
Oracle® Database
Java Developer’s Guide

10g Release 1 (10.1)

Part No. B12021-02

June 2004

Oracle Database Java Developer’s Guide 10g Release 1 (10.1)

Part No. B12021-02

Copyright © 1999, 2004, Oracle. All rights reserved.

Primary Author: Sheryl Maring, Rick Sapir, Michael Wiesenberg

Contributing Author: Brian Wright, Timothy Smith

Contributor: Malik Kalfane, Steve Harris, Ellen Barnes, Peter Benson, Greg Colvin, Bill Courington,
Matthieu Devin, Jim Haungs, Hal Hildebrand, Mark Jungerman, Susan Kraft, Thomas Kurian, Scott Meyer,
Tom Portfolio, Dave Rosenberg, Jerry Schwarz, Harlan Sexton, Tim Smith, David Unietis, Brian Wright.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xi

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiv
Organization .. xiv
Java API Programming Models .. xv
Suggested Reading.. xv
Online Sources ... xvi

1 Introduction to Java in Oracle Database

Chapter Contents.. 1-1
What’s New in this Release? .. 1-1

Upgrading to J2SE 1.4.1... 1-2
New Memory Model for Dedicated Mode Sessions ... 1-2
Database Web Services Callouts .. 1-2
Native Java Interface.. 1-2
EJB Call-out ... 1-3

Overview of Java .. 1-5
Java and Object-Oriented Programming Terminology .. 1-5

Classes .. 1-5
Attributes ... 1-6
Methods.. 1-6

Class Hierarchy .. 1-7
Interfaces ... 1-8
Polymorphism .. 1-8
The Java Virtual Machine (JVM).. 1-9
Key Features of the Java Language .. 1-10

Why Use Java in Oracle Database? .. 1-11
Java and the RDBMS: A Robust Combination.. 1-12

Multithreading... 1-12
Automated Storage Management With Garbage Collection .. 1-13
Footprint ... 1-13
Performance ... 1-14

How Native Compilers Improve Performance ... 1-14

iv

Dynamic Class Loading ... 1-15
What is Different With OracleJVM?.. 1-16

Method main() ... 1-16
The GUI .. 1-16
The IDE ... 1-16

Main Components of the OracleJVM.. 1-17
Library Manager.. 1-17
Compiler... 1-18
Interpreter... 1-18
Class Loader... 1-18
Verifier .. 1-18
Server-Side JDBC Internal Driver ... 1-18

Oracle’s Java Application Strategy... 1-19
Java Programming Environment .. 1-19
Java Stored Procedures... 1-19
PL/SQL Integration and Oracle RDBMS Functionality .. 1-19

JDBC Drivers .. 1-20
JPublisher .. 1-20

Development Tools ... 1-20
Desupport of J2EE Technologies in the Oracle Database.. 1-21

2 Java Applications on Oracle Database

Overview .. 2-1
Database Sessions Imposed on Java Applications .. 2-2

Java Supported APIs.. 2-4
Execution Control ... 2-4
Java Code, Binaries, and Resources Storage ... 2-5

Java Classes Loaded in the Database .. 2-5
Preparing Java Class Methods for Execution.. 2-6

Compiling Java Classes ... 2-6
Compiling Source Through javac ... 2-7
Compiling Source Through loadjava ... 2-7
Compiling Source at Runtime... 2-7
Specifying Compiler Options.. 2-7

Default Compiler Options .. 2-8
Compiler Options on the Command Line ... 2-8
Compiler Options Specified in a Database Table.. 2-8

Automatic Recompilation.. 2-9
Resolving Class Dependencies.. 2-10

Allowing References to Non-Existent Classes... 2-11
ByteCode Verifier .. 2-11

Loading Classes... 2-12
Defining the Same Class Twice ... 2-14
Designating Database Privileges and JVM Permissions .. 2-14
Loading JAR or ZIP Files .. 2-14

How to Grant Execute Rights.. 2-15
Controlling the Current User .. 2-15

v

Checking Java Uploads .. 2-16
Object Name and Type.. 2-17
Status.. 2-17

Example: Accessing USER_OBJECTS.. 2-17
Publishing... 2-18

User Interfaces on the Server .. 2-18
Shortened Class Names ... 2-19
Class.forName() in Oracle Database.. 2-20

Supply the ClassLoader in Class.forName.. 2-20
Supply Class and Schema Names to classForNameAndSchema... 2-21
Supply Class and Schema Names to lookupClass ... 2-22
Supply Class and Schema Names when Serializing .. 2-22
Class.forName Example... 2-22

Managing Your Operating System Resources ... 2-23
Overview of Operating System Resources.. 2-24

Operating System Resource Access... 2-24
Operating System Resource Lifetime.. 2-24

Garbage Collection and Operating System Resources .. 2-24
Threading in Oracle Database .. 2-25

Thread Life Cycle .. 2-26
Special Considerations for Shared Servers .. 2-27

End-of-Call Migration .. 2-27
Oracle-Specific Support for End-of-Call Optimization .. 2-28

Operating System Resources Affected Across Calls .. 2-31
Files .. 2-31
Sockets ... 2-33
Threads .. 2-33

3 Invoking Java in the Database

Overview .. 3-1
Invoking Java Methods ... 3-2

Utilizing Java Stored Procedures ... 3-2
Utilizing Java Native Interface (JNI) Support .. 3-4
Utilizing JDBC for Querying the Database .. 3-4

JDBC.. 3-4
An Example .. 3-4

Debugging Server Applications .. 3-5
How To Tell You Are Executing in the Server... 3-6
Redirecting Output on the Server ... 3-6
Support for Calling Java Stored Procedures Directly ... 3-6

4 Java Installation and Configuration

Initializing a Java-Enabled Database ... 4-1
Oracle Database Template Configuration and Install .. 4-1
Modifying an Existing Oracle Database to Include OracleJVM.. 4-1

Configuring OracleJVM.. 4-1

vi

Using The DBMS_JAVA Package.. 4-2
Enabling the Java Client ... 4-2

1. Install J2SE on the Client .. 4-2
2. Set up Environment Variables.. 4-2

JAR Files Necessary for Java 2 Clients ... 4-2
Server Application Development on the Client ... 4-3

3. Test Install with Samples .. 4-3

5 Developing Java Stored Procedures

Stored Procedures and Run-Time Contexts .. 5-1
Functions and Procedures... 5-2
Database Triggers... 5-2
Object-Relational Methods.. 5-2

Advantages of Stored Procedures ... 5-3
Performance .. 5-3
Productivity and Ease of Use ... 5-3
Scalability .. 5-3
Maintainability ... 5-4
Interoperability... 5-4
Replication... 5-4
Security .. 5-4

Java Stored Procedure Configuration .. 5-5
Java Stored Procedures Steps ... 5-5

6 Publishing Java Classes With Call Specs

Understanding Call Specs .. 6-1
Defining Call Specs: Basic Requirements ... 6-2

Setting Parameter Modes .. 6-2
Mapping Datatypes ... 6-3
Using the Server-Side Internal JDBC Driver .. 6-4

Important Points ... 6-5
Writing Top-Level Call Specs... 6-6
Writing Packaged Call Specs.. 6-9
Writing Object Type Call Specs .. 6-11

Declaring Attributes ... 6-11
Declaring Methods.. 6-12

Map and Order Methods .. 6-12
Constructor Methods... 6-12
Using Class oracle.sql.STRUCT ... 6-14
Implementing the SQLData Interface ... 6-14
Implementing Object Type Methods .. 6-16

7 Calling Stored Procedures

Calling Java from the Top Level .. 7-1
Redirecting Output .. 7-1

Calling Java from Database Triggers .. 7-4

vii

Calling Java from SQL DML.. 7-6
Restrictions.. 7-7

Calling Java from PL/SQL .. 7-8
Calling PL/SQL from Java .. 7-9
How OracleJVM Handles Exceptions .. 7-9

8 Java Stored Procedures Application Example

Drawing the Entity-Relationship Diagram ... 8-1
Planning the Database Schema ... 8-3
Creating the Database Tables... 8-4
Writing the Java Classes .. 8-5
Loading the Java Classes... 8-8
Publishing the Java Classes.. 8-9
Calling the Java Stored Procedures.. 8-10

9 Security For Oracle Database Java Applications

Network Connection Security ... 9-1
Database Contents and OracleJVM Security .. 9-2

Java 2 Security... 9-2
Setting Permissions .. 9-4

Fine-Grain Definition for Each Permission ... 9-5
Acquiring Administrative Permission to Update Policy Table ... 9-8
Creating Permissions... 9-10

1. Create and load the user Permission ... 9-10
2. Grant administrative and action Permissions to specified users........................... 9-10
3. Implement security checks using the Permission .. 9-11

Enabling or Disabling Permissions ... 9-13
Permission Types ... 9-14

oracle.aurora.rdbms.security.PolicyTablePermission ... 9-14
oracle.aurora.security.JServerPermission ... 9-15

Initial Permission Grants .. 9-15
General Permission Definition Assigned to Roles .. 9-17

Debugging Permissions ... 9-18
Permission for Loading Classes .. 9-18

Database Authentication Mechanisms ... 9-19

10 Oracle Database Java Application Performance

Natively Compiled Code ... 10-1
Accelerator Overview... 10-2
Oracle Database Core Java Class Libraries.. 10-3
Natively Compiling Java Application Class Libraries... 10-3

Installation Requirements... 10-3
Executing Accelerator... 10-4
ncomp ... 10-5

Syntax .. 10-5
Argument Summary.. 10-5

viii

Argument Details... 10-7
Errors ... 10-8

Native Compilation Usage Scenarios... 10-8
Natively Compiling on Test Platform—Java Classes Already Loaded in the Database
10-9
Natively Compiling Java Classes Not Loaded in the Database .. 10-9
Clean Compile and Generate Output for Future Deployment ... 10-9
Controlling Native Compilation Build Environment... 10-9
Natively Compiling Specific Classes .. 10-10
Natively Compiling Packages That Are Fully or Partially Modified............................. 10-10

deploync ... 10-10
Syntax .. 10-11
Argument Summary.. 10-11

statusnc ... 10-11
Syntax .. 10-12
Argument Summary.. 10-12

Java Memory Usage .. 10-13
Configuring Memory Initialization Parameters ... 10-13

Initializing Pool Sizes within Database Templates ... 10-14
Java Pool Memory... 10-15
Displaying Used Amounts of Java Pool Memory ... 10-16
Correcting Out of Memory Errors .. 10-17

11 Schema Object Tools

Schema Object Tool Overview ... 11-1
What and When to Load .. 11-2
Resolution ... 11-2
Digest Table .. 11-3
Compilation .. 11-4
loadjava ... 11-5

Syntax.. 11-6
Argument Summary... 11-7
Argument Details .. 11-11

dropjava... 11-16
Syntax.. 11-17
Argument Summary... 11-17
Argument Details .. 11-18
Dropping Resources ... 11-19

ojvmjava .. 11-19
Syntax.. 11-19
Argument Summary... 11-20

Example ... 11-20
ojvmjava Options .. 11-21

ojvmjava Tool Output Redirection .. 11-21
Scripting ojvmjava Commands in the @<filename> Option ... 11-21

Shell Commands ... 11-22
echo .. 11-22

ix

exit Command .. 11-22
Syntax ... 11-22

help Command... 11-23
Syntax ... 11-23

java Command ... 11-23
Syntax ... 11-23
Argument Summary ... 11-23

version Command ... 11-24
Syntax ... 11-24

whoami.. 11-24

12 Database Web Services

Database Web Services... 12-1
Using the Database as Service Provider for Web Services .. 12-2

JPublisher Support for Web Services Call-Ins to the Database .. 12-3
Using the Database as Service Consumer for Web Services .. 12-3

Installation Requirements .. 12-5
JPublisher Generation Overview .. 12-5
Adjusting the Mapping of SQL Types ... 12-7

Using the Native Java Interface .. 12-7

A DBMS_JAVA Package

Glossary

Index

x

xi

Send Us Your Comments

Oracle Database Java Developer’s Guide 10g Release 1 (10.1)

Part No. B12021-02

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xii

xiii

Preface

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Java API Programming Models

■ Suggested Reading

■ Online Sources

Audience
This book has been written for the following audiences:

■ Management—You may have purchased Oracle Database for reasons other than
Java development within the database. However, if you want to know more about
Oracle Database Java features, see "Oracle’s Java Application Strategy" on
page 1-19 for a management perspective.

■ Non-Java Developers—Oracle database programming consists of PL/SQL and
other non-Java programming. For experienced PL/SQL developers who are not
familiar with Java, a brief overview of Java and object-oriented concepts is
discussed in the first part of Chapter 1, "Introduction to Java in Oracle Database".
For more detailed information on Java, see "Suggested Reading" at the end of this
Preface.

■ Java Developers—Pure Java developers are used to a Java environment that
follows the Sun Microsystems specification. However, when Java is combined in
the database, both Java and database concepts merge. Thus, the Java environment
within Oracle Database is expanded to include database concerns. The bulk of this
book discusses how to execute Java in the database. The following outlines the two
viewpoints that arise from this merge:

– Java environment—Note that Oracle Database delivers a compliant Java
implementation—any 100% pure Java code will work. OracleJVM affects your
Java development in the way you manage your classes, and the environment
in which your classes exist. For example, the classes must be loaded into the
database. In addition, there is a clearer separation of client and server in the
Oracle Database model.

– Database environment—You need to be aware of database concepts for
managing your Java objects. This book gives you a comprehensive view of

xiv

how the two well-defined realms—the Oracle Database database and the Java
environment—fit together. For example, when deciding on your security
policies, you must consider both database security and Java security for a
comprehensive security policy.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Organization
This document contains the following chapters:

Chapter 1, "Introduction to Java in Oracle Database"
Gives an overview of how to develop, load, and execute Java applications in the
database.

Chapter 2, "Java Applications on Oracle Database"
Describes the basic differences for writing, installing, and deploying Java applications
within Oracle Database.

Chapter 3, "Invoking Java in the Database"
Gives an overview and examples of how to invoke Java within the database.

Chapter 4, "Java Installation and Configuration"
Describes what you need to know to install and configure OracleJVM within your
database.

Chapter 5, "Developing Java Stored Procedures"
Describes stored procedures, which open the Oracle RDBMS to all Java programmers.

xv

Chapter 6, "Publishing Java Classes With Call Specs"
Describes how to publish the methods with call specifications (call specs), which map
Java method names, parameter types, and return types to their SQL counterparts.

Chapter 7, "Calling Stored Procedures"
Demonstrates how to call Java stored procedures in various contexts.

Chapter 8, "Java Stored Procedures Application Example"
Demonstrates the building of a Java stored procedures application.

Chapter 9, "Security For Oracle Database Java Applications"
Details the security support available for Java applications within Oracle Database.

Chapter 10, "Oracle Database Java Application Performance"
Describes how to increase Java application performance with natively compiled code
Java memory usage.

Chapter 11, "Schema Object Tools"
Describes the schema object tools to use in the Oracle Database Java environment.

Chapter 12, "Database Web Services"
Describes Database Web Services and Web Services callouts.

Appendix A, "DBMS_JAVA Package"
Describes the DBMS_JAVA package.

Glossary
Defines specialized terms.

Java API Programming Models
The building blocks that Java developers use in Oracle Database are as follows:

■ Java stored procedures—You can develop Java applications that are stored in the
database. Once loaded, these procedures can be invoked from SQL, PL/SQL, or as
triggers. See Chapter 5, "Developing Java Stored Procedures" for more
information.

■ JDBC—You can write a Java application that accesses SQL data from the client, or
directly on the server.

Each of these models is briefly discussed in Chapter 1, "Introduction to Java in Oracle
Database" and examples are given in Chapter 3, "Invoking Java in the Database". Both
of these chapters should help you decide which model to use for your particular
application. Once you decide on the appropriate model, examine the appropriate
developer’s guide for in-depth information on each model.

Suggested Reading
The Java Programming Language by Arnold & Gosling, Addison-Wesley
Coauthored by the originator of Java, this definitive book explains the basic concepts,
areas of applicability, and design philosophy of the language. Using numerous

xvi

examples, it progresses systematically from basic to advanced programming
techniques.

Thinking in Java by Bruce Eckel, Prentice Hall
This book offers a complete introduction to Java on a level appropriate for both
beginners and experts. Using simple examples, it presents the fundamentals and
complexities of Java in a straightforward, good-humored way.

Core Java by Cornell & Horstmann, Prentice-Hall
This book is a complete, step-by-step introduction to Java programming principles and
techniques. Using real-world examples, it highlights alternative approaches to
program design and offers many programming tips and tricks.

Java in a Nutshell by Flanagan, O’Reilly
This indispensable quick reference provides a wealth of information about Java’s most
commonly used features. It includes programming tips and traps, excellent examples
of problem solving, and tutorials on important features.

Java Software Solutions by Lewis & Loftus, Addison-Wesley
This book provides a clear, thorough introduction to Java and object-oriented
programming. It contains extensive reference material and excellent pedagogy
including self-assessment questions, programming projects, and exercises that
encourage experimentation.

Online Sources
There are many useful online sources of information about Java. For example, you can
view or download documentation, guides, and tutorials from the JavaSoft Web site:

http://www.javasoft.com

Another popular Java Web site is:

http://www.gamelan.com

Also, the following Internet news groups are dedicated to Java:

comp.lang.java.programmer
comp.lang.java.misc

You can get the latest OracleJVM news, updates, and offerings from the Oracle
Technology Network (OTN) at the following site:

http://otn.oracle.com/tech/java/java_db/content.html

In addition to try-and-buy tools, you can download JDBC drivers, SQLJ reference
implementations, white papers on Java application development, and collections of
frequently asked questions (FAQs).

To download free release notes, installation documentation, white papers, or other
collateral, please visit OTN. You must register online before using OTN; registration is
free and can be done at

http://otn.oracle.com/membership/

xvii

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/content.html

xviii

Introduction to Java in Oracle Database 1-1

1
Introduction to Java in Oracle Database

This book provides an overview on how to develop, load, and execute your Java
applications in the Oracle Database.

This chapter contains the following information:

■ Chapter Contents

■ What’s New in this Release?

■ Overview of Java

■ Why Use Java in Oracle Database?

■ What is Different With OracleJVM?

■ Main Components of the OracleJVM

■ Oracle’s Java Application Strategy

■ Desupport of J2EE Technologies in the Oracle Database

Chapter Contents
This chapter:

■ Introduces the Java language for Oracle Database programmers. Oracle PL/SQL
developers are accustomed to developing server-side applications that have tight
integration with SQL data. You can develop Java server-side applications that take
advantage of the scalability and performance of the Oracle Database. If you are not
familiar with Java, see "Overview of Java" on page 1-5.

■ Examines why may consider using Java within Oracle Database. See "Why Use
Java in Oracle Database?" on page 1-11. In addition, a brief description is given for
each of the Java APIs supported within Oracle Database. The list of APIs include
JDBC and Java stored procedures. See "Oracle’s Java Application Strategy" on
page 1-19.

What’s New in this Release?
The following sections describe the additions to this release:

■ Upgrading to J2SE 1.4.1

■ New Memory Model for Dedicated Mode Sessions

■ Database Web Services Callouts

What’s New in this Release?

1-2 Oracle Database Java Developer’s Guide

■ Native Java Interface

■ EJB Call-out

Upgrading to J2SE 1.4.1
In this release, the system classes are upgraded from J2SE 1.3 to J2SE 1.4.1. J2SE 1.4.1 is
compatible with J2SE 1.3. Sun Microsystems publishes the list of incompatibilities
between J2SE 1.4.1 and previous versions at the following Web site:

http://java.sun.com/products/j2se/1.4.1/compatibility.html

As part of the upgrade of the system classes to J2SE 1.4.1, the OracleJVM supports
Headless AWT. Headless AWT allows AWT computation, which does not rely on the
native display and input devices of the platform to occur, but, instead, disallows
attempts to access those native resources. Methods that attempt to display a graphical
user interface or to read from keyboard or mouse input instead throw the new runtime
exception java.awt.HeadlessException. Similarly, the OracleJVM disallows
attempts to play or record sound using the server's native sound devices, but still
allows applications to read, write and manipulate supported sound files. For more
information, see "User Interfaces on the Server" on page 2-18.

New Memory Model for Dedicated Mode Sessions
In Oracle Database, the OracleJVM has a new memory model for sessions that connect
to the database through a dedicated server. Since a session using a dedicated server is
guaranteed to use the same process for every database call, the Process Global Area is
used for session specific memory and object allocations. This means that some of the
objects and resources that used to be reclaimed at the end of each call can now live
across calls. In particular, resources specific to a particular operating system, such as
threads and open files, now are no longer cleaned up at the end of each database call.

For sessions that use shared servers, the restrictions across calls that applied in
previous releases are still present. The reason is that a session that uses a shared server
is not guaranteed to connect to the same process on a subsequent database call, and
hence the session-specific memory and objects that need to live across calls are saved
in the System Global Area. This means that process-specific resources, such as threads,
open files and sockets must be cleaned up at the end of each call, and hence will not be
available for the next call. For more details on OracleJVM behavior when using shared
servers, see "Special Considerations for Shared Servers" on page 2-27.

Database Web Services Callouts
In Oracle Database, you can load a Web Services client stack into the OracleJVM to
support callouts to external Web Services from Java as well as from PL/SQL. You can
use the JPublisher tool to generate static Java client-proxies as well as PL/SQL call
specifications on these proxies that are loaded into the OracleJVM to enable access to
Web Services from Java, PL/SQL, and SQL code.

See Chapter 12, "Database Web Services" for more information and the Oracle Database
JPublisher User's Guide for more information. For more details, see "Support for Calling
Java Stored Procedures Directly" on page 3-6.

Native Java Interface
In Oracle Database, you can now invoke public static methods of Java classes in the
OracleJVM directly from Java clients without defining PL/SQL call specifications and
calling these through JDBC. Instead, you can use the JPublisher utility to generate a

What’s New in this Release?

Introduction to Java in Oracle Database 1-3

client-proxy class with the same signature as the server-side Java class. Once you have
instantiated a client-proxy instance with a JDBC connection, you can call the proxy
methods directly.

Figure 1–1 demonstrates a client-side stub API for direct invocation of static
server-side Java methods. JPublisher transparently takes care of stub generation.

Figure 1–1 Native Java Interface

For example, to call the following method in the server

public String oracle.sqlj.checker.JdbcVersion.to_string();

use

jpub -java=oracle.sqlj.checker.JdbcVersion

EJB Call-out
In certain enterprise applications, it becomes essential to access Enterprise Java Beans
(EJB) that are deployed on a remote server from within the database. For example, if
you need complex calculations, for which EJBs are perfect, you can call out to the EJB
to perform those calculations. Examples of complex calculations include tax
calculators. Because the EJB call-out does not currently support transactions, only
stateless session beans can be used. Therefore, if a trigger calls out to an EJB and it
fails, the trigger does not roll back.

Thus, through the EJB call-out, the Oracle Database provides a means to access the
remotely deployed EJBs over Remote Method Invocation, or RMI.

The EJB JAR is not installed in the database in this release, so you must follow these
steps to install the J2EE.JAR:

1. Load J2EE.JAR using SQL*Plus.

sqlplus /nolog
SQL> connect sys/password as sysdba
SQL> set serveroutput on
SQL> call dbms_java.set_output(4000);
SQL> call dbms_java.loadjava (?-r -install -v -s -g public -genmissing
 absolute path to J2EE_HOME/lib/j2ee.jar?);

2. Grant the proper Java permissions; this example grants permissions to
SCOTT:
SQL> grant ejbclient to scott;
SQL> call dbms_java.grant_permission(?SCOTT?,?SYS:java.io.FilePermission?,
 ?absolute_path_to_ORACLE_HOME/javavm/lib.orb.properties?,?read?);
SQL> call dbms_java.grant_permission(?SCOTT?,
 ?SYS:java.net.SocketPermissino?,?localhost:1024-?,?listen,resolve?);
SQL> call dbms_java.grant_permission(?SCOTT?,
 ?SYS:java.util.PropertyPermission?,
 ?java.naming.factory,initial?,?write?);
SQL> call dbms_java.grant_permission(?SCOTT?,
 ?SYS:java.lang.RuntimePermission?,?shutdownHooks?,??);

What’s New in this Release?

1-4 Oracle Database Java Developer’s Guide

SQL> call dbms_java.grant_permission(?SCOTT?,
 ?SYS:java.util.logging.LoggingPermission?, ?control?,??);
SQL> call dbms_java.grant_permission(?SCOTT?,
 ?SYS:java.util.PropertyPermission?,
 ?java.naming.provider.url?,?write?);
SQL> exit;

Once the J2EE.JAR is loaded, you can call out to EJBs from the database into the
application server. The following steps show how to call out to an EJB from the
database with the LoggerEJB demo (available at
http://java.sun.com/j2se/1.4.1/docs/guide/rmi-iiop/interop.html),
and using ojvmjava to execute the LogClient in the database. Note that the EJB
application called by the following procedure must already be deployed to the
application server.

1. Load the Java client into the correct schema in the database. In the LogClient
example, you load the LoggerClient.jar and Logger interfaces into the scott
schema from the LoggerEJB source directory. Note that the LoggerClient.jar
contains the IIOP interface stubs.

loadjava -u scott/tiger -r -v LoggerClient.jar ejbinterop/*.class

2. Execute the Java client, which calls the EJB application. Use ojvmjava to execute
the client main method. The CORBA URL must be modified to know the
hostname and port number on which the application server is executing and
listening.

ojvmjava -u scott/tiger -c "java LogClient"
ojmvjava -u scott/tiger -c "java ejbinterop.LogClient
corbaname:iiop:1.2@myhost:3700#LoggerEJB"

If successful, this type of message is added to the server.log: Message from a
Java RMI-IIOP client.

The previous example calls out to the EJB application using ojvmjava. If you want to
call out from a PL/SQL procedure, use the following set of commands instead:

SQL> create or replace procedure myejb(args varchar2) as language java
 name 'ejbinterop.LogClient.main('java.lang.String[])';
SQL> /
SQL> set serveroutput on
SQL> call dbms_java.set_output(40000);
SQL> call myejb('corbaname:iiop:1.2@myhost:3200#LoggerEJB

Figure 1–2 EJB Call-out

Overview of Java

Introduction to Java in Oracle Database 1-5

Overview of Java
Java has emerged as the object-oriented programming language of choice. It includes
the following concepts:

■ a Java virtual machine (JVM), which provides the fundamental basis for platform
independence

■ automated storage management techniques, the most visible of which is garbage
collection

■ language syntax that borrows from C and enforces strong typing

The result is a language that is object-oriented and efficient for application-level
programs.

Java and Object-Oriented Programming Terminology
This section covers some basic terminology of Java application development in the
Oracle Database environment. The terms should be familiar to experienced Java
programmers. A detailed discussion of object-oriented programming or of the Java
language is beyond the scope of this book. Many texts, in addition to the complete
language specification, are available at your bookstore and on the Internet. See
"Suggested Reading" in the Preface for pointers to reference materials and for places to
find Java-related information on the Internet.

Classes
All object-oriented programming languages support the concept of a class. As with a
table definition, a class provides a template for objects that share common
characteristics. Each class can contain the following:

■ Attributes—static or instance variables that each object of a particular class
possesses.

■ Methods—you can invoke methods defined by the class or inherited by any
classes extended from the class.

When you create an object from a class, you are creating an instance of that class. The
instance contains the fields of an object, which are known as its data, or state.
Figure 1–3 shows an example of an Employee class defined with two attributes: last
name (lastName) and employee identifier (ID).

Overview of Java

1-6 Oracle Database Java Developer’s Guide

Figure 1–3 Classes and Instances

When you create an instance, the attributes store individual and private information
relevant only to the employee. That is, the information contained within an employee
instance is known only for that single employee. The example in Figure 1–3 shows two
instances of employee—Smith and Jones. Each instance contains information relevant
to the individual employee.

Attributes
Attributes within an instance are known as fields. Instance fields are analogous to the
fields of a relational table row. The class defines the fields, as well as the type of each
field. You can declare fields in Java to be static, public, private, protected, or default
access.

■ Public, private, protected, or default access fields are created within each instance.

■ Static fields are like global variables in that the information is available to all
instances of the employee class.

The language specification defines the rules of visibility of data for all fields. Rules of
visibility define under what circumstances you can access the data in these fields.

Methods
The class also defines the methods you can invoke on an instance of that class.
Methods are written in Java and define the behavior of an object. This bundling of
state and behavior is the essence of encapsulation, which is a feature of all
object-oriented programming languages. If you define an Employee class, declaring
that each employee’s id is a private field, other objects can access that private field
only if a method returns the field. In this example, an object could retrieve the
employee’s identifier by invoking the Employee.getId() method.

In addition, with encapsulation, you can declare that the Employee.getId()
method is private, or you can decide not to write an Employee.getId() method.
Encapsulation helps you write programs that are reusable and not misused.

Overview of Java

Introduction to Java in Oracle Database 1-7

Encapsulation makes public only those features of an object that are declared public;
all other fields and methods are private. Private fields and methods can be used for
internal object processing.

Class Hierarchy
Java defines classes within a large hierarchy of classes. At the top of the hierarchy is
the Object class. All classes in Java inherit from the Object class at some level, as
you walk up through the inheritance chain of superclasses. When we say Class B
inherits from Class A, each instance of Class B contains all the fields defined in class B,
as well as all the fields defined in Class A. For example, in Figure 1–4, the
FullTimeEmployee class contains the id and lastName fields defined in the
Employee class, because it inherits from the Employee class. In addition, the
FullTimeEmployee class adds another field, bonus, which is contained only within
FullTimeEmployee.

You can invoke any method on an instance of Class B that was defined in either Class
A or B. In our employee example, the FullTimeEmployee instance can invoke
methods defined only within its own class, or methods defined within the Employee
class.

Figure 1–4 Class Hierarchy

Instances of Class B are substitutable for instances of Class A, which makes inheritance
another powerful construct of object-oriented languages for improving code reuse.
You can create new classes that define behavior and state where it makes sense in the
hierarchy, yet make use of pre-existing functionality in class libraries.

Overview of Java

1-8 Oracle Database Java Developer’s Guide

Interfaces
Java supports only single inheritance; that is, each class has one and only one class
from which it inherits. If you must inherit from more than one source, Java provides
the equivalent of multiple inheritance, without the complications and confusion that
usually accompany it, through interfaces. Interfaces are similar to classes; however,
interfaces define method signatures, not implementations. The methods are
implemented in classes declared to implement an interface. Multiple inheritance
occurs when a single class simultaneously supports many interfaces.

Polymorphism
Assume in our Employee example that the different types of employees must be able
to respond with their compensation to date. Compensation is computed differently for
different kinds of employees.

■ FullTimeEmployees are eligible for a bonus

■ NonExemptEmployees get overtime pay

In traditional procedural languages, you would write a long switch statement, with
the different possible cases defined.

switch: (employee.type) {
 case: Employee
 return employee.salaryToDate;
 case: FullTimeEmployee
 return employee.salaryToDate + employee.bonusToDate
 ...

If you add a new kind of Employee, you must update your switch statement. If you
modify your data structure, you must modify all switch statements that use it. In an
object-oriented language such as Java, you implement a method,
compensationToDate(), for each subclass of Employee class that requires any
special treatment beyond what is already defined in Employee class. For example,
you could implement the compensationToDate() method of
NonExemptEmployee, as follows:

private float compensationToDate() {
 return super.compensationToDate() + this.overtimeToDate();
}

You implement FullTimeEmployee’s method, as follows:

private float compensationToDate() {
 return super.compensationToDate() + this.bonusToDate();
}

The common usage of the method name compensationToDate() allows you to
invoke the identical method on different classes and receive different results, without
knowing the type of employee you are using. You do not have to write a special
method to handle FullTimeEmployees and PartTimeEmployees. This ability for
the different objects to respond to the identical message in different ways is known as
polymorphism.

In addition, you could create an entirely new class that does not inherit from
Employee at all—Contractor—and implement a compensationToDate()
method in it. A program that calculates total payroll to date would iterate over all
people on payroll, regardless of whether they were full-time, part-time, or contractors,
and add up the values returned from invoking the compensationToDate() method

Overview of Java

Introduction to Java in Oracle Database 1-9

on each. You can safely make changes to the individual compensationToDate()
methods with the knowledge that callers of the methods will work correctly. For
example, you can safely add new fields to existing classes.

The Java Virtual Machine (JVM)
As with other high-level computer languages, your Java source compiles to low-level
machine instructions. In Java, these instructions are known as bytecodes (because their
size is uniformly one byte of storage). Most other languages—such as C—compile to
machine-specific instructions—such as instructions specific to an Intel or HP processor.
Your Java source compiles to a standard, platform-independent set of bytecodes,
which interacts with a Java virtual machine (JVM). The JVM is a separate program that
is optimized for the specific platform on which you execute your Java code. Figure 1–5
illustrates how Java can maintain platform independence. Your Java source is
compiled into bytecodes, which are platform independent. Each platform has installed
a JVM that is specific to its operating system. The Java bytecodes from your source get
interpreted through the JVM into appropriate platform dependent actions.

Figure 1–5 Java Component Structure

When you develop a Java program, you use predefined core class libraries written in
the Java language. The Java core class libraries are logically divided into packages that
provide commonly-used functionality, such as basic language support (java.lang),
input/output (java.io), and network access (java.net). Together, the JVM and
core class libraries provide a platform on which Java programmers can develop with
the confidence that any hardware and operating system that supports Java will
execute their program. This concept is what drives the "write once, run anywhere" idea
of Java.

Figure 1–6 illustrates how Oracle Java applications sit on top of the Java core class
libraries, which in turn sit on top of the JVM. Because the Oracle Java support system
is located within the database, the JVM interacts with the Oracle database libraries,
instead of directly with the operating system.

Overview of Java

1-10 Oracle Database Java Developer’s Guide

Figure 1–6 Oracle Database Java Component Structure

Sun Microsystems furnishes publicly available specifications for both the Java
language and the JVM. The Java Language Specification (JLS) defines things such as
syntax and semantics; the JVM specification defines the necessary low-level behavior
for the "machine" that executes the bytecodes. In addition, Sun Microsystems provides
a compatibility test suite for JVM implementors to determine if they have complied
with the specifications. This test suite is known as the Java Compatibility Kit (JCK).
The OracleJVM implementation complies fully with JCK. Part of the overall Java
strategy is that an openly specified standard, together with a simple way to verify
compliance with that standard, allows vendors to offer uniform support for Java
across all platforms.

Key Features of the Java Language
The Java language has key features that make it ideal for developing server
applications. These features include:

■ Simplicity—Java is a simpler language than most others used in server
applications because of its consistent enforcement of the object model. The large,
standard set of class libraries brings powerful tools to Java developers on all
platforms.

■ Portability—Java is portable across platforms. It is possible to write
platform-dependent code in Java, but it is also simple to write programs that move
seamlessly across machines. Oracle server applications, which do not support
graphical user interfaces directly on the platform that hosts them, also tend to
avoid the few platform portability issues that Java has.

■ Automatic Storage Management—The Java virtual machine automatically
performs all memory allocation and deallocation during program execution. Java

Why Use Java in Oracle Database?

Introduction to Java in Oracle Database 1-11

programmers can neither allocate nor free memory explicitly. Instead, they depend
on the JVM to perform these bookkeeping operations, allocating memory as they
create new objects and deallocating memory when the objects are no longer
referenced. The latter operation is known as garbage collection.

■ Strong Typing—Before you use a Java variable, you must declare the class of the
object it will hold. Java’s strong typing makes it possible to provide a reasonable
and safe solution to inter-language calls between Java and PL/SQL applications,
and to integrate Java and SQL calls within the same application.

■ No Pointers—Although Java retains much of the flavor of C in its syntax, it does
not support direct pointers or pointer manipulation. You pass all parameters,
except primitive types, by reference (that is, object identity is preserved), not by
value. Java does not provide C’s low level, direct access to pointers, which
eliminates memory corruption and leaks.

■ Exception Handling—Java exceptions are objects. Java requires developers to
declare which exceptions can be thrown by methods in any particular class.

■ Flexible Namespace—Java defines classes and holds them within a hierarchical
structure that mirrors the Internet’s domain namespace. You can distribute Java
applications and avoid name collisions. Java extensions such as the Java Naming
and Directory Interface (JNDI) provide a framework for multiple name services to
be federated. Java’s namespace approach is flexible enough for Oracle to
incorporate the concept of a schema for resolving class names, while fully
complying with the language specification.

■ Security—The design of Java bytecodes and the JVM allow for built-in
mechanisms to verify that the Java binary code was not tampered with. Oracle
Database is installed with an instance of SecurityManager, which, when
combined with Oracle database security, determines who can invoke any Java
methods.

■ Standards for Connectivity to Relational Databases—JDBC enable Java code to
access and manipulate data resident in relational databases. Oracle provides
drivers that allow vendor-independent, portable Java code to access the relational
database.

Why Use Java in Oracle Database?
The only reason that you are allowed to write and load Java applications within the
database is because it is a safe language. Java has been developed to prevent anyone
from tampering with the operating system that the Java code resides in. Some
languages, such as C, can introduce security problems within the database; Java,
because of its design, is a safe language to allow within the database.

Although the Java language presents many advantages to developers, providing an
implementation of a JVM that supports Java server applications in a scalable manner is
a challenge. This section discusses some of these challenges.

■ Java and the RDBMS: A Robust Combination

■ Multithreading

■ Automated Storage Management With Garbage Collection

■ Footprint

■ Performance

■ Dynamic Class Loading

Java and the RDBMS: A Robust Combination

1-12 Oracle Database Java Developer’s Guide

Java and the RDBMS: A Robust Combination
The Oracle RDBMS provides Java applications with a dynamic data-processing engine
that supports complex queries and different views of the same data. All client requests
are assembled as data queries for immediate processing, and query results are
generated on the fly.

Several features make Java ideal for server programming. Java lets you assemble
applications using off-the-shelf software components (JavaBeans). Its type safety and
automatic memory management allow for tight integration with the RDBMS. In
addition, Java supports the transparent distribution of application components across
a network.

Thus, Java and the RDBMS support the rapid assembly of component-based,
network-centric applications that can evolve gracefully as business needs change. In
addition, you can move applications and data stores off the desktop and onto
intelligent networks and network-centric servers. More important, you can access
those applications and data stores from any client device.

Figure 1–7 shows a traditional two-tier, client/server configuration in which clients
call Java stored procedures the same way they call PL/SQL stored procedures.
(PL/SQL is an advanced 4GL tightly integrated with Oracle Database.) The figure also
shows how the Oracle Net Services Connection Manager can funnel many network
connections into a single database connection. This enables the RDBMS to support a
large number of concurrent users.

Figure 1–7 Two-Tier Client/Server Configuration

Multithreading
Multithreading support is often cited as one of the key scalability features of the Java
language. Certainly, the Java language and class libraries make it simpler to write
multithreaded applications in Java than many other languages, but it is still a daunting
task in any language to write reliable, scalable multithreaded code.

As a database server, Oracle Database efficiently schedules work for thousands of
users. The OracleJVM uses the facilities of the RDBMS server to concurrently schedule
Java execution for thousands of users. Although Oracle Database supports Java
language level threads required by the JLS and JCK, using threads within the scope of
the database will not increase your scalability. Using the embedded scalability of the
database eliminates the need for writing multithreaded Java servers. You should use
the database’s facilities for scheduling users by writing single-threaded Java
applications. The database will take care of the scheduling between each application;
thus, you achieve scalability without having to manage threads. You can still write
multithreaded Java applications, but multiple Java threads will not increase your
server’s performance.

Java and the RDBMS: A Robust Combination

Introduction to Java in Oracle Database 1-13

One difficulty multithreading imposes on Java is the interaction of threads and
automated storage management, or garbage collection. The garbage collector
executing in a generic JVM has no knowledge of which Java language threads are
executing or how the underlying operating system schedules them.

■ Non-Oracle Database model—A single user maps to a single Java language level
thread; the same single garbage collector manages all garbage from all users.
Different techniques typically deal with allocation and collection of objects of
varying lifetimes and sizes. The result in a heavily multithreaded application is, at
best, dependent upon operating system support for native threads, which can be
unreliable and limited in scalability. High levels of scalability for such
implementations have not been convincingly demonstrated.

■ OracleJVM model—Even when thousands of users connect to the server and
execute the same Java code, each user experiences it as if he is executing his own
Java code on his own Java virtual machine. The responsibility of the OracleJVM is
to make use of operating system processes and threads, using the scalable
approach of the Oracle RDBMS. As a result of this approach, the JVM’s garbage
collector is more reliable and efficient because it never collects garbage from more
than one user at any time. Refer to "Threading in Oracle Database" on page 2-25
for more information on the thread model implementation in OracleJVM.

Automated Storage Management With Garbage Collection
Garbage collection is a major feature of Java’s automated storage management,
eliminating the need for Java developers to allocate and free memory explicitly.
Consequently, this eliminates a large source of memory leaks that commonly plague C
and C++ programs. There is a price for such a benefit: garbage collection contributes to
the overhead of program execution speed and footprint. Although many papers have
been written qualifying and quantifying the trade-off, the overall cost is reasonable,
considering the alternatives.

Garbage collection imposes a challenge to the JVM developer seeking to supply a
highly scalable and fast Java platform. The OracleJVM meets these challenges in the
following ways:

■ The OracleJVM uses the Oracle Database scheduling facilities, which can manage
multiple users efficiently.

■ Garbage collection is performs consistently for multiple users because garbage
collection is focused on a single user within a single session. The OracleJVM
enjoys a huge advantage because the burden and complexity of the memory
manager’s job does not increase as the number of users increases. The memory
manager performs the allocation and collection of objects within a single
session—which typically translates to the activity of a single user.

■ The OracleJVM uses different garbage collection techniques depending on the type
of memory used. These techniques provide high efficiency and low overhead.

Footprint
The footprint of an executing Java program is affected by many factors:

■ Size of the program itself—how many classes and methods and how much code
they contain.

■ Complexity of the program—the amount of core class libraries that the OracleJVM
uses as the program executes, as opposed to the program itself.

Java and the RDBMS: A Robust Combination

1-14 Oracle Database Java Developer’s Guide

■ Amount of state the JVM uses—how many objects the JVM allocates, how large
they are, and how many must be retained across calls.

■ Ability of the garbage collector and memory manager to deal with the demands of
the executing program, which is often non-deterministic. The speed with which
objects are allocated and the way they are held on to by other objects influences
the importance of this factor.

From a scalability perspective, the key to supporting many concurrent clients is a
minimum per-user session footprint. The OracleJVM keeps the per-user session
footprint to a minimum by placing all read-only data for users, such as Java bytecodes,
in shared memory. Appropriate garbage collection algorithms are applied against call
and session memories to maintain a small footprint for the user’s session. The
OracleJVM uses three types of garbage collection algorithms to maintain the user’s
session memory:

■ generational scavenging for short-lived objects

■ mark and lazy sweep collection for objects that exist for the life of a single call

■ copying collector for long-lived objects—objects that live across calls within a
session

Performance
OracleJVM performance is enhanced by implementing a native compiler.

How Native Compilers Improve Performance
Java executes platform-independent bytecodes on top of a JVM, which in turn interacts
with the specific hardware platform. Any time you add levels within software, your
performance is degraded. Because Java requires going through an intermediary to
interpret platform-independent bytecodes, a degree of inefficiency exists for Java
applications that does not exists within a platform-dependent language, such as C. To
address this issue, several JVM suppliers create native compilers. Native compilers
translate Java bytecodes into platform-dependent native code, which eliminates the
interpreter step and improves performance.

The following describes two methods for native compilation:

Oracle Database uses Ahead-of-Time compilation to deliver its core Java class libraries:
JDBC code in natively compiled form. It is applicable across all the platforms Oracle
supports, whereas a JIT approach requires low-level, processor-dependent code to be

Compiler Description

Just-In-Time (JIT)
Compilation

JIT compilers quickly compile Java bytecodes to native
(platform-specific) machine code during runtime. This does not
produce an executable to be executed on the platform; instead, it
provides platform-dependent code from Java bytecodes that is
executed directly after it is translated. This should be used for
Java code that is run frequently, which will be executed at
speeds closer to languages such as C.

Ahead-of-Time
Compilation

Compilation translates Java bytecodes to platform-independent
C code before runtime. Then a standard C compiler compiles the
C code into an executable for the target platform. This approach
is more suitable for Java applications that are modified
infrequently. This approach takes advantage of the mature and
efficient platform-specific compilation technology found in
modern C compilers.

Java and the RDBMS: A Robust Combination

Introduction to Java in Oracle Database 1-15

written and maintained for each platform. You can use this native compilation
technology with your own Java code.

As Figure 1–8 shows, natively compiled code executes up to ten times faster than
interpreted code. So, the more native code your program uses, the faster it executes.

Figure 1–8 Interpreter versus Accelerator

Refer to "Natively Compiled Code" on page 10-1 for more information.

Dynamic Class Loading
Another strong feature of Java is dynamic class loading. The class loader loads classes
from the disk (and places them in the JVM-specific memory structures necessary for
interpretation) only as they are used during program execution. The class loader
locates the classes in the CLASSPATH and loads them during program execution. This
approach, which works well for applets, poses the following problems in a server
environment:

Problem Description Solution

Predictability The class loading operation places a severe
penalty on first-time execution. A simple
program can cause the OracleJVM to load
many core classes to support its needs. A
programmer cannot easily predict or
determine the number of classes loaded.

The OracleJVM loads classes dynamically,
just as with any other Java virtual machine.
The same one-time class loading speed hit is
encountered. However, because the classes
are loaded into shared memory, no other
users of those classes will cause the classes to
load again—they will simply use the same
pre-loaded classes.

What is Different With OracleJVM?

1-16 Oracle Database Java Developer’s Guide

What is Different With OracleJVM?
This section discusses some important differences between the OracleJVM and typical
client JVMs.

Method main()
Client-based Java applications declare a single, top-level method (main()) that
defines the profile of an application. As with applets, server-based applications have
no such "inner loop." Instead, they are driven by logically independent clients.

Each client begins a session, calls its server-side logic modules through top-level entry
points, and eventually ends the session. The server environment hides the managing
of sessions, networks, and other shared resources from hosted Java programs.

The GUI
A server cannot provide GUIs, but it can supply the logic that drives them. The
OracleJVM supports only the headless mode of the Abstract Windowing Toolkit
(AWT). All AWT Java classes are available within the server environment and your
programs can use AWT functionality, as long as they do not attempt to materialize a
GUI on the server. For more information, see "User Interfaces on the Server" on
page 2-18.

The IDE
The OracleJVM is oriented to Java application deployment, not development. You can
write and unit-test applications in your favorite IDE, such as Oracle JDeveloper, then
deploy them for execution within the RDBMS.

Java’s binary compatibility enables you to work in any IDE, then upload Java class
files to the server. You need not move your Java source files to the database. Instead,
you can use powerful client-side IDEs to maintain Java applications that are deployed
on the server.

Reliability A benefit of dynamic class loading is that it
supports program updating. For example,
you would update classes on a server, and
clients who download the program and load
it dynamically see the update whenever they
next use the program. Server programs tend
to emphasize reliability. As a developer, you
must know that every client executes a
specific program configuration. You do not
want clients to inadvertently load some
classes that you did not intend them to load.

Oracle Database separates the upload and
resolve operation from the class loading
operation at runtime. You upload Java code
you developed to the server using the
loadjava utility. Instead of using
CLASSPATH, you specify a resolver at
installation time. The resolver is analogous to
CLASSPATH, but allows you to specify the
schemas in which the classes reside. This
separation of resolution from class loading
means you always know what program users
execute. Refer to Chapter 11, "Schema Object
Tools" for details on loadjava and resolvers.

Note: See "Development Tools" on page 1-20 for more
information.

Problem Description Solution

Main Components of the OracleJVM

Introduction to Java in Oracle Database 1-17

Main Components of the OracleJVM
This section briefly describes the main components of the OracleJVM and some of the
facilities they provide.

The Oracle Database Java virtual machine (JVM) is a complete, Java 2-compliant Java
execution environment. It runs in the same process space and address space as the
RDBMS kernel, sharing its memory heaps and directly accessing its relational data.
This design optimizes memory use and increases throughput.

The OracleJVM provides a run-time environment for Java objects. It fully supports
Java data structures, method dispatch, exception handling, and language-level
threads. It also supports all the core Java class libraries including java.lang,
java.io, java.net, java.math, and java.util. Figure 1–9 shows its main
components.

Figure 1–9 Main Components of the OracleJVM

The OracleJVM embeds the standard Java namespace in RDBMS schemas. This feature
lets Java programs access Java objects stored in Oracle databases and application
servers across the enterprise.

In addition, the OracleJVM is tightly integrated with the scalable, shared memory
architecture of the RDBMS. Java programs use call, session, and object lifetimes
efficiently without your intervention. So, you can scale OracleJVMand middle-tier Java
business objects, even when they have session-long state.

The garbage collector is described in "Automated Storage Management With Garbage
Collection" on page 1-13. The native compiler is discussed in "Performance" on
page 1-14. The rest of the components are described in the following sections:

■ Library Manager

■ Compiler

■ Interpreter

■ Class Loader

■ Verifier

In addition, the following sections give an overview of the JDBC driver:

■ Server-Side JDBC Internal Driver

Library Manager
To store Java classes in an Oracle database, you use the command-line utility
loadjava, which employs SQL CREATE JAVA statements to do its work. When
invoked by the CREATE JAVA {SOURCE | CLASS | RESOURCE} statement, the library

Main Components of the OracleJVM

1-18 Oracle Database Java Developer’s Guide

manager loads Java source, class, or resource files into the database. You never access
these Java schema objects directly; only the OracleJVM uses them.

