the exception is due to XA, or XA_OK otherwise.

12-196 Oracle C++ Call Interface Programmer’s Guide

SQLException Class

setErrorCtx()

what()

Syntax

int getXAErrorCode (
const string &dbname) const;

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String and used when connecting to the Resource Manager.

Sets the pointer to the error context.

Syntax
void setErrorCtx(
void *ctx);
Parameter Description
ctx The pointer to the error context.

Standard C++ compliant function; returns the error message associated with the
SQLException.

Syntax

const char *what() const throw();

OCCI Application Programming Interface 12-197

StatelessConnectionPool Class

StatelessConnectionPool Class

This class represents a pool of stateless, authenticated connections to the database.

Table 12-40 Enumerated Values Used by StatelessConnectionPool Class

Attribute Options

PoolType = HETEROGENEOUS is the default state; connections with different
authentication contexts can be created in the same pool.

= HOMOGENEOUS indicates that all connections in the pool will be
authenticated with the username and password provided during
pool creation. No proxy connections can be created. minConn and
incrConn values are considered only in these HOMOGENEOUS

pools.

BusyOption s WAIT indicates that the thread waits and blocks until the
connection becomes free.

s NOWAIT throws and error.

s FORGET indicates that a new connection will be created, even when
maximum number of connections is opened and all are busy.

DestroyMode = DEFAULT indicates that if are still active busy connections in the
pool, ORA24422 error is thrown

= SPD_FORCE indicates that the means that any busy connections in
the pool will be forcefully terminated and the pool destroyed (the
user will lose memory corresponding to the number of connections
forcefully terminated)

Table 12-41 Summary of StatelessConnectionPool Methods

Method

Description

getAnyTaggedConnection() on
page 12-199

getAnyTaggedProxyConnection() on
page 12-200

getBusyConnections() on page 12-201
getBusyOption() on page 12-201
getConnection() on page 12-201
getIncrConnections() on page 12-202
getMaxConnections() on page 12-202
getMinConnections() on page 12-202
getOpenConnections() on

page 12-202

getPoolName() on page 12-202
getProxyConnection() on page 12-202

12-198 Oracle C++ Call Interface Programmer’s Guide

Returns a pointer to the connection object, without the
restriction of a matching tag.

Returns a proxy connection from a connection pool.

Returns the number of busy connections in the
connection pool.

Returns the behavior of the stateless connection pool
when all the connections in the pool are busy and the
number of connections have reached maximum

Returns a pointer to the Connection object.

Returns the number of incremental connections in the
connection pool.

Returns the maximum number of connections in the
connection pool.

Returns the minimum number of connections in the
connection pool.

Returns the number of open connections in the
connection pool.

Returns the name of the connection pool.

Returns a proxy connection from a connection pool.

StatelessConnectionPool Class

Table 12-41 (Cont.) Summary of StatelessConnectionPool Methods

Method

Description

getTimeOut() on page 12-203
releaseConnection() on page 12-204

setBusyOption() on page 12-204

setPoolSize() on page 12-204
setTimeOut() on page 12-205

terminateConnection() on
page 12-205

Returns the timeout period of a connection in the
connection pool.

Releases the connection back to the pool with an
optional tag.

Specifies the behavior of the stateless connection pool
when:

= all the connections in the pool are busy, and

s the number of connections have reached
maximum.

Sets the maximum, minimum, and incremental number
of pooled connections for the connection pool.

Sets the timeout period of a connection in the
connection pool.

Closes the connection and remove it from the pool.

getAnyTaggedConnection()

Returns a pointer to the connection object, without the restriction of a matching tag.

During the execution of this call, the pool is first searched based on the tag provided. If
a connection with the specified tag exists, it is returned to the user. If a matching
connection is not available, an appropriately authenticated untagged connection (with
a NULL tag) is returned. In cases where an undated connection is not free, an
appropriately authenticated connection with a different tag is returned.

Note:

A getTag () call to the Connection verifies the
connection tag received.

Syntax

Description

Connection *getAnyTaggedConnection (

string &tag="")=0;

Connection* getAnyTaggedConnection (

const UString &tag)=0;

Connection *getAnyTaggedConnection (

const string &userNname,
const string &password,
const string &tag="")=0;

Connection* getAnyTaggedConnection (

const UString &userName,
const UString &Password,
const UString &tag)=0 ;

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without
the restriction of a matching tag; string support.

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without
the restriction of a matching tag; UString support.

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without
the restriction of a matching tag; string support.

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without
the restriction of a matching tag; UString support.

OCCI Application Programming Interface 12-199

getAnyTaggedProxyConnection()

Parameter Description

userName The database username

password The database password.

tag User-defined type of connection requested. This parameter can be ignored if a

default connection is requested.

getAnyTaggedProxyConnection()

Returns a proxy connection from a connection pool.

During the execution of this call, the pool is first searched based on the tag provided. If
a connection with the specified tag exists, it is returned to the user. If a matching
connection is not available, an appropriately authenticated connection with a different
tag is returned. In cases where an undated connection is not free, an appropriately
authenticated connection with a different tag is returned.

Restrictions for matching the tag may be removed by passing an empty tag argument
parameter.

Note: A getTag () call to the connection verifies the connection
tag received.

Syntax Description

Connection *getAnyTaggedProxyConnection (Geta proxy connection with role
const string &name, specifications from a connection pool;
string roles[], includes support for roles and string
unsigned int numRoles, support.

const string tag="",
Connection: : ProxyType
proxyType=Connection: : PROXY_DEFAULT) ;

Connection* getAnyTaggedProxyConnection (Geta proxy connection with role
const UString &name, specifications from a connection pool;
string roles[], includes support for roles and UString
unsigned int numRoles, support.
const UString &tag,
Connection: : ProxyType
proxyType = Connection::PROXY_DEFAULT) ;
Connection *getAnyTaggedProxyConnection (Geta proxy connection with role
const string &name, specifications from a connection pool;
const string tag="", string support.
Connection: : ProxyType
proxyType=Connection: : PROXY_DEFAULT) ;
Connection* getAnyTaggedProxyConnection (Get a proxy connection within role
const UString &name, specifications from the connection pool;
const UString &tag, UString support.

Connection: : ProxyType
proxyType = Connection::PROXY_DEFAULT) ;

Parameter Description

name The username.

12-200 Oracle C++ Call Interface Programmer’s Guide

StatelessConnectionPool Class

Parameter Description

roles The roles to activate on the database server

numRoles The number of roles to activate on the database server

tag User defined tag associated with the connection.

proxyType The type of proxy authentication to perform; ProxyType is defined

in Table 12-11 on page 12-48.

getBusyConnections()

Returns the number of busy connections in the connection pool.

Syntax

unsigned int getBusyConnections() const=0;

getBusyOption()

Returns the behavior of the stateless connection pool when all the connections in the
pool are busy, and when the number of connections have reached maximum. The
return values are defined for BusyOption in Table 12—40 on page 12-198.

Syntax
BusyOption getBusyOption()=0;

getConnection()

Returns a pointer to the connection object of a StatelessConnectionPool.

Syntax

Description

Connection *getConnection (
string &tag="")=0;

Connection* getConnection (
const UString &tag)=0;

Connection *getConnection (
const string &userName,
const string &password,
const string &tag="")=0;

Connection* getConnection (
const UString &userName,
const UString &password,
const UString &tag)=0;

Returns an authenticated connection,
with a connection pool username and
password; string support.

Returns an authenticated connection,
with a connection pool username and
password; UString support.

Returns a pointer to the connection
object from a heterogeneous stateless
connection pool; string support..

Returns a pointer to the connection
object from a heterogeneous stateless
connection pool; UString support.

Parameter Description
userName The database username.
password The database password.

OCCI Application Programming Interface 12-201

getincrConnections()

Parameter Description

tag The user defined tag associated with the connection. During the
call, the pool is first searched based on the tag provided. If a
connection with the specified tag exists it is returned; otherwise a
new connection is created and returned.

getincrConnections()

Returns the number of incremental connections in the connection pool. This call is
useful only in cases of homogeneous connection pools.

Syntax

unsigned int getIncrConnections() const=0;
getMaxConnections()
Returns the maximum number of connections in the connection pool.

Syntax

unsigned int getMaxConnections() const=0;
getMinConnections()
Returns the minimum number of connections in the connection pool.

Syntax

unsigned int getMinConnections() const=0;
getOpenConnections()
Returns the number of open connections in the connection pool.

Syntax

unsigned int getOpenConnections() const=0;
getPoolName()
Returns the name of the connection pool.

Syntax

string getPoolName () const=0;

getProxyConnection()

Returns a proxy connection from a connection pool.

12-202 Oracle C++ Call Interface Programmer’s Guide

StatelessConnectionPool Class

Syntax

Description

Connection *getProxyConnection (
const string &name,
string roles|],
unsigned int numRoles,
const string& tag="",
Connection: :ProxyType
proxyType=Connection: : PROXY_DEFAULT)=0;

Connection* getProxyConnection (
const UString &name,
string roles|],
unsigned int numRoles,
const UString &tag,
Connection: : ProxyType
proxyType = Connection::PROXY_DEFAULT) ;

Connection *getProxyConnection (
const string &name,
const string& tag="",
Connection: :ProxyType
proxyType=Connection: : PROXY_DEFAULT)=0;

Connection* getProxyConnection (
const UString &name,
const UString &tag,
Connection: : ProxyType
proxyType = Connection::PROXY_DEFAULT)

Get a proxy connection with role
specifications from a connection
pool; support for roles and string
support.

Get a proxy connection with role
specifications from a connection
pool; support for roles and UString
support.

Get a proxy connection without role
specifications from a connection
pool; string support.

Get a proxy connection without role
specifications from a connection
pool; UString support.

Parameter Description

name The username.

roles The roles to activate on the database server.

numRoles The number of roles to activate on the database server.

tag The user defined tag associated with the connection. During the
execution of this call, the pool is first searched based on the tag
provided. If a connection with the specified tag exists it is returned;
otherwise, a new connection is created and returned.

proxyType The type of proxy authentication to perform; ProxyType is defined

in Table 12-11 on page 12-48.

getStmtCacheSize()

getTimeOut()

Retrieves the size of the statement cache.

Syntax

unsigned int getStmtCacheSize() const=0;

Returns the timeout period of a connection in the connection pool.

Syntax

unsigned int getTimeOut () const=0;

OCCI Application Programming Interface 12-203

releaseConnection()

releaseConnection()

Releases the connection back to the pool with an optional tag.

Syntax Description

void releaseConnection (Support for string tag.
Connection *connection,
const string& tag="");

void releaseConnection (Support for UString tag.
Connection *connection,
const UString &tag);

Parameter Description
connection The connection to be released.
tag The user defined tag associated with the connection. The default of

this parameter is " ", which untags the connection.

setBusyOption()

Specifies the behavior of the stateless connection pool when all the connections in the
pool are busy, and when the number of connections have reached maximum.

Syntax

void setBusyOption (
BusyOption busyOption)=0;

Parameter Description

busyOption Valid values are defined in BusyOption in Table 12—40 on page 12-198.

Caution: When busyOption is set to FORCEGET, an attempt can
be made to create more connections than can be supported. In such
cases, a request for new connections will return an error that will be
propagated to the pool user:

ORA 00018 -- Maximum number of sessions exceeded

setPoolSize()

Sets the maximum, minimum, and incremental number of pooled connections for the
connection pool.

Syntax

void setPoolSize(
unsigned int maxConn=1,
unsigned int minConn=0,

12-204 Oracle C++ Call Interface Programmer’s Guide

StatelessConnectionPool Class

unsigned int incrConn=1)=0;

Parameter Description

maxConn The maximum number of connections in the connection pool.
minConn The minimum number of connections, in homogeneous pools only.
incrConn The incremental number of connections, in homogeneous pools only.

setTimeOut()
Sets the timeout period of a connection in the connection pool. OCCI will terminate
any connections related to this connection pool that have been idle for longe4r than the
timeout period specified.
Syntax
void setTimeOut (
unsigned int connTimeOut=0)=0;
Parameter Description
connTimeOut The timeout period, given in seconds.
setStmtCacheSize()

Enables or disables statement caching. A nonzero value will enable statement caching,
with a cache of specified size. A zero value will disable caching.

If the user changes the cache size of individual connections and subsequently returns
the connection back to the pool with a tag, the cache size does not revert to the one set
for the pool. If the connection is untagged, the cache size is reset to equal the cache size
specified for the pool.

Syntax

void setStmtCacheSize (
unsigned int cacheSize)=0;

Parameter Description

cacheSize The size of the statement cache

terminateConnection()

Closes the connection and remove it from the pool.
Syntax

void terminateConnection (
Connection *connection)=0;

OCCI Application Programming Interface 12-205

terminateConnection()

Parameter Description

connection The connection to be terminated

12-206 Oracle C++ Call Interface Programmer’s Guide

Statement Class

Statement Class

A Statement object is used for executing SQL statements. The statement may be a
query returning result set, or a non-query statement returning an update count.
Non-query SQL can be insert, update, or delete statements. Non-query SQL statements
can also be DML statements (such as create, grant, and so on) or stored procedure
calls.

A query, insert / update / delete, or stored procedure call statements may have IN
bind parameters, while a stored procedure call statement may have either OUT bind
parameters or bind parameters that are both IN and OUT, referred to as IN/OUT
parameters.

The statement class methods are divided into three categories:
= Statement methods applicable to all statements
s Methods applicable to prepared statements with IN bind parameters

s Methods applicable to callable statements with OUT or IN/OUT bind parameters.

Table 12-42 Enumerated Values used by the Statement Class

Attribute Options

Status = NEEDS_STREAM_DATA indicates that output Streams must be written for
the streamed IN bind parameters. If there is more than one streamed
parameter, call the getCurrentStreamParam() method to find out the bind
parameter needing the stream. If the statement is executed iteratively, call
getCurrentlteration() to find the iteration for which stream needs to be
written.

= PREPARED indicates that the Statement is set to a query.

= RESULT_SET_AVAILABLE indicates that the getResultSet() method must
be called to get the result set.

= STREAM_DATA_AVAILABLE indicates that the input Streams must be
read for the streamed OUT bind parameters. If there is more than one
streamed parameter, call the getCurrentStreamParam() method to find out
the bind parameter needing the stream. If the statement is executed
iteratively, call getCurrentIteration() to find the iteration for which stream
needs to be read.

= UPREPARED indicates that the Statement object is not set to a query.

= UPDATE_COUNT_AVAILABLE indicates that the getUpdateCount() method
must be called to find out the update count.

Table 12-43 Statement Methods

Method Description

addlteration() on page 12-211 Adds an iteration for execution.

closeResultSet() on page 12-211 Immediately releases a result set's database and OCCI
resources instead of waiting for automatic release.

closeStream() on page 12-211 Closes the stream specified by the parameter stream.

disableCaching() on page 12-211 Disables statement caching.

execute() on page 12-211 Runs the SQL statement.

executeArrayUpdate() on Runs insert, update, and delete statements that use only

page 12-212 the setDataBuffer () or stream interface for bind
parameters.

OCCI Application Programming Interface 12-207

Statement Class

Table 12-43 (Cont.) Statement Methods

Method

Description

executeQuery() on page 12-212
executeUpdate() on page 12-213
getAutoCommit() on page 12-213

getBatchErrorMode() on
page 12-213

getBDouble() on page 12-213

getBfile() on page 12-214
getBFloat() on page 12-214

getBlob() on page 12-214
getBytes() on page 12-214

getCharSet() on page 12-215

getCharSetUString() on
page 12-215

getClob() on page 12-215
getConnection() on page 12-215

getCurrentlteration() on
page 12-215

getCurrentStreamIteration() on
page 12-216

getCurrentStreamParam() on
page 12-216

getCursor() on page 12-216

getDatabaseNCHARParam() on
page 12-216

getDate() on page 12-217
getBDouble() on page 12-213
getDouble() on page 12-217
getBFloat() on page 12-214
getFloat() on page 12-217
getInt() on page 12-217
getIntervalDS() on page 12-218
getInterval YM() on page 12-218

getMaxIterations() on page 12-218

getMaxParamSize() on
page 12-218

getNumber() on page 12-219

Runs a SQL statement that returns a single ResultSet.
Runs a SQL statement that does not return a ResultSet.
Returns the current auto-commit state.

