
Oracle® Data Mining
Application Developer’s Guide

10g Release 1 (10.1)

Part No. B10699-01

December 2003

Oracle Data Mining Application Developer’s Guide, 10g Release 1 (10.1).

Part No. B10699-01

Copyright © 2003 Oracle. All rights reserved.

Primary Authors: Gina Abeles, Ramkumar Krishnan, Mark Hornick, Denis Mukhin, George Tang,
Shiby Thomas, Sunil Venkayala.

Contributors: Marcos Campos, James McEvoy, Boriana Milenova, Margaret Taft, Joseph Yarmus.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and PL/SQL and SQL*Plus are trademarks or registered trademarks of
Oracle Corporation. Other names may be trademarks of their respective owners.

 iii

Contents

Send Us Your Comments ... ix

Preface.. xi

Intended Audience .. xi
Structure.. xi
Where to Find More Information ... xii
Conventions... xiii
Documentation Accessibility ... xiv

1 Introduction

1.1 ODM Requirements and Constraints ... 1-2

2 ODM Java Programming

2.1 Compiling and Executing ODM Programs ... 2-1
2.2 Using ODM to Perform Mining Tasks ... 2-1
2.2.1 Prepare Input Data... 2-2
2.2.2 Build a Model... 2-4
2.2.3 Find and Use the Most Important Attributes... 2-4
2.2.4 Test the Model .. 2-5
2.2.5 Compute Lift... 2-6
2.2.6 Apply the Model to New Data... 2-6

iv

3 ODM Java API Basic Usage

3.1 Connecting to the Data Mining Server... 3-1
3.2 Describing the Mining Data ... 3-2
3.2.1 Creating LocationAccessData... 3-2
3.2.2 Creating NonTransactionalDataSpecification.. 3-2
3.2.3 Creating TransactionalDataSpecification.. 3-2
3.3 MiningFunctionSettings Object ... 3-3
3.3.1 Creating Algorithm Settings... 3-4
3.3.2 Creating Classification Function Settings ... 3-4
3.3.3 Validate and Store Mining Function Settings ... 3-5
3.4 MiningTask Object .. 3-5
3.5 Build a Mining Model ... 3-6
3.6 MiningModel Object ... 3-7
3.7 Testing a Model.. 3-7
3.7.1 Describe the Test Dataset .. 3-7
3.7.2 Test the Model .. 3-8
3.7.3 Get the Test Results.. 3-8
3.8 Lift Computation ... 3-9
3.8.1 Specify Positive Target Value ... 3-9
3.8.2 Compute Lift ... 3-9
3.8.3 Get the Lift Results ... 3-10
3.9 Scoring Data Using a Model .. 3-10
3.9.1 Describing Apply Input and Output Datasets... 3-10
3.9.2 Specify the Format of the Apply Output .. 3-11
3.9.3 Apply the Model... 3-11
3.9.4 Real-Time Scoring .. 3-12
3.10 Use of CostMatrix .. 3-12
3.11 Use of PriorProbabilities... 3-13
3.12 Data Preparation.. 3-14
3.12.1 Automated Binning and Normalization ... 3-14
3.12.2 External Binning ... 3-14
3.12.3 Embedded Binning... 3-16
3.13 Text Mining .. 3-16
3.14 Summary of Java Sample Programs ... 3-17

v

4 DBMS_DATA_MINING

4.1 Development Methodology... 4-2
4.2 Mining Models, Function, and Algorithm Settings.. 4-3
4.2.1 Mining Model ... 4-3
4.2.2 Mining Function ... 4-3
4.2.3 Mining Algorithm .. 4-3
4.2.4 Settings Table.. 4-4
4.2.4.1 Prior Probabilities Table... 4-10
4.2.4.2 Cost Matrix Table.. 4-11
4.3 Mining Operations and Results... 4-12
4.3.1 Build Results ... 4-12
4.3.2 Apply Results.. 4-13
4.3.3 Test Results for Classification Models .. 4-13
4.3.4 Test Results for Regression Models... 4-13
4.3.4.1 Root Mean Square Error .. 4-13
4.3.4.2 Mean Absolute Error .. 4-13
4.4 Mining Data ... 4-14
4.4.1 Wide Data Support .. 4-14
4.4.1.1 Clinical Data — Dimension Table .. 4-16
4.4.1.2 Gene Expression Data — Fact Table .. 4-16
4.4.2 Attribute Types... 4-17
4.4.3 Target Attribute.. 4-17
4.4.4 Data Transformations.. 4-17
4.5 Performance Considerations ... 4-18
4.6 Rules and Limitations for DBMS_DATA_MINING .. 4-18
4.7 Summary of Data Types, Constants, Exceptions, and User Views.............................. 4-19
4.8 Summary of DBMS_DATA_MINING Subprograms... 4-26
4.9 Model Export and Import .. 4-27
4.9.1 Limitations .. 4-28
4.9.2 Prerequisites.. 4-28
4.9.3 Choose the Right Utility.. 4-29
4.9.4 Temp Tables .. 4-29

vi

5 ODM PL/SQL Sample Programs

5.1 Overview of ODM PL/SQL Sample Programs... 5-1
5.2 Summary of ODM PL/SQL Sample Programs... 5-3

6 Sequence Matching and Annotation (BLAST)

6.1 NCBI BLAST... 6-1
6.2 Using ODM BLAST... 6-2
6.2.1 Using BLASTN_MATCH to Search DNA Sequences ... 6-2
6.2.1.1 Searching for Good Matches in DNA Sequences ... 6-3
6.2.1.2 Searching DNA Sequences Published After a Certain Date 6-3
6.2.2 Using BLASTP_MATCH to Search Protein Sequences .. 6-4
6.2.2.1 Searching for Good Matches in Protein Sequences.. 6-4
6.2.3 Using BLASTN_ALIGN to Search and Align DNA Sequences 6-5
6.2.3.1 Searching and Aligning for Good Matches in DNA Sequences....................... 6-5
6.2.4 Output of the Table Function ... 6-6
6.2.5 Sample Data for BLAST... 6-8

Summary of BLAST Table Functions ... 6-13

BLASTN_MATCH Table Function .. 6-14

BLASTP_MATCH Table Function... 6-17

TBLAST_MATCH Table Function... 6-20

BLASTN_ALIGN Table Function .. 6-23

BLASTP_ALIGN Table Function ... 6-27

TBLAST_ALIGN Table Function ... 6-30

7 Text Mining

A Binning

A.1 Use of Automated Binning... A-3

B ODM Tips and Techniques

B.1 Clustering Models ... B-1
B.1.1 Attributes for Clustering ... B-1
B.1.2 Binning Data for k-Means Models ... B-1

vii

B.1.3 Binning Data for O-Cluster Models... B-2
B.2 SVM Models ... B-2
B.2.1 Build Quality and Performance ... B-2
B.2.2 Data Preparation .. B-2
B.2.3 Numeric Predictor Handling.. B-3
B.2.4 Categorical Predictor Handling ... B-3
B.2.5 Regression Target Handling... B-4
B.2.6 SVM Algorithm Settings ... B-4
B.2.7 Complexity Factor (C) ... B-4
B.2.8 Epsilon — Regression Only .. B-5
B.2.9 Kernel Cache — Gaussian Kernels Only .. B-5
B.2.10 Tolerance ... B-6
B.3 NMF Models .. B-6

Index

viii

ix

Send Us Your Comments

Oracle Data Mining Application Developer’s Guide, 10g Release 1 (10.1)

Part No. B10699-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com
■ FAX: 781-238-9893 Attn: Oracle Data Mining Documentation
■ Postal service:

Oracle Corporation
Oracle Data Mining Documentation
10 Van de Graaff Drive
Burlington, Massachusetts 01803
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

x

 xi

Preface

This manual describes using the Oracle Data Mining Java and PL/SQL Application
Programming Interfaces (APIs) to perform data mining tasks for business
applications, bioinformatics, and text mining.

Intended Audience
This manual is intended for anyone planning to write programs using the Oracle
Data Mining Java or PL/SQL interface.

Familiarity with Java or PL/SQL is assumed, as well as familiarity with databases
and data mining.

Users of the Oracle Data Mining BLAST table functions should be familiar with
NCBI BLAST and related concepts.

Structure
This manual is organized as follows:

■ Chapter 1, "Introduction"

■ Chapter 2, "ODM Java Programming"

■ Chapter 3, "ODM Java API Basic Usage"

■ Chapter 4, "DBMS_DATA_MINING"

■ Chapter 5, "ODM PL/SQL Sample Programs"

■ Chapter 6, "Sequence Matching and Annotation (BLAST)"

■ Chapter 7, "Text Mining"

xii

■ Appendix A, "Binning"

■ Appendix B, "ODM Tips and Techniques"

Where to Find More Information
The documentation set for Oracle Data Mining is part of the Oracle 10g Database
Documentation Library. The ODM documentation set consists of the following
documents, available online:

■ Oracle Data Mining Administrator’s Guide, Release 10g

■ Oracle Data Mining Concepts, Release 10g

■ Oracle Data Mining Application Developer’s Guide, Release 10g (this document)

Last-minute information about ODM is provided in the platform-specific README
file.

For detailed information about the Java API, see the ODM Javadoc in the directory
$ORACLE_HOME/dm/doc/jdoc (UNIX) or %ORACLE_HOME%\dm\doc\jdoc
(Windows) on any system where ODM is installed.

For detailed information about the PL/SQL interface, see the Supplied PL/SQL
Packages and Types Reference.

For information about the data mining process in general, independent of both
industry and tool, a good source is the CRISP-DM project (Cross-Industry Standard
Process for Data Mining) (http://www.crisp-dm.org/).

Related Manuals
For more information about the database underlying Oracle Data Mining, see:

■ Oracle Administrator’s Guide, Release 10g

■ Oracle Database 10g Installation Guide for your platform.

For information about developing applications to interact with the Oracle Database,
see

■ Oracle Application Developer’s Guide — Fundamentals, Release 10g

For information about upgrading from Oracle Data Mining release 9.0.1 or release
9.2.0, see

■ Oracle Database Upgrade Guide, Release 10g

■ Oracle Data Mining Administrator’s Guide, Release 10g

xiii

For information about installing Oracle Data Mining, see

■ Oracle Installation Guide, Release 10g

■ Oracle Data Mining Administrator’s Guide, Release 10g

Conventions
In this manual, Windows refers to the Windows 95, Windows 98, Windows NT,
Windows 2000, and Windows XP operating systems.

The SQL interface to Oracle is referred to as SQL. This interface is the Oracle
implementation of the SQL standard ANSI X3.135-1992, ISO 9075:1992, commonly
referred to as the ANSI/ISO SQL standard or SQL92.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also followed in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

 . . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface Boldface type in text indicates the name of a class or method.

italic text Italic type in text indicates a term defined in the text, the glossary, or
in both locations.

typewriter In interactive examples, user input is indicated by bold typewriter
font, and system output by plain typewriter font.

typewriter Terms in italic typewriter font represent placeholders or variables.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none

xiv

Documentation Accessibility

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Introduction 1-1

1
Introduction

Oracle Data Mining embeds data mining in the Oracle database. The data never
leaves the database — the data, data preparation, model building, and model
scoring activities all remain in the database. This enables Oracle to provide an
infrastructure for data analysts and application developers to integrate data mining
seamlessly with database applications.

Oracle Data Mining is designed for programmers, systems analysts, project
managers, and others interested in developing database applications that use data
mining to discover hidden patterns and use that knowledge to make predictions.

There are two interfaces: a Java API and a PL/SQL API. The Java API assumes a
working knowledge of Java, and the PL/SQL API assumes a working knowledge of
PL/SQL. Both interfaces assume a working knowledge of application programming
and familiarity with SQL to access information in relational database systems.

This document describes using the Java and PL/SQL interface to write application
programs that use data mining. It is organized as follows:

■ Chapter 1 introduces ODM.

■ Chapter 2 and Chapter 3 describe the Java interface. Chapter 2 provides an
overview; Chapter 3 provides details. Reference information for methods and
classes is available with Javadoc. The demo Java programs are described in
Table 3–1. The demo programs are available as part of the installation; see the
README file for details.

■ Chapter 4 and Chapter 5 describe the PL/SQL interface. Basics are described
inChapter 4, and demo PL/SQL programs are described in Chapter 5.

■ Reference information for the PL/SQL functions and procedures is included in
the PL/SQL Packages and Types Reference. The demo programs themselves are
available as part of the installation; see the README file for details.

ODM Requirements and Constraints

1-2 Oracle Data Mining Application Developer’s Guide

■ Chapter 6 describes programming with BLAST, a set of table functions for
performing sequence matching searches against nucleotide and amino acid
sequence data stored in an Oracle database.

■ Chapter 7 describes how to use the PL/SQL interface to do text mining.

■ Appendix A contains an example of binning.

■ Appendix B provides tips and techniques useful in both the Java and the
PL/SQL interface.

1.1 ODM Requirements and Constraints
Anyone writing an Oracle Data Mining program must observe the following
requirements and constraints:

■ Attribute Names in ODM: All attribute names in ODM are case-sensitive and
limited to 30 bytes in length; that is, attribute names may be quoted strings that
contain mixed-case characters and/or special characters. Simply put, attribute
names used by ODM follow the same naming conventions and restrictions as
column names or type attribute names in Oracle.

■ Mining Object Names in ODM: All mining object names in ODM are 25 or
fewer bytes in length and must be uppercase only. Model names may contain
the underscore ("_") but no other special characters. Certain prefixes are
reserved by ODM (see below) and should not be used in mining object names.

■ ODM Reserved Prefixes: The prefixes DM$ and DM_ are reserved for use by
ODM across all schema object names in a given Oracle instance.

Users must not directly access these ODM internal tables, that is, they should
not execute any DDL, Query, or DML statements directly against objects named
with these prefixes. Oracle recommends that you rename any existing objects in
the database with these prefixes to avoid confusion in your application data
management.

■ Input Data for Programs Using ODM: All input data for ODM programs must
be presented to ODM as an Oracle-recognized table, whether a view, table, or
table function output.

ODM Java Programming 2-1

2
 ODM Java Programming

This chapter provides an overview of the steps required to perform basic Oracle
Data Mining tasks and discusses the following topics related to writing data mining
programs using the Java interface:

■ The requirements for compiling and executing programs.

■ How to perform common data mining tasks.

Detailed demo programs are provided as part of the installation.