Compiler
The OracleJVM includes a standard Java 2 (also known as JDK 1.2) Java compiler.
When invoked by the CREATE JAVA SOURCE statement, it translates Java source files
into architecture-neutral, one-byte instructions known as bytecodes. Each bytecode
consists of an opcode followed by its operands. The resulting Java class files, which
conform fully to the Java standard, are submitted to the interpreter at run time.

Interpreter
To execute Java programs, the OracleJVM includes a standard Java 2 bytecode
interpreter. The interpreter and associated Java run-time system execute standard Java
class files. The run-time system supports native methods and call-in/call-out from the
host environment.

Class Loader
In response to requests from the run-time system, the Java class loader locates, loads,
and initializes Java classes stored in the database. The class loader reads the class, then
generates the data structures needed to execute it. Immutable data and metadata are
loaded into initialize-once shared memory. As a result, less memory is required for
each session. The class loader attempts to resolve external references when necessary.
Also, it invokes the Java compiler automatically when Java class files must be
recompiled (and the source files are available).

Verifier
Java class files are fully portable and conform to a well-defined format. The verifier
prevents the inadvertent use of "spoofed" Java class files, which might alter program
flow or violate access restrictions. Oracle security and Java security work with the
verifier to protect your applications and data.

Server-Side JDBC Internal Driver
JDBC is a standard set of Java classes providing vendor-independent access to
relational data. Specified by Sun Microsystems and modeled after ODBC (Open
Database Connectivity) and the X/Open SQL CLI (Call Level Interface), the JDBC
classes supply standard features such as simultaneous connections to several
databases, transaction management, simple queries, calls to stored procedures, and
streaming access to LONG column data.

Using low-level entry points, a specially tuned JDBC driver runs directly inside the
RDBMS, thereby providing the fastest access to Oracle data from Java stored
procedures. The server-side internal JDBC driver complies fully with the Sun
Microsystems JDBC specification. Tightly integrated with the RDBMS, it supports
Oracle-specific data types, globalization character sets, and stored procedures.

Note: You can also compile your code for faster execution. The
OracleJVM uses natively compiled versions of the core Java class
libraries and JDBC drivers. For more information, see "Natively
Compiled Code" on page 10-1.

Oracle’s Java Application Strategy

Introduction to Java in Oracle Database 1-19

Additionally, the client-side and server-side JDBC APIs are the same, which makes it
easy to partition applications.

Oracle’s Java Application Strategy
One appeal of Java is its ubiquity and the growing number of programmers capable of
developing applications using it. Oracle furnishes enterprise application developers
with an end-to-end Java solution for creating, deploying, and managing Java
applications. The total solution consists of client-side and server-side programmatic
interfaces, tools to support Java development, and a Java virtual machine integrated
with the Oracle Database server. All these products are 100 percent compatible with
Java standards.

Java Programming Environment
In addition to the OracleJVM, the Java programming environment consists of:

■ Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call a Java stored
procedure from a PL/SQL package; you can call PL/SQL procedures from a Java
stored procedure.

■ SQL data can be accessed through JDBC.

■ Tools and scripts used in assisting in development, class loading, and class
management.

To help you decide which Java APIs to use, examine the following table:

Java Stored Procedures
If you are a PL/SQL programmer exploring Java, you will be interested in Java stored
procedures. A Java stored procedure is a program you write in Java to execute in the
server, exactly as a PL/SQL stored procedure. You invoke it directly with products like
SQL*Plus, or indirectly with a trigger. You can access it from any Oracle Net
client—OCI, PRO* or JDBC. Chapter 5, "Developing Java Stored Procedures" explains
how to write stored procedures in Java, how to access them from PL/SQL, and how to
access PL/SQL functionality from Java.

In addition, you can use Java to develop powerful programs independently of
PL/SQL. Oracle Database provides a fully-compliant implementation of the Java
programming language and JVM.

PL/SQL Integration and Oracle RDBMS Functionality
You can invoke existing PL/SQL programs from Java and invoke Java programs from
PL/SQL. This solution protects and leverages your existing investment while opening
up the advantages and opportunities of Java-based Internet computing.

Oracle offers two different application programming interfaces (APIs) for Java
developers to access SQL data—JDBC. Both APIs are available on client and server, so
you can deploy the same code in either place.

Type of functionality you need Java API to use

To have a Java procedure invoked from SQL, such as a trigger. Java Stored Procedures

To invoke dynamic, complex SQL statements from a Java object. JDBC

Oracle’s Java Application Strategy

1-20 Oracle Database Java Developer’s Guide

■ JDBC Drivers

■ JPublisher

JDBC Drivers
JDBC is a database access protocol that enables you to connect to a database and then
prepare and execute SQL statements against the database. Core Java class libraries
provide only one JDBC API. JDBC is designed, however, to allow vendors to supply
drivers that offer the necessary specialization for a particular database. Oracle delivers
the following three distinct JDBC drivers.

For more information on JDBC, see "Utilizing JDBC for Querying the Database" on
page 3-4.

JPublisher
JPublisher provides a simple and convenient tool to create Java programs that access
existing Oracle relational database tables. See the Oracle Database JPublisher User's
Guide for more information.

Development Tools
The introduction of Java to the Oracle Database server allows you to use several Java
Integrated Development Environments. The adherence of Oracle Database to Java
compatibility and open Internet standards and protocols ensures that your 100% pure
Java programs work when you deploy them on Oracle Database. Oracle delivers many
tools or utilities, all written in Java, that make development and deployment of Java
server applications easier. Oracle’s JDeveloper has many features designed specifically
to make deployment of Java stored procedures and Enterprise JavaBeans easier. You
can download JDeveloper at the following site:
http://otn.oracle.com/software/products/jdev/content.html.

Driver Description

JDBC Thin Driver You can use the JDBC Thin driver to write 100% pure Java
applications and applets that access Oracle SQL data. The JDBC
Thin driver is especially well-suited to Web browser-based
applications and applets, because you can dynamically
download it from a Web page just like any other Java applet.

JDBC Oracle Call
Interface Driver

The JDBC Oracle Call Interface (OCI) driver accesses
Oracle-specific native code (that is, non-Java) libraries on the
client or middle tier, providing some performance boost
compared to the JDBC Thin driver, at the cost of significantly
larger size and client-side installation.

JDBC Server-side
Internal Driver

Oracle Database uses the server-side internal driver when Java
code executes on the server. It allows Java applications executing
in the server’s Java virtual machine to access locally defined
data (that is, on the same machine and in the same process) with
JDBC. It provides a further performance boost because of its
ability to use underlying Oracle RDBMS libraries directly,
without the overhead of an intervening network connection
between your Java code and SQL data. By supporting the same
Java-SQL interface on the server, Oracle Database does not
require you to rework code when deploying it.

Desupport of J2EE Technologies in the Oracle Database

Introduction to Java in Oracle Database 1-21

Desupport of J2EE Technologies in the Oracle Database
With the introduction of Oracle Application Server Containers for J2EE (OC4J)--a new,
lighter-weight, easier-to-use, faster, and certified J2EE container--Oracle began
desupport of the Java 2 Enterprise Edition (J2EE) and CORBA stacks from the
database, starting with Oracle9i database release 2. However, the database-embedded
Java VM (OracleJVM) is still present and will continue to be enhanced to offer Java 2
Standard Edition (J2SE) features, Java stored procedures and JDBC in the database.

As of Oracle9i database release 2 (9.2.0), Oracle no longer supports the following
technologies in the database:

■ the J2EE stack, consisting of:

– Enterprise Beans (EJB) container

– JavaServer Pages (JSP) container

– Oracle9i Servlet Engine (OSE)

■ the embedded Common Object Request Broker Architecture (CORBA) framework,
based on Visibroker for Java

Customers will no longer be able to deploy servlets, JSP pages, EJBs, and CORBA
objects in Oracle databases. Oracle9i database release 1 (9.0.1) will be the last database
release to support the J2EE and CORBA stack. Oracle is encouraging customers to
migrate existing J2EE applications running in the database to OC4J now.

Desupport of J2EE Technologies in the Oracle Database

1-22 Oracle Database Java Developer’s Guide

Java Applications on Oracle Database 2-1

2
Java Applications on Oracle Database

Oracle Database executes standard Java applications. However, by integrating Java
classes within the database server, your environment is different from a typical Java
development environment. This chapter describes the basic differences for writing,
installing, and deploying Java applications within Oracle Database.

■ Overview

■ Database Sessions Imposed on Java Applications

■ Execution Control

■ Java Code, Binaries, and Resources Storage

■ Preparing Java Class Methods for Execution

■ User Interfaces on the Server

■ Shortened Class Names

■ Class.forName() in Oracle Database

■ Managing Your Operating System Resources

■ Threading in Oracle Database

Overview
The OracleJVM platform is a standard, compatible Java environment, which will
execute any 100% pure Java application. It has been implemented by Oracle to be
compatible with the Java Language Specification and the Java virtual machine
specification. It supports the standard Java binary format and the standard Java APIs.
In addition, Oracle Database adheres to standard Java language semantics, including
dynamic class loading at runtime.

However, unlike other Java environments, the OracleJVM is embedded within the
Oracle Database and, therefore, introduces a number of new concepts. This section
summarizes the differences between the Sun Microsystems J2SE environment and the
environment that occurs when you combine Java with the Oracle Database.

Note: To fully explore the usage for each API, refer to the
documentation for each API. The intent of this chapter is to place
the Java APIs in an overall context, with enough detail for you to
see how they fit together and how you use them in the Oracle
Database environment.

Database Sessions Imposed on Java Applications

2-2 Oracle Database Java Developer’s Guide

Terminology

In your standard Java environment, you run a Java application through the interpreter
by executing java <classname>. This causes the application to execute within a
process on your operating system.

With the OracleJVM, you must load the application into the database, publish the
interface, and then run the application within a database session. This book discusses
how to run your Java applications within the database. Specifically, see the following
sections for instructions on executing Java in the database:

■ Load and publish your Java applications before execution—See "Java Code,
Binaries, and Resources Storage" and "Preparing Java Class Methods for
Execution", starting on page 2-5.

■ Running within a database session—See "Database Sessions Imposed on Java
Applications" on page 2-2.

In addition, certain features, included within standard Java, change when you run
your application within a database session. These are covered in the following
sections:

■ Execution Control

■ User Interfaces on the Server

■ Shortened Class Names

■ Class.forName() in Oracle Database

■ Managing Your Operating System Resources

■ Threading in Oracle Database

Once you are familiar with this chapter, see Chapter 3, "Invoking Java in the Database"
for directions on how to set up your client, and examples for invoking different types
of Java applications.

Database Sessions Imposed on Java Applications
In incorporating Java within Oracle Database, your Java application exists within the
context of a database session. OracleJVM sessions are entirely analogous to traditional

Term Definition

OracleJVM Java-enabled Oracle Database database server with JVM.

Session As a user who executes Java code, you must establish a session
in the server. The word session as we employ it here is identical
to the standard Oracle (or any other database server) usage. A
session is typically, although not necessarily, bounded by the
time a single user connects to the server.

Call When a user causes Java code to execute within a session, we
refer to it as a call. You can initiate a call in different ways.

■ A SQL client program executes a Java stored procedure.

■ A trigger can execute a Java stored procedure.

■ A PL/SQL program calls some Java code.

In all cases, a call begins, some combination of Java, SQL, or
PL/SQL code is executed to completion, and the call ends.

Database Sessions Imposed on Java Applications

Java Applications on Oracle Database 2-3

Oracle sessions. Each OracleJVM session maintains the client’s Java state across calls
within the session.

Figure 2–1 demonstrates how each Java client starts up a database session as the
environment for executing Java within the database. Garbage collection, session
memory, and call memory exist solely for each client within its session.

Figure 2–1 Java Environment Within Each Database Session

Within the context of a session, the client performs the following:

1. Connects to the database and opens a session.

2. Executes Java within the database. This is referred to as a call.

3. Continues to work within the session, performing as many calls as necessary.

4. Ends the session.

Within a single session, the client has its own Java environment, which is separate
from every other client’s environment. It appears to the client as if a separate,
individual JVM was invoked for each session, although the implementation is vastly
more efficient than this seems to imply. Within a session, the OracleJVM manages the
scalability for you within the database. Every call executed from a single client is
managed within its own session—separately from other clients. The OracleJVM
maximizes sharing read-only data between clients and emphasizes a minimum
amount of per-session incremental footprint to maximize performance for multiple
clients.

The underlying server environment hides the details associated with session, network,
state, and other shared resource management issues from Java server code. Static
variables are all local to the client. No client can access another client’s static variables,
because the memory is not available across session boundaries. Because each client
executes its calls within its own session, each client’s activities are separate from any
other client. During a call, you can store objects in static fields of different classes, and
you can expect this state to be available for your next call. The entire state of your Java
program is private to you and exists for your entire session.

Execution Control

2-4 Oracle Database Java Developer’s Guide

The OracleJVM manages the following within the session:

■ all the objects referenced by Java static variables, all the objects referred to by these
objects, and so on (their transitive closure)

■ garbage collection for the single client

■ session memory for static variables and across call memory needs

■ call memory for variables that exist within a single call

Java Supported APIs
For the Oracle Database 10g release, we offer the following Java APIs—Java stored
procedures, JNDI, and JDBC.

■ JNDI—Store objects in a JNDI namespace.

■ JDBC—You can access SQL data through JDBC. See Chapter 3, "Invoking Java in
the Database", for examples of each Java API.

■ Java stored procedures—The lifetime of a Java stored procedure session is
identical to the SQL session in which it is embedded. This concept is familiar to
PL/SQL users. Any state represented in Java transparently persists for the lifetime
of the RDBMS session, simplifying the process of writing stored procedures,
triggers, and methods for Oracle Abstract Data Types. Individual invocations of
Java code within a session are known as calls. For example, a call may be initiated
by a SQL call.

Execution Control
In the Sun Microsystems J2SE environment, you develop Java applications with a
main() method, which is called by the interpreter when the class is run. The main()
method is invoked when you execute java <classname> on the command-line.
This command starts the java interpreter and passes the desired classname to be
executed to the interpreter. The interpreter loads the class and starts the execution by
invoking main(). However, Java applications within the database do not start their
execution from a main() method.

After loading your Java application within the database (see "Loading Classes" on
page 2-12), you can execute your Java code by invoking any static method within the
loaded class. The class or methods must be published for you to execute them (see
"Publishing" on page 2-18). Your only entry point is no longer always assumed to be
main(). Instead, when you execute your Java application, you specify a method name
within the loaded class as your entry point.

For example, in a normal Java environment, you would start up the Java object on the
server by executing the following:

java myprogram

where myprogram is the name of a class that contains a main() method. In
myprogram, main() immediately calls mymethod for processing incoming
information.

Note: The concepts of call and session apply across all uses of
Oracle Database.

Java Code, Binaries, and Resources Storage

Java Applications on Oracle Database 2-5

In Oracle Database, you load the myprogram.class file into the database and
publish mymethod as an entry-point. Then, the client or trigger can invoke mymethod
explicitly.

Java Code, Binaries, and Resources Storage
In the Sun Microsystems Java development environment, Java source code, binaries,
and resources are stored as files in a file system.

■ Source code files are known as .java files.

■ Compiled Java binary files are known as .class files.

■ Resources are any data files, such as .properties or .ser files that are held
within the file system hierarchy, which are loaded or used at runtime.

In addition, when you execute Java, you specify a CLASSPATH, which is a set of a file
system tree roots containing your files. Java also provides a way to group these files
into a single archive form—a ZIP or JAR file.

Both of these concepts are different within the database. The following table describes
how Oracle Database handles Java classes and locates dependent classes.

The call and session terms, used during our discussions, are not Java terms; but are
server terms that apply to the OracleJVM platform. The Oracle Database memory
manager preserves Java program state throughout your session (that is, between calls).
The JVM uses the Oracle database to hold Java source, classes, and resources within a
schema—Java schema objects. You can use a resolver to specify how Java, when
executed in the server, locates source code, classes, and resources.

Java Classes Loaded in the Database
To make Java files available to the OracleJVM, you must load them into the Oracle
database as schema objects. As Figure 2–2 illustrates, loadjava can invoke the JVM’s
Java compiler, which compiles source files into standard class files.

The figure also shows that loadjava can set the values of options stored in a system
database table. Among other things, these options affect the processing of Java source
files.

Table 2–1 Description for Java Code and Classes

Java Code and Classes Description

Java code, binaries, and
resources

In the OracleJVM environment, source, classes, and resources
reside within Oracle Database. Because they reside in the
database, they are known as Java schema objects, where a
schema corresponds to a database user. There are three types of
Java objects: source, class, and resource. There are
no .java, .class properties, or .ser files on the server;
instead, these files map to source, class, and resource Java
schema objects.

Locating Java classes Instead of a CLASSPATH, you use a resolver to specify one or
more schemas to search for source, class, and resource Java
schema objects.

Preparing Java Class Methods for Execution

2-6 Oracle Database Java Developer’s Guide

Figure 2–2 Loading Java into the Oracle Database

Each Java class is stored as a schema object. The name of the object is derived from the
fully qualified name (full name) of the class, which includes the names of containing
packages. For example, the full name of class Handle is:

oracle.aurora.rdbms.Handle

In the name of a Java schema object, slashes replace dots, so the full name of the class
becomes:

oracle/aurora/rdbms/Handle

The Oracle RDBMS accepts Java names up to 4000 characters long. However, the
names of Java schema objects cannot be longer than 31 characters, so if a name is
longer than that, the system generates an alias (short name) for the schema object.
Otherwise, the full name is used. You can specify the full name in any context that
requires it. When needed, name mapping is handled by the RDBMS. See "Shortened
Class Names" on page 2-19 for more information.

Preparing Java Class Methods for Execution
For your Java methods to be executed, you must do the following:

1. Decide when your source is going to be compiled.

2. Decide if you are going to use the default resolver or another resolver for locating
supporting Java classes within the database.

3. Load the classes into the database. If you do not wish to use the default resolver
for your classes, you should specify a separate resolver on the load command.

4. Publish your class or method.

Compiling Java Classes
Compilation of your source can be performed in one of the following ways:

■ You can compile the source explicitly on your client machine, before loading it into
the database, through a Java compiler, such as javac.

Preparing Java Class Methods for Execution

Java Applications on Oracle Database 2-7

■ You can ask the database to compile the source during the loading process
managed within the loadjava tool.

■ You can force the compilation to occur dynamically at runtime.

Compiling Source Through javac
You can compile your Java with a conventional Java compiler, such as javac. After
compilation, you load the compiled binary into the database, rather than the source
itself. This is a better option, because it is normally easier to debug your Java code on
your own system, rather than debugging it on the database.

Compiling Source Through loadjava
When you specify the -resolve option on loadjava for a source file, the following
occurs:

1. The source file is loaded as a source schema object.

2. The source file is compiled.

3. Class schema objects are created for each class defined in the compiled .java file.

4. The compiled code is stored in the class schema objects.

Oracle Database logs all compilation errors both to loadjava’s log file and the
USER_ERRORS view.

Compiling Source at Runtime
When you load the Java source into the database without the -resolve option, Oracle
Database compiles the source automatically when the class is needed during runtime.
The source file is loaded into a source schema object.

Oracle Database logs all compilation errors both to loadjava’s log file and the
USER_ERRORS view.

Specifying Compiler Options
There are two ways to specify options to the compiler.

■ Specify compiler options on the loadjava command line. You can specify the
encoding option on the loadjava command line.

■ Specify persistent compiler options in a per-schema database table called
JAVA$OPTIONS. Every time you compile, the compiler uses these options.
However, any specified compiler options on the loadjava command override the
options defined in this table.

You must create this table yourself if you wish to specify compiler options this
way. See "Compiler Options Specified in a Database Table" on page 2-8 for
instructions on how to create the JAVA$OPTIONS table.

Note: If you decide to compile through loadjava, you can
specify compiler options. See "Specifying Compiler Options" on
page 2-7 for more information.

Preparing Java Class Methods for Execution

2-8 Oracle Database Java Developer’s Guide

The following sections describe your compiler options:

■ Default Compiler Options

■ Compiler Options on the Command Line

■ Compiler Options Specified in a Database Table

Default Compiler Options When compiling a source schema object for which there is
neither a JAVA$OPTIONS entry nor a command line value for an option, the compiler
assumes a default value as follows:

■ encoding = System.getProperty("file.encoding");

■ online = true: This option applies only to Java sources that contain SQLJ
constructs.

■ debug = true: This option is equivalent to javac -g.

Compiler Options on the Command Line The loadjava compiler option, encoding,
identifies the encoding of the .java file. This option overrides any matching value in
the JAVA$OPTIONS table. The values are identical to the javac -encoding option.
This option is relevant only when loading a source file.

Compiler Options Specified in a Database Table Each JAVA$OPTIONS row contains the
names of source schema objects to which an option setting applies; you can use
multiple rows to set the options differently for different source schema objects.

You can set JAVA$OPTIONS entries by means of the following functions and
procedures, which are defined in the database package DBMS_JAVA:

■ PROCEDURE set_compiler_option(name VARCHAR2, option VARCHAR2,
value VARCHAR2);

■ FUNCTION get_compiler_option(name VARCHAR2, option VARCHAR2)
RETURNS VARCHAR2;

■ PROCEDURE reset_compiler_option(name VARCHAR2, option
VARCHAR2);

The parameters for these methods are described in the following table:

A schema does not initially have a JAVA$OPTIONS table. To create a JAVA$OPTIONS
table, use the DBMS_JAVA package’s java.set_compiler_option procedure to set
a value. The procedure will create the table if it does not exist. Specify parameters in
single quotes. For example:

SQL> execute dbms_java.set_compiler_option('x.y', 'online', 'false');

Table 2–3 represents a hypothetical JAVA$OPTIONS database table. The pattern match
rule is to match as much of the schema name against the table entry as possible. The

Table 2–2 Definitions for Name and Option Parameters

Parameter Description

name The name parameter is a Java package name, a fully qualified class name, or
the empty string. When the compiler searches the JAVA$OPTIONS table for
the options to use for compiling a Java source schema object, it uses the row
whose name most closely matches the schema object’s fully qualified class
name. A name whose value is the empty string matches any schema object
name.

option The option parameter is either 'online', 'encoding' or 'debug'.

Preparing Java Class Methods for Execution

Java Applications on Oracle Database 2-9

schema name with a higher resolution for the pattern match is the entry that applies.
Because the table has no entry for the encoding option, the compiler uses the default
or the value specified on the command line. The online option shown in the table
matches schema object names as follows:

■ The name a.b.c.d matches class and package names beginning with a.b.c.d;
the packages and classes are compiled with online = true.

■ The name a.b matches class and package names beginning with a.b. The name
a.b does not match a.b.c.d; therefore, the packages and classes are compiled
with online = false.

■ All other packages and classes match the empty string entry and are compiled
with online = true.

Automatic Recompilation
Oracle Database provides a dependency management and automatic build facility that
will transparently recompile source programs when you make changes to the source
or binary programs upon which they depend. Consider the following cases:

public class A
{
 B b;
 public void assignB () {b = new B()}
}
public class B
{
 C c;
 public void assignC () {c = new C()}
}
public class C
{
 A a;
 public void assignA () {a = new A()}
}

The system tracks dependencies at a class level of granularity. In the preceding
example, you can see that classes A, B, and C depend on one another, because A holds
an instance of B, B holds an instance of C, and C holds an instance of A. If you change
the definition of class A by adding a new field to it, the dependency mechanism in

Table 2–3 Example JAVA$OPTIONS Table

Name Option Value Match Examples

a.b.c.d online true ■ a.b.c.d—matches the pattern exactly.

■ a.b.c.d.e—first part matches the
pattern exactly; no other rule matches
full name.

a.b online false ■ a.b—matches the pattern exactly

■ a.b.c.x—first part matches the pattern
exactly; no other rule matches beyond
specified rule name.

(empty string) online true ■ a.c—no pattern match with any
defined name; defaults to (empty string)
rule

■ x.y—no pattern match with any
defined name; defaults to (empty string)
rule

Preparing Java Class Methods for Execution

2-10 Oracle Database Java Developer’s Guide

Oracle Database flags classes B and C as invalid. Before you use any of these classes
again, Oracle Database attempts to resolve them again and recompile, if necessary.
Note that classes can be recompiled only if source is present on the server.

The dependency system enables you to rely on Oracle Database to manage
dependencies between classes, to recompile, and to resolve automatically. You must
force compilation and resolution yourself only if you are developing and you want to
find problems early. The loadjava utility also provides the facilities for forcing
compilation and resolution if you do not want to allow the dependency management
facilities to perform this for you.

Resolving Class Dependencies
Many Java classes contain references to other classes, which is the essence of reusing
code. A conventional Java virtual machine searches for classes, ZIP, and JAR files
within the directories specified in the CLASSPATH. In contrast, the OracleJVM
searches database schemas for class objects. With Oracle Database, you load all Java
classes within the database, so you might need to specify where to find the dependent
classes for your Java class within the database.

All classes loaded within the database are referred to as class schema objects and are
loaded within certain schemas. All JVM classes, such as java.lang.*, are loaded
within PUBLIC. If your classes depend upon other classes you have defined, you will
probably load them all within your own schema. For example, if your schema is
SCOTT, the database resolver (the database replacement for CLASSPATH) searches the
SCOTT schema before PUBLIC. The listing of schemas to search is known as a resolver
spec. Resolver specs are per-class, whereas in a classic Java virtual machine,
CLASSPATH is global to all classes.

When locating and resolving the interclass dependencies for classes, the resolver
marks each class as valid or invalid, depending on whether all interdependent classes
are located. If the class that you load contains a reference to a class that is not found
within the appropriate schemas, the class is listed as invalid. Unsuccessful resolution
at runtime produces a "class not found" exception. Furthermore, runtime resolution
can fail for lack of database resources if the tree of classes is very large.

For each interclass reference in a class, the resolver searches the schemas specified by
the resolver spec for a valid class schema object that satisfies the reference. If all
references are resolved, the resolver marks the class valid. A class that has never been
resolved, or has been resolved unsuccessfully, is marked invalid. A class that depends
on a schema object that becomes invalid is also marked invalid.

To make searching for dependent classes easier, Oracle Database provides a default
resolver and resolver spec that searches first the definer’s schema and then PUBLIC.
This covers most of the classes loaded within the database. However, if you are
accessing classes within a schema other than your own or PUBLIC, you must define
your own resolver spec.

■ loading using Oracle’s default resolver, which searches the definer’s schema and
PUBLIC:

loadjava -resolve

Note: As with the Java compiler, loadjava resolves references to
classes, but not to resources. Be sure to correctly load the resource
files that your classes need.

Preparing Java Class Methods for Execution

Java Applications on Oracle Database 2-11

■ loading using your own resolver spec definition containing the SCOTT schema,
OTHER schema, and PUBLIC:

loadjava-resolve -resolver "((* SCOTT)(* OTHER)(* PUBLIC))"

The -resolver option specifies the objects to search within the schemas defined. In
the example above, all class schema objects are searched within SCOTT, OTHER, and
PUBLIC. However, if you wanted to search for only a certain class or group of classes
within the schema, you could narrow the scope for the search. For example, to search
only for the classes "my/gui/*" within the OTHER schema, you would define the
resolver spec as follows:

loadjava -resolve -resolver ’((* SCOTT) ("my/gui/*" OTHER) (* PUBLIC))’

The first parameter within the resolver spec is for the class schema object; the second
parameter defines the schema within which to search for these class schema objects.

Allowing References to Non-Existent Classes
You can specify a special option within a resolver spec that allows an unresolved
reference to a non-existent class. Sometimes, internal classes are never used within a
product. For example, some ISVs do not remove all references to internal test classes
from the JAR file before shipping. In a normal Java environment, this is not a problem,
because as long as the methods are not called, the Sun Microsystems JVM ignores
them. However, the Oracle Database resolver tries to resolve all classes referenced
within the JAR file—even unused classes. If the reference cannot be validated, the
classes within the JAR file are marked as invalid.

To ignore references, you can specify the "-" wildcard within the resolver spec. The
following example specifies that any references to classes within "my/gui" are to be
allowed, even if it is not present within the resolver spec schema list.

loadjava -resolve -resolver ’((* SCOTT) (* PUBLIC) ("my/gui/*" -))’

In addition, you can define that all classes not found are to be ignored. Without the
wildcard, if a dependent class is not found within one of the schemas, your class is
listed as invalid and cannot be run. However, this is also dangerous, because if there is
a dependent class on a used class, you mark a class as valid that can never run without
the dependent class. In this case, you will receive an exception at runtime.

To ignore all classes not found within SCOTT or PUBLIC, specify the following
resolver spec:

loadjava -resolve -resolver "((* SCOTT) (* PUBLIC) (* -))"

If you later intend to load the non-existent classes that were causing you to use such a
resolver in the first place, you should not use a resolver containing the "-." Instead,
include all referenced classes in the schema before resolving.

ByteCode Verifier
According to the JVM specification, .class files are subject to verification before the
class they define is available in a JVM. In OracleJVM, the verification process occurs at

Note: An alternative mechanism for dealing with non-existent
classes is with the -gemissing option of loadjava. This option
causes loadjava to create and load definitions of classes that are
referenced, but not defined. For more details, see "loadjava" on
page 2-1.

Preparing Java Class Methods for Execution

2-12 Oracle Database Java Developer’s Guide

class resolution. The resolver might find one of the following problems and issue the
appropriate Oracle error code:

The resolver also issues warnings, as defined below:

■ Resolvers containing "-"

This type of resolver marks your class valid regardless of whether classes it
references are present. Because of inheritance and interfaces, you may want to
write valid Java methods that use an instance of a class as if it were an instance of
a superclass or of a specific interface. When the method being verified uses a
reference to class A as if it were a reference to class B, the resolver must check that
A either extends or implements B. For example, consider the potentially valid
method below, whose signature implies a return of an instance of B, but whose
body returns an instance of A:

B myMethod(A a) { return a; }

The method is valid only if A extends B, or A implements the interface B. If A or B
have been resolved using a "-" term, the resolver does not know that this method is
safe. It will replace the bytecodes of myMethod with bytecodes that throw an
Exception if myMethod is ever called.

■ Use of other resolvers

The resolver ensures that the class definitions of A and B are found and resolved
properly if they are present in the schemas they specifically identify. The only time
you might consider using the alternative resolver is if you must load an existing
JAR file containing classes that reference other non-system classes that are not
included in the JAR file.

For more information on class resolution and loading your classes within the database,
see Chapter 11, "Schema Object Tools".

Loading Classes
This section gives an overview of loading your classes into the database using the
loadjava tool. You can also execute loadjava within your SQL. See Chapter 11,
"Schema Object Tools" for complete information on loadjava.

Unlike a conventional Java virtual machine, which compiles and loads from files, the
OracleJVM compiles and loads from database schema objects.

Table 2–4 ORA Errors

Error Code Description

ORA-29545 If the resolver determines that the class is malformed, the resolver does not
mark it valid. When the resolver rejects a class, it issues an ORA-29545
error (badly formed class). The loadjava tool reports the error. For
example, this error is thrown if the contents of a .class file are not the
result of a Java compilation or if the file has been corrupted.

ORA-29552 In some situations, the resolver allows a class to be marked valid, but will
replace bytecodes in the class to throw an exception at runtime. In these
cases, the resolver issues an ORA-29552 (verification warning), which
loadjava will report. The loadjava tool issues this warning when the
Java Language Specification would require an
IncompatibleClassChangeError be thrown. OracleJVM relies on the
resolver to detect these situations, supporting the proper runtime behavior
that the JLS requires.

Preparing Java Class Methods for Execution

Java Applications on Oracle Database 2-13

You must load all classes or resources into the database to be used by other classes
within the database. In addition, at load time, you define who can execute your classes
within the database.

The loadjava tool performs the following for each type of file:

The dropjava tool performs the reverse of the loadjava tool: it deletes schema
objects that correspond to Java files. Always use dropjava to delete a Java schema
object created with loadjava. Dropping with SQL DDL commands will not update
auxiliary data maintained by loadjava and dropjava. You can also execute
dropjava from within SQL commands.

Table 2–5 Description of Java Files

Java File Types Description

.java source files correspond to Java source schema objects

.class compiled Java files correspond to Java class schema objects

.properties Java resource files or data files correspond to Java resource schema objects

Table 2–6 loadjava Operations on Schema Objects

Schema Object loadjava Operations on Objects

 .java source files 1. It creates a source schema object within the definer’s
schema unless another schema is specified.

2. It loads the contents of the source file into a schema object.

3. It creates a class schema object for all classes defined in the
source file.

4. If -resolve is requested, it does the following:

a. It compiles the source schema object.

b. It resolves the class and its dependencies.

c. It stores the compiled class into a class schema object.

 .class compiled Java
files

1. It creates a class schema object within the definer’s schema
unless another schema is specified.

2. It loads the class file into the schema object.

3. It resolves and verifies the class and its dependencies if
-resolve is specified.

 .properties Java
resource files

1. It creates a resource schema object within the definer’s
schema unless another schema is specified.

2. It loads a resource file into a schema object.

Note: More options for loadjava are available. However, this
section discusses only the major options. See Chapter 11, "Schema
Object Tools" for complete information on loadjava and
dropjava.

Preparing Java Class Methods for Execution

2-14 Oracle Database Java Developer’s Guide

You must abide by certain rules, which are detailed in the following sections, when
loading classes into the database:

■ Defining the Same Class Twice

■ Designating Database Privileges and JVM Permissions

■ Loading JAR or ZIP Files

After loading, you can access the USER_OBJECTS view in your database schema to
verify that your classes and resources loaded properly. For more information, see
"Checking Java Uploads" on page 2-16.

Defining the Same Class Twice
You cannot have two different definitions for the same class. This rule affects you in
two ways:

■ You can load either a particular Java .class file or its .java file, but not both.

Oracle Database tracks whether you loaded a class file or a source file. If you wish
to update the class, you must load the same type of file that you originally loaded.
If you wish to update the other type, you must drop the first before loading the
second. For example, if you loaded x.java as the source for class y, to load
x.class, you must first drop x.java.

■ You cannot define the same class within two different schema objects within the
same schema. For example, suppose x.java defines class y and you want to
move the definition of y to z.java. If x.java has already been loaded,
loadjava rejects any attempt to load z.java (which also defines y). Instead, do
either of the following:

■ Drop x.java, load z.java (which defines y), then load the new x.java
(which does not define y).

■ Load the new x.java (which does not define y), then load z.java (which
defines y).

Designating Database Privileges and JVM Permissions
You must have the following SQL database privileges to load classes:

■ CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.

■ CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into
another schema.

■ oracle.aurora.security.JServerPermission.loadLibraryInClass.
<classname>. See "Permission for Loading Classes" on page 9-18 for more
information.

Loading JAR or ZIP Files
The loadjava tool accepts .class, .java, .properties, .ser, .jar, or .zip files.
The JAR or ZIP files can contain source, class, and data files. When you pass
loadjava a JAR or ZIP file, loadjava opens the archive and loads its members
individually. There is no JAR or ZIP schema object. If the JAR or ZIP content has not
changed since the last time it was loaded, it is not reloaded; therefore, there is little
performance penalty for loading JAR or ZIP files. In fact, loading JAR or ZIP files is the
simplest way to use loadjava.

Preparing Java Class Methods for Execution

Java Applications on Oracle Database 2-15

How to Grant Execute Rights
If you load all classes within your own schema and do not reference any class outside
of your schema, you already have execution rights. You have the privileges necessary
for your objects to invoke other objects loaded in the same schema. That is, the ability
for class A to invoke class B. Class A must be given the right to invoke class B.

The classes that define a Java application are stored within Oracle Database under the
SQL schema of their owner. By default, classes that reside in one user’s schema are not
executable by other users, because of security concerns. You can allow other users
(schemas) the right to execute your class through the loadjava -grant option. You
can grant execution rights to a certain user or schema. You cannot grant execution
rights to a role, which includes the super-user DBA role. The setting of execution
rights is the same as used to grant or revoke privileges in SQL DDL statements.

Figure 2–3 Execution Rights

For information on JVM security permissions, see Chapter 10, "Oracle Database Java
Application Performance".

Controlling the Current User
During execution of Java or PL/SQL, there is always a current user. Initially, this is the
user who creates the session.

Invoker’s and definer’s rights is a SQL concept that is used dynamically when
executing SQL, PL/SQL, or JDBC. The current user controls the interpretation of SQL
and determines privileges. For example, if a table is referenced by a simple name, it is
assumed that the table belongs in the user’s schema. In addition, the privileges that are
checked when resources are requested are based on the privileges granted to the
current user.

In addition, for Java stored procedures, the call specifications use a PL/SQL wrapper.
So, you could specify definer’s rights on either the call specification or on the Java
class itself. If either is redefined to definer’s rights, then the called method executes
under the user that deployed the Java class.

By default, Java stored procedures execute without changing the current user—that is,
with the privileges of their invoker, not their definer. Invoker-rights procedures are not
bound to a particular schema. Their unqualified references to schema objects (such as
database tables) are resolved in the schema of the current user, not the definer.

On the other hand, definer-rights procedures are bound to the schema in which they
reside. They execute with the privileges of their definer, and their unqualified
references to schema objects are resolved in the schema of the definer.

Note: Oracle Database does not reload a class if it has not changed
since the last load. However, you can force a class to be reloaded
through the loadjava -force option.

Preparing Java Class Methods for Execution

2-16 Oracle Database Java Developer’s Guide

Invoker-rights procedures let you reuse code and centralize application logic. They are
especially useful in applications that store data in different schemas. In such cases,
multiple users can manage their own data using a single code base.

Consider a company that uses a definer-rights procedure to analyze sales. To provide
local sales statistics, the procedure analyze must access sales tables that reside at
each regional site. To do so, the procedure must also reside at each regional site. This
causes a maintenance problem.

To solve the problem, the company installs an invoker-rights (IR) version of the
procedure analyze at headquarters. Now, as Figure 2–4 shows, all regional sites can
use the same procedure to query their own sales tables.

Figure 2–4 Invoker-Rights Solution

Occasionally, you might want to override the default invoker-rights behavior. Suppose
headquarters would like the procedure analyze to calculate sales commissions and
update a central payroll table. That presents a problem because invokers of
analyze should not have direct access to the payroll table, which stores employee
salaries and other sensitive data. As Figure 2–5 shows, the solution is to have
procedure analyze call the definer-rights (DR) procedure calcComm, which, in turn,
updates the payroll table.

Figure 2–5 Indirect Access

To override the default invoker-rights behavior, specify the loadjava option
-definer, which is similar to the UNIX facility setuid, except that -definer
applies to individual classes, not whole programs. Alternatively, you can execute the
SQL DDL that changes the AUTHID of the current user.

Different definers can have different privileges, and applications can consist of many
classes. So, use the option -definer carefully, making sure that classes have only the
privileges they need.

Checking Java Uploads
You can query the database view USER_OBJECTS to obtain information about schema
objects—including Java sources, classes, and resources—that you own. This allows

Preparing Java Class Methods for Execution

Java Applications on Oracle Database 2-17

you, for example, to verify that sources, classes, or resources that you load are properly
stored into schema objects.

Columns in USER_OBJECTS include those contained in Table 2–7 below.

Object Name and Type
An OBJECT_NAME in USER_OBJECTS is the short name. The full name is stored as a
short name if it exceeds 31 characters. See "Shortened Class Names" on page 2-19 for
more information on full and short names.

If the server uses a short name for a schema object, you can use the LONGNAME()
routine of the server DBMS_JAVA package to receive it from a query in full name
format, without having to know the short name format or the conversion rules.

SQL> SELECT dbms_java.longname(object_name) FROM user_objects
 WHERE object_type=’JAVA SOURCE’;

This routine shows you the Java source schema objects in full name format. Where no
short name is used, no conversion occurs, because the short name and full name are
identical.

You can use the SHORTNAME() routine of the DBMS_JAVA package to use a full name
as a query criterion, without having to know whether it was converted to a short name
in the database.

SQL*Plus> SELECT object_type FROM user_objects
 WHERE object_name=dbms_java.shortname(’known_fullname’);

This routine shows you the OBJECT_TYPE of the schema object of the specified full
name. This presumes that the full name is representable in the database character set.

SQL> select * from javasnm;
SHORT LONGNAME
--
/78e6d350_BinaryExceptionHandl sun/tools/java/BinaryExceptionHandler
/b6c774bb_ClassDeclaration sun/tools/java/ClassDeclaration
/af5a8ef3_JarVerifierStream1 sun/tools/jar/JarVerifierStream$1

Status
STATUS is a character string that indicates the validity of a Java schema object. A
source schema object is VALID if it compiled successfully; a class schema object is
VALID if it was resolved successfully. A resource schema object is always VALID,
because resources are not resolved.

Example: Accessing USER_OBJECTS The following SQL*Plus script accesses the
USER_OBJECTS view to display information about uploaded Java sources, classes,
and resources.

Table 2–7 Key USER_OBJECT Columns

Name Description

OBJECT_NAME name of the object

OBJECT_TYPE type of the object (such as JAVA SOURCE, JAVA CLASS, or JAVA
RESOURCE)

STATUS status of the object (VALID or INVALID) (always VALID for JAVA
RESOURCE)

User Interfaces on the Server

2-18 Oracle Database Java Developer’s Guide

COL object_name format a30
COL object_type format a15
SELECT object_name, object_type, status
 FROM user_objects
 WHERE object_type IN (’JAVA SOURCE’, ’JAVA CLASS’, ’JAVA RESOURCE’)
 ORDER BY object_type, object_name;

You can optionally use wildcards in querying USER_OBJECTS, as in the following
example.

SELECT object_name, object_type, status
 FROM user_objects
 WHERE object_name LIKE ’%Alerter’;

This routine finds any OBJECT_NAME entries that end with the characters: Alerter.

Publishing
Oracle Database enables clients and SQL to invoke Java methods that are loaded
within the database, once published. You publish either the object itself or individual
methods. If you write a Java stored procedure that you intend to invoke with a trigger,
directly or indirectly in SQL DML or in PL/SQL, you must publish individual
methods within the class. Specify how to access it through a call specification. Java
programs consist of many methods in many classes; however, only a few static
methods are typically exposed with call specifications. See Chapter 6, "Publishing Java
Classes With Call Specs" for more details.

User Interfaces on the Server
Oracle Database furnishes all core Java class libraries on the server, including those
associated with presentation of the user interfaces java.awt and java.applet. It is,
however, inappropriate for code executing in the server to attempt to materialize or
display a user interface in the server. Users running applications in the OracleJVM
should not be expected—nor allowed—to interact with or depend on the display and
input hardware of the server on which Oracle Database is running.

To address compatibility on platforms that do not support a display, keyboard, or
mouse, Java 1.4 outlines "Headless AWT" support. The Headless AWT API introduces
a new public runtime exception class, java.awt.HeadlessException. The
constructors of the Applet class, all heavy-weight components, and many of the
methods in the Toolkit and GraphicsEnvironment classes, that rely on the native
display devices are changed to throw the HeadlessException if the platform does
not support a display. In Oracle Database, user interfaces are supported only on client
applications. Accordingly, the OracleJVM is a "Headless Platform" and throws a
HeadlessException if those methods are called.

Most AWT computation that does not involve accessing the underlying native display
or input devices is allowed in Headless AWT. In fact, Headless AWT is quite powerful
as it allows programmers access to fonts, imaging, printing, and color and ICC
manipulation. For example, applications running in the OracleJVM can parse,
manipulate, and write out images as long as they do not try to physically display it in
the server. The Sun reference JVM implementation can be invoked in Headless mode
(by supplying the property -Djava.awt.headless=true) and run with the same
Headless AWT restrictions as the OracleJVM does. The OracleJVM fully complies with
the Java Compatibility Kit (JCK) with respect to Headless AWT. See the following Web
page for more information on Headless Support in J2SE 1.4:

http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html#headless

Shortened Class Names

Java Applications on Oracle Database 2-19

The OracleJVM takes a similar approach for sound support to how it handles AWT.
Applications in the OracleJVM are not allowed to access the underlying sound system
for purposes of sound playback or recording. Instead, the system sound resources
appear to be unavailable in a manner consistent with the sound API specification of
the methods that are trying to access the resources. For example, methods in
javax.sound.midi.MidiSystem that attempt to access the underlying system
sound resources throw the checked exception MidiUnavailableException to
signal that the system is unavailable. However, similar to Oracle Database Headless
AWT support, Oracle Database supports the APIs that allow sound file manipulation
free of the native sound devices. The OracleJVM also fully complies with the JCK
when it implements the sound API.

Shortened Class Names
Each Java source, class, and resource is stored in its own schema object in the server.
The name of the schema object is derived from the fully qualified name, which
includes relevant path or package information. Dots are replaced by slashes. These
fully qualified names (with slashes)—used for loaded sources, loaded classes, loaded
resources, generated classes, and generated resources—are referred to in this chapter
as schema object full names.

Schema object names, however, have a maximum of only 31 characters, and all
characters must be legal and convertible to characters in the database character set. If
any full name is longer than 31 characters or contains illegal or non-convertible
characters, the Oracle Database server converts the full name to a short name to employ
as the name of the schema object, keeping track of both names and how to convert
between them. If the full name is 31 characters or less and has no illegal or
inconvertible characters, then the full name is used as the schema object name.

Because Java classes and methods can have names exceeding the maximum SQL
identifier length, Oracle Database uses abbreviated names internally for SQL access.
Oracle Database provides a method within the DBMS_JAVA package for retrieving the
original Java class name for any truncated name.

FUNCTION longname (shortname VARCHAR2) RETURN VARCHAR2

This function returns the longname from a Java schema object. An example is to print
the fully qualified name of classes that are invalid for some reason.

select dbms_java.longname (object_name) from user_objects
 where object_type = 'JAVA CLASS' and status = 'INVALID';

In addition, you can specify a full name to the database by using the shortname()
routine of the DBMS_JAVA package, which takes a full name as input and returns the
corresponding short name. This is useful when verifying that your classes loaded by
querying the USER_OBJECTS view.

FUNCTION shortname (longname VARCHAR2) RETURN VARCHAR2

Refer to Chapter 8, "Java Stored Procedures Application Example" for a detailed
example of the use of this function and ways to determine which Java schema objects
are present on the server.

Class.forName() in Oracle Database

2-20 Oracle Database Java Developer’s Guide

Class.forName() in Oracle Database
The Java Language Specification provides the following description of
Class.forName():

Given the fully-qualified name of a class, this method attempts to locate, load, and link
the class. If it succeeds, a reference to the Class object for the class is returned. If it fails,
a ClassNotFoundException is thrown.

Class lookup is always on behalf of a referencing class through a ClassLoader. The
difference between the JDK implementation and the OracleJVM implementation is the
method on which the class is found:

■ The JDK uses one ClassLoader that searches the set of directory tree roots specified
by the environment variable CLASSPATH.

■ OracleJVM defines several resolvers, which define how to locate classes. Every
class has a resolver associated with it, and each class can, potentially, have a
different resolver. When you execute a method that calls Class.forName(), the
resolver of the currently executing class (this) is used to locate the class. See
"Resolving Class Dependencies" on page 2-10 for more information on resolvers.

You can receive unexpected results if you try to locate a class with an unexpected
resolver. For example, if a class X in schema X requests a class Y in schema Y to look
up class Z, you can experience an error if you expected class X’s resolver to be used.
Because class Y is performing the lookup, the resolver associated with class Y is used
to locate class Z. In summary, if the class exists in another schema and you specified
different resolvers for different classes—as would happen by default if they are in
different schemas— you might not find the class.

You can solve this resolver problem as follows:

■ Avoid any class name lookup by passing the Class object itself.

■ Supply the ClassLoader in the Class.forName method.

■ Supply the class and the schema it resides into classForNameAndSchema
method.

■ Supply the schema and class name to ClassForName.lookupClass.

■ Serialize your objects with the schema name with the class name.

Supply the ClassLoader in Class.forName
Oracle Database uses resolvers for locating classes within schemas. Every class has a
specified resolver associated with it and each class can have a different resolver
associated with it. Thus, the locating of classes is dependent on the definition of the
associated resolver. The ClassLoader knows which resolver to use, based upon the
class that is specified. When you supply a ClassLoader to Class.forName(), your
class is looked up in the schemas defined within the resolver of the class. The syntax
for this variant of Class.forName is as follows:

Class forName (String name, boolean initialize, ClassLoader loader);

Note: Another unexpected behavior can occur if system classes
invoke Class.forName(). The desired class is found only if it
resides in SYS or in PUBLIC. If your class does not exist in either
SYS or PUBLIC, you can declare a PUBLIC synonym for the class.

Class.forName() in Oracle Database

Java Applications on Oracle Database 2-21

The following examples show how to supply the class loader of either the current class
instance or the calling class instance.

Example 2–1 Retrieve Resolver from Current Class

You can retrieve the class loader of any instance through the
Class.getClassLoader method. The following example retrieves the class loader
of the class represented by instance x.