Returns the state of the batch error mode.

Returns the value of an IEEE754 DOUBLE as a BDouble
object.

Returns the value of a BFILE as a Bf i 1e object.

Returns the value of a IEEE754 FLOAT as a BFloat
object.

Returns the value of a BLOB as a Blob object.

Returns the value of a SQL. BINARY or VARBINARY
parameter as Bytes.

Returns the characterset that is in effect for the specified
parameter, as a string.

Returns the characterset that is in effect for the specified
parameter, as a UString.

Returns the value of a CLOB as a Clob object.

Returns the connection from which the Statement object
was instantiated.

Returns the iteration number of the current iteration that is
being processed.

Returns the current iteration for which stream data is to be
read or written.

Returns the parameter index of the current output Stream
that must be read or written.

Returns the REF CURSOR value of an OUT parameter as a
ResultsSet.

Returns whether data is in NCHAR character set.

Returns the value of a parameter as a Date object

Returns the value of a parameter as an IEEE754 double.
Returns the value of a parameter as a C++ double.
Returns the value of a parameter as an IEEE754 float.
Returns the value of a parameter as a C++ float.

Returns the value of a parameter as a C++ int.

Returns the value of a parameter as a IntervalDS object.
Returns the value of a parameter as a IntervalYM object.

Returns the current limit on maximum number of
iterations.

Returns the current max parameter size limit.

Returns the value of a parameter as a Number object.

12-208 Oracle C++ Call Interface Programmer’s Guide

Statement Class

Table 12-43 (Cont.) Statement Methods

Method

Description

getObject() on page 12-219
getOCIStatement() on page 12-219

getRef() on page 12-219
getResultSet() on page 12-220
getRowid() on page 12-220
getSQL() on page 12-220

getSQLUString() on page 12-220

getStream() on page 12-220
getString() on page 12-220
getTimestamp() on page 12-221
getUInt() on page 12-221
getUpdateCount() on page 12-221

getUString() on page 12-221
getVector() on page 12-222
getVectorOfRefs() on page 12-224

isNull() on page 12-224
isTruncated() on page 12-224

preTruncationLength() on
page 12-225

registerOutParam() on
page 12-225

setAutoCommit() on page 12-226

setBatchErrorMode() on
page 12-226

setBDouble() on page 12-226
setBfile() on page 12-227
setBFloat() on page 12-227

setBinaryStreamMode() on
page 12-227

setBlob() on page 12-228
setBytes() on page 12-228

setCharacterStreamMode() on
page 12-228

setCharSet() on page 12-228

setCharSetUString() on
page 12-229

setClob() on page 12-229

Returns the value of a parameter as a PObject.

Returns the OCI statement handle associated with the
Statement.

Returns the value of a REF parameter as RefAny
Returns the current result as a ResultSet.
Returns the row id parameter value as a Bytes object.

Returns the current SQL string associated with the
Statement object.

Returns the current SQL string associated with the
Statement object; globalization enabled.

Returns the value of the parameter as a stream.

Returns the value of the parameter as a string.

Returns the value of the parameter as a Timestamp object
Returns the value of the parameter as a C++ unsigned int

Returns the current result as an update count for
non-query statements.

Returns the value of a UString.
Returns the specified parameter as a vector.

Returns the column in the current position as a vector of
REF's.

Checks whether the parameter is NULL.
Checks whether the value is truncated.

Returns the actual length of the parameter before
truncation.

Registers the type and max size of the OUT parameter.

Specifies auto commit mode.

Enables or disables the batch error processing mode.

Sets a parameter to an IEEE double value.
Sets a parameter to a Bfile value.
Sets a parameter to an IEEE float value.

Specifies that a column is to be returned as a binary
stream.

Sets a parameter to a Bl1ob value.
Sets a parameter to a Bytes array.

Specifies that a column is to be returned as a character
stream.

Specifies the characterset as a string.

Specifies the characte set as a UString.

Sets a parameter to a C1ob value.

OCCI Application Programming Interface 12-209

Statement Class

Table 12-43 (Cont.) Statement Methods

Method

Description

setDate() on page 12-229

setDatabaseNCHARParam() on
page 12-230

setDataBuffer() on page 12-230

setDataBufferArray() on
page 12-231

setDouble() on page 12-232
setErrorOnNull() on page 12-232

setErrorOnTruncate() on
page 12-233

setFloat() on page 12-233

setInt() on page 12-233
setIntervalDS() on page 12-233
setInterval YM() on page 12-234
setMaxlterations() on page 12-234

setMaxParamSize() on
page 12-234

setNull() on page 12-235
setNumber() on page 12-235
setObject() on page 12-236
setPrefetchMemorySize() on
page 12-236
setPrefetchRowCount() on
page 12-236

setRef() on page 12-237
setRowid() on page 12-237
setSQL() on page 12-237
setSQLUString() on page 12-238

setString() on page 12-238
setTimestamp() on page 12-238
setUInt() on page 12-239
setUString() on page 12-239

setVector() on page 12-239
setVectorOfRefs() on page 12-245

status() on page 12-246

Sets a parameter to a Date value.

Sets to true if the data is to be in the NCHAR character set
of the database; set to false to restore the default.

Specifies a data buffer where data would be available for
reading or writing.

Specifies an array of data buffers where data would be
available for reading or writing.

Sets a parameter to a C++ double value.
Enables Or Disables exceptions for reading of NULL values.

Enables Or Disables exception when truncation occurs.

Sets a parameter to a C++ float value.
Sets a parameter to a C++ int value.

Sets a parameter to a IntervalDS value.
Sets a parameter to a IntervalYM value.

Sets the maximum number of invocations that will be
made for the DML statement.

Sets the maximum amount of data that can sent or
returned from the parameter.

Sets a parameter to SQL NULL.
Sets a parameter to a Number value.
Sets the value of a parameter using an object.

Sets the amount of memory that will be used internally by
OCCI to store data fetched during each round trip to the
server.

Sets the number of rows that will be fetched internally by
OCCI during each round trip to the server.

Sets the value of a parameter to a reference.
Sets a row id bytes array for a bind position.
Associates new SQL string with Statement object.

Associates new SQL string with Statement object;
globalization enabled.

Sets a parameter for a specified index.
Sets a parameter to a Timestamp value.
Sets a parameter to a C++ unsigned int value.

Sets a parameter for a specified index; globalization
enabled.

Sets a parameter to a vector of unsigned int.

Sets a parameter to a vector; should be used when the type
is a collection of REFs.

Returns the current status of the statement. This is useful
when there is streamed data to be written.

12-210 Oracle C++ Call Interface Programmer’s Guide

Statement Class

addlteration()

After specifying set parameters, an iteration is added for execution.

Syntax

void addIteration();

closeResultSet()

closeStream()

In many cases, it is desirable to immediately release a result set's database and OCCI
resources instead of waiting for this to happen when it is automatically closed; the
closeResultSet() method provides this immediate release.

Syntax

void closeResultSet (
ResultSet *resultSet);

Parameter Description

resultSet The resultset to be closed. The resultset should have been obtained by a
call to the getResultSet() method on this statement.

Closes the stream specified by the parameter stream.

Syntax

void closeStream(
Stream *stream) ;

Parameter Description
stream The stream to ne closed.
disableCaching()

execute()

Disables statement caching. Used if a user wishes to destroy a statement instead of
caching it. Effective only if statement caching is enabled.

Syntax
void disableCaching();

Executes an SQL statement that may return either a result set or an update count. The
statement may have read-able streams which may have to be written, in which case
the results of the execution may not be readily available. The returned value Status is
defined in Table 1242 on page 12-207.

If output streams are used for OUT bind variables, they must be completely read in
order. The getCurrentStreamParam() method would indicate which stream needs to be

OCCI Application Programming Interface 12-211

executeArrayUpdate()

read. Similarly, getCurrentlteration() would indicate the iteration for which data is

available.
Syntax Description
Status execute(Executes the SQL Statement.

const string &sqgl="");

Status execute(Executes the SQL Statement; globalization enabled.
const UString &sql);

Parameter Description

sql The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

executeArrayUpdate()

Executes insert/update/delete statements which use only the setDataBuffer() or
stream interface for bind parameters. The bind parameters must be arrays of size
arrayLength parameter. The statement may have writeable streams which may have
to be written. The returned value Status is defined in Table 12-42 on page 12-207.

If output streams are used for OUT bind variables, they must be completely read in
order. The getCurrentStreamParam() method would indicate which stream needs to be
read. Similarly, getCurrentlteration() would indicate the iteration for which data is
available.

Note: You cannot perform array executes for queries or callable
statements.

Syntax

Status executeArrayUpdate (
unsigned int arrayLength);

Parameter Description
arrayLength The number of elements provided in each buffer of bind variables.
executeQuery()

Runs a SQL statement that returns a ResultSet. Should not be called for a statement
which is not a query, has streamed parameters. Returns a ResultSet that contains the
data produced by the query.

Syntax Description

ResultSet* executeQuery (Executes the SQL Statement that returns a ResultSet.
const string &sqgl="");

ResultSet* executeQuery (Executes the SQL Statement that returns a ResultSet;
const UString &sql); globalization enabled.

12-212 Oracle C++ Call Interface Programmer’s Guide

Statement Class

Parameter Description

sal The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

executeUpdate()

Executes a non-query statement such as a SQL INSERT, UPDATE, DELETE statement, a
DDL statement such as CREATE/ALTER and so on, or a stored procedure call. Returns
either the row count for INSERT, UPDATE or DELETE or 0 for SQL statements that
return nothing.

Syntax Description

unsigned int executeUpdate (Executes a non-query statement.
const string &sqgl="");

unsigned int executeUpdate (Executes a non-query statement; globalization enabled.
const UString &sql);

Parameter Description

sal The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

getAutoCommit()

Returns the current auto-commit state.

Syntax

bool getAutoCommit () const;

getBatchErrorMode()

getBDouble()

Returns the state of the batch error mode; TRUE if the batch error mode is enabled,
FALSE otherwise.

Syntax

bool getBatchErrorMode() const;

Returns the value of an IEEE754 DOUBLE column, which has been defined as an oUT
bind. If the value is SQL NULL, the result is 0.

Syntax

BDouble getBDouble (
unsigned int paramIndex) = 0;

OCCI Application Programming Interface 12-213

getBfile()

getBfile()

getBFloat()

getBlob()

getBytes()

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Returns the value of a BFILE parameter as a Bfile object.

Syntax

Bfile getBfile(
unsigned int paramIndex) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Gets the value of an IEEE754 FLOAT column, which has been defined as an OUT bind.
If the value is SQL NULL, the result is 0.

Syntax
BFloat getBFloat (
unsigned int paramIndex) = 0;
Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Returns the value of a BLOB parameter as a Blob.

Syntax

Blob getBlob(
unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Returns the value of n SQL BINARY or VARBINARY parameter as Bytes; if the value
is SQL NULL, the result is NULL.

Syntax

Bytes getBytes(
unsigned int paramIndex) ;

12-214 Oracle C++ Call Interface Programmer’s Guide

Statement Class

getCharSet()

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Returns the characterset that is in effect for the specified parameter, as a string.

Syntax

string getCharsSet (
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getCharSetUString()

getClob()

Returns the characte set that is in effect for the specified parameter, as a UString.

Syntax

UString getCharSetUString(
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Get the value of a CLOB parameter as a C1ob. Returns the parameter value.

Syntax

Clob getClob(
unsigned int paramIndex) ;

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
getConnection()

Returns the connection from which the Statement object was instantiated.

Syntax

Connection* getConnection() const;

getCurrentlteration()

If the prepared statement has any output Streams, this method returns the current
iteration of the statement that is being processed by OCCIL. If this method is called after

OCCI Application Programming Interface 12-215

getCurrentStreamiteration()

all the invocations in the set of iterations has been processed, it returns 0. Returns the
iteration number of the current iteration that is being processed. The first iteration is
numbered 1 and so on. If the statement has finished execution, a 0 is returned.

Syntax

unsigned int getCurrentIteration() const;

getCurrentStreamlteration()

Returns the current parameter stream for which data is available.

Syntax

unsigned int getCurrentStreamIteration() const;

getCurrentStreamParam()

getCursor()

Returns the parameter index of the current output Stream parameter that must be
written. If the prepared statement has any output Stream parameters, this method
returns the parameter index of the current output Stream that must be written. If no
output Stream needs to be written, or there are no output Stream parameters in the
prepared statement, this method returns 0.

Syntax

unsigned int getCurrentStreamParam() const;

Gets the REF CURSOR value of an OUT parameter as a ResultSet. Data can be
fetched from this result set. The OUT parameter must be registered as CURSOR with the
registerOutParam() method. Returns a ResultSet for the OUT parameter value.

Note: If there are multiple REF CURSORs being returned due to a
batched call, data from each cursor must be completely fetched
before retrieving the next REF CURSOR and starting fetch on it.

Syntax

ResultSet * getCursor (
unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getDatabaseNCHARParam()

Returns whether data is in NCHAR character set or not.

Syntax

bool getDatabaseNCHARParam (
unsigned int paramIndex) const;

12-216 Oracle C++ Call Interface Programmer’s Guide

Statement Class

getDate()

getDouble()

getFloat()

getint()

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Get the value of a SQL DATE parameter as a Date object. Returns the parameter value;
if the value is SQL NULL, the result is NULL.

Syntax

Date getDate(
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Get the value of a DOUBLE parameter as a C++ double. Returns the parameter value;
if the value is SQL NULL, the result is 0.

Syntax

double getDouble (
unsigned int paramIndex) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Get the value of a FLOAT parameter as a C++ £1loat. Returns the parameter value; if
the value is SQL NULL, the result is 0.

Syntax

float getFloat (
unsigned int paramIndex) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Get the value of an INTEGER parameter as a C++ int. Returns the parameter value; if
the value is SQL NULL, the resultis 0.

Syntax

unsigned int getInt(
unsigned int paramIndex) ;

OCCI Application Programming Interface 12-217

getintervalDS()

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
getintervalD$()

Get the value of a parameter as a IntervalDS object.

Syntax

IntervalDS getIntervalDS (
unsigned int paramIndex) ;

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
getintervalYM()

Get the value of a parameter as a IntervalYM object.

Syntax

IntervalYM getIntervalYM(
unsigned int paramIndex);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
getMaxlterations()

Gets the current limit on maximum number of iterations. Default is 1. Returns the
current maximum number of iterations.

Syntax

unsigned int getMaxIterations() const;

getMaxParamSize()

The maxParamsSize limit (in bytes) is the maximum amount of data sent or returned
for any parameter value; it only applies to character and binary types. If the limit is
exceeded, the excess data is silently discarded. Returns the current max parameter size
limit.

Syntax

unsigned int getMaxParamSize (
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

12-218 Oracle C++ Call Interface Programmer’s Guide

Statement Class

getNumber()

getObject()

Gets the value of a NUMERIC parameter as a Number object. Returns the parameter
value; if the value is SQL NULL, the result is NULL.

Syntax

Number getNumber (
unsigned int paramIndex) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Gets the value of a parameter as a PObject. This method returns an PObject whose
type corresponds to the SQL type that was registered for this parameter using
registerOutParam(). Returns A PObject holding the OUT parameter value.

Note: This method may be used to read database-specific, abstract
data types.

Syntax

PObject * getObject(
unsigned int paramIndex) ;

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
getOCIStatement)

getRef()

Get the OCI statement handle associated with the Statement.