2.1 Compiling and Executing ODM Programs
Oracle Data Mining depends on the following Java archive (.jar) files:

$ORACLE_HOME/dm/lib/odmapi.jar$ORACLE_HOME/jdbc/lib/ojdbc14.jar
$ORACLE_HOME/jlib/orai18n.jar
$ORACLE_HOME/lib/xmlparserv2.jar

These files must be in your CLASSPATH to compile and execute Oracle Data Mining
programs.

2.2 Using ODM to Perform Mining Tasks
This section describes the steps required to perform several common data mining
tasks using Oracle Data Mining. Data mining tasks are usually performed in a
particular sequence. The following sequence is typical:

1. Collect and preprocess (bin or normalize) data. (This step is optional; ODM
algorithms can automatically prepare input data.)

2. Build a model

Using ODM to Perform Mining Tasks

2-2 Oracle Data Mining Application Developer’s Guide

3. Test the model and calculate lift (classification problems only)

4. Apply the model to new data

All work in Oracle Data Mining is done using MiningTask objects.

To implement a sequence of dependent task executions, you may periodically check
the asynchronous task execution status using the getCurrentStatus method or
block for completion using the waitForCompletion method. You can then
perform the dependent task after completion of the previous task.

For example, follow these steps to perform the build, test, and compute lift
sequence:

■ Perform the build task as described in Section 2.2.2 below.

■ After successful completion of the build task, start the test task by calling the
execute method on a ClassificationTestTask or RegressionTestTask
object. Either periodically check the status of the test operation or block until
the task completes.

■ After successful completion of the test task, execute the compute lift task by
calling the execute method on a MiningComputeLiftTask object.

You now have (with a little luck) a model that you can use in your data mining
application.

2.2.1 Prepare Input Data
Different algorithms require different preparation and preprocessing of the input
data. Some algorithms require normalization; some require binning (discretization).
In the Java interface the algorithms can prepare data automatically.

This section summarizes the steps required for different data preparation
methodologies supported by the ODM Java API.

Automated Discretization (Binning) and Normalization
The ODM Java interface supports automated data preparation. If the user specifies
active unprepared attributes, the data mining server automatically prepares the
data for those attributes.

In the case of algorithms that use binning as the default data preparation, bin
boundary tables are created and stored as part of the model. The model’s bin
boundary tables are used for the data preparation of the dataset used for testing or

Using ODM to Perform Mining Tasks

 ODM Java Programming 2-3

scoring using that model. In the case of algorithms that use normalization as the
default data preparation, the normalization details are stored as part of the model.
The model uses those details for preparing the dataset used for testing or scoring
using that model.

The algorithms that use binning as the default data preparation are Naive Bayes,
Adaptive Bayes Network, Association, k-Means, and O-Cluster. The algorithms that
use normalization are Support Vector Machines and Non-Negative Matrix
Factorization. For normalization, the ODM Java interface supports only the
automated method.

External Discretization (Binning)
For certain distributions, you may get better results if you bin the data before the
model is built.

External binning consists of two steps:

■ The user creates binning specification either explicitly or by looking at the data
and using one of the predefined methods. For categorical attributes, there is
only one method: Top-N Frequency. For numerical attributes, there are two
methods: Equi-width and equi-width with winsorizing.

■ The user bins the data following the specification created.

Specifically, the steps for external binning are as follows:

1. Create DiscretizationSpecification objects to specify the bin boundary
specifications for the attributes.

2. Call Transformation.createDiscretizationTables method to create
bin boundaries

3. Call Transformation.discretize method to discretize/bin the data.

Note that in the case of external binning, the user needs to bin the data consistently
for all build, test, apply, and lift operations.

Embedded Discretization (Binning)
Embedded binning allows users to define their own customized automated
binning. The binning strategy is specified by providing a bin boundary table that is
produced by the bin specification creation step of external binning.

Specifically, the steps for embedded binning are as follows:

1. Create DiscretizationSpecification objects to specify the bin boundary
specifications for the attributes.

Using ODM to Perform Mining Tasks

2-4 Oracle Data Mining Application Developer’s Guide

2. Call the Transformation.createDiscretizationTables method to
create bin boundaries.

3. Call the setUserSuppliedDiscretizationTables method in the
LogicalDataSpecification object to attach the user created bin
boundaries tables with the mining function settings object.

Keep in mind that because binning can have an effect on a model’s accuracy, it is
best when the binning is done by an expert familiar with the data being binned and
the problem to be solved. However, if there is no additional information that can
inform decisions about binning or if what is wanted is an initial exploration and
understanding of the data and problem, ODM can bin the data using default
settings, either by explicit user action or as part of the model build.

ODM groups the data into 5 bins by default. For categorical attributes, the 5 most
frequent values are assigned to 5 different bins, and all remaining values are
assigned to a 6th bin. For numerical attributes, the values are divided into 5 bins of
equal size according to their order.

After the data is processed, you can build a model.

For an illustration of binning, see Appendix A.

2.2.2 Build a Model
This section summarizes the steps required to build a model.

1. Prepocess and prepare the input data as required.

2. Construct and store a MiningFunctionSettings object.

3. Construct and store a MiningBuildTask object.

4. Call the execute method; the execute method queues the work for asynchronous
execution and returns an execution handle to the caller.

5. Periodically call the getCurrentStatus method to get the status of the task.
Alternatively, use the waitForCompletion method to wait until all
asynchronous activity for task completes.

After successful completion of the task, a model object is created in the database.

2.2.3 Find and Use the Most Important Attributes
Models based on data sets with a large number of attributes can have very long
build times. To minimize build time, you can use ODM Attribute Importance to
identify the critical attributes and then build a model using only these attributes.

Using ODM to Perform Mining Tasks

 ODM Java Programming 2-5

Build an Attribute Importance Model
Identify the most important attributes by building an Attributes Importance model
as follows:

1. Create a Physical Data Specification for input data set.

2. Discretize (bin) the data if required.

3. Create and store mining settings for the Attribute Importance.

4. Build the Attribute Importance model.

5. Access the model and retrieve the attributes by threshold.

Build a Model Using the Selected Attributes
After identifying the important attributes, build a model using the selected
attributes as follows:

1. Access the model and retrieve the attributes by threshold or by rank.

2. Modify the Data Usage Specification by calling the function
adjustAttributeUsage defined on MiningFunctionSettings. Only the
attributes returned by Attribute Importance will be active for model building.

3. Build a model using the new Mining Function Settings.

2.2.4 Test the Model
This section summarizes the steps required to test a classification or a regression
model.

1. Preprocess the test data as required. Test data must have all the active attributes
used in the model and the target attribute in order to assess the model’s
accuracy.

2. Prepare (bin or normalize) the input data the same way the data was prepared
for building the model.

3. Construct and store a task object. For classification problems, use
ClassificationTestTask; for regression, use RegressionTestTask.

4. Call the execute method; the execute method queues the work for
asynchronous execution and returns an execution handle to the caller.

5. Periodically, call the getCurrentStatus method to get the status of the task.
As an alternative, use the waitForCompletion method to wait until all
asychronous activity for the task completes.

Using ODM to Perform Mining Tasks

2-6 Oracle Data Mining Application Developer’s Guide

6. After successful completion of the task, a test result object is created in the DMS.
For classification problems, the results are represented using
ClassificaionTestResult object; for regression problems, results are
represented using RegressionTestResult object.

2.2.5 Compute Lift
This section summarizes the steps required to compute lift using a classification
model.

1. Lift operation is typically done using the test data. Data preparation steps
described in the section above also apply to the lift operation.

2. Construct and store a MiningLiftTask object.

3. Call the execute method; the execute method queues the work for
asynchronous execution and returns an execution handle to the caller.

4. Periodically, call the getCurrentStatus method to get the status of the task.
As an alternative, use the waitForCompletion method to wait until all
asychronous activity for the task completes.

5. After successful completion of the task, a MiningLiftResult object is created
in the DMS.

2.2.6 Apply the Model to New Data
You make predictions by applying a model to new data, that is, by scoring the data.

Any table that you score (apply a model to) must have the same format as the table
used to build the model. If you build a model using a table that is in multi-record
(transactional) format , any table that you apply that model to must be in
multi-record format. Similarly, if the table used to build the model was in
nontransactional (single-record) format, any table to which you apply the model
must be in nontransactional format.

Note that you can score a single record, which must also be in the same format as
the table used to build the model.

The steps required to apply a classification, clustering, or a regression model are as
follows:

1. Preprocess the apply data as required. The apply data must have all the active
attributes that were present in creating the model.

Using ODM to Perform Mining Tasks

 ODM Java Programming 2-7

2. Prepare (bin or normalize) the input data the same way the data was prepared
for building the model. If the data was prepared using the automated option at
build time, then the apply data is also prepared using the automated option and
other preparation details from building the model.

3. Construct and store a MiningApplyTask object. The MiningApplyOutput
object is used to specify the format of the apply output table.

4. Call the execute method; the execute method queues the work for
asynchronous execution and returns an execution handle to the caller.

5. Periodically, call the getCurrentStatus method to get the status of the task.
As an alternative, use the waitForCompletion method to wait until all
asynchronous activity for the task completes.

6. After successful completion of the task, a MiningApplyResult object is
created in the DMS and the apply output table/view is created at the
user-specified name and location.

Using ODM to Perform Mining Tasks

2-8 Oracle Data Mining Application Developer’s Guide

ODM Java API Basic Usage 3-1

3
ODM Java API Basic Usage

This chapter describes how to use the ODM Java interface to write data mining
applications in Java. Our approach in this chapter is to use a simple example to
describe the use of different features of the API.

For detailed descriptions of the class and method usage, refer to the Javadoc that is
shipped with the product. See the administrator’s guide for the location of the
Javadoc.

3.1 Connecting to the Data Mining Server
To perform any mining operation in the database, first create an instance of
oracle.dmt.odm.DataMiningServer class. This instance is used as a proxy to
create connections to a data mining server (DMS), and to maintain the connection.
The DMS is the server-side, in-database component that performs the actual data
mining operations within ODM. The DMS also provides a metadata repository
consisting of mining input objects and result objects, along with the namespaces
within which these objects are stored and retrieved.

In this step, we illustrate creating a DataMiningServer object and then logging in
to get the connection. Note that there is a logout method to release all the
resources held by the connection

// Create an instance of the DMS server and get a connection.
// The database JDBC URL, user_name, and password for data mining
// user schema
DataMiningServer dms = new DataMiningServer(
 "DB_URL",// JDBC URL jdbc:oracle:thin:@Host name:Port:SID
 "user_name",
 "password");
//Login to get the DMS connection
oracle.dmt.odm.Connection m_dmsConn = dms.login();

Describing the Mining Data

3-2 Oracle Data Mining Application Developer’s Guide

3.2 Describing the Mining Data
In the ODM Java interface, oracle.dmt.odm.data.LocationAccessData
(LAD) and oracle.dmt.odm.PhysicalDataSpecification (PDS) classes are
used for describing the mining dataset (table/view in the user schema). To
represent single-record format dataset, use an instance of
NonTransactionalDataSpecification class, and to represent multi-record
format dataset, use TransactionalDataSpecification class. Both classes are
inherited from the common super class PhysicalDataSpecification. For more
information about the data formats, refer to ODM Concepts.

In this step, we illustrate creating LAD and PDS objects for both types of formats.

3.2.1 Creating LocationAccessData
LocationAccessData (LAD) class encapsulates the dataset location details. The
following code describes the creation of this object.

// Create a LocationAccessData by specifying the table/view name
// and the schema name
LocationAccessData lad =
 new LocationAccessData("input table name", "schema name");

3.2.2 Creating NonTransactionalDataSpecification
The NonTransactionalDataSpecification class contains the
LocationAccessData object and specifies the data format as single-record case.
The following code describes the creation of this object.

// Create the actual NonTransactionalDataSpecification
PhysicalDataSpecification pds =
 new NonTransactionalDataSpecification(lad);

3.2.3 Creating TransactionalDataSpecification
The TransactionalDataSpecification class contains a
LocationAccessData object; it specifies the data format as multi-record case and
it specifies the column roles.

This dataset must contain three types of columns: Sequence-Id/case-id column to
represent each case, attribute name column, and attribute value column. This
format is commonly used when the data has a large number of attributes. For more
information, refer to ODM Concepts. The following code illustrates the creation of
this object.

MiningFunctionSettings Object

 ODM Java API Basic Usage 3-3

// Create the actual TransactionalDataSpecification for transactional data.
PhysicalDataSpecification pds =
 new TransactionalDataSpecification(
 "CASE_ID", //column name for sequence id
 "ATTRIBUTES", //column name for attribute name
 "VALUES", //column name for value
 lad //Location Access Data
);

3.3 MiningFunctionSettings Object
The class
oracle.dmt.odm.settings.function.MiningFunctionSettings (MFS) is
the common super class for all types of mining function settings classes. It
encapsulates the details of function and algorithm settings, logical data, and data
usage specifications. For more detailed information about logical data and data
usage specification, refer to Javadoc documentation for
oracle.dmt.odm.data.LogicalDataSpecification and
oracle.dmt.odm.settings.function.DataUsageSpecification.

An MFS object is a named object that can be stored in the DMS. If no algorithm is
specified, the underlying DMS selects the default algorithm and its settings for that
function. For example, Naive Bayes is the default algorithm for classification
function. In this step, the ODM Java interface has the following function settings
classes and a list of associated algorithm settings classes with each function.

oracle.dmt.odm.settings.function.ClassificationFunctionSettings
oracle.dmt.odm.settings.algorithm.NaiveBayesSettings (Default)
oracle.dmt.odm.settings.algorithm.AdaptiveBayesNetworkSettings
oracle.dmt.odm.settings.algorithm.SVMClassificationSettings

oracle.dmt.odm.settings.function.RegressionFunctionSettings
oracle.dmt.odm.settings.algorithm.SVMRegressionSettings (Default)

oracle.dmt.odm.settings.function.AssociationRulesFunctionSettings
oracle.dmt.odm.settings.algorithm.AprioriAlgorithmSettings (Default)

oracle.dmt.odm.settings.function.ClusteringFunctionSettings
oracle.dmt.odm.settings.algorithm.KMeansAlgorithmSettings (Default)
oracle.dmt.odm.settings.algorithm.OClusterAlgorithmSettings (Default)

oracle.dmt.odm.settings.function.AttributeImportanceFunctionSettings
oracle.dmt.odm.settings.algorithm.MinimumDescriptionLengthSettings
(Defaults)

MiningFunctionSettings Object

3-4 Oracle Data Mining Application Developer’s Guide

oracle.dmt.odm.settings.function.FeatureExtractionFunctionSettings
oracle.dmt.odm.settings.algorithm.NMFAlgorithmSettings

In this step, we illustrate the creation of a ClassificationFunctionSettings
object using Naive Bayes algorithm.