Class c1 = Class.forName (x.whatClass(), true, x.getClass().getClassLoader());

Example 2–2 Retrieve Resolver from Calling Class

You can retrieve the class of the instance that invoked the executing method through
the oracle.aurora.vm.OracleRuntime.getCallerClass method. Once you
retrieve the class, invoke the Class.getClassLoader method on the returned class.
The following example retrieves the class of the instance that invoked the
workForCaller method. Then, its class loader is retrieved and supplied to the
Class.forName method. Thus, the resolver used for looking up the class is the
resolver of the calling class.

void workForCaller() {
ClassLoader c1 =
oracle.aurora.vm.OracleRuntime.getCallerClass().getClassLoader();
...
Class c = Class.forName (name, true, c1);

Supply Class and Schema Names to classForNameAndSchema
You can resolve the problem of where to find the class by either supplying the resolver,
which knows the schemas to search, or by supplying the schema in which the class is
loaded. If you know in which schema the class is loaded, you can use the
classForNameAndSchema method. Oracle Database provides a method in the
DbmsJava class, which takes in both the name of the class and the schema in which
the class resides. This method locates the class within the designated schema.

Example 2–3 Providing Schema and Class Names

The following example shows how you can save the schema and class names in the
save method. Both names are retrieved, and the class is located using the
DbmsJava.classForNameAndSchema method.

import oracle.aurora.rdbms.ClassHandle;
import oracle.aurora.rdbms.Schema;
import oracle.aurora.rdbms.DbmsJava;

void save (Class c1) {
ClassHandle handle = ClassHandle.lookup(c1);
Schema schema = handle.schema();
writeNmae (schema.getName());
writeName (c1.getName());
}

Class restore() {
String schemaName = readName();
String className = readName();
return DbmsJava.classForNameAndSchema (schemaName, className);
}

Class.forName() in Oracle Database

2-22 Oracle Database Java Developer’s Guide

Supply Class and Schema Names to lookupClass
You can supply a single String, containing both the schema and class names, to the
oracle.aurora.util.ClassForName.lookupClass method. When invoked,
this method locates the class in the specified schema. The string must be in the
following format:

"<schema>:<class>"

For example, to locate com.package.myclass in schema SCOTT, execute the
following:

oracle.aurora.util.ClassForName.lookupClass("SCOTT:com.package.myclass");

Supply Class and Schema Names when Serializing
When you de-serialize a class, part of the operation is to lookup a class based on a
name. In order to ensure that the lookup is successful, the serialized object must
contain both the class and schema names.

Oracle Database provides the following classes for serializing and de-serializing
objects:

■ oracle.aurora.rdbms.DbmsObjectOutputStream

This class extends java.io.ObjectOutputStream and adds schema names in the
appropriate places.

■ oracle.aurora.rdbms.DbmsObjectInputStream

This class extends java.io.ObjectInputStream and reads streams written by
DbmsObjectOutputStream. You can use this class in any environment. If used
within Oracle Database, the schema names are read out and used when performing
the class lookup. If used on a client, the schema names are ignored.

Class.forName Example
The following example shows several methods for looking up a class.

■ To use the resolver of this instance’s class, invoke lookupWithClassLoader.
This method supplies a class loader to the Class.forName method in the from
variable. The class loader specified in the from variable defaults to this class.

■ To use the resolver from a specific class, call ForName with the designated class
name, followed by lookupWithClassLoader. The ForName method sets the
from variable to the specified class. The lookupWithClassLoader method uses
the class loader from the specified class.

■ To use the resolver from the calling class, first invoke the ForName method
without any parameters. It sets the from variable to the calling class. Then, invoke
the lookupWithClassLoader to locate the class using the resolver of the calling
class.

■ To lookup a class in a specified schema, invoke the lookupWithSchema method.
This provides the class and schema name to the classForNameAndSchema
method.

Note: You must use uppercase characters for the schema name. In
this case, the schema name is case-sensitive.

Managing Your Operating System Resources

Java Applications on Oracle Database 2-23

import oracle.aurora.vm.OracleRuntime;
import oracle.aurora.rdbms.Schema;
import oracle.aurora.rdbms.DbmsJava;

public class ForName {

 private Class from;
 /* Supply an explicit class to the constructor */
 public ForName(Class from) {
 this.from = from;
 }
 /* Use the class of the code containing the "new ForName()" */
 public ForName() {
 from = OracleRuntime.getCallerClass();
 }

 /* lookup relative to Class supplied to constructor */
 public Class lookupWithClassLoader(String name) throws ClassNotFoundException {
 /* A ClassLoader uses the resolver associated with the class*/
 return Class.forName(name, true, from.getClassLoader());
 }

 /* In case the schema containing the class is known */
 static Class lookupWithSchema(String name, String schema) {
 Schema s = Schema.lookup(schema);
 return DbmsJava.classForNameAndSchema(name, s);
 }
}

Managing Your Operating System Resources
Operating system resources are a limited commodity on any computer. Because Java is
targeted at providing a computing platform as well as a programming language, it
contains platform-independent classes and frameworks for accessing platform-specific
resources. The Java class methods access operating system resources through the JVM.
Java has potential problems with this model, because programmers rely on the
garbage collector to manage all resources, when all that the garbage collector manages
is Java objects, not the operating system resources that the Java object holds on to.

In addition, when you use shared servers, your operating system resources, which are
contained within Java objects, can be invalidated if they are maintained across calls
within a session. For further details, see "Operating System Resources Affected Across
Calls".

The following sections discusses these potential problems:

■ Overview of Operating System Resources

■ Garbage Collection and Operating System Resources

Managing Your Operating System Resources

2-24 Oracle Database Java Developer’s Guide

Overview of Operating System Resources
In general, your operating system resources contain the following:

Operating System Resource Access
By default, a Java user does not have direct access to most operating system resources.
A system administrator may give permission to a user to access these resources by
modifying the JVM security restrictions. The JVM security enforced upon system
resources conforms to Java 2 security. See "Java 2 Security" on page 9-2 for more
information.

Operating System Resource Lifetime
You access operating system resources using the standard core Java classes and
methods. Once you access a resource, the time that it remains active (usable) varies
according to the type of resource. Memory is garbage collected as described in
"Automated Storage Management With Garbage Collection" on page 1-13. Files,
threads, and sockets persist across calls when you use a dedicated mode server. In
shared server mode, files, threads, and sockets terminate when the call ends. For more
information, see "Operating System Resources Affected Across Calls".

Garbage Collection and Operating System Resources
Imagine that memory is divided into two realms: Java object memory and operating
system constructs. The Java object memory realm contains all objects and variables.
Operating system constructs include resources that the operating system allocates to
the object when it asks. These resources include files, sockets, and so on.

Basic programming rules dictate that you close all memory—both Java objects and
operating system constructs. Java programmers incorrectly assume that all memory is
freed by the garbage collector. The garbage collector was created to collect all unused
Java object memory. However, it does not close any operating system constructs. All
operating system constructs must be closed by the program before the Java object is
collected.

For example, whenever an object opens a file, the operating system creates the file and
gives the object a file handle. If the file is not closed, the operating system will hold the
file handle construct open until the call ends or JVM exits. This can cause you to run
out of these constructs earlier than necessary. There are a finite number of handles
within each operating system. To guarantee that you do not run out of handles, close
your resources before exiting the method. This includes closing the streams attached to

Operating System
Resources Description

memory Oracle Database manages memory internally, allocating memory as
you create new objects and freeing objects as you no longer need
them. The language and class libraries do not support a direct means
to allocate and free memory. "Automated Storage Management With
Garbage Collection" on page 1-13 discusses garbage collection.

files and sockets Java contains classes that represent file or socket resources. Instances
of these classes hold on to your operating system’s file or socket
constructs, such as file handles.

threads Threads are discouraged within the OracleJVM because of scalability
issues. However, you can have a multi-threaded application within
the database. "Threading in Oracle Database" on page 2-25 discusses
in detail the OracleJVM threading model.

Threading in Oracle Database

Java Applications on Oracle Database 2-25

your sockets. You should close the streams attached to the socket before closing the
socket.

So why not expand the garbage collector to close all operating system constructs? For
performance reasons, the garbage collector cannot examine each object to see if it
contains a handle. Thus, the garbage collector collects Java objects and variables, but
does not issue the appropriate operating system methods for freeing any handles.

Example 2–4 shows how you should close the operating system constructs.

Example 2–4 Closing Your Operating System Resources

public static void addFile(String[] newFile) {
 File inFile = new File(newFile);
 FileReader in = new FileReader(inFile);
 int i;

 while ((i = in.read()) != -1)
 out.write(i);
 /*closing the file, which frees up the operating system file handle*/
 in.close();
 }

If you do not close the in file, eventually the File object will be garbage collected.
However, even if the File object is garbage collected, the operating system still
believes that the file is in use, because it was not closed.

Threading in Oracle Database
TheOracleJVM implements a non-preemptive threading model. With this model, the
JVM runs all Java threads on a single operating system thread. It schedules them in a
round-robin fashion and switches between them only when they block. Blocking
occurs when you, for example, invoke the Thread.yield() method or wait on a
network socket by invoking mySocket.read().

Oracle chose this model because any Java application written on a single-processor
system works identical to one written on a multi-processor system. Also, the lack of

Note: You might want to use Java finalizers to close resources.
However, finalizers are not guaranteed to run in a timely manner.
Instead, finalizers are put on a queue to execute when the garbage
collector has time. If you close your resources within your finalizer,
it might not be freed up until the JVM exits. The best approach is to
close your resources within the method.

Advantages of the Oracle Database
Threading Model Disadvantages

■ simple to program

■ efficient to implement in the Java virtual
machine, because a thread switch does
not require any system calls

■ safer, because the JVM can detect a
deadlock that would hang a preemptive
JVM and can then raise a runtime
exception

■ does not exhibit any concurrency

■ lack of portability

■ performance considerations, because
of the system calls required for locking
when blocking the thread

■ memory scalability, because efficient
multi-threaded memory allocation
requires a larger pool of memory

Threading in Oracle Database

2-26 Oracle Database Java Developer’s Guide

concurrency among Java threads is not an issue, because OracleJVM is embedded in
the database, which provides a higher degree of concurrency than any conventional
JVM.

There is no need to use threads within the application logic because the Oracle server
preemptively schedules the session JVMs. If you must support hundreds or thousands
of simultaneous transactions, start each one in its own JVM. This is exactly what
happens when you create a session in the OracleJVM. The normal transactional
capabilities of the Oracle database server accomplish coordination and data transfer
between the JVMs. This is not a scalability issue, because in contrast to the 6 MB-8 MB
memory footprint of the typical Java virtual machine, the Oracle server can create
thousands of JVMs, with each one taking less than 40 KB.

Threading is managed within the OracleJVM by servicing a single thread until it
completes or blocks. If the thread blocks, by yielding or waiting on a network socket,
the JVM will service another thread. However, if the thread never blocks, it is serviced
until completed.

The OracleJVM has added the following features for better performance and thread
management:

■ System calls are at a minimum. OracleJVM has exchanged some of the normal
system calls with non-system solutions. For example, entering a
monitor-synchronized block or method does not require a system call.

■ Deadlocks are detected.

The OracleJVM monitors for deadlocks between threads. If a deadlock occurs, the OracleJVM
terminates one of the threads and throws the oracle.aurora.vm.DeadlockError excep-
tion.
Single-threaded applications cannot suspend. If the application has only a single thread and you
try to suspend it, the oracle.aurora.vm.LimboError exception is thrown.

Thread Life Cycle
In the single-threaded execution case, the call ends when one of the following events
occurs:

1. The thread returns to its caller.

2. An exception is thrown and is not caught in Java code.

3. The System.exit(), oracle.aurora.vm.OracleRuntime.exitCall()
method is invoked.

If the initial thread creates and starts other Java threads, the rules about when a call
ends are slightly more complicated. In this case, the call ends in one of the following
two ways:

1. The main thread returns to its caller, or an exception is thrown and not caught in
this thread, and all other non-daemon threads complete execution. Non-daemon
threads complete either by returning from their initial method or because an
exception is thrown and not caught in the thread.

2. Any thread invokes the System.exit() or
oracle.aurora.vm.OracleRuntime.exitCall() method.

In shared server mode, when a call ends because of a return or uncaught exceptions,
the OracleJVM throws a ThreadDeathException in all daemon threads. The
ThreadDeathException essentially forces threads to stop execution. For other
considerations, see "Operating System Resources Affected Across Calls".

Special Considerations for Shared Servers

Java Applications on Oracle Database 2-27

In both dedicated and shared server mode, when a call ends because of a call to
System.exit() or oracle.aurora.vm.OracleRuntime.exitCall(), the
OracleJVM ends the call abruptly and terminates all threads, but does not throw
ThreadDeathException.

During the execution of a single call, a Java program can recursively cause more Java
code to be executed. For example, your program can issue a SQL query using JDBC
that in turn causes a trigger written in Java to be invoked. All the preceding remarks
regarding call lifetime apply to the top-most call to Java code, not to the recursive call.
For example, a call to System.exit() from within a recursive call will exit the entire
top-most call to Java, not just the recursive call.

Special Considerations for Shared Servers
For sessions that use shared servers, the limitations across calls that applied in
previous releases are still present. The reason is that a session that uses a shared server
is not guaranteed to connect to the same process on a subsequent database call, and
hence the session-specific memory and objects that need to live across calls are saved
in the System Global Area. This means that process-specific resources, such as threads,
open files and sockets must be cleaned up at the end of each call, and hence will not be
available for the next call.

End-of-Call Migration
In shared server mode, Oracle Database preserves the state of your Java program
between calls by migrating all objects that are reachable from static variables into
session space at the end of the call. Session space exists within the client’s session to
store static variables and objects that exist between calls. OracleJVM performs this
migration operation at the end of every call, without any intervention by you.

This migration operation is a memory and performance consideration; thus, you
should be aware of what you designate to exist between calls, and keep the static
variables and objects to a minimum. If you store objects in static variables needlessly,
you impose an unnecessary burden on the memory manager to perform the migration
and consume per-session resources. By limiting your static variables to only what is
necessary, you help the memory manager and improve your server’s performance.

To maximize the number of users who can execute your Java program at the same
time, it is important to minimize the footprint of a session. In particular, to achieve
maximum scalability, an inactive session should take up as little memory space as
possible. A simple technique to minimize footprint is to release large data structures at
the end of every call. You can lazily recreate many data structures when you need
them again in another call. For this reason, the OracleJVM has a mechanism for calling
a specified Java method when a session is about to become inactive, such as at
end-of-call time.

This mechanism is the EndOfCallRegistry notification. It enables you to clear static
variables at the end of the call and reinitialize the variables using a lazy initialization
technique when the next call comes in. You should execute this only if you are
concerned about the amount of storage you require the memory manager to store in
between calls. It becomes a concern only for more complex stateful server applications
you implement in Java.

The decision of whether to null-out data structures at end-of-call and then recreate
them for each new call is a typical time and space trade-off. There is some extra time
spent in recreating the structure, but you can save significant space by not holding on
to the structure between calls. In addition, there is a time consideration, because

Special Considerations for Shared Servers

2-28 Oracle Database Java Developer’s Guide

objects—especially large objects—are more expensive to access after they have been
migrated to session space. The penalty results from the differences in representation of
session, as opposed to call-space based objects.

Examples of data structures that are candidates for this type of optimization include:

■ Buffers or caches.

■ Static fields, such as Arrays, that once initialized, can remain unchanged during
the course of the program.

■ Any dynamically built data structure that could have a space-efficient
representation between calls and a more speed-efficient representation for the
duration of a call. Because this can be tricky and complicate your code, making it
hard to maintain, so you should consider doing this only after demonstrating that
the space saved is worth the effort.

Oracle-Specific Support for End-of-Call Optimization
You can register the static variables that you want cleared at the end of the call when
the buffer, field, or data structure is created. Within the Oracle-specified
oracle.aurora.memoryManager.EndOfCallRegistry class, the
registerCallback method takes in an object that implements a Callback object.
The registerCallback object stores this object until the end of the call. When
end-of-call occurs, OracleJVM invokes the act method within all registered
Callback objects. The act method within the Callback object is implemented to
clear the user-defined buffer, field, or data structure. Once cleared, the Callback is
removed from the registry.

The way that you use the EndOfCallRegistry depends on whether you are dealing
with objects held in static fields or instance fields.

■ Static fields—You use EndOfCallRegistry to clear state associated with an
entire class. In this case, the Callback object should be held in a private static
field. Any code that requires access to the cached data that was dropped between
calls must invoke a method that lazily creates—or recreates—the cached data. The
example below does the following:

1. Creates a Callback object within a static field, thunk.

2. Registers this Callback object for end-of-call migration.

3. Implements the Callback.act method to free up all static variables,
including the Callback object itself.

4. Provides a method, createCachedField, for lazily recreating the cache.

When the user creates the cache, the Callback object is automatically registered
within the getCachedField method. At end-of-call, OracleJVM invokes the
registered Callback.act method, which frees the static memory.

import oracle.aurora.memoryManager.Callback;
import oracle.aurora.memoryManager.EndOfCallRegistry;

class Example {
 static Object cachedField = null;
 private static Callback thunk = null;

Note: If the end of the call is also the end of the session, callbacks
are not invoked, because the session space will be cleared anyway.

Special Considerations for Shared Servers

Java Applications on Oracle Database 2-29

 static void clearCachedField() {
 // clear out both the cached field, and the thunk so they don't
 // take up session space between calls
 cachedField = null;
 thunk = null;
 }

 private static Object getCachedField() {
 if (cachedField == null) {
 // save thunk in static field so it doesn't get reclaimed
 // by garbage collector
 thunk = new Callback () {
 public void act(Object obj) {
 Example.clearCachedField();
 }
 };

 // register thunk to clear cachedField at end-of-call.
 EndOfCallRegistry.registerCallback(thunk);
 // finally, set cached field
 cachedField = createCachedField();
 }
 return cachedField;
 }

 private static Object createCachedField() {

 }
}

■ Instance fields—Use EndOfCallRegistry to clear state in data structures held in
instance fields. For example, when a state is associated with each instance of a
class, each instance has a field that holds the cached state for the instance and fills
in the cached field as necessary. You can access the cached field with a method that
ensures the state is cached.

1. Implements the instance as a Callback object.

2. Implements the Callback.act method to free up the instance’s fields.

3. When the user requests a cache, the Callback object registers itself for
end-of-call migration.

4. Provides a method, createCachedField, for lazily recreating the cache.

When the user creates the cache, the Callback object is automatically registered
within the getCachedField method. At end-of-call, OracleJVM invokes the
registered Callback.act method, which frees the cache.

This approach ensures that the lifetime of the Callback object is identical to the
lifetime of the instance, because they are the same object.

import oracle.aurora.memoryManager.Callback;
import oracle.aurora.memoryManager.EndOfCallRegistry;

class Example2 implements Callback {
 private Object cachedField = null;

 public void act(Object obj) {
 // clear cached field
 cachedField = null;

Special Considerations for Shared Servers

2-30 Oracle Database Java Developer’s Guide

 obj = null;
 }

 // our accessor method
 private static Object getCachedField() {
 if (cachedField == null) {
 // if cachedField is not filled in then we need to
 // register self, and fill it in.
 EndOfCallRegistry.registerCallback(self);
 cachedField = createCachedField();
 }
 return cachedField;
 }

 private Object createCachedField() {

 }
}

A weak table holds the registry of end-of-call callbacks. If either the Callback object
or value are not reachable (see JLS section 12.6) from the Java program, both object and
value will be dropped from the table. The use of a weak table to hold callbacks also
means that registering a callback will not prevent the garbage collector from
reclaiming that object. Therefore, you must hold on to the callback yourself if you need
it—you cannot rely on the table holding it back.

You can find other ways in which end-of-call notification will be useful to your
applications. The following sections give the details for methods within the
EndOfCallRegistry class and the Callback interface:

EndOfCallRegistry.registerCallback method
The registerCallback method installs a Callback object within a registry. At the
end of the call, OracleJVM invokes the act methods of all registered Callback
objects.

You can register your Callback object by itself or with a value object. If you need
additional information stored within an object to be passed into act, you can register
this object within the value parameter.

public static void registerCallback(Callback thunk, Object value);
public static void registerCallback(Callback thunk);

EndOfCallRegistry.runCallbacks method
static void runCallbacks()

Parameter Description

thunk The Callback object to be invoked at end-of-call migration.

value If you need additional information stored
within an object to be passed into

act, you can register this object within the

value parameter.

In some cases, the value parameter is necessary to hold state
the callback needs. However, most users do not need to specify a
value.

Special Considerations for Shared Servers

Java Applications on Oracle Database 2-31

The JVM calls this method at end-of-call and calls act for every Callback object
registered using registerCallback. You should never call this method in your
code. It is called at end-of-call, before object migration and before the last finalization
step.

Callback Interface
Interface oracle.aurora.memoryManager.Callback

Any object you want to register using EndOfCallRegistry.registerCallback
implements the Callback interface. This interface can be useful in your application,
where you require notification at end-of-call.

Callback.act method
public void act(Object value)

You can implement any activity that you require to occur at the end of the call.
Normally, this method will contain procedures for clearing any memory that would be
saved to session space.

Operating System Resources Affected Across Calls
In shared server mode, the OracleJVM closes any open operating system resources at
the end of a database call, as shown in the following table:

You should close resources that are local to a single call when the call ends. However,
for static objects that hold on to operating system resources, you must be aware of how
these resources are affected after the call ends.

Files
In shared server mode, the OracleJVM automatically closes any open operating system
constructs—in Example 2–5, the file handle—when the call ends. This can affect any
operating system resources within your Java object. If you have a file opened within a
static variable, the file handle is closed at the end of the call for you. So, if you hold on
to the File object across calls, the next usage of the file handle throws an exception.

Resource Lifetime

files The system closes all files left open when a database call ends.

threads All threads are terminated when a call ends.

sockets ■ Sockets can exist across calls.

■ ServerSockets terminate when the call ends.

See "Sockets" on page 2-33 more information.

objects that
depend on
operating
system
resources

Regardless of the usable lifetime of the object (for example, the defined
lifetime for a thread object), the Java object can be valid for the duration of
the session. This can occur, for example, if the Java object is stored in a static
class variable, or a class variable references it directly or indirectly. If you
attempt to use one of these Java objects after its usable lifetime is over, Oracle
Database throws an exception. This is true for the following examples:

■ If an attempt is made to read from a java.io.FileInputStream that
was closed at the end of a previous call, a java.io.IOException is
thrown.

■ java.lang.Thread.isAlive() is false for any Thread object
running in a previous call and still accessible in a subsequent call.

Special Considerations for Shared Servers

2-32 Oracle Database Java Developer’s Guide

In Example 2–5, class Concat enables multiple files to be written into a single file,
outFile. On the first call, outFile is created. The first input file is opened, read,
input into outFile, and the call ends. Because outFile is statically defined, it is
moved into session space between call invocations. However, the file handle—that is,
the FileDescriptor—is closed at the end of the call. The next time you call
addFile, you will get an exception.

Example 2–5 Compromising Your Operating System Resources

public class Concat {
 static File outFile = new File("outme.txt");
 FileWriter out = new FileWriter(outFile);

public static void addFile(String[] newFile) {
 File inFile = new File(newFile);
 FileReader in = new FileReader(inFile);
 int i;

 while ((i = in.read()) != -1)
 out.write(i);
 in.close();
 }
}

There is a workaround: to make sure that your handles stay valid, close your files,
buffers, and so on, at the end of every call; reopen the resource at the beginning of the
next call. Another option is to use the database rather than using operating system
resources. For example, try to use database tables rather than a file. Or do not store
operating system resources within static objects expected to live across calls; use
operating system resources only within objects local to the call.

Example 2–6 shows how you can perform concatenation, as in Example 2–5, without
compromising your operating system resources. The addFile method opens the
outme.txt file within each call, making sure that anything written into the file is
appended to the end. At the end of each call, the file is closed. Two things occur:

1. The File object no longer exists outside of a call.

2. The operating system resource, the outme.txt file, is reopened for each call. If
you had made the File object a static variable, the closing of outme.txt within
each call would ensure that the operating system resource is not compromised.

Example 2–6 Correctly Managing Your Operating System Resources

public class Concat {

public static void addFile(String[] newFile) {
 /*open the output file each call; make sure the input*/
 /*file is written out to the end by making it "append=true"*/
 FileWriter out = new FileWriter("outme.txt", TRUE);
 File inFile = new File(newFile);
 FileReader in = new FileReader(inFile);
 int i;

Special Considerations for Shared Servers

Java Applications on Oracle Database 2-33

 while ((i = in.read()) != -1)
 out.write(i);
 in.close();
 /*close the output file between calls*/
 out.close();
 }
}

Sockets
Sockets are used in setting up a connection between a client and a server. For each
database connection, sockets are used at either end of the connection. Your application
does not set up the connection; the connection is set up by the underlying networking
protocol: Oracle Net’s TTC or IIOP. See "Configuring OracleJVM" on page 4-1 for
information on how to configure your connection.

You might also wish to set up another connection—for example, connecting to a
specified URL from within one of the classes stored within the database. To do so,
instantiate sockets for servicing the client and server sides of the connection.

■ The java.net.Socket() constructor creates a client socket.

■ The java.net.ServerSocket() constructor creates a server socket.

A socket exists at each end of the connection. The server-side of the connection that
listens for incoming calls is serviced by a ServerSocket. The client-side of the
connection that sends requests is serviced through a Socket. You can use sockets as
defined within the JVM with the following restriction: a ServerSocket instance
within a shared server cannot exist across calls.

Threads
In shared server mode, when a call ends because of a return or uncaught exceptions,
the OracleJVM throws a ThreadDeathException in all daemon threads. The
ThreadDeathException essentially forces threads to stop execution. Code that
depends on threads living across calls does not behave as expected in shared server
mode. For example, the value of a static variable that tracks initialization of a thread
may become incorrect in subsequent calls because all threads are killed at the end of a
database call.

As a specific example, the RMI Server that Sun Microsystems supplies does function in
shared server mode; however, it is useful only within the context of a single call. This
is because the RMI Server forks daemon threads, which in shared server mode are
killed off at the end of call (that is, when all non-daemon threads return). If the RMI
server session is reentered in a subsequent call, these daemon threads aren't restarted
and the RMI server won't function properly.

Socket Type Description

Socket Because the client-side of the connection is outbound, the Socket
instance can be serviced across calls within a shared server.

ServerSocket The server-side of the connection is a listener. The ServerSocket is
closed at the end of a call within a shared server; the shared servers
move on to another client at the end of every call. You will receive an
I/O exception stating that the socket was closed if you try to use the
ServerSocket outside of the call it was created in.

Special Considerations for Shared Servers

2-34 Oracle Database Java Developer’s Guide

Invoking Java in the Database 3-1

3
Invoking Java in the Database

This chapter gives you an overview and examples of how to invoke Java within the
database.

■ Overview

■ Invoking Java Methods

■ Utilizing JDBC for Querying the Database

■ Debugging Server Applications

■ How To Tell You Are Executing in the Server

■ Redirecting Output on the Server

Overview
In Oracle Database, you utilize Java in one of the following ways:

■ Invoking Java Methods—Invoke Java methods in classes that are loaded within
the database, such as Java stored procedures.

■ Utilizing JDBC for Querying the Database—You can query the database from a
Java client through utilizing JDBC.

We recommend that you approach Java development in Oracle Database
incrementally, building on what you learn at each step.

1. You should master the process of writing simple Java stored procedures, as
explained in "Preparing Java Class Methods for Execution" on page 2-6. This
includes writing the Java class, deciding on a resolver, loading the class into the
database, and publishing the class.

2. You should understand how to access and manipulate SQL data from Java. Most
Java server programs, and certainly Java programs executing on Oracle Database,
interact with database-resident data. The standard API for accomplishing this is
JDBC.

Java is a simple, general purpose language for writing stored procedures. JDBC allow
Java to access SQL data. They support SQL operations and concepts, variable bindings
between Java and SQL types, and classes that map Java classes to SQL types. You can
write portable Java code that can execute on a client or a server without change. With
JDBC, the dividing line between client and server is usually obvious—SQL operations
happen in the server, and application program logic resides in the client.

As you write more complex Java programs, you can gain performance and scalability
by controlling the location where the program logic executes. You can minimize
network traffic and maximize locality of reference to SQL data. JDBC furnishes ways

Invoking Java Methods

3-2 Oracle Database Java Developer’s Guide

to accomplish these goals. However, as you tend to leverage the object model in your
Java application, a more significant portion of time is spent in Java execution, as
opposed to SQL data access and manipulation. It becomes more important to
understand and specify where Java objects reside and execute in an Internet
application.

Invoking Java Methods
The way your client calls a Java method depends on the type of Java application. The
following sections discuss each of the Java APIs available for creating a Java class that
can be loaded into the database and accessed by your client:

■ Utilizing Java Stored Procedures

■ Utilizing Java Native Interface (JNI) Support

■ Utilizing JDBC for Querying the Database

Utilizing Java Stored Procedures
You execute Java stored procedures similarly to PL/SQL. Normally, calling a Java
stored procedure is a by-product of database manipulation, because it is usually the
result of a trigger or SQL DML call.

To invoke a Java stored procedure, you must publish it through a call specification.
The following example shows how to create, resolve, load, and publish a simple Java
stored procedure that echoes "Hello world".

1. Write the Java class.

Define a class, Hello, with one method, Hello.world(), that returns the string
"Hello world".

public class Hello
{
 public static String world ()
 {
 return "Hello world";
 }
}

2. Compile the class on your client system. Using the Sun Microsystems JDK, for
example, invoke the Java compiler, javac, as follows:

javac Hello.java

Normally, it is a good idea to specify your CLASSPATH on the javac command
line, especially when writing shell scripts or make files. The Java compiler
produces a Java binary file—in this case, Hello.class.

Keep in mind where this Java code will execute. If you execute Hello.class on
your client system, it searches the CLASSPATH for all supporting core classes it
must execute. This search should result in locating the dependent class in one of
the following:

■ as an individual file in a directory, where the directory is specified in the
CLASSPATH

■ within a .jar or .zip file, where the directory is specified in the
CLASSPATH

Invoking Java Methods

Invoking Java in the Database 3-3

3. Decide on the resolver for your class.

In this case, you load Hello.class in the server, where it is stored in the
database as a Java schema object. When you execute the world() method of the
Hello.class on the server, it finds the necessary supporting classes, such as
String, using a resolver—in this case, the default resolver. The default resolver
looks for classes in the current schema first and then in PUBLIC. All core class
libraries, including the java.lang package, are found in PUBLIC. You may need
to specify different resolvers, and you can force resolution to occur when you use
loadjava, to determine if there are any problems earlier, rather than at runtime.
Refer to "Resolving Class Dependencies" on page 2-10 or Chapter 11, "Schema
Object Tools" for more details on resolvers and loadjava.

4. Load the class on the Oracle Database server using loadjava. You must specify
the user name and password.

loadjava -user scott/tiger Hello.class

5. Publish the stored procedure through a call specification.

To invoke a Java static method with a SQL CALL, you must publish it with a call
specification. A call specification defines for SQL which arguments the method
takes and the SQL types it returns.

In SQL*Plus, connect to the database and define a top-level call specification for
Hello.world():

SQL> connect scott/tiger
connected
SQL> create or replace function HELLOWORLD return VARCHAR2 as
 2 language java name 'Hello.world () return java.lang.String';
 3 /
Function created.

6. Invoke the stored procedure.

SQL> variable myString varchar2(20);
SQL> call HELLOWORLD() into :myString;
Call completed.
SQL> print myString;

MYSTRING

Hello world

SQL>

The call HELLOWORLD() into :myString statement performs a top-level call in
Oracle Database. The Oracle-specific select HELLOWORLD from DUAL also works.
Note that SQL and PL/SQL see no difference between a stored procedure that is
written in Java, PL/SQL, or any other language. The call specification provides a
means to tie inter-language calls together in a consistent manner. Call specifications
are necessary only for entry points invoked with triggers or SQL and PL/SQL calls.
Furthermore, JDeveloper can automate the task of writing call specifications.

For more information on Java stored procedures, using Java in triggers, call
specifications, rights models, and inter-language calls, see Chapter 5, "Developing Java
Stored Procedures".

Invoking Java Methods

3-4 Oracle Database Java Developer’s Guide

Utilizing Java Native Interface (JNI) Support
The Java Native Interface (JNI) is a standard programming interface for writing Java
native methods and embedding the Java virtual machine into native applications. The
primary goal of JNI is to provide binary compatibility of Java applications that use
platform-specific native libraries.

Oracle does not support the use of JNI in Oracle Database Java applications. If you use
JNI, your application is not 100% pure Java, and the native methods require porting
between platforms. Native methods have the potential for crashing the server,
violating security, and corrupting data.

Utilizing JDBC for Querying the Database
You can use JDBC protocols for querying the database from a Java client. This
establishes a session with a given user name and password to the database and
executes SQL queries against the database.

JDBC
JDBC is an industry-standard API developed by Sun Microsystems that allows you to
embed SQL statements as Java method arguments. JDBC is based on the X/Open SQL
Call Level Interface and complies with the SQL92 Entry Level standard. Each vendor,
such as Oracle, creates its JDBC implementation by implementing the interfaces of the
Sun Microsystems java.sql package. Oracle offers three JDBC drivers that
implement these standard interfaces:

1. The JDBC Thin driver, a 100% pure Java solution you can use for either client-side
applications or applets and requires no Oracle client installation.

2. The JDBC OCI drivers, which you use for client-side applications and requires an
Oracle client installation.

3. The server-side JDBC driver embedded in the Oracle Database server.

For the developer, using JDBC is a step-by-step process of creating a statement object
of some type for your desired SQL operation, assigning any local variables that you
want to bind to the SQL operation, and then executing the operation. This process is
sufficient for many applications but becomes cumbersome for any complicated
statements. Dynamic SQL operations, where the operations are not known until
runtime, require JDBC. In typical applications, however, this represents a minority of
the SQL operations.

An Example
The following is an example of a simple operation in JDBC code.

JDBC:

// (Presume you already have a JDBC Connection object conn)
// Define Java variables
String name;
int id=37115;
float salary=20000;

Protocol Description

JDBC Use this protocol for more complex or dynamic SQL queries. JDBC requires
you to establish the session, construct the query, and so on.

Debugging Server Applications

Invoking Java in the Database 3-5

// Set up JDBC prepared statement.
PreparedStatement pstmt = conn.prepareStatement
 ("select ename from emp where empno=? and sal>?");
pstmt.setInt(1, id);
pstmt.setFloat(2, salary);

// Execute query; retrieve name and assign it to Java variable.
ResultSet rs = pstmt.executeQuery();
while (rs.next()) {
 name=rs.getString(1);
 System.out.println("Name is: " + name);
}

// Close result set and statement objects.
rs.close()
pstmt.close();

1. Define the Java variables name, id, and salary.

2. Define a prepared statement (this presumes you have already established a
connection to the database so that you can use the prepareStatement()
method of the connection object).

You can use a prepared statement whenever values within the SQL statement
must be dynamically set. You can use the same prepared statement repeatedly
with different variable values. The question marks in the prepared statement are
placeholders for Java variables and are given values in the pstmt.setInt() and
pstmt.setFloat() lines of code. The first "?" is set to the int variable id (with
a value of 37115). The second "?" is set to the float variable salary (with a
value of 20000).

3. Execute the query and return the data into a JDBC result set object. (You can use
result sets to gather query data.)

4. Retrieve the data of interest (the name) from the result set and print it. A result set
usually contains multiple rows of data, although this example has only one row.

Debugging Server Applications
Oracle Database furnishes a debugging capability that is useful for developers who
use the JDK’s jdb debugger. The interfaces that is provided is the Java Debug Wire
Protocol, which is supported by JDK 1.3 and later versions of the Sun Microsystems
JDB debugger (http://java.sun.com/j2se/1.3/docs/guide/jpda/,
http://java.sun.com/j2se/1.4/docs/guide/jpda/.) The use of this interface
is documented on OTN. The JDWP protocol supports many new features, including
the ability to listen for connections (no more DebugProxy), change the values of
variables while debugging, and evaluate arbitrary Java expressions, including method
evaluation.

Oracle's JDeveloper provides a user-friendly integration with these debugging
features. See the JDeveloper documentation for more information on how to debug
your Java application through JDeveloper. Other independent IDE vendors will be
able to integrate their own debuggers with Oracle Database.

How To Tell You Are Executing in the Server

3-6 Oracle Database Java Developer’s Guide

How To Tell You Are Executing in the Server
You might want to write Java code that executes in a certain way in the server and
another way on the client. In general, Oracle does not recommend this. In fact, JDBC
goes to some trouble to enable you to write portable code that avoids this problem,
even though the drivers used in the server and client are different.

If you must determine whether your code is executing in the server, use the
System.getProperty method, as follows:

System.getProperty ("oracle.jserver.version")

The getProperty method returns the following:

■ If executing in the server, it returns a String that represents the Oracle Database
release.

■ If executing on the client, it returns null.

Redirecting Output on the Server
System.out and System.err print to the current trace files. To redirect output to the
SQL*Plus text buffer, use this workaround:

SQL> SET SERVEROUTPUT ON
SQL> CALL dbms_java.set_output(2000);

The minimum (and default) buffer size is 2,000 bytes; the maximum size is 1,000,000
bytes. In the following example, the buffer size is increased to 5,000 bytes:

SQL> SET SERVEROUTPUT ON SIZE 5000
SQL> CALL dbms_java.set_output(5000);

Output prints at the end of the call.

For more information about SQL*Plus, see the SQL*Plus User's Guide and Reference.

Support for Calling Java Stored Procedures Directly
Oracle Database 10g introduces new convenience features for calling Java stored
procedures and functions.

In previous releases, calling Java stored procedures and functions from a database
client required JDBC calls to associated PL/SQL wrappers. Each wrapper had to be
manually published with a SQL signature and a Java implementation. This had the
following disadvantages:

■ A separate step was required for publishing the SQL signatures for Java methods.

■ The signatures permitted only Java types with SQL equivalents.

■ Exceptions issued in Java were not properly returned.

■ Only a single method invocation could be performed for each database round trip.

To remedy these deficiencies, a simple API has been implemented for direct invocation
of static Java stored procedures and functions. The new functionality is useful for Web
services, but is more generally useful as well.

Classes for the simple API are located in the package oracle.jpub.reflect, so you
must import this into the client-side code.

Support for Calling Java Stored Procedures Directly

Invoking Java in the Database 3-7

Here is the Java interface for the API:

public class Client
{
 public static String getSignature(Class[]);
 public static Object invoke(Connection, String, String,
 String, Object[]);
 public static Object invoke(Connection, String, String,
 Class[], Object[]);
}

As an example, consider a call to the following method in the server:

public String oracle.sqlj.checker.JdbcVersion.to_string();

You can now accomplish this as follows:

Connection conn = ...;
String serverSqljVersion = (String)
 Client.invoke(conn, "oracle.sqlj.checker.JdbcVersion",
 "to_string", new Class[]{}, new Object[]{});

The Class[] array is for the method parameter types and the Object[] array is for
the parameter values. In this case, because to_string has no parameters, the arrays
are empty.

Note the following:

■ Any serializable type (such as int[] and String[], for example) can be passed
as an argument.

■ As an optimization, parameter values can be represented in a string:

String sig = oracle.jpub.reflect.Client.getSignature(new Class[]{});
...
Client.invoke(conn, "oracle.sqlj.checker.JdbcVersion", "to_string",
 sig, new Object[]{});

(This is offered as a general note; in this example it is a moot point because
to_string has no parameters.)

■ The semantics of this API are different than semantics for invoking stored
procedures or functions through a PL/SQL wrapper, in the following ways:

■ Arguments cannot be OUT or IN OUT. Returned values must all be part of the
function result.

■ Exceptions are properly returned.

■ The method invocation uses invoker's rights. (There is no tuning to obtain
definer's rights.)

Support for Calling Java Stored Procedures Directly

3-8 Oracle Database Java Developer’s Guide

Java Installation and Configuration 4-1

4
Java Installation and Configuration

This chapter describes what you need to know to install and configure OracleJVM
within your database. To configure Java memory, see the "Java Memory Usage" section
in Chapter 10, "Oracle Database Java Application Performance".

■ Initializing a Java-Enabled Database

■ Configuring OracleJVM

■ Using The DBMS_JAVA Package

■ Enabling the Java Client

Initializing a Java-Enabled Database
If you install Oracle Database with the OracleJVM option, the database is
Java-enabled. That is, it is ready to run Java stored procedures and JDBC.

Oracle Database Template Configuration and Install
Configure the OracleJVM option within the database template. This is the
recommended method for Java installation.

The Database Configuration Assistant allows you to create database templates for
defining what each database instance installation will contain. Choose the OracleJVM
option to have the Java platform installed within your database. See the Database
Configuration Assistant documentation for more information on template creation.

Modifying an Existing Oracle Database to Include OracleJVM
If you have already installed your Oracle Database without OracleJVM, you can add
Java to your database through the modify mode of the Oracle Database 10g
Configuration Assistant. The modify mode enables you to choose the features, such as
OracleJVM, that you would like installed on top of an existing Oracle Database.

Configuring OracleJVM
When you install OracleJVM as part of your normal Oracle Database installation, you
will encounter configuration requirements for OracleJVM within the Oracle Database
10g Configuration Assistant and the Oracle Net Assistant.

The main configuration for Java classes within Oracle Database includes configuring
Java memory requirements and the type of database processes.

Using The DBMS_JAVA Package

4-2 Oracle Database Java Developer’s Guide

■ Java memory requirements—You must have at least 20 MB of JAVA_POOL_SIZE
and 50 MB of SHARED_POOL_SIZE. See "Java Memory Usage" on page 10-13 for
information on configuring these parameters.

■ Database processes—You must decide whether to use dedicated server processes
or shared server processes for your database server.

Using The DBMS_JAVA Package
Installing OracleJVM creates the PL/SQL package DBMS_JAVA. Some entry points of
DBMS_JAVA are for your use; others are only for internal use. The corresponding Java
class DbmsJava provides methods for accessing RDBMS functionality from Java.

See "DBMS_JAVA Package" on page A-1 for complete information.

Enabling the Java Client
To run Java between the client and server, your client system must perform the
following:

1. Install J2SE on the Client.

2. Set up Environment Variables.

3. Test Install with Samples.

1. Install J2SE on the Client
The client requires JDK 1.2.1 or later. To confirm what version of the JDK you are
using, perform the following:

$ which java
/usr/local/j2se1.4.1/bin/java
$ which javac
/usr/local/j2se1.4.1/bin/javac
$ java -version
java version "1.4.1"

2. Set up Environment Variables
After installing the JDK on your client, you must add the directory path to the
following environment variables:

■ $JAVA_HOME—must be set to the top directory of the installed JDK base

■ $PATH—requires $JAVA_HOME/bin

■ $LD_LIBRARY_PATH for Solaris or %LIB% for Windows NT—must include
$JAVA_HOME/lib

JAR Files Necessary for Java 2 Clients
For a Java 2 client to communicate with the Java 2 server, you must make sure that one
of the following JVM JAR files are in the CLASSPATH:

■ For JDK 1.2, include $JAVA_HOME/lib/dt.jar

Note: For NT users, the syntax for the environment variables
is %ORACLE_HOME%, %JAVA_HOME%, %PATH%, and %LIB%.

Enabling the Java Client

Java Installation and Configuration 4-3

■ For JRE 1.2, include $JAVA_HOME/lib/rt.jar

For any interaction with JDBC, include the following ZIP file:

$ORACLE_HOME/jdbc/lib/classes12.zip

For any client that uses SSL, include the following JAR files:

$ORACLE_HOME/jlib/jssl-1_2.jar
$ORACLE_HOME/jlib/javax-ssl-1_2.jar

For any client that uses Java Transaction API (JTA) functionality, include the following
JAR file:

$ORACLE_HOME/jlib/jta.jar

For any client that uses JNDI functionality, include the following JAR file:

$ORACLE_HOME/jlib/jndi.jar

If you are using the Accelerator for native compilation, include
$JAVA_HOME/lib/tools.jar

Server Application Development on the Client
If you develop and compile your server applications on the client and you want to use
the same JAR files that are loaded on the server, include
$ORACLE_HOME/lib/aurora.zip in the CLASSPATH. This is not required for
running Java clients.

3. Test Install with Samples
We provide a set of samples in the $ORACLE_HOME/javavm/demo directory. These
samples compile and run for a database installed with the OracleJVM option. Execute
these samples as a test of your installation.

$ORACLE_HOME/javavm/demo/examples/jsproc/helloworld

If these samples do not compile or run, your environment is incorrect. Similarly, if
these samples compile and run, but your code does not, then a problem exists within
your build environment or code.

Verify that the samples work before using more complex build environments, such as
Visual Cafe, JDeveloper, or VisualAge.

Note: It is important that you run these examples using the
supplied Makefiles (or batch files on NT) when verifying your
installation.

Enabling the Java Client

4-4 Oracle Database Java Developer’s Guide

Developing Java Stored Procedures 5-1

5
Developing Java Stored Procedures

The OracleJVM has all the features you need to build a new generation of
enterprise-wide applications at a low cost. Chief among those features are stored
procedures, which open the Oracle RDBMS to all Java programmers. With stored
procedures, you can implement business logic at the server level, thereby improving
application performance, scalability, and security.

This chapter contains the following information:

■ Stored Procedures and Run-Time Contexts

■ Advantages of Stored Procedures

■ Java Stored Procedure Configuration

■ Java Stored Procedures Steps

Stored Procedures and Run-Time Contexts
Stored procedures are Java methods published to SQL and stored in an Oracle
database for general use. To publish Java methods, you write call specifications (call
specs for short), which map Java method names, parameter types, and return types to
their SQL counterparts.

Unlike a wrapper, which adds another layer of execution, a call spec simply publishes
the existence of a Java method. So, when you call the method (through its call spec),
the run-time system dispatches the call with minimal overhead.

When called by client applications, a stored procedure can accept arguments, reference
Java classes, and return Java result values. Figure 5–1 shows a stored procedure being
called by various applications.

Figure 5–1 Calling a Stored Procedure

Stored Procedures and Run-Time Contexts

5-2 Oracle Database Java Developer’s Guide

Except for graphical-user-interface (GUI) methods, OracleJVM can run any Java
method as a stored procedure. The run-time contexts are:

■ functions and procedures

■ database triggers

■ object-relational methods

The next three sections describe these contexts.

Functions and Procedures
Functions and procedures are named blocks that encapsulate a sequence of statements.
They are like building blocks that you can use to construct modular, maintainable
applications.

Generally, you use a procedure to perform an action, and a function to compute a
value. So, for void Java methods, you use procedure call specs, and for
value-returning methods, you use function call specs.

Only top-level and package (not local) PL/SQL functions and procedures can be used
as call specs. When you define them using the SQL CREATE FUNCTION, CREATE
PROCEDURE, or CREATE PACKAGE statement, they are stored in the database, where
they are available for general use.

Java methods published as functions and procedures must be invoked explicitly. They
can accept arguments and are callable from:

■ SQL DML statements (INSERT, UPDATE, DELETE, SELECT, CALL, EXPLAIN PLAN,
LOCK TABLE, and MERGE)

■ SQL CALL statements

■ PL/SQL blocks, subprograms, and packages

Database Triggers
A database trigger is a stored procedure associated with a specific table or view. Oracle
invokes (fires) the trigger automatically whenever a given DML operation modifies the
table or view.

A trigger has three parts: a triggering event (DML operation), an optional trigger
constraint, and a trigger action. When the event occurs, the trigger fires and a CALL
statement calls a Java method (through its call spec) to perform the action.

Database triggers, which you define using the SQL CREATE TRIGGER statement, let
you customize the RDBMS. For example, they can restrict DML operations to regular
business hours. Typically, triggers are used to enforce complex business rules, derive
column values automatically, prevent invalid transactions, log events transparently,
audit transactions, or gather statistics.

Object-Relational Methods
A SQL object type is a user-defined composite data type that encapsulates a set of
variables (attributes) with a set of operations (methods), which can be written in Java.
The data structure formed by the set of attributes is public (visible to client programs).
However, well-behaved programs do not manipulate it directly. Instead, they use the
set of methods provided.

When you define an object type using the SQL CREATE ... OBJECT statement, you
create an abstract template for some real-world object. The template specifies only

Advantages of Stored Procedures

Developing Java Stored Procedures 5-3

those attributes and behaviors the object will need in the application environment. At
run time, when you fill the data structure with values, you create an instance of the
object type. You can create as many instances (objects) as necessary.

Typically, an object type corresponds to some business entity such as a purchase order.
To accommodate a variable number of items, object types can use variable-length
arrays (varrays) and nested tables. For example, this feature enables a purchase order
object type to contain a variable number of line items.

Advantages of Stored Procedures
Stored procedures offer several advantages including better performance, higher
productivity, ease of use, and increased scalability.

Performance
Stored procedures are compiled once and stored in executable form, so procedure calls
are quick and efficient. Executable code is automatically cached and shared among
users. This lowers memory requirements and invocation overhead.

By grouping SQL statements, a stored procedure allows them to be executed with a
single call. This minimizes the use of slow networks, reduces network traffic, and
improves round-trip response time. OLTP applications, in particular, benefit because
result-set processing eliminates network bottlenecks.

Additionally, stored procedures enable you to take advantage of the computing
resources of the server. For example, you can move computation-bound procedures
from client to server, where they will execute faster. Likewise, stored functions called
from SQL statements enhance performance by executing application logic within the
server.