Syntax
0OCIStmt * getOCIStatement() const;

Get the value of a REF parameter as RefAny. Returns the parameter value.

Syntax

RefAny getRef (
unsigned int paramIndex) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

OCCI Application Programming Interface 12-219

getResultSet()

getResultSet()

getRowid()

getSQL()

Returns the current result as a ResultSet.

Syntax

ResultSet * getResultSet();

Get the rowid parameter value as a Bytes.

Syntax

Bytes getRowid(
unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Returns the current SQL string associated with the Statement object.

Syntax
string getSQL() const;

getSQLUString()

getStream()

getString()

Returns the current SQL UString associated with the Statement object; globalization
enabled.

Syntax
UString getSQLUString() const;

Returns the value of the parameter as a stream.

Syntax

Stream * getStream(
unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Get the value of a CHAR, VARCHAR, or LONGVARCHAR parameter as an string. Returns
the parameter value; if the value is SQL NULL, the result is empty string.

12-220 Oracle C++ Call Interface Programmer’s Guide

Statement Class

Syntax

string getString(
unsigned int paramIndex) ;

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
getTimestamp()

getUint()

Get the value of a SQL TIMESTAMP parameter as a Timestamp object. Returns the
parameter value; if the value is SQL NULL, the result is NULL

Syntax

Timestamp getTimestamp (
unsigned int paramIndex) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Get the value of a BIGINT parameter as a C++ unsigned int. Returns the parameter
value; if the value is SQL NULL, the result is 0.

Syntax

unsigned int getUInt(
unsigned int paramIndex) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

getUpdateCount()

getUString()

Returns the current result as an update count.

Syntax

unsigned int getUpdateCount () const;

Returns the value as a UString.

Note: This method should be called only if the environment's
character set is UTF16, or if setCharset () method has been
called to explicitly retrieve UTF16 data.

OCCI Application Programming Interface 12-221

getVector()

Syntax

UString getUString(
unsigned int paramIndex);

Parameter

Description

paramIndex

Parameter index; first parameter is 1, second is 2, and so on.

getVector()

Returns the column in the current position as a vector. The column at the position,
specified by index, should be a collection type (varray or nested table). The SQL type
of the elements in the collection should be compatible with the type of the vector.

Syntax

Description

void getVector (
Statement *stmt,
unsigned int paramIndex,
std::vector<UString> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<BDouble> &vect) ;

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<BFile> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<BFloat> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<Blob> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<Clob> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<Date> &vect) ;

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<double> &vect) ;

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<float> &vect);

12-222 Oracle C++ Call Interface Programmer’s Guide

Used for vectors of UString Class; globalization

enabled.

Used for BDouble vectors.

Used for vectors of Bfile Class.

Used for BFloat vectors.

Used for vectors of Blob Class.

Used for Clob vectors.

Used for vectors of Date Class.

Used for vectors of double Class.

Used for vectors of float Class.

Statement Class

Syntax

Description

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<int> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,

vector<IntervalDS> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,

vector<IntervalYM> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<Number> &vect) ;

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<RefAny> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<string> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<T *> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<T> &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,
vector<Timestamp> &vect) ;

void getVector (
Statement *stmt,
unsigned int paramIndex,

vector<u <Ref<T> > &vect);

void getVector (
Statement *stmt,
unsigned int paramIndex,

vector<unsigned int> &vect);

Used for vectors of int Class.

Used for vectors of IntervalDS Class.

Used for vectors of IntervalYM Class.

Used for vectors of Number Class.

Used for vectors of RefAny Class.

Used for vectors of string Class.

Intended for use on platforms where partial ordering of

function templates is supported.

Intended for use on platforms where partial ordering of
function templates is not supported, such as Windows
NT. For oUT binds.

Used for vectors of Timestamp Class.

Available only on platforms where partial ordering of
function templates is supported.

Used for on vectors of unsigned int Class.

Parameter Description
stmt The statement.
paramIndex Parameter index.

OCCI Application Programming Interface 12-223

getVectorOfRefs()

Parameter Description
vect Reference to the vector (OUT parameter) into which the values should be
retrieved.
getVectorOfRefs()

isNull()

isTruncated()

This method returns the column in the current position as a vector of REFs. The
column should be a collection type (varray or nested table) of REFs. Used with OUT
binds.

Syntax

void getVectorOfRefs (
Statement *stmt,
unsigned int colIndex,
vector< Ref<T> > &vect);

Parameter Description

stmt The statement object.

colIndex Column index; first column is 1, second is 2, and so on.
vect The reference to the vector of REFs (OUT parameter). It is

recommended to use getVectorOfRefs () instead of specialized
getVector () function for Ref<T>.

An OUT parameter may have the value of SQL NULL; wasNull () reports whether the
last value read has this special value. Note that you must first call getxxx() on a
parameter to read its value and then call wasNull () to see if the value was SQL
NULL. Returns TRUE if the last parameter read was SQL NULL.

Syntax

bool isNull(
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isTruncated (
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

12-224 Oracle C++ Call Interface Programmer’s Guide

Statement Class

preTruncationLength()

Returns the actual length of the parameter before truncation.

Syntax

int preTruncationLength (
unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

registerOutParam()

This method registers the type of each out parameter of a PL/SQL stored procedure.
Before executing a PL/SQL stored procedure, you must explicitly call this method to
register the type of each out parameter. This method should be called for out
parameters only. Use the setxxx () method for in/out parameters.

= When reading the value of an out parameter, you must use the getxsx ()
method that corresponds to the parameter's registered SQL type. For example, use
getInt or getNumber when OCCIINT or OCCINumber is the type specified.

» Ifa PL/SQL stored procedure has an out parameter of type ROWID, the type
specified in this method should be OCCISTRING. The value of the out parameter
can then be retrieved by calling the getString () method.

» Ifa PL/SQL stored procedure has an in/out parameter of type ROWID, call the
methods setString () and getString () to set the type and retrieve the value

of the IN/OUT parameter.

Syntax

Description

void registerOutParam(
unsigned int paramIndex,
Type type,
unsigned int maxSize=0,
const string &sgltype="");

void registerOutParam(
unsigned int paramIndex,
Type type,
unsigned int maxSize,
const string typName,
const string &schName) ;

void registerOutParam(
unsigned int paramIndex,
Type type,
unsigned int maxSize,
const UString &typName,
const UString &schName) ;

Registers the type of each out
parameter of a PL/SQL stored
procedure.

Registers the type of each out
parameter of a PL/SQL stored
procedure; string support.

Registers the type of each out
parameter of a PL/SQL stored
procedure; globalization enabled, or
UString support.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

OCCI Application Programming Interface 12-225

setAutoCommit()

Parameter Description

type SQL type code defined by type; only datatypes corresponding to
OCCI data types such as Date, Bytes, and so on.

maxSize The maximum size of the retrieved value. For datatypes of
OCCIBYTES and OCCISTRING, maxSize should be greater than 0.

sqltype The name of the type in the data base (used for types which have
been created with CREATE TYPE).

typName The name of the type.

schName The schema name.

setAutoCommit()

A Statement can be in auto-commit mode. In this case any statement executed is also
automatically committed. By default, the auto-commit mode is turned-off.

Syntax

void setAutoCommit (
bool autoCommit) ;

Parameter Description
autoCommit TRUE enables auto-commit; FALSE disables auto-commit.
setBatchErrorMode()

setBDouble()

Enables or disables the batch error processing mode.

Syntax

virtual void setBatchErrorMode (
bool batchErrorMode) ;

Parameter Description

batchErrorMode TRUE enables batch error processing; FALSE disables batch error processing.

Sets an IEEE754 double as a bind value to a Statement object at the position specified
by paramIndex attribute.

Syntax

void setBDouble (
unsigned int paramIndex,
const BDouble &dval);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
dval The parameter value.

12-226 Oracle C++ Call Interface Programmer’s Guide

Statement Class

setBfile()

setBFloat()

Sets a parameter to a Bf i le value.

Syntax

void setBfile(
unsigned int paramIndex,
const Bfile &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

Sets an IEEE754 float as a bind value to a Statement object at the position specified
by the paramIndex attribute.

Syntax

void setBFloat (
unsigned int paramIndex,
const BFloat &fval);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
fval The parameter value.

setBinaryStreamMode()

Defines that a column is to be returned as a binary stream.

Syntax Description

void setBinaryStreamMode (Sets column returned to be a binary stream.
unsigned int colIndex,
unsigned int size);

void setBinaryStreamMode (Sets column returned to be a binary stream; used when
unsigned int colIndex, have PL/SQL IN or IN/OUT arguments in the bind
unsigned int size position.
bool inArg);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

size The amount of data to be read or returned as a binary Stream.

inArg Pass TRUE if the bind position is a PL/SQL IN or IN/OUT argument

OCCI Application Programming Interface 12-227

setBlob()

setBlob()

setBytes()

Sets a parameter to a B1ob value.

Syntax

void setBlob(
unsigned int paramIndex,
const Blob &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

Sets a parameter to a Bytes array.

Syntax

void setBytes(
unsigned int paramIndex,
const Bytes &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

setCharacterStreamMode()

Defines that a column is to be returned as a character stream.

Syntax Description

void setCharacterStreamMode(Sets column returned to be a character stream.
unsigned int colIndex,
unsigned int size);

void setCharacterStreamMode(Sets column returned to be a character stream; used when

unsigned int colIndex, have PL/SQL IN or IN/OUT arguments in the bind
unsigned int size, position.
bool inArg);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.
size The amount of data to be read or returned as a character Stream.
inArg Pass TRUE if the bind position is a PL/SQL IN or IN/OUT argument

12-228 Oracle C++ Call Interface Programmer’s Guide

Statement Class

setCharSet()

Overrides the default character set for the specified parameter. Data is assumed to be
in the specified character set and is converted to database character set. For OUT binds,
this specifies the character set to which database characters are converted to.

Syntax

void setCharSet (
unsigned int paramIndex,
string &charSet);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
charSet Selected character set, as a string.

setCharSetUString()

setClob()

setDate()

Overrides the default character set for the specified parameter. Data is assumed to be
in the specified character set and is converted to database character set. For OUT binds,
this specifies the character set to which database characters are converted to.

Syntax

void setCharSetUString(
unsigned int paramIndex,
const UString& charSet);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
charSet Selected character set, as a UString.

Sets a parameter to a C1lob value.

Syntax

void setClob(
unsigned int paramIndex,
const Clob &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

Sets a parameter to a Date value.

OCCI Application Programming Interface 12-229

setDatabaseNCHARParam()

Syntax

void setDate(
unsigned int paramIndex,
const Date &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

setDatabaseNCHARParam()

If the parameter is going to be inserted in a column that contains data in the database's
NCHAR character set, then OCCI must be informed by passing a TRUE value. A FALSE
can be passed to restore the dafault.Returns returns the character set that is in effect for
the specified parameter.

Syntax

void setDatabaseNCHARParam (
unsigned int paramIndex,
bool isNCHAR);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
1sNCHAR TRUE if this parameter contains data in Database's NCHAR character

set; FALSE otherwise

setDataBuffer()

Specifies a data buffer where data would be available. Also used for OUT bind
parameters of callable statements.

The buffer parameter is a pointer to a user allocated data buffer. The current length
of data must be specified in the 1ength parameter. The amount of data should not
exceed the size parameter. Finally, type is the data type of the data.

Note that not all types can be supplied in the buffer. For example, all OCCI allocated
types (such as Bytes, Date and so on) cannot be provided by the setDataBuffer()
interface. Similarly, C++ Standard Library strings cannot be provided with the
setDataBuffer()interface either. The type can be any of OCI data types such
VARCHAR2, CSTRING, CHARZ and so on.

If setDataBuffer() is used to specify data for iterative or array executes, it should be
called only once in the first iteration only. For subsequent iterations, OCCI would
assume that data is at buffer +(i*size) location where 1 is the iteration number.
Similarly the length of the data would be assumed to be at (length+i) .

Syntax

void setDataBuffer (
unsigned int paramIndex,
void *buffer,
Type type,
sbd size,
ub2 *length,

12-230 Oracle C++ Call Interface Programmer’s Guide

Statement Class

sb2 *ind = NULL,
ub2 *rc= NULL) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer; if iterative or array executes are done, it
should have numIterations () size bytes in it.

type Type of the data that is provided (or retrieved) in the buffer.

size Size of the data buffer; for iterative and array executes, it is the size of each
element of the data items.

length Pointer to the length of data in the buffer; for iterative and array executes, it
should be an array of length data for each buffer element; the size of the
array should be equal to arrayLength ().

ind Indicator. For iterative and array executes, an indicator for every buffer
element.

rc Returns code; for iterative and array executes, a return code for every buffer
element.

setDataBufferArray()

Specifies an array of data buffers where data would be available for reading or
writing. Used for IN, OUT, and IN/OUT bind parameters for stored procedures which
read/write array parameters.

A stored procedure can have an array of values for IN, IN/OUT, or OUT
parameters. In this case, the parameter must be specified using the
setDataBufferArray() method. The array is specified just as for the setDataBuffer()
method for iterative or array executes, but the number of elements in the array is
determined by *arrayLength parameter.

For oUT and IN/OUT parameters, the maximum number of elements in the array
is specified by the arraySize parameter. Note that for iterative prepared
statements, the number of elements in the array is determined by the number of
iterations, and for array executes the number of elements in the array is
determined by the arrayLength parameter of the executeArrayUpdate()
method. However, for array parameters of stored procedures, the number of
elements in the array must be specified in the arrayLength parameter of the
setDataBufferArray() method because each parameter may have a different size
array.

This is different from prepared statements where for iterative and array executes,
the number of elements in the array for each parameter is the same and is
determined by the number of iterations of the statement, but a callable statement
is executed only once, and each of its parameter can be a varying length array with
possibly a different length.

Note: For OUT and IN/OUT binds, the number of elements
returned in the array is returned in arrayLength as well. The
client must make sure that it has allocated size *arraySize bytes
for the buffer.

OCCI Application Programming Interface 12-231

setDouble()

setDouble()

Syntax

void setDataBufferArray (
unsigned int paramIndex,
void *buffer,
Type type,
ub4 arraySize,
ub4 *arrayLength,
sb4d elementSize,
ub2 *elementLength,
sb2 *ind = NULL,
ub2 *rc = NULL) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer. It should have size* arraySize bytesin
it.

type Type of the data that is provided (or retrieved) in the buffer.

arraySize Maximum number of elements in the array.

arrayLength Pointer to number of current elements in the array.

elementSize Size of the data buffer for each element.

elementLemgth Pointer to an array of lengths. elementLength[i] has the current length
of the ith element of the array.

ind Pointer to an array of indicators. An indicator for every buffer element.

rcs Pointer to an array of return codes.

Sets a parameter to a C++ double value.

Syntax

void setDouble(
unsigned int paramIndex,

double val);
Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

setErrorOnNull()

Enables/disables exceptions for reading of NULL values on paramIndex parameter of
the statement. If exceptions are enabled, calling a getxxx () on paramIndex
parameter would result in an SQLException if the parameter value is NULL. This call
can also be used to disable exceptions.

Syntax

void setErrorOnNull (
unsigned int paramIndex,
bool causeException);

12-232 Oracle C++ Call Interface Programmer’s Guide

Statement Class

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.
setErrorOnTruncate()

This method enables/disables exceptions when truncation occurs.

Syntax

void setErrorOnTruncate (
unsigned int paramIndex,
bool causeException);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
causeException Enable exceptions if TRUE. Disable if FALSE.
setFloat()
Sets a parameter to a C++ float value.
Syntax
void setFloat (
unsigned int paramIndex,
float val);
Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.
setint()
Sets a parameter to a C++ int value.
Syntax
void setInt(
unsigned int paramIndex,
int val);
Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.
setintervalDS()

Sets a parameter to a IntervalDS value.