3.3.1 Creating Algorithm Settings
The class
oracle.dmt.odm.settings.algorithm.MiningAlgorithmSettings is the
common superclass for all algorithm settings. It encapsulates all the settings that
can be tuned by a data-mining expert based on the problem and the data. ODM
provides default values for algorithm settings; refer to the Javadoc documentation
for more information about each the algorithm settings. For example, Naive Bayes
has two settings: singleton_threshold and pairwise_threshold. The
default values for both of these settings is 0.01.

In this step we create a NaiveBayesSettings object that will be used by the next
step to create the ClassificationFunctionSettings object.

// Create the Naive Bayes algorithm settings by setting both the pairwise
// and singleton thresholds to 0.01.
NaiveBayesSettings nbAlgo = new NaiveBayesSettings(0.02f,0.02f);

3.3.2 Creating Classification Function Settings
An MFS object can be created in two ways: by using the constructor or by using
create and adjust utility methods. If you have the input dataset, it is
recommended that you use the create utility method because it simplifies the
creation of this complex object.

In this example, the utility method is used to create a
ClassificationFunctionSettings object for a dataset, which has all
unprepared categorical attributes and an ID column. Here we use automated
binning; for more information about data preparation, see

// Create classification function settings
ClassificationFunctionSettings mfs =
 ClassificationFunctionSettings.create(
 m_dmsConn, //DMS Connection
 nbAlgo, //NB algorithm settings
 pds, //Build data specification
 "target_attribute_name", //Target column

MiningTask Object

 ODM Java API Basic Usage 3-5

 AttributeType.categorical, //Target attribute type
 DataPreparationStatus.unprepared //Default preparation status
);

//Set ID attribute as an inactive attribute
mfs.adjustAttributeUsage(new String[]{"ID"},AttributeUsage.inactive);

3.3.3 Validate and Store Mining Function Settings
Because the MiningFunctionSettings object is a complex object, it is a good
practice to validate the correctness of this object before persisting it. If you use
utility methods to create MFS, then it will be a valid object.

The following code illustrates validation and persistence of the MFS object.

// Validate and store the ClassificationFunctionSettings object
try {
 mfs.validate();
 mfs.store(m_dmsConn, "Name_of_the_MFS");
} catch(ODMException invalidMFS) {
 System.out.println(invalidMFS.getMessage());
 throw invalidMFS;
}

3.4 MiningTask Object
The class oracle.dmt.odm.task.MiningTask is the common superclass for all
the mining tasks. This class provides asynchronous execution of mining operations
in the database using DBMS_JOBS. For each execution of the task an
oracle.dmt.odm.task.ExecutionHandle object is created. The
ExecutionHandle object provides the methods to retrieve the status of the
execution and utility methods like waitForCompletion, terminate, and
getStatusHistory. Refer to the Javadoc API documentation of these classes for
more information.

The ODM Java interface has the following task classes:

■ oracle.dmt.odm.task.MiningBuildTask
This class is used for building a mining model

■ oracle.dmt.odm.task.ClassificationTestTask
This class is used for testing a classification model

Build a Mining Model

3-6 Oracle Data Mining Application Developer’s Guide

■ oracle.dmt.odm.task.RegressionTestTask
This class is used for testing a regression model

■ oracle.dmt.odm.task.CrossValidateTask
This class is used for testing a Naive Bayes model using cross validation

■ oracle.dmt.odm.task.MiningLiftTask
This class is used for computing lift in case of classification models

■ oracle.dmt.odm.task.MiningApplyTask
This class is used for scoring new data using the mining model

■ oracle.dmt.odm.task.ModelImportTask
This class is used for importing a PMML mining model to ODM Java API native
model

■ oracle.dmt.odm.task.ModelExportTask
This class is used for exporting a ODM Java API native model to PMML mining
model

3.5 Build a Mining Model
To build a mining model, the MiningBuildTask object is used. It encapsulates the
input and output details of the model build operation.

In this step, we illustrate creation, storing, and executing the MiningBuildTask
object and task execution status retrieval by using ExecutionHandle object.

// Create a build task and store it.
MiningBuildTask buildTask =
 new MiningBuildTask(
 pds,
 "name_of_the_input_MFS",
 "name_of_the_model");

// Store the task
buildTask.store(m_dmsConn, "name_of_the_build_task");

// Execute the task
ExecutionHandle execHandle = buildTask.execute(m_dmsConn);

// Wait for the task execution to complete
MiningTaskStatus status = execHandle.waitForCompletion(dmsConnection);

After the build task completes successfully, the model is stored in the DMS with a
name specified by the user.

Testing a Model

 ODM Java API Basic Usage 3-7

3.6 MiningModel Object
The class oracle.dmt.odm.model.MiningModel is the common superclass for
all the mining models. It is a wrapper class for the actual model stored in the DMS.
Each model class provides methods for retrieving the details of the models. For
example, AssociationRulesModel provides methods to retrieve the rules from
the model using different filtering criteria. Refer to Javadoc API documentation for
more details about the model classes.

In this step, we illustrate restoring the NaiveBayesModel object and retrieve the
ModelSignature object. The ModelSignature object specifies the input
attributes required to apply data using a specific model.

//Restore the naïve bayes model
NaiveBayesModel nbModel =
 (NaiveBayesModel)SupervisedModel.restore(
 m_dmsConn,
 "name_of_the_model");

//Get the model signature
ModelSignature nbModelSignature = nbModel.getSignature();

3.7 Testing a Model
After creating the classification model, you can test the model to assess its accuracy
and compute a confusion matrix using the test dataset.

In this step, we illustrate how to test the classification model using the
ClassificationTestTask object and how to retrieve the test results using the
ClassificationTestResult object.

3.7.1 Describe the Test Dataset
To test the model, a compatible test dataset is required. For example, if the model is
built using single-record dataset, then the test dataset must be single-record dataset.
All the active attributes and target attribute columns must be present in the test
dataset.

To test a model, the user needs to specify the test dataset details using the
PhysicalDataSpecification class.

 //Create PhysicalDataSpecification
 LocationAccessData lad = new LocationAccessData(
 "test_dataset_name",

Testing a Model

3-8 Oracle Data Mining Application Developer’s Guide

 "schema_name");
 PhysicalDataSpecification pds =
 new NonTransactionalDataSpecification(lad);

3.7.2 Test the Model
After creating the PhysicalDataSpecification object, create a
ClassificationTestTask instance by specifying the input arguments required
to perform the test operation. Before executing a task, it must be stored in the DMS.
After invoking execute on the task, the task is submitted for asynchronous
execution in the DMS. To wait for the completion of the task, use
waitForCompletion method.

 //Create, store & execute Test Task
 ClassificationTestTask testTask = new ClassificationTestTask(
 pds, //test data specification
 "name_of_the_model_to_be_tested",
 "name_of_the_test_results_object");
 testTask.store(m_dmsConn, "name_of_the_test_task");
 taskTask.execute(m_dmsConn);

 //Wait for completion of the Test task
 MiningTaskStatus taskStatus =
 taskTask.waitForCompletion(m_dmsConn);

3.7.3 Get the Test Results
After successful completion of the test task, you can restore the results object
persisted in the DMS using the restore method. The
ClassificationTestResult object has get methods for accuracy and
confusion matrix. The toString method can be used to display the test results.

//Restore the test results
ClassificationTestResult testResult =
 ClassificationTestResult.restore(m_dmsConn, "name of the test
results");

//Get accuracy
double accuracy = testResult.getAccuracy();

//Get confusion matrix
ConfusionMatrix confMatrix = testResult.getConfusionMatrix();

//Display results
System.out.println(testResult.toString());

Lift Computation

 ODM Java API Basic Usage 3-9

3.8 Lift Computation
Lift is a measure of how much better prediction results are using a model than
could be obtained by chance. You can compute lift after the model is built
successfully. You can compute lift using the same test dataset. The test dataset must
be compatible with the model as described in Section 2.2.4.

In this step, we illustrate how to compute lift by using MiningLiftTask object
and how to retrieve the test results using MiningLiftResult object.

3.8.1 Specify Positive Target Value
To compute lift, a positive target value needs to be specified. This value depends on
the dataset and the data mining problem. For example, for a marketing campaign
response model, the positive target value could be "customer responds to the
campaign". In the Java interface, oracle.dmt.odm.Category class is used to
represent the target value.

 Category positiveCategory = new Category(
 "Display name of the positive target value",
 "String representation of the target value",
 DataType.intType //Data type
);

3.8.2 Compute Lift
To compute lift, create a MiningLiftTask instance by specifying the input
arguments that are required to perform the lift operation. The user needs to specify
the number of quantiles to be used. A quantile is the specific value of a variable that
divides the distribution into two parts: those values that are greater than the
quantile value and those values that are less. Here the test dataset records are
divided into the user-specified number of quantiles and lift is computed for each
quantile.

 //Create, store & execute Lift Task
 MiningLiftTask liftTask = new MiningLiftTask (
 pds, //test data specification
 10, //Number of quantiles
 positiveCategory, //Positive target value
 "name_of_the_input_model",
 "name_of_the_lift_results_object");
 liftTask.store(m_dmsConn, name_of_the_lift_task");
 liftTask.execute(m_dmsConn);

Scoring Data Using a Model

3-10 Oracle Data Mining Application Developer’s Guide

 //Wait for completion of the lift task
 MiningTaskStatus taskStatus =
 liftTask.waitForCompletion(m_dmsConn);

3.8.3 Get the Lift Results
After successful completion of the test task, you can restore the results object
persisted in the DMS using restore method.MiningLiftResult. To get the lift
measures for each quantile use getLiftResultElements(). Method
toString() can be used to display the lift results.

//Restore the lift results
MiningLiftResult liftResult =
 MiningLiftResult.restore(m_dmsConn, "name_of_the_lift_results");
//Get lift measures for each quantile
LiftResultElement[] quntileLiftResults =
 liftResult.getLiftResultElements()
//Display results
System.out.println(liftResult.toString());

3.9 Scoring Data Using a Model
A classification or clustering model can be applied to new data to make predictions;
the process is referred to as "scoring data."

Similar to the test dataset, the apply dataset must have all the active attributes that
were used to build the model. Unlike test dataset, apply dataset does not have a
target attribute column; the apply process predicts the values of the target attribute.
ODM Java API supports real-time scoring in addition to batch scoring (i.e., scoring
with an input table)

In this step, we illustrate how to apply a model to a table/view to make predictions
and how to apply a model to a single record for real-time scoring.

3.9.1 Describing Apply Input and Output Datasets
The Apply operation requires an input dataset that has all the active attributes that
were used to build the model. It produces an output table in the user- specified
format.

//Create PhysicalDataSpecification
LocationAccessData lad = new LocationAccessData(
 "apply_input_table/view_name",
 "schema_name"

Scoring Data Using a Model

 ODM Java API Basic Usage 3-11

);
PhysicalDataSpecification pds =
 new NonTransactionalDataSpecification(lad);

//Output table location details
LocationAccessData outputTable = new LocationAccessData(
 "apply_output_table/view_name",
 "schema_name");

3.9.2 Specify the Format of the Apply Output
The DMS also needs to know the content of the scoring output. This information is
captured in a MiningApplyOutput (MAO) object. An instance of
MiningApplyOutput specifies the data (columns) to be included in the apply
output table that is created as the result of an apply operation. The columns in the
apply output table are described by a combination of ApplyContentItem objects.
These columns can be either from the input table or generated by the scoring task
(for example, prediction and probability). The following steps create a
MiningApplyOutput object:

 // Create MiningApplyOutput object using default settings
 MiningApplyOutput mao = MiningApplyOutput.createDefault();

 // Add all the source attributes to be returned with the scored result.
 // For example, here we add attribute "CUST_ID" from the original table
 // to the apply output table
 MiningAttribute sourceAttribute =
 new MiningAttribute("CUST_ID", DataType.intType,
 AttributeType.notApplicable);
 Attribute destinationAttribute = new Attribute(
 "CUST_ID",DataType.intType);

 ApplySourceAttributeItem m_ApplySourceAttributeItem =
 new ApplySourceAttributeItem(sourceAttribute,destinationAttribute);
 // Add a source and destination mapping
 mao.addItem(m_ApplySourceAttributeItem);

3.9.3 Apply the Model
To apply the model, create a MiningApplyTask instance by specifying the input
arguments that are required to perform the apply operation.

 //Create, store & execute apply Task
 MiningApplyTask applyTask = new MiningApplyTask(

Use of CostMatrix

3-12 Oracle Data Mining Application Developer’s Guide

 pds, //test data specification
 "name_of_the_model", //Input model name
 mao, //MiningApplyOutput object
 outputTable, //Apply output table location details
 "name_of_the_apply_results" //Apply results name
);

 applyTask.store(m_dmsConn, name_of_the_apply_task");
 applyTask.execute(m_dmsConn);

 //Wait for completion of the apply task
 MiningTaskStatus taskStatus =
 applyTask.waitForCompletion(m_dmsConn);

3.9.4 Real-Time Scoring
To apply the model to a single record, use the
oracle.dmt.odm.result.RecordInstance class. Model classes that support
record apply have the static apply method, which can take RecordInstance
object as input and returns with the prediction and probability.

In this step, we illustrate the creation of the RecordInstance object and score
using Naive Bayes model’s apply static method.

//Create RecordInstance object for a model with two active attributes
RecordInstance inputRecord = new RecordInstance();

//Add active attribute values to this record
AttributeInstance attr1 = new AttributeInstance("Attribute1_Name", value);
AttributeInstance attr2 = new AttributeInstance("Attribute2_Name", value);
inputRecord.addAttributeInstance(attr1);
inputRecord.addAttributeInstance(attr2);

//Record apply, output record will have the prediction value and its probability
value
RecordInstance outputRecord = NaiveBayesModel.apply(
m_dmsConn, inputRecord, "model_name");

3.10 Use of CostMatrix
The class oracle.dmt.odm.CostMatrix is used to represent the costs of the false
positive and false negative predictions. It is used for classification problems to
specify the costs associated with the false predictions. A user can specify the cost

Use of PriorProbabilities

 ODM Java API Basic Usage 3-13

matrix in the classification function settings. For more information about the cost
matrix, see ODM Concepts.