Productivity and Ease of Use
By designing applications around a common set of stored procedures, you can avoid
redundant coding and increase your productivity. Moreover, stored procedures let you
extend the functionality of the RDBMS. For example, stored functions called from SQL
statements enhance the power of SQL.

You can use the Java integrated development environment (IDE) of your choice to
create stored procedures. Then, you can deploy them on any tier of the network
architecture. Moreover, they can be called by standard Java interfaces, such as JDBC,
and by programmatic interfaces and development tools such as the OCI, Pro*C/C++,
and JDeveloper.

This broad access to stored procedures lets you share business logic across
applications. For example, a stored procedure that implements a business rule can be
called from various client-side applications, all of which can share that business rule.
In addition, you can leverage the server’s Java facilities while continuing to write
applications for your favorite programmatic interface.

Scalability
Stored procedures increase scalability by isolating application processing on the server.
In addition, automatic dependency tracking for stored procedures aids the
development of scalable applications.

The shared memory facilities of the Shared Server enable Oracle Database to support
more than 10,000 concurrent users on a single node. For more scalability, you can use

Advantages of Stored Procedures

5-4 Oracle Database Java Developer’s Guide

the Oracle Net Services Connection Manager to multiplex Oracle Net Services
connections.

Maintainability
Once it is validated, you can use a stored procedure with confidence in any number of
applications. If its definition changes, only the procedure is affected, not the
applications that call it. This simplifies maintenance and enhancement. Also,
maintaining a procedure on the server is easier than maintaining copies on different
client machines.

Interoperability
Within the RDBMS, Java conforms fully to the Java Language Specification and furnishes
all the advantages of a general-purpose, object-oriented programming language. Also,
as with PL/SQL, Java provides full access to Oracle data, so any procedure written in
PL/SQL can be written in Java.

PL/SQL stored procedures complement Java stored procedures. Typically, SQL
programmers who want procedural extensions favor PL/SQL, and Java programmers
who want easy access to Oracle data favor Java.

The RDBMS allows a high degree of interoperability between Java and PL/SQL. Java
applications can call PL/SQL stored procedures using an embedded JDBC driver;
conversely, PL/SQL applications can call Java stored procedures directly.

Replication
With Oracle Advanced Replication, you can replicate (copy) stored procedures from
one Oracle Database instance to another. That feature makes them ideal for
implementing a central set of business rules. Once you write them, you can replicate
and distribute the stored procedures to work groups and branch offices throughout the
company. In this way, you can revise policies on a central server rather than on
individual servers.

Security
Security is a large arena that includes network security for the connection, access and
execution control of operating system resources or of JVM and user-defined classes,
and bytecode verification of imported JAR files from an external source.

Oracle Database uses Java 2 security to protect its Java virtual machine. All classes are
loaded into a secure database, so they are untrusted. To access classes and operating
system resources, a user needs the proper permissions. Likewise, all stored procedures
are secured against other users (to whom you can grant the database privilege
EXECUTE).

You can restrict access to Oracle data by allowing users to manipulate the data only
through stored procedures that execute with their definer’s privileges. For example,
you can allow access to a procedure that updates a database table, but deny access to
the table itself.

For a full discussion of OracleJVM security, see Chapter 9, "Security For Oracle
Database Java Applications".

Java Stored Procedures Steps

Developing Java Stored Procedures 5-5

Java Stored Procedure Configuration
To configure the database to run Java stored procedures, you must decide whether you
want the database to run in dedicated server mode or shared server mode.

■ Dedicated server mode—You must configure the database and clients in dedicated
server mode using Oracle Net Services connections.

■ shared server mode—You must configure the server for shared server mode with
the DISPATCHERS parameter, as the Oracle Database Net Services Administrator’s
Guide explains.

Java, SQL, or PL/SQL clients, which execute Java stored procedures on the server,
connect to the database over a Oracle Net Services connection. For a full description of
how to configure this connection, see the Oracle Database Net Services Administrator’s
Guide.

Java Stored Procedures Steps
You execute Java stored procedures similarly to PL/SQL. Normally, calling a Java
stored procedure is a by-product of database manipulation, because it is usually the
result of a trigger or SQL DML call. To invoke a Java stored procedure, you must
publish it through a call specification.

Before you can call Java stored procedures, you must load them into the Oracle
database and publish them to SQL. Loading and publishing are separate tasks. Many
Java classes, referenced only by other Java classes, are never published.

To load Java stored procedures automatically, you use the command-line utility
loadjava. It uploads Java source, class, and resource files into a system-generated
database table, then uses the SQL CREATE JAVA {SOURCE | CLASS | RESOURCE}
statement to load the Java files into the Oracle database. You can upload Java files
from file systems, popular Java IDEs, intranets, or the Internet.

This section demonstrates how to develop a simple Java stored procedure. For more
examples of a Java stored procedures application, see Chapter 8, "Java Stored
Procedures Application Example".

Step 1: Create or Reuse the Java Classes
Use your favorite Java IDE to create classes, or simply reuse existing classes that meet
your needs. Oracle’s Java facilities support many Java development tools and
client-side programmatic interfaces. For example, the OracleJVM accepts programs
developed in popular Java IDEs such as Oracle JDeveloper, Symantec Visual Café, and
Borland JBuilder.

In the following example, you create the public class Oscar. It has a single method
named quote(), which returns a quotation from Oscar Wilde.

public class Oscar {
 // return a quotation from Oscar Wilde
 public static String quote() {
 return "I can resist everything except temptation.";

Note: To load Java stored procedures manually, you use CREATE
JAVA statements. For example, in SQL*Plus, you can use the
CREATE JAVA CLASS statement to load Java class files from local
BFILEs and LOB columns into the Oracle database.

Java Stored Procedures Steps

5-6 Oracle Database Java Developer’s Guide

 }
}

In the following example, using Sun Microsystems’s JDK Java compiler, you compile
class Oscar on your client workstation:

javac Oscar.java

The compiler outputs a Java binary file—in this case, Oscar.class.

Step 2: Load and Resolve the Java Classes
Using the utility loadjava, you can upload Java source, class, and resource files into
an Oracle database, where they are stored as Java schema objects. You can run
loadjava from the command line or from an application, and you can specify several
options including a resolver.

In the following example, loadjava connects to the database using the default JDBC
OCI driver. You must specify the user name and password. By default, class Oscar is
loaded into the logon schema (in this case, scott).

> loadjava -user scott/tiger Oscar.class

Later, when you call method quote(), the server uses a resolver (in this case, the
default resolver) to search for supporting classes such as String. The default resolver
searches first in the current schema, then in schema SYS, where all the core Java class
libraries reside. If necessary, you can specify different resolvers.

For more information, see Chapter 2, "Java Applications on Oracle Database".

Step 3: Publish the Java Classes
For each Java method callable from SQL, you must write a call spec, which exposes the
method’s top-level entry point to Oracle. Typically, only a few call specs are needed,
but if you like, Oracle JDeveloper can generate them for you.

In the following example, from SQL*Plus, you connect to the database, then define a
top-level call spec for method quote():

SQL> connect scott/tiger

SQL> CREATE FUNCTION oscar_quote RETURN VARCHAR2
 2 AS LANGUAGE JAVA
 3 NAME 'Oscar.quote() return java.lang.String';

For more information, see Chapter 6, "Publishing Java Classes With Call Specs".

Step 4: Call the Stored Procedures
You can call Java stored procedures from SQL DML statements, PL/SQL blocks, and
PL/SQL subprograms. Using the SQL CALL statement, you can also call them from the
top level (from SQL*Plus, for example) and from database triggers.

In the following example, you declare a SQL*Plus host variable:

SQL> VARIABLE theQuote VARCHAR2(50);

Then, you call the function oscar_quote(), as follows:

SQL> CALL oscar_quote() INTO :theQuote;

SQL> PRINT theQuote;

Java Stored Procedures Steps

Developing Java Stored Procedures 5-7

THEQUOTE
--
I can resist everything except temptation.

For more information, see Chapter 7, "Calling Stored Procedures".

Step 5: If Necessary, Debug the Stored Procedures
Your Java stored procedures execute remotely on a server, which typically resides on a
separate machine. However, the JDK debugger (jdb) cannot debug remote Java
programs. For more information, see "Debugging Server Applications" on page 3-5.

Another Example
The following example shows how to create, resolve, load, and publish a simple Java
stored procedure that echoes "Hello world."

1. Write the Java class.

Define a class, Hello, with one method, Hello.world(), that returns the string
"Hello world".

public class Hello
{
 public static String world ()
 {
 return "Hello world";
 }
}

2. Compile the class on your client system. Using the Sun Microsystems J2SE, for
example, invoke the Java compiler, javac, as follows:

javac Hello.java

Normally, it is a good idea to specify your CLASSPATH on the javac command
line, especially when writing shell scripts or make files. The Java compiler
produces a Java binary file—in this case, Hello.class.

Keep in mind where this Java code will execute. If you execute Hello.class on
your client system, it searches the CLASSPATH for all supporting core classes it
must execute. This search should result in locating the dependent class in one of
the following:

■ as an individual file in a directory, where the directory is specified in the
CLASSPATH

■ within a .jar or .zip file, where the directory is specified in the
CLASSPATH

3. Decide on the resolver for your class.

In this case, you load Hello.class in the server, where it is stored in the
database as a Java schema object. When you execute the world() method of the
Hello.class on the server, it finds the necessary supporting classes, such as
String, using a resolver—in this case, the default resolver. The default resolver
looks for classes in the current schema first and then in PUBLIC. All core class
libraries, including the java.lang package, are found in PUBLIC. You may need
to specify different resolvers, and you can force resolution to occur when you use
loadjava, to determine if there are any problems earlier, rather than at runtime.
Refer to Chapter 2, "Java Applications on Oracle Database" for more details on
resolvers and loadjava.

Java Stored Procedures Steps

5-8 Oracle Database Java Developer’s Guide

4. Load the class on the Oracle Application Server using loadjava. You must
specify the user name and password.

loadjava -user scott/tiger Hello.class

5. Publish the stored procedure through a call specification.

To invoke a Java static method with a SQL CALL, you must publish it with a call
specification. A call specification defines for SQL which arguments the method
takes and the SQL types it returns.

In SQL*Plus, connect to the database and define a top-level call specification for
Hello.world():

SQL> connect scott/tiger
connected
SQL> create or replace function HELLOWORLD return VARCHAR2 as
 2 language java name 'Hello.world () return java.lang.String';
 3 /
Function created.

6. Invoke the stored procedure.

SQL> variable myString varchar2(20)s;
SQL> call HELLOWORLD() into :myString;
Call completed.
SQL> print myString;

MYSTRING

Hello world

SQL>

The call HELLOWORLD() into :myString statement performs a top-level call
in Oracle Database. The Oracle-specific select HELLOWORLD from DUAL also
works. Note that SQL and PL/SQL see no difference between a stored procedure
that is written in Java, PL/SQL, or any other language. The call specification
provides a means to tie inter-language calls together in a consistent manner. Call
specifications are necessary only for entry points invoked with triggers or SQL and
PL/SQL calls. Furthermore, JDeveloper can automate the task of writing call
specifications.

Publishing Java Classes With Call Specs 6-1

6
Publishing Java Classes With Call Specs

When you load a Java class into the database, its methods are not published
automatically because Oracle does not know which methods are safe entry points for
calls from SQL. To publish the methods, you must write call specifications (call specs),
which map Java method names, parameter types, and return types to their SQL
counterparts.

■ Understanding Call Specs

■ Defining Call Specs: Basic Requirements

■ Writing Top-Level Call Specs

■ Writing Packaged Call Specs

■ Writing Object Type Call Specs

Understanding Call Specs
To publish Java methods, you write call specs. For a given Java method, you declare a
function or procedure call spec using the SQL CREATE FUNCTION or CREATE
PROCEDURE statement. Inside a PL/SQL package or SQL object type, you use similar
declarations.

You publish value-returning Java methods as functions or procedures and void Java
methods as procedures. The function or procedure body contains the LANGUAGE JAVA
clause. This clause records information about the Java method including its full name,
its parameter types, and its return type. Mismatches are detected only at run time.

As Figure 6–1 shows, applications call the Java method through its call spec, that is, by
referencing the call-spec name. The run-time system looks up the call-spec definition
in the Oracle data dictionary, then executes the corresponding Java method.

Defining Call Specs: Basic Requirements

6-2 Oracle Database Java Developer’s Guide

Figure 6–1 Calling a Java Method

As an alternative, use the native Java interface to directly invoke Java in the database
from a Java client. See "Native Java Interface" for more information.

Defining Call Specs: Basic Requirements
A call spec and the Java method it publishes must reside in the same schema (unless
the Java method has a PUBLIC synonym). You can declare the call spec as a:

■ standalone (top-level) PL/SQL function or procedure

■ packaged PL/SQL function or procedure

■ member method of a SQL object type

A call spec exposes a Java method’s top-level entry point to Oracle. Therefore, you can
publish only public static methods—with one exception. You can publish instance
methods as member methods of a SQL object type.

Packaged call specs perform as well as top-level call specs. So, to ease maintenance,
you might want to place call specs in a package body. That way, you can modify them
without invalidating other schema objects. Also, you can overload them.

Setting Parameter Modes
In Java and other object-oriented languages, a method cannot assign values to objects
passed as arguments. So, when calling a method from SQL or PL/SQL, to change the
value of an argument, you must declare it as an OUT or IN OUT parameter in the call
spec. The corresponding Java parameter must be a one-element array.

You can replace the element value with another Java object of the appropriate type, or
(with IN OUT parameters) you can modify the value if the Java type permits. Either
way, the new value propagates back to the caller. For example, you might map a call
spec OUT parameter of type NUMBER to a Java parameter declared as float[] p, then
assign a new value to p[0].

Note: A function that declares OUT or IN OUT parameters cannot be
called from SQL DML statements.

Application

Oracle Database

Java
methodApplication

Data
Dictionary

Call
Spec

Defining Call Specs: Basic Requirements

Publishing Java Classes With Call Specs 6-3

Mapping Datatypes
In a call spec, corresponding SQL and Java parameters (and function results) must
have compatible datatypes. Table 6–1 contains all the legal datatype mappings. Oracle
converts between the SQL types and Java classes automatically.

Table 6–1 Legal Datatype Mappings

SQL Type Java Class

CHAR, LONG,
VARCHAR2

oracle.sql.CHAR
java.lang.String
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal
byte, short, int, long, float, double

DATE oracle.sql.DATE
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.lang.String

NUMBER oracle.sql.NUMBER
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal
byte, short, int, long, float, double

OPAQUE oracle.sql.OPAQUE

RAW, LONG RAW oracle.sql.RAW
byte[]

ROWID oracle.sql.CHAR
oracle.sql.ROWID
java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB
oracle.jdbc2.Blob
 (oracle.jdbc2.Blob under JDK 1.1.x)

CLOB, NCLOB oracle.sql.CLOB
oracle.jdbc2.Clob
 (oracle.jdbc2.Clob under JDK 1.1.x)

OBJECT

Object types

oracle.sql.STRUCT
java.sql.Struct
 (oracle.jdbc2.Struct under JDK 1.1.x)
java.sql.SqlData
oracle.sql.ORAData

REF

Reference
types

oracle.sql.REF
java.sql.Ref (oracle.jdbc2.Ref under JDK 1.1.x)
oracle.sql.ORAData

Defining Call Specs: Basic Requirements

6-4 Oracle Database Java Developer’s Guide

Notes:
■ The type UROWID and the NUMBER subtypes (INTEGER, REAL, and so on) are not

supported.

■ You cannot retrieve a value larger than 32KB from a LONG or LONG RAW database
column into a Java stored procedure.

■ The Java wrapper classes (java.lang.Byte, java.lang.Short, and so on) are
useful for returning nulls from SQL.

■ When you use the class oracle.sql.CustomDatum to declare parameters, it
must define the following member:

■ public static oracle.sql.CustomDatumFactory.getFactory();

■ oracle.sql.Datum is an abstract class. The value passed to a parameter of type
oracle.sql.Datum must belong to a Java class compatible with the SQL type.
Likewise, the value returned by a method with return type oracle.sql.Datum
must belong to a Java class compatible with the SQL type.

■ The mappings to oracle.sql classes are optimal because they preserve data
formats and require no character-set conversions (apart from the usual network
conversions). Those classes are especially useful in applications that "shovel" data
between SQL and Java.

Using the Server-Side Internal JDBC Driver
Normally, with JDBC, you establish a connection to the database using the
DriverManager class, which manages a set of JDBC drivers. Once the JDBC drivers
are loaded, you call the method getConnection. When it finds the right driver,
getConnection returns a Connection object, which represents a database session.
All SQL statements are executed within the context of that session.

However, the server-side internal JDBC driver runs within a default session and
default transaction context. So, you are already "connected" to the database, and all
your SQL operations are part of the default transaction. You need not register the
driver because it comes pre-registered. To get a Connection object, simply execute
the following statement:

Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");

Use class Statement for SQL statements that take no IN parameters and are executed
only once. When invoked on a Connection object, method createStatement
returns a new Statement object. An example follows:

String sql = "DROP " + object_type + " " + object_name;
Statement stmt = conn.createStatement();
stmt.executeUpdate(sql);

TABLE, VARRAY

Nested table
types and
VARRAY types

oracle.sql.ARRAY
java.sql.Array (oracle.jdbc2.Array under JDK 1.1.x)
oracle.sql.ORAData

any of the
preceding SQL
types

oracle.sql.CustomDatum
oracle.sql.Datum

Table 6–1 (Cont.) Legal Datatype Mappings

SQL Type Java Class

Defining Call Specs: Basic Requirements

Publishing Java Classes With Call Specs 6-5

Use class PreparedStatement for SQL statements that take IN parameters or are
executed more than once. The SQL statement, which can contain one or more
parameter placeholders, is precompiled. (Question marks serve as placeholders.)
When invoked on a Connection object, method prepareStatement returns a new
PreparedStatement object, which contains the precompiled SQL statement. Here is
an example:

String sql = "DELETE FROM dept WHERE deptno = ?";
PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setInt(1, deptID);
pstmt.executeUpdate();

A ResultSet object contains SQL query results, that is, the rows that met the search
condition. You use the method next to move to the next row, which becomes the
current row. You use the getXXX methods to retrieve column values from the current
row. An example follows:

String sql = "SELECT COUNT(*) FROM " + tabName;
int rows = 0;
Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery(sql);
while (rset.next()) {rows = rset.getInt(1);}

A CallableStatement object lets you call stored procedures. It contains the call
text, which can include a return parameter and any number of IN, OUT, and INOUT
parameters. The call is written using an escape clause, which is delimited by braces. As
the following examples show, the escape syntax has three forms:

// parameterless stored procedure
CallableStatement cstmt = conn.prepareCall("{CALL proc}");

// stored procedure
CallableStatement cstmt = conn.prepareCall("{CALL proc(?,?)}");

// stored function
CallableStatement cstmt = conn.prepareCall("{? = CALL func(?,?)}");

Important Points
When developing JDBC stored procedure applications, keep the following points in
mind:

■ The server-side internal JDBC driver runs within a default session and default
transaction context. So, you are already "connected" to the database, and all your
SQL operations are part of the default transaction. Note that this transaction is a
local transaction and not part of a global transaction, such as implemented by JTA
or JTS.

■ Statements and result sets persist across calls, and their finalizers do not release
database cursors. So, to avoid running out of cursors, close all statements and
result sets when you are done with them. Alternatively, you can ask your DBA to
raise the limit set by the Oracle initialization parameter OPEN_CURSORS.

■ The server-side internal JDBC driver does not support auto-commits. So, your
application must explicitly commit or roll back database changes.

■ You cannot connect to a remote database using the server-side internal JDBC
driver. You can "connect" only to the server running your Java program. For
server-to-server connections, use the server-side JDBC Thin driver. (For
client/server connections, use the client-side JDBC Thin or JDBC OCI driver.)

Writing Top-Level Call Specs

6-6 Oracle Database Java Developer’s Guide

■ You cannot close the physical connection to the database established by the
server-side internal JDBC driver. However, if you call method close() on the
default connection, all connection instances (which, in fact, reference the same
object) are cleaned up and closed. To get a new connection object, you must call
method getConnection() again.

For more information, see the Oracle Database JDBC Developer's Guide and Reference.

Writing Top-Level Call Specs
In SQL*Plus, you can define top-level call specs interactively using the following
syntax:

CREATE [OR REPLACE]
{ PROCEDURE procedure_name [(param[, param]...)]
 | FUNCTION function_name [(param[, param]...)] RETURN sql_type}
[AUTHID {DEFINER | CURRENT_USER}]
[PARALLEL_ENABLE]
[DETERMINISTIC]
{IS | AS} LANGUAGE JAVA
NAME ’method_fullname (java_type_fullname[, java_type_fullname]...)
 [return java_type_fullname]’;

where param stands for the following syntax:

parameter_name [IN | OUT | IN OUT] sql_type

The AUTHID clause determines whether a stored procedure executes with the
privileges of its definer or invoker (the default) and whether its unqualified references
to schema objects are resolved in the schema of the definer or invoker. You can
override the default behavior by specifying DEFINER. (However, you cannot override
the loadjava option -definer by specifying CURRENT_USER.)

The PARALLEL_ENABLE option declares that a stored function can be used safely in
the slave sessions of parallel DML evaluations. The state of a main (logon) session is
never shared with slave sessions. Each slave session has its own state, which is
initialized when the session begins. The function result should not depend on the state
of session (static) variables. Otherwise, results might vary across sessions.

The hint DETERMINISTIC helps the optimizer avoid redundant function calls. If a
stored function was called previously with the same arguments, the optimizer can
elect to use the previous result. The function result should not depend on the state of
session variables or schema objects. Otherwise, results might vary across calls. Only
DETERMINISTIC functions can be called from a function-based index or a
materialized view that has query-rewrite enabled. For more information, see the
statements CREATE INDEX and CREATE MATERIALIZED VIEW in the Oracle Database
SQL Reference.

The NAME-clause string uniquely identifies the Java method. The Java full names and
the call spec parameters, which are mapped by position, must correspond one to one.
(This rule does not apply to method main. See Example 2 on page 6-7.) If the Java
method takes no arguments, code an empty parameter list for it but not for the
function or procedure.

As usual, you write Java full names using dot notation. The following example shows
that long names can be broken across lines at dot boundaries:

artificialIntelligence.neuralNetworks.patternClassification.
 RadarSignatureClassifier.computeRange()

Writing Top-Level Call Specs

Publishing Java Classes With Call Specs 6-7

Example 1
Assume that the executable for the following Java class has been loaded into the
Oracle database:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class GenericDrop {
 public static void dropIt (String object_type, String object_name)
 throws SQLException {
 // Connect to Oracle using JDBC driver
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 // Build SQL statement
 String sql = "DROP " + object_type + " " + object_name;
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(sql);
 stmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

Class GenericDrop has one method named dropIt, which drops any kind of
schema object. For example, if you pass the arguments ’table’ and ’emp’ to
dropIt, the method drops database table emp from your schema. Let’s write a call
spec for this method.

CREATE OR REPLACE PROCEDURE drop_it (
 obj_type VARCHAR2,
 obj_name VARCHAR2)
AS LANGUAGE JAVA
NAME ’GenericDrop.dropIt(java.lang.String, java.lang.String)’;

Notice that you must fully qualify the reference to class String. Package java.lang
is automatically available to Java programs but must be named explicitly in call specs.

Example 2
As a rule, Java names and call spec parameters must correspond one to one. However,
that rule does not apply to method main. Its String[] parameter can be mapped to
multiple CHAR or VARCHAR2 call spec parameters. Suppose you want to publish the
following method main, which prints its arguments:

public class EchoInput {
 public static void main (String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

To publish method main, you might write the following call spec:

CREATE OR REPLACE PROCEDURE echo_input (
 s1 VARCHAR2,
 s2 VARCHAR2,
 s3 VARCHAR2)
AS LANGUAGE JAVA
NAME ’EchoInput.main(java.lang.String[])’;

Writing Top-Level Call Specs

6-8 Oracle Database Java Developer’s Guide

You cannot impose constraints (such as precision, size, or NOT NULL) on call spec
parameters. So, you cannot specify a maximum size for the VARCHAR2 parameters,
even though you must do so for VARCHAR2 variables, as in:

DECLARE
 last_name VARCHAR2(20); -- size constraint required

Example 3
Next, you publish Java method rowCount, which returns the number of rows in a
given database table.

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class RowCounter {
 public static int rowCount (String tabName) throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "SELECT COUNT(*) FROM " + tabName;
 int rows = 0;
 try {
 Statement stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery(sql);
 while (rset.next()) {rows = rset.getInt(1);}
 rset.close();
 stmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 return rows;
 }
}

In the following call spec, the return type is NUMBER, not INTEGER, because NUMBER
subtypes (such as INTEGER, REAL, and POSITIVE) are not allowed in a call spec:

CREATE FUNCTION row_count (tab_name VARCHAR2) RETURN NUMBER
AS LANGUAGE JAVA
NAME ’RowCounter.rowCount(java.lang.String) return int’;

Example 4
Suppose you want to publish the following Java method named swap, which switches
the values of its arguments:

public class Swapper {
 public static void swap (int[] x, int[] y) {
 int hold = x[0];
 x[0] = y[0];
 y[0] = hold;
 }
}

The call spec publishes Java method swap as call spec swap. The call spec declares IN
OUT formal parameters because values must be passed in and out. All call spec OUT
and IN OUT parameters must map to Java array parameters.

CREATE PROCEDURE swap (x IN OUT NUMBER, y IN OUT NUMBER)
AS LANGUAGE JAVA
NAME ’Swapper.swap(int[], int[])’;

Notice that a Java method and its call spec can have the same name.

Writing Packaged Call Specs

Publishing Java Classes With Call Specs 6-9

Writing Packaged Call Specs
A PL/SQL package is a schema object that groups logically related types, items, and
subprograms. Usually, packages have two parts, a specification (spec) and a body
(sometimes the body is unnecessary). The spec is the interface to your applications: it
declares the types, constants, variables, exceptions, cursors, and subprograms
available for use. The body fully defines cursors and subprograms, thereby
implementing the spec. (For details, see the PL/SQL User's Guide and Reference.)

In SQL*Plus, you can define PL/SQL packages interactively using this syntax:

CREATE [OR REPLACE] PACKAGE package_name
 [AUTHID {CURRENT_USER | DEFINER}] {IS | AS}
 [type_definition [type_definition] ...]
 [cursor_spec [cursor_spec] ...]
 [item_declaration [item_declaration] ...]
 [{subprogram_spec | call_spec} [{subprogram_spec | call_spec}]...]
END [package_name];

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}
 [type_definition [type_definition] ...]
 [cursor_body [cursor_body] ...]
 [item_declaration [item_declaration] ...]
 [{subprogram_spec | call_spec} [{subprogram_spec | call_spec}]...]
[BEGIN
 sequence_of_statements]
END [package_name];]

The spec holds public declarations, which are visible to your application. The body
contains implementation details and private declarations, which are hidden from your
application. Following the declarative part of the package body is the optional
initialization part, which typically holds statements that initialize package variables. It
is run only once, the first time you reference the package.

A call spec declared in a package spec cannot have the same signature (name and
parameter list) as a subprogram in the package body. If you declare all the
subprograms in a package spec as call specs, the package body is unnecessary (unless
you want to define a cursor or use the initialization part).

The AUTHID clause determines whether all the packaged subprograms execute with
the privileges of their definer (the default) or invoker, and whether their unqualified
references to schema objects are resolved in the schema of the definer or invoker.

An Example
Consider the Java class DeptManager, which has methods for adding a new
department, dropping a department, and changing the location of a department.
Notice that method addDept uses a database sequence to get the next department
number. The three methods are logically related, so you might want to group their call
specs in a PL/SQL package.

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class DeptManager {
 public static void addDept (String deptName, String deptLoc)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "SELECT deptnos.NEXTVAL FROM dual";

Writing Packaged Call Specs

6-10 Oracle Database Java Developer’s Guide

 String sql2 = "INSERT INTO dept VALUES (?, ?, ?)";
 int deptID = 0;
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 ResultSet rset = pstmt.executeQuery();
 while (rset.next()) {deptID = rset.getInt(1);}
 pstmt = conn.prepareStatement(sql2);
 pstmt.setInt(1, deptID);
 pstmt.setString(2, deptName);
 pstmt.setString(3, deptLoc);
 pstmt.executeUpdate();
 rset.close();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void dropDept (int deptID) throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "DELETE FROM dept WHERE deptno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, deptID);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void changeLoc (int deptID, String newLoc)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "UPDATE dept SET loc = ? WHERE deptno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setString(1, newLoc);
 pstmt.setInt(2, deptID);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

Suppose you want to package methods addDept, dropDept, and changeLoc. First,
you create the package spec, as follows:

CREATE OR REPLACE PACKAGE dept_mgmt AS
 PROCEDURE add_dept (dept_name VARCHAR2, dept_loc VARCHAR2);
 PROCEDURE drop_dept (dept_id NUMBER);
 PROCEDURE change_loc (dept_id NUMBER, new_loc VARCHAR2);
END dept_mgmt;

Then, you create the package body by writing call specs for the Java methods:

CREATE OR REPLACE PACKAGE BODY dept_mgmt AS
 PROCEDURE add_dept (dept_name VARCHAR2, dept_loc VARCHAR2)
 AS LANGUAGE JAVA
 NAME ’DeptManager.addDept(java.lang.String, java.lang.String)’;

 PROCEDURE drop_dept (dept_id NUMBER)
 AS LANGUAGE JAVA

Writing Object Type Call Specs

Publishing Java Classes With Call Specs 6-11

 NAME ’DeptManager.dropDept(int)’;

 PROCEDURE change_loc (dept_id NUMBER, new_loc VARCHAR2)
 AS LANGUAGE JAVA
 NAME ’DeptManager.changeLoc(int, java.lang.String)’;
END dept_mgmt;

To reference the stored procedures in the package dept_mgmt, you must use dot
notation, as the following example shows:

CALL dept_mgmt.add_dept(’PUBLICITY’, ’DALLAS’);

Writing Object Type Call Specs
In SQL, object-oriented programming is based on object types, which are user-defined
composite data types that encapsulate a data structure along with the functions and
procedures needed to manipulate the data. The variables that form the data structure
are known as attributes. The functions and procedures that characterize the behavior of
the object type are known as methods, which can be written in Java.

As with a package, an object type has two parts: a specification (spec) and a body. The
spec is the interface to your applications; it declares a data structure (set of attributes)
along with the operations (methods) needed to manipulate the data. The body
implements the spec by defining PL/SQL subprogram bodies or call specs. (For
details, see the PL/SQL User's Guide and Reference.)

If an object type spec declares only attributes or call specs, then the object type body is
unnecessary. (You cannot declare attributes in the body.) So, if you implement all your
methods in Java, you can place their call specs in the object type spec and omit the
body.

In SQL*Plus, you can define SQL object types interactively using this syntax:

CREATE [OR REPLACE] TYPE type_name
 [AUTHID {CURRENT_USER | DEFINER}] {IS | AS} OBJECT (
 attribute_name datatype[, attribute_name datatype]...
 [{MAP | ORDER} MEMBER {function_spec | call_spec},]
 [{MEMBER | STATIC} {subprogram_spec | call_spec}
 [, {MEMBER | STATIC} {subprogram_spec | call_spec}]...]
);

[CREATE [OR REPLACE] TYPE BODY type_name {IS | AS}
 { {MAP | ORDER} MEMBER function_body;
 | {MEMBER | STATIC} {subprogram_body | call_spec};}
 [{MEMBER | STATIC} {subprogram_body | call_spec};]...
END;]

The AUTHID clause determines whether all member methods execute with the current
user privileges—which determines invoker’s or definer’s rights.

Declaring Attributes
In an object type spec, all attributes must be declared before any methods. At least one
attribute is required (the maximum is 1000). Methods are optional.

As with a Java variable, you declare an attribute with a name and datatype. The name
must be unique within the object type but can be reused in other object types. The
datatype can be any SQL type except LONG, LONG RAW, NCHAR, NVARCHAR2, NCLOB,
ROWID, or UROWID.

Writing Object Type Call Specs

6-12 Oracle Database Java Developer’s Guide

You cannot initialize an attribute in its declaration using the assignment operator or
DEFAULT clause. Furthermore, you cannot impose the NOT NULL constraint on an
attribute. However, objects can be stored in database tables on which you can impose
constraints.

Declaring Methods
MEMBER methods accept a built-in parameter known as SELF, which is an instance of
the object type. Whether declared implicitly or explicitly, it is always the first
parameter passed to a MEMBER method. In the method body, SELF denotes the object
whose method was invoked. MEMBER methods are invoked on instances, as follows:

instance_expression.method()

However, STATIC methods, which cannot accept or reference SELF, are invoked on
the object type, not its instances, as follows:

object_type_name.method()

If you want to call a non-static Java method, you specify the keyword MEMBER in its
call spec. Likewise, if you want to call a static Java method, you specify the
keyword STATIC in its call spec.

Map and Order Methods
The values of a SQL scalar datatype such as CHAR have a predefined order, which
allows them to be compared. However, instances of an object type have no predefined
order. To put them in order, SQL calls a user-defined map method.

SQL uses the ordering to evaluate Boolean expressions such as x > y and to make
comparisons implied by the DISTINCT, GROUP BY, and ORDER BY clauses. A map
method returns the relative position of an object in the ordering of all such objects. An
object type can contain only one map method, which must be a parameterless function
with one of the following return types: DATE, NUMBER, or VARCHAR2.

Alternatively, you can supply SQL with an order method, which compares two objects.
Every order method takes just two parameters: the built-in parameter SELF and
another object of the same type. If o1 and o2 are objects, a comparison such as o1 >
o2 calls the order method automatically. The method returns a negative number, zero,
or a positive number signifying that SELF is respectively less than, equal to, or greater
than the other parameter. An object type can contain only one order method, which
must be a function that returns a numeric result.

You can declare a map method or an order method but not both. If you declare either
method, you can compare objects in SQL and PL/SQL. However, if you declare
neither method, you can compare objects only in SQL and solely for equality or
inequality. (Two objects of the same type are equal if the values of their corresponding
attributes are equal.)

Constructor Methods
Every object type has a constructor method (constructor for short), which is a
system-defined function with the same name as the object type. The constructor
initializes and returns an instance of that object type.

Oracle generates a default constructor for every object type. The formal parameters of
the constructor match the attributes of the object type. That is, the parameters and
attributes are declared in the same order and have the same names and datatypes. SQL

Writing Object Type Call Specs

Publishing Java Classes With Call Specs 6-13

never calls a constructor implicitly, so you must call it explicitly. Constructor calls are
allowed wherever function calls are allowed.

Examples
In this section, each example builds on the previous one. To begin, you create two SQL
object types to represent departments and employees. First, you write the spec for
object type Department. The body is unnecessary because the spec declares only
attributes.

CREATE TYPE Department AS OBJECT (
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

Then, you create object type Employee. Its last attribute, deptno, stores a handle,
called a ref, to objects of type Department. A ref indicates the location of an object in
an object table, which is a database table that stores instances of an object type. The ref
does not point to a specific instance copy in memory. To declare a ref, you specify the
datatype REF and the object type that the ref targets.

CREATE TYPE Employee AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno REF Department
);

Next, you create SQL object tables to hold objects of type Department and
Employee. First, you create object table depts, which will hold objects of type
Department. You populate the object table by selecting data from the relational table
dept and passing it to a constructor, which is a system-defined function with the same
name as the object type. You use the constructor to initialize and return an instance of
that object type.

CREATE TABLE depts OF Department AS
 SELECT Department(deptno, dname, loc) FROM dept;

Finally, you create the object table emps, which will hold objects of type Employee.
The last column in object table emps, which corresponds to the last attribute of object
type Employee, holds references to objects of type Department. To fetch the
references into that column, you use the operator REF, which takes as its argument a
table alias associated with a row in an object table.

CREATE TABLE emps OF Employee AS
 SELECT Employee(e.empno, e.ename, e.job, e.mgr, e.hiredate, e.sal,
 e.comm, (SELECT REF(d) FROM depts d WHERE d.deptno = e.deptno))
 FROM emp e;

Note: To invoke a Java constructor from SQL, you must wrap calls to it
in a static method and declare the corresponding call spec as a STATIC
member of the object type.

Writing Object Type Call Specs

6-14 Oracle Database Java Developer’s Guide

Selecting a ref returns a handle to an object; it does not materialize the object itself. To
do that, you can use methods in class oracle.sql.REF, which supports Oracle
object references. This class, which is a subclass of oracle.sql.Datum, extends the
standard JDBC interface oracle.jdbc2.Ref. For more information, see the Oracle
Database JDBC Developer's Guide and Reference.

Using Class oracle.sql.STRUCT
To continue, you write a Java stored procedure. The class Paymaster has one method,
which computes an employee's wages. The method getAttributes() defined in
class oracle.sql.STRUCT uses the default JDBC mappings for the attribute types.
So, for example, NUMBER maps to BigDecimal.

import java.sql.*;
import java.io.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.oracore.*;
import oracle.jdbc2.*;
import java.math.*;

public class Paymaster {
 public static BigDecimal wages(STRUCT e)
 throws java.sql.SQLException {
 // Get the attributes of the Employee object.
 Object[] attribs = e.getAttributes();
 // Must use numeric indexes into the array of attributes.
 BigDecimal sal = (BigDecimal)(attribs[5]); // [5] = sal
 BigDecimal comm = (BigDecimal)(attribs[6]); // [6] = comm
 BigDecimal pay = sal;
 if (comm != null) pay = pay.add(comm);
 return pay;
 }
}

Because the method wages returns a value, you write a function call spec for it, as
follows:

CREATE OR REPLACE FUNCTION wages (e Employee) RETURN NUMBER AS
 LANGUAGE JAVA
 NAME 'Paymaster.wages(oracle.sql.STRUCT) return BigDecimal';

This is a top-level call spec because it is not defined inside a package or object type.

Implementing the SQLData Interface
To make access to object attributes more natural, you can create a Java class that
implements the SQLData interface. To do so, you must provide the methods
readSQL() and writeSQL() as defined by the SQLData interface. The JDBC driver
calls method readSQL() to read a stream of database values and populate an instance
of your Java class. (For details, see the Oracle Database JDBC Developer's Guide and
Reference) In the following example, you revise class Paymaster, adding a second
method named raiseSal():

import java.sql.*;
import java.io.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.oracore.*;
import oracle.jdbc2.*;

Writing Object Type Call Specs

Publishing Java Classes With Call Specs 6-15

import java.math.*;

public class Paymaster implements SQLData {
 // Implement the attributes and operations for this type.
 private BigDecimal empno;
 private String ename;
 private String job;
 private BigDecimal mgr;
 private Date hiredate;
 private BigDecimal sal;
 private BigDecimal comm;
 private Ref dept;

 public static BigDecimal wages(Paymaster e) {
 BigDecimal pay = e.sal;
 if (e.comm != null) pay = pay.add(e.comm);
 return pay;
 }

 public static void raiseSal(Paymaster[] e, BigDecimal amount) {
 e[0].sal = // IN OUT passes [0]
 e[0].sal.add(amount); // increase salary by given amount
 }

 // Implement SQLData interface.

 private String sql_type;

 public String getSQLTypeName() throws SQLException {
 return sql_type;
 }

 public void readSQL(SQLInput stream, String typeName)
 throws SQLException {
 sql_type = typeName;
 empno = stream.readBigDecimal();
 ename = stream.readString();
 job = stream.readString();
 mgr = stream.readBigDecimal();
 hiredate = stream.readDate();
 sal = stream.readBigDecimal();
 comm = stream.readBigDecimal();
 dept = stream.readRef();
 }

 public void writeSQL(SQLOutput stream) throws SQLException {
 stream.writeBigDecimal(empno);
 stream.writeString(ename);
 stream.writeString(job);
 stream.writeBigDecimal(mgr);
 stream.writeDate(hiredate);
 stream.writeBigDecimal(sal);
 stream.writeBigDecimal(comm);
 stream.writeRef(dept);
 }
}

You must revise the call spec for method wages, as follows, because its parameter has
changed from oralce.sql.STRUCT to Paymaster:

CREATE OR REPLACE FUNCTION wages (e Employee) RETURN NUMBER AS

Writing Object Type Call Specs

6-16 Oracle Database Java Developer’s Guide

 LANGUAGE JAVA
 NAME 'Paymaster.wages(Paymaster) return BigDecimal';

Because the new method raiseSal is void, you write a procedure call spec for it, as
follows:

CREATE OR REPLACE PROCEDURE raise_sal (e IN OUT Employee, r NUMBER)
 AS LANGUAGE JAVA
 NAME ’Paymaster.raiseSal(Paymaster[], java.math.BigDecimal)’;

Again, this is a top-level call spec.

Implementing Object Type Methods
Later, you decide to drop the top-level call specs wages and raise_sal and redeclare
them as methods of object type Employee. In an object type spec, all methods must be
declared after the attributes. The object type body is unnecessary because the spec
declares only attributes and call specs.

CREATE TYPE Employee AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno REF Department
 MEMBER FUNCTION wages RETURN NUMBER
 AS LANGUAGE JAVA
 NAME ’Paymaster.wages() return java.math.BigDecimal’,
 MEMBER PROCEDURE raise_sal (r NUMBER)
 AS LANGUAGE JAVA
 NAME ’Paymaster.raiseSal(java.math.BigDecimal)’
);

Then, you revise class Paymaster accordingly. You need not pass an array to method
raiseSal because the SQL parameter SELF corresponds directly to the Java
parameter this—even when SELF is declared as IN OUT (the default for procedures).

import java.sql.*;
import java.io.*;
import oracle.sql.*;
import oracle.jdbc.*;
import oracle.oracore.*;
import oracle.jdbc2.*;
import java.math.*;

public class Paymaster implements SQLData {
 // Implement the attributes and operations for this type.
 private BigDecimal empno;
 private String ename;
 private String job;
 private BigDecimal mgr;
 private Date hiredate;
 private BigDecimal sal;
 private BigDecimal comm;
 private Ref dept;

 public BigDecimal wages() {
 BigDecimal pay = sal;

Writing Object Type Call Specs

Publishing Java Classes With Call Specs 6-17

 if (comm != null) pay = pay.add(comm);
 return pay;
 }

 public void raiseSal(BigDecimal amount) {
 // For SELF/this, even when IN OUT, no array is needed.
 sal = sal.add(amount);
 }

 // Implement SQLData interface.

 String sql_type;

 public String getSQLTypeName() throws SQLException {
 return sql_type;
 }

 public void readSQL(SQLInput stream, String typeName)
 throws SQLException {
 sql_type = typeName;
 empno = stream.readBigDecimal();
 ename = stream.readString();
 job = stream.readString();
 mgr = stream.readBigDecimal();
 hiredate = stream.readDate();
 sal = stream.readBigDecimal();
 comm = stream.readBigDecimal();
 dept = stream.readRef();
 }

 public void writeSQL(SQLOutput stream) throws SQLException {
 stream.writeBigDecimal(empno);
 stream.writeString(ename);
 stream.writeString(job);
 stream.writeBigDecimal(mgr);
 stream.writeDate(hiredate);
 stream.writeBigDecimal(sal);
 stream.writeBigDecimal(comm);
 stream.writeRef(dept);
 }
}

Writing Object Type Call Specs

6-18 Oracle Database Java Developer’s Guide

Calling Stored Procedures 7-1

7
Calling Stored Procedures

After you load and publish a Java stored procedure, you can call it. This chapter
demonstrates how to call Java stored procedures in various contexts. You learn how to
call them from the top level and from database triggers, SQL DML statements, and
PL/SQL blocks. You also learn how SQL exceptions are handled.

■ Calling Java from the Top Level

■ Calling Java from Database Triggers

■ Calling Java from SQL DML

■ Calling Java from PL/SQL

■ Calling PL/SQL from Java

■ How OracleJVM Handles Exceptions

Calling Java from the Top Level
The SQL CALL statement lets you call Java methods published at the top level, in
PL/SQL packages, or in SQL object types. In SQL*Plus, you can execute the CALL
statement interactively using the syntax:

CALL [schema_name.][{package_name | object_type_name}][@dblink_name]
{ procedure_name ([param[, param]...])
 | function_name ([param[, param]...]) INTO :host_variable};

where param stands for the following syntax:

{literal | :host_variable}

Host variables (that is, variables declared in a host environment) must be prefixed
with a colon. The following examples show that a host variable cannot appear twice in
the same CALL statement, and that a parameterless subprogram must be called with
an empty parameter list:

CALL swap(:x, :x); -- illegal, duplicate host variables
CALL balance() INTO :current_balance; -- () required

Redirecting Output
On the server, the default output device is a trace file, not the user screen. As a result,
System.out and System.err print to the current trace files. To redirect output to
the SQL*Plus text buffer, call the procedure set_output() in package DBMS_JAVA,
as follows:

SQL> SET SERVEROUTPUT ON

Calling Java from the Top Level

7-2 Oracle Database Java Developer’s Guide

SQL> CALL dbms_java.set_output(2000);

The minimum (and default) buffer size is 2,000 bytes; the maximum size is 1,000,000
bytes. In the following example, the buffer size is increased to 5,000 bytes:

SQL> SET SERVEROUTPUT ON SIZE 5000
SQL> CALL dbms_java.set_output(5000);

Output is printed when the stored procedure exits.

For more information about SQL*Plus, see the SQL*Plus User's Guide and Reference.

Example 1
In the following example, the method main accepts the name of a database table (such
as ’emp’) and an optional WHERE clause condition (such as ’sal > 1500’). If you
omit the condition, the method deletes all rows from the table. Otherwise, the method
deletes only those rows that meet the condition.

import java.sql.*;
import oracle.jdbc.*;

public class Deleter {
 public static void main (String[] args) throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "DELETE FROM " + args[0];
 if (args.length > 1) sql += " WHERE " + args[1];
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(sql);
 stmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The method main can take either one or two arguments. Normally, the DEFAULT
clause is used to vary the number of arguments passed to a PL/SQL subprogram.
However, that clause is not allowed in a call spec. So, you must overload two packaged
procedures (you cannot overload top-level procedures), as follows:

CREATE OR REPLACE PACKAGE pkg AS
 PROCEDURE delete_rows (table_name VARCHAR2);
 PROCEDURE delete_rows (table_name VARCHAR2, condition VARCHAR2);
END;

CREATE OR REPLACE PACKAGE BODY pkg AS
 PROCEDURE delete_rows (table_name VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'Deleter.main(java.lang.String[])';

 PROCEDURE delete_rows (table_name VARCHAR2, condition VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'Deleter.main(java.lang.String[])';
END;

Now, you are ready to call the procedure delete_rows:

SQL> CALL pkg.delete_rows('emp', 'sal > 1500');

Call completed.

Calling Java from the Top Level

Calling Stored Procedures 7-3

SQL> SELECT ename, sal FROM emp;

ENAME SAL
--------- --------
SMITH 800
WARD 1250
MARTIN 1250
TURNER 1500
ADAMS 1100
JAMES 950
MILLER 1300

7 rows selected.

Example 2
Assume that the executable for the following Java class is stored in the Oracle
database:

public class Fibonacci {
 public static int fib (int n) {
 if (n == 1 || n == 2)
 return 1;
 else
 return fib(n - 1) + fib(n - 2);
 }
}

The class Fibonacci has one method named fib, which returns the nth Fibonacci
number. The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, . . .), which was first used to
model the growth of a rabbit colony, is recursive. Each term in the sequence (after the
second) is the sum of the two terms that immediately precede it. Because the method
fib returns a value, you publish it as a function:

CREATE OR REPLACE FUNCTION fib (n NUMBER) RETURN NUMBER
AS LANGUAGE JAVA
NAME ’Fibonacci.fib(int) return int’;

Next, you declare two SQL*Plus host variables, then initialize the first one:

SQL> VARIABLE n NUMBER
SQL> VARIABLE f NUMBER
SQL> EXECUTE :n := 7;

PL/SQL procedure successfully completed.

Finally, you are ready to call the function fib. Remember, in a CALL statement, host
variables must be prefixed with a colon.

SQL> CALL fib(:n) INTO :f;

Call completed.

SQL> PRINT f

 F

 13

Calling Java from Database Triggers

7-4 Oracle Database Java Developer’s Guide

Calling Java from Database Triggers
A database trigger is a stored program associated with a specific table or view. Oracle
executes (fires) the trigger automatically whenever a given DML operation affects the
table or view.

A trigger has three parts: a triggering event (DML operation), an optional trigger
constraint, and a trigger action. When the event occurs, the trigger fires and either a
PL/SQL block or a CALL statement performs the action. A statement trigger fires once,
before or after the triggering event. A row trigger fires once for each row affected by the
triggering event.

Within a database trigger, you can reference the new and old values of changing rows
using the correlation names new and old. In the trigger-action block or CALL
statement, column names must be prefixed with :new or :old.

To create a database trigger, you use the SQL CREATE TRIGGER statement. For the
syntax of that statement, see theOracle Database SQL Reference. For a full discussion of
database triggers, see the Oracle Database Application Developer's Guide - Fundamentals.