OCCI Application Programming Interface 12-233

setInterval YM()

Syntax

void setIntervalDS (
unsigned int paramIndex,
const IntervalDS &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

setinterval YM()

Sets a parameter to a Interval value.

Syntax

void setInterval¥YM(
unsigned int paramIndex,
const IntervalYM &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

setMaxlterations()

Sets the maximum number of invocations that will be made for the DML statement.
This must be called before any parameters are set on the prepared statement. The
larger the iterations, the larger the numbers of parameters sent to the server in one
round trip. However, a large number causes more memory to be reserved for all the
parameters. Note that this is just the maximum limit. Actual number of iterations
depends on the number of calls to addlIteration().

Syntax

void setMaxIterations (
unsigned int maxIterations);

Parameter Description
maxIterations Maximum number of iterations allowed on this statement.
setMaxParamSize()

This method sets the maximum amount of data to be sent or received for the specified
parameter. It only applies to character and binary data. If the maximum amount is
exceeded, the excess data is discarded. This method can be very useful when working
with a LONG column. It can be used to truncate the LONG column by reading or writing
it into a string or Bytes data type.

If the getSQL() or setBytes() method has been called to bind a value to an IN/OUT
parameter of a PL/SQL procedure, and the size of the OUT value is expected to be
greater than the size of the IN value, then setMaxParamSize() should be called.

12-234 Oracle C++ Call Interface Programmer’s Guide

Statement Class

setNull()

setNumber()

Syntax

void setMaxParamSize (
unsigned int paramIndex,
unsigned int maxSize);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
maxSize The new maximum parameter size limit; must be >0.

Sets a parameter to SQL NULL. Note that you must specify the parameter's SQL type.

Syntax Description

void setNull(Sets the value of a parameter to NULL
unsigned int paramIndex, using an object.
Type type);

void setNull (Sets the value of a parameter to NULL
unsigned int paramIndex, for object and collection types,
Type type, OCCIPOBJECT and OCCIVECTOR.

Uses the appropriate schema and
type name of the object or collection
type. Support for string.

const string &typeName,
const string &schemaName = "")

void setNull (Sets the value of a parameter to NULL
unsigned int paramIndex, for object and collection types,
Type type, OCCIPOBJECT and OCCIVECTOR.

Uses the appropriate schema and
type name of the object or collection
type. Support for UString.

UString &typeName,
UString &schemaName) ;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.
type SQL type.

typeName Type name of the object or collection.

schemaName Name of the schema where the object or collection is defined..

Sets a parameter to a Number value.

Syntax

void setNumber (
unsigned int paramIndex,
const Number &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

OCCI Application Programming Interface 12-235

setObject()

setObject()

Sets the value of a parameter using an object; use the C++.lang equivalent objects for
integral values. The OCCI specification specifies a standard mapping from C++
Object types to SQL types. The given parameter C++ object will be converted to the
corresponding SQL type before being sent to the database.

Syntax

void setObject (
unsigned int paramIndex,
PObject* val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The object containing the input parameter value.

sqltyp The SQL type name of the object to be set.

setPrefetchMemorySize()

Sets the amount of memory that will be used internally by OCCI to store data fetched
during each round trip to the server. A value of 0 means that the amount of data
fetched during the round trip is constrained by the FetchRowCount parameter. If
both parameters are nonzero, the smaller of the two is used.

Syntax

void setPrefetchMemorySize (
unsigned int bytes);

Parameter Description

bytes Number of bytes used for storing data fetched during each server round trip.

setPrefetchRowCount()

Sets the number of rows that will be fetched internally by OCCI during each round
trip to the server. A value of 0 means that the amount of data fetched during the round
trip is constrained by the FetchMemorySize parameter. If both parameters are
nonzero, the smaller of the two is used. If both of these parameters are zero, row count
internally defaults to 1 row and that is the value returned from the
getFetchRowCount () method.

Syntax

void setPrefetchRowCount (
unsigned int rowCount) ;

Parameter Description

rowCount Number of rows to fetch for each round trip to the server.

12-236 Oracle C++ Call Interface Programmer’s Guide

Statement Class

setRef()

setRowid()

setSQL()

Sets the value of a parameter to a reference. A Ref<T> instance will be implicitly
converted to a RefAny object during this call.

Syntax Description

void setRef (Sets the value of a parameter to a reference.
unsigned int paramIndex,
const RefAny &refAny);

void setRef (Sets the value of a parameter to a reference. If
unsigned int paramIndex, the Statement represents a callable PL/SQL
const RefAny &refAny, method, pass the schema name and type

name of the object represented by the Ref.

const string &typName, -
Wy Support for string.

const string &schName =

void setRef (Sets the value of a parameter to a reference. If
unsigned int paramIndex, the Statement represents a callable PL/SQL
const RefAny &refAny, method, pass the schema name and type
const UString &typName, name of the objectl represented by the Ref.
const UString &schName) ; Support for UString.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

refAny The reference.

typName The type of the object [optional].

schName The schema where the object type is defined [optional].

Sets a Rowid bytes array for a bind position.

Syntax

void setRowid (
unsigned int paramIndex,
const Bytes &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

A new SQL string can be associated with a Statement object by this call. Resources
associated with the previous SQL statement are freed. In particular, a previously
obtained result set is invalidated. If an empty sql string, ", was used when the
Statement was created, a set SQL method with the proper SQL string must be done
prior to execution.

OCCI Application Programming Interface 12-237

setSQLUString()

Syntax

void setSQL (
const string &sqgl);

Parameter Description

sql Any SQL statement.

setSQLUString()

Associate an SQL statement with this object. Unicode support: the client
Environment should be initialized in OCCIUTIF16 mode.

Syntax

void setSQLUString (
const UString &sql);

Parameter Description

sql A SQL statement in same character set as the connection source of the statement.

setString()
Sets a parameter for a specified index.

Syntax

void setString(
unsigned int paramIndex,
const string &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

setTimestamp()

Sets a parameter to a Timestamp value.

Syntax

void setTimestamp (
unsigned int paramIndex,
const Timestamp &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

12-238 Oracle C++ Call Interface Programmer’s Guide

Statement Class

setUInt()

setUString()

setVector()

Sets a parameter to a C++ unsigned int value.

Syntax

void setUInt (
unsigned int paramIndex,
unsigned int val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

Sets a parameter for a specified index; globalization enabled.

Syntax

void setUString (
unsigned int paramIndex,
const UString &val);

Parameter Description
paramIndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

Sets a parameter to a vector. This method should be used when the type is a collection
type, varrays or nested tables. The SQL Type of the elements in the collection should
be compatible with the type of the vector. For example, if the collection is a varray of
VARCHAR2, use vector<string>.

Syntax Description

void setVector (Intended for use on platforms
Statement *stmt, where partial ordering of function
unsigned int paramIndex, templates is not supported, such
const vector< T > &vect, as Windows NT. Multibyte

const string &schemaName, support.
const string &typeName) ;

void setVector (Intended for use on platforms
Statement *stmt, where partial ordering of function
unsigned int paramIndex, templates is supported. Multibyte
const vector<T* > &vect, support.

const string &schemaName,
const string &typeName) ;

OCCI Application Programming Interface 12-239

setVector()

Syntax Description

void setVector (Sets a BDouble vector.
Statement *stmt,
unsigned int paramIndex,
const vector<BDouble> &vect
const string &sgltype);

void setVector (Sets a const Bfile vector;
Statement *stmt, multibyte support.
unsigned int paramIndex,
const vector<Bfile> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (Sets a const BFile vector;
Statement *stmt, UTF16 support.
unsigned int paramIndex,
const vector<Bfile> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (Sets a BFloat vector.
Statement *stmt,
unsigned int paramIndex,
const vector<BFloat> &vect
const string &sqgltype);

void setVector (Sets a const Blob vector;
Statement *stmt, multibyte support.
unsigned int paramIndex,
const vector<Blob> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (Sets a const Blob vector; UTF16
Statement *stmt, support.
unsigned int paramIndex,
const vector<Blob> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (Sets a const Clob vector;
Statement *stmt, multibyte support.
unsigned int paramIndex,
const vector<Clob> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (Sets a const Clob vector; UTF16
Statement *stmt, support.
unsigned int paramIndex,
const vector<Clob> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (Sets a const Date vector;
Statement *stmt, multibyte support.
unsigned int paramIndex,
const vector<Date> &vect,
const string &schemaName,
const string &typeName) ;

12-240 Oracle C++ Call Interface Programmer’s Guide

Statement Class

Syntax

Description

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<Date> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<double> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<double> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<float> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<float> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<int> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<int> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,

const vector<IntervalDS> &vect,

const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,

const vector<IntervalDS> &vect,

const UString &schemaName,
const UString &typeName) ;

Sets a const Date vector; UTF16
support.

Sets a const double vector;
multibyte support.

Sets a const double vector;
UTF16 support.

Sets a const float vector;
multibyte support.

Sets a const float vector;
UTF16 support.

Sets a const int vector;
multibyte support.

Sets a const int vector; UTF16
support.

Sets a const IntervalDS
vector; multibyte support.

Sets a const IntervalDS
vector; UTF16 support.

OCCI Application Programming Interface 12-241

setVector()

Syntax

Description

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<IntervalYM> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<IntervalYM> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<Number> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<Number> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<RefAny> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<RefAny> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<string> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<string> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<Timestamp> &vect,
const string &schemaName,
const string &typeName) ;

12-242 Oracle C++ Call Interface Programmer’s Guide

Sets a const Interval¥YM
vector; multibyte support.

Sets a const Interval¥YM
vector; UTF16 support

Sets a const Number vector;
multibyte support.

Sets a const Number vector;
UTF16 support.

Sets a const RefAny vector;
multibyte support.

Sets a const RefAny vector;
UTF16 support.

Sets a const string vector;
multibyte support.

Sets a const string vector;
UTF16 support.

Sets a const Timestamp vector;
multibyte support.

Statement Class

Syntax Description
void setVector (Sets a const Timestamp vector;
Statement *stmt, UTF16 support.

unsigned int paramIndex,

const vector<Timestamp> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (Sets a const unsigned int
Statement *stmt, vector; multibyte support.
unsigned int paramIndex,
const vector<unsigned int> &vect,
const string &schemaName,
const string &typeName) ;

void setVector (Sets a const unsigned int
Statement *stmt, vector; UTF16 support.
unsigned int paramIndex,
const vector<unsigned int> &vect,
const UString &schemaName,
const UString &typeName) ;

void setVector (Sets a Bfile vector.
Statement *stmt,
unsigned int paramIndex,
vector<Bfile> &vect,
string &sgltype);

void setVector (Sets a Blob vector.
Statement *stmt,
unsigned int paramIndex,
vector<Blob> &vect,
string &sqgltype);

void setVector (Sets a Clob vector.
Statement *stmt,
unsigned int paramIndex,
vector<Clob> &vect,
string &sqgltype);

void setVector (Sets a Date vector.
Statement *stmt,
unsigned int paramIndex,
vector<Date> &vect,
string &sqgltype);

void setVector (Sets a double vector.
Statement *stmt,
unsigned int paramIndex,
vector<double> &vect,
string &sqgltype);

void setVector (Sets a float vector.
Statement *stmt,
unsigned int paramIndex,
vector<float> &vect,
string &sgltype);

void setVector (Sets an int vector .
Statement *stmt,
unsigned int paramIndex,
vector<int> &vect,
string &sgltype);

OCCI Application Programming Interface 12-243

setVector()

12-244 Oracle C++ Call Interface Programmer’s Guide

Syntax

Description

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<IntervalDS> &vect,
string &sgltype);

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<IntervalYM> &vect,
string &sqgltype);

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<Number> &vect,
string &sqgltype);

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<RefAny> &vect,
string &sqgltype);

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<string> &vect,
string &sgltype);

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<Timestamp> &vect,
string &sgltype);

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<unsigned int> &vect,
string &sgltype);

template <class T>

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector< T* > &vect,
const string &sqgltype);

template <class T>

void setVector (
Statement *stmt,
unsigned int paramIndex,
const vector<T> &vect,
const string &sqgltype);

template <class T>

void setVector (
Statement *stmt,
unsigned int paramIndex,
vector<Ref<T>> &vect,
string &sgltype);

Sets an IntervalDSs vector.

Sets an Interval¥YM vector.

Sets a Number vector.

Sets a RefAny vector.

Sets a string vector.

Sets a Timestamp vector.

Sets an unsigned int vector.

Intended for use on platforms
where partial ordering of function
templates is not supported.

Intended for use on platforms
where partial ordering of function
templates is supported.

Available only on platforms where
partial ordering of function
templates is supported.
setVectorOfRefs() can be used
instead.

Statement Class

Parameter Description

stmt Statement on which parameter is to be set.

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

vect The vector to be set.

sqltype Sqltype of the collection in the database. For example, CREATE TYPE num_
coll AS VARRAY OF NUMBER. And the column/parameter type is num_

coll. The sqltype would be num_coll.

schemaName Name of the schema used

typeName Type

setVectorOfRefs()

Sets a parameter to a vector; should be used when the type is a collection of REFs or

nested tables of REFs.

Syntax

Description

template <class T> void setVectorOfRefs (

Statement *stmt, unsigned int paramIndex,

const vector<Ref<T> > &vect,
const string &sgltype);

template <class T> void setVectorOfRefs (
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> > &vect,
const string &sqgltype);

template <class T> void setVectorOfRefs (
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T>> &vect,
const string &schemaName,
const string &typeName) ;

template <class T> void setVectorOfRefs (
Statement *stmt,
unsigned int paramIndex,
const vector<Ref<T> &vect,
const UString &schemaName,
const UString &typeName) ;

template <class T> void setVector (
Statement *stmt,

unsigned int paramIndex,

const vector<T* > &vect,

const UString &schemaName,

const UString &typeName) ;

Sets a parameter to a vector;
should be used when the type is a
collection of REF's are varrays or
nested tables of REFs.

Used for multibyte support.

Used for multibyte support.

Used for UTF16 support on
platforms where partial ordering
of function templates is not
supported, such as Windows NT.

Used for UTF16 support on
platforms where partial ordering
of function templates is supported.

Parameter Description
stmt Statement on which parameter is to be set.
paramIndex Parameter index; first parameter is 1, second is 2, and so on.

vect Vector to be set.

OCCI Application Programming Interface 12-245

status()

Parameter

Description

sgltype

schemaName

typeName

Sqltype of the parameter or column. Use setVectorOfRefs() instead
of specialized function setVector() for Ref<T>.

Name of the schema used

Type

status()

Returns the current status of the statement. Useful when there is streamed data to be
written (or read). Other methods such as getCurrentStreamParam() and
getCurrentlteration() can be called to find out the streamed parameter that needs to be
written and the current iteration number for an iterative or array execute. The
status()method can be called repeatedly to find out the status of the execution.

The returned value, Status, is defined in Table 12—42 on page 12-207.

Syntax

Status status/()

12-246 Oracle C++ Call Interface Programmer’s Guide

Stream Class

Stream Class

readBuffer()

You use a Stream to read or write streamed data (usually LONG).

= Aread-able Streamis used to obtain streamed data from a result set or OUT bind
variable from a stored procedure call. A read-able Stream must be read
completely until the end of data is reached or it should be closed to discard any
unwanted data.

= A write-able Stream is used to provide streamed data (usually LONG) to
parameterized statements including callable statements.

Table 12-44 Enumerated Values Used by Stream Class

Attribute Options

Status = READY_FOR_READ indicates that the Stream is ready for read operations
= READY_FOR_WRITE indicates that the Stream is ready for write operations

= INACTIVE indicates that the Stream is not available for ready or write
operations

Table 12-45 Summary of Stream Methods

Method Summary

readBuffer() on page 12-247 Reads the stream and returns the amount of data read
from the Stream object.

readLastBuffer() on page 12-248 Reads last buffer from Stream.
writeBuffer() on page 12-248 Writes data from buffer to the stream.
writeLastBuffer() on page 12-248 Writes the last data from buffer to the stream.

status() on page 12-248 Returns the current status of the stream.