The following code illustrates how to create a cost matrix object where the target
has two classes: YES (1) and NO (0). Suppose a positive (YES) response to the
promotion generates $2 and the cost of the promotion is $1. Then the cost of
misclassifying a positive responder is $2. The cost of misclassifying a non-responder
is $1.

 // Define a list of categories
 Category negativeCat = new Category("negativeResponse", "0",
 DataType.intType);
 Category positiveCat = new Category("positiveResponse", "1",
 DataType.intType);

 // Define a Cost Matrix
 // AddEntry(Actual Category, Predicted Category, Cost Value)
 CostMatrix costMatrix = new CostMatrix();
 // Row 1
 costMatrix.addEntry(negativeCat, negativeCat, new Integer("0"));
 costMatrix.addEntry(negativeCat, positiveCat, new Integer("1"));
 // Row 2
 costMatrix.addEntry(positiveCat, negativeCat, new Integer("2"));
 costMatrix.addEntry(positiveCat, positiveCat, new Integer("0"));
 // Set Cost Matrix to MFS
 mfs.setCostMatrix(costMatrix);

3.11 Use of PriorProbabilities
The class oracle.dmt.odm.PriorProbabilities is used to represent the prior
probabilities of the target values. It is used for classification problems if the actual
data has a different distribution for target values than the data provided for the
model build. A user can specify the prior probabilities in the classification function
settings. For more information about the prior probabilities, see ODM Concepts.

The following code illustrates how to create PriorProbabilities object, when
the target has two classes: YES (1) and NO (0), and probability of YES is 0.05,
probability of NO is 0.95.

 // Define a list of categories
 Category negativeCat = new Category(
 "negativeResponse", "0", DataType.intType);
 Category positiveCat = new Category(
 "positiveResponse", "1", DataType.intType);
 // Define a Prior Probability

Data Preparation

3-14 Oracle Data Mining Application Developer’s Guide

 // AddEntry(Target Category, Probability Value)
 PriorProbabilities priorProbability = new PriorProbabilities();
 // Row 1
 priorProbability.addEntry(negativeCat, new Float("0.95"));
 // Row 2
 priorProbability.addEntry(positiveCat, new Float("0.05"));
 // Set Prior Probabilities to MFS
 mfs.setPriors(priorProbability);

3.12 Data Preparation
Data Mining algorithms require the data to be prepared to build mining models and
to score. Data preparation requirements can be specific to a function and an
algorithm. ODM algorithms require binning (discretization) or normalization,
depending on the algorithm. For more information about which algorithm requires
what type of data preparation, see ODM Concepts. Java API supports automated
binning, automated normalization, external binning, winsorizing, and embedded
binning.

In this section, we illustrate how to do the automated binning, automated
normalization, external binning, and embedded binning.

3.12.1 Automated Binning and Normalization
In the MiningFunctionSettings, if any of the active attributes are set as
unprepared attributes, the DMS chooses the appropriate data preparation (i.e.,
binning or normalization), depending on the algorithm, and prepares the data
automatically before sending it to the algorithm codes.

3.12.2 External Binning
The class oracle.dmt.odm.transformation.Transformation provides the
utility methods to perform external binning. Binning is a two-step process, first bin
boundary tables need to be created and then bin the actual data using the bin
boundary tables as input.

The following code illustrates the creation of bin boundary tables for a table with
one categorical attribute and one numerical attribute.

 //Create an array of DiscretizationSpecification
 //for the two columns in the table
 DiscretizationSpecification[] binSpec = new DiscretizationSpecification[2];

 //Specify binning criteria for categorical column.

Data Preparation

 ODM Java API Basic Usage 3-15

 //In this example we are specifying binning criteria
 //as top 5 frequent values need to be used and
 //the rest of the less frequent values need
 //to be treated as OTHER_CATEGORY

 CategoricalDiscretization binCategoricalCriteria =
 new CategoricalDiscretization(5,"OTHER_CATEGORY");

 binSpec[0] = new DiscretizationSpecification(
 "categorical_attribute_name", binCategoricalCriteria);

 //Specify binning criteria for numerical column.
 //In this example we are specifying binning criteria
 //as use equal width binning with 10 bins and use
 //winsorize technique to filter 1 tail percent

 float tailPercentage = 1.0f; //tail percentage value

 NumericalDiscretization binNumericCriteria =
 new NumericalDiscretization(10, tailPercentage);
 binSpec[1] = new DiscretizationSpecification(
 "numerical_attribute_name", binNumericCriteria);

 //Create PhysicalDataSpecification object for the input data
 LocationAccessData lad = new LocationAccessData(
 "input_table_name",
 "schema_name");
 PhysicalDataSpecification pds =
 new NonTransactionalDataSpecification(lad);

 //Create bin boundaries tables
 Transformation.createDiscretizationTables(
 m_dmsConn, //DMS connection
 lad, pds, //Input data details
 binSpec, //Binning criteria
 "numeric_bin_boundaries_table",
 "categorical_bin_boundaries_table",
 "schema_name>");

//Resulting discretized view location
LocationAccessData resultViewLocation = new LocationAccessData(
 "output_discretized_view_name",
 "schema_name");

//Perform binning

Text Mining

3-16 Oracle Data Mining Application Developer’s Guide

Transformation.discretize(
 m_dmsConn, // DMS connection
 lad, pds, // Input data details
 "numeric_bin_boundaries_table",
 "categorical_bin_boundaries_table>,
 "schema_name",
 resultViewLocation, // location of the resulting binned view
 true // open ended binning
);

3.12.3 Embedded Binning
In case of external binning, the user needs to maintain the bin boundary tables and
use these tables to bin the data. In case of embedded, the user can give the binning
bin boundary tables as an input to the model build operation. The model will
maintain these tables internally and use them for binning of the data for build,
apply, test, or lift operations.

The following code illustrates how to associate the bin boundary tables with the
mining function settings.

//Create location access data objects for bin boundary tables
LocationAccessData numBinBoundaries = new LocationAccessData(
 "numeric_bin_boundaries_table",
 "schema_name");

LocationAccessData catBinBoundaries = new LocationAccessData(
 "categorical_bin_boundaries_table>,
 "schema_name");

//Get the Logical Data Specification from the MiningFunctionSettings class
LogicalDataSpecification lds = mfs.getLogicalDataSpecification();

//Set the bin boundary tables to the logical data specification
lds.setUserSuppliedDiscretizationTables(numBinBoundaries, catBinBoundaries);

3.13 Text Mining
ODM Java API supports text mining for SVM and NMF algorithms. For these
algorithms, an input table can have a combination of categorical, numerical, and
text columns. The data mining server (DMS) internally performs the
transformations required for the text data before building the model.

Summary of Java Sample Programs

 ODM Java API Basic Usage 3-17

Note that for text mining, the case-id column must be specified in the
NonTransactionalDataSpecification object, case-id column must have
not-NULL unique values.

The following code illustrates how to set the text attribute in the ODM Java API.

//Set a caseid/sequenceid column for the dataset with active text attribute
Attribute sequenceAttr = new Attribute ("case_id_column_name", DataType.int);
pds.setSequenceAttribute(Attribute sequenceAttr)

//Set the text attribute
mfs.adjustAttributesType(new String[] {"text_attribute_column"},
 AttributeType.text);

3.14 Summary of Java Sample Programs
All the demo programs listed in the tables below are located in the directory
$ORACLE_HOME/dm/demo/sample/java.

The summary description of these sample programs is also provided in $ORACLE_
HOME/dm/demo/sample/java/README.txt.

Note: Before executing these programs, make sure that the SH schema and user
schema are installed with the datasets used by these programs. You also need to
provide DB URL, username, and password in login method and a valid data
schema name by changing the DATA_SCHEMA_NAME constant value in the program.

Table 3–1 Java Sample Programs

Sample Program Description

ABNDemo.java Classification using the ABN algorithm

AIDemo.java Determine most important attributes using the Attribute
Importance algorithm; then use the resulting AI model to build
classification model using Naive Bayes algorithm

ARDemo.java Association (AR) model using the Apriori algorithm; extracting
association rules

CostDemo.java Use of cost matrix; compare results with and without the cost
matrix

DataPrepDemo.java Use of discretization methodologies: automated, external
discretization, and user-supplied bin boundaries (embedded
binning)

kMeansDemo.java Clustering using the k-Means algorithm

Summary of Java Sample Programs

3-18 Oracle Data Mining Application Developer’s Guide

NBDemo.java Classification using the Naive Bayes algorithm

NMFDemo.java Feature extraction and text mining using the Non-Negative
Matrix Factorization (NMF) algorithm

OClusterDemo.java Clustering using the O-Cluster algorithm.

PMMLDemo.java Import and export a PMML model

PriorsDemo.java Use of prior probability; compare results with and without the
prior probability

SVMCDemo.java Classification and text mining using the SVM algorithm.

SVMRDemo.java Regression using the SVM algorithm

Table 3–1 (Cont.) Java Sample Programs

Sample Program Description

DBMS_DATA_MINING 4-1

4
DBMS_DATA_MINING

This chapter discusses the following topics related to writing data mining programs
with the PL/SQL interface:

■ The requirements for compiling and executing Oracle Data Mining programs.

■ How to perform common data mining tasks using Oracle Data Mining.

■ Tips and techniques for using the algorithms.

This chapter provides an overview of the steps required to perform basic Oracle
Data Mining tasks. For detailed examples of how to perform these tasks, see the
sample programs in Chapter 5.

This chapter does not include detailed descriptions of the PL/SQL subprograms.
For that information, see the DBMS_DATA_MINING and DBMS_DATA_MINING_
TRANSFORM chapters in the PL/SQL Packages and Types Reference.

The DBMS_DATA_MINING package provides PL/SQL support for in-database data
mining. You can use the package to build a mining model, test the model, and apply
this model to your data to obtain predictive and descriptive information.

See also:

■ Oracle Data Mining Concepts.

■ DBMS_DATA_MINING_TRANSFORM, a supplied package that supports data
preprocessing for mining (described inPL/SQL Packages and Types Reference).

This chapter discusses the following topics:

■ Section 4.1, "Development Methodology"

■ Section 4.2, "Mining Models, Function, and Algorithm Settings"

■ Section 4.3, "Mining Operations and Results"

Development Methodology

4-2 Oracle Data Mining Application Developer’s Guide

■ Section 4.4, "Mining Data"

■ Section 4.5, "Performance Considerations"

■ Section 4.6, "Rules and Limitations for DBMS_DATA_MINING"

■ Section 4.9, "Model Export and Import"

DBMS_DATA_MINING subprograms are presented in PL/SQL Packages and Types
Reference. Sample code is described in Chapter 5 of this manual; the code itself is in
the dm/demo/sample/plsql directory.

4.1 Development Methodology
The development methodology for data mining using the DBMS_DATA_MINING
API is divided into two phases.

The first phase includes your application and data analysis and design, where you
perform the following two steps:

1. Analyze your problem, and choose the mining function and algorithm.

2. Analyze the data to be used for building mining models (build data), testing
predictive models (test data), and the new data on which the model will be
applied (scoring data).

The second phase involves developing a mining application using DBMS_DATA_
MINING and DBMS_DATA_MINING_TRANSFORM packages.

3. Prepare the build, test, and scoring data using the DBMS_DATA_MINING_
TRANSFORM package or other third-party tool or direct SQL or PL/SQL utility
scripts in a manner suitable for the chosen mining function and algorithm. An
important caveat is that the three detests referred to above have to be prepared
in an identical manner for mining results to be meaningful. This is an optional
step.

4. Prepare a settings table that overrides the default mining algorithm for a given
mining function, and the default algorithm settings. This is also an optional
step.

5. Build a mining model for the given training dataset.

6. For predictive models (classification and regression), test the model for its
accuracy and other attributes. This amounts to applying the model on the test
data (i.e., scoring the test data), and computing various matrix on the apply
results.

Mining Models, Function, and Algorithm Settings

 DBMS_DATA_MINING 4-3

7. Retrieve the model signature to determine the mining attributes required by a
given model for scoring. This information will help ascertain that the scoring
data is suitable for a given model. This is an optional step.

8. Apply a classification, regression, clustering, or feature extraction model to new
data to generate predictions and/or descriptive summaries and patterns about
the data.

9. Retrieve the model details to understand why a model scored the data in a
particular manner. This is an optional step.

10. Repeat steps 3 through 9 until you obtain satisfactory results.

4.2 Mining Models, Function, and Algorithm Settings
The DBMS_DATA_MINING package creates a mining model for a mining function
using a specified mining algorithm that supports the function. The algorithm can be
influenced by specific algorithm settings.

4.2.1 Mining Model
A model is identified by its name. Like tables in the database, a model has storage
associated with it. But unlike a table, the form, shape, and content of this storage is
opaque to the user. However, the user can view the contents of a model — that is,
the patterns and rules that constitute a mining model — using algorithm-specific
GET_MODEL_DETAILS functions. In addition, dm_user_models provides the
model size in megabytes.

4.2.2 Mining Function
The DBMS_DATA_MINING package supports Classification, Regression, Association
Rules, Clustering, and Feature Extraction. You can specify your choice of mining
function through a parameter to the CREATE_MODEL procedure.

4.2.3 Mining Algorithm
Each mining function can be implemented using one or more algorithms. Table 4–1
provides a list of supported algorithms. Oracle assumes a default algorithm for each

Mining Models, Function, and Algorithm Settings

4-4 Oracle Data Mining Application Developer’s Guide

mining function, but you can override this default through an explicit setting in the
settings table.

Each algorithm has one or more settings or parameters that influence the way it
builds the model. Oracle assumes a default set of algorithm settings for each mining
algorithm. These defaults are available for your review through the table function
GET_DEFAULT_SETTINGS. To override the defaults, you must provide the choice
of the algorithm and the settings for the algorithm through a settings table input to
the CREATE_MODEL procedure.

4.2.4 Settings Table
The settings table is a simple relational table with a fixed schema. You can choose the
name of the settings table, but the column names and their types must be defined as
specified below.

(setting_name VARCHAR2(30),
setting_value VARCHAR2(128))

The values provided in the settings table override the default values assumed by
the system. The values inserted into the setting_name column are one or more of
several constants defined in the DBMS_DATA_MINING package. Depending on what
the setting name denotes, the value for the setting_value column can be a
predefined constant or the actual numerical value corresponding to the setting
itself. The setting_value column is defined to be VARCHAR2, so you must cast
numerical inputs to string using the TO_CHAR() function before input into the
settings table.