Example 1
Suppose you want to create a database trigger that uses the following Java class to log
out-of-range salary increases:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class DBTrigger {
 public static void logSal (int empID, float oldSal, float newSal)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "INSERT INTO sal_audit VALUES (?, ?, ?)";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, empID);
 pstmt.setFloat(2, oldSal);
 pstmt.setFloat(3, newSal);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The class DBTrigger has one method, which inserts a row into the database table
sal_audit. Because logSal is a void method, you publish it as a procedure:

CREATE OR REPLACE PROCEDURE log_sal (
 emp_id NUMBER, old_sal NUMBER, new_sal NUMBER)
AS LANGUAGE JAVA
NAME 'DBTrigger.logSal(int, float, float)';

Next, you create the database table sal_audit, as follows:

CREATE TABLE sal_audit (
 empno NUMBER,
 oldsal NUMBER,
 newsal NUMBER);

Calling Java from Database Triggers

Calling Stored Procedures 7-5

Finally, you create the database trigger, which fires when a salary increase exceeds
twenty percent:

CREATE OR REPLACE TRIGGER sal_trig
AFTER UPDATE OF sal ON emp
FOR EACH ROW
WHEN (new.sal > 1.2 * old.sal)
CALL log_sal(:new.empno, :old.sal, :new.sal);

When you execute the following UPDATE statement, it updates all rows in the table
emp. For each row that meets the trigger’s WHEN clause condition, the trigger fires and
the Java method inserts a row into the table sal_audit.

SQL> UPDATE emp SET sal = sal + 300;

SQL> SELECT * FROM sal_audit;

 EMPNO OLDSAL NEWSAL
---------- ---------- ----------
 7369 800 1100
 7521 1250 1550
 7654 1250 1550
 7876 1100 1400
 7900 950 1250
 7934 1300 1600

6 rows selected.

Example 2
Suppose you want to create a trigger that inserts rows into a database view defined as
follows:

CREATE VIEW emps AS
 SELECT empno, ename, ’Sales’ AS dname FROM sales
 UNION ALL
 SELECT empno, ename, ’Marketing’ AS dname FROM mktg;

where the database tables sales and mktg are defined as:

CREATE TABLE sales (empno NUMBER(4), ename VARCHAR2(10));
CREATE TABLE mktg (empno NUMBER(4), ename VARCHAR2(10));

You must write an INSTEAD OF trigger because rows cannot be inserted into a view
that uses set operators such as UNION ALL. Instead, your trigger will insert rows into
the base tables.

First, you add the following Java method to the class DBTrigger (defined in the
previous example):

public static void addEmp (
 int empNo, String empName, String deptName)
throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String tabName = (deptName.equals("Sales") ? "sales" : "mktg");
 String sql = "INSERT INTO " + tabName + " VALUES (?, ?)";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, empNo);
 pstmt.setString(2, empName);
 pstmt.executeUpdate();

Calling Java from SQL DML

7-6 Oracle Database Java Developer’s Guide

 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
}

The method addEmp inserts a row into the table sales or mktg depending on the
value of the parameter deptName. You write the call spec for this method as follows:

CREATE OR REPLACE PROCEDURE add_emp (
 emp_no NUMBER, emp_name VARCHAR2, dept_name VARCHAR2)
AS LANGUAGE JAVA
NAME ’DBTrigger.addEmp(int, java.lang.String, java.lang.String)’;

Then, you create the INSTEAD OF trigger:

CREATE OR REPLACE TRIGGER emps_trig
INSTEAD OF INSERT ON emps
FOR EACH ROW
CALL add_emp(:new.empno, :new.ename, :new.dname);

When you execute each of the following INSERT statements, the trigger fires and the
Java method inserts a row into the appropriate base table:

SQL> INSERT INTO emps VALUES (8001, 'Chand', 'Sales');
SQL> INSERT INTO emps VALUES (8002, 'Van Horn', 'Sales');
SQL> INSERT INTO emps VALUES (8003, 'Waters', 'Sales');
SQL> INSERT INTO emps VALUES (8004, 'Bellock', 'Marketing');
SQL> INSERT INTO emps VALUES (8005, 'Perez', 'Marketing');
SQL> INSERT INTO emps VALUES (8006, 'Foucault', 'Marketing');

SQL> SELECT * FROM sales;

 EMPNO ENAME
---------- ----------
 8001 Chand
 8002 Van Horn
 8003 Waters

SQL> SELECT * FROM mktg;

 EMPNO ENAME
---------- ----------
 8004 Bellock
 8005 Perez
 8006 Foucault

SQL> SELECT * FROM emps;

 EMPNO ENAME DNAME
---------- ---------- ---------
 8001 Chand Sales
 8002 Van Horn Sales
 8003 Waters Sales
 8004 Bellock Marketing
 8005 Perez Marketing
 8006 Foucault Marketing

Calling Java from SQL DML
If you publish Java methods as functions, you can call them from SQL SELECT,
INSERT, UPDATE, DELETE, CALL, EXPLAIN PLAN, LOCK TABLE, and MERGE

Calling Java from SQL DML

Calling Stored Procedures 7-7

statements. For example, assume that the executable for the following Java class is
stored in the Oracle database:

public class Formatter {
 public static String formatEmp (String empName, String jobTitle) {
 empName = empName.substring(0,1).toUpperCase() +
 empName.substring(1).toLowerCase();
 jobTitle = jobTitle.toLowerCase();
 if (jobTitle.equals("analyst"))
 return (new String(empName + " is an exempt analyst"));
 else
 return (new String(empName + " is a non-exempt " + jobTitle));
 }
}

The class Formatter has one method named formatEmp, which returns a formatted
string containing a staffer’s name and job status. First, you write the call spec for this
method as follows:

CREATE OR REPLACE FUNCTION format_emp (ename VARCHAR2, job VARCHAR2)
 RETURN VARCHAR2
AS LANGUAGE JAVA
NAME ’Formatter.formatEmp (java.lang.String, java.lang.String)
 return java.lang.String’;

Then, you call the function format_emp to format a list of employees:

SQL> SELECT format_emp(ename, job) AS "Employees" FROM emp
 2 WHERE job NOT IN ('MANAGER', 'PRESIDENT') ORDER BY ename;

Employees
--
Adams is a non-exempt clerk
Allen is a non-exempt salesman
Ford is an exempt analyst
James is a non-exempt clerk
Martin is a non-exempt salesman
Miller is a non-exempt clerk
Scott is an exempt analyst
Smith is a non-exempt clerk
Turner is a non-exempt salesman
Ward is a non-exempt salesman

Restrictions
To be callable from SQL DML statements, a Java method must obey the following
"purity" rules, which are meant to control side effects:

■ When you call it from a SELECT statement or a parallelized INSERT, UPDATE, or
DELETE statement, the method cannot modify any database tables.

■ When you call it from an INSERT, UPDATE, or DELETE statement, the method
cannot query or modify any database tables modified by that statement.

■ When you call it from a SELECT, INSERT, UPDATE, or DELETE statement, the
method cannot execute SQL transaction control statements (such as COMMIT),
session control statements (such as SET ROLE), or system control statements (such
as ALTER SYSTEM). In addition, it cannot execute DDL statements (such as
CREATE) because they are followed by an automatic commit.

Calling Java from PL/SQL

7-8 Oracle Database Java Developer’s Guide

If any SQL statement inside the method violates a rule, you get an error at run time
(when the statement is parsed).

Calling Java from PL/SQL
You can call Java stored procedures from any PL/SQL block, subprogram, or package.
For example, assume that the executable for the following Java class is stored in the
Oracle database:

import java.sql.*;
import oracle.jdbc.*;

public class Adjuster {
 public static void raiseSalary (int empNo, float percent)
 throws SQLException {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 String sql = "UPDATE emp SET sal = sal * ? WHERE empno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setFloat(1, (1 + percent / 100));
 pstmt.setInt(2, empNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The class Adjuster has one method, which raises the salary of an employee by a
given percentage. Because raiseSalary is a void method, you publish it as a
procedure, as follows:

CREATE OR REPLACE PROCEDURE raise_salary (empno NUMBER, pct NUMBER)
AS LANGUAGE JAVA
NAME ’Adjuster.raiseSalary(int, float)’;

In the following example, you call the procedure raise_salary from an anonymous
PL/SQL block:

DECLARE
 emp_id NUMBER;
 percent NUMBER;
BEGIN
 -- get values for emp_id and percent
 raise_salary(emp_id, percent);
 ...
END;

In the next example, you call the function row_count (defined in Writing Top-Level
Call Specs on page 6-6) from a standalone PL/SQL stored procedure:

CREATE PROCEDURE calc_bonus (emp_id NUMBER, bonus OUT NUMBER) AS
 emp_count NUMBER;
 ...
BEGIN
 emp_count := row_count(’emp’);
 ...
END;

How OracleJVM Handles Exceptions

Calling Stored Procedures 7-9

In the final example, you call the raise_sal method of object type Employee
(defined in "Implementing Object Type Methods" on page 6-16) from an anonymous
PL/SQL block:

DECLARE
 emp_id NUMBER(4);
 v emp_type;
BEGIN
 -- assign a value to emp_id
 SELECT VALUE(e) INTO v FROM emps e WHERE empno = emp_id;
 v.raise_sal(500);
 UPDATE emps e SET e = v WHERE empno = emp_id;
 ...
END;

Calling PL/SQL from Java
JDBC allows you to call PL/SQL stored functions and procedures. For example,
suppose you want to call the following stored function, which returns the balance of a
specified bank account:

FUNCTION balance (acct_id NUMBER) RETURN NUMBER IS
 acct_bal NUMBER;
BEGIN
 SELECT bal INTO acct_bal FROM accts
 WHERE acct_no = acct_id;
 RETURN acct_bal;
END;

From a JDBC program, your call to the function balance might look like this:

CallableStatement cstmt = conn.prepareCall("{? = CALL balance(?)}");
cstmt.registerOutParameter(1, Types.FLOAT);
cstmt.setInt(2, acctNo);
cstmt.executeUpdate();
float acctBal = cstmt.getFloat(1);

How OracleJVM Handles Exceptions
Java exceptions are objects, so they have classes as their types. As with other Java
classes, exception classes have a naming and inheritance hierarchy. Therefore, you can
substitute a subexception (subclass) for its superexception (superclass).

All Java exception objects support the method toString(), which returns the fully
qualified name of the exception class concatenated to an optional string. Typically, the
string contains data-dependent information about the exceptional condition. Usually,
the code that constructs the exception associates the string with it.

When a Java stored procedure executes a SQL statement, any exception thrown is
materialized to the procedure as a subclass of java.sql.SQLException. That class
has the methods getErrorCode() and getMessage(), which return the Oracle
error code and message, respectively.

If a stored procedure called from SQL or PL/SQL throws an exception not caught by
Java, the caller gets the following error message:

ORA-29532 Java call terminated by uncaught Java exception

This is how all uncaught exceptions (including non-SQL exceptions) are reported.

How OracleJVM Handles Exceptions

7-10 Oracle Database Java Developer’s Guide

Java Stored Procedures Application Example 8-1

8
Java Stored Procedures Application Example

This chapter demonstrates the building of a Java stored procedures application. The
example is based on a simple business activity: managing customer purchase orders.
By following along from design to implementation, you learn enough to start writing
your own applications.

■ Drawing the Entity-Relationship Diagram

■ Planning the Database Schema

■ Creating the Database Tables

■ Writing the Java Classes

■ Loading the Java Classes

■ Publishing the Java Classes

■ Calling the Java Stored Procedures

Drawing the Entity-Relationship Diagram
The objective is to develop a simple system for managing customer purchase orders.
First, you must identify the business entities involved and their relationships. To do
that, you draw an entity-relationship (E-R) diagram by following the rules and
examples given in Figure 8–1.

Drawing the Entity-Relationship Diagram

8-2 Oracle Database Java Developer’s Guide

Figure 8–1 Rules for Drawing an E-R Diagram

As Figure 8–2 illustrates, the basic entities in this example are customers, purchase
orders, line items, and stock items.

Planning the Database Schema

Java Stored Procedures Application Example 8-3

Figure 8–2 E-R Diagram for Purchase Order Application

A Customer has a one-to-many relationship with a Purchase Order because a
customer can place many orders, but a given purchase order can be placed by only one
customer. The relationship is optional because zero customers might place a given
order (it might be placed by someone not previously defined as a customer).

A Purchase Order has a many-to-many relationship with a Stock Item because a
purchase order can refer to many stock items, and a stock item can be referred to by
many purchase orders. However, you do not know which purchase orders refer to
which stock items.

Therefore, you introduce the notion of a Line Item. A Purchase Order has a
one-to-many relationship with a Line Item because a purchase order can list many
line items, but a given line item can be listed by only one purchase order.

A LineItem has a many-to-one relationship with a StockItem because a line item
can refer to only one stock item, but a given stock item can be referred to by many line
items. The relationship is optional because zero line items might refer to a given stock
item.

Planning the Database Schema
Next, you must devise a schema plan. To do that, you decompose the E-R diagram into
the following database tables:

■ Customers

■ Orders

Creating the Database Tables

8-4 Oracle Database Java Developer’s Guide

■ LineItems

■ StockItems

For example, you assign Customer attributes to columns in the table Customers.

Figure 8–3 on page 8-4 depicts the relationships between tables. The E-R diagram
showed that a line item has a relationship with a purchase order and with a stock item.
In the schema plan, you establish these relationships using primary and foreign keys.

A primary key is a column (or combination of columns) whose values uniquely identify
each row in a table. A foreign key is a column (or combination of columns) whose
values match the primary key in some other table. For example, column PONo in table
LineItems is a foreign key matching the primary key in table Orders. Every
purchase order number in column LineItems.PONo must also appear in column
Orders.PONo.

Figure 8–3 Schema Plan for Purchase Order Application

Creating the Database Tables
Next, you create the database tables required by the schema plan. You begin by
defining the table Customers, as follows:

CREATE TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CustName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 PRIMARY KEY (CustNo)
);

The table Customers stores all the information about customers. Essential
information is defined as NOT NULL. For example, every customer must have a
shipping address. However, the table Customers does not manage the relationship
between a customer and his or her purchase order. So, that relationship must be
managed by the table Orders, which you define as:

CREATE TABLE Orders (

Orders

PONo

NUMBER

CustNo

NUMBER

OrderDate

DATE

ShipDate

DATE

ToStreet

VARCHAR2

To

VA

StockItems

StockNo

NUMBER

PK

Description

VARCHAR2

Price

NUMBER

LineItems

LineNo

NUMBER

PK PK, FK

PONo

NUMBER

StockNo

NUMBER

Quantity

NUMBER

Discount

NUMBER

FK

Column

Datatyp

Primary

Writing the Java Classes

Java Stored Procedures Application Example 8-5

 PONo NUMBER(5),
 Custno NUMBER(3) REFERENCES Customers,
 OrderDate DATE,
 ShipDate DATE,
 ToStreet VARCHAR2(20),
 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 PRIMARY KEY (PONo)
);

The E-R diagram in Figure 8–2 showed that line items have a relationship with
purchase orders and stock items. The table LineItems manages these relationships
using foreign keys. For example, the foreign key (FK) column StockNo in the table
LineItems references the primary key (PK) column StockNo in the table
StockItems, which you define as:

CREATE TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2))
);

The table Orders manages the relationship between a customer and purchase order
using the FK column CustNo, which references the PK column CustNo in the table
Customers. However, the table Orders does not manage the relationship between a
purchase order and its line items. So, that relationship must be managed by the table
LineItems, which you define as:

CREATE TABLE LineItems (
 LineNo NUMBER(2),
 PONo NUMBER(5) REFERENCES Orders,
 StockNo NUMBER(4) REFERENCES StockItems,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 PRIMARY KEY (LineNo, PONo)
);

Writing the Java Classes
Next, you consider the operations needed in a purchase order system, then you write
appropriate Java methods. In a simple system based on the tables defined in the
previous section, you need methods for registering customers, stocking parts, entering
orders, and so on. You implement these methods in the Java class POManager, as
follows:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class POManager {
 public static void addCustomer (int custNo, String custName,
 String street, String city, String state, String zipCode,
 String phoneNo) throws SQLException {
 String sql = "INSERT INTO Customers VALUES (?,?,?,?,?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, custNo);

Writing the Java Classes

8-6 Oracle Database Java Developer’s Guide

 pstmt.setString(2, custName);
 pstmt.setString(3, street);
 pstmt.setString(4, city);
 pstmt.setString(5, state);
 pstmt.setString(6, zipCode);
 pstmt.setString(7, phoneNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void addStockItem (int stockNo, String description,
 float price) throws SQLException {
 String sql = "INSERT INTO StockItems VALUES (?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, stockNo);
 pstmt.setString(2, description);
 pstmt.setFloat(3, price);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void enterOrder (int orderNo, int custNo,
 String orderDate, String shipDate, String toStreet,
 String toCity, String toState, String toZipCode)
 throws SQLException {
 String sql = "INSERT INTO Orders VALUES (?,?,?,?,?,?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, orderNo);
 pstmt.setInt(2, custNo);
 pstmt.setString(3, orderDate);
 pstmt.setString(4, shipDate);
 pstmt.setString(5, toStreet);
 pstmt.setString(6, toCity);
 pstmt.setString(7, toState);
 pstmt.setString(8, toZipCode);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void addLineItem (int lineNo, int orderNo,
 int stockNo, int quantity, float discount) throws SQLException {
 String sql = "INSERT INTO LineItems VALUES (?,?,?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, lineNo);
 pstmt.setInt(2, orderNo);
 pstmt.setInt(3, stockNo);
 pstmt.setInt(4, quantity);
 pstmt.setFloat(5, discount);

Writing the Java Classes

Java Stored Procedures Application Example 8-7

 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void totalOrders () throws SQLException {
 String sql =
 "SELECT O.PONo, ROUND(SUM(S.Price * L.Quantity)) AS TOTAL " +
 "FROM Orders O, LineItems L, StockItems S " +
 "WHERE O.PONo = L.PONo AND L.StockNo = S.StockNo " +
 "GROUP BY O.PONo";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 ResultSet rset = pstmt.executeQuery();
 printResults(rset);
 rset.close();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 static void printResults (ResultSet rset) throws SQLException {
 String buffer = "";
 try {
 ResultSetMetaData meta = rset.getMetaData();
 int cols = meta.getColumnCount(), rows = 0;
 for (int i = 1; i <= cols; i++) {
 int size = meta.getPrecision(i);
 String label = meta.getColumnLabel(i);
 if (label.length() > size) size = label.length();
 while (label.length() < size) label += " ";
 buffer = buffer + label + " ";
 }
 buffer = buffer + "\n";
 while (rset.next()) {
 rows++;
 for (int i = 1; i <= cols; i++) {
 int size = meta.getPrecision(i);
 String label = meta.getColumnLabel(i);
 String value = rset.getString(i);
 if (label.length() > size) size = label.length();
 while (value.length() < size) value += " ";
 buffer = buffer + value + " ";
 }
 buffer = buffer + "\n";
 }
 if (rows == 0) buffer = "No data found!\n";
 System.out.println(buffer);
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void checkStockItem (int stockNo)
 throws SQLException {
 String sql = "SELECT O.PONo, O.CustNo, L.StockNo, " +
 "L.LineNo, L.Quantity, L.Discount " +
 "FROM Orders O, LineItems L " +
 "WHERE O.PONo = L.PONo AND L.StockNo = ?";
 try {
 Connection conn =

Loading the Java Classes

8-8 Oracle Database Java Developer’s Guide

 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, stockNo);
 ResultSet rset = pstmt.executeQuery();
 printResults(rset);
 rset.close();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void changeQuantity (int newQty, int orderNo,
 int stockNo) throws SQLException {
 String sql = "UPDATE LineItems SET Quantity = ? " +
 "WHERE PONo = ? AND StockNo = ?";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, newQty);
 pstmt.setInt(2, orderNo);
 pstmt.setInt(3, stockNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void deleteOrder (int orderNo) throws SQLException {
 String sql = "DELETE FROM LineItems WHERE PONo = ?";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, orderNo);
 pstmt.executeUpdate();
 sql = "DELETE FROM Orders WHERE PONo = ?";
 pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, orderNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

Loading the Java Classes
Next, you use the command-line utility loadjava to upload your Java stored
procedures into the Oracle database, as follows:

> loadjava -u scott/tiger@myPC:1521:orcl -v -r -t POManager.java
initialization complete
loading : POManager
creating : POManager
resolver : resolver (("*" scott) ("*" public) ("*" -))
resolving: POManager

Recall that option -v enables verbose mode, that option -r compiles uploaded Java
source files and resolves external references in the classes, and that option -t tells
loadjava to connect to the database using the client-side JDBC Thin driver.

Publishing the Java Classes

Java Stored Procedures Application Example 8-9

Publishing the Java Classes
Next, you must publish your Java stored procedures in the Oracle data dictionary. To
do that, you write call specs, which map Java method names, parameter types, and
return types to their SQL counterparts.

The methods in the Java class POManager are logically related, so you group their call
specs in a PL/SQL package. First, you create the package spec, as follows:

CREATE OR REPLACE PACKAGE po_mgr AS
 PROCEDURE add_customer (cust_no NUMBER, cust_name VARCHAR2,
 street VARCHAR2, city VARCHAR2, state CHAR, zip_code VARCHAR2,
 phone_no VARCHAR2);
 PROCEDURE add_stock_item (stock_no NUMBER, description VARCHAR2,
 price NUMBER);
 PROCEDURE enter_order (order_no NUMBER, cust_no NUMBER,
 order_date VARCHAR2, ship_date VARCHAR2, to_street VARCHAR2,
 to_city VARCHAR2, to_state CHAR, to_zip_code VARCHAR2);
 PROCEDURE add_line_item (line_no NUMBER, order_no NUMBER,
 stock_no NUMBER, quantity NUMBER, discount NUMBER);
 PROCEDURE total_orders;
 PROCEDURE check_stock_item (stock_no NUMBER);
 PROCEDURE change_quantity (new_qty NUMBER, order_no NUMBER,
 stock_no NUMBER);
 PROCEDURE delete_order (order_no NUMBER);
END po_mgr;

Then, you create the package body by writing call specs for the Java methods:

CREATE OR REPLACE PACKAGE BODY po_mgr AS
 PROCEDURE add_customer (cust_no NUMBER, cust_name VARCHAR2,
 street VARCHAR2, city VARCHAR2, state CHAR, zip_code VARCHAR2,
 phone_no VARCHAR2) AS LANGUAGE JAVA
 NAME 'POManager.addCustomer(int, java.lang.String,
 java.lang.String, java.lang.String, java.lang.String,
 java.lang.String, java.lang.String)';

 PROCEDURE add_stock_item (stock_no NUMBER, description VARCHAR2,
 price NUMBER) AS LANGUAGE JAVA
 NAME 'POManager.addStockItem(int, java.lang.String, float)';

 PROCEDURE enter_order (order_no NUMBER, cust_no NUMBER,
 order_date VARCHAR2, ship_date VARCHAR2, to_street VARCHAR2,
 to_city VARCHAR2, to_state CHAR, to_zip_code VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'POManager.enterOrder(int, int, java.lang.String,
 java.lang.String, java.lang.String, java.lang.String,
 java.lang.String, java.lang.String)';

 PROCEDURE add_line_item (line_no NUMBER, order_no NUMBER,
 stock_no NUMBER, quantity NUMBER, discount NUMBER)
 AS LANGUAGE JAVA
 NAME 'POManager.addLineItem(int, int, int, int, float)';

 PROCEDURE total_orders
 AS LANGUAGE JAVA
 NAME 'POManager.totalOrders()';

 PROCEDURE check_stock_item (stock_no NUMBER)
 AS LANGUAGE JAVA
 NAME 'POManager.checkStockItem(int)';

Calling the Java Stored Procedures

8-10 Oracle Database Java Developer’s Guide

 PROCEDURE change_quantity (new_qty NUMBER, order_no NUMBER,
 stock_no NUMBER) AS LANGUAGE JAVA
 NAME 'POManager.changeQuantity(int, int, int)';

 PROCEDURE delete_order (order_no NUMBER)
 AS LANGUAGE JAVA
 NAME 'POManager.deleteOrder(int)';
END po_mgr;

Calling the Java Stored Procedures
Now, you can call your Java stored procedures from the top level and from database
triggers, SQL DML statements, and PL/SQL blocks. To reference the stored procedures
in the package po_mgr, you must use dot notation.

From an anonymous PL/SQL block, you might start the new purchase order system
by stocking parts, as follows:

BEGIN
 po_mgr.add_stock_item(2010, 'camshaft', 245.00);
 po_mgr.add_stock_item(2011, 'connecting rod', 122.50);
 po_mgr.add_stock_item(2012, 'crankshaft', 388.25);
 po_mgr.add_stock_item(2013, 'cylinder head', 201.75);
 po_mgr.add_stock_item(2014, 'cylinder sleeve', 73.50);
 po_mgr.add_stock_item(2015, 'engine bearning', 43.85);
 po_mgr.add_stock_item(2016, 'flywheel', 155.00);
 po_mgr.add_stock_item(2017, 'freeze plug', 17.95);
 po_mgr.add_stock_item(2018, 'head gasket', 36.75);
 po_mgr.add_stock_item(2019, 'lifter', 96.25);
 po_mgr.add_stock_item(2020, 'oil pump', 207.95);
 po_mgr.add_stock_item(2021, 'piston', 137.75);
 po_mgr.add_stock_item(2022, 'piston ring', 21.35);
 po_mgr.add_stock_item(2023, 'pushrod', 110.00);
 po_mgr.add_stock_item(2024, 'rocker arm', 186.50);
 po_mgr.add_stock_item(2025, 'valve', 68.50);
 po_mgr.add_stock_item(2026, 'valve spring', 13.25);
 po_mgr.add_stock_item(2027, 'water pump', 144.50);
 COMMIT;
END;

Then, you register your customers:

BEGIN
 po_mgr.add_customer(101, 'A-1 Automotive', '4490 Stevens Blvd',
 'San Jose', 'CA', '95129', '408-555-1212');
 po_mgr.add_customer(102, 'AutoQuest', '2032 America Ave',
 'Hayward', 'CA', '94545', '510-555-1212');
 po_mgr.add_customer(103, 'Bell Auto Supply', '305 Cheyenne Ave',
 'Richardson', 'TX', '75080', '972-555-1212');
 po_mgr.add_customer(104, 'CarTech Auto Parts', '910 LBJ Freeway',
 'Dallas', 'TX', '75234', '214-555-1212');
 COMMIT;
END;

Next, you enter purchase orders placed by various customers:

BEGIN
 po_mgr.enter_order(30501, 103, '14-SEP-1998', '21-SEP-1998',
 '305 Cheyenne Ave', 'Richardson', 'TX', '75080');

Calling the Java Stored Procedures

Java Stored Procedures Application Example 8-11

 po_mgr.add_line_item(01, 30501, 2011, 5, 0.02);
 po_mgr.add_line_item(02, 30501, 2018, 25, 0.10);
 po_mgr.add_line_item(03, 30501, 2026, 10, 0.05);

 po_mgr.enter_order(30502, 102, '15-SEP-1998', '22-SEP-1998',
 '2032 America Ave', 'Hayward', 'CA', '94545');
 po_mgr.add_line_item(01, 30502, 2013, 1, 0.00);
 po_mgr.add_line_item(02, 30502, 2014, 1, 0.00);

 po_mgr.enter_order(30503, 104, '15-SEP-1998', '23-SEP-1998',
 '910 LBJ Freeway', 'Dallas', 'TX', '75234');
 po_mgr.add_line_item(01, 30503, 2020, 5, 0.02);
 po_mgr.add_line_item(02, 30503, 2027, 5, 0.02);
 po_mgr.add_line_item(03, 30503, 2021, 15, 0.05);
 po_mgr.add_line_item(04, 30503, 2022, 15, 0.05);

 po_mgr.enter_order(30504, 101, '16-SEP-1998', '23-SEP-1998',
 '4490 Stevens Blvd', 'San Jose', 'CA', '95129');
 po_mgr.add_line_item(01, 30504, 2025, 20, 0.10);
 po_mgr.add_line_item(02, 30504, 2026, 20, 0.10);
 COMMIT;
END;

Finally, in SQL*Plus, after redirecting output to the SQL*Plus text buffer, you might
call the Java method totalOrders as follows:

SQL> SET SERVEROUTPUT ON
SQL> CALL dbms_java.set_output(2000);
...
SQL> CALL po_mgr.total_orders();
PONO TOTAL
30501 1664
30502 275
30503 4149
30504 1635

Call completed.

Calling the Java Stored Procedures

8-12 Oracle Database Java Developer’s Guide

Security For Oracle Database Java Applications 9-1

9
Security For Oracle Database

Java Applications

Security is a large arena that includes network security for the connection, access and
execution control of operating system resources or of JVM-defined and user-defined
classes, and bytecode verification of imported JAR files from an external source. The
following sections describe the various security support available for Java applications
within Oracle Database.

■ Network Connection Security

■ Database Contents and OracleJVM Security

■ Java 2 Security

■ Setting Permissions

■ Debugging Permissions

■ Permission for Loading Classes

■ Database Authentication Mechanisms

Network Connection Security
The two major aspects to network security are authentication and data confidentiality.
The type of authentication and data confidentiality is dependent on how you connect
to the database—through Oracle Net or JDBC connection.

Connection Security Description

Oracle Net The database can require both authentication and authorization
before allowing a user to connect to it. Oracle Net database
connection security can require one or more of the following:

■ Use a username and password for client verification. Each
incoming connection into the database has to provide the
correct username/password configured within Oracle Net.
For more information, see the Oracle Database Net Services
Administrator’s Guide.

■ Use Advanced Networking Option for encryption, kerberos,
or secureId. See the Oracle Advanced Security Administrator's
Guide.

■ Use SSL for certificate authentication. See the Oracle
Advanced Security Administrator's Guide.

Database Contents and OracleJVM Security

9-2 Oracle Database Java Developer’s Guide

Database Contents and OracleJVM Security
Once you are connected to the database, you still must have the correct Java 2
Permissions and database privileges to access the resources stored within the database.
These resources include the following:

■ database resources, such as tables and PL/SQL packages

■ operating system resources, such as files and sockets

■ OracleJVM classes

■ user-loaded classes

These resources can be protected by the following two methods:

Java 2 Security
Each user or schema must be assigned the proper permissions to access operating
system resources. For example, this includes sockets, files, and system properties.

Java 2 security was created to provide a flexible, configurable security for Java
applications. With Java 2 security, you can define exactly what permissions on each
loaded object that a schema or role will have. In release 8.1.5, the security provided
you the choice of two secure roles:

■ JAVAUSERPRIV—few Permissions, including examining properties

■ JAVASYSPRIV—major Permissions, including updating OracleJVM protected
packages

JDBC The JDBC connection security that is required is similar to the
constraints required on an Oracle Net database connection. In
addition to the books listed in the Oracle Net database
connection section, see the Oracle Database JDBC Developer's
Guide and Reference.

Resource Security Description

Database Resource
Security

Authorization for database resources requires that database
privileges (not the same as the Java 2 security permissions) are
granted to resources. For example, database resources include
tables, classes, and PL/SQL packages. For more information, see
the Oracle Database Application Developer's Guide - Fundamentals.

All user-defined classes are secured against users from other
schemas. You can grant execution permission to other
users/schemas through an option on the loadjava command. For
more information on setting execution rights when loading classes,
see the -grant option discussed in "Loading Classes" on page 2-12
or Chapter 11, "Schema Object Tools" for complete information on
loadjava.

JVM Security OracleJVM uses Java 2 security, which uses Permission objects to
protect operating system resources. Java 2 security is automatically
installed upon startup and protects all operating system resources
and OracleJVM classes from all users, except JAVA_ADMIN.
JAVA_ADMIN can grant permission to other users to access these
classes.

See "Java 2 Security" on page 9-2 for how to manage and modify
Java 2 Permissions and policies.

Connection Security Description

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-3

Because OracleJVM security is based on Java 2 security, you assign Permissions on a
class by class basis. Permissions contains two string attributes:

■ target (name) attribute

■ action attribute

These permissions are assigned through database management tools. Each permission
is encapsulated in a Permission object and is stored within a Permission table. The
methods for managing all permissions are the subject for most of this chapter.

Java security was created for the non-database world. When you apply the Java 2
security model within the database, certain differences manifest themselves. For
example, Java 2 security defines that all applets are implicitly untrusted, and all classes
within the CLASSPATH are trusted. In Oracle Database, all classes are loaded within a
secure database; thus, no classes are trusted.

The following table briefly describes the differences between the Sun Microsystems
Java 2 security and the Oracle Database security implementation. This table assumes
that you already understand the Sun Microsystems Java 2 security model. For more
information, we recommend the following books:

■ Inside Java 2 Platform Security by Li Gong

■ Java Security by Scott Oaks

Note: Both roles still exist within this release for backward
compatibility; however, Oracle recommends that you specify each
Permission explicitly, rather than utilize these roles.

Java 2 Security Standard Oracle Database Security Implementation

Java classes located within the
CLASSPATH are trusted.

All Java classes are loaded within the
database. Classes are trusted on a class by
class basis according to the Permission
granted.

You can specify the policy through the
-usepolicy flag on the java
command line.

You must specify the policy within the
PolicyTable.

You can write your own
SecurityManager or use the
Launcher.

You can write your own
SecurityManager; Oracle recommends
that you use only the Oracle Database
SecurityManager or that you extend the
Oracle Database SecurityManager. If you
want to modify the behavior, you should not
define a SecurityManager; instead, you
should extend oracle.aurora.rdbms.
SecurityManagerImpl and override
specific methods.

SecurityManager is not initialized
for you. You must initialize the
SecurityManager.

The OracleJVM always initializes
SecurityManager at startup.

Permissions are determined by the
location where the application or
applet is loaded (the URL) or keycode
(signed code).

Permissions are determined by the schema
in which the class is loaded. Oracle Database
does not support signed code.

The security policy is defined in a file. The PolicyTable definition is contained
within a secure database table.

Database Contents and OracleJVM Security

9-4 Oracle Database Java Developer’s Guide

Setting Permissions
As with Java 2 security, Oracle Database supports the security classes. Normally, you
set the Permissions for the code base either through a tool or by editing the security
policy file. In Oracle Database, you set the Permissions dynamically through
DBMS_JAVA procedures. These procedures modify a policy table, which is a new table
within the database that exclusively manages Java 2 security Permissions.

Two views have been created for you to view the policy table: USER_JAVA_POLICY
and DBA_JAVA_POLICY. Both views contain information about granted and
limitation Permissions. The DBA_JAVA_POLICY view can see all rows within the
policy table; the USER_JAVA_POLICY table can see only Permissions relevant to the
current user. The following is a description of the rows within each view:

You can update the security policy file
through a text editor (if you have the
correct Permissions) or through a tool.

You can update the PolicyTable through
DBMS_JAVA procedures. After initialization,
only JAVA_ADMIN has permission to
modify the PolicyTable. JAVA_ADMIN must
grant you the right to modify the PolicyTable
for you to grant Permissions to others.

Permissions are assigned to a
protection domain, which classes can
belong to.

All classes within the same schema are
within the same protection domain.

You can use the CodeSource class for
identifying code.

■ The equals method returns true
if the URL and certificates are
equal.

■ The implies method returns
true if the first CodeSource is a
generic representation that
includes the specific CodeSource
object.

You can use the CodeSource class for
identifying schema.

■ The equals method returns true if the
schemas are the same.

■ The implies method returns true if the
schemas are the same.

Supports positive Permissions only
(grant).

Supports both positive (grant) and limitation
(restrict) Permissions.

Table Column Description

Kind GRANT or RESTRICT. Shows whether this Permission is a positive
(GRANT) or a limitation (RESTRICT) Permission.

Grantee The name of the user, schema, or role to which the Permission object
is assigned.

Permission_schema The schema in which the Permission object is loaded.

Permission_type The Permission class type, which is designated by a string containing
the full class name, such as, java.io.FilePermission.

Permission_name The target attribute (name) of the Permission object. You use this
name when defining the Permission. When defining the target for a
Permission of type PolicyTablePermission, the name can become
quite complicated. See "Acquiring Administrative Permission to
Update Policy Table" on page 9-8 for more information.

Permission_action The action attribute for this Permission. Many Permissions expect a
null value if no action is appropriate for the Permission.

Java 2 Security Standard Oracle Database Security Implementation

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-5

There are two ways to set your Permissions:

■ Fine-Grain Definition for Each Permission—You grant each Permission
individually for specific users or roles. If you do not grant a Permission for access,
the schema will be denied access.

■ General Permission Definition Assigned to Roles—If you do not want to grant
specific Permissions for each user, you can grant roles, which grants a collection of
Permissions to the user. Oracle Database supplies the roles: JAVAUSERPRIV or
JAVASYSPRIV.

Fine-Grain Definition for Each Permission
To set individual Permissions within the policy table, you must provide the following
information:

You can either grant Java 2 Permissions or create your own. The Java 2 Permissions are
listed in Table 9–1. If you would like to create your own Permissions, see "Creating
Permissions" on page 9-10.

Status ACTIVE or INACTIVE. After creating a row for a Permission, you
can disable or re-enable it. This column shows the status of whether
the Permission is enabled (ACTIVE) or disabled (INACTIVE).

Key Sequence number you use to identify this row. This number should
be supplied when disabling, enabling, or deleting the Permission.

Note: For absolute certainty about your security, implement the
fine-grain definition. The general definition is easier; but you might
not get the exact security you require.

Parameter Description

Grantee The name of the user, schema, or role to which you want the
grant to apply. PUBLIC specifies that the row applies to all users.

Permission type The Permission class on which you are granting Permission. For
example, if you were defining access to a file, the Permission
type would be FilePermission. This parameter requires a
fully-qualified name of a class that extends
java.lang.security.Permission. If the class is not within
SYS, the name should be prefixed by <schema>:. For example,
mySchema:myPackage.MyPermission is a valid name for a
user-generated Permission.

Permission name The meaning of the target attribute is defined by the Permission
class. Examine the appropriate Permission class for the relevant
name.

Permission action The type of action that you can specify varies according to the
Permission type. For example, FilePermission can have the
action of read or write.

Key Number returned from grant or limit to use on enable, disable,
or delete methods.

Table 9–1 Permission Types

■ java.util.PropertyPermission

Table Column Description

Database Contents and OracleJVM Security

9-6 Oracle Database Java Developer’s Guide

You can grant permissions using either SQL or Java, as shown below. However, each
returns a row key identifier that identifies the row within the permission table. In the
Java version of DBMS_JAVA, each method returns the row key identifier, either as a
returned parameter or as an OUT variable in the parameter list. In the PL/SQL
DBMS_JAVA package, the row key is returned only in the procedure that defines the
key OUT parameter. This key is used to enable and disable specific Permissions. See
"Enabling or Disabling Permissions" on page 9-13 for more information.

If, after executing the grant, a row already exists for the exact Permission, no update
occurs, but the key for that row is returned. If the row was disabled, executing the
grant enables the existing row.

Granting Permissions using the DBMS_JAVA package:

procedure grant_permission(grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

procedure grant_permission(grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2, key OUT number)

Granting Permissions using Java:

long oracle.aurora.rdbms.security.PolicyTableManager.grant(
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
java.lang.String permission_action);

void oracle.aurora.rdbms.security.PolicyTableManager.grant(
java.lang.String grantee,
java.lang.String permission_type,

■ java.io.SerializablePermission

■ java.io.FilePermission

■ java.net.NetPermission

■ java.net.SocketPermission

■ java.lang.RuntimePermission

■ java.lang.reflect.ReflectPermission

■ java.security.SecurityPermission

■ oracle.aurora.rdbms.security.PolicyTablePermission

■ oracle.aurora.security.JServerPermission

Note: If granting FilePermission, you must provide the
physical name of the directory or file, such as /private/oracle.
You cannot provide either an environment variable, such as
$ORACLE_HOME, or a symbolic link. Also, to denote all files
within a directory, provide the ’*’ symbol, as follows:
’/private/oracle/*’. To denote all directories and files within a
directory, provide the ’-’ symbol, as follows:
’/private/oracle/-’.

Table 9–1 (Cont.) Permission Types

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-7

java.lang.String permission_name,
java.lang.String permission_action,
long[] key);

Limiting Permissions using the DBMS_JAVA package:

procedure restrict_permission(grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

procedure restrict_permission(grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2, key OUT number)

Limiting Permissions using Java:

long oracle.aurora.rdbms.security.PolicyTableManager.restrict(
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
java.lang.String permission_action);

void oracle.aurora.rdbms.security.PolicyTableManager.restrict(
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
java.lang.String permission_action,
long[] key);

Example 9–1 Granting Permissions

Assuming that you have appropriate Permissions to modify the policy table, you use
the grant_permission method within the DBMS_JAVA package to modify the
PolicyTable to allow the user access to the indicated file. In this example, the user,
Larry, has PolicyTable modification Permission. Within a SQL package, Larry
grants permission to read and write a file to the user Dave.

connect larry/larry

REM Grant DAVE permission to read and write the Test1 file.
call dbms_java.grant_permission(’DAVE’,
’java.io.FilePermission’, ’/test/Test1’,
’read,write’);

REM commit the changes to the PolicyTable
commit;

Example 9–2 Limiting Permissions

You use the restrict method for specifying a limitation or exception to general
rules. A general rule is a rule where, in most cases, the Permission is true. However,
there may be exceptions to this rule. For these exceptions, you specify a limitation
Permission.

That is, if you have defined a general rule that no one can read or write for an entire
directory, you can define a limitation on an aspect of this rule through the restrict
method. For example, if you want to allow access to all files within the /tmp
directory—except for your password file that exists in that directory—you would
grant permission for read and write to all files within /tmp and limit read and write
access to the password file.

Database Contents and OracleJVM Security

9-8 Oracle Database Java Developer’s Guide

If you want to specify an exception to the limitation, you would create an explicit
grant Permission to override the limitation Permission. In the scenario mentioned
above, if you want the file owner to still be able to modify the password file, you can
grant a more explicit Permission to allow access to one user, which will override the
limitation. OracleJVM security combines all rules to understand who really has access
to the password file. This is demonstrated in the following diagram:

The explicit rule is as follows:

If the limitation Permission implies the request, then for a grant to be effective, the
limitation Permission must also imply the grant.

The following is the code that implements this example:

1. Grant everyone (PUBLIC) read and write permission to all files in /tmp.

2. Limit everyone (PUBLIC) from reading or writing only the password file in
/tmp.

3. Grant only Larry (owner) explicit permission to read and write the password file.

connect larry/larry

REM Grant permission to all users (PUBLIC) to be able to read and write
REM all files in /tmp.
call dbms_java.grant_permission(’PUBLIC’,
’java.io.FilePermission’,
’/tmp/*’,
’read,write’);

REM Limit permission to all users (PUBLIC) from reading or writing the
REM password file in /tmp.
call dbms_java.restrict_permission(’PUBLIC’,
’java.io.FilePermission’,
’/tmp/password’,
’read,write’);

REM By providing a more specific rule that overrides the limitation,
REM Larry can read and write /tmp/password.
call dbms_java.grant_permission(’LARRY’,
’java.io.FilePermission’,
’/tmp/password’,
’read,write’);
commit;

Acquiring Administrative Permission to Update Policy Table
All Permissions are rows within the policy table. As it is a table within the database
and thus a resource, permission is needed to modify it. Specifically, the
PolicyTablePermission object is required to modify the table. After the first
initialization for OracleJVM, only a single role—JAVA_ADMIN—is granted the
PolicyTablePermission to modify the policy table. The JAVA_ADMIN role is

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-9

immediately assigned to DBA; thus, if you are assigned to the DBA group, you will
automatically take on all JAVA_ADMIN Permissions.

For you to be able to add Permissions as rows to this table, JAVA_ADMIN must grant
your schema update rights for the PolicyTablePermission. This Permission
defines that your schema can add rows to the table. Each PolicyTablePermission
is for a specific Permission type. For example, for you to add a Permission that
controls access to a file, you must have a PolicyTablePermission that allows you
to grant or limit a Permission on a FilePermission. Once this occurs, you have
administrative Permission for FilePermission.

The administrator could grant and limit the PolicyTablePermissions in the same
manner as other Permissions, but the syntax is complicated. For ease of use, use one of
the following methods within the DBMS_JAVA package to grant administrative
Permissions.

Granting policy table administrative Permissions using DBMS_JAVA:

procedure grant_policy_permission(grantee varchar2, permission_schema varchar2,
permission_type varchar2,
permission_name varchar2)

procedure grant_policy_permission(grantee varchar2, permission_schema varchar2,
permission_type varchar2,
permission_name varchar2,
key OUT number)

Granting policy table administrative permission using Java:

long oracle.aurora.rdbms.security.PolicyTableManager.grantPolicyPermission(
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name);

void oracle.aurora.rdbms.security.PolicyTableManager.grantPolicyPermission(
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
long[] key);

Parameter Description

Grantee The name of the user, schema, or role to which you want the
grant to apply. PUBLIC specifies that the row applies to all users.

Permission_schema The <schema> where the Permission class is loaded.

Permission_type The Permission class on which you are granting Permission. For
example, if you were defining access to a file, the Permission
type would be FilePermission. This parameter requires a
fully-qualified name of a class that extends
java.lang.security.Permission. If the class is not within
SYS, the name should be prefixed by <schema>:. For example,
mySchema:myPackage.MyPermission is a valid name for a
user generated Permission.

Permission_name The meaning of the target attribute is defined by the Permission
class. Examine the appropriate Permission class for the relevant
name.

Row_ number Number returned from grant or limitation to use on enable,
disable, or delete methods.

Database Contents and OracleJVM Security

9-10 Oracle Database Java Developer’s Guide

Example 9–3 Granting PolicyTable Permission

The following example shows JAVA_ADMIN (as SYS) giving Larry permission to
update the PolicyTable for FilePermission. Once this Permission is granted, Larry
can grant permissions to other users for reading, writing, and deleting files.

REM Connect as SYS, which is assigned JAVA_ADMIN role, to give Larry permission
REM to modify the PolicyTable
connect SYS/SYS as SYSDBA

REM SYS grants Larry the right to administer permissions for
REM FilePermission
call dbms_java.grant_policy_permission(’LARRY’, ’SYS’,
’java.io.FilePermission’, ’*’);

Creating Permissions
Create your own Permission type by performing the following steps:

1. Create and load the user Permission.

2. Grant administrative and action Permissions to specified users.

3. Implement security checks using the Permission.

1. Create and load the user Permission Create your own Permission by extending the Java
2 Permission class. Any user-created Permission must extend Permission. The
following example creates MyPermission, which extends BasicPermission, which
in turn extends Permission.

package test.larry;
import java.security.Permission;
import java.security.BasicPermission;

public class MyPermission extends BasicPermission {

 public MyPermission(String name) {
 super(name);
 }

 public boolean implies(Permission p) {
 boolean result = super.implies(p);
 return result;
 }
}

2. Grant administrative and action Permissions to specified users When you create a
Permission, you are designated as owner of that Permission. The owner is implicitly
granted administrative Permission. This means that the owner can be an administrator
for this Permission and can execute grant_policy_permission. Administrative
Permission permits the user to update the policy table for the user-defined Permission.

Note: When looking at the policy table, the name within the
PolicyTablePermission rows contains both the Permission type and
the Permission name, which are separated by a "#". For example, to
grant a user administrative rights for reading a file, the name in the
row contains java.io.FilePermission#read. The "#"
separates the Permission class from the Permission name.

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-11

For example, if LARRY creates a Permission, MyPermission, only LARRY can invoke
grant_policy_permission for himself or another user. This method updates the
PolicyTable on who can grant rights to MyPermission. The following code
demonstrates this:

REM Since Larry is the user that owns MyPermission, Larry connects to
REW the database to assign permissions for MyPermission.
connect larry/larry

REM As the owner of MyPermission, Larry grants himself the right to
REM administer permissions for test.larry.MyPermission within the JVM
REM security PolicyTable. Only the owner of the user-defined permission
REM can grant administrative rights.
call dbms_java.grant_policy_permission(’LARRY’, ’LARRY’,
 ’test.larry.MyPermission’, ’*’);

REM commit the changes to the PolicyTable
commit;

Once you have granted administrative rights, you can grant action Permissions for the
user-created Permission. For example, the following SQL grants permission for
LARRY to execute anything within MyPermission and for DAVE to execute only
actions that start with "act.".

REM Since Larry is the user that creates MyPermission, Larry connects to
REW the database to assign permissions for MyPermission.
connect larry/larry

REM Once able to modify the PolicyTable for MyPermission, Larry grants himself
REM full permission for MyPermission. Notice that the Permission is prepended
REM with its owner schema.
call dbms_java.grant_permission(’LARRY’,
’LARRY:test.larry.MyPermission’, ’*’, null);

REM Larry grants Dave permission to do any actions that start with ’act.*’.
call dbms_java.grant_permission
 (’DAVE’, ’LARRY:test.larry.MyPermission’, ’act.*’, null);

REM commit the changes to the PolicyTable
commit;

3. Implement security checks using the Permission Once you have created, loaded, and
assigned Permissions for MyPermission, you must implement the call to
SecurityManager to have the Permission checked. There are four methods in the
following example: sensitive, act, print, and hello. Because of the Permissions
granted in the SQL example in step 2, the following users can execute methods within
the example class:

■ LARRY can execute any of the methods.

■ DAVE is given permission to execute only the act method.