Reads data from Stream. The size parameter specifies the maximum number of byte
characters to read. Returns the amount of data read from the Stream object. -1 means
end of data on the stream.

Syntax

virtual int readBuffer (
char *buffer,

unsigned int size) = 0;
Parameter Description
buffer Pointer to data buffer; must be allocated and freed by caller.
size Specifies the number of bytes to be read.

OCCI Application Programming Interface 12-247

readLastBuffer()

readLastBuffer()

Reads the last buffer from the Stream. It can also be called top discard unread data.
The size parameter specifies the maximum number of byte characters to read. Returns
the amount of data read from the Stream object; -1 means end of data on the stream.

Syntax

virtual int readLastBuffer (
char *buffer,

unsigned int size) = 0;
Parameter Description
buffer Pointer to data buffer; must be allocated and freed by caller.
size Specifies the number of bytes to be read.
writeBuffer()
Writes data from buffer to the stream. The amount of data is determined by size.
Syntax
virtual void writeBuffer (
char *buffer,
unsigned int size) = 0;
Parameter Description
buffer Pointer to data buffer.
size Specifies the number of chars to be written.
writeLastBuffer()
This method writes the last data buffer to the stream. It can also be called to write the
last chunk of data. The amount of data written is determined by size.
Syntax
virtual void writeLastBuffer (
char *buffer,
unsigned int size) = 0;
Parameter Description
buffer Pointer to data buffer.
size Specifies the number of bytes to be written.
status()

Returns the current Status, as defined in Table 12-44 on page 12-247.

Syntax

virtual Status status() const;

12-248 Oracle C++ Call Interface Programmer’s Guide

Subscription Class

Subscription Class

The subscription class encapsulates the information and operations necessary for
registering a subscriber for notification.

Table 12-46 Enumerated Values Used by Subscription Class

Attribute

Options

Presentation

Protocol

Namespace

PRES_DEFAULT indicates that the event notification shold be in
default format.

PRES_ XML indicates that the event notification should be in XML
format.

PROTO_CBK indicates that the client will receive notifications
through the default system protocol.

PROTO_MAIL indicates that the client will receive notifications
through e-mail, like xyz@oracle. com. The database does not
check if the e-mail is valid.

PROTO_SERVER indicates that the client will receive notifications
through an invoked PL/SQL procedure in the database, like
schema .procedure. The subscriber must have the appropriate
permissions on the procedure.

PROTO_HTTP indicates that the client will receive notifications
through an HTTP URL, like http: //www.oracle.com: 80. The
database does not check if the URL is valid.

NS_ANONYMOUS indicates that the registrations will be made in an
anonymous namespace.

NS_AQ indicates that the registrations will be made in the Oracle
Streams Advanced Queuing namespace.

Table 12-47 Summary of Subscription Methods

Method

Summary

Subscription() on page 12-250
getCallbackContext() on

page 12-251

getDatabaseServersCount() on

page 12-251

getDatabaseServerNames() on

page 12-251

getNotifyCallback() on

page 12-251

getPayload() on page 12-251

getSubscriptionName() on

page 12-252

getSubscriptionNamespace() on

page 12-252

getRecipientName() on

page 12-252

getPresentation() on page 12-252

Subscription class constructor.

Retrieves the callback context.
Retrieves the number of database servers in which the

client is interested for the registration.

Returns the names of all the database servers where the
client registered an interest for notification.

Returns the pointer to the registered callback function.
Retrieves the payload that has been set on the
Subscription object prior to posting.

Retrieves the name of the Subscription.

Retrieves the namespace of the Subscription.

Retrieves the name of the Subscription recipient.

Retrieves the notification presentation mode.

OCCI Application Programming Interface 12-249

Subscription()

Table 12-47 (Cont.) Summary of Subscription Methods

Method

Summary

getProtocol() on page 12-252
isNull() on page 12-252
operator=() on page 12-252

setCallbackContext() on
page 12-253

setDatabaseServerNames() on
page 12-253

setNotifyCallback() on
page 12-253

setNull() on page 12-254

setSubscriptionName() on
page 12-255

setSubscriptionNamespace() on
page 12-255

setPayload() on page 12-254

setRecipientName() on
page 12-255

setPresentation() on page 12-254
setProtocol() on page 12-254
setSubscriptionName() on

page 12-255

setSubscriptionNamespace() on
page 12-255

setRecipientName() on
page 12-255

Retrieves the notification protocol.
Determines if the Subscription is NULL.
Assignment operator for Subscription.

Registers a callback function for OCI protocol.

Specifies the database server distinguished names from
which the client will receive notifications.

Specifies the context passed to user callbacks

Specifies the Subscription object to NULL and frees the
memory associated with the object.

Specifies the name of the subscription.
Specifies the namespace in which the subscription is used.

Specifies the buffer content of the notification.

Specifies the name of the recipient of the notification.

Specifies the presentation mode in which the client will
receive notifications.

Specifies the protocol in which the client will receive
notifications.
Specifiess the name of the subscription.

Specifies the namespace where the subscription is used.

Specifies the name of the recipient of the notification.

Subscription()

Subscription class constructor.

Syntax

Description

Subscription (

const Environment *env);

Subscription(

const Subscription& sub);

Creates a Subscription within a
specified Environment.

Copy constructor.

Syntax

Subscription(const Subscription& sub);

Parameter

Description

env The Environment.

12-250 Oracle C++ Call Interface Programmer’s Guide

Subscription Class

Parameter Description
sub The original Subscription..
getCallbackContext()

Retrieves the callback context.

Syntax
void* getCallbackContext () const;

getDatabaseServersCount()

Returns the number of database servers in which the client is interested for the
registration.

Syntax

unsigned int getDatabaseServersCount () const;

getDatabaseServerNames|()

Returns the names of all the database servers where the client registered an interest for
notification.

Syntax

vector<string> getDatabaseServerNames() const;

getNotifyCallback()

getPayload()

Returns the pointer to the callback function registered for this Subscription.

Syntax

unsigned int (*getNotifyCallback() const) (
Subscription& sub,
NotifyResult *nr);

Parameter Description
sub The Subscription.
nr The NotifyResult.

Retrieves the payload that has been set on the Subscription object prior to posting.

Syntax
Bytes getCPayload() const;

OCCI Application Programming Interface 12-251

getSubscriptionName()

getSubscriptionName()

Retrieves the name of the subscription.

Syntax

string getSubscriptionName() const;

getSubscriptionNamespace()

Retrieves the namespace of the subscription. The subscription name must be consistent
with its namespace. Valid Namespace values are NS_AQ and NS_ANONYMOUS, as
defined in Table 12-46 on page 12-249.

Syntax

Namespace getSubscriptionNamespace() const;

getRecipientName()

Retrieves the name of the recipient of the notification. Possible return values are
email address, the HTTP url and the PL/SQL procedure, depending on the protocol.

Syntax

string getRecipientName() const;

getPresentation()

Retrieves the presentation mode in which the client receives notifications. Valid
Presentation values are defined in Table 12-46 on page 12-249.

Syntax

Presentation getPresentation() const;

getProtocol()

Retrieves the protocol in which the client receives notifications. Valid Protocol
values are defined in Table 12—46 on page 12-249.

Syntax
Protocol getProtocol() const;
isNull()
Returns TRUE if Subscription is NULL or FALSE otherwise.
Syntax
bool isNull() const;
operator=()

Assignment operator for Subscription.

12-252 Oracle C++ Call Interface Programmer’s Guide

Subscription Class

Syntax

void operator=(
const Subscription& sub);

Parameter Description

sub The original Subscription.

setCallbackContext()

Registers a notification callback function when the protocol is PROTO_CBK, as defined
in Table 12—46 on page 12-249. Context registration is also included in this call.

Syntax
void setCallbackContext (
void *ctx);
Parameter Description
ctx The context set.

setDatabaseServerNames()

Specifies the list of database server distinguished names from which the client will
receive notifications.

Syntax

void setDatabaseServerNames (
const vector<string>& dbsrv);

Parameter Description
dbsrv The list of database distinguished names
setNotifyCallback()

Sets the context that the client wants to get passed to the user callback. If the protocol
is set to PROTO_CBK or not specified, this attribute needs to be set before registering
the subscription handle.

Syntax
void setNotifyCallback (
unsigned int (*callback) (
Subscription& sub,
NotifyResult *nr));

Parameter Description

callback The user callback function.

OCCI Application Programming Interface 12-253

setNull()

Parameter Description
sub The Subscription object.
nr The NotifyResult object.
setNull()
Sets the Subscription object to NULL and frees the memory associated with the
object.
Syntax
void setNull();
setPayload()
Sets the buffer content that corresponds to the payload to be posted to the
Subscription.
Syntax
void setPayload(
const Bytes& payload);
Parameter Description
payload Content of the notification.
setPresentation()
Sets the presentation mode in which the client will receive notifications.
Syntax
void setPresentation/(
Presentation pres);
Parameter Description
pres Presentation mode, as defined in Table 1246 on page 12-249.
setProtocol()

Sets the Protocol in which the client will receive event notifications, as defined in
Table 1246 on page 12-249.

Syntax

void setProtocol (
Protocol prot);

Parameter Description

prot Protocol mode

12-254 Oracle C++ Call Interface Programmer’s Guide

Subscription Class

setSubscriptionName()

Sets the name of the subscription. All subscriptions are identified by a subscription
name, which consists of a sequence of bytes of specified length.

If the namespace is NS_AQ, the subscription name is:
= SCHEMA.QUEUE when registering on a single consumer queue

= SCHEMA.QUEUE:CONSUMER_NAME when registering on a multi-consumer queue

Syntax

void setSubscriptionName (
const string& name);

Parameter Description

name Subscription name.

setSubscriptionNamespace()

Sets the namespace where the subscription is used. The subscription name must be
consistent with its namespace. Default value is NS_AQ.

Syntax

void setSubscriptionNamespace (
Namespace nameSpace) ;

Parameter Description

nameSpace Namespace in which the subscription is used, as defined in
Table 12—46 on page 12-249.

setRecipientName()
Sets the name of the recipient of the notification.
Syntax

void setRecipientName (
const string& name);

Parameter Description

name Name of the notification recipient.

OCCI Application Programming Interface 12-255

Timestamp Class

Timestamp Class

This class conforms to the SQL92 TIMESTAMP and TIMESTAMPTZ types, and works
with all database TIMESTAMP types: TIMESTAMP, TIMESTAMP WITH TIME ZONE,
and TIMESTAMP WITH LOCAL TIME ZONE.

Timestamp time components, such as hour, minute, second and fractional section are
in the time zone specified for the Timestamp. This is new behavior for the 10g
release; previous versions supported GMT values of time components. Time
components were only converted to the time zone specified by Timestamp when they
were stored in the database. For example, the following Timestamp() call constructs a
Timestamp value 13-Nov 2003 17:24:30.0 in timezone +5:30.

Timestamp ts(env, 2003, 11, 13, 17, 24, 30, 0, 5, 30);

The behavior of this call in previous releases would interpret the timestamp
components as GMT, resulting in a timestamp value of 13-Nov 2003 11:54:30.0
in timezone +5 : 30. Users were forced to convert the timestamps to GMT before
invoking the constructor.

Note: For GMT timezone, both hour and minute equal 0.

This behaviour change also applies to setDate() and setTime() methods.

The fields of Timestamp class and their legal ranges are provided in Table 12-48. An
SQLException will occur if a parameter is out of range.

Table 12-48 Fields of Timestamp and Their Legal Ranges

Field Type Minimum Value Maximum value
yvear int -4713 9999

month unsigned int 1 12

day unsigned int 1 31

hour unsigned int 0 23

min unsigned int 0 59

sec unsigned int 0 61

tzhour int -12 14

tzmin int -59 59

Table 12-49 Summary of Timestamp Methods

Method Summary

Timestamp() on page 12-257 Timestamp class constructor.

fromText() on page 12-259 Sets the time stamp from the values provided by the
string.

getDate() on page 12-260 Gets the date from the Timestamp object.

getTime() on page 12-260 Gets the time from the TimeStamp object.

getTimeZoneOffset() on Returns the time zone hour and minute offset value.

page 12-261

12-256 Oracle C++ Call Interface Programmer’s Guide

Timestamp Class

Timestamp()

Table 12-49 (Cont.) Summary of Timestamp Methods

Method

Summary

interval Add() on page 12-261
intervalSub() on page 12-261

isNull() on page 12-262
operator=() on page 12-262
operator==() on page 12-262
operator!=() on page 12-262
operator>() on page 12-263
operator>=() on page 12-263
operator<() on page 12-263
operator<=() on page 12-264
setDate() on page 12-264

setNull() on page 12-264
setTime() on page 12-264

setTimeZoneOffset() on
page 12-265

subDS() on page 12-265
subYM() on page 12-265
toText() on page 12-266

Returns a Timestamp object with value (this +
interval).

Returns a Timestamp object with value (this -
interval).

Checks if Timestamp is NULL.

Simple assignment.

Checks if a and b are equal.

Checks if a and b are not equal.

Checks if a is greater than b.

Checks if a is greater than or equal to b.
Checks if a is less than b.

Checks if a is less than or equal to b.

Sets the year, month, day components contained for
this timestamp.

Sets the value of Timestamp to NULL

Sets the day, hour, minute, second and fractional
second components for this timestamp.

Sets the hour and minute offset for time zone.

Returns a IntervalDS representing this - val.
Returns a IntervalYM representing this - val.

Returnsa string representation for the timestamp in
the format specified.

Timestamp class constructor.

Syntax

Description

Timestamp (
const Environment *env,
int year=1,
unsigned int month=1,
unsigned int day=1,
unsigned int hour=0,
unsigned int min=0,
unsigned int sec=0,
unsigned int fs=0,
int tzhour=0,
int tzmin=0);

Timestamp () ;

Returns a default Timestamp object. Time
components are understood to be in the
specified time zone.

Returns a NULL Timestamp object. A NULL
timestamp can be initialized by assignment
or calling the fromText() method. Methods
that can be called on NULL timestamp objects
are setNull(), isNull() and operator=().

OCCI Application Programming Interface 12-257

Syntax Description

Timestamp (Multibyte support. The timezone can be
const Environment *env, passed as region, "US/Eastern", or as an
int vyear, offset from GMT, "+05:30". If an empty string
unsigned int month, is passed, then the time is considered to be in

the current session's time zone. Used for
constructing values for TIMESTAMP WITH
LOCAL TIME ZONE types.

unsigned int day,
unsigned int hour,
unsigned int min,
unsigned int sec,
unsigned int fs,

const string &timezone);

Timestamp (UTF16 (UString) support. The timezone
const Environment *env, can be passed as region, "US/Eastern”, or as
int year, an offset from GMT, "+05:30". If an empty
unsigned int month, string is passed, then the time is considered

to be in the current session's time zone. Used
for constructing values for TIMESTAMP
WITH LOCAL TIME ZONE types.

unsigned int day,
unsigned int hour,
unsigned int min,
unsigned int sec,
unsigned int fs,

const UString &timezone);

Timestamp (Copy constructor.
const Timestamp &src);

Parameter Description

year Year component.

month Month component.

day Day component.

hour Hour component.

minute Minute component.

second Second component.

fs Fractional second component.

tzhour Time zone difference hour component.
tzmin Timezone difference minute component.
src The original Timezone.