Table 4–1 DBMS_DATA_MINING Summary of Functions and Algorithms

Mining Function Mining Algorithm

Classification Naive Bayes (NB) — default algorithm

Classification Adaptive Bayes Network (ABN)

Classification Support Vector Machine (SVM)

Regression Support Vector Machine (SVM) — default algorithm

Association Rules Apriori Association Rules (AR)

Clustering k-Means (KM)

Feature Extraction Non-Negative Matrix Factorization (NMF)

Mining Models, Function, and Algorithm Settings

 DBMS_DATA_MINING 4-5

Table 4–2 through Table 4–7 list the various setting names and the valid setting
values, with a brief explanation of each setting
.

Table 4–2 DBMS_DATA_MINING Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

algo_name Classification: One of:

■ algo_naive_bayes

■ algo_support_vector_machines

■ algo_adaptive_bayes_network

Regression:

■ algo_support_vector_machines

Association Rules:

■ algo_apriori_association_rules

Clustering:

■ algo_kmeans

Feature Extraction:

■ algo_non_negative_matrix_factor

Attribute Importance:

■ algo_ai_mdl

clas_priors_table_name VARCHAR2 string denoting the name of a relational table of
fixed schema containing prior probabilities. The schema of
this table is provided in Section 4.2.4.1 on page 4-10.

This input is applicable only for classification algorithms.
The prior probabilities table must be present in the current
user’s schema

clus_num_clusters TO_CHAR(numeric_expr >= 1)

Number of clusters generated by a clustering algorithm

Default value is 10

feat_num_features TO_CHAR(numeric_expr >= 1)

Number of features to be extracted

Default value estimated from the data by the algorithm

asso_max_rule_length TO_CHAR(2 <= numeric_expr <= 20)

Maximum rule length for AR algorithm

Default value is 4

Mining Models, Function, and Algorithm Settings

4-6 Oracle Data Mining Application Developer’s Guide

asso_min_confidence TO_CHAR(0 <= numeric_expr <= 1)

Minimum confidence value for AR algorithm

Default value is 0.1

asso_min_support TO_CHAR(0 <= numeric_expr <= 1)

Minimum support value for AR algorithm

Default value is 0.1

Table 4–3 Algorithm Settings for Adaptive Bayes Network

Setting Name Setting Value (with Permissible Value Ranges)

abns_model_type Model type for Adaptive Bayes Network:

■ abns_single_feature (single feature)

■ abns_multi_feature (multi feature

■ abns_naive_bayes (naive bayes)

Default value is abns_multi_feature

abns_max_build_minutes TO_CHAR(numeric_expr >= 0)

The maximum time threshold for completion of model
build. Default value is 0, which implies no time limit.

abns_max_nb_predictors TO_CHAR(numeric_expr > 0)

Maximum number of Naive Bayes predictors to be
considered for model build, when the model type is chosen
to be abns_naive_bayes. Default value is 10.

abns_max_predictors TO_CHAR(numeric_expr > 0)

Default is 25

Table 4–2 DBMS_DATA_MINING Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

Mining Models, Function, and Algorithm Settings

 DBMS_DATA_MINING 4-7

Table 4–4 Algorithm Settings for Naive Bayes

Setting Name Setting Value (with Permissible Value Ranges)

nabs_singleton_threshold TO_CHAR(0 <= numeric_expr <=1)

Value of singleton threshold for NB algorithm

Default value is 0.01

nabs_pairwise_threshold TO_CHAR (0 <= numeric_expr <=1)

Value of pairwise threshold for NB algorithm

Default value is 0.01

Table 4–5 Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)

svms_kernel_function Kernel for Support Vector Machine:

■ svms_linear (for Linear Kernel

■ svms_gaussian (for Gaussian Kernel)

Default value is svms_linear

svms_kernel_cache_size TO_CHAR(numeric_expr > 0)

Value of kernel cache size for SVM algorithm. Applies to
Gaussian kernel only.

Default value is 50000000 bytes

svms_conv_tolerance TO_CHAR(numeric_expr > 0)

Convergence tolerance for SVM algorithm

Default value is 0.001.

svms_std_dev TO_CHAR(numeric_expr > 0)

Value of standard deviation for SVM algorithm

This is applicable only for Gaussian kernel

Default value estimated from the data by the algorithm

svms_complexity_factor TO_CHAR(numeric_expr > 0)

Value of complexity factor for SVM algorithm

Default value estimated from the data by the algorithm

Mining Models, Function, and Algorithm Settings

4-8 Oracle Data Mining Application Developer’s Guide

svms_epsilon TO_CHAR(numeric_expr > 0)

Value of epsilon factor for SVM Regression

Default value estimated from the data by the algorithm

Table 4–6 Algorithm Settings for Non-Negative Matrix Factorization

Setting Name Setting Value (with Permissible Value Ranges)

nmfs_random_seed TO_CHAR(numeric_expr)

Number of iterations for NMF algorithm

Default value is –1

nmfs_num_iterations TO_CHAR(1 <= numeric_expr <= 500)

Number of iterations for NMF algorithm

Default value is 50

nmfs_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for NMF algorithm

Default value is 0.05

Table 4–7 Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)

kmns_distance Distance Function for k-Means Clustering:

■ kmns_euclidean

■ kmns_cosine

■ kmns_fast_cosine

Default value is kmns_euclidean

kmns_iterations TO_CHAR(0 < numeric_expr <= 20)

Number of iterations for k-Means algorithm

Default value is 3

kmns_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for k-Means algorithm

Default value is 0.01

Table 4–5 (Cont.) Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)

Mining Models, Function, and Algorithm Settings

 DBMS_DATA_MINING 4-9

You can create a settings table as shown in the example below for an SVM
classification model, and edit the individual values using SQL DML.

CREATE TABLE drugstore_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(128))

BEGIN

kmns_split_criterion Split criterion for k-Means Clustering:

■ kmns_variance

■ kmns_size

Default value is kmns_variance

kmns_num_bins Number of histogram bins. Specifies the number of
bins in the attribute histogram produced by k-Means.
The bin boundaries for each attribute are computed
globally on the entire training data set. The binning
method is equi-width. All attributes have the same
number of bins with the exception of attributes with a
single value that have only one bin.

Range > 0

Default value is 10.

kmns_block_growth TO_CHAR(1 < numeric_expr <= 5)

Growth factor for memory allocated to hold cluster
data

Default value is 2

kmns_min_pct_attr_support Minimum percentage support required for attributes
in rules. Specifies the minimum percentage of values
for an attribute in a given cluster required to include
this attribute in the rule description of the cluster.
That is, if the required support level is not met, the
attribute would be omitted from the rule. This would
allow retaining in the rule only the well-represented
attributes. Setting the parameter value too high in
data with missing values can result in very short or
even empty rules.

Range >= 0 and <= 1

Default is 0.1.

Table 4–7 (Cont.) Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)

Mining Models, Function, and Algorithm Settings

4-10 Oracle Data Mining Application Developer’s Guide

-- override the default for convergence tolerance for SVM Classification
INSERT INTO drugstore_model_settings (setting_name, setting_value)
VALUES (dbms_data_mining.svms_conv_tolerance, TO_CHAR(0.081));
COMMIT;
END;

The table function GET_DEFAULT_SETTINGS provides you all the default settings
for mining functions and algorithms. If you intend to override all the default
settings, you can create a seed settings table and edit them using DML.

BEGIN
CREATE TABLE drug_store_settings AS
SELECT setting_name, setting_value
 FROM TABLE (DBMS_DATA_MINING.GET_DEFAULT_SETTINGS
 WHERE setting_name LIKE ’SVMS_%’;
-- update the values using appropriate DML
END;

You can also create a settings table based on another model’s settings using GET_
MODEL_SETTINGS, as shown in the example below.

BEGIN
CREATE TABLE my_new_model_settings AS
SELECT setting_name, setting_value

FROM TABLE (DBMS_DATA_MINING.GET_MODEL_SETTINGS(’my_other_
model’));
END;

4.2.4.1 Prior Probabilities Table
Consult Oracle Data Mining Concepts for an explanation of the prior probabilities
table. You can specify a prior probabilities table as an optional function setting
when building classification models.

You must create the prior probabilities table using the fixed schema shown below.
For numerical targets, use the following schema:

target_value NUMBER
prior_probability NUMBER

For categorical targets, use the following schema:

target_value VARCHAR2
prior_probability NUMBER

Mining Models, Function, and Algorithm Settings

 DBMS_DATA_MINING 4-11

Next, provide the name of the prior probabilities table as input to the setting_
value column in the settings table, with the corresponding value for the setting_
name column to be DBMS_DATA_MINING.clas_priors_table_name, as shown
below:

BEGIN
INSERT INTO drugstore_settings (setting_name, setting_value) VALUES (DBMS_
DATA_MINING.class_priors_table_name,
’census_priors’);
COMMIT;
END;

4.2.4.2 Cost Matrix Table
Consult Oracle Data Mining Concepts for an explanation of the cost matrix. You must
create a cost matrix table with the fixed schema shown below. For numerical targets,
use the following schema:

actual_target_value NUMBER
predicted_target_value NUMBER
cost NUMBER

For categorical targets, use the following schema:

actual_target_value VARCHAR2
predicted_target_value VARCHAR2
cost NUMBER

The DBMS_DATA_MINING package enables you to evaluate the cost of predictions
from classification models in an iterative manner during the experimental phase of
mining, and to eventually apply the optimal cost matrix to predictions on the actual
scoring data in a production environment.

The data input to each COMPUTE procedure in the package is the result generated
from applying the model on test data. In addition, if you also provide a cost matrix
as an input, the COMPUTE procedure generates test results taking the cost matrix
into account. This enables you to experiment with various costs for a given
prediction against the same APPLY results, without rebuilding the model and
applying it against the same test data for every iteration.

Once you arrive at an optimal cost matrix, you can then input this cost matrix to the
RANK_APPLY procedure along with the results of APPLY on your scoring data.
RANK_APPLY will provide your new data ranked by cost.

Mining Operations and Results

4-12 Oracle Data Mining Application Developer’s Guide

4.3 Mining Operations and Results
There are essentially four classes of mining operations supported by the DBMS_
DATA_MINING package:

■ Operations that create, drop, and rename a model: CREATE_MODEL, DROP_
MODEL, RENAME_MODEL.

■ Operation that reads a model to score new data: APPLY.

■ Operation that enables ranking of APPLY results or other data that is presented
using the same schema as that of APPLY results: RANK_APPLY.

■ Operations that read and describe a model: GET_MODEL_DETAILS, GET_
MODEL_SETTINGS, GET_MODEL_SIGNATURE.

■ Operations that help test a classification model, based on the results of an
APPLY operation on the test data, or based on any other data that is presented
using the same schema as that of the APPLY results: COMPUTE_CONFUSION_
MATRIX, COMPUTE_LIFT, and COMPUTE_ROC.

■ Operations that help transport a model from one schema to another, or from
one database instance to another: EXPORT_MODEL, IMPORT_MODEL.

■ GET_DEFAULT_SETTINGS returns default values for all the settings.

Of these, the first set represents DDL-like operations. The last set represents utilities.
The rest are query-like operations in that they do not modify the model. Besides
these operations, the following capabilities are also provided as part of the Oracle
Data Mining installation:

■ User Views — DM_USER_MODELS

■ Queries to compute metrics that test regression models.

Mining results are either returned as result sets or persisted as fixed schema tables.

4.3.1 Build Results
The CREATE_MODEL operation creates a mining model. The viewable contents of a
mining model are provided to you through GET_MODEL_DETAILS functions for
each supported algorithm. In addition, GET_MODEL_SIGNATURE and GET_MODEL_
SETTINGS provide descriptive information about the model.

Mining Operations and Results

 DBMS_DATA_MINING 4-13

4.3.2 Apply Results
The APPLY operation creates and populates a fixed schema table with a given name.
The schema of this table varies based on the particular mining function, algorithm,
and target attribute type — numerical or categorical.

The RANK_APPLY operation takes this results table as input and generates another
table with results ranked based on a top-N input, and for classification models, also
based on cost. The schema of this table varies based on the particular mining
function, algorithm, and the target attribute type — numerical or categorical.

4.3.3 Test Results for Classification Models
The COMPUTE routines provided in the package are the most popularly used metrics
for classification. They are not tied to a particular model — they can compute the
metrics from any meaningful data input as long as the schema of the input tables
fits the specification of the apply results table and the targets tables. Please consult
any of the COMPUTE descriptions in this document for details.

4.3.4 Test Results for Regression Models
The most commonly used metrics for regression models are root mean square error
and mean absolute error. You can use the simple SQL queries provided below to
compute these metrics by replacing the italicized tokens with table and column
names appropriate for your application.

4.3.4.1 Root Mean Square Error
SELECT sqrt(avg((A.prediction - B.target_column_name) *
 (A.prediction - B.target_column_name))) rmse
 FROM apply_results_table A, targets_table B
 WHERE A.case_id_column_name = B.case_id_column_name;

4.3.4.2 Mean Absolute Error
Given the targets_table generated from the test data with the schema:

(case_id_column_name VARCHAR2,
target_column_name NUMBER)

and apply results table for regression with the schema:

(case_id_column_name VARCHAR2,
prediction NUMBER)

Mining Data

4-14 Oracle Data Mining Application Developer’s Guide

and a normalization table (optional) with the schema:

(attribute_name VARCHAR2(30),
scale NUMBER,
shift NUMBER)

the query for mean absolute error is:

SELECT /*+PARALLEL(T) PARALLEL(A)*/
 AVG(ABS(T.actual_value - T.target_value)) mean_absolute_error
 FROM (SELECT B.case_id_column_name
 (B.target_column_name * N.scale + N.shift) actual_value
 FROM targets_table B,
 normalization_table N
 WHERE N.attribute_name = B.target_column_name AND
 B.target_column_name = 1) T,
 apply_results_table_name A
 WHERE A.case_id_column_name = T.case_id_column_name;

You can fill in the italicized values with the actual column and table names chosen
by you. If the data has not undergone normalization transformation, you can
eliminate those references from the subquery. See
dm/demo/sample/plsql/svmrdemo.sql for an example.

4.4 Mining Data
The data input for all the mining operations should be through standard relational
tables, where each row in the table represents a case, and each column in the table
uniquely represents a mining attribute. We call this format single-record case.