■ Anyone can execute the print and hello methods. The print method does not
check any Permissions, so anyone can execute the print method. The hello
method executes AccessController.doPrivileged, which means that the
method executes with LARRY’s Permissions. This is referred to as definer’s rights.

package test.larry;
import java.security.AccessController;
import java.security.Permission;
import java.security.PrivilegedAction;

Database Contents and OracleJVM Security

9-12 Oracle Database Java Developer’s Guide

import java.sql.Connection;
import java.sql.SQLException;

/**
 * MyActions is a class with a variety of public methods that
 * have some security risks associated with them. We will rely
 * on the Java security mechanisms to ensure that they are
 * performed only by code that is authorized to do so.
 */

public class Larry {

 private static String secret = "Larry’s secret";
 MyPermission sensitivePermission = new MyPermission("sensitive");

 /**
 * This is a security sensitive operation. That is it can
 * compromise our security if it is executed by a "bad guy".
 * Only larry has permission to execute sensitive.
 */
 public void sensitive() {
 checkPermission(sensitivePermission);
 print();
 }

 /**
 * Will print a message from Larry. We need to be
 * careful about who is allowed to do this
 * because messages from Larry may have extra impact.
 * Both larry and dave have permission to execute act.
 */
public void act(String message) {
 MyPermission p = new MyPermission("act." + message);
 checkPermission(p);
 System.out.println("Larry says: " + message);
 }

 /**
 * Print our secret key
 * No permission check is made; anyone can execute print.
 */
 private void print() {
 System.out.println(secret);
 }

 /**
 * Print "Hello"
 * This method invokes doPrivileged, which makes the method run
 * under definer’s rights. So, this method runs under Larry’s
 * rights, so anyone can execute hello. Only Larry can execute hello
 */
 public void hello() {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() { act("hello"); return null; }
 });
 }

 /**
 * If a security manager is installed ask it to check permission

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-13

 * otherwise use the AccessController directly
 */
 void checkPermission(Permission permission) {
 SecurityManager sm = System.getSecurityManager();
 sm.checkPermission(permission);
 }
}

Enabling or Disabling Permissions
Once you have created a row that defines a Permission, you can disable it so that it is
no longer applied. However, if you decide you want the row action again, you can
enable the row. You can delete the row from the table if you believe that it will never
be used again. To delete, you must first disable the row. If you do not disable the row,
the deletion will not occur.

To disable rows, you can use either the disable_permission or the revoke
method.

■ The revoke_permission method takes in parameters similar to the grant and
restrict methods. It searches the entire policy table for all rows that match the
supplied parameters.

■ The disable_permission method disables only a single row within the policy
table. To do this, it takes in the policy table key. This key is also necessary to enable
or delete a Permission. To retrieve the Permission key number, perform one of the
following:

■ Save the key when it is returned on the grant or limit calls. If you do not
foresee a need to ever enable or disable the Permission, you can use the grant
and limit calls that do not return the Permission number.

■ View DBA_JAVA_POLICY or USER_JAVA_POLICY for the appropriate
Permission key number.

Disabling Permissions using DBMS_JAVA:

procedure revoke_permission(permission_schema varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

procedure disable_permission(key number)

Disabling Permissions using Java:

void revoke(String schema, String type, String name, String action);

void oracle.aurora.rdbms.security.PolicyTableManager.disable(long number);

Enabling Permissions using DBMS_JAVA:

procedure enable_permission(key number)

Enabling Permissions using Java:

void oracle.aurora.rdbms.security.PolicyTableManager.enable(long number);

Deleting Permissions using DBMS_JAVA:

procedure delete_permission(key number)

Database Contents and OracleJVM Security

9-14 Oracle Database Java Developer’s Guide

Deleting Permissions using Java:

void oracle.aurora.rdbms.security.PolicyTableManager.delete(long number);

Permission Types
Table 9–2 lists the installed Permission types. Whenever you want to grant or limit a
Permission, you must provide the Permission type within the DBMS_JAVA method.
The Permission types with which you control access are the following:

■ Oracle-provided Permission types listed in Table 9–2

■ user created Permission types that extend java.security.Permission

All the Java Permission types are documented in the Sun Microsystems Java 2
documentation.

The Oracle-specific Permissions, PolicyTablePermission and
JServerPermission, are described below:

oracle.aurora.rdbms.security.PolicyTablePermission This Permission controls who can
update the policy table. Once granted the right to update the policy table for a certain
Permission type, the user can control other user’s access to some resource.

After OracleJVM initialization, only the JAVA_ADMIN role can grant administrative
rights for the policy table through PolicyTablePermission. Once it grants this
right to other users, these users can in turn update the policy table with their own
grant and limitation Permissions.

To grant policy table updates, use the DBMS_JAVA method:
grant_policy_permission, as discussed in "Acquiring Administrative Permission
to Update Policy Table" on page 9-8. Once you have updated the table, you can view
either the DBA_JAVA_POLICY or USER_JAVA_POLICY views to see who has been
granted Permissions.

Table 9–2 Permission Types

■ java.util.PropertyPermission

■ java.io.SerializablePermission

■ java.io.FilePermission

■ java.net.NetPermission

■ java.net.SocketPermission

■ java.lang.RuntimePermission

■ java.lang.reflect.ReflectPermission

■ java.security.SecurityPermission

■ oracle.aurora.rdbms.security.PolicyTablePermission

■ oracle.aurora.security.JServerPermission

Note: SYS is granted permission to load libraries that come with
Oracle. However, OracleJVM does not support other users loading
libraries, because loading C within the database is insecure.
Therefore, you are not allowed to grant permission for
loadLibrary.* of RuntimePermission.

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-15

oracle.aurora.security.JServerPermission Use this Permission to grant and limit access to
OracleJVM resources. The JServerPermission extends from BasicPermission.
The following table lists the names for which JServerPermission grants access:

Initial Permission Grants
When you first initialize OracleJVM, several roles are populated with certain
Permission grants. The following tables show these roles and their initial Permissions:

1. The JAVA_ADMIN role is given access to modify the policy table for all
Permissions. All DBAs, including SYS, are granted JAVA_ADMIN. Full
administrative rights to update the policy table are granted for the following
Permissions:

2. In addition to the JAVA_ADMIN Permissions, SYS is also granted the following
Permissions:

Permission Name Description

LoadClassInPackage.<package_name
>

grants the ability to load a class within the specified
package

Verifier grants the ability to turn the bytecode verifier on or
off

Debug grants the ability for debuggers to connect to a session

JRIExtensions grants the use of MEMSTAT

Memory.Call grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on call
settings

Memory.Stack grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on stack
settings

Memory.SGAIntern grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on SGA
settings

Memory.GC grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on garbage
collector settings

■ java.util.PropertyPermission

■ java.io.SerializablePermission

■ java.io.FilePermission

■ java.net.NetPermission

■ java.net.SocketPermission

■ java.lang.RuntimePermission

■ java.lang.reflect.ReflectPermission

■ java.security.SecurityPermission

■ oracle.aurora.rdbms.security.PolicyTablePermission

■ oracle.aurora.security.JServerPermission

Database Contents and OracleJVM Security

9-16 Oracle Database Java Developer’s Guide

3. All users are initially granted the following Permissions. For the
JServerPermission, all users can load classes, except for the list of classes
specified in the table. These exceptions are limitation Permissions. For more
information on limitation Permissions, see Example 9–2.

Note: Within the RuntimePermission grants, there seems to be
unnecessary granting of more specific Permission for
loadlibrary.<package>. The reason for this is to override the
limitation given to PUBLIC for loadLibrary.*.

Table 9–3 SYS Initial Permissions

Permission Type Permission Name Action Granted

oracle.aurora.rdbms.security.
 PolicyTablePermission

* Administrative
rights to modify
the policy table

oracle.aurora.security.JServerPermission * null

java.net.NetPermission * null

java.security.SecurityPermission * null

java.util.PropertyPermission * write

java.lang.reflect.ReflectPermission * null

java.lang.RuntimePermission * null

loadLibrary.xaNative null

loadLibrary.corejava null

loadLibrary.corejava_d null

Table 9–4 PUBLIC Default Permissions

Permission Type Permission Name
Granted
Action

oracle.aurora.rdbms.security.
 PolicyTablePermission

java.lang.RuntimePermission.
 loadLibrary.*

null

java.util.PropertyPermission * read

user.language write

java.lang.RuntimePermission _ null

exitVM null

createSecurityManager null

modifyThread null

modifyThreadGroup null

oracle.aurora.security.
 JServerPermission

loadClassInPackage.* except for
loadClassInPackage.java.*,
loadClassInPackage.oracle.aurora.*,
and loadClassInPackage.jdbc.*

null

Database Contents and OracleJVM Security

Security For Oracle Database Java Applications 9-17

General Permission Definition Assigned to Roles
In release 8.1.5, Oracle8i JVM security was controlled by granting the roles of
JAVASYSPRIV, JAVAUSERPRIV, or JAVADEBUGPRIV to schemas. In the current
version, these roles still exist as Permission groups. See the previous section, "Initial
Permission Grants" on page 9-15 for the explicit Permissions set for each role. You can
set up and define your own collection of Permissions. Once defined, you can grant any
collection of Permissions to any user. That user will then have the same Permissions
that exist within the role. In addition, if you need additional Permissions, you can add
individual Permissions to either your specified user or role. Permissions defined
within the policy table have a cumulative effect. See "Fine-Grain Definition for Each
Permission" on page 9-5 for information on how to grant Permissions to a user or a
role.

Table 9–5 JAVAUSERPRIV Permissions

Permission Type Permission Name Action

java.net.SocketPermission * connect, resolve

java.io.FilePermission <<ALL FILES>> read

java.lang.RuntimePermission modifyThreadGroup,
stopThread,
getProtectionDomain,
readFileDescriptor,
accessClassInPackage.*, and
defineClassInPackage.*

null

Table 9–6 JAVASYSPRIV Permissions

Permission Type Permission Name Action

java.io.SerializablePermission * no applicable action

java.io.FilePermission <<ALL FILES>> read ,write, execute, delete

java.net.SocketPermission * accept, connect, listen, resolve

java.lang.RuntimePermission

createClassLoader null

getClassLoader null

setContextClassLoader null

setFactory null

setIO null

setFileDescriptor null

readFileDescriptor null

writeFileDescriptor null

Table 9–7 JAVADEBUGPRIV Permissions

Permission Type Permission Name Action

oracle.aurora.security.JServerPermission Debug null

java.net.SocketPermission * connect, resolve

Database Contents and OracleJVM Security

9-18 Oracle Database Java Developer’s Guide

The following example gives Larry and Dave the following Permissions:

■ Larry receives JAVASYSPRIV Permissions.

■ Dave receives JAVADEBUGPRIV Permissions and the ability to read and write all
files on the system.

REM Granting Larry the same permissions as exist within JAVASYSPRIV
grant javasyspriv to larry;

REM Granting Dave the ability to debug
grant javadebugpriv to dave;

commit;

REM I also want Dave to be able to read and write all files on the system
call dbms_java.grant_permission(’DAVE’, ’SYS:java.io.FilePermission’,
’<<ALL FILES>>’, ’read,write’, null);

Debugging Permissions
A debug role, JAVADEBUGPRIV, was created to grant Permissions for running the
debugger. The Permissions assigned to this role are listed in Table 9–7. To receive
permission to invoke the debug agent, the caller must have been granted
JAVADEBUGPRIV or the debug JServerPermission as follows:

REM Granting Dave the ability to debug
grant javadebugpriv to dave;

REM Larry grants himself permission to start the debug agent.
call dbms_java.grant_permission
 (’LARRY’, ’oracle.aurora.security.JServerPermission’, ’Debug’, null);

Although a debugger provides extensive access to both code and data on the server, its
use should be limited to development environments. Refer to the discussion in
"Debugging Server Applications" on page 3-5 for information on using the debugging
facilities in this release.

Permission for Loading Classes
To load classes, you must have the following Permission:

JServerPermission("LoadClassInPackage." + <class_name>)

The class name is the fully qualified name of the class that you are loading.

This excludes loading into system packages or replacing any system classes. Even if
you are granted permission to load a system class, Oracle Database prevents you from
performing the load. System classes are classes that are installed by Oracle Database
with CREATE JAVA SYSTEM. The following error is thrown if you try to replace a
system class:

ORA-01031 "Insufficient privileges"

Note: The ability to write to properties, granted through the write
action on PropertyPermission, is no longer granted to all users.
Instead, you must have either JAVA_ADMIN grant this Permission
to you or you can receive it by being granted the role of
JAVASYSPRIV.

Database Authentication Mechanisms

Security For Oracle Database Java Applications 9-19

The following shows the ability of each user after database installation, including
Permissions and OracleJVM restrictions:

■ SYS can load any class except for system classes.

■ Any user can load classes in its own schema that do not start with the following
patterns: java.*, oracle.aurora.*, oracle.jdbc.*. If the user wants to
load such classes into another schema, it must be granted the
JServerPermission(LoadClassInPackage.<class>) Permission.

The following example shows how to grant SCOTT Permission to load classes into the
oracle.aurora.* package:

dbms_java.grant_permission(’SCOTT’, ’SYS:oracle.aurora.tools.*’, null);

Database Authentication Mechanisms
■ Password authentication

■ Strong authentication (advanced security)

■ Proxy authentication

■ Single sign-on

Database Authentication Mechanisms

9-20 Oracle Database Java Developer’s Guide

Oracle Database Java Application Performance 10-1

10
Oracle Database Java

Application Performance

You can increase your Java application performance through one of the following
methods:

■ Natively Compiled Code

■ Java Memory Usage

Natively Compiled Code
The Java language was designed for a platform-independent, secure development
model. To accomplish these goals, some execution performance was sacrificed.
Translating Java bytecodes into machine instructions degrades performance. To regain
some of the performance loss, you may choose to natively compile certain classes. For
example, you may decide to natively compile code with CPU intensive classes.

Without native compilation, the Java code you load to the server is interpreted, and the
underlying core classes upon which your code relies (java.lang.*) are natively
compiled.

Native compilation provides a speed increase ranging from two to ten times the speed
of the bytecode interpretation. The exact speed increase is dependent on several
factors, including:

■ use of numerics

■ degree of polymorphic message sends

■ use of direct field access, as opposed to accessor methods

■ amount of Array accessing

■ casts

Because Java bytecodes were designed to be compact, natively compiled code can be
considerably larger than the original bytecode. However, because the native code is
stored in a shared library, it is shared among all users of the database.

Most JVMs use Just-In-Time compilers that convert the Java bytecodes to native
machine instructions when methods are invoked. The Accelerator uses an
Ahead-Of-Time approach to recompiling the Java classes.

Natively Compiled Code

10-2 Oracle Database Java Developer’s Guide

This static compilation approach provides a large, consistent performance gain,
regardless of the number of users or the code paths they traverse on the server. After
compilation, the tool loads the statically compiled libraries into Oracle Database,
which are then shared between users, processes, and sessions.

Accelerator Overview
Most Ahead-Of-Time native compilers compile directly into a platform-dependent
language. For portability requirements, this was not feasible. Figure 10–1 illustrates
how the Accelerator translates the Java classes into a version of C that is
platform-independent. The C code is compiled and linked to supply the final
platform-dependent, natively compiled shared libraries or DLLs.

Figure 10–1 Native Compilation Using Accelerator

Given a JAR file, the Accelerator performs the following:

1. Verifies the classes that are loaded in the database.

2. Retrieves the Java bytecodes for these classes from the database and stores them in
a project directory where the Accelerator was invoked.

3. Translates the Java bytecodes to C code.

Native Compiler Description

Just-In-Time Provides the JVM the ability to translate the Java instructions just
before needed by the JDK. The benefits depends on how accurately the
native compiler anticipates code branches and the next instruction. If
incorrect, no performance gain is realized.

Ahead-Of-Time The Accelerator natively compiles all Java code within a JAR file into
native shared libraries, which are organized by Java package, before
execution time. At runtime, Accelerator checks if a Java package has
been natively compiled; and if so, uses the machine code library
instead of interpreting the deployed Java code.

Natively Compiled Code

Oracle Database Java Application Performance 10-3

4. Compiles and links the C code using the C compiler for your platform.

The Accelerator translates, compiles, and links the retrieved classes on the client.
For this reason, you must natively compile on the intended platform environment
to which this application will be deployed. The result is a single deployment JAR
file for all classes within the project.

5. The resulting shared library is loaded into the
$ORACLE_HOME/javavm/admin directory.

Oracle Database Core Java Class Libraries
All core Java class libraries and Oracle-provided Java code within Oracle Database is
natively compiled for greater execution speed. Java classes exist as shared libraries in
$ORACLE_HOME/javavm/admin, where each shared library corresponds to a Java
package. For example, orajox10java_lang.so on Solaris and
orajox10java_lang.dll on Windows NT hold java.lang classes. Specifics of
packaging and naming can vary by platform. The OracleJVM uses natively compiled
Java files internally and opens them, as necessary, at runtime.

Natively Compiling Java Application Class Libraries
The Accelerator can be used by Java application products that need performance
increased and are deployed in Oracle Database. The Accelerator command-line tool,
ncomp, natively compiles your code and loads it in Oracle Database. However, in
order to use ncomp, you must first provide some initial setup.

Installation Requirements
You must install the following before invoking Accelerator:

1. Install a C compiler for the intended platform on the machine where you are
running ncomp.

2. Verify that the correct compiler and linker commands are referenced within the
System*.properties file located in the $ORACLE_HOME/javavm/jahome
directory. Since the compiler and linker information is platform-specific, the
configuration for these items is detailed in the README for your platform.

3. Add the appropriate J2SE JAR files, library, and binary information in the
following environment variables:

Note: The Accelerator natively compiled libraries can be used
only within Oracle Database. Also, these libraries can only be used
within the same version of Oracle Database in which it was
produced. If you want your application to be natively compiled on
subsequent releases, you must recompile these classes. That is,
native recompilation of existing libraries will not be performed
automatically by any upgrade process.

Environment Variables Addition Required

JAVA_HOME Set to the location where your JDK is installed.

CLASSPATH Include the $JAVA_HOME/lib/tools.jar and
$JAVA_HOME/lib/dt.jar files in your CLASSPATH.

PATH Add the JDK binary path: $JAVA_HOME/bin.

Natively Compiled Code

10-4 Oracle Database Java Developer’s Guide

4. Grant the user that executes ncomp the following role and security permissions:

a. JAVA_DEPLOY: The user must be assigned to the JAVA_DEPLOY role in order
to be able to deploy the shared libraries on the server, which both the ncomp
and deploync utilities perform. For example, the role is assigned to DAVE, as
follows:

SQL> GRANT JAVA_DEPLOY TO DAVE;

b. FilePermission: Accelerator stores the shared libraries with the natively
compiled code on the server. In order for Accelerator to store these libraries,
the user must be granted FilePermission for read and write access to
directories and files under $ORACLE_HOME on the server. One method for
granting FilePermission for all desired directories is to grant the user the
JAVASYSPRIV role, as follows:

SQL> GRANT JAVASYSPRIV TO DAVE;

See Chapter 9, "Security For Oracle Database Java Applications" for more
information JAVASYSPRIV and granting FilePermission.

Executing Accelerator
The following sections show how to do basic native compilation using Accelerator.

All the Java classes contained within a JAR file must already be loaded within the
database. Execute the ncomp tool to instruct Accelerator to natively compile all these
classes. The following code natively compiles all classes within the pubProject.JAR
file:

ncomp -user scott/tiger pubProject.JAR

LD_LIBRARY_PATH Add the JDK library path: $JAVA_HOME/lib.

Note: DBA role contains both the JAVA_DEPLOY role and the
FilePermission for all files under $ORACLE_HOME.

Note: Before you natively compile your Java server code, you
must have already loaded and tested it within Oracle Database.
Native compilation of untested code is not recommended.

Keep in mind that debuggers, such as the debugger provided with
JDeveloper, are useful only with interpreted Java code. You cannot
debug a natively compiled library.

Note: Because native compilation must compile and link all your
Java classes, this process may execute over the span of a few hours.
The time involved in natively compiling your code depends on the
number of classes to compile and the type of hardware on your
machine.

Environment Variables Addition Required

Natively Compiled Code

Oracle Database Java Application Performance 10-5

If you change any of the classes within this JAR file, Accelerator recompiles the shared
library for the package that contains the changed classes. It will not recompile all
shared libraries. However, if you want all classes within a JAR file to be
recompiled—regardless of whether they were previously natively compiled—execute
ncomp with the -force option, as follows:

ncomp -user scott/tiger -force pubProject.JAR

ncomp
Accelerator, implemented within the ncomp tool, natively compiles all classes within
the specified JAR, ZIP, or list of classes. Accelerator natively compiles these classes and
places them into shared libraries according to their package. Note that these classes
must first be loaded into the database.

 If the classes are designated within a JAR file and have already been loaded in the
database, you can natively compile your Java classes by executing the following:

ncomp -user SCOTT/TIGER myClasses.jar

There are options that allow you control over how the details of native compilation are
handled.

Syntax
ncomp [options] <class_designation_file>
 -user | -u <username>/<password>[@<database_url>]
 [-load]
 [-projectDir | -d <project_directory>]
 [-force]
 [-lightweightDeployment]
 [-noDeploy]
 [-outputJarFile | -o <jar_filename>]
 [-thin]
 [-oci | -oci8]
 [-update]
 [-verbose]

Argument Summary
Table 10–1 summarizes the ncomp arguments. The <class_designation_file>
can be a <file>.jar, <file>.zip, or <file>.classes.

Note: Because native compilation must compile and link all of
your Java classes, this process may execute over the span of a few
minutes or a few hours. The time involved depends on the number
of classes to compile and the type of hardware on your machine.

Note: These options are demonstrated within the scenarios
described in "Native Compilation Usage Scenarios" on page 10-8.

Natively Compiled Code

10-6 Oracle Database Java Developer’s Guide

Table 10–1 ncomp Argument Summary

Argument Description and Values

<file>.jar The full path name and file name of a JAR file that contains
the classes that are to be natively compiled. If you are
executing in the directory where the JAR file exists and you
do not specify the -projectDir option, you may give only
the name of the JAR file.

<file>.zip The full path name and file name of a ZIP file that contains
the classes that are to be natively compiled. If you are
executing in the directory where the ZIP file exists and you
do not specify the -projectDir option, you may give only
the name of the ZIP file.

<file>.classes The full path name and file name of a classes file, which
contains the list of classes to be natively compiled. If you are
executing in the directory where the classes file exists and
you do not specify the -projectDir option, you may give
only the name of the classes file. See "Natively Compiling
Specific Classes" on page 10-10 for a description of a classes
file.

-user | -u
<username>/<password>
[@<database>]

Specifies a user, password, and database connect string; the
files will be loaded into this database instance. The argument
has the form <username>/<password>[@<database>].
If you specify the database URL on this option, you must
specify it with OCI syntax. To provide a JDBC Thin database
URL, use the -thin option. See "user" on page 10-7 for more
information.

-force The native compilation is performed on all classes.
Previously compiled classes are not passed over.

-lightweightDeployment Provides an option for deploying shared libraries and native
compilation information separately. This is useful if you
need to preserve resources when deploying. See
"lightweightDeployment" on page 10-7 for more information.

-load Executes loadjava on the specified class designation file.
You cannot use this option in combination with a
<file>.classes file.

-outputJarFile
<jar_filename>

All natively compiled classes output into a deployment JAR
file. This option specifies the name of the deployment JAR
file and its destination directory. If omitted, the ncomp tool
names the output deployment JAR file the same name as the
input <file> with "_depl.jar" appended as the suffix. If
directory is not supplied, it stores the output JAR file into the
project directory (denoted by -projectDir).

-noDeploy Specifies that the native compilation results only in the
output deployment JAR file, which is not deployed to the
server. The resulting deployment JAR can be deployed to
any server using the deploync tool.

-thin The database URL that is provided on the -user option uses
a JDBC Thin URL address for the database URL syntax.

-oci | -oci8 The database URL that is provided on the -user option uses
an OCI URL address for the database URL syntax. However,
if neither -oci or -thin are specified, the default assumes
that you used an OCI database URL.

Natively Compiled Code

Oracle Database Java Application Performance 10-7

Argument Details

user
{-user | -u} <user>/<password>[@<database>]
The permissible forms of @<database> depend on whether you specify -oci or
-thin; -oci is the default.

■ -oci: @<database> is optional; if you do not specify, then ncomp uses the user’s
default database. If specified, then <database> can be a TNS name or a Oracle
Net Services name-value list.

■ -thin: @<database> is required. The format is <host>:<lport>:<SID>.

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Oracle Net
Services connections; in a default installation, it is 5521.

– <SID> is the database instance identifier; in a default installation, it is ORCL.

lightweightDeployment
Accelerator places compilation information and the compiled shared libraries in one
JAR file, copies the shared libraries to $ORACLE_HOME/javavm/admin directory on
the server, and deploys the compilation information to the server. If you want to place
the shared libraries on the server yourself, you can do so through the
lightweightDeployment option. The lightweightDeployment option enables
you to do your deployment in two stages:

1. Natively compile your JAR file with -noDeploy and -lightweightDeployment
options. This creates an deployment JAR file with only ncomp information, such
as transitive closure information. The shared libraries are not saved within the
deployment JAR file. Thus, the deployment JAR file is much smaller.

2. Deploy as follows:

a. Copy all output shared libraries from the lib directory of the native
compilation project directory to the server’s $ORACLE_HOME/javavm/admin
directory.

-projectDir | -d
<absolute_path>

Specifies the full path for the project directory. If not
specified, Accelerator uses the directory from which ncomp
is invoked as the project directory. This directory must exist;
the tool will not create this directory for you. If it does not
exist, the current directory is used.

-update If you add more classes to a <class_designation_file>
that has already been natively compiled, this flag informs
Accelerator to update the deployment JAR file with the new
classes. Thus, Accelerator compiles the new classes and adds
them to the appropriate shared libraries. The deployment
JAR file is updated.

-verbose Output native compilation text with detail.

Note: You need to have FilePermission to write to this
directory. FilePermission is included in the DBA or
JAVASYSPRIV roles.

Table 10–1 (Cont.) ncomp Argument Summary

Argument Description and Values

Natively Compiled Code

10-8 Oracle Database Java Developer’s Guide

b. Deploy the lightweight deployment JAR file to the server using deploync.

Errors
Any errors that occur during native compilation are printed to the screen. Any errors
that occur during deployment of your shared libraries to the server or during runtime
can be viewed with the statusnc tool or by referring to the
JACCELERATOR$DLL_ERRORS table.

If an error is caught while natively compiling the designated classes, Accelerator
denotes these errors, abandons work on the current package, and continues its
compilation task on the next package. The native compilation continues for the rest of
the packages. The package with the class that contained the error will not be natively
compiled at all.

After fixing the problem with the class, you can choose to do one of the following:

■ recompile the shared library

■ reload the Java class into the database

If you choose not to recompile the classes, but to load the correct Java class into the
database instead, then the corrected class and all classes that are included in the
resolution validation for that class—whether located within the same shared library or
a different shared library—will be executed in interpreted mode. That is, the JVM will
not run these classes natively. All the other natively compiled classes will continue to
execute in native format. When you execute the statusnc command on the reloaded
class or any of its referred classes, they will have a NEED_NCOMPING status message.

Possible errors for a Java class:

1. The Java class does not exist in the database. If you do not load the Java class into
Oracle Database, Accelerator does not include the class in the shared library. The
class is simply skipped.

2. The Java class is invalid; that is, one of its references may not be found.

3. Any Java class that is unresolved, Accelerator will try to resolve it before natively
compiling. However, if the class cannot be resolved, it is ignored by Accelerator.

Possible errors for deployment of native compilation JAR file:

■ The native compilation of your JAR file executes correctly, but the deployment
fails. In this case, do not recompile the JAR file, but deploy the output natively
compiled JAR file with the deploync command.

Native Compilation Usage Scenarios
The following scenarios demonstrate how you can use each of the options for the
ncomp tool can be used:

■ Natively Compiling on Test Platform—Java Classes Already Loaded in the
Database

■ Natively Compiling Java Classes Not Loaded in the Database

■ Clean Compile and Generate Output for Future Deployment

■ Controlling Native Compilation Build Environment

■ Natively Compiling Specific Classes

■ Natively Compiling Packages That Are Fully or Partially Modified

Natively Compiled Code

Oracle Database Java Application Performance 10-9

Natively Compiling on Test Platform—Java Classes Already Loaded in the Database
If all classes are loaded into the database and you have completed your testing of the
application, you can request Accelerator to natively compile the tested classes.
Accelerator takes in a JAR, ZIP, or list of classes to determine the packages and classes
to be included in the native compilation. The Accelerator then retrieves all of the
designated classes from the server and natively compiles them into shared
libraries—each library containing a single package of classes.

Assuming that the classes have already been loaded within the server, you execute the
following command to natively compile all classes listed within a class designation
file, such as the pubProject.jar file, as follows:

ncomp -user SCOTT/TIGER pubProject.jar

If you change any of the classes within the class designation file and ask for
recompilation, Accelerator recompiles only the packages that contain the changed
classes. It will not recompile all packages.

Natively Compiling Java Classes Not Loaded in the Database
Once you have tested the designated classes, you may wish to natively compile them
on a host other than the test machine. Once you transfer the designated class file to
this platform, the classes in this file must be loaded into the database before native
compilation can occur. The following loads the classes through loadjava and then
executes native compilation for the class designation file—pubProject.jar:

ncomp -user SCOTT/TIGER@dbhost:5521:orcl -thin -load pubProject.jar

Clean Compile and Generate Output for Future Deployment
If you want all classes within a class designation file to be recompiled—regardless of
whether they were previously natively compiled—execute ncomp with the -force
option. You might want to use the -force option to ensure that all classes are
compiled, resulting in a deployment JAR file that can be deployed to other Oracle
Database instances. You can specify the native compilation deployment JAR file with
the -outputJarFile option. The following forces a recompilation of all Java classes
within the class designation file—pubProject.jar—and creates a deployment JAR
file with the name of pubworks.jar:

ncomp -user SCOTT/TIGER -force -outputJarFile pubworks.jar pubProject.jar

The deployment JAR file contains the shared libraries for your classes, and installation
classes specified to these shared libraries. It does not contain the original Java classes.
To deploy the natively compiled deployment JAR file to any Oracle Database (of the
appropriate platform type), you must do the following:

1. Load the original Java classes into the destination server. In the previous example,
the pubProject.jar file would be loaded into the database using the loadjava
tool.

2. Deploy the natively compiled deployment JAR file with the Accelerator deploync
tool, which is described in deploync on page 10-10.

Controlling Native Compilation Build Environment
By default, the Accelerator uses the directory where ncomp is executed as its build
environment. The Accelerator downloads several class files into this directory and
then uses this directory for the compilation and linking process.

Natively Compiled Code

10-10 Oracle Database Java Developer’s Guide

If you do not want to have Accelerator put any of its files into the current directory,
create a working directory, and specify this working directory as the project directory
with the -projectDir option. The following directs Accelerator to use
/tmp/jaccel/pubComped as the build directory. This directory must exist before
specifying it within the -projectDir option. Accelerator will not create this directory
for you.

ncomp -user SCOTT/TIGER -projectDir /tmp/jaccel/pubComped pubProject.jar

Natively Compiling Specific Classes
You can specify one or more classes that are to be natively compiled, within a
text-based <file>.classes file. Use the following Java syntax to specify packages
and/or individual classes within this file:

■ To specify classes within one or more packages, as follows:

import com.myDomain.myPackage.*;
import com.myDomain.myPackage.mySubPackage.*;

■ To specify an individual class, as follows:

import com.myDomain.myPackage.myClass;

Once explicitly listed, specify the name and location of this class designation file on the
command line. Given the following pubworks.classes file:

import com.myDomain.myPackage.*;
import com.myDomain.hisPackage.hisSubPackage.*;
import com.myDomain.herPackage.herClass;
import com.myDomain.petPackage.petClass;

The following directs Accelerator to compile all classes designated within this file: all
classes in myPackage, hisSubPackage and the individual classes, herClass and
myClass. These classes must have already been loaded into the database:

ncomp -user SCOTT/TIGER /tmp/jaccel/pubComped/pubworks.classes

Natively Compiling Packages That Are Fully or Partially Modified
If you change any of the classes within this JAR file, Accelerator will only recompile
shared libraries that contain the changed classes. It will not recompile all shared
libraries designated in the JAR file. However, if you want all classes within a JAR file
to be recompiled—regardless of whether they were previously natively
compiled—you execute ncomp with the -force option, as follows:

ncomp -user scott/tiger -force pubProject.JAR

deploync
You can deploy any deployment JAR file with the deploync command. This includes
the default output JAR file, <file>_depl.jar or the JAR created when you used the
ncomp -outputJarFile option. The operating system and Oracle Database version
must be the same as the platform where it was natively compiled.

Note: Java has no formal notion of a sub-package. You must
specify each package independently.

Natively Compiled Code

Oracle Database Java Application Performance 10-11

Syntax
deploync [options] <deployment>.jar
 -user | -u <username>/<password>[@<database_url>]
 [-projectDir | -d <project_directory>]
 [-thin]
 [-oci | -oci8]

Argument Summary
Table 10–2 summarizes the deploync arguments.

Example
Deploy the natively compiled deployment JAR file pub.jar to the dbhost database
as follows:

deploync -user SCOTT/TIGER@dbhost:5521:orcl -thin /tmp/jaccel/PubComped/pub.jar

statusnc
After the native compilation is completed, you can check the status for your Java
classes through the statusnc command. This tool will print out—either to the screen
or to a designated file—the status of each class. In addition, the statusnc tool always
saves the output within the JACCELERATOR$STATUS table. The values can be the
following:

Note: The list of shared libraries deployed into Oracle Database
are listed within the JACCELERATOR$DLLS table.

Table 10–2 deploync Argument Summary

Argument Description and Values

<deployment>.jar The full path name and file name of a deployment JAR file.
This JAR file is created when you specify the
-outputJarFile option on the ncomp tool. Note that
deploync does not verify that this is a native compilation
deployment JAR.

-user | -u
<username>/<password>
[@<database>]

Specifies a user, password, and database connect string; the
files will be loaded into this database instance. The argument
has the form <username>/<password>[@<database>]. If
you specify the database URL on this option, you must
specify it with OCI syntax. To provide a JDBC Thin database
URL, use the -thin option.

-projectDir | -d
<absolute_path>

Specifies the full path for the project directory. If not specified,
Accelerator uses the directory from which ncomp is invoked
as the project directory.

-thin The database URL that is provided on the -user option uses a
JDBC Thin URL address for the database URL syntax.

-oci | -oci8 The database URL that is provided on the -user option uses
an OCI URL address for the database URL syntax. However,
if neither -oci or -thin are specified, the default assumes
that you used an OCI database URL.

Natively Compiled Code

10-12 Oracle Database Java Developer’s Guide

Syntax
statusnc [options] <class_designation_file>
 -user <user>/<password>[@database]
 [-output | -o <filename>]
 [-projectDir | -d <directory>]
 [-thin]
 [-oci | -oci8]

Argument Summary
Table 10–3 summarizes the statusnc arguments. The
<class_designation_file> can be a <file>.jar, <file>.zip, or
<file>.classes.

Class Native
Compilation Status

Description

ALREADY_NCOMPED The class is currently natively compiled.

NEED_NCOMPING A class within the shared library was reloaded after native
compilation. Thus, you should recompile this shared library.

INVALID A class loaded in the database is invalid. Accelerator tried to
validate it and failed. The class will be excluded from the
natively compiled shared library.

Note: The JACCELERATOR$STATUS table contains only the
output from the last execution of the statusnc command. When
executed, the statusnc command cleans out this table before
writing the new records into it.

Table 10–3 statusnc Argument Summary

Argument Description

<file>.jar The full path name and file name of a JAR file that was
natively compiled.

<file>.zip The full path name and file name of a ZIP file that was
natively compiled.

<file>.classes The full path name and file name of a classes file, which
contains the list of classes that was natively compiled. See
"Natively Compiling Specific Classes" on page 10-10 for a
description of a classes file.

-user | -u
<username>/<password>
[@<database>]

Specifies a user, password, and database connect string
where the files are loaded. The argument has the form
<username>/<password>[@<database>]. If you
specify the database URL on this option, you must specify it
with OCI syntax. To provide a JDBC Thin database URL, use
the -thin option.

-output <filename> Designates that the statusnc should output to the
specified text file rather than to the screen.

-projectDir | -d
<absolute_path>

Specifies the full path for the project directory. If not
specified, Accelerator uses the directory from which ncomp
is invoked as the project directory.

-thin The database URL that is provided on the -user option uses
a JDBC Thin URL address for the database URL syntax.

Java Memory Usage

Oracle Database Java Application Performance 10-13

Example
statusnc -user SCOTT/TIGER -output pubStatus.txt /tmp/jaccel/PubComped/pub.jar

Java Memory Usage
The typical and custom database installation process furnishes a database that has
been configured for reasonable Java usage during development. However, runtime use
of Java should be determined by the usage of system resources for a given deployed
application. Resources you use during development can vary widely, depending on
your activity. The following sections describe how you can configure memory, how to
tell how much SGA memory you are using, and what errors denote a Java memory
issue:

■ Configuring Memory Initialization Parameters

■ Java Pool Memory

■ Displaying Used Amounts of Java Pool Memory

■ Correcting Out of Memory Errors

Configuring Memory Initialization Parameters
You can modify the following database initialization parameters to tune your memory
usage to reflect more accurately your application needs:

■ SHARED_POOL_SIZE—Shared pool memory is used by the class loader within the
JVM. The class loader uses an average of about 8 KB for each loaded class. Shared
pool memory is used when loading and resolving classes into the database. It is
also used when compiling source in the database or when using Java resource
objects in the database.

The memory specified in SHARED_POOL_SIZE is consumed transiently when you
use loadjava. The database initialization process (executing initjvm.sql
against a clean database, as opposed to the installed seed database) requires
SHARED_POOL_SIZE to be set to 50 MB as it loads the Java binaries for
approximately 8,000 classes and resolves them. The SHARED_POOL_SIZE resource
is also consumed when you create call specifications and as the system tracks
dynamically loaded Java classes at runtime.

■ JAVA_POOL_SIZE—The OracleJVM memory manager allocates all other Java
state during runtime execution from the amount of memory allocated using
JAVA_POOL_SIZE. This memory includes the shared in-memory representation of
Java method and class definitions, as well as the Java objects migrated to session
space at end-of-call. In the first case, you will be sharing the memory cost with all
Java users. In the second case, in a shared server, you must adjust
JAVA_POOL_SIZE allocation based on the actual amount of state held in static
variables for each session. See "Java Pool Memory" on page 10-15 for more
information on JAVA_POOL_SIZE.

-oci | -oci8 The database URL that is provided on the -user option uses
an OCI URL address for the database URL syntax. However,
if neither -oci or -thin are specified, the default assumes
that you used an OCI database URL.

Table 10–3 (Cont.) statusnc Argument Summary

Argument Description

Java Memory Usage

10-14 Oracle Database Java Developer’s Guide

■ JAVA_SOFT_SESSIONSPACE_LIMIT—This parameter allows you to specify a
soft limit on Java memory usage in a session, which will warn you if you must
increase your Java memory limits. Every time memory is allocated, the total
memory allocated is checked against this limit.

When a user's session-duration Java state exceeds this size, OracleJVM generates a
warning that is written into the trace files. While this warning is simply an
informational message and has no impact on your application, you should
understand and manage the memory requirements of your deployed classes,
especially as they relate to usage of session space.

■ JAVA_MAX_SESSIONSPACE_SIZE—If a user-invokable Java program executing
in the server can be used in a way that is not self-limiting in its memory usage, this
setting may be useful to place a hard limit on the amount of session space made
available to it. The default is 4 GB. This limit is purposely set extremely high to be
normally invisible.

When a user's session-duration Java state attempts to exceeds this size, your
application can receive an out-of-memory failure.

Oracle Database’s unique memory management facilities and sharing of read-only
artifacts (such as bytecodes) enables HelloWorld to execute with a per-session
incremental memory requirement of only 35 KB. More stateful server applications
have a per-session incremental memory requirement of approximately 200 KB. Such
applications must retain a significant amount of state in static variables across multiple
calls. Refer to the discussion in the "End-of-Call Migration" section on page 2-27 for
more information on understanding and controlling migration of static variables at
end-of-call.

Initializing Pool Sizes within Database Templates
You can set the defaults for JAVA_POOL_SIZE and SHARED_POOL_SIZE in the
database installation template. The Database Configuration Assistant (DBCA) allows
you to modify these values within the Memory section, as shown below in
Figure 10–2.

Java Memory Usage

Oracle Database Java Application Performance 10-15

Figure 10–2 Configuring OracleJVM Memory Parameters

Java Pool Memory
Java pool memory is used in server memory for all session-specific Java code and data
within the JVM. Java pool memory is used in different ways, depending on what mode
the Oracle Database server is running in.

Java pool memory used within a dedicated server
The following is what constitutes the Java pool memory used within a dedicated
server:

■ The shared part of each Java class used per session

This includes read-only memory, such as code vectors, and methods. In total, this
can average about 4 KB-8 KB for each class.

■ None of the per-session Java state of each session.

For a dedicated server, this is stored in UGA within the PGA—not within the SGA.

Under dedicated servers, the total required Java pool memory depends on the
applications running and may range between 10 and 50 MB.

Java pool memory used within a shared server
The following is what constitutes the Java pool memory used within a shared server:

■ The shared part of each Java class that is used per session

This includes read-only memory, such as vectors, and methods. In total, this can
average about 4 KB-8 KB for each class.

■ Some of the UGA used for per-session state of each session is allocated from the
Java pool memory within the SGA.

Java Memory Usage

10-16 Oracle Database Java Developer’s Guide

Because Java pool memory size is fixed, you must estimate the total requirement
for your applications and multiply by the number of concurrent sessions the
applications want to create to calculate the total amount of necessary Java pool
memory. Each UGA grows and shrinks as necessary; however, all UGAs combined
must be able to fit within the entire fixed Java pool space.

Under shared servers, this figure could be large. Java-intensive, multi-user
benchmarks could require more than 100 MB.

Displaying Used Amounts of Java Pool Memory
You can find out how much of Java pool memory is being used by viewing the
V$SGASTAT table. Its rows include pool, name, and bytes. Specifically, the last two
rows show the amount of Java pool memory used and how much is free. The total of
these two items equals the number of bytes that you configured in the database
initialization file.

SVRMGR> select * from v$sgastat;

POOL NAME BYTES
----------- -------------------------- ----------
 fixed_sga 69424
 db_block_buffers 2048000
 log_buffer 524288
shared pool free memory 22887532
shared pool miscellaneous 559420
shared pool character set object 64080
shared pool State objects 98504
shared pool message pool freequeue 231152
shared pool PL/SQL DIANA 2275264
shared pool db_files 72496
shared pool session heap 59492
shared pool joxlod: init P 7108
shared pool PLS non-lib hp 2096
shared pool joxlod: in ehe 4367524
shared pool VIRTUAL CIRCUITS 162576
shared pool joxlod: in phe 2726452
shared pool long op statistics array 44000
shared pool table definiti 160
shared pool KGK heap 4372
shared pool table columns 148336
shared pool db_block_hash_buckets 48792
shared pool dictionary cache 1948756
shared pool fixed allocation callback 320
shared pool SYSTEM PARAMETERS 63392
shared pool joxlod: init s 7020
shared pool KQLS heap 1570992
shared pool library cache 6201988
shared pool trigger inform 32876
shared pool sql area 7015432
shared pool sessions 211200
shared pool KGFF heap 1320
shared pool joxs heap init 4248
shared pool PL/SQL MPCODE 405388
shared pool event statistics per sess 339200

Note: If you are compiling code on the server, rather than
compiling on the client and loading to the server, you might need a
bigger JAVA_POOL_SIZE than the default 20 MB.

Java Memory Usage

Oracle Database Java Application Performance 10-17

shared pool db_block_buffers 136000
java pool free memory 30261248
java pool memory in use 19742720
37 rows selected.

Correcting Out of Memory Errors
If you run out of memory while loading classes, it can fail silently, leaving invalid
classes in the database. Later, if you try to invoke or resolve any invalid classes, you
will see ClassNotFoundException or NoClassDefFoundException exceptions
being thrown at runtime. You would get the same exceptions if you were to load
corrupted class files. You should perform the following:

■ Verify that the class was actually included in the set you are loading to the server.
Many people have accidently forgotten to load just one class out of hundreds and
spend considerable time chasing this down.

■ Use the loadjava -force option to force the new class being loaded to replace
the class already resident in the server.

■ Use the loadjava -resolve option to attempt resolution of a class during the
load process. This allows you to catch missing classes at load time, not run time.

■ Double check the status of a newly loaded class by connecting to the database in
the schema containing the class, and execute the following:

select * from user_objects where object_name = dbms_java.shortname(’’);

The STATUS field should be "VALID". If loadjava complains about memory
problems or failures such as "connection lost", increase SHARED_POOL_SIZE and
JAVA_POOL_SIZE, and try again.

Java Memory Usage

10-18 Oracle Database Java Developer’s Guide

Schema Object Tools 11-1

11
Schema Object Tools

This chapter describes the schema object tools that you use in the Oracle Database Java
environment. You run these tools from a UNIX shell or the Windows NT DOS prompt.

The following sections describe the schema object tools:

■ Schema Object Tool Overview

■ What and When to Load

■ Resolution

■ Digest Table

■ Compilation

■ loadjava

■ dropjava

■ ojvmjava

Schema Object Tool Overview
Unlike a conventional JVM, which compiles and loads Java files, the OracleJVM
compiles and loads schema objects. The three kinds of Java schema objects are as
follows:

■ Java class schema objects, which correspond to Java class files.

■ Java source schema objects, which correspond to Java source files.

■ Java resource schema objects, which correspond to Java resource files.

To make a class file runnable by the OracleJVM, you use the loadjava tool to create a
Java class schema object from the class file or the source file and load it into a schema.
To make a resource file accessible to the OracleJVM, you use loadjava to create and
load a Java resource schema object from the resource file.

The dropjava tool does the reverse of the loadjava tool; it deletes schema objects
that correspond to Java files. You should always use dropjava to delete a Java
schema object that was created with loadjava; dropping by means of SQL DDL
commands will not update auxiliary data maintained by loadjava and dropjava.

Note: All names supplied within these tools are case sensitive.
Thus, the schema, user name, and password will not be changed to
upper case.

What and When to Load

11-2 Oracle Database Java Developer’s Guide

What and When to Load
You must load resource files with loadjava. If you create .class files outside the
database with a conventional compiler, then you must load them with loadjava. The
alternative to loading class files is to load source files and let the Oracle Database
system compile and manage the resulting class schema objects. In Oracle Database 10g,
the most productive approach is to compile and debug most of your code outside the
database, and then load the .class files. For a particular Java class, you can load
either its .class file or its .java file, but not both.

The loadjava tool accepts JAR files that contain either source and resource files or
class and resource files. You can load a class’s source or its class file but not both.
When you pass loadjava a JAR file or a ZIP file, loadjava opens the archive and
loads its members individually; there are no JAR or ZIP schema objects. A file whose
content has not changed since the last time it was loaded is not reloaded; therefore,
there is little performance penalty for loading JARs. Loading JAR files is the simplest
and most foolproof way to use loadjava.

It is illegal for two schema objects in the same schema to define the same class. For
example, suppose a.java defines class x and you want to move the definition of x to
b.java. If a.java has already been loaded, then loadjava will reject an attempt to
load b.java (which also defines x). Instead, do either of the following:

■ Drop a.java, load b.java (which defines x), then load the new a.java (which
does not define x).

■ Load the new a.java (which does not define x), then load b.java (which
defines x).

Resolution
All Java classes contain references to other classes. A conventional JVM searches for
classes in the directories, ZIP files, and JARs named in the CLASSPATH. The
OracleJVM, by contrast, searches schemas for class schema objects. Each Oracle
Database class has a resolver spec, which is the Oracle Database counterpart to the
CLASSPATH. For a hypothetical class, alpha, its resolver spec is a list of schemas to
search for classes that alpha uses. Notice that resolver specs are per-class, whereas in
a classic JVM, CLASSPATH is global to all classes.

In addition to a resolver spec, each class schema object has a list of interclass reference
bindings. Each reference list item contains a reference to another class and one of the
following:

■ the name of the class schema object to invoke when class uses the reference

■ a code indicating whether the reference is unsatisfied; in other words, whether the
referent schema object is known

An Oracle Database facility known as the resolver maintains reference lists. For each
interclass reference in a class, the resolver searches the schemas specified by the class’s
resolver spec for a valid class schema object that satisfies the reference. If all references
are resolved, the resolver marks the class valid. A class that has never been resolved, or
has been resolved unsuccessfully, is marked invalid. A class that depends on a schema
object that becomes invalid is also marked invalid at the time the first class is marked
invalid; in other words, invalidation cascades upward from a class to the classes that
use it and the classes that use them, and so on. When resolving a class that depends on
an invalid class, the resolver first tries to resolve the referenced class, because it may be
marked invalid only because it has never been resolved. The resolver does not
re-resolve classes that are marked valid.

Digest Table

Schema Object Tools 11-3

A class developer can direct loadjava to resolve classes or can defer resolution until
run time. The resolver runs automatically when a class tries to load a class that is
marked invalid. It is best to resolve before run time to learn of missing classes early;
unsuccessful resolution at run time produces a "class not found" exception.
Furthermore, run-time resolution can fail for the following reasons:

■ lack of database resources if the tree of classes is very large

■ deadlocks due to circular dependencies

The loadjava tool has two resolution modes:

1. Load-and-resolve (-resolve option): Loads all classes you specify on the
command line, marks them invalid, and then resolves them. Use this mode when
initially loading classes that refer to each other, and in general when reloading
isolated classes as well. By loading all classes and then resolving them, this mode
avoids the error message that occurs if a class refers to a class that will be loaded
later in the execution of the command.