Example 12-11 Using Default Timestamp Constructor

This example demonstrates that the default constructor creates a NULL value, and how
you can assign a non-NULL value to a Timestamp and perform operations on it:

Environment *env = Environment::createEnvironment () ;

//create a null timestamp
Timestamp ts;
if(ts.isNull())

cout << "\n ts is Null";

//assign a non null value to ts
Timestamp notNullTs(env, 2000, 8, 17, 12, 0, 0, 0, 5, 30);

12-258 Oracle C++ Call Interface Programmer’s Guide

Timestamp Class

fromText()

ts = notNullTs;

//now all operations are valid on ts
int yr;

unsigned int mth, day;
ts.getDate(yr, mth, day);

Example 12-12 Using fromText() method to Initialize a NULL Timestamp Instance

The following code example demonstrates how to use the fromText() method to
initialize a NULL timestamp:

Environment *env = Environment::createEnvironment () ;

Timestamp tsl;
tsl.fromText ("01:16:17.12 04/03/1825", "hh:mi:ssxff dd/mm/yyyy", "", env);

Example 12-13 Comparing Timestamps Stored in the Database

The following code example demonstrates how to get the timestamp column from a
result set, check whether the timestamp is NULL, get the timestamp value in string
format, and determine the difference between 2 timestamps:

Timestamp reft(env, 2001, 1, 1);
ResultSet *rs=stmt->executeQuery (

"select order_date from orders where customer_id=1");
rs->next () ;

//retrieve the timestamp column from result set
Timestamp ts=rs->getTimestamp (1) ;

//check timestamp for null
if(!ts.isNull())
{

string tsstr=ts.toText (//get the timestamp value in string format
"dd/mm/yyyy hh:mi:ss [tzh:tzm]",0);

if (reft<ts //compare timestamps
IntervalDS ds=reft.subDS(ts); //get difference between timestamps

Sets the timestamp value from the string. The string is expected to be in the format
specified. If n1sParam is specified, this will determine the nls parameters to be used
for the conversion. If nlsParam is not specified, the nls parameters are picked up
from the environment which has been passed. In case environment is not passed,
Globalization Support parameters are obtained from the environment associated with
the instance, if any.

Sets Timestamp object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also: Oracle Database SQL Reference for information on TO_
DATE

OCCI Application Programming Interface 12-259

getDate()

getDate()

getTime()

Syntax

Description

void fromText (

Sets Timestamp object to value represented

const string ×tmpStr, by a string.
const string &fmt,

const string &nlsParam = "",

const Environment *env = NULL);

void fromText (

Sets Timestamp object to value represented

const UString ×tmpStr, by a UString; globalization enabled.

const UString &fmt,
const UString &nlsParam,
const Environment *env = NULL);

Parameter Description

timestmpStr The timestamp string or UString to be converted to a Timestamp object.

fmt The format string.

nlsParam The nls parameters string. If n1sParam is specified, this determines the nls
parameters to be used for the conversion. If nlsParam is not specified, the nls
parameters are picked up from envp.

env The OCCI environment. In globalization enabled version of the method, used

to determine NLS_CALENDAR for interpreting t imestampstr. If env is not
passed, the environment associated with the object controls the setting.
Should be a non-NULL value if called on a NULL Timestamp object.

Returns the year, month and day values of the Timestamp.

Syntax

void getDate(
int &year,

unsigned int &month,
unsigned int &day) const;

Parameter Description

year Year component.
month Month component.
day Day component.

Returns the hour, minute, second, and fractional second components

Syntax

void getTime (
unsigned int &hour,
unsigned int &minute,
unsigned int &second,
unsigned int &fs) const;

12-260 Oracle C++ Call Interface Programmer’s Guide

Timestamp Class

Parameter

Description

hour
minute
second

fs

Hour component.
Minute component.
Second component.

Fractional second component.

getTimeZoneOffset()

Returns the time zone offset in hours and minutes.

Syntax

void getTimeZoneOffset (

int &hour,

int &minute)

Parameter

Description

hour

minute

Time zone hour.

Time zone minute.

intervalAdd()
Adds an interval to timestamp.
Syntax Description
const Timestamp intervalAdd(Adds an IntervalDS interval to the timestamp.
const IntervalDS& val) const;
const Timestamp intervalAdd(Adds an IntervalYM interval to the timestamp.
const IntervalYM& val) const;
Parameter Description
val Interval to be added.
intervalSub()

Subtracts an interval from a timestamp and returns the result as a timestamp. Returns
a Timestamp with the value of this - val.

Syntax

Description

const Timestamp intervalSub (
const IntervalDS& val) const;

const Timestamp intervalsUB(
const IntervalYM& val) const;

Subtracts an IntervalDS interval to the
timestamp.

Subtracts an IntervalYM interval to the
timestamp.

OCCI Application Programming Interface 12-261

isNull()

Parameter Description

val Interval to be subtracted.

isNull()
Returns TRUE if Timestamp is NULL or FALSE otherwise.
Syntax
bool isNull() const;
operator=()
Assigns a given timestamp object to this object.
Syntax
Timestamp & operator=(
const Timestamp &src);
Parameter Description
src Value to be assigned.
operator==()
Compares the timestamps specified. If the timestamps are equal, returns TRUE, FALSE
otherwise. If either a or b is NULL then FALSE is returned.
Syntax
bool operator==(
const Timestamp &first,
const Timestamp &second) ;
Parameter Description
first First timestamp to be compared.
second Second timestamp to be compared.
operator!=()

Compares the timestamps specified. If the timestamps are not equal then TRUE is
returned; otherwise, FALSE is returned. If either timestamp is NULL then FALSE is
returned.

Syntax

bool operator!=(
const Timestamp &first,
const Timestamp &second) ;

12-262 Oracle C++ Call Interface Programmer’s Guide

Timestamp Class

Parameter Description
first First timestamp to be compared.
second Second timestamp to be compared.
operator>()
Returns TRUE if f£irst is greater than second, FALSE otherwise. If either is NULL
then FALSE is returned.
Syntax
bool operator>(
const Timestamp &first,
const Timestamp &second) ;
Parameter Description
first First timestamp to be compared.
second Second timestamp to be compared.
operator>=()
Compares the timestamps specified. If the first timestamp is greater than or equal to
the second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.
Syntax
bool operator>=(
const Timestamp &first,
const Timestamp &second) ;
Parameter Description
first First timestamp to be compared.
second Second timestamp to be compared.
operator<()

Returns TRUE if first is less than second, FALSE otherwise. If either a or b is NULL
then FALSE is returned.

Syntax

bool operator<(
const Timestamp &first,
const Timestamp &second);

Parameter Description
first First timestamp to be compared.
second Second timestamp to be compared.

OCCI Application Programming Interface 12-263

operator<=()

operator<=()
Compares the timestamps specified. If the first timestamp is less than or equal to the
second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.
Syntax
bool operator<=(
const Timestamp &first,
const Timestamp &second);
Parameter Description
first First timestamp to be compared.
second Second timestamp to be compared.
setDate()
Sets the year, month, day components contained for this timestamp
Syntax
void setDate(
int year,
unsigned int month,
unsigned int day);
Parameter Description
year Year component. Valid values are -4713 through 9999.
month Month component. Valid values are 1 through 12.
day Day component. Valid values are 1 through 31.
setNull()
Sets the timestamp to NULL.
Syntax
void setNull();
setTime()
Sets the day, hour, minute, second and fractional second components for this
timestamp.
Syntax

void setTime (
unsigned int hour,
unsigned int minute,
unsigned int second,
unsigned int fs);

12-264 Oracle C++ Call Interface Programmer’s Guide

Timestamp Class

Parameter Description

hour Hour component. Valid values are 0 through 23.
minute Minute component. Valid values are 0 through 59.
second Second component. Valid values are 0 through 59.
fs Fractional second component.

setTimeZoneOffset()

subDS()

subYM()

Sets the hour and minute offset for time zone.

Syntax

void setTimeZoneOffset (
int hour,
int minute);

Parameter Description
hour Time zone hour. Valid values are -12 through 12.
minute Time zone minute. Valid values are -59 through 59.

Computes the difference between this timestamp and the specified timestamp and
return the difference as an IntervalDS.

Syntax

const IntervalDS subDS (
const Timestamp& val) const;

Parameter Description

val Timestamp to be subtracted.

Computes the difference between timestamp values and return the difference as an
IntervalYM.

Syntax

const IntervalYM sub¥YM (
const Timestamp& val) const;

Parameter Description

val Timestamp to be subtracted.

OCCI Application Programming Interface 12-265

toText()

toText()

Returns a string or UString representation for the timestamp in the format

specified.

If n1sParamis specified, this will determine the nls parameters to be used for the
conversion. If nlsParam is not specified, the nls parameters are picked up from the
environment associated with the instance, if any.

See Also: Oracle Database SQL Reference for information on TO_

DATE

Syntax

Description

string toText (
const string &fmt,
unsigned int fsprec,
const string &nlsParam = "") const;

UString toText (
const UString &fmt,
unsigned int fsprec,
const UString &nlsParam) const;

Returns a string representation for the
timestamp in the format specified.

Returns a UString representation for the
timestamp in the format specified;
globalization enabled.

Parameter Description

fmt The format string.

fsprec The precision for the fractional second component of Timestamp.
nlsParam The nls parameters string. If n1sParam is specified, this determines the

nls parameters to be used for the conversion. If nlsParam is not specified,
the nls parameters are picked up from envp.

12-266 Oracle C++ Call Interface Programmer’s Guide

A

Agent class, 12-9
methods, 12-9
AnyData class, 12-12
methods, 12-14
supported datatypes, 12-13
usage examples, 12-12
application managed data buffering, 11-6
application-provided serialization, 11-6
associative access
overview, 4-9
atomic null, 4-17
attributes, 1-7
automatic serialization, 11-5

BatchSQLException

methods, 12-21
BatchSQLException class, 12-21
Bfile class, 12-22

methods, 12-22
BFILEs

external datatype, 5-6
bind operations

in bind operations, 1-7

out bind operations, 1-7
Blob class, 12-28

methods, 12-28
BLOBs

external datatype, 5-7
Bytes class, 12-35

methods, 12-35

Cc

callable statements, 3-10
with arrays as parameters, 3-11
CASE OTT parameter, 7-5
CHAR
external datatype, 5-7
classes
Agent class, 12-9
AnyData class, 12-12
BatchSQLException class, 12-21

Index

Bfile class, 12-22
Blob class, 12-28
Bytes class, 12-35
Clob class, 12-38
Connection class, 12-48
ConnectionlPool class, 12-61
Consumer class, 12-66
Date class, 12-74
Environment class, 12-84
IntervalDS class, 12-95
IntervalYM class, 12-105
Listener class, 12-114
Map class, 12-116
Message class, 12-117
Metadata class, 12-125
NotifyResult class, 12-138
Number class, 12-139
PObject class, 12-158
Producer class, 12-164
Ref class, 12-169
RefAny class, 12-174
ResultSet class, 3-15, 12-177
SQLException class, 12-195
StatelessConnectionPool class, 12-198
Statement class, 12-207
Stream class, 12-247
Subscription class, 12-249
Timestamp class, 12-256
Clob class, 12-38
methods, 12-39
CLOBs
external datatype, 5-7
CODE OTT parameter, 7-6
collections
working with, 4-16
committing a transaction, 3-19
complex object retrieval
complex object, 4-14
depth level, 4-14
implementing, 4-14
overview, 4-14
prefetch limit, 4-14
root object, 4-14
complex objects, 4-14
prefetching, 4-16
retrieving, 4-14

Index-1

CONFIG OTT parameter, 7-6
configuration files
and the OTT utility, 7-2
connecting to a database, 3-1
Connection class, 12-48
methods, 12-48
connection pool
createConnectionPool method, 3-3
creating, 3-3
connection pooling, 3-3
transparent application failover, 11-3
ConnectionPool class, 12-61
methods, 12-61
Consumer class, 12-66
methods, 12-66
control statements, 1-4

D

data buffering, 11-6
data conversions
Date, 5-18
DATE datatype, 5-17
internal datatypes, 5-16
Interval, 5-18
INTERVAL datatypes, 5-17
LOB datatype, 5-17
LOBs, 5-17
Timestamp, 5-18
TIMESTAMP datatypes, 5-17
database
connecting to, 3-1
datatypes, 5-1
AnyData, 12-13
OTT mappings, 7-18
overview, 5-1
types
external datatypes, 5-1,5-4
internal datatypes, 5-1,5-2
DATE
external datatype, 5-7
data conversion, 5-17
Date class, 12-74
methods, 12-74
usage examples, 12-74
DDL statements
executing, 3-8
depth level, 4-14
DML statements
executing, 3-8

E

elements, 1-3
embedded objects, 4-2
creating, 4-3
fetching, 4-17
prefetching, 4-17
Environment class, 12-84
methods, 12-84
ERRTYPE OTT parameter, 7-6

Index-2

examples
Date class, 12-74
IntervalDS class, 12-95
IntervalYM class, 12-105
Number class, 12-139
exception handling, 3-22
executing SQL queries, 3-15
executing statements dynamically, 3-17
external datatypes, 5-6
BFILE, 5-6
BLOB, 5-7
CHAR, 5-7
CHARZ, 5-7
CLOB, 5-7
DATE, 5-7
FLOAT, 59
INTEGER, 5-9
INTERVAL DAY TO SECOND, 5-9
INTERVAL YEAR TO MONTH, 5-10
LONG, 5-10
LONG RAW, 5-10
LONG VARCHAR, 5-11
LONG VARRAW, 5-11
NCLOB, 5-11
NUMBER, 5-11
OCCI BFILE, 5-12
OCCIBLOB, 5-12
OCCIBYTES, 5-12
OCCICLOB, 5-12
OCCIDATE, 5-12
OCCI INTERVALDS, 5-12
OCCIINTERVALYM, 5-12
OCCINUMBER, 5-12
OCCI POBJECT, 5-12
OCCIREF, 5-12
OCCI REFANY, 5-12
OCCI STRING, 5-12
OCCITIMESTAMP, 5-13
OCCI VECTOR, 5-13
RAW, 5-13
REF, 5-13
ROWID, 5-13
STRING, 5-13
TIMESTAMP, 5-13
TIMESTAMP WITH LOCAL TIME ZONE, 5-14
TIMESTAMP WITH TIME ZONE, 5-14
UNSIGNED INT, 5-14
VARCHAR, 5-14
VARCHAR?2, 5-14
VARNUM, 5-15
VARRAW, 5-15

F

fields
IntervalDS class, 12-95
IntervalYM class, 12-105
Timestamp fields, 12-256
FLOAT
external datatype, 5-9

H

HFILE OTT parameter, 7-7

Instant Client, 2-2
benefits, 2-2
connection names, 2-5
database connection, 2-5
environment variables, 2-5
Solaris, 2-6
Windows, 2-6
installation, 2-2
libraries, 2-4
Data Shared Library, 2-4
patching, 2-4
regenerating, 2-4
patching libraries, 2-4
SDK, 23
using, 2-4
Instant Client Light (English), 2-6
character sets, 2-6
errors, 2-6
globalization settings, 2-6
installation, 2-7
Client Admin Install, 2-7
Oracle Universal Installer, 2-8
OTN download, 2-7
using, 2-7
INTEGER
external datatype, 5-9
internal datatypes, 5-2
CHAR, 5-3
LONG, 5-3
LONG RAW, 5-3
RAW, 5-3
VARCHAR2, 5-3
INTERVAL DAY TO SECOND
external datatype, 5-9
INTERVAL YEAR TO MONTH
external datatype, 5-10
IntervalDS class, 12-95
fields, 12-95
methods, 12-96
usage examples, 12-95
IntervalYM class, 12-105
fields, 12-105
methods, 12-106
usage examples, 12-105
INTYPE file
structure of, 7-14
INTYPE OTT parameter, 7-7

L

Listener class, 12-114
methods, 12-114
LOBs
external datatype
data conversion, 5-17