A table in the Oracle RDBMS supports 1000 columns. The DBMS_DATA_MINING
package requires a mandatory case identifier column, which implies that you can
provide 999 mining attributes using this representation, which is adequate for most
business applications.

4.4.1 Wide Data Support
The notable exceptions to the common scenario are applications in the domains of
bioinformatics, text mining, and such specialized areas where data is characterized
to be wide and shallow — with relatively few cases numbering in the thousands, but
with several thousand mining attributes.

You can provide such data in a multi-record case format, where attribute, value
pairs are grouped into collections (nested tables) associated with a given case-id.

Mining Data

 DBMS_DATA_MINING 4-15

You must use the fixed collection types DM_Nested_Numericals and DM_
Nested_Categoricals to define columns that represent collections of numerical
attributes and categorical attributes respectively.

A few caveats on the use of multi-record case format:

■ You can intersperse columns defined to be of the two types referred to above
with scalar columns that represent individual attributes in a table or view.

■ For a given case-id, attribute names have to be unique across all the collections
and individual columns.

■ Target (for classification, regression) must be a non-nested attribute. We cannot
accept a target attribute represented in a nested column or the nested column
itself.

From a data modeling perspective, the multi-record case format is analogous to the
dimension-fact relationship commonly found in OLAP applications, where the
dimension and fact tables are aggregated based on a common key for generating
reports using materialized views or SQL queries.

The main distinction between the OLAP fact table and the multi-record case is this:
Each row in the fact table represents a column value, whereas each row in the
multi-record collection represents an attribute name (paired with its corresponding
value in another column in the nested table). The two fixed collection types are
provided to highlight and enforce this distinction. These two types are defined with
the reasonable assumption that mining attributes of the same type (numericals
versus categoricals) are generally grouped together, just as a fact table contains
values that logically correspond to the same entity.

Oracle strongly recommends that you present your multi-record case data using
object views, and present the view as input to CREATE_MODEL and APPLY
operations. Apart from the benefit of providing all your mining attributes through a
single row-source without impacting their physical data storage, the view acts as a
join specification on the underlying tables that can be used by the server for
efficiently accessing your data.

We illustrate this discussion on wide data with a real-world example of an
analytical pipeline for brain tumor research. The datasets of relevance are gene
expression data from the instruments (fact table), and the clinical data about the
patient (dimension table). The schemas of these tables are provided below.

Mining Data

4-16 Oracle Data Mining Application Developer’s Guide

4.4.1.1 Clinical Data — Dimension Table
(case_id NUMBER,
name VARCHAR2(30)
type VARCHAR2(30)
subtype VARCHAR2(30),
gender CHAR(1),
age NUMBER,
status VARCHAR2(30))

4.4.1.2 Gene Expression Data — Fact Table
(case_id NUMBER,
gene VARCHAR2(30),
expr NUMBER)

Let us consider building a model with status as the target prediction, and with
sex, age, and expr being the predictors. You can provide the build data input
using an object view that combines the clinical_data table and the gene_
expression_data table with the schema:

(case_id NUMBER,
gender CHAR(1),
age NUMBER,
gene_expr DM_Nested_Numericals,
status VARCHAR2(30))

The query for constructing such an object view is relatively simple in Oracle SQL:

CREATE OR REPLACE VIEW gene_expr_build AS
SELECT C.case_id,

C.gender,
C.age,
CAST(MULTISET(
SELECT gene, expr
 FROM gene_expression_data
 WHERE case_id = C.case_id) AS DM_Nested_Numericals
) gene_expr,
C.status

 FROM clinical_data C

Now gene_expr_build can be provided as the input data_table_name for
CREATE_MODEL.

Mining Data

 DBMS_DATA_MINING 4-17

4.4.2 Attribute Types
Oracle Data Mining handles categorical and numerical attributes. See Oracle Data
Mining Concepts for explanation and examples of attribute types.

The DBMS_DATA_MINING package infers the attribute type based on the type of the
column representing the mining attribute. You must define all columns representing
numerical attributes to be of type NUMBER. You must define all columns
representing categorical attributes to be of type VARCHAR2 or CHAR.

In situations where you have numbers that are deemed categorical data by your
application logic, you must typecast such attribute values using the TO_CHAR()
operator and populate them into a VARCHAR2 or CHAR column representing the
mining attribute.

In situations where you have numeric attribute values stored in a CHAR or
VARCHAR2 column, you must typecast those attribute values using the TO_
NUMBER() operator and store them in a NUMBER column.

If persisting these transformed values in another table is not a viable option, you
could also create a view with these conversions in place, and provide the view
name to represent the training data input for the CREATE_MODEL operation.

4.4.3 Target Attribute
Classification and Regression algorithms require a target attribute. The package
supports single targets. The target attribute for all classification algorithms can be
numerical or categorical. SVM Regression supports only numerical target attributes.

4.4.4 Data Transformations
All mining operations assume the incoming data to be already prepared and
transformed. You can preprocess your data using the DBMS_DATA_MINING_
TRANSFORM package, or by using any third-party tool, or using your own
homegrown utilities based on SQL and/or PL/SQL scripts.

If you preprocess or transform the input data, you must also reverse-transform the
results from APPLY to map the data back to its original form.

See PL/SQL Packages and Types Reference for a description of the DBMS_DATA_
MINING_TRANSFORM package.

The suggestion to customers with wide data is to perform transforms before
forming WD views on data in single-record (2D) or multi-record (transactional)
format. It is possible to use dbmsdmxf for multi-record format. In this case, all

Performance Considerations

4-18 Oracle Data Mining Application Developer’s Guide

attributes are transformed in a similar way. In most of the cases, attributes in
transactional (multi-record) form are of the same scale and thus this approach
works. Otherwise, our suggestion is to split the data into sets of similar items and
then transform them separately.

4.5 Performance Considerations
If you have mining attributes numbering in the few hundreds, and your application
requires them to be represented as columns in the same row of the table, here are
some data storage issues to consider. For a table with several columns, the key
question to consider is the (average) row length, not the number of columns.
Having more than 255 columns in a table built with a smaller block size typically
results in intra-block chaining. Oracle stores multiple row pieces in the same block
owing to pragmatics of design, but the overhead to maintain the column
information is minimal as long as all row pieces fit in a single data block. If the rows
don’t fit in a single data block, you may consider using a larger database block size
(or use multiple block sizes in the same database). For more details, consult the
Oracle Data Mining Concepts and the Oracle Database Performance Tuning Guide.

4.6 Rules and Limitations for DBMS_DATA_MINING
The use of DBMS_DATA_MINING is subject to the following rules and limitations:

■ The CREATE_MODEL and APPLY operations require a case identifier column of
type VARCHAR2, CHAR, or NUMBER. The length of the case identifier values is
limited to 128 bytes.

■ The model name must not be greater than 25 bytes in length, must not be
enclosed in quotes, and should not contain any special characters except
underscores (’_’). In other words, DBMS_DATA_MINING does not treat model
names in a case-sensitive manner like Oracle schema objects and up-cases all
model names internally.

■ All schema objects with prefix DM_, DMP, DMJ, DM$T are system objects that
should not be read or updated by the user. Direct queries against these tables
may be possible, but the queries may provide meaningless results. Direct DML
against these tables can irrevocably corrupt your model. Hence Oracle strongly
recommends that you do not perform any operations on these system objects.

■ Oracle Data Mining does not support a general privilege model that spans
multiple users. GRANT and REVOKE of read and update privileges on a mining
model across user schemas are not yet supported. The user can only read and
update models that are generated in a given schema owned by that user.

Summary of Data Types, Constants, Exceptions, and User Views

 DBMS_DATA_MINING 4-19

Models in one schema or database instance can be exported using EXPORT_
MODEL to other schemas or database instances.

■ As a corollary, results of all mining operations are restricted to being generated
in the schema corresponding to the user session from which a particular mining
operation is launched.

■ In any given session, you must commit all DML to schema objects before
invoking operations in the DBMS_DATA_MINING package.

4.7 Summary of Data Types, Constants, Exceptions, and User Views
The DBMS_DATA_MINING and the DBMS_DATA_MINING_TRANSFORM packages use
the data types shown in Table 4–8.

Table 4–8 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose

DM_ABN_Detail This type represents each row of the model detail output
generated by GET_MODEL_DETAILS_ABN

DM_ABN_Details This type represents the ABN model details generated by GET_
MODEL_DETAILS_ABN

DM_Centroid This type represents the centroid of a cluster. It is used when
retrieving cluster details using GET_MODEL_DETAILS_KM.

DM_Child This type represents each child node of a cluster

DM_Children This type represents a set of children nodes for a given cluster
identifier

DM_Cluster This type represents a cluster retrieved using GET_MODEL_
DETAILS_KM

DM_Clusters This type represents a set of clusters

DM_Conditional This type represents each conditional probability from a set of
conditional probabilities associated with each mining attribute
used in a Naive Bayes or Adaptive Bayes Network model

DM_Conditionals This type represents conditional probabilities associated with a
given mining attribute used in a Naive Bayes or Adaptive
Bayes Network model. It is used when retrieving model details
using GET_MODEL_DETAILS_NB or GET_MODEL_DETAILS_
ABN respectively.

Summary of Data Types, Constants, Exceptions, and User Views

4-20 Oracle Data Mining Application Developer’s Guide

DM_Histogram_Bin This type represents a histogram associated with a cluster
identifier. It is used when retrieving cluster details using GET_
MODEL_DETAILS_KM

DM_Histograms This type represents a set of histograms

DM_Item This type represents an item in a set of items

DM_Items This type represents the set of items in an ItemSet

DM_ItemSet This type represents an ItemSet

DM_ItemSets This type represents frequent Itemsets in Association
models.

DM_Model_Settings This type represents the algorithm settings retrieved using the
GET_MODEL_SETTINGS function.

DM_Model_Signature This type represents a list of model signature attributes
generated by GET_MODEL_SIGNATURE

DM_Modelname_List This type represents a list of model names provided as input
for the parameter model_names in EXPORT_MODEL and
IMPORT_MODEL procedures.

DM_NB_Detail his type represents the each row of the model detail output
generated by GET_MODEL_DETAILS_NB

DM_NB_Details This type represents the NB model details generated by GET_
MODEL_DETAILS_NB.

DM_Nested_
Categoricals

This type represents a nested table of categorical attributes,
used for representing wide data.

DM_Nested_Numericals This type represents a nested table of numerical
attributes, used for representing wide data.

DM_NMF_Attribute This type represents each attribute in an attribute set for NMF
model details

DM_NMF_Attribute_Set This type represents a set of attributes that correspond to a
feature identifier, returned by GET_MODEL_DETAILS_NMF.

DM_NMF_Feature This type represents a feature in a NMF model

DM_NMF_Feature_Set This type represents a set of features returned by GET_MODEL_
DETAILS_NMF.

DM_Predicate This type represents each predicate in the set of predicates in a
rule.

Table 4–8 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose

Summary of Data Types, Constants, Exceptions, and User Views

 DBMS_DATA_MINING 4-21

.Table 4–9 through Table 4–16 list the constants to be used for various settings in the
settings table.

DM_Predicates This type represents a set of predicates that constitute either
the antecedent or the consequent of a rule.

DM_Ranked_Attribute This type represents an entry in the set of ranked attribute
returned by GET_MODEL_DETAILS_AI, ranked by the
attribute’s importance.

DM_Ranked_Attributes This type represents a list of ranked attributes returned by
GET_MODEL_DETAILS_AI.

DM_Rule This type represents each rule in a list of rules generated by
either GET_ASSOCIATION_RULES or GET_MODEL_DETAILS_
KM.

DM_Rules This type represents rules retrieved for Association Rules or
k-means models using GET_ASSOCIATION_RULES and GET_
MODEL_DETAILS_KM respectively.

DM_SVM_Attribute This type represents each attribute in an attribute set for SVM
model details

DM_SVM_Attribute_Set This type represents a set of attributes returned by GET_
MODEL_DETAILS_SVM for a linear model.

DM_SVM_Linear_Coeff This type represents an entry in the set of linear coefficients
returned by GET_MODEL_DETAILS_SVM

DM_SVM_Linear_Coeff_
Set

This type represents the set of linear coefficients returned by
GET_MODEL_DETAILS_SVM for an SVM model built using the
linear kernel.

Table 4–9 DBMS_DATA_MINING Constants Summary: Mining Function

Constant Purpose

association Parameter value for mining_function in CREATE_
MODEL, representing association mining function

attribute importance Parameter value for mining_function in CREATE_
MODEL, representing attribute importance mining
function

classification Parameter value for mining_function in CREATE_
MODEL, representing classification mining function

Table 4–8 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose

Summary of Data Types, Constants, Exceptions, and User Views

4-22 Oracle Data Mining Application Developer’s Guide

regression Parameter value for mining_function in CREATE_
MODEL, representing regression mining function

clustering Parameter value for mining_function in CREATE_
MODEL, representing clustering mining function

feature_extraction Parameter value for mining_function in CREATE_
MODEL, representing Feature Extraction mining function

Table 4–10 DBMS_DATA_MINING Constants Summary: Function Settings

Constant Purpose

clas_priors_table_name Setting name representing prior probability table name for
classification function

clus_num_clusters Setting name representing number of clusters for clustering
function

feat_num_features Setting name representing number of features for feature
selection function

asso_max_rule_length Setting name representing maximum rule length

asso_min_confidence Setting name representing minimum confidence

asso_min_support Setting name representing minimum support

Table 4–11 DBMS_DATA_MINING Constants Summary: Algorithm Settings

Constant Purpose

algo_name Setting name representing the mining algorithm

algo_apriori_association_rules Setting value for Apriori algorithm for
association rules

algo_naive_bayes Setting value for Naive Bayes (NB) algorithm for
classification

algo_support_vector_machines Setting value for Support Vector Machine (SVM)
algorithm for classification or regression

algo_nonnegative_matrix_factor Setting value for Non-Negative Matrix
Factorization (NMF) for feature selection

algo_kmeans Setting value for k-Means (KM) for clustering

Table 4–9 (Cont.) DBMS_DATA_MINING Constants Summary: Mining Function

Constant Purpose

Summary of Data Types, Constants, Exceptions, and User Views

 DBMS_DATA_MINING 4-23

algo_ai_mdl Setting value for Minimum Description Length
based algorithm for Attribute Importance.