2. Load-then-resolve (no -resolve option): Resolves each class at runtime.

If you can, defer resolution until all classes have been loaded; this technique avoids the
situation in which the resolver marks a class invalid because a class it uses has not yet
been loaded.

Digest Table
The schema object digest table is an optimization that is usually invisible to
developers. The digest table enables loadjava to skip files that have not changed
since they were last loaded. This feature improves the performance of makefiles and
scripts that invoke loadjava for collections of files, only some of which need to be
reloaded. A reloaded archive file might also contain some files that have changed since
they were last loaded and some that have not.

The loadjava tool detects unchanged files by maintaining a digest table in each
schema. The digest table relates a file name to a digest, which is a shorthand
representation of the file’s content (a hash). Comparing digests computed for the same
file at different times is a fast way to detect a change in the file’s content—much faster
than comparing every byte in the file. For each file it processes, loadjava computes a
digest of the file’s content and then looks up the file name in the digest table. If the
digest table contains an entry for the file name that has the identical digest, then
loadjava does not load the file, because a corresponding schema object exists and is
up to date. If you invoke loadjava with the -verbose option, then it will show you
the results of its digest table lookups.

Normally, the digest table is invisible to developers, because loadjava and
dropjava keep the table synchronized with schema object additions, changes, and
deletions. For this reason, always use dropjava to delete a schema object that was
created with loadjava, even if you know how to drop a schema object using DDL. If
the digest table becomes corrupted (loadjava does not update a schema object
whose file has changed), use loadjava’s -force option to bypass the digest table
lookup or delete all rows from the table, which is named JAVA$CLASS$MD5$TABLE.

Note: As with a Java compiler, loadjava resolves references to
classes but not to resources; be sure to correctly load the resource
files your classes need.

Compilation

11-4 Oracle Database Java Developer’s Guide

Compilation
Loading a source file creates or updates a Java source schema object and invalidates
the class schema object(s) previously derived from the source. If the class schema
objects do not exist, loadjava creates them. The loadjava tool invalidates the old
class schema objects because they were not compiled from the newly loaded source.
Compilation of a newly loaded source, called for instance A, is automatically triggered
by any of the following conditions:

■ The resolver, working on class B, finds that it refers to class A, but class A
is invalid.

■ The compiler, compiling source B, finds that it refers to class A, but A is invalid.

■ The class loader, trying to load class A for execution, finds that it is invalid.

To force compilation when you load a source file, use loadjava -resolve.

The compiler writes error messages to the predefined USER_ERRORS view; loadjava
retrieves and displays the messages produced by its compiler invocations.

The compiler recognizes some options. There are two ways to specify options to the
compiler. If you run loadjava with the -resolve option (which may trigger
compilation), you can specify compiler options on the command line.

You can additionally specify persistent compiler options in a per-schema database
table known as JAVA$OPTIONS, which you create as described shortly. You can use
the JAVA$OPTIONS table for default compiler options, which you can override
selectively with a loadjava command-line option.

A JAVA$OPTIONS row contains the names of source schema objects to which an
option setting applies; you can use multiple rows to set the options differently for
different source schema objects. The compiler looks up options in the JAVA$OPTIONS
table when it has been invoked without a command line—that is, by the class
loader—or when the command line does not specify an option. When compiling a
source schema object for which there is neither a JAVA$OPTIONS entry nor a
command-line value for an option, the compiler assumes a default value as follows:

■ encoding = System.getProperty("file.encoding");

■ debug = true: This option is equivalent to javac -g.

You can set JAVA$OPTIONS entries by means of the following functions and
procedures, which are defined in the database package DBMS_JAVA:

■ PROCEDURE set_compiler_option(name VARCHAR2, option VARCHAR2,
value VARCHAR2);

■ FUNCTION get_compiler_option(name VARCHAR2, option VARCHAR2)
RETURNS VARCHAR2;

■ PROCEDURE reset_compiler_option(name VARCHAR2, option
VARCHAR2);

The name parameter is a Java package name, or a fully qualified class name, or the
empty string. When the compiler searches the JAVA$OPTIONS table for the options to
use for compiling a Java source schema object, it uses the row whose name most

Note: A command-line option both overrides and clears the
matching entry in the JAVA$OPTIONS table.

loadjava

Schema Object Tools 11-5

closely matches the schema object’s fully qualified class name. A name whose value is
the empty string matches any schema object name.

The option parameter is either 'online' or 'encoding'.

A schema does not initially have a JAVA$OPTIONS table. To create a JAVA$OPTIONS
table, use the DBMS_JAVA package’s java.set_compiler_option procedure to set
a value; the procedure will create the table if it does not exist. Specify parameters in
single quotes. For example:

SQL> execute dbms_java.set_compiler_option('x.y', 'online', 'false');

Table 11–1 represents a hypothetical JAVA$OPTIONS database table. Because the table
has no entry for the encoding option, the compiler will use the default or the value
specified on the command line. The online options shown in the table match schema
object names as follows:

■ The name a.b.c.d matches class and package names beginning with a.b.c.d;
they will be compiled with online = true.

■ The name a.b matches class and package names beginning with a.b, but not
a.b.c.d; they will be compiled with online = false.

■ All other packages and classes will match the empty string entry and will be
compiled with online = true.

loadjava
The loadjava tool creates schema objects from files and loads them into a schema.
Schema objects can be created from Java source, class, and data files.

You must have the following SQL database privileges to load classes:

■ CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.

■ CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into another
schema.

■ oracle.aurora.security.JServerPermission.loadLibraryInClass.
<classname>. See "Database Contents and OracleJVM Security" on page 9-2 for
more information.

Table 11–1 Example JAVA$OPTIONS Table

Name Option Value Match Examples

a.b.c.d online true ■ a.b.c.d—matches the pattern exactly.

■ a.b.c.d.e—first part matches the
pattern exactly; no other rule matches full
name.

a.b online false ■ a.b—matches the pattern exactly

■ a.b.c.x—first part matches the pattern
exactly; no other rule matches beyond
specified rule name.

(empty string) online true ■ a.c—no pattern match with any defined
name; defaults to (empty string) rule

■ x.y—no pattern match with any defined
name; defaults to (empty string) rule

loadjava

11-6 Oracle Database Java Developer’s Guide

You can execute the loadjava tool either through the command line (as described
below) or through the loadjava method contained within the DBMS_JAVA class. To
execute within your Java application, do the following:

call dbms_java.loadjava(’... options...’);

where the options are the same as specified below. Separate each option with a blank.
Do not separate the options with a comma. The only exception for this is the
-resolver option, which contains blanks. For -resolver, specify all other options in
the first input parameter, and the -resolver options in the second parameter. This is
demonstrated below:

call dbms_java.loadjava(’..options...’, ’resolver_options’);

Do not specify the following options, because they relate to the database connection
for the loadjava command-line tool: -thin, -oci, -user, -password. The
output is directed to stderr. Set serveroutput on, and call
dbms_java.set_output as appropriate.

Just before the loadjava tool exits, it checks whether the execution was successful.
All failures are summarized preceded by the following header:

The following operations failed

Some conditions, such as losing the connection to the database, cause loadjava to
terminate prematurely. There errors are printed with the following syntax:

exiting: <error_reason>

Syntax
loadjava {-user | -u} <user>/<password>[@<database>] [options]
<file>.java | <file>.class | <file>.jar | <file>.zip |
<file>.sqlj | <resourcefile> ...
 [-action]
 [-andresolve]
 [-casesensitivepub]
 [-cleargrants]
 [-debug]
 [-d | -definer]
 [-dirprefix <prefix>]
 [-e | -encoding <encoding_scheme>]
 [-fileout <file>]
 [-f | -force]
 [-genmissing]
 [-genmissingjar <jar_file>]
 [-g | -grant <user> [, <user>]...]
 [-help]
 [-jarasresource]
 [-noaction]
 [-nocasesensitivepub]
 [-nocleargrants]
 [-nodefiner]
 [-nogrant]
 [-norecursivejars]
 [-noschema]

Note: The loadjava tool is located in the bin subdirectory
under $ORACLE_HOME.

loadjava

Schema Object Tools 11-7

 [-noserverside]
 [-nosynonym]
 [-nousage]
 [-noverify]
 [-o | -oci | oci8]
 [-optionfile <file>]
 [-optiontable <table_name>]
 [-publish <package>]
 [-pubmain <number>]
 [-recursivejars]
 [-r | -resolve]
 [-R | -resolver "resolver_spec"]
 [-resolveonly]
 [-S | -schema <schema>]
 [-stdout]
 [-stoponerror]
 [-s | -synonym]
 [-tableschema <schema>]
 [-t | -thin]
 [-time]
 [-unresolvedok]
 [-v | -verbose]

Argument Summary
Table 11–2 summarizes the loadjava arguments. If you execute loadjava multiple
times specifying the same files and different options, the options specified in the most
recent invocation hold. There are two exceptions:

1. If loadjava does not load a file because it matches a digest table entry, most
options on the command line have no effect on the schema object. The exceptions
are -grant and -resolve, which are always obeyed. Use the -force option to
direct loadjava to skip the digest table lookup.

2. The -grant option is cumulative; every user specified in every loadjava
invocation for a given class in a given schema has the EXECUTE privilege.

Table 11–2 loadjava Argument Summary

Argument Description

<filenames> You can specify any number and combination of .java,
.class, .ser, .jar .zip, and resource file name arguments,
in any order.

-action Perform all actions. This is the default behavior. This option can
be used to override a -noaction option, which may be
specified in an option file.

-andresolve To be used in place of -resolve. This option causes files to be
compiled or resolved at the time that they are loaded—rather
than in a separate pass (as -resolve does). Resolving at the
time of loading the class will not invalidate dependent classes.

This option should be used only to replace classes that were
previously loaded. If you changed only the code for existing
methods within the class, you should use this option instead of
the -resolve option.

-casesensitivepub Publishing will create case sensitive names. Unless the names
are already all upper case, it will usually require quoting the
names in PL/SQL.

loadjava

11-8 Oracle Database Java Developer’s Guide

-cleargrants The -grant option causes loadjava to grant execute
privileges to classes, sources, and resources. However, it does
not cause it to revoke any privileges. If -cleargrants is
specified, loadjava will revoke any existing grants of execute
privilege before it grants execute privilege to the users and roles
specified by the -grant operand. For example, if the intent is to
have execute privilege granted to SCOTT and only SCOTT, then
the proper options are the following: -grant SCOTT
-cleargrants.

-debug Turns on SQL logging.

-definer By default, class schema objects run with the privileges of their
invoker. This option confers definer (the developer who invokes
loadjava) privileges upon classes instead. (This option is
conceptually similar to the UNIX setuid facility.)

-dirprefix <prefix> For any files or JAR entries that start with <prefix>, this prefix
will be deleted from the name before the name of the schema
object is determined. For classes and sources, the name of the
schema object is determined by their contents, so this option
will only have an effect for resources.

-encoding Identifies the source file encoding for the compiler, overriding
the matching value, if any, in the JAVA$OPTIONS table. Values
are the same as for the javac -encoding option. If you do not
specify an encoding on the command line or in a
JAVA$OPTIONS table, the encoding is assumed to be
System.getProperty("file.encoding");". The
-encoding option is relevant only when loading a source file.

-fileout <file> Prints all message to the designated file.

-force Forces files to be loaded, even if they match digest table entries.

-genmissing Determines what classes and methods are referred to by the
classes that loadjava is asked to process. Any classes not
found in the database or file arguments are called "missing"
classes. This option generates dummy definitions for missing
classes containing all referred to methods. It then loads the
generated classes into the database. This processing happens
before the class resolution.

Because detecting references from source is more difficult than
detecting references from class files, and because source is not
generally used for distributing libraries, loadjava will not
attempt to do this processing for source files.

The schema in which the missing classes are loaded will be the
one specified by the -user command-line option, even when
referring classes are created in some other schema. The created
classes will be flagged as such so that tools can recognize them.
In particular, this is needed, so that the verifier can recognize
generated classes.

-genmissingjar
<jar_file>

This option performs the same actions as -genmissing. In
addition, it creates a JAR file, named <jar_file>, that
contains the definitions of any generated classes.

Table 11–2 (Cont.) loadjava Argument Summary

Argument Description

loadjava

Schema Object Tools 11-9

-grant Grants the EXECUTE privilege on loaded classes to the listed
users. (To call the methods of a class, users must have the
EXECUTE privilege.) Any number and combination of user
names can be specified, separated by commas but not spaces
(-grant Bob,Betty not -grant Bob, Betty). Note:
-grant is a "cumulative" option; users are added to the list of
those with the EXECUTE privilege. To remove privileges, use
the -cleargrants option.

To grant the EXECUTE privilege on an object in someone else’s
schema requires that the original CREATE PROCEDURE
privilege was granted with WITH GRANT options.

Note: You must uppercase the schema name.

-help Prints the usage message on how to use the loadjava tool and
its options.

-jarasresource Instead of unpacking the JAR file and loading each class within
it, loads the whole JAR file into the schema as a resource.

-noaction Take no action on the files. Actions include creating the schema
objects, granting execute permissions, and so on. The normal
use is within an option file to suppress creation of specific
classes in a JAR. When used on the command-line (unless
overridden in the option file), it will cause loadjava to ignore
all files. Except that JAR files will still be examined to determine
if they contain a META-INF/loadjava-options entry. If so,
then the option file is processed. An -action option contained
in the option file will override a -noaction option specified on
the command-line.

-nocasesensitivepub All lower case characters are converted to upper case.
Transitions from lower to upper case characters will cause an
underscore (_) to be inserted. For example, the method name
IsXCharView becomes IS_XCHAR_VIEW. This command only
modifies the -publish option.

-nocleargrants Causes loadjava to omit revoking of execute privileges. This
option can be used to override a -cleargrants option.

-nodefiner Make the loaded classes (or classes derived from loaded
sources) invoker’s rights classes. This is the default behavior.
This option can be used to override a -definer option.

-nogrant Do not grant any execute privileges to the loaded classes. This is
the default behavior. This option is used to override a -grant
option.

-norecursivejars Treat JARs contained in other JARs as resources. This is the
default behavior. This option can be used to override a
-recursivejars option.

-noschema Place the loaded classes, sources, and resources into the schema
associated with the user specified in a -user option. This is the
default behavior. It can be used to override a -schema option.

-nosynonym Do not create a public synonym for the classes. This is the
default behavior. This overrides a -synonym option.

-noserverside Changes the behavior of dbms_java.loadjava to use a JDBC
driver to access objects.Normally, server-side loadjava has a
performance enhancement that it will modify the object
directly—without using a JDBC driver to access the schemas.
However, if you want the server-side to use a JDBC driver, use
this option.

Table 11–2 (Cont.) loadjava Argument Summary

Argument Description

loadjava

11-10 Oracle Database Java Developer’s Guide

-nousage Suppresses the usage message that is given if either no option is
specified or if the -help option is specified.

-noverify Causes the classes to be loaded without bytecode verification.
You must be granted
oracle.aurora.security.JServerPermission
("Verifier") to execute this option. To be effective, this option
must be used in conjunction with -resolve.

-oci | -oci8 Directs loadjava to communicate with the database using the
OCI JDBC driver. -oci and -thin are mutually exclusive; if
neither is specified, -oci is used by default. Choosing -oci
implies the syntax of the -user value. You do not need to
provide the URL.

-optionfile <file> A file can be provided with loadjava options. See optionfile
discussion below for full information.

-optiontable
<tablename>

This option works like -optionfile except that the source for
the patterns and options is a SQL table rather than a file. It is
intended to allow people to specify the properties of classes
persistently. No mechanism is provided for loading the table.
The table name must contain three character columns named
PATTERN, OPTION, and VALUE. The value of PATTERN is
interpreted in the same way as a pattern in an option file. The
other two columns specify a command-line option (including
the dash) and for options that take an operand, the value of the
operand. For options that do not take an operand, the VALUE
column should be null. The rows are processed just like lines of
an option file would be. To determine the options for a given
schema object, the rows are examined (shortest pattern first)
and for any that match the option is appended to the list of
options. If two rows have the same pattern and contradictory
options, such as -synonym and -nosynonym, it is unspecified
which will prevail. If two rows have the same pattern and
option columns, it is unspecified which VALUE will prevail.

-publish <package> The <package> is created (or replaced) by loadjava.
Wrappers for the eligible methods will be defined in this
package. Through the use of option files, a single invocation of
loadjava can be instructed to create more than one package.
Each package will undergo the same name transformations as
the methods. See the publish section below for more
information.

-pubmain <number> A special case applied to methods with a single argument,
which is of type java.lang.String. Multiple variants of the
SQL procedure or function will be created, each of which takes
a different number of arguments of type VARCHAR. In particular,
variants are created taking all numbers of arguments up to and
including <number>. The default value is three. This option
applies to main, as well as any method that has exactly one
argument of type java.lang.String.

-recursivejars Normally, if loadjava encounters an entry in a JAR with
a .jar extension, it will load the entry as a resource. If this
option is specified, then loadjava will process contained JARs
as if they were top-level JARs. That is, it will read their entries
and load classes, sources, and resources.

-resolve Compiles (if necessary) and resolves external references in
classes after all classes on the command line have been loaded.
If you do not specify -resolve, loadjava loads files but does
not compile or resolve them.

Table 11–2 (Cont.) loadjava Argument Summary

Argument Description

loadjava

Schema Object Tools 11-11

Argument Details
This section describes the details of loadjava arguments whose behavior is more
complex than the summary descriptions contained in Table 11–2.

-resolver Specifies an explicit resolver spec, which is bound to the newly
loaded classes. If -resolver is not specified, the default
resolver spec, which includes current user’s schema and
PUBLIC, is used. See "resolver" on page 11-15 for details.

-resolveonly Causes loadjava to skip the initial creation step. It will still
perform grants, resolves, create synonyms, and so on.

-schema Designates the schema where schema objects are created. If not
specified, the -user schema is used. To create a schema object in
a schema that is not your own, you must have the CREATE
PROCEDURE or CREATE ANY PROCEDURE privilege. You
must have CREATE TABLE or CREATE ANY TABLE privilege.
Finally, you must have the JServerPermission
loadLibraryInClass for the class.

-stdout Causes the output to be directed to stdout, rather than to
stderr.

-stoponerror Normally, if an error occurs while loadjava is processing files,
it will issue a message and continue to process other classes.
This option stops when an error occurs. In addition, it reports
all errors that apply to Java objects and are contained in the
USER_ERROR table of the schema in which classes are being
loaded. Except that is does not report ORA-29524 errors. These
are errors that are generated when a class cannot be resolved
because a referred to class could not be resolved. Thus, these
errors are a secondary effect of whatever caused a referred to
class to be unresolved. This usually makes it easy to pinpoint
the underlying cause of the failure.

-synonym Creates a PUBLIC synonym for loaded classes making them
accessible outside the schema into which they are loaded. To
specify this option, you must have the CREATE PUBLIC
SYNONYM privilege. If -synonym is specified for source files,
classes compiled from the source files are treated as if they had
been loaded with -synonym.

-tableschema
<schema>

Creates the loadjava internal tables within this specified
schema, rather than in the Java file destination schema.

-thin Directs loadjava to communicate with the database using the
thin JDBC driver. -oci and -thin are mutually exclusive; if
neither is specified, then -oci is used by default. Choosing
-thin implies the syntax of the -user value. You do need to
specify the appropriate URL through the -user option.

-time Prints a timestamp on every message.

-unresolvedok When combined with -resolve, will ignore unresolved errors.

-user Specifies a user, password, and database connect string; the files
will be loaded into this database instance. The argument has the
form <username>/<password>[@<database>].

-verbose Directs loadjava to print detailed status messages while
running. Use -verbose to learn when loadjava does not load
a file because it matches a digest table entry.

Table 11–2 (Cont.) loadjava Argument Summary

Argument Description

loadjava

11-12 Oracle Database Java Developer’s Guide

File Names
You can specify as many .class, .java, .jar, .zip, and resource files as you like,
in any order. If you specify a JAR or ZIP file, then loadjava processes the files in the
JAR or ZIP; there is no JAR or ZIP schema object. If a JAR or ZIP contains a JAR or ZIP,
loadjava does not process them.

The best way to load files is to put them in a JAR or ZIP and then load the archive.
Loading archives avoids the resource schema object naming complications described
later in this section. If you have a JAR or ZIP that works with the JDK, then you can be
sure that loading it with loadjava will also work, without having to learn anything
about resource schema object naming.

Schema object names are slightly different from file names, and loadjava names
different types of schema objects differently. Because class files are self-identifying
(they contain their names), loadjava’s mapping of class file names to schema object
names is invisible to developers. Source file name mapping is also invisible to
developers; loadjava gives the schema object the fully qualified name of the first
class defined in the file. JAR and ZIP files also contain the names of their files;
however, resource files are not self identifying. loadjava generates Java resource
schema object names from the literal names you supply as arguments (or the literal
names in a JAR or ZIP file). Because running classes use resource schema objects, it is
important that you specify resource file names correctly on the command line, and the
correct specification is not always intuitive. The surefire way to load individual
resource files correctly is:

Run loadjava from the top of the package tree and specify resource file names relative to that
directory. (The "top of the package tree" is the directory you would name in a Java
CLASSPATH list.)

If you do not want to follow this rule, observe the details of resource file naming that
follow. When you load a resource file, loadjava generates the resource schema object
name from the resource file name as literally specified on the command line. Suppose, for
example you type:

% cd /home/scott/javastuff
% loadjava options alpha/beta/x.properties
% loadjava options /home/scott/javastuff/alpha/beta/x.properties

Although you have specified the same file with a relative and an absolute path name,
loadjava creates two schema objects, one called alpha/beta/x.properties, the
other ROOT/home/scott/javastuff/alpha/beta/x.properties. (loadjava
inserts ROOT because schema object names cannot begin with the "/" character;
however, that is an implementation detail that is unimportant to developers.) The
important point is that a resource schema object’s name is generated from the file
name as entered.

Classes can refer to resource files relatively (for example, b.properties) or
absolutely (for example, /a/b.properties). To ensure that loadjava and the class
loader use the same name for a schema object, follow this rule when loading resource
files:

Enter the name on the command line that the class passes to getResource() or
getResourceAsString().

Instead of remembering whether classes use relative or absolute resource names and
changing directories so that you can enter the correct name on the command line, you
can load resource files in a JAR as follows:

% cd /home/scott/javastuff
% jar -cf alpharesources.jar alpha/*.properties

loadjava

Schema Object Tools 11-13

% loadjava options alpharesources.jar

Or, to simplify further, put both the class and resource files in a JAR, which makes the
following invocations equivalent:

% loadjava options alpha.jar
% loadjava options /home/scott/javastuff/alpha.jar

The two loadjava commands in this example make the point that you can use any
path name to load the contents of a JAR file. Even if you did execute the redundant
commands shown above, loadjava would realize from the digest table that it did not
need to load the files twice. That means that reloading JAR files is not as
time-consuming as it might seem, even when few files have changed between
loadjava invocations.

definer
{-definer | -d}
The -definer option is identical to definer’s rights in stored procedures and is
conceptually similar to the UNIX setuid facility; however, whereas setuid applies
to a complete program, you can apply -definer class by class. Moreover, different
definers may have different privileges. Because an application may consist of many
classes, you must apply -definer with care to achieve the results desired, namely
classes that run with the privileges they need,0 but no more. For more information on
definer’s rights, see "Controlling the Current User" on page 2-15.

noverify
[-noverify]
Causes the classes to be loaded without bytecode verification. You must be granted
oracle.aurora.security.JServerPermission(Verifier) to execute this
option. In addition, this option must be used in conjunction with -r.

The verifier ensures that incorrectly formed Java binaries cannot be loaded for
execution in the server. If you know that the JAR or classes you are loading are valid,
use of this option will speed up the loadjava process. Some Oracle Database-specific
optimizations for interpreted performance are put in place during the verification
process. Thus, interpreted performance of your application may be adversely affected
by using this option.

optionfile
[-optionfile <file>]
A file can be provided with loadjava options. This <file> is read and processed by
loadjava before any other loadjava options are processed. This <file> may
contain one or more lines, each of which contains a pattern and a sequence of options.
Each line must be terminated by a newline character (\n). For each file (or JAR entry)
that is processed by loadjava, the long name of the schema object that is going to be
created (typically, the name of the class with a dot "." replaced by a slash "/") is
checked against the patterns. Patterns can end in a wildcard (*) to indicate an arbitrary
sequence of characters; otherwise, they must match the name exactly. Options to be
applied to matching Java schema objects are supplied on the rest of the line. Options
are appended to the command-line options, they do not replace them. In case more
than one line matches a name, the matching rows are sorted by length of pattern, with
the shortest first, and the options from each row are appended. In general, loadjava
options are not cumulative. Rather, later options override earlier ones. This means that
an option specified on a line with a longer pattern will override a line with a shorter
pattern.

This file is parsed by a java.io.StreamTokenizer.

loadjava

11-14 Oracle Database Java Developer’s Guide

Java comments (both /* */ and //) are allowed. A line comment begins with a #.
Empty lines are ignored. The quote character is a double quote ("). That is, options
containing spaces (common in -resolver options, for example) should be
surrounded by double quotes. Certain options, such as -user or -verbose, affect the
overall processing of loadjava and not the actions performed for individual Java
schema objects. Such options are ignored if they appear in an option file.

As an aid in packaging applications, loadjava looks for an entry named
META-INF/loadjava-options in each JAR it processes. If it finds such an entry, it
treats it as an options file that is applied for all other entries in the option file.
However, loadjava does some processing on entries in the order in which they occur
in the JAR.

In case it has partially processed entities before it processes the
META-INF/loadjava-options, the loadjava tool will attempt to patch up the
schema object to conform to the applicable options. For example, by altering classes
that were created with invoker’s rights when they should have been created with
definer’s rights. The fix for -noaction will be to drop the created schema object. This
will yield the correct effect except that if a schema object existed before loadjava
started, it will have been dropped.

publish
[-publish <package>]
[-pubmain <number>]
The publishing options cause loadjava to create PL/SQL wrappers for methods
contained in the processed classes. Typically, a user wants to publish wrappers for
only a few classes in a JAR. These options are most useful when specified in an option
file.

 To be eligible for publication, the method must satisfy the following:

1. The method must be a member of a public class.

2. The method must itself be declared public and static.

3. The method signature must be "mappable", which is defined in the following
rules:

– Java arithmetic types (byte, int, long, float, double) as arguments and
return types are mapped to NUMBER.

– char as an argument and return type is mapped to VARCHAR.

– java.lang.String as an argument and return type is mapped to
VARCHAR.

– If the only argument of the method has type java.lang.String, special
rules apply, as listed in the -pubstring option description.

– If the return type is void, then a procedure is created.

– If the return type is arithmetic, char, or java.lang.String, then a function
is created and its return type is as specified in an earlier rule.

Methods that take arguments or return types that are not covered by the above rules
are not eligible. No provision is made for OUT, IN-OUT SQL arguments, OBJECT
types, or for many other SQL features.

resolve
{-resolve | -r}

loadjava

Schema Object Tools 11-15

Use -resolve to force loadjava to compile (if necessary) and resolve a class that
has previously been loaded. It is not necessary to specify -force, because resolution
is performed after, and independently of, loading.

resolver
{-resolver | -R} "resolver spec"
This option associates an explicit resolver spec with the class schema objects that
loadjava creates or replaces.

A resolver spec consists of one or more items, each of which consists of a name spec and
a schema spec expressed in the following syntax:

"((name_spec schema_spec) [(name_spec schema_spec)] ...)"

■ A name spec is similar to a name in a Java import statement. It can be a fully
qualified Java class name, or a package name whose final element is the wildcard
character "*", or (unlike an imported package name) simply the wildcard character
"*"; however, the elements of a name spec must be separated by "/" characters, not
periods. For example, the name spec a/b/* matches all classes whose names
begin with a.b. The special name * matches all class names.

■ A schema spec can be a schema name or the wildcard character "-". The wildcard
does not identify a schema but directs the resolve operation to not mark a class
invalid because a reference to a matching name cannot be resolved. (Without a "-"
wildcard in a resolver spec, an unresolved reference in the class makes the class
invalid and produces an error message.) Use a "-" wildcard when you must test a
class that refers to a class you cannot or do not want to load; for example, GUI
classes that a class refers to but does not call because when run in the server there
is no GUI.

The resolution operation interprets a resolver spec item as follows:

When looking for a schema object whose name matches the name spec, look in the
schema named by the partner schema spec.

The resolution operation searches schemas in the order in which the resolver spec lists
them. For example,

-resolver ’((* SCOTT) (* PUBLIC))’

means the following:

Search for any reference first in SCOTT and then in PUBLIC. If a reference is not
resolved, then mark the referring class invalid and display an error message; in other
words, call attention to missing classes.

The following example:

-resolver "((* SCOTT) (* PUBLIC) (my/gui/* -))"

means the following:

Search for any reference first in SCOTT and then in PUBLIC. If the reference is not
found, and is to a class in the package my.gui then mark the referring class valid, and
do not display an error; in other words, ignore missing classes in this package. If the
reference is not found and is not to a class in my.gui, then mark the referring class
invalid and produce an error message.

user
{-user | -u} <user>/<password>[@<database>]

dropjava

11-16 Oracle Database Java Developer’s Guide

By default, loadjava loads into the login schema specified by the -user option. Use
the -schema option to specify a different schema to load into. This does not involve a
login into that schema, but does require that you have sufficient permissions to alter it.

The permissible forms of @<database> depend on whether you specify -oci or
-thin; -oci is the default.

■ -oci: @<database> is optional; if you do not specify, loadjava uses the user’s
default database. If specified, <database> can be a TNS name or a Oracle Net
Services name-value list.

■ -thin: @<database> is required. The format is <host>:<lport>:<SID>.

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Oracle Net
Services connections; in a default installation, it is 5521.

– <SID> is the database instance identifier; in a default installation it is ORCL.

Here are examples of loadjava commands:

■ Connect to the default database with the default OCI driver, load the files in a JAR
into the TEST schema, then resolve them.

loadjava -u joe/shmoe -resolve -schema TEST ServerObjects.jar

■ Connect with the thin driver, load a class and a resource file, and resolve each
class:

loadjava -thin -u SCOTT/TIGER@dbhost:5521:orcl \
 -resolve alpha.class beta.props

■ Add Betty and Bob to the users who can execute alpha.class:

loadjava -thin -schema test -u SCOTT/TIGER@localhost:5521:orcl \
■ -grant BETTY,BOB alpha.class

dropjava
The dropjava tool is the converse of loadjava. It transforms command-line file
names and JAR or ZIP file contents to schema object names, then drops the schema
objects and deletes their corresponding digest table rows. You can enter .java,
.class, .ser, .zip, .jar, and resource file names on the command line in any order.

Alternatively, you can specify a schema object name (full name, not short name)
directly to dropjava. A command-line argument that does not end in .jar, .zip,
.class, .java is presumed to be a schema object name. If you specify a schema
object name that applies to multiple schema objects (such as a source schema object
Foo and a class schema object Foo), all will be removed.

Dropping a class invalidates classes that depend on it, recursively cascading upwards.
Dropping a source drops classes derived from it.

Note: You must remove Java schema objects in the same way that
you first loaded them. If you translate on a client and load classes
and resources directly, run dropjava on the same classes and
resources.

dropjava

Schema Object Tools 11-17

You can execute the dropjava tool either through the command line (as described
below) or through the dropjava method contained within the DBMS_JAVA class. To
execute within your Java application, do the following:

call dbms_java.dropjava(’... options...’);

where the options are the same as specified below. Separate each option with a blank.
Do not separate the options with a comma. The only exception for this is the -user
option. The connection is always made to the current session, so you cannot specify
another user name through the -user option.

For -resolver, you should specify all other options first, a comma, then the
-resolver option with its definition. Do not specify the following options, because
they relate to the database connection for the loadjava command-line tool: -thin,
-oci, -user, -password. The output is directed to stderr. Set serveroutput on
and call dbms_java.set_output as appropriate.

Syntax
dropjava [options] {<file>.java | <file>.class | file.sqlj |
<file>.jar | <file.zip> | <resourcefile>} ...
 -u | -user <user>/<password>[@<database>]
 [-genmissingjar <JARfile>]
 [-jarasresource]
 [-noserverside]
 [-o | -oci | -oci8]
 [-optionfile <file>]
 [-optiontable <table_name>]
 [-S | -schema <schema>]
 [-stdout]
 [-s | -synonym]
 [-t | -thin]
 [-time]
 [-v | -verbose]

Argument Summary
Table 11–3 summarizes the dropjava arguments.

Table 11–3 dropjava Argument Summary

Argument Description

-user Specifies a user, password, and optional database connect
string; the files will be dropped from this database instance.

<filenames> You can specify any number and combination of .java,
.class, .sqlj, .ser, .jar, .zip, and resource file names, in
any order.

-genmissingjar
<file>

dropjava treats the operand of this option as a file to be
processed.

-jarasresource Drops the whole JAR file, which was previously loaded as a
resource.

-noserverside Changes the behavior of the server-side dropjava tool to use
a JDBC driver to access shemas.Normally, server-side
dropjava has a performance enhancement that it will modify
the schema directly—without using a JDBC driver to access the
schemas. However, if you want the server-side to use a JDBC
driver, use this option.

dropjava

11-18 Oracle Database Java Developer’s Guide

Argument Details

File Names
dropjava interprets most file names as loadjava does:

■ .class files: dropjava finds the class name in the file and drops the
corresponding schema object.

■ .java and .sqlj files: dropjava finds the first class name in the file and drops
the corresponding schema object.

■ .jar and .zip files: dropjava processes the archived file names as if they had
been entered on the command line.

If a file name has another extension or no extension, then dropjava interprets the file
name as a schema object name and drops all source, class, and resource objects that
match the name. For example, the hypothetical file name alpha drops whichever of
the following exists: the source schema object named alpha, the class schema object
named alpha, and the resource schema object named alpha. If the file name begins
with the "/" character, then dropjava inserts ROOT to the schema object name.

If dropjava encounters a file name that does not match a schema object, it displays a
message and processes the remaining file names.

user
{-user | -u} <user>/<password>[@<database>]
The permissible forms of @<database> depend on whether you specify -oci or
-thin; -oci is the default.

■ -oci: @<database> is optional; if you do not specify, then dropjava uses the
user’s default database. If specified, then <database> can be a TNS name or a
Oracle Net Services name-value list.

-oci | -oci8 Directs dropjava to connect with the database using the OCI
JDBC driver. -oci and -thin are mutually exclusive; if
neither is specified, then -oci is used by default. Choosing
-oci implies the form of the -user value.

-optionfile <file> This has the same usage as for loadjava.

-optiontable <table> This has the same usage as for loadjava.

-schema Designates the schema from which schema objects are
dropped. If not specified, the logon schema is used. To drop a
schema object from a schema that is not your own, you need
the DROP ANY PROCEDURE and UPDATE ANY TABLE
privileges.

-stdout Causes the output to be directed to stdout, rather than to
stderr.

-synonym Drops a PUBLIC synonym that was created with loadjava.

-thin Directs dropjava to communicate with the database using the
thin JDBC driver. -oci and -thin are mutually exclusive; if
neither is specified, then -oci is used by default. Choosing
-thin implies the form of the -user value.

-time Prints a timestamp on every message.

-verbose Directs dropjava to emit detailed status messages while
running.

Table 11–3 (Cont.) dropjava Argument Summary

Argument Description

ojvmjava

Schema Object Tools 11-19

■ -thin: @<database> is required. The format is <host>:<lport>:<SID>.

– <host> is the name of the machine running the database.

– <lport> is the listener port that has been configured to listen for Oracle Net
Services connections; in a default installation, it is 5521.

– <SID> is the database instance identifier; in a default installation, it is ORCL.

Here are some dropjava examples.

■ Drop all schema objects in schema TEST in the default database that were loaded
from ServerObjects.jar:

dropjava -u SCOTT/TIGER -schema TEST ServerObjects.jar

■ Connect with the thin driver, then drop a class and a resource file from the user’s
schema:

dropjava -thin -u SCOTT/TIGER@dbhost:5521:orcl alpha.class beta.props

Dropping Resources
Care must be taken if you are removing a resource that was loaded directly into the
server. This includes profiles if you translated on the client without using the
-ser2class option. When dropping source or class schema objects, or resource
schema objects that were generated by the server-side SQLJ translator, the schema
objects will be found according to the package specification in the applicable .sqlj
source file. However, the fully qualified schema object name of a resource that was
generated on the client and loaded directly into the server depends on path
information in the .jar file or on the command line at the time you loaded it. If you
use a .jar file to load resources and use the same .jar file to remove resources, there
will be no problem. If, however, you use the command line to load resources, then you
must be careful to specify the same path information when you run dropjava to
remove the resources.

ojvmjava
The ojvmjava tool is an interactive interface to a database instance’s session
namespace. You specify database connection arguments when you start ojvmjava. It
then presents you with a prompt to indicate that it is ready for commands.

The shell can launch an executable, that is, a class with a static main() method.
Executables must have been loaded with loadjava.

Syntax
ojvmjava {-user <user>[/<password>@database] [options]
 [@<filename>]
 [-batch]
 [-c | -command <command> <args>]
 [-debug]
 [-d | -database <conn_string>]
 [-fileout <filename>]
 [-o | -oci | -oci8]
 [-oschema <schema>]
 [-t | -thin]
 [-version | -v]

ojvmjava

11-20 Oracle Database Java Developer’s Guide

Argument Summary
Table 11–4 summarizes the ojvmjava command-line arguments.

Example
Here is a ojvmjava example.

Open a shell on the session namespace of the database orcl on listener port 2481 on
host dbserver.

ojvmjava -thin -user SCOTT/TIGER@dbserver:2481:orcl

The ojvmjava commands span several different types of functionality, which are
grouped as follows:

■ ojvmjava Options—Describes the options for the ojvmjava command-line tool

Table 11–4 ojvmjava Argument Summary

Option Description

-user | -u Specifies user’s name for connecting to the database. This name is
case insensitive; the name will always be converted to upper case. If
you provide the database information, the default syntax used is
OCI. You can also specify the default database by the following
option:
-user <user>/<password>@

-password | -p Specifies user’s password for connecting to the database. This name
case insensitive; the name will always be converted to upper case.

@<filename> Specifies a script file that contains ojvmjava commands to be
executed. See "Scripting ojvmjava Commands in the @<filename>
Option" on page 11-21 for structure of the indicated file.

-batch Disables all messages printed to the screen. No help messages or
prompts will be printed. Only responses to entered commands are
printed.

-command Executes the desired command. If you do not want to run
ojvmjava in interpretive mode, but only want to execute a single
command, execute ojvmjava with the -command option followed
by a string that contains the command and the arguments. Once the
command executes, ojvmjava exits. The following executes the "ls
-lR" command on the designated host:

ojvmjava -user/TIGER -command "java foo"

-debug Prints debugging information.

-d | -database
<conn_string>

Provide a database connection string.

-fileout <file> Redirect output to the provided file.

-o | -oci |
-oci8

Use the JDBC OCI driver. The OCI driver is the default. This flag
specifies the syntax used in either the @database or -database
option.

-oschema
<schema>

Use this schema for class lookup.

-t | -thin Specifies that the database syntax used is for the JDBC Thin driver.
The database connection string must be of the form
<host>:<port>:<SID> or an Oracle Net Services Name-Value list.

-verbose Print the connection information.

-version Shows the version.

ojvmjava

Schema Object Tools 11-21

■ Shell Commands—Describes the commands that are used for manipulating and
viewing contexts and objects in the namespace.

ojvmjava Options
■ ojvmjava Tool Output Redirection

■ Scripting ojvmjava Commands in the @<filename> Option

ojvmjava Tool Output Redirection
You can specify that any output generated by the ojvmjava tool is put into a file by
appending the "&><filename>" at the end of the command options. The following
pipes all output to the listDir file:

ls -lR &>/tmp/listDir

Scripting ojvmjava Commands in the @<filename> Option
This option designates a script file that contains one or more ojvmjava commands.
The script file specified is located on the client. The ojvmjava tool reads in the file
and then executes all commands on the designated server. Also, because the script file
is executed on the server, any interaction with the operating system in the script
file—such as redirecting output to a file or executing another script—will occur on the
server. If you direct ojvmjava to execute another script file, this file must exist within
$ORACLE_HOME directory on the server.

Type in the ojvmjava command followed by any options and any expected input
arguments.

The script file contains any ojvmjava command followed by options and input
parameters. The input parameters can be passed in on the ojvmjava command-line.
The ojvmjava command processes all known ojvmjava options and then passes on
any other options and arguments to the script file.

To access arguments within the commands in the script file, place &1...&n to denote
the arguments. If all input parameters are passed into a single command, you can
supply a the string "&*" to denote that all input parameters are to be passed to this
command.

The following shows the contents of the script file, execShell:

chmod +x SCOTT nancy /alpha/beta/gamma
chown SCOTT /alpha/beta/gamma
java testhello &*

Because only two input arguments are expected, you can implement the java
command input parameters as follows:

java testhello &1 &2

To execute this file, do the following:

Note: You can also supply arguments to the -command option in
the same manner. The following shows an example:

ojvmjava ... -command "cd &1" contexts

After processing all other options, the ojvmjava tool passes
"contexts" in as the argument to the "cd" command.

ojvmjava

11-22 Oracle Database Java Developer’s Guide

ojvmjava -user SCOTT -password TIGER -thin -database
 \
dbserver:2481:orcl
 @execShell alpha beta

The ojvmjava processes all options that it knows about and passes along any other
input parameters to be used by the commands that exist within the script file. In this
example, the parameters, alpha and beta, are passed to the java command in the
script file. Thus, the actual command executed is as follows:

java testhello alpha beta

You can add any comments in your script file with the hash symbol (#). The "#" symbol
makes anything to the end of the line a comment, which is ignored by ojvmjava. For
example:

#this whole line is ignored by ojvmjava

Shell Commands
The following shell commands behave similarly to their UNIX counterparts:

Each of these shell commands contains the following common options:

echo
Prints to stdout exactly what is indicated. This is used mostly in script files.

The syntax is as follows:

echo [<echo_string>] [<args>]

where <echo_string> is a string that contains the text you want written to the
screen during the shell script invocation and <args> are input arguments from the
user. For example, the following prints out a notification:

echo "Adding an owner to the schema" &1

If the input argument is "SCOTT", the output would be "Adding an owner to the
schema SCOTT"

exit Command
The exit command terminates ojvmjava.

Syntax

Shell Commands

echo exit Command help Command

java Command version Command whoami

Table 11–5 ojvmjava Command Common Options

Option Description

-describe | -d Summarizes the tool’s operation.

-help | -h Summarizes the tool’s syntax.

-version Shows the version.

ojvmjava

Schema Object Tools 11-23

exit

Here is an example:

Leave the shell:

$ exit
%

help Command
The help command summarizes the syntax of the shell commands. You can also use
the help command to summarize the options for a particular command.

Syntax

help [<command>]

java Command
The java command is analogous to the JDK java command; it invokes a class’s static
main() method. The class must have been loaded with loadjava. (There is no point
to publishing a class that will be invoked with the java command.) The java
command provides a convenient way to test Java code that runs in the database. In
particular, the command catches exceptions and redirects the class’s standard output
and standard error to the shell, which displays them as with any other command
output. (The usual destination of standard out and standard error for Java classes
executed in the database is one or more database server process trace files, which are
inconvenient and may require DBA privileges to read.)

Syntax

java [-schema <schema>] <class> [arg1 ... argn]

Argument Summary

Table 11–6 summarizes the java arguments.

Here is a java command example.

Say hello and display arguments:

package hello;
public class World {
 public World() {
 super();
 }
 public static void main(String[] argv) {
 System.out.println("Hello from the Oracle Database");
 if (argv.length != 0)
 System.out.println("You supplied " + argv.length + " arguments: ");

Table 11–6 java Argument Summary

Option Description

class Names the Java class schema object that is to be executed.

-schema Names the schema containing the class to be executed; the
default is the invoker’s schema. The schema name is case
sensitive.

arg1 ... argn Arguments to the class’s main() method.

ojvmjava

11-24 Oracle Database Java Developer’s Guide

 for (int i = 0; i < argv.length; i++)
 System.out.println(" arg[" + i + "] : " + argv[i]);
 }
}

Compile, load, publish, and run the executable as follows, substituting your user ID,
host, and port information as appropriate:

% javac hello/World.java
% loadjava -r -user SCOTT/TIGER@localhost:2481:orcl hello/World.class
% ojvmjava -user SCOTT -password TIGER -database localhost:2481:orcl
$ java testhello alpha beta
Hello from the Oracle Database
You supplied 2 arguments:
arg[0] : alpha
arg[1] : beta

version Command
The version command shows the version of the ojvmjava tool. You can also show
the version of a specified command.

Syntax

version [options] [<command>]

Here is an example of the version command.

Display the shell’s version:

$ version
1.0

whoami
Prints out the current user that logged into this session.

Database Web Services 12-1

12
Database Web Services

This chapter provides and overview of database Web services and discusses how to
call out to an existing Web service. For information on how to create a Web service, see
the Oracle9iAS Web Services Developer’s Guide and
http://otn.oracle.com/webservices. For more information on database Web
services, see http://otn.oracle.com/tech/webservices/database.html.

This chapter covers the following topics:

■ Database Web Services

■ Using the Database as Service Provider for Web Services

■ Using the Database as Service Consumer for Web Services

■ Using the Native Java Interface

Database Web Services
Web services technology enables application-to-application interaction over the Web –
regardless of platform, language, or data formats. The key ingredients, including XML,
SOAP, WSDL, and UDDI, have been adopted across the entire software industry. Web
services technology usually refers to services implemented and deployed in
middle-tier application servers. However, in heterogeneous and disconnected
environments, there is an increasing need to access stored procedures as well as data
and metadata, through Web services interfaces. Database Web services technology is a
database approach to Web services.

It works in two directions:

■ accessing database resources as a Web service

■ consuming external Web services from the database itself

Turning the Oracle database into a Web service provider leverages investment in Java
stored procedures, PL/SQL packages, pre-defined SQL queries and DML. Conversely,
consuming external Web services from the database itself, together with integration
with the SQL engine, enables Enterprise Information Integration.

This chapter focuses on the advantages of opening up the Oracle Database, through
PL/SQL packages and Java classes deployed within the database, to the world of Web
services, using the Oracle Application Server and the Oracle database.

Refer to the Oracle9iAS Web Services Developer’s Guide for information on:

■ Testing and securing Web services.

■ Using PL/SQL-specific legacy types and REF CURSORS.

Using the Database as Service Provider for Web Services

12-2 Oracle Database Java Developer’s Guide

■ Writing static or dynamic Java clients to call Web Services.

This chapter also provides a general road map for database Web services, mapping out
Web services support for additional database capabilities, such as SQL queries, DML
statements, and Java Stored Procedures—through synchronous invocation.

See the Oracle9iAS Web Services Developer’s Guide on how to create Web services and
invoke them from clients. This chapter covers how to call out to Web services from
within the database and how a Web service can call in to the database.

Using the Database as Service Provider for Web Services
Web Services uses industry-standard mechanisms to provide easy access to remote
content and applications, regardless of the provider’s platform, location, implementation, or
data format. Client applications can query and retrieve data from Oracle databases and
invoke stored procedures using standard web service protocols. There is no
dependency on Oracle-specific database connectivity protocols. This approach is
highly beneficial in heterogeneous, distributed, and non-connected environments.

You can call into the database from a Web Service, using the database as a service
provider. This allows you to leverage existing or new SQL, PL/SQL, Java stored
procedures, or Java classes within an Oracle database. You can access and manipulate
database tables from a Web service client.

Use JPublisher to generate Java wrappers that correspond to database operations, then
deploy the wrappers as Web services in Oracle AS. Figure 12–1 demonstrates how you
use JPublisher to publish PL/SQL packages, SQL objects, collections, and packages as
Java classes. Once published, these objects can be accessed by any Web service through
an OC4J Web services servlet.

Figure 12–1 Web Services Calling In to the Database

How to Use
For directions on how to use JPublisher to publish your PL/SQL or SQL objects,
collections or packages as Java classes, see the "What JPublisher Can Publish" section
in the "Introduction to JPublisher" chapter of the Oracle Database JPublisher User's
Guide.

See the Oracle9iAS Web Services Developer’s Guide for more information on creating and
using Web services.

Features of the Database as a Web Service Provider
Using the database as a Web Service provider offers the following features:

Using the Database as Service Consumer for Web Services

Database Web Services 12-3

■ Enhanced PL/SQL Web Services – Improves PL/SQL Web Services by extending
Web Services support for additional PL/SQL types including CLOB, BLOB,
XMLType, REfCursor, PL/SQL records and tables. This enables you to use most of
your existing PL/SQL packages as Web Services.

■ Java-in-the-database Web Services – Exposes existing Java classes deployed in the
database as Web Services. Java classes implementing data-related services can be
migrated between the middle tier and the database. Java portability results in
database independence.

■ SQL Query Web Services – Leverages warehousing or business intelligence
queries, data monitoring queries, and any predefined SQL statements as web
services.