LONG

external datatype, 5-10
LONG RAW

external datatype, 5-10
LONG VARCHAR

external datatype, 5-11

manipulating object attributes, 4-12

Map class, 12-116
methods, 12-116

Message class, 12-117
methods, 12-117

metadata
code example, 6-2
describing database objects, 6-2
overview, 6-1

MetaData class, 12-125
methods, 12-133

methods, 1-7
Agent methods, 12-9
AnyData methods, 12-14
BatchSQLException methods, 12-21
Bfile methods, 12-22
Blob methods, 12-28
Bytes methods, 12-35
Clob methods, 12-38
Connection methods, 12-48
ConnectionPool methods, 12-61
Consumer methods, 12-66
createConnection method, 3-2
createConnectionPool method, 3-3
createEnvironment method, 3-2
createProxyConnection method, 3-4
createStatement method, 3-8
Date methods, 12-74
Environment class, 12-84
execute method, 3-8
executeArrayUpdate method, 3-8, 11-8
executeQuery method, 3-8
executeUpdate method, 3-8
IntervalDS methods, 12-96
IntervalYM class, 12-106
Listener methods, 12-114
Map methods, 12-116
Message methods, 12-117
MetaData class, 12-133
NotifyResult methods, 12-138
Number class, 12-140
PObject methods, 12-158
Producer methods, 12-164
Ref methods, 12-169
RefAny methods, 12-174
ResultSet methods, 12-177
setDataBuffer method, 11-7
SQLException methods, 12-195
StatelessConnectionPool, 12-198
Statement, 12-207
Stream methods, 12-247

Index-3

Subscription methods, 12-249
terminateConnection method, 3-2,3-3
terminateEnvironment method, 3-3
terminateStatement method, 3-9
Timestamp methods, 12-256
modifying rows iteratively, 11-9

N

navigational access

overview, 4-10
NCLOBs

external datatype, 5-11
NEEDS_STREAM_DATA status, 3-17,3-18
nonprocedural elements, 1-3
nonreferenceable objects, 4-2
NotifyResult class, 12-138

methods, 12-138
nullness, 4-17
NUMBER

external datatype, 5-11
Number class, 12-139

methods, 12-140

usage examples, 12-139

(0]

object cache, 4-7,4-8
flushing, 4-8

object mode, 4-7

object programming
overview, 4-1
using OCCI, 4-1

object references
using, 4-18
see also REF

Object Type Translator utility
see OTT utility

object types, 1-7

objects
access using SQL, 4-9
attributes, 1-7
client-side, 1-7
dirty, 4-12
environment, 1-8
flushing, 4-12
freeing, 4-18
in OCCI, 4-2
inserting, 4-10
interfaces, 1-8

associative, 1-8
navigational, 1-8

manipulating attributes, 4-12
marking, 4-12
Metadata Class, 1-8
methods, 1-7
modifying, 4-10
object cache, 1-7
object types, 1-7
pinned, 4-11
pinning, 4-8, 4-11

Index-4

recording database changes, 4-12

runtime environment, 1-8

transparent application failover,
OCCI

benefits, 1-2

building applications, 1-2

functionality, 1-2

object mode, 4-7

overview, 1-1

special SQL terms, 1-6
OCCI classes

Agent class, 12-9

AnyData class, 12-12

BatchSQLException class, 12-21

Bfile class, 12-22

Blob class, 12-28

Bytes class, 12-35

Clob class, 12-38

Connection class, 12-48

ConnectionlPool class, 12-61

Consumer class, 12-66

Data class, 12-74

Environment class, 12-84

IntervalDS class, 12-95

IntervalYM class, 12-105

Listener class, 12-114

Map class, 12-116

Message class, 12-117

MetaData class, 12-125

NotifyResult class, 12-138

Number class, 12-139

PObject class, 12-158

Producer class, 12-164

Ref class, 12-169

RefAny class, 12-174

ResultSet class, 12-177

SQLException class, 12-195

11-3

StatelessConnectionPool class, 12-198

Statement class, 12-207
Stream class, 12-247
Subscription class, 12-249
Timestamp class, 12-256
OCCI environment
connection pool, 3-3
creating, 3-1
opening a connection, 3-2
scope, 3-1,3-2
terminating, 3-1
OCCI program
example of, 4-21
OCCI program development, 4-5
operational flow, 4-6
program structure, 4-5
OCClI types
data conversion, 5-1
optimizing performance, 3-16
setting prefetch count, 3-16
OTT parameter TRANSITIVE, 7-9
OTT parameters
CASE, 7-5

CODE, 7-6

CONFIG, 7-6

ERRTYPE, 7-6

HFILE, 7-7

INTYPE, 7-7

OUTTYPE, 7-7

SCHEMA_NAMES, 7-8

USERID, 7-11

where they appear, 7-11
OTT utility

benefits, 1-9

creating types in the database, 7-2

default name mapping, 7-22

description, 1-9

parameters, 7-4

using, 7-2
out bind variables, 1-6
OUTTYPE OTT parameter, 7-7

P

parameterized statements, 3-10
performance
optimizing
executeArrayUpdate method, 11-8
setDataBuffer method, 11-7
performance tuning
application managed data buffering, 11-6
array fetch using next() method, 11-8
data buffering, 11-6
performance tunning, 11-1
connection sharing, 11-4
reading and writing multiple LOBs, 11-1
shared server environments, 11-4
thread safety, 11-4
thread safety, 11-4
transparent application failover, 11-2
persistent objects, 4-2
creating, 4-4
standalone objects, 4-3
types
embedded objects, 4-2
nonreferenceable objects, 4-2
referenceable objects, 4-2
standalone objects, 4-2
pinning objects, 4-8, 4-11
PL/SQL
out bind variables, 1-6
overview, 1-5
PObject class, 12-158
methods, 12-158
prefetch count
set, 3-16
prefetch limit, 4-14
PREPARED status, 3-17,3-18
procedural elements, 1-3
Producer class, 12-164
methods, 12-164
proxy connections, 3-4
using createProxyConnection method, 3-4

Q

queries, 1-5
how to specify, 3-16

R

RAW
external datatype, 5-13
REF
external datatype, 5-13
retrieving a reference to an object
Ref class, 12-169
methods, 12-169
RefAny class, 12-174
methods, 12-174
referenceable objects, 4-2
relational programming
using OCCI, 3-1
RESULT_SET_AVAILABLE status, 3-17,3-18
ResultSet class, 3-15,12-177
methods, 12-177
root object, 4-14
ROWID
external datatype, 5-13
rows
iterative modification, 11-9
modify, 11-9

S

SCHEMA_NAMES OTT parameter, 7-8
shared connections
using, 11-4
shared server environments
application-provided serialization, 11-6
automatic serialization, 11-5
concurrency, 11-6
thread safety, 11-4
implementing, 11-4
SQL statements
control statements, 1-4
DML statements, 1-4
processing of, 1-3
queries, 1-5
types
callable statements, 3-9, 3-10
parameterized statements, 3-9, 3-10
standard statements, 3-9
SQLException class, 12-195
methods, 12-195
standalone objects, 4-2
creating, 4-3
standard statements, 3-9
StatelessConnectionPool class, 12-198
methods, 12-198
statement caching, 3-19
Statement class, 12-207
methods, 12-207
statement handles
creating, 3-8

Index-5

reusing, 3-9 external datatype, 5-11,5-15
terminating, 3-9

status X
NEEDS_STREAM_DATA, 3-17,3-18
PREPARED, 3-17,3-18 XA library, 10-1

RESULT_SET_AVAILABLE, 3-17,3-18
STREAM_DATA_AVAILABLE, 3-17,3-19
UNPREPARED, 3-17
UPDATE_COUNT_AVAILABLE, 3-17,3-18
Stream class, 12-247
methods, 12-247
STREAM_DATA_AVAILABLE status, 3-17,3-19
streamed reads, 3-11
streamed writes, 3-11
STRING
external datatype, 5-13
Subscription class, 12-249
methods, 12-249
substitutability, 4-19

T

thread safety, 11-4
implementing, 11-4
TIMESTAMP
external datatype, 5-13
Timestamp class
methods, 12-256
TIMESTAMP WITH LOCAL TIME ZONE
external datatype, 5-14
TIMESTAMP WITH TIME ZONE
external datatype, 5-14
transient objects, 4-2,4-3
creating, 4-3,4-4
TRANSITIVE OTT parameter, 7-9
transparent application failover, 11-2
connection pooling, 11-3
objects, 11-3
using, 11-3
type inheritance, 4-18, 4-20

U

UNPREPARED status, 3-17
UNSIGNED INT

external datatype, 5-14
UPDATE_COUNT_AVAILABLE status, 3-17, 3-18
USERID OTT parameter, 7-11

\'

values

in context of this document, 4-4

in object applications, 4-4
VARCHAR

external datatype, 5-14
VARCHAR2

external datatype, 5-14
VARNUM

external datatype, 5-15
VARRAW

Index-6

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle C++ Call lnterface?
	New Features for Oracle Database 10g Release 2 (10.2)
	New Features for Oracle Database 10g Release 1 (10.1)

	1 Introduction to OCCI
	Overview of OCCI
	Benefits of OCCI
	Building an OCCI Application
	Functionality of OCCI
	Procedural and Nonprocedural Elements

	Processing of SQL Statements
	DDL Statements
	Control Statements
	DML SQL Statements
	Queries

	Overview of PL/SQL
	Special OCCI/SQL Terms
	Object Support
	Client-Side Object Cache
	Runtime Environment for Objects
	Associative and Navigational Interfaces
	Metadata Class
	Object Type Translator Utility

	2 Installation and Upgrading
	Installing Oracle C++ Call Interface
	Upgrading Considerations
	Determining Client and Server Versions
	Instant Client
	Benefits of Instant Client
	Installing Instant Client
	Oracle Technology Network
	Complete Client Installation
	Oracle Universal Installer
	Instant Client CD

	Using Instant Client
	Patching Instant Client Shared Libraries on Unix
	Regenerating the Data Shared Library and Zip Files
	Database Connection Names for Instant Client
	Environment Variables for OCCI Instant Client

	Instant Client Light (English)
	Globalization Settings for Instant Client Light (English)
	Using Instant Client Light (English)
	Installing Instant Client Light (English)
	Oracle Technology Network Download
	Client Admin Install
	Oracle Universal Installer

	3 Relational Programming
	Connecting to a Database
	Creating and Terminating an Environment
	Opening and Closing a Connection

	Pooling Connections
	Creating a Connection Pool
	Creating a Connection Pool
	Proxy Connections

	Stateless Connection Pooling

	Executing SQL DDL and DML Statements
	Creating a Statement Object
	Creating a Statement Object to Execute SQL Commands
	Creating a Database Table
	Inserting Values into a Database Table

	Reusing a Statement Object
	Terminating a Statement Object

	Types of SQL Statements in the OCCI Environment
	Standard Statements
	Parameterized Statements
	Callable Statements
	Callable Statements with Arrays as Parameters

	Streamed Reads and Writes
	Binding Data in a Streaming Mode; SELECT/DML and PL/SQL
	Fetching Data in a Streaming Mode: PL/SQL
	Fetching Data in Streaming Mode: ResultSet
	Working with Multiple Streams

	Modifying Rows Iteratively
	Setting the Maximum Number of Iterations
	Setting the Maximum Parameter Size
	Executing an Iterative Operation
	Iterative Execution Usage Notes

	Executing SQL Queries
	Result Set
	Specifying the Query
	Optimizing Performance by Setting Prefetch Count

	Executing Statements Dynamically
	Status Definitions
	UNPREPARED
	PREPARED
	RESULT_SET_AVAILABLE
	UPDATE_COUNT_AVAILABLE
	NEEDS_STREAM_DATA
	STREAM_DATA_AVAILABLE

	Committing a Transaction
	Caching Statements
	Handling Exceptions
	Handling Null and Truncated Data

	4 Object Programming
	Overview of Object Programming
	Working with Objects in OCCI
	Persistent Objects
	Transient Objects
	Values

	Representing Objects in C++ Applications
	Creating Persistent and Transient Objects
	Creating Object Representations using the OTT Utility

	Developing an OCCI Object Application
	Basic Object Program Structure
	Basic Object Operational Flow
	Initialize OCCI in Object Mode
	Pin Object
	Operate on Object in Cache
	Flush Changes to Object
	Deletion of an Object

	Migrating C++ Applications Using OCCI
	Steps for Migration

	Overview of Associative Access
	Using SQL to Access Objects
	Inserting and Modifying Values

	Overview of Navigational Access
	Retrieving an Object Reference (REF) from the Database Server
	Pinning an Object
	Manipulating Object Attributes
	Marking Objects and Flushing Changes
	Marking an Object as Modified (Dirty)
	Recording Changes in the Database
	Garbage Collection in the Object Cache
	Transactional Consistency of References

	Overview of Complex Object Retrieval
	Retrieving Complex Objects
	Prefetching Complex Objects

	Working with Collections
	Fetching Embedded Objects
	Nullness

	Using Object References
	Deleting Objects from the Database
	Type Inheritance
	Substitutability
	NOT INSTANTIABLE Types and Methods
	OCCI Support for Type Inheritance
	Connection::getMetaData()
	Bind and Define Functions

	OTT Support for Type Inheritance

	A Sample OCCI Application

	5 Datatypes
	Overview of Oracle Datatypes
	OCCI Type and Data Conversion

	Internal Datatypes
	Character Strings and Byte Arrays
	Universal Rowid (UROWID)

	External Datatypes
	Description of External Datatypes
	BFILE
	BDOUBLE
	BFLOAT
	BLOB
	CHAR
	CHARZ
	CLOB
	DATE
	FLOAT
	INTEGER
	INTERVAL DAY TO SECOND
	INTERVAL YEAR TO MONTH
	LONG
	LONG RAW
	LONG VARCHAR
	LONG VARRAW
	NCLOB
	NUMBER
	OCCI BFILE
	OCCI BLOB
	OCCI BYTES
	OCCI CLOB
	OCCI DATE
	OCCI INTERVALDS
	OCCI INTERVALYM
	OCCI NUMBER
	OCCI POBJECT
	OCCI REF
	OCCI REFANY
	OCCI STRING
	OCCI TIMESTAMP
	OCCI VECTOR
	RAW
	REF
	ROWID
	STRING
	TIMESTAMP
	TIMESTAMP WITH LOCAL TIME ZONE
	TIMESTAMP WITH TIME ZONE
	UNSIGNED INT
	VARCHAR
	VARCHAR2
	VARNUM
	VARRAW
	NATIVE DOUBLE
	NATIVE FLOAT

	Data Conversions
	Data Conversions for LOB Datatypes
	Data Conversions for Date, Timestamp, and Interval Datatypes

	6 Metadata
	Overview of Metadata
	Notes on Types and Attributes

	Describing Database Metadata
	Metadata Code Examples

	7 Object Type Translator Utility
	Overview of the Object Type Translator Utility
	Using the OTT Utility
	Creating Types in the Database
	Invoking the OTT Utility
	Specifying OTT Parameters
	Setting Parameters on the Command Line
	Setting Parameters in the INTYPE File
	Setting Parameters in the Configuration File

	Invoking the OTT Utility on the Command Line
	Elements Used on the OTT Command Line

	OTT Utility Parameters
	ATTRACCESS
	CASE
	CODE
	CONFIG
	CPPFILE
	ERRTYPE
	HFILE
	INTYPE
	MAPFILE
	MAPFUNC
	OUTTYPE
	SCHEMA_NAMES
	TRANSITIVE
	UNICODE
	USE_MARKER
	USERID

	Where OTT Parameters Can Appear
	File Name Comparison Restriction

	Using the INTYPE File
	Overview of the INTYPE File
	Structure of the INTYPE File
	INTYPE File Type Specifications

	Nested #include File Generation

	OTT Utility Datatype Mappings
	Default Name Mapping

	Overview of the OUTTYPE File
	The OTT Utility and OCCI Applications
	C++ Classes Generated by the OTT Utility
	Map Registry Function
	Extending C++ Classes