Table 4–12 DBMS_DATA_MINING Constants Summary: Adaptive Bayes Network

Constant Purpose

abns_model_type Setting name representing ABN model type

abns_single_feature Setting value representing single feature ABN model

abns_multi_feature Setting value representing multi feature ABN model

abns_naive_bayes Setting value representing Naive Bayes ABN model

abns_max_build_minutes Setting name representing maximum time threshold to
complete an ABN model build

abns_max_nb_predictors Setting name representing the maximum number of Naive
Bayes predictors to be considered for building an ABN
model of type abns_naive_bayes

Table 4–13 DBMS_DATA_MINING Constants Summary: Naive Bayes

Constant Purpose

nabs_singleton_threshold Setting value for singleton threshold for Naive Bayes

nabs_pairwise_threshold Setting value for pair-wise threshold for Naive Bayes

Table 4–14 DBMS_DATA_MINING Constants Summary: Support Vector Machines

Constant Purpose

svms_kernel_function Setting name representing the kernel function for SVM

svms_linear Setting value for Linear Kernel for SVM

svms_guassian Setting value for Gaussian Kernel for SVM

svms_kernel_cache_size Setting name representing for Kernel Cache Size for Support
Vector Machine

svms_conv_tolerance Setting name representing tolerance for SVM

svms_std_dev Setting name representing standard deviation for

Table 4–11 (Cont.) DBMS_DATA_MINING Constants Summary: Algorithm Settings

Constant Purpose

Summary of Data Types, Constants, Exceptions, and User Views

4-24 Oracle Data Mining Application Developer’s Guide

svms_complexity_factor Setting name representing complexity factor for SVM

svms_epsilon Setting name representing epsilon for SVM Regression

Table 4–15 DBMS_DATA_MINING Constants Summary: Non-Negative Matrix
Factorization

Constant Purpose

nmfs_num_iterations Setting name representing number of iterations

nmfs_conv_tolerance Setting name representing convergence tolerance

nmfs_random_seed Setting name representing random seed for NMF

Table 4–16 DBMS_DATA_MINING Constants Summary: k-Means

Constant Purpose

kmns_distance Setting name representing distance function

kmns_euclidean Setting value representing Euclidean distance
function

kmns_cosine Setting value representing cosine distance function

kmns_fast_cosine Setting value representing fast cosine distance
function

kmns_iterations Setting name representing number of iterations

kmns_conv_tolerance Setting name representing convergence tolerance

kmns_split_criterion Setting name representing split criterion

kmns_variance Setting value representing variance as the split
criterion

kmns_size Setting value representing size as the split criterion

kmns_block_growth Setting name representing growth factor for memory
allocated to hold cluster data

kmns_num_bins Setting value for number of histogram bins

kmns_min_pct_attr_support Setting value for minimum percentage report
required for attributes in rules

Table 4–14 (Cont.) DBMS_DATA_MINING Constants Summary: Support Vector

Constant Purpose

Summary of Data Types, Constants, Exceptions, and User Views

 DBMS_DATA_MINING 4-25

Table 6–18 lists the errors generated by DBMS_DATA_MINING.

Table 4–17 DBMS DATA_MINING Errors Summary

Oracle Error Description

ORA-40201 Invalid input parameter %s

ORA-40202 Column %s does not exist in the input table %s

ORA-40203 Model %s does not exist

ORA-40204 Model %s already exists

ORA-40205 Invalid setting name %s

ORA-40206 Invalid setting value for setting name %s

ORA-40207 Duplicate or multiple function settings

ORA-40208 Duplicate or multiple algorithm settings for function %s

ORA-40209 Invalid setting: %s for function %s

ORA-40211 Algorithm name: %s is invalid

ORA-40212 Invalid target data type in input data for function: %

ORA-40213 Contradictory values for settings: %s, %s

ORA-40214 Duplicate setting: %s

ORA-40215 Model %s is incompatible with current operation

ORA-40216 Feature not supported

ORA-40219 Apply result table %s is incompatible with current operation

ORA-40220 Maximum number of attributes exceeded

ORA-40221 Maximum target cardinality exceeded

ORA-40222 Data mining model export failed, job name=%s, error=%s

ORA-40223 Data mining model import failed, job name=%s, error=%s

ORA-40225 Model is currently in use by another process

ORA-40251 No support vectors were found

ORA-40252 No target values were found

ORA-40253 No target counter examples were found

ORA-40261 Input data for model build contains negative values

ORA-40262 NMF: number of features not between [1, %s]

Summary of DBMS_DATA_MINING Subprograms

4-26 Oracle Data Mining Application Developer’s Guide

Table 4–18 lists the user views provided by Oracle to obtain information about the
models generated using DBMS_DATA_MINING.

4.8 Summary of DBMS_DATA_MINING Subprograms
.

ORA-40271 No statistically significant features were found

ORA-40272 Apply rules prohibited for this model mode

ORA-40273 Invalid model type %s for Adaptive Bayes Network algorithm

Table 4–18 DBMS_DATA_MINING Summary of User Views

User View Purpose

DM_USER_MODELS Lists all models in a given user’s schema.

Table 4–19 DBMS_DATA_MINING Summary of Subprograms

Data Type Purpose

APPLY Procedure Applies a model to scoring data

CREATE_MODEL Procedure Creates (builds) a mining model

COMPUTE_CONFUSION_
MATRIX Procedure

Computes the confusion matrix from the APPLY results on
test data for a classification model; also provides the
accuracy of the model

COMPUTE_LIFT Procedure Computes lift for a given positive target value from the
APPLY results on test data for a classification model

COMPUTE_ROC Procedure Computes Receiver Operating Characteristic for target
attributes with binary class from the APPLY results on test
data for a classification model.

DROP_MODEL Procedure Drops a model

EXPORT_MODEL Procedure Exports one or more models from a schema

GET_ASSOCIATION_RULES
Function

This table function returns the rules from an Association
model

GET_DEFAULT_SETTINGS
Function

This table function returns all the default settings for all
mining functions and algorithms.

Table 4–17 DBMS DATA_MINING Errors Summary

Oracle Error Description

Model Export and Import

 DBMS_DATA_MINING 4-27

4.9 Model Export and Import
Data mining models can be moved between Oracle databases or schemas. For
example, in an organization, data mining specialists may build and test data mining
models in a data mining lab. After models are built and tested in the lab, the chosen
model may be moved to a scoring engine used by applications. Because data
mining lab and scoring engine usually do not share the same database, the model
must be exported from the lab and then imported to the scoring engine. Model
export and import can be a routine procedure. As new data are accumulated, data
mining specialists will build and test new models, and newer and better models
will be loaded onto the scoring engine on a regular basis. DBAs will want to back
up and restore models in their routine database maintenance.

Native export and import of data mining models are supported in the following
scenarios:

GET_FREQUENT_ITEMSETS
Function

Returns a set of rows that represent the frequent itemsets
from an Association model.

GET_MODEL_DETAILS_ABN
Function

Provides the details of an Adaptive Bayes Network
model

GET_MODEL_DETAILS_KM
Function

Provides the details of a k-Means model

GET_MODEL_DETAILS_NB
Function

Provides the details of a Naive Bayes model

GET_MODEL_DETAILS_NMF
Function

Provides the details of an NMF model

GET_MODEL_DETAILS_SVM
Function

Provides the details of a SVM model

GET_MODEL_SETTINGS
Function

Provides the settings used to build a model

GET_MODEL_SIGNATURE
Function

Provides the signature of a model

IMPORT_MODEL Procedure Imports one or more models into the current schema

RANK_APPLY Procedure Ranks the predictions from the APPLY results for a
classification model

RENAME_MODEL Procedure Renames a model

Table 4–19 (Cont.) DBMS_DATA_MINING Summary of Subprograms

Data Type Purpose

Model Export and Import

4-28 Oracle Data Mining Application Developer’s Guide

■ Database export/import: When a DBA exports a full database using utility
expdp, all the existing data mining models in the database are exported. By the
same token, when a DBA imports a database dump using utility impdp, all the
data mining models in the dump are restored.

■ Schema export/import: When a user or DBA exports a schema using expdp, all
the data mining models in the schema are exported. When the user or DBA
imports the schema dump using impdp, all the models in the dump are
imported.

■ Selective model export/import: Users can export specific models using DBMS_
DATA_MINING.EXPORT_MODEL and import specified models using DBMS_
DATA_MINING.IMPORT_MODEL.

4.9.1 Limitations
The use of model export and import is subject to the following limitations:

■ Only models built by the DBMS_DATA_MINING interface are supported.

■ Only local export and import via dump files is supported. That is, models from
a given local schema or database can be exported into a dump file. Models in a
dump file can be imported into a local database or schema.

4.9.2 Prerequisites
Prerequisites for model export are as follows:

■ A valid directory object must be made available to the operator who has write
privileges. See CREATE_DIRECTORY in the PL/SQL Packages and Types Reference.

■ The source must be an Oracle database with Data Mining option installed.

■ For database and schema export, the new Data Pump utility expdp must be
used.

Prerequisites for model import are as follows:

■ There must be a valid directory object pointing to where dump files reside, and
the operator must have read and write privileges.

■ The destination database must have Data Mining option or Data Mining
Scoring Engine option installed.

■ Dump files must be created by expdp or EXPORT_MODEL.

Model Export and Import

 DBMS_DATA_MINING 4-29

■ For database and schema import, the new Data Pump import utility impdp
must be used

See also:

■ Data Pump Export, Oracle 10g Database Utilities, Part I.

■ Data Pump Import, Oracle 10g Database Utilities, Part II.

4.9.3 Choose the Right Utility
There are two ways to export models:

■ Export all models, in a user schema or in the entire database.

■ Export selected models in a user schema.

To export all data mining models in a user schema, you can either run expdp or use
EXPORT_MODEL with the parameter model_filter set to NULL. Note the
difference between the two operations: When you run expdp to export the schema,
all objects in the schema including data mining models are exported. When you run
EXPORT_MODEL with a NULL model_filter, only the models will be exported.

There are also two ways to import models from the dump file:

■ Import all models as well as other database objects and data.

■ Import models only, either all or a selected few from the dump file.

In general, if you want to import the full dump file set, run impdp. This imports all
database objects and data, including all data mining models, from the dump file set.
If you want to import models only, use IMPORT_MODEL. When the parameter
model_filter is set to NULL, all models are imported from the dump. If valid
model names are assigned in model_filter, this operation imports only named
models from the dump file set.

4.9.4 Temp Tables
Data mining model export and import jobs will create and manage two temporary
tables in the user schema: DM$P_MODEL_EXPIMP_TEMP and DM$P_MODEL_
TABKEY_TEMP. Users should not manipulate these tables.

Model Export and Import

4-30 Oracle Data Mining Application Developer’s Guide

ODM PL/SQL Sample Programs 5-1

5
 ODM PL/SQL Sample Programs

This chapter provides sample code using DBMS_DATA_MINING for all the
supported algorithms. The dataset used is the Drug Depot dataset that is available
as part of the sample schema in Oracle10g. Please refer to Oracle Database Sample
Schemas for information on sample schemas.

All samples are available in the directory $ORACLE_
HOME/dm/demo/sample/plsql.

ODM sample datasets need to be loaded into a user schema prior to using the
sample programs. Refer to the following scripts for creating Oracle tablespace, user
schema, and loading ODM sample datasets:

$ORACLE_HOME/dm/admin/odmtbs.sql
$ORACLE_HOME/dm/admin/odmuser.sql
$ORACLE_HOME/dm/admin/dmuserld.sql
$ORACLE_HOME/dm/admin/dmshgrants.sql

5.1 Overview of ODM PL/SQL Sample Programs
The ODM PL/SQL sample programs illustrate the main operations of the data
mining process:

■ Preparing the data

■ Building a model

■ Testing the model

■ Applying the model to new data (scoring the data)

Data mining models can be either supervised or unsupervised.

Supervised models predict the value of a specified variable, called the target
variable, together with the confidence associated with each prediction. Supervised

Overview of ODM PL/SQL Sample Programs

5-2 Oracle Data Mining Application Developer’s Guide

models are illustrated in the sample programs for Naive Bayes (NB), Adaptive
Bayes Networks (ABN), and Support Vector Machines (SVM).

Unsupervised models have no target variable; they are used to predict group
membership or relationships of an individual. Unsupervised models are illustrated
in the sample programs for Clustering, Association Rules, and Non-Negative
Matrix Factorization. Attribute Importance is also illustrated.

The PL/SQL sample programs rely on two sets of data:

■ Individual datasets: All samples named algorithm_demo.sql are based on
these datasets. These datasets must be loaded using $ORACLE_
HOME/dm/admin/dmuserld.sql in the user schema executing these demos.

■ SH schema dataset: All samples named algorithm_sh.sql are based on
datasets derived from the SH schema. The SH schema must be installed as part
of RDBMS installation. The script
$ORACLE_HOME/dm/admin/dmshgrants.sql must be run by a user with
privileges to access the SH schema, and the script
$ORACLE_HOME/dm/admin/dmsh.sql must be run in the user schema
executing these demos.

The file $ORACLE_HOME/dm/demo/data/README.txt explains the datasets.

Each sample program for demonstrating Classification (NB, ABN, SVM) contains
code that prepares the input data using DBMS_DATA_MINING_TRANSFORM, builds a
model, tests a model, and then scores the model against new data. It demonstrates
how to generate test results such as a confusion matrix, lift, ROC, and ranked Apply
results.

The samples for Regression using SVM normalize the input data, build models, and
test models using metrics such as root mean squared error, apply the models to new
data, and generate ranked results.

The samples for Association demonstrate model build, and show how to obtain
frequent itemsets and association rules for a given support and confidence.

The samples for Clustering demonstrate model build, and show how to obtain
clustering details such as histograms, child nodes, and rules. The clusters are scored
and ranked based on their probability.

The samples for Feature Extraction demonstrate model build, and show how to
obtain details of various features. The features are scored and ranked based on their
probability.

There is one sample program demonstrating the BLAST interface for biological
sequence match and alignment.

Summary of ODM PL/SQL Sample Programs

 ODM PL/SQL Sample Programs 5-3

Finally, there are three sample programs that demonstrate text mining for extracting
features from a text document into a nested table column, text classification using
SVM, and text feature extraction using NMF, respectively.

5.2 Summary of ODM PL/SQL Sample Programs
All the sample programs listed in the tables below are located in the directory
$ORACLE_HOME/dm/demo/sample/plsql.

The summary description of these sample programs is also provided in $ORACLE_
HOME/dm/demo/sample/plsql/README.txt.