■ DML Web Services – Offers secure, persistent, transactional and scalable logging,
auditing and tracking operations implemented via SQL DML, as web services.
DML web services are implemented as atomic or group/batch insert, update, and
delete operations.

JPublisher Support for Web Services Call-Ins to the Database
The following JPublisher features support Web services call-ins to code running in
Oracle Database. Refer to the JPublisher Oracle Database JPublisher User's Guide for
complete information.

■ Generation of Java interfaces

■ JPublisher styles and style files

■ REF CURSOR returning and result set mapping

■ Options to filter what JPublisher publishes

■ Support for calling Java classes in the database without PL/SQL call specs

■ Support for publishing SQL queries or DML statements

■ Support for unique method names

Using the Database as Service Consumer for Web Services
You can extend a relational database’s storage, indexing, and searching capabilities to
include semistructured and nonstructured data (including Web Services) in addition to
enabling federated data. By calling Web Services, the database can track, aggregate,
refresh, and query dynamic data produced on-demand, such as stock prices, currency
exchange rates, and weather information.

An example of using the database as a service consumer would be to call external Web
Services from a predefined database job in order to obtain inventory information from
multiple suppliers, then update your local inventory database. Another example is
that of a Web Crawler: a database job can be scheduled to collate product and price
information from a number of sources.

How to Use
The Web services client code is written in SQL, PL/SQL, or Java to run inside the
database, which then invokes the external Web service. Figure 12–2 demonstrates how
you can call out to a Web service from a Java client within the database by using one of
the following methods:

Using the Database as Service Consumer for Web Services

12-4 Oracle Database Java Developer’s Guide

■ SQL and PL/SQL call specs – Invoke a Web service through a user-defined
function call (generated through JPublisher) either directly within a SQL statement
or view or through a variable.

■ Pure Java static proxy class – Use JPublisher to pre-generate a client proxy class.
which uses JAX-RPC). This method simplifies the Web service invocation as the
location of the service is already known without needing to look up the service in
the UDDI registry. The client proxy class does all of the work to construct the
SOAP request, including marshalling and unmarshalling parameters.

■ Pure Java using DII (dynamic invocation interface) over JAX-RPC – Dynamic
invocation provides the ability to construct the SOAP request and access the
service without the client proxy.

Which method to use depends on if you want to execute from SQL or PL/SQL or from
Java classes.

To call out to any Web service through PL/SQL, use the UTL_DBWS PL/SQL package.
This package essentially uses the same APIs as the DII classes. See the PL/SQL
Packages and Types Reference for a full description of this package.

You can use a Web Services Data Source to process the results from any Web service
request as if it was a real database table.

Figure 12–2 Calling Web Services From Within the Database

Web Service Data Sources (Virtual Table Support)
To access data (returned from single or multiple Web service invocations) through a
database table, create a virtual table through a Web service data source. This table
function allows you to query a set of returned rows as though it were a table.

The client invokes a Web service and the results are stored in a virtual table in the
database. You can pass result sets from function to function, allowing you to set up a
sequence of transformation without a table holding intermediate results. To reduce
memory usage, you can return the result set rows a few at a time within a function.

By using Web services with the table function, you can manipulate a range of input
values (from single or multiple Web services) as a real table. In the following example,
the inner SELECT creates rows whose columns are used as arguments for invoking the
CALL_WS Web service call-out. The table expression could be used in other SQL
queries, for constructing views, and so on.

SELECT <some-columns>
FROM

TABLE(WS_TABFUN(CURSOR(SELECT s FROM <some_table>))),
WHERE...

Using the Database as Service Consumer for Web Services

Database Web Services 12-5

Figure 12–3 Storing Results from Request in a Virtual Table

Features of the Database as a Web Service Consumer
Using the database as a Web Service consumer offers the following features:

■ Consuming Web Services form Java-in-the-database – Provides an easy-to-use
interface for calling-out web services, thereby insulating developers from
low-level SOAP programming. Java classes running in the database can simply
and directly invoke external web services by using the previously loaded Java
proxy or dynamic invocation.

■ Consuming Web Services from SQL and PL/SQL – Allows any SQL-enabled tool
or application to transparently and easily consume dynamic data from external
web services. After Exposing Web Services methods as Java Stored PRocedures, A
PL/SQL wrapper on top of a Java stored procedures hides all Java and SOAP
programming details from the SQL client.

■ Web Services Data Source – Enables Application and Data integration by turning
external web service into an SQL data source, making external Web services
appear as regular SQL tables. This table function represents the output of calling
external web services and can be used in an SQL query.

Installation Requirements
Before generating any stubs or call specs, you must install the UTL_DBWS package in
the database. This package includes both the Java and PL/SQL implementation
necessary for facilitating the Web services functionality within the database.

Use the following script to install the Web Services Client Library:

$ORACLE_HOME/sqlj/lib/inctldbws.sql

To remove the Web Services Client Library at a later time, use the following script:

$ORACLE_HOME/sqlj/lib/rmctldbws.sql

JPublisher Generation Overview
JPublisher can receive the WSDL from the Web Service and create the static java, proxy
class, or PL/SQL call spec, as shown in Figure 12–4.

Using the Database as Service Consumer for Web Services

12-6 Oracle Database Java Developer’s Guide

Figure 12–4 Creating Web Services Callout Stubs

This support is created through the following JPublisher key options:

■ -proxywsdl=url

Use this option to generate JAX-RPC static client proxies, given the WSDL
document at the specified URL. This option also generates additional wrapper
classes to expose instance methods as static methods, and generates PL/SQL
wrappers. In all, it executes the following steps:

1. Generates JAX-RPC client proxy classes.

2. Generates wrapper classes to publish instance methods as static methods.

3. Generates PL/SQL wrappers (call specs) for classes that must be accessible
from PL/SQL.

4. Loads generated code into the database.

Once generated, your database client can access the Web service through PL/SQL
using the call specs or through the JAX-RPC client proxy classes. The PL/SQL
wrappers use the static methods: your client would not normally access any Web
service through the static method directly.

■ -httpproxy=proxy_url

Where WSDL is accessed through a firewall, use this option to specify a proxy
URL to use in resolving the URL of the WSDL document.

■ -proxyclasses=class_list

For Web services, this option is used behind the scenes by the -proxywsdl option
and is set automatically, as appropriate. In addition, you can use this option
directly, for general purposes, any time you want to create PL/SQL wrappers for
Java classes with static methods, and optionally to produce wrapper classes to
expose instance methods as static methods.

The -proxyclasses option takes the -proxyopts setting as input.

■ -proxyopts=wrapper_specifications

This option specifies JPublisher behavior in generating wrapper classes and
PL/SQL wrappers—usually, but not necessarily, for Web services. For typical
usage of the -proxywsdl option, the -proxyopts default setting is sufficient. In
situations where you use the -proxyclasses option directly, you might want to
use special -proxyopts settings.

See the "Additional Features" chapter in the Oracle Database JPublisher User's Guide for
more information on how to use JPublisher.

Note: The -proxywsdl option uses the -proxyclasses option
behind the scenes for steps 2 and 3, and takes the-proxyopts
setting as input.

Using the Native Java Interface

Database Web Services 12-7

Adjusting the Mapping of SQL Types
Although Oracle Application Server does not currently support LOB types, XMLTYPE,
REF CURSORS, and OUT/IN OUT arguments (they will be addressed in future
releases), you can use an alternative approach to expose PL/SQL methods and SQL
types as Web services.

You can change JPublisher’s default behavior to generate code that uses a
user-provided subclass. For example, if you have a PL/SQL method that returns a REF
CURSOR, JPublisher automatically maps the return type to java.sql.ResultSet.
However, this ResultSet type cannot be published as a Web service. To solve this,
simply create a new method that can return the result set in a Web service-supported
format, such as:

public String [] readRefCursorArray(String arg1, Integer arg2)
{java.sql.ResultSet rs = getRefCursor(arg1,arg2);
... create a String[] from rs and return it... }

Then create an interface that contains the exact methods to publish. You can use
JPublisher to easily accomplish this mapping by using the following:

jpub -sql=MYAPP:MyAppBase:MyApp#MyAppInterf...

where:

■ MyApp contains the method to return the result set.

■ MyAppInterf is the interface that contains the method to publish.

After translating the code for your application, archive all the class files into a single
JAR file and use the Web Services Assembler to create a deployable Web service EAR
file. Refer to Oracle Database JPublisher User's Guide for more information.

Using the Native Java Interface
Oracle Database 10g introduces the native Java interface's new features for calls to
server-side Java code. This is a simplified application integration: client-side and
middle-tier Java applications can directly invoke Java in the database without defining
a PL/SQL wrapper. The native Java interface uses server-side Java class reflection.

In previous releases, calling Java stored procedures and functions from a database
client required JDBC calls to associated PL/SQL wrappers. Each wrapper had to be
manually published with a SQL signature and a Java implementation. This had the
following disadvantages:

■ The signatures permitted only Java types that had direct SQL equivalents.

■ Exceptions issued in Java were not properly returned.

The JPublisher -java option with the Java class or package remedies the deficiencies
of JDBC calls to associated PL/SQL wrappers by making convenient use of an API for
direct invocation of static Java methods. This functionality is also useful for Web
Services.

The functionality of the -java option is similar to that of the -sql option, creating a
client-side Java stub class to access a server-side Java class, as opposed to creating a
client-side Java class to access a server-side SQL object or PL/SQL package. The
client-side stub class uses JPublisher code that mirrors the server-side class and
includes the following features:

■ Methods that correspond to the public static methods of the server class

Using the Native Java Interface

12-8 Oracle Database Java Developer’s Guide

■ Two constructors: one that takes a JDBC connection, and one that takes the
JPublisher default connection context instance

At runtime, the stub class is instantiated with a JDBC connection. Calls to its methods
result in calls to the corresponding methods of the server-side class. Any Java types
used in these published methods must be primitive or serializable. For example,
assume you want to call the following method in the server:

public String oracle.sqlj.checker.JdbcVersion.to_string();

Use the following -java setting for the JdbcVersion Java class:

-java=oracle.sqlj.checker.JdbcVersion

When you use the -java option, you specify a single or multiple server-side Java class
or package. If you want to use multiple classes, provide them as a comma-delimited
list.

When you use the -java option, JPublisher generates code similar to the following
call:

Connection conn= ...
String serverSqljVersion = (String) Client.invoke (conn,
 "oracle.sqlj.checker.JdbcVersion", "to_string", new Class[] {});

The Class[] array is used for the method parameter types while the Object[]
array is used for parameter values. In this case, because to_string has no
parameters, both arrays are empty. This example demonstrates how a Java client
outside of the database can call Java methods loaded in the database server. For more
information, see Chapter 5, "Command Line Options and Import Files" in Oracle
Database JPublisher User's Guide.

Example: Calling Java Methods Inside the Oracle Database
In order to call a Java method published within the Oracle Database 10g, follow these
steps:

1. Create client stubs using the -java option of JPublisher.

jpub -u scott/tiger -java=oracle.sqlj.checker.JdbcVersion:CallinImpl#Callin

JPublisher generates a Java interface, Callin, and its implementation,
CallinImpl. The CallinImpl class contains a method for each method in
oracle.sqlj.checker.JdbcVersion.

2. Client invokes methods in the published Java class.

Connection conn=DriverManager.getConnection("jdbc:oracle:oci8", "scott",
"tiger");
Callin ci = new CallinImpl(conn);
System.out.println("JDBC version inside the server is " +
ci.getDriverMajorVersion());

The client code provides the following type of feedback: "JDBC version inside
the server is 10.0 (10.0.0.0.0)".

DBMS_JAVA Package A-1

A
DBMS_JAVA Package

This chapter provides a description of the DBMS_JAVA package. Use these entry
points to provide methods for accessing RDBMS functionality from Java.

FUNCTION longname (shortname VARCHAR2) RETURN VARCHAR2
Return the full name from a Java schema object. Because Java classes and methods can
have names exceeding the maximum SQL identifier length, OracleJVM uses
abbreviated names internally for SQL access. This function simply returns the original
Java name for any (potentially) truncated name. An example of this function is to print
the fully qualified name of classes that are invalid:

select dbms_java.longname (object_name) from user_objects
 where object_type = 'JAVA CLASS' and status = 'INVALID';

FUNCTION shortname (longname VARCHAR2) RETURN VARCHAR2
You can specify a full name to the database by using the shortname() routine of the
DBMS_JAVA package, which takes a full name as input and returns the corresponding
short name. This is useful when verifying that your classes loaded by querying the
USER_OBJECTS view.

Refer to "Database Sessions Imposed on Java Applications" on page 2-2 for examples
of these functions.

FUNCTION get_compiler_option(what VARCHAR2, optionName VARCHAR2)
PROCEDURE set_compiler_option(what VARCHAR2, optionName VARCHAR2,

value VARCHAR2)
PROCEDURE reset_compiler_option(what VARCHAR2, optionName VARCHAR2)
These three entry points control the options of the Oracle Database Java compiler
that Oracle Database delivers. See "Compiling Java Classes" on page 2-6 for an
example of these options.

FUNCTION resolver (name VARCHAR2, owner VARCHAR2, type VARCHAR2) RETURN VARCHAR2
This functions returns the resolver specification for a given object name in schema
owner where object is of type type. The caller must have EXECUTE privilege and
have access to the given object to use this call.

 The name parameter is the shortened name for the object. Refer to
dbms_java.shortname() for details.

The value of type is one of SOURCE or CLASS.

If there is an error then a null is returned. If the underlying object has changed then a
ObjectTypeChangedException may be signaled.

A-2 Oracle Database Java Developer’s Guide

To execute this function:

select dbms_java.resolver('tst', 'SCOTT', 'CLASS') from dual;

which would return:

DBMS_JAVA.RESOLVER('TST','SCOTT','CLASS')

((* SCOTT)(* PUBLIC))

FUNCTION derivedFrom (name VARCHAR2, owner VARCHAR2, type VARCHAR2) RETURN
VARCHAR2
This function returns the source name for object name in schema owner where object
is of type type. The caller must have EXECUTE privilege and have access to the given
object to use this call.

 The name parameter (as well as the returned source) is the shortened name for the
object. Refer to dbms_java.shortname() for details.

The value of type is of SOURCE or CLASS.

If there is an error then a null is returned. If the underlying object has changed then a
ObjectTypeChangedException may be signaled.

The returned value will be null if the object was not compiled in the ojvm.

To execute this function:

select dbms_java.derivedFrom('tst', 'SCOTT', 'CLASS') from dual;

which would return:

DBMS_JAVA.DERIVEDFROM('TST','SCOTT','CLASS')

tst

FUNCTION fixed_in_instance (name VARCHAR2, owner VARCHAR2, type VARCHAR2) RETURN
NUMBER
This function returns the permanently kept status for object name in schema owner
where the object is of type type. The caller must have EXECUTE privilege and have
access to the given object to use this call.

 The name parameter is the shortened name for the object. Refer to
dbms_java.shortname() for details.

The value of type is of RESOURCE, SOURCE, CLASS, or SHARED_DATA.

The return number is either 0 (not kept) or 1 (kept).

To execute this function:

select dbms_java.fixed_in_instance('tst', 'SCOTT', 'CLASS') from dual;

which would return:

DBMS_JAVA.FIXED_IN_INSTANCE('TST','SCOTT','CLASS')

0

or

select dbms_java.fixed_in_instance('java/lang/String', 'SYS', 'CLASS') from dual;

DBMS_JAVA Package A-3

which would return:

DBMS_JAVA.FIXED_IN_INSTANCE('JAVA/LANG/STRING','SYS','CLASS')

1

PROCEDURE set_output (buffersize NUMBER)
This procedure redirects the output of Java stored procedures and triggers to the
DBMS_OUTPUT package. See "Redirecting Output on the Server" on page 3-6 for an
example.

PROCEDURE start_debugging(host varchar2, port number, timeout number)
PROCEDURE stop_debugging
PROCEDURE restart_debugging(timeout number)
These entry points start and stop the debug agent when debugging. See "Debugging
Server Applications" on page 3-5 for a description and example of these options.

procedure export_source(name varchar2, schema varchar2, blob BLOB)
procedure export_source(name varchar2, blob BLOB)
procedure export_source(name varchar2, CLOB clob)

procedure export_class(name varchar2, schema varchar2, blob BLOB)
procedure export_class(name varchar2, blob BLOB)

procedure export_resource(name varchar2, schema varchar2, blob BLOB)
procedure export_resource(name varchar2, blob BLOB)
procedure export_resource(name varchar2, schema varchar2, clob CLOB)
procedure export_resource(name varchar2, clob CLOB)
These entry points export a Java source, class, or resource schema object into an Oracle
large object (LOB).

In all cases, name is the name of the Java schema object to be exported, schema is the
name of the schema owning the object (if not supplied, then the current schema is
used), and blob|clob is the large object that receives the specified Java schema object.

You cannot export a class into a CLOB, only into a BLOB. In addition, the internal
representation of the source uses the UTF8 format, so that format is used to store the
source in the BLOB as well.

PROCEDURE loadjava(options varchar2)
PROCEDURE loadjava(options varchar2, resolver varchar2)
PROCEDURE dropjava(options varchar2)
These procedures allow you to load and drop classes within the database using a call,
rather than through the loadjava or dropjava command-line tools. To execute
within your Java application, do the following:

call dbms_java.loadjava(’... options...’);
call dbms_java.dropjava(’... options...’);

The options are identical to those specified for the loadjava and dropjava
command-line tools. Each option should be separated by a blank. Do not separate the
options with a comma. The only exception to this is the loadjava -resolver
option, which contains blanks. For -resolver, specify all other options first, separate
these options by a comma, and then specify the -resolver options, as follows:

call dbms_java.loadjava(’... options...’, ’resolver_options’);

A-4 Oracle Database Java Developer’s Guide

Do not specify the following options, because they relate to the database connection
for the loadjava command-line tool: -thin, -oci, -user, -password. The
output is directed to System.err. The output typically goes to a trace file, but can be
redirected.

For more information on the available options, see Chapter 11, "Schema Object Tools"
for complete information on loadjava.

PROCEDURE grant_permission(grantee varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)
PROCEDURE restrict_permission(grantee varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)
PROCEDURE grant_policy_permission(grantee varchar2,
permission_schema varchar2,
permission_type varchar2,
permission_name varchar2)
PROCEDURE revoke_permission(permission_schema varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)
PROCEDURE disable_permission(key number)
PROCEDURE enable_permission(key number)
PROCEDURE delete_permission(key number)
These entry points control the JVM permissions. See "Setting Permissions" on page 9-4
for a description and example of these options.

procedure set_preference(user varchar2,type varchar2, abspath varchar2, key
varchar2, value varchar2)
This procedure inserts or updates a row in the SYS:java$prefs$ table as follows:

call dbms_java.set_preference('SCOTT','U','/my/package/method/three',
'windowsize','22:32');

 The following table identifies the valid values for each parameter in this procedure.

Parameter Description

user The schema name to which to attach the preference. If the login
schema is not SYS, then user must be the current login schema,
or the insert will fail.

type Select the type of preference:

■ U = user preference

■ S = System preference

abspath The absolute path for the preference.

key The key value to be used for the lookup or the value name

value The value of the preference key.

Glossary-1

Glossary

API

API stands for Application Programming Interface. As applied to Java, an API is a
well-defined set of classes and methods that furnish a specific set of functionality to
the Java programmer. JDBC are APIs for accessing SQL data.

Bytecodes

The set of single-byte, machine-independent instructions to which Java source code is
compiled using the Java compiler.

Call Memory

The memory that the memory manager uses to allocate new objects.

CLASSPATH

The environment variable (or command line argument) that the JDK or JRE uses to
specify the set of directory tree roots in which Java source, classes, and resources
are located.

Context Switch

In a uniprocessor system, the current thread is interrupted by a higher priority thread
or by some external event, and the system switches to a different thread. The choice of
which thread to dispatch is usually made on a priority basis or based on how long a
thread has been waiting.

Cooperative Multitasking

The programmer places calls to the Thread.yield() method in locations in the code
where it is appropriate to suspend execution so that other threads can run. This is
quite error-prone because it is often difficult to assess the concurrent behavior of a
program as it is being written.

Core Class Libraries

Generally, the Java packages delivered with the Sun Microsystems JDK, java.*. We
also use this term to denote some sun.* packages.

Deadlock

The conflict state where two or more synchronized Java objects depend on locking
each other, but cannot, because they themselves are locked by the dependent object.
For example, object A tries to lock object B while object B is trying to lock object A.
This situation is difficult to debug, because a preemptive Java virtual machine can
neither detect nor prevent deadlock. Without deadlock detection, a deadlocked
program simply hangs.

Glossary-2

Dispatch

The system saves the state of the currently executing thread, restores the state of the
thread to be executed, and branches to the stored program counter for the new thread,
effectively continuing the new thread as if it had not been interrupted.

Driver

As used with JDBC, a layer of code that determines the low-level libraries employed to
access SQL data and/or communicate across a network. The three JDBC drivers
supported in OracleJVM are: Thin, OCI, and KPRB.

End-of-Call

Within your session, you may invoke Java many times. Each time you do this,
end-of-call occurs at the point at which Java code execution completes. The memory
manager migrates static variables to session space at end-of-call.

Garbage Collection

The popular name for the automatic storage reclamation facility provided by the Java
virtual machine.

IDE

Integrated Development Environment. A Java IDE runs on a client workstation,
providing a graphical user interface for access to the Java class library and
development tools.

Java Schema Object

The term that Oracle Database uses to denote either Java source, binary, or resources
when stored in the database. These three Java schema objects correspond to files under
the JDK— .java, .class, or other files (such as .properties files) used in the JDK
CLASSPATH.

JCK

Java Compatibility Kit. The set of Java classes that test a Java virtual machine and Java
compiler’s compliance with the Java standard. JCK releases correspond to the Sun
Microsystems JDK releases, although in the case of Oracle Database, only the Java
classes and not the virtual machine, are identical to the Sun Microsystems JDK.

JDBC

Java Database Connectivity. The standard Java classes that provide
vendor-independent access to databases.

JDBC Driver

The vendor-specific layer of JDBC that provides access to a particular database. Oracle
provides three JDBC drivers—Thin, OCI, and KPRB.

JDK

Java Development Kit. The Java virtual machine, together with the set of Java classes
and tools that Sun Microsystems furnishes to support Java application and applet
development. The JDK includes a Java compiler; the JRE does not.

JLS

Java Language Specification. This specification defines the syntax and semantics of the
Java language.

Glossary-3

JRE

Java Runtime Environment. The set of Java classes supporting a Java application or
applet at runtime. The JRE classes are a subset of the JDK classes.

Lazy Initialization

A technique for initializing data, typically used in accessor methods. The technique
checks to see if a field has been initialized (is non-null) before returning the initialized
object to it. The overhead associated with the check is often small, especially in
comparison to initializing a data structure that may never be accessed. You can employ
this technique in conjunction with end-of-call processing to minimize session space
overhead.

Object Graph

An object is said to reference the objects held in its fields. This collection of objects
forms an object graph. The memory manager actually migrates the object graphs held
in static variables; that is, it migrates not only the objects held in static fields, but the
objects that those objects reference, and so on.

OracleJVM

Oracle’s scalable Java server platform, composed of the Java virtual machine running
within the Oracle Database server, the Java runtime environment and Oracle
extensions.

Preemptive Multitasking

The operating system preempts, or takes control away from a thread, under certain
conditions, such as when another thread of higher priority is ready to run, or when an
external interrupt occurs, or when the current thread waits on an I/O operation, such
as a socket accept or a file read. Some Java virtual machines implement a type of
round-robin preemption by preempting the current thread on certain virtual machine
instructions, such as backward branches, method calls, or other changes in control
flow. For a Java virtual machine that maps Java threads to actual operating system
threads, the preemption takes place in the operating system kernel, outside the control
of the virtual machine. Although this yields decent parallelism, it complicates garbage
collection and other virtual machine activities.

Process

An address space and one or more threads.

Session Memory

The memory that the memory manager uses to hold objects that survive past the
end-of-call—those objects reachable from Java static variables within your session.

Strong Typing

In Java, the requirement that the class of each field and variable, and the return type of
each method be explicitly declared.

Symmetric Multiprocessing (SMP)

The hardware has multiple processors, and the operating system maps threads to
different processors, depending on their load and availability. This assumes that the
Java virtual machine maps OS threads to Java threads. This mechanism provides true
concurrency among the threads, but can lead to subtle programming errors and
deadlock conflicts on synchronized objects.

Glossary-4

System

Often used in discussion as the combination of the hardware, the operating system,
and the Java virtual machine.

Thread

An execution context consisting of a set of registers, a program counter, and a stack.

Virtual Machine

A program that emulates the functionality of a traditional processor. A Java virtual
machine must conform to the requirements of the Java Virtual Machine Specification.

Index-1

Index

A
Accelerator

deploync tool, 10-10
for user applications, 10-3
installation requirements, 10-3
ncomp tool, 10-5
overview, 10-1, 10-2
statusnc tool, 10-11

act method, 2-28
ALREADY_NCOMPED status, 10-12
application

compiling, 2-6
developing, 8-1
development, 2-2
executing in a session, 2-2
execution control, 2-4
execution rights, 2-15
invoking, 3-2, 3-6
threading, 2-26

attributes, 5-2, 6-11
declaring, 6-11
definition, 1-5
types of, 1-6

authentication, 9-1
AUTHID clause, 6-6, 6-9, 6-11

B
BasicPermission, 9-10
body

package, 6-9
SQL object type, 6-11

bytecode
defined, 1-9
definition, 1-18
verification, 2-11

C
call

definition, 2-2
managing resources across calls, 2-31
static fields, 2-3

call specification, 3-3
call specifications--see call specs

call specs, 5-1
basic requirements for defining, 6-2
definition, 5-8
example, 5-8
understanding, 6-1
writing object type, 6-11
writing packaged, 6-9
writing top-level, 6-6

Callback class
act method, 2-28

class
attributes, 1-5, 1-6
definition, 1-5
dynamic loading, 1-15
execution, 2-2
hierarchy, 1-6
inheritance, 1-6, 1-8
loader, 1-18
loading, 2-2, 2-4, 2-12, 3-1
marking valid, 2-10
methods, 1-5, 1-6
name, 2-19
protected, 9-18
publish, 2-2, 2-18, 3-1
resolving references, 2-10, 3-1
schema object, 2-5, 2-10, 2-13

.class files, 2-5, 2-13
Class interface

forName method, 2-20
class schema object, 11-1, 11-2
ClassForName class

lookupClass method, 2-22
classForNameAndSchema method, 2-21
ClassNotFoundException, 2-20
CLASSPATH, 2-5, 2-20
client

setup, 4-2
code

native compilation, 10-1, 12-1
CodeSource class, 9-4

equals method, 9-4
implies method, 9-4

compiling, 1-18, 2-6
error messages, 2-7, 11-4
options, 2-7, 11-4
runtime, 2-7

Index-2

configuration, 4-1
JVM, 4-1
performance, 10-13

connection
security, 9-1

constructor methods, 6-12
contexts, stored procedure run-time, 5-1
CREATE JAVA statement, 5-5

D
data confidentiality, 9-1
database

configuration, 4-2
privileges, 9-2
schema plan, 8-3
triggers, 5-2, 7-4

database triggers
calling Java from, 7-4

datatypes
mapping, 6-3

DBA_JAVA_POLICY view, 9-4, 9-13, 9-14
DBMS_JAVA package, 4-2, 7-1

defined, 9-4
delete_permission method, 9-13, A-4
disable_permission method, 9-13, A-4
dropjava method, A-3
enable_permission method, 9-13, A-4
get_compiler_option method, A-1
grant_permission method, 9-6, 9-7, A-4
grant_policy_permission method, 9-9, 9-14, A-4
loadjava method, A-3
longname method, 2-17, 2-19, 4-2
modifying permissions, 9-14
modifying PolicyTable permissions, 9-7, 9-9
reset_compiler_option method, A-1
restart_debugging method, A-3
restrict_permission method, 9-7, A-4
revoke_permission method, 9-13, A-4
set_compiler_option method, A-1
set_output method, 3-6, A-3
setting permissions, 9-4
shortname method, 2-17, 2-19, 4-2
start_debugging method, A-4
stop_debugging method, A-4

DBMS_OUTPUT package, A-3
DbmsJava class, see DBMS_JAVA package
DbmsObjectInputStream class, 2-22
DbmsObjectOutputStream class, 2-22
deadlock, 2-26
DeadlockError exception, 2-26
debug

compiler option, 2-8, 11-4
stored procedures, 5-7

debugging, 9-18, A-3
Java applications, 3-5
necessary permissions, 9-18

definer rights, 2-15
delete method, 9-13
delete_permission method, 9-13, A-4

deploync tool, 10-10
DETERMINISTIC hint, 6-6
digest table, 11-3
disable method, 9-13
disable_permission method, 9-13, A-4
dropjava

method, A-3
tool, 2-13

dropjava tool, 11-16

E
ease of use, 5-3
enable method, 9-13
enable_permission method, 9-13, A-4
encoding

compiler option, 2-8, 11-4
end-of-call migration, 2-27
EndOfCallRegistry class, 2-27

registerCallback method, 2-28
endSession method, 2-26
entity-relationship (E-R) diagram, drawing an, 8-1
equals method, 9-4
errors

compilation, 2-7
exception

ClassNotFoundException, 2-20
DeadlockError, 2-26
IOException, 2-31
LimboError, 2-26
ThreadDeathException, 2-27

exceptions, how handled, 7-9
execution rights, 2-15
exit command, 11-22
exitCall method, 2-26

F
file names

dropjava, 11-18
loadjava, 11-12

FilePermission, 9-6, 9-14, 9-15, 9-17, 10-4
files, 2-24

across calls, 2-25
lifetime, 2-31

finalizers, 2-25
footprint, 1-13, 2-3
foreign key, 8-4
forName method, 2-20
full name, Java, 2-6
functions, 5-2

G
garbage collection, 1-12, 1-13, 2-4

managing resources, 2-23
misuse, 2-24
purpose, 2-24

get_compiler_option method, 2-8, 11-4, A-1
getCallerClass method, 2-21
getClassLoader method, 2-21

Index-3

getProperty method, 3-6
grant method, 9-6
grant_permission method, 9-6, 9-7, A-4
grant_policy_permission method, 9-9, 9-14, A-4
granting permission, 9-4
grantPolicyPermission method, 9-9
Graphical User Interface--see GUI
GUI, 1-16, 2-18

H
help command, 11-23

I
IDE (integrated development environment), 1-16
implies method, 9-4
inheritance, 1-6, 1-8
installation, 4-1
integrity, 9-1
interfaces

defined, 1-8
user, 2-18

interoperability, 5-4
interpreter, 1-18
INVALID status, 10-12
invoker rights, 2-15

advantages, 2-16
IOException, 2-31

J
Java

applications, 2-1, 2-6
loading, 2-12

attributes, 1-5
calling from database triggers, 7-4
calling from PL/SQL, 7-8
calling from SQL DML, 7-6
calling from the top level, 7-1
calling restrictions, 7-7
class, 1-5
client

setup, 4-2
compiling, 2-6
development environment, 2-5
differences from Sun JDK, 2-2
documentation, 1-1
execution control, 2-4
execution rights, 2-15
features, 1-10
full name, 2-6
in the database, 1-1, 1-11, 2-1, 2-2
interpreter, 2-2
introduction, 0-xiii
invoking, 2-2, 3-2
loading classes, 2-4, 3-1

checking results, 2-16
methods, 1-5
natively compiling, 10-1
Oracle database execution, 5-1

overview, 1-1, 1-5
permissions, A-4
polymorphism, 1-8
programming models, 0-xv
publishing, 2-5
resolving classes, 2-10
resources, 1-5
short name, 2-6
stored procedures, see Java stored procedures

Java 2
migrating from JDK 1.1, 1-2
security, 9-2

java command, 11-23
Java Compatibility Kit, see JCK
.java files, 2-5, 2-13
java interpreter, 2-2, 2-4
Java language specification, see JLS
Java Native Interface, see JNI
Java stored procedures, 0-xv, 2-4

calling, 7-1
configuring, 5-5
defined, 1-19, 3-2, 5-5
developing, 8-1
introduction to, 5-1
invoking, 3-1
loading, 2-1, 5-5
publishing, 2-18, 6-1

Java virtual machine, see JVM
JAVA$OPTIONS table, 2-7, 11-4
JAVA_ADMIN role

assigned permissions, 9-15
example, 9-10
granting permission, 9-2, 9-4, 9-8, 9-14

JAVA_DEPLOY role, 10-4
JAVA_MAX_SESSIONSPACE_SIZE

parameter, 10-14
JAVA_POOL_SIZE parameter

default, 4-2
defined, 10-13, 10-15

JAVA_SOFT_SESSIONSPACE_LIMIT
parameter, 10-14

JAVADEBUGPRIV role, 9-17, 9-18
JAVASYSPRIV role, 9-2, 9-17
JAVAUSERPRIV role, 9-2, 9-17
JCK, 1-10
JDBC

accessing SQL, 1-19
defined, 1-19, 3-1, 3-4
driver types, 1-20, 3-4
example, 3-4
security, 9-1

JDBC driver--see server-side JDBC driver
JDeveloper

development environment, 1-20, 4-3
JLS

specification, 1-10
JNI support, 3-4
JServerPermission, 9-6, 9-14, 9-15, 9-16, 9-17

defined, 9-15
JVM

Index-4

bytecodes, 1-9
configure, 4-1
defined, 1-5, 1-9
garbage collection, 1-12, 1-13
install, 4-1
multithreading, 1-12
responsibilities, 2-3
security, A-4
specification, 1-10

K
key

foreign, 8-4
primary, 8-4

L
library manager, 1-17
LimboError exception, 2-26
loader, class, 1-18
loading, 2-12

checking results, 2-14, 2-16
class, 1-15, 2-4, 2-6
compilation option, 2-7
granting execution, 2-15
JAR or ZIP files, 2-14
necessary privileges and permissions, 2-14
reloading classes, 2-15
restrictions, 2-14

loadjava method, A-3
loadjava tool, 2-13 to 2-14, 11-5 to 11-16

compiling source, 2-7, 10-17
example, 3-3, 5-8
execution rights, 2-15, 9-2
loading class, 2-12
loading ZIP or JAR files, 2-14
restrictions, 2-14
using memory, 10-13

logging, 2-7
longname method, 2-17, 2-19, 4-2
lookupClass method, 2-22

M
main method, 1-16, 2-4
maintainability, 5-4
manager

library, 1-17
map methods, 6-12
memory

across calls, 2-24
call, 2-4
java pool, 10-16
leaks, 2-24
lifetime, 2-24, 2-31
manager, 2-5
performance configuration, 10-13
session, 2-4, 2-28

methods, 1-5, 1-6, 5-2, 6-11
constructor, 6-12

declaring, 6-12
map and order, 6-12
object-relational, 5-2

modes, parameter, 6-2
multithreading, 1-12

N
NAME clause, 6-6
namespace, 11-19
native compilation, 1-14, 10-1, 12-1

Accelerator, 10-2
classes loaded in database, 10-9
classes not loaded in database, 10-9
compile subset, 10-10
deploync tool, 10-10
designating build directory, 10-9
errors, 10-8
execution time, 10-5
force recompile, 10-9
ncomp tool, 10-5
scenarios, 10-8
statusnc tool, 10-11

ncomp tool, 10-3, 10-5
executing, 10-4
security, 10-4

NEED_NCOMPING status, 10-12
NEED_NCOMPING status message, 10-8
NetPermission, 9-6, 9-14, 9-15, 9-16

O
object

full to short name conversion, 2-17
lifetime, 2-31
schema, 2-5
serialization, 2-22
short name, 2-17
SQL type, 5-2
table, 6-13
type

call specs, writing, 6-11
ObjectInputStream class, 2-22
ObjectOutputStream class, 2-22
object-relational methods, 5-2
ojvmjava tool, 11-19 to 11-22
online

compiler option, 2-8
operating system

resources, 2-23, 2-24
across calls, 2-31
lifetime, 2-24
performance, 10-13

Oracle Net Services Connection Manager, 1-12
OracleRuntime class

exitCall method, 2-26
getCallerClass method, 2-21
getClassLoader method, 2-21

order methods, 6-12
output

Index-5

redirecting, 3-6
output, redirecting, 7-1

P
package DBMS_JAVA, 7-1
packaged call specs, writing, 6-9
packages

DBMS_JAVA, 4-2
protected, 9-18

PARALLEL_ENABLE option, 6-6
parameter modes, 6-2
performance, 1-14, 5-3, 10-1 to 10-17
Permission class, 9-5, 9-9, 9-10, 9-14
permissions, 9-2 to 9-18, A-4

administrating, 9-9
assigning, 9-3, 9-4
creating, 9-10
deleting, 9-13
disabling, 9-13
enabling, 9-13
FilePermission, 10-4
granting, 9-4, 9-6, 9-7
granting policy, 9-9
grouped into roles, 9-17
JAVA_ADMIN role, 9-15
JAVA_DEPLOY role, 10-4
JAVADEBUGPRIV role, 9-17
JAVASYSPRIV role, 9-17
JAVAUSERPRIV role, 9-17
PUBLIC, 9-16
restricting, 9-4, 9-7
specifying policy, 9-3
SYS permissions, 9-16
types, 9-5, 9-14

PL/SQL
calling Java from, 7-8
packages, 6-9

policy table
managing, 9-9
modifying, 9-4
setting permissions, 9-4
viewing, 9-4

PolicyTable class
specifying policy, 9-3
updating, 9-3, 9-10

PolicyTableManager class
delete method, 9-13
disable method, 9-13
enable method, 9-13
revoke method, 9-13

PolicyTablePermission, 9-6, 9-9, 9-14, 9-15, 9-16
polymorphism, 1-8
primary key, 8-4
privileges

database, 9-2
procedures, 5-2

advantages of stored, 5-3
productivity, 5-3
.properties files, 2-5, 2-13

PropertyPermission, 9-5, 9-14, 9-15, 9-16, 9-18
PUBLIC permissions, 9-16
publishing, 2-5, 2-6, 2-18, 3-1

example, 3-3, 5-8
purity rules, 7-7

R
redirecting output, 7-1
ref, 6-13
ReflectPermission, 9-6, 9-14, 9-15, 9-16
registerCallback method, 2-28
replication, 5-4
reset_compiler_option method, 2-8, 11-4, A-1
resolver, 2-10 to 2-12, 11-2

default, 2-10
defined, 2-5, 2-6, 2-10, 2-20, 3-1
example, 3-3, 5-7
ignoring non-existent references, 2-10, 2-12

resource schema object, 2-5, 2-13, 11-1
restart_debugging method, A-4
restrict method, 9-7
restrict_permission method, 9-7, A-4
revoke method, 9-13
revoke_permission method, 9-13, A-4
row trigger, 7-4
rules, purity, 7-7
run-time contexts, stored procedure, 5-1
RuntimePermission, 9-6, 9-14, 9-15, 9-16, 9-17

S
scalability, 5-3
schema object, 11-1

defined, 2-12
name, 2-19
names, maximum length, 2-6
using, 2-5

security, 5-4, 9-1 to 9-19
book recommendations, 9-3
Java 2, 9-2
JDBC, 9-1
JVM, A-4
network, 9-1

SecurityManager class, 9-3
SecurityPermission, 9-6, 9-14, 9-15, 9-16
.ser files, 2-5, 2-13
SerializablePermission, 9-6, 9-14, 9-15, 9-17
serialization, 2-22
server-side JDBC driver, 1-18

using, 6-4
ServerSocket class, 2-33
sess_sh

commands in a script file, 11-21
redirecting output, 11-21

session
coordination with JVM, 2-3
definition, 2-2
footprint, 1-13
namespace, 11-19

Index-6

role in Java execution, 2-2
set_compiler_option method, 2-8, 11-4, A-1
set_output method, 3-6, A-3
shared server, 5-3
SHARED_POOL_SIZE parameter

default, 4-2
defined, 10-13

short name, Java, 2-6
shortname method, 2-17, 2-19, 4-2
side effects

controlling, 7-7
Socket class, 2-33
SocketPermission, 9-6, 9-14, 9-15, 9-17
sockets

across calls, 2-24, 2-33
defined, 2-33
lifetime, 2-31, 2-33

source schema object, 2-5, 2-13, 11-1, 11-4
spec

package, 6-9
SQL object type, 6-11

SQL
DML, calling Java from, 7-6
object type, 5-2, 6-11
query, 3-1, 3-4

SQLJ
accessing SQL, 1-19
defined, 1-19, 3-1, 3-4

.sqlj files, 2-5, 2-13
start_debugging method, A-4
statement trigger, 7-4
static variable, 2-4

end of call migration, 2-27
statusnc tool, 10-11
stop_debugging method, A-4
stored procedures

advantages of, 5-3
calling, 7-1
developing, 5-5, 8-1
introduction to, 5-1
loading, 2-1, 5-5
publishing, 6-1

SYS
assigned permissions, 9-16
security permissions, 9-14

System class
getProperty method, 3-6

T
ThreadDeathException, 2-27
threading, 2-24

applications, 2-26
lifecycle, 2-26
model, 1-12, 2-25

top-level call specs, writing, 6-6
trigger

database, 5-2, 7-4
row, 7-4
statement, 7-4

using Java stored procedures, 3-2, 5-5

U
user interface, 2-18
USER_ERRORS view, 2-7
USER_JAVA_POLICY view, 9-4, 9-14
USER_OBJECTS view, 2-14, 2-16, A-1

V
V$SGASTAT table, 10-16
variables

static, 2-4
verifier, 1-18
version

retrieving, 3-6

W
Web services

support for call-ins to database, 12-3

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Java API Programming Models
	Suggested Reading
	Online Sources

	1 Introduction to Java in Oracle Database
	Chapter Contents
	What’s New in this Release?
	Upgrading to J2SE 1.4.1
	New Memory Model for Dedicated Mode Sessions
	Database Web Services Callouts
	Native Java Interface
	EJB Call-out

	Overview of Java
	Java and Object-Oriented Programming Terminology
	Classes
	Attributes
	Methods

	Class Hierarchy
	Interfaces
	Polymorphism
	The Java Virtual Machine (JVM)
	Key Features of the Java Language

	Why Use Java in Oracle Database?
	Java and the RDBMS: A Robust Combination
	Multithreading
	Automated Storage Management With Garbage Collection
	Footprint
	Performance
	How Native Compilers Improve Performance

	Dynamic Class Loading

	What is Different With OracleJVM?
	Method main()
	The GUI
	The IDE

	Main Components of the OracleJVM
	Library Manager
	Compiler
	Interpreter
	Class Loader
	Verifier
	Server-Side JDBC Internal Driver

	Oracle’s Java Application Strategy
	Java Programming Environment
	Java Stored Procedures
	PL/SQL Integration and Oracle RDBMS Functionality
	JDBC Drivers
	JPublisher

	Development Tools

	Desupport of J2EE Technologies in the Oracle Database

	2 Java Applications on Oracle Database
	Overview
	Database Sessions Imposed on Java Applications
	Java Supported APIs

	Execution Control
	Java Code, Binaries, and Resources Storage
	Java Classes Loaded in the Database

	Preparing Java Class Methods for Execution
	Compiling Java Classes
	Compiling Source Through javac
	Compiling Source Through loadjava
	Compiling Source at Runtime
	Specifying Compiler Options
	Default Compiler Options
	Compiler Options on the Command Line
	Compiler Options Specified in a Database Table

	Automatic Recompilation

	Resolving Class Dependencies
	Allowing References to Non-Existent Classes
	ByteCode Verifier

	Loading Classes
	Defining the Same Class Twice
	Designating Database Privileges and JVM Permissions
	Loading JAR or ZIP Files

	How to Grant Execute Rights
	Controlling the Current User
	Checking Java Uploads
	Object Name and Type
	Status
	Example: Accessing USER_OBJECTS

	Publishing

	User Interfaces on the Server
	Shortened Class Names
	Class.forName() in Oracle Database
	Supply the ClassLoader in Class.forName
	Supply Class and Schema Names to classForNameAndSchema
	Supply Class and Schema Names to lookupClass
	Supply Class and Schema Names when Serializing
	Class.forName Example

	Managing Your Operating System Resources
	Overview of Operating System Resources
	Operating System Resource Access
	Operating System Resource Lifetime

	Garbage Collection and Operating System Resources

	Threading in Oracle Database
	Thread Life Cycle

	Special Considerations for Shared Servers
	End-of-Call Migration
	Oracle-Specific Support for End-of-Call Optimization

	Operating System Resources Affected Across Calls
	Files
	Sockets
	Threads

	3 Invoking Java in the Database
	Overview
	Invoking Java Methods
	Utilizing Java Stored Procedures
	Utilizing Java Native Interface (JNI) Support
	Utilizing JDBC for Querying the Database
	JDBC

	An Example

	Debugging Server Applications
	How To Tell You Are Executing in the Server
	Redirecting Output on the Server
	Support for Calling Java Stored Procedures Directly

	4 Java Installation and Configuration
	Initializing a Java-Enabled Database
	Oracle Database Template Configuration and Install
	Modifying an Existing Oracle Database to Include OracleJVM

	Configuring OracleJVM
	Using The DBMS_JAVA Package
	Enabling the Java Client
	1. Install J2SE on the Client
	2. Set up Environment Variables
	JAR Files Necessary for Java 2 Clients
	Server Application Development on the Client

	3. Test Install with Samples

	5 Developing Java Stored Procedures
	Stored Procedures and Run-Time Contexts
	Functions and Procedures
	Database Triggers
	Object-Relational Methods

	Advantages of Stored Procedures
	Performance
	Productivity and Ease of Use
	Scalability
	Maintainability
	Interoperability
	Replication
	Security

	Java Stored Procedure Configuration
	Java Stored Procedures Steps

	6 Publishing Java Classes With Call Specs
	Understanding Call Specs
	Defining Call Specs: Basic Requirements
	Setting Parameter Modes
	Mapping Datatypes
	Using the Server-Side Internal JDBC Driver
	Important Points

	Writing Top-Level Call Specs
	Writing Packaged Call Specs
	Writing Object Type Call Specs
	Declaring Attributes
	Declaring Methods
	Map and Order Methods
	Constructor Methods
	Using Class oracle.sql.STRUCT
	Implementing the SQLData Interface
	Implementing Object Type Methods

	7 Calling Stored Procedures
	Calling Java from the Top Level
	Redirecting Output

	Calling Java from Database Triggers
	Calling Java from SQL DML
	Restrictions

	Calling Java from PL/SQL
	Calling PL/SQL from Java
	How OracleJVM Handles Exceptions

	8 Java Stored Procedures Application Example
	Drawing the Entity-Relationship Diagram
	Planning the Database Schema
	Creating the Database Tables
	Writing the Java Classes
	Loading the Java Classes
	Publishing the Java Classes
	Calling the Java Stored Procedures

	9 Security For Oracle Database Java Applications
	Network Connection Security
	Database Contents and OracleJVM Security
	Java 2 Security
	Setting Permissions
	Fine-Grain Definition for Each Permission
	Acquiring Administrative Permission to Update Policy Table
	Creating Permissions
	1. Create and load the user Permission
	2. Grant administrative and action Permissions to specified users
	3. Implement security checks using the Permission

	Enabling or Disabling Permissions
	Permission Types
	oracle.aurora.rdbms.security.PolicyTablePermission
	oracle.aurora.security.JServerPermission

	Initial Permission Grants
	General Permission Definition Assigned to Roles

	Debugging Permissions
	Permission for Loading Classes

	Database Authentication Mechanisms

	10 Oracle Database Java Application Performance
	Natively Compiled Code
	Accelerator Overview
	Oracle Database Core Java Class Libraries
	Natively Compiling Java Application Class Libraries
	Installation Requirements

	Executing Accelerator
	ncomp
	Syntax
	Argument Summary
	Argument Details
	Errors

	Native Compilation Usage Scenarios
	Natively Compiling on Test Platform-Java Classes Already Loaded in the Database
	Natively Compiling Java Classes Not Loaded in the Database
	Clean Compile and Generate Output for Future Deployment
	Controlling Native Compilation Build Environment
	Natively Compiling Specific Classes
	Natively Compiling Packages That Are Fully or Partially Modified

	deploync
	Syntax
	Argument Summary

	statusnc
	Syntax
	Argument Summary

	Java Memory Usage
	Configuring Memory Initialization Parameters
	Initializing Pool Sizes within Database Templates

	Java Pool Memory
	Displaying Used Amounts of Java Pool Memory
	Correcting Out of Memory Errors

	11 Schema Object Tools
	Schema Object Tool Overview
	What and When to Load
	Resolution
	Digest Table
	Compilation
	loadjava
	Syntax
	Argument Summary
	Argument Details

	dropjava
	Syntax
	Argument Summary
	Argument Details
	Dropping Resources

	ojvmjava
	Syntax
	Argument Summary
	Example

	ojvmjava Options
	ojvmjava Tool Output Redirection
	Scripting ojvmjava Commands in the @<filename> Option

	Shell Commands
	echo
	exit Command
	Syntax

	help Command
	Syntax

	java Command
	Syntax
	Argument Summary

	version Command
	Syntax

	whoami

	12 Database Web Services
	Database Web Services
	Using the Database as Service Provider for Web Services
	JPublisher Support for Web Services Call-Ins to the Database

	Using the Database as Service Consumer for Web Services
	Installation Requirements
	JPublisher Generation Overview
	Adjusting the Mapping of SQL Types

	Using the Native Java Interface

	A DBMS_JAVA Package
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