	Carrying Forward User Added Code
	Properties of OTT Markers
	Using OTT Markers

	8 Globalization and Unicode Support
	Overview of Globalization and Unicode Support
	Specifying Charactersets
	Datatypes for Globalization and Unicode Support
	UString Datatype
	Multibyte and UTF16 data
	CLOB and NCLOB Datatypes

	Objects and OTT Support

	9 Oracle Streams Advanced Queuing
	Overview of Oracle Streams Advanced Queuing
	AQ Implementation in OCCI
	Message
	Agent
	Producer
	Consumer
	Listener
	Subscription

	Creating Messages
	Message Payloads
	RAW
	AnyData
	User-defined

	Message Properties
	Correlation
	Sender
	Delay and Expiration
	Recipients
	Priority and Ordering

	Enqueuing Messages
	Dequeuing Messages
	Dequeuing Options
	Correlation
	Mode
	Navigation

	Listening for Messages
	Registering for Notification
	Publish-Subscribe Notifications
	Direct Registration
	Open Registration

	Notification Callback

	Message Format Transformation

	10 Oracle XA Library
	Application Development with XA and OCCI
	APIs for XA Support

	11 Optimizing Performance of OCCI Applications
	Reading and Writing Multiple LOBs
	Using the Interfaces for Reading and Writing Multiple LOBs

	Transparent Application Failover
	Using Transparent Application Failover
	Objects and Transparent Application Failover
	Connection Pooling and Transparent Application Failover

	Connection Sharing
	Introduction to Thread Safety
	Implementing Thread Safety
	Serialization
	Automatic Serialization
	Application-Provided Serialization

	Application Managed Data Buffering
	setDataBuffer() Method
	executeArrayUpdate() Method

	Array Fetch Using next() Method
	Modifying Rows Iteratively

	12 OCCI Application Programming Interface
	OCCI Classes and Methods
	Using OCCI Classes
	OCCI Support for Windows NT

	Common OCCI Constants
	Agent Class
	Agent()
	getAddress()
	getName()
	getProtocol()
	isNull()
	operator=()
	setAddress()
	setName()
	setNull()
	setProtocol()

	AnyData Class
	AnyData()
	getAsBDouble()
	getAsBfile()
	getAsBFloat()
	getAsBytes()
	getAsDate()
	getAsIntervalDS()
	getAsIntervalYM()
	getAsNumber()
	getAsObject()
	getAsRef()
	getAsString()
	getAsTimestamp()
	getType()
	isNull()
	setFromBDouble()
	setFromBfile()
	setFromBFloat()
	setFromBytes()
	setFromDate()
	setFromIntervalDS()
	setFromIntervalYM()
	setFromNumber()
	setFromObject()
	setFromRef()
	setFromString()
	setFromTimestamp()
	setNull()

	BatchSQLException Class
	getException()
	getFailedRowCount()
	getRowNum()

	Bfile Class
	Bfile()
	close()
	closeStream()
	fileExists()
	getDirAlias()
	getFileName()
	getStream()
	getUStringDirAlias()
	getUStringFileName()
	isInitialized()
	isNull()
	isOpen()
	length()
	open()
	operator=()
	operator==()
	operator!=()
	read()
	setName()
	setNull()

	Blob Class
	Blob()
	append()
	close()
	closeStream()
	copy()
	getChunkSize()
	getStream()
	isInitialized()
	isNull()
	isOpen()
	length()
	open()
	operator=()
	operator==()
	operator!= ()
	read()
	setEmpty()
	setNull()
	trim()
	write()
	writeChunk()

	Bytes Class
	Bytes()
	byteAt()
	getBytes()
	isNull()
	length()
	operator=()
	setNull()

	Clob Class
	Clob()
	append()
	close()
	closeStream()
	copy()
	getCharSetForm()
	getCharSetId()
	getCharSetIdUString()
	getChunkSize()
	getStream()
	isInitialized()
	isNull()
	isOpen()
	length()
	open()
	operator=()
	operator==()
	operator!=()
	read()
	setCharSetId()
	setCharSetIdUString()
	setCharSetForm()
	setEmpty()
	setNull()
	trim()
	write()
	writeChunk()

	Connection Class
	changePassword()
	commit()
	createStatement()
	flushCache()
	getClientCharSet()
	getClientCharSetUString()
	getClientNCHARCharSet()
	getClientNCHARCharSetUString()
	getClientVersion()
	getMetaData()
	getOCIServer()
	getOCIServiceContext()
	getOCISession()
	getServerVersion()
	getServerVersionUString()
	getStmtCacheSize()
	getTag()
	isCached()
	pinVectorOfRefs()
	postToSubscriptions()
	readVectorOfBfiles()
	readVectorOfBlobs()
	readVectorOfClobs()
	registerSubscriptions()
	rollback()
	setStmtCacheSize()
	setTAFNotify()
	terminateStatement()
	unregisterSubscription()
	writeVectorOfBlobs()
	writeVectorOfClobs()

	ConnectionPool Class
	createConnection()
	createProxyConnection()
	getBusyConnections()
	getIncrConnections()
	getMaxConnections()
	getMinConnections()
	getOpenConnections()
	getPoolName()
	getStmtCacheSize()
	getTimeOut()
	setErrorOnBusy()
	setPoolSize()
	setStmtCacheSize()
	setTimeOut()
	terminateConnection()

	Consumer Class
	Consumer()
	getConsumerName()
	getCorrelationId()
	getDequeueMode()
	getMessageIdToDequeue()
	getPositionOfMessage()
	getQueueName()
	getTransformation()
	getVisibility()
	getWaitTime()
	isNull()
	operator=()
	receive()
	setAgent()
	setConsumerName()
	setCorrelationId()
	setDequeueMode()
	setMessageIdToDequeue()
	setNull()
	setPositionOfMessage()
	setQueueName()
	setTransformation()
	setVisibility()
	setWaitTime()

	Date Class
	Date()
	addDays()
	addMonths()
	daysBetween()
	fromBytes()
	fromText()
	getDate()
	getSystemDate()
	isNull()
	lastDay()
	nextDay()
	operator=()
	operator==()
	operator!=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	setDate()
	setNull()
	toBytes()
	toText()
	toZone()

	Environment Class
	createConnection()
	createConnectionPool()
	createEnvironment()
	createStatelessConnectionPool()
	enableSubscription()
	disableSubscription()
	getCacheMaxSize()
	getCacheOptSize()
	getCacheSortedFlush()
	getCurrentHeapSize()
	getLDAPAdminContext()
	getLDAPAuthentication()
	getLDAPHost()
	getLDAPPort()
	getMap()
	getOCIEnvironment()
	getXAConnection()
	getXAEnvironment()
	releaseXAConnection()
	releaseXAEnvironment()
	setCacheMaxSize()
	setCacheOptSize()
	setCacheSortedFlush()
	setLDAPAdminContext()
	setLDAPAuthentication()
	setLDAPHostAndPort()
	setLDAPLoginNameAndPassword()
	terminateConnection()
	terminateConnectionPool()
	terminateEnvironment()
	terminateStatelessConnectionPool()

	IntervalDS Class
	IntervalDS()
	fromText()
	fromUText()
	getDay()
	getFracSec()
	getHour()
	getMinute()
	getSecond()
	isNull()
	operator*()
	operator*=()
	operator=()
	operator==()
	operator!=()
	operator/()
	operator/=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	operator-()
	operator-=()
	operator+()
	operator+=()
	set()
	setNull()
	toText()
	toUText()

	IntervalYM Class
	IntervalYM()
	fromText()
	fromUText()
	getMonth()
	getYear()
	isNull()
	operator*()
	operator*=()
	operator=()
	operator==()
	operator!=()
	operator/()
	operator/=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	operator-()
	operator-=()
	operator+()
	operator+=()
	set()
	setNull()
	toText()
	toUText()

	Listener Class
	Listener()
	getAgentList()
	getTimeOutForListen()
	listen()
	setAgentList()
	setTimeOutForListen()

	Map Class
	put()

	Message Class
	Message()
	getAnyData()
	getAttemptsToDequeue()
	getBytes()
	getCorrelationId()
	getDelay()
	getExceptionQueueName()
	getExpiration()
	getMessageEnqueuedTime()
	getMessageState()
	getObject()
	getOriginalMessageId()
	getPayloadType()
	getPriority()
	getSenderId()
	isNull()
	operator=()
	setAnyData()
	setBytes()
	setCorrelationId()
	setDelay()
	setExceptionQueueName()
	setExpiration()
	setNull()
	setObject()
	setOriginalMessageId()
	setPriority()
	setRecipientList()
	setSenderId()

	MetaData Class
	MetaData()
	getAttributeCount()
	getAttributeId()
	getAttributeType()
	getBoolean()
	getInt()
	getMetaData()
	getNumber()
	getRef()
	getString()
	getTimeStamp()
	getUInt()
	getUString()
	getVector()
	operator=()

	NotifyResult Class
	getConsumerName()
	getMessage()
	getMessageId()
	getPayload()
	getQueueName()

	Number Class
	Number()
	abs()
	arcCos()
	arcSin()
	arcTan()
	arcTan2()
	ceil()
	cos()
	exp()
	floor()
	fromBytes()
	fromText()
	hypCos()
	hypSin()
	hypTan()
	intPower()
	isNull()
	ln()
	log()
	operator++()
	operator--()
	operator*()
	operator/()
	operator%()
	operator+()
	operator-()
	operator-()
	operator<()
	operator<=()
	operator>()
	operator>=()
	operator==()
	operator!=()
	operator=()
	operator*=()
	operator/=()
	operator%=()
	operator+=()
	operator-=()
	operator char()
	operator signed char()
	operator double()
	operator float()
	operator int()
	operator long()
	operator long double()
	operator short()
	operator unsigned char()
	operator unsigned int()
	operator unsigned long()
	operator unsigned short()
	power()
	prec()
	round()
	setNull()
	shift()
	sign()
	sin()
	squareroot()
	tan()
	toBytes()
	toText()
	trunc()

	PObject Class
	PObject()
	flush()
	getConnection()
	getRef()
	getSQLTypeName()
	isLocked()
	isNull()
	lock()
	markDelete()
	markModified()
	operator=()
	operator delete()
	operator new()
	pin()
	setNull()
	unmark()
	unpin()

	Producer Class
	Producer()
	getQueueName()
	getRelativeMessageId()
	getSequenceDeviation()
	getTransformation()
	getVisibility()
	isNull()
	operator=()
	send()
	setNull()
	setQueueName()
	setRelativeMessageId()
	setSequenceDeviation()
	setTransformation()
	setVisibility()

	Ref Class
	Ref()
	clear()
	getConnection()
	isClear()
	isNull()
	markDelete()
	operator->()
	operator*()
	operator==()
	operator!=()
	operator=()
	ptr()
	setLock()
	setNull()
	setPrefetch()
	unmarkDelete()

	RefAny Class
	RefAny()
	clear()
	getConnection()
	isNull()
	markDelete()
	operator=()
	operator==()
	operator!=()
	unmarkDelete()

	ResultSet Class
	cancel()
	closeStream()
	getBDouble()
	getBfile()
	getBFloat()
	getBlob()
	getBytes()
	getCharSet()
	getCharSetUString()
	getClob()
	getColumnListMetaData()
	getCurrentStreamColumn()
	getCurrentStreamRow()
	getCursor()
	getDatabaseNCHARParam()
	getDate()
	getDouble()
	getFloat()
	getInt()
	getIntervalDS()
	getIntervalYM()
	getMaxColumnSize()
	getNumArrayRows()
	getNumber()
	getObject()
	getRef()
	getRowid()
	getRowPosition()
	getStatement()
	getStream()
	getString()
	getTimestamp()
	getUInt()
	getUString()
	getVector()
	getVectorOfRefs()
	isNull()
	isTruncated()
	next()
	preTruncationLength()
	setBinaryStreamMode()
	setCharacterStreamMode()
	setCharSet()
	setCharSetUString()
	setDatabaseNCHARParam()
	setDataBuffer()
	setErrorOnNull()
	setErrorOnTruncate()
	setMaxColumnSize()
	status()

	SQLException Class
	SQLException()
	getErrorCode()
	getMessage()
	getNLSMessage()
	getNLSUStringMessage()
	getUStringMessage()
	getXAErrorCode()
	setErrorCtx()
	what()

	StatelessConnectionPool Class
	getAnyTaggedConnection()
	getAnyTaggedProxyConnection()
	getBusyConnections()
	getBusyOption()
	getConnection()
	getIncrConnections()
	getMaxConnections()
	getMinConnections()
	getOpenConnections()
	getPoolName()
	getProxyConnection()
	getStmtCacheSize()
	getTimeOut()
	releaseConnection()
	setBusyOption()
	setPoolSize()
	setTimeOut()
	setStmtCacheSize()
	terminateConnection()

	Statement Class
	addIteration()
	closeResultSet()
	closeStream()
	disableCaching()
	execute()
	executeArrayUpdate()
	executeQuery()
	executeUpdate()
	getAutoCommit()
	getBatchErrorMode()
	getBDouble()
	getBfile()
	getBFloat()
	getBlob()
	getBytes()
	getCharSet()
	getCharSetUString()
	getClob()
	getConnection()
	getCurrentIteration()
	getCurrentStreamIteration()
	getCurrentStreamParam()
	getCursor()
	getDatabaseNCHARParam()
	getDate()
	getDouble()
	getFloat()
	getInt()
	getIntervalDS()
	getIntervalYM()
	getMaxIterations()
	getMaxParamSize()
	getNumber()
	getObject()
	getOCIStatement()
	getRef()
	getResultSet()
	getRowid()
	getSQL()
	getSQLUString()
	getStream()
	getString()
	getTimestamp()
	getUInt()
	getUpdateCount()
	getUString()
	getVector()
	getVectorOfRefs()
	isNull()
	isTruncated()
	preTruncationLength()
	registerOutParam()
	setAutoCommit()
	setBatchErrorMode()
	setBDouble()
	setBfile()
	setBFloat()
	setBinaryStreamMode()
	setBlob()
	setBytes()
	setCharacterStreamMode()
	setCharSet()
	setCharSetUString()
	setClob()
	setDate()
	setDatabaseNCHARParam()
	setDataBuffer()
	setDataBufferArray()
	setDouble()
	setErrorOnNull()
	setErrorOnTruncate()
	setFloat()
	setInt()
	setIntervalDS()
	setIntervalYM()
	setMaxIterations()
	setMaxParamSize()
	setNull()
	setNumber()
	setObject()
	setPrefetchMemorySize()
	setPrefetchRowCount()
	setRef()
	setRowid()
	setSQL()
	setSQLUString()
	setString()
	setTimestamp()
	setUInt()
	setUString()
	setVector()
	setVectorOfRefs()
	status()

	Stream Class
	readBuffer()
	readLastBuffer()
	writeBuffer()
	writeLastBuffer()
	status()

	Subscription Class
	Subscription()
	getCallbackContext()
	getDatabaseServersCount()
	getDatabaseServerNames()
	getNotifyCallback()
	getPayload()
	getSubscriptionName()
	getSubscriptionNamespace()
	getRecipientName()
	getPresentation()
	getProtocol()
	isNull()
	operator=()
	setCallbackContext()
	setDatabaseServerNames()
	setNotifyCallback()
	setNull()
	setPayload()
	setPresentation()
	setProtocol()
	setSubscriptionName()
	setSubscriptionNamespace()
	setRecipientName()

	Timestamp Class
	Timestamp()
	fromText()
	getDate()
	getTime()
	getTimeZoneOffset()
	intervalAdd()
	intervalSub()
	isNull()
	operator=()
	operator==()
	operator!=()
	operator>()
	operator>=()
	operator<()
	operator<=()
	setDate()
	setNull()
	setTime()
	setTimeZoneOffset()
	subDS()
	subYM()
	toText()

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