Table 5–1 PL/SQL Samples Based on Individual Datasets

Sample Program Description

aidemo.sql Attribute Importance using an MDL-based algorithm.

abndemo.sql Classification using Adaptive Bayes Network algorithm

ardemo.sql Association using Apriori algorithm

blastdemo.sql BLAST sequence matching and alignment

kmdemo.sql Clustering using k-Means algorithm

nbdemo.sql Classification using Naive Bayes algorithm

nmfdemo.sql Feature Extraction using NMF algorithm

svmcdemo.sql Classification using SVM algorithm

svmrdemo.sql Regression using SVM algorithm

Table 5–2 PL/SQL Samples Based on SH Schema

Sample Program Description

ai_sh.sql Attribute Importance using an MDL-based algorithm

abn_sh.sql Classification using Adaptive Bayes Network algorithm

ar_sh_.sql Association using Apriori algorithm

akm_sh.sql Clustering using k-Means algorithm

nb_sh.sql Classification using Naive Bayes algorithm

nmf_sh.sql Feature Extraction using NMF algorithm

Summary of ODM PL/SQL Sample Programs

5-4 Oracle Data Mining Application Developer’s Guide

svmc_sh.sql Classification using SVM algorithm

svmr_sh.sql Regression using SVM algorithm

textfe.sql Demonstrates extracting text features from a CLOB/VARCHAR2
column into a nested table column in a table that can be
provided as input to CREATE_MODEL

textnmf.sql Text feature extraction using NMF

textsvmc.sql Text classification using SVM

Table 5–2 (Cont.) PL/SQL Samples Based on SH Schema

Sample Program Description

Sequence Matching and Annotation (BLAST) 6-1

6
 Sequence Matching and Annotation

(BLAST)

This chapter describes table functions included with ODM that permit you to
perform similarity searches against nucleotide and amino acid sequence data stored
in an Oracle database. You can use the table functions described in this chapter for
ad hoc searches or you can embed them in applications. The inclusion of these table
functions in ODM positions Oracle as a platform for bioinformatics.

This chapter discusses the following topics:

■ NCBI BLAST

■ Using ODM BLAST

6.1 NCBI BLAST
The National Center for Biotechnology Information (NCBI) implemented one of the
commonly used versions of the Basic Local Alignment Search Tool (BLAST).

Sequence alignments provide a way to compare new sequences with previously
characterized sequences. Both functional and evolutionary information can be
inferred from well-designed queries and alignments. BLAST provides a method for
searching of both nucleotide and protein databases. Since the BLAST algorithm
detects local alignments, regions of similarity embedded in otherwise unrelated
sequences can be detected.

The BLAST algorithm searches nucleotide and amino acid query sequences against
databases of nucleotide and amino acid sequences. Based on the nature of the query
and the database sequences, NCBI BLAST provides the following variants:

■ BLASTP compares an amino acid query sequence against an amino acid
sequence database.

Using ODM BLAST

6-2 Oracle Data Mining Application Developer’s Guide

■ BLASTN compares a nucleotide query sequence against a nucleotide sequence
database.

■ BLASTX compares a nucleotide query sequence translated along all six reading
frames (both strands) against a amino acid sequence database.

■ TBLASTN compares an amino acid query sequence against a nucleotide
sequence database translated along all six reading frames (both strands).

■ TBLASTX compares the six-frame translations of a nucleotide query sequence
against the six-frame translations of a nucleotide sequence database.

For more information about NCBI BLAST, see the NCBI BLAST Home Page at
http://www.ncbi.nlm.nih.gov/BLAST/.

The table functions described in this chapter implement several of the variants of
NCBI BLAST version 2.0.

6.2 Using ODM BLAST
This section contains several examples of using the ODM BLAST table functions to
perform searches on nucleotide or amino acid sequences.

Most table function parameters have defaults. The defaults were carefully chosen so
that users who have limited experience with BLAST will obtain good results.

6.2.1 Using BLASTN_MATCH to Search DNA Sequences
The BLAST table functions accept the CLOB (Character Large OBject) data type as
the query sequence. It is not possible to construct a CLOB in an ad hoc SQL query.
One way to construct a CLOB is to create a table and insert the query sequence into
the table. Another option is to construct a CLOB using the programmatic interface if
the BLAST query is part of a larger program. Suppose that the table query_db has
the schema (sequence_id VARCHAR2(32), sequence CLOB). The following
SQL query inserts the query sequence into query_db:

INSERT INTO query_db VALUES (’1’, ’AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGT’);

Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB
has attributes seq_id, publication date, modification date, organism,
and sequence, among other attributes. There is no required schema for the table
that stores the sequences. The only requirement is that the table contain an identifier
and the sequence and any number of other optional attributes.

Using ODM BLAST

 Sequence Matching and Annotation (BLAST) 6-3

The portion of the database to be used for the search can be specified using SQL.
The full power of SQL can be used to perform more sophisticated selections.

6.2.1.1 Searching for Good Matches in DNA Sequences
The following query does a BLAST search of the given query sequence against the
human genome and returns the seq_id, score, and expect value of matches
that score > 25:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
 BLASTN_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE organism = ’human’),
 1,
 -1,
 0,
 0,
 10,
 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.score > 25;

Note: The parameter value of 0 invokes the default values in most cases. See the
syntax for details.

6.2.1.2 Searching DNA Sequences Published After a Certain Date
The following query does the BLAST search against all sequences published after
Jan 01, 2000:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
 BLASTN_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE publication_date > ’01-JAN-2000’),
 1,
 -1,

Using ODM BLAST

6-4 Oracle Data Mining Application Developer’s Guide

 0,
 0,
 10,
 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.score > 25;

You can obtain other attributes of the matching sequence by joining the BLAST
result with the original sequence table as follows:

SELECT t.t_seq_id, t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
 BLASTN_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE publication_date > ’01-JAN-2000’),
 1,
 -1,
 0,
 0,
 10,
 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25;

6.2.2 Using BLASTP_MATCH to Search Protein Sequences
Suppose that the table PROT_DB stores protein sequences. Insert the protein query
sequence to be used for the search into query_db.

6.2.2.1 Searching for Good Matches in Protein Sequences
The following query does a BLASTP search of the given query sequence against
protein sequences in PROT_DB and returns the identifier, score, name, and
expect value of matches that score > 25:

Using ODM BLAST

 Sequence Matching and Annotation (BLAST) 6-5

SELECT t.t_seq_id, t.score, t.expect, p.name
FROM PROT_DB p, TABLE(
 BLASTP_MATCH (
 (SELECT sequence FROM query_db WHERE sequence_id = ’2’),
 CURSOR(SELECT seq_id, sequence FROM PROT_DB),
 1,
 -1,
 0,
 0,
 ’BLOSUM62’,
 10,
 0,
 0,
 0,
 0,
 0)
)t WHERE t.t_seq_id = p.seq_id AND t.score > 25
 ORDER BY t.expect;

6.2.3 Using BLASTN_ALIGN to Search and Align DNA Sequences
Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB
has attributes seq_id, publication date, modification date, organism,
and sequence among other attributes.

6.2.3.1 Searching and Aligning for Good Matches in DNA Sequences
The following query does a BLAST search and alignment of the given query
sequence against the human genes and returns the publication_date, organism,
and the alignment attributes of matching sequences that score > 25 and where more
than 50% of the sequence is conserved in the match:

SELECT t.t_seq_id, t.alignment_length, t.pct_identity,
 t.q_seq_start, t.q_seq_end, t.t_seq_start, t.t_seq_end,
 t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
 BLASTN_ALIGN (
 (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
 CURSOR (SELECT seq_id, sequence FROM GENE_DB
 WHERE publication_date > ’01-JAN-2000’),
 1,
 -1,
 0,
 0,
 10,

Using ODM BLAST

6-6 Oracle Data Mining Application Developer’s Guide

 0,
 0,
 0,
 0,
 11,
 0,
 0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25
 AND t.pct_identity > 50;

You can use BLASTP_ALIGN and TBLAST_ALIGN in a similar way.

6.2.4 Output of the Table Function
The output of a BLAST query is a table; the output table is described as the output
table for the specific query.

Here are two examples of queries and the resulting output tables.

Query 1 is as follows:

select T_SEQ_ID AS seq_id, score, EXPECT as evalue
 from TABLE(
 BLASTP_MATCH (
 (select sequence from query_db),
 CURSOR(SELECT seq_id, seq_data
 FROM swissprot
 WHERE organism = ’Homo sapiens (Human)’),
 1,
 -1,
 0,
 0,
 ’BLOSUM62’,
 10,
 0,
 0,
 0,
 0,
 0)
);

The output for query 1 is as follows:

Using ODM BLAST

 Sequence Matching and Annotation (BLAST) 6-7

SEQ_ID SCORE EVALUE
-------- ---------- ----------
P31946 205 5.8977E-18
Q04917 198 3.8228E-17
P31947 169 8.8130E-14
P27348 198 3.8228E-17
P58107 49 7.24297332

Query 2 is as follows:

select T_SEQ_ID AS seq_id, ALIGNMENT_LENGTH as len,
 Q_SEQ_START as q_strt, Q_SEQ_END as q_end, Q_FRAME, T_SEQ_START as t_
strt,
 T_SEQ_END as t_end, T_FRAME, score, EXPECT as evalue
 from TABLE(
 BLASTP_ALIGN (
 (select sequence from query_db),
 CURSOR(SELECT seq_id, seq_data
 FROM swissprot
 WHERE organism = ’Homo sapiens (Human)’ AND
 creation_date > ’01-Jan-90’),
 1,
 -1,
 0,
 0,
 ’BLOSUM62’,
 10,
 0,
 0,
 0,
 0,
 0)
);

The output for Query 2 is as follows:

SEQ_ID LEN Q_STRT Q_END Q_FRAME T_STRT T_END T_FRAME SCORE EVALUE
-------- ---- ------ ----- ------- ------ ----- ------- ------- ----------
P31946 50 0 50 0 13 63 0 205 5.1694E-18
Q04917 50 0 50 0 12 62 0 198 3.3507E-17
P31947 50 0 50 0 12 62 0 169 7.7247E-14
P27348 50 0 50 0 12 62 0 198 3.3507E-17
P58107 21 30 51 0 792 813 0 49 6.34857645

Using ODM BLAST

6-8 Oracle Data Mining Application Developer’s Guide

6.2.5 Sample Data for BLAST
We provide a few sample datasets and queries to test if the BLAST functions work
correctly after ODM is installed.

The DM_USER schema contains the following sequence data tables.

SWISSPROT: This table contains the sequences in Release 40 of the SwissProt
dataset. This table has the sequence identifier, creation_date, organism,
and sequence_data attributes. It has 101,602 protein sequences.

SQL> describe SWISSPROT;
Name Null? Type
--------------------------------------- ------- -------------
SEQ_ID VARCHAR2(32)
CREATION_DATE DATE
ORGANISM VARCHAR2(256)
SEQ_DATA CLOB

PROT_DB: This table consists of 19 protein sequences from the SwissProt
dataset.

SQL> describe prot_db;
Name Null? Type
-- ------- -------------
SEQ_ID VARCHAR2(32)
SEQ_DATA CLOB

ECOLI10: This table contains 10 nucleotide sequences from the ecoli dataset.

SQL> describe ECOLI10;
Name Null? Type
--- -------- ---------------
 SEQ_ID VARCHAR2(32)
 SEQ_DATA CLOB

Table 6–1 displays genetic codes and associated names.

Table 6–1 Table of Genetic Codes

Genetic Code Name

1 Standard

2 Vertebrate Mitochondrial

Using ODM BLAST

 Sequence Matching and Annotation (BLAST) 6-9

There are several public domain sequence databases available. One of them is the
SwissProt database, which is a highly curated collection of protein sequences. The
SwissProt database can be downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release/sprot40.dat

In addition to the raw sequence data, the SwissProt database contains several other
attributes of the sequence including organism, date published, date modified,
published literature references, annotations, etc. BLAST requires only the sequence
identifier and the sequence data to be stored to perform searches.

Depending on the needs of your specific application, different sets of these
attributes may be important. Therefore, the database schema required to store the
data needs to be appropriately designed. You can use a scripting language to parse
the required fields from the SwissProt data and format the fields so that they can be
loaded into an Oracle database.

3 Yeast Mitochondrial

4 Mold Mitochondrial, Protozoan Mitochondrial, Coelenterate
Mitochondrial, Mycoplasma, Spiroplasm

5 Invertebrate Mitochondrial

6 Ciliate Nuclear, Dasycladacean Nuclear, Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Macronuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial Code

Table 6–1 (Cont.) Table of Genetic Codes

Genetic Code Name

Using ODM BLAST

6-10 Oracle Data Mining Application Developer’s Guide

The following Perl script outputs the sequence identifier, creation_date, organism,
and sequence data in the required format for sqlldr is given below. (sqlldr is a
program to load data into an Oracle database.)

#!/bin/perl
#swissprot.pl < input > output
#Input: protein db as provided by SWISSPROT
#
my $string = "";
my $indicator = "";
$sq = 0;
$ac = 0;

while(<>)
{
 #chop;
 if (/^\/\//) {
 print "\n";
 $sq = 0;
 $ac = 0;
 next;
 }
 if ($sq == 1) {
 @words = split;
 foreach $word (@words) {
 print "$word";
 }
 next;
 }
 if(/^AC(\s+)(\w+);/) {
 if ($ac == 0) {
 $indicator = $2;
 print "$indicator|";
 $sq = 0;
 $dt = 0;
 $ac = 1;
 next;
 }
 }
 if (/^OS(\s+)(.*)\./) {
 $organism = $2;
 print "$organism|";
 next;
 }
 if (/^DT(\s+)(\S+)/) {

Using ODM BLAST

 Sequence Matching and Annotation (BLAST) 6-11

 if ($dt == 0) {
 print "$2|";
 $dt = 1;
 }
 }
 if (/^SQ(\s+)/) {
 $sq = "1";
 next;
 }
}

Follow these steps to download, parse, and save the SwissProt data in an Oracle
database:

1. Download SwisProt data to the file sprot40.dat.

2. Save the perl script in a file named swissprot.pl, type the command

swissprot.pl sprot40.dat > sprot_formatted.txt

This command will read the SwissProt data stored in sprot40.dat, format it,
and write it out to sprot_formatted.txt.

3. In order to load the data using sqlldr, you must create a table to hold the data
and a control file. Create the table swissprot using the following SQL
statement:

create table swissprot (SEQ_ID VARCHAR2(32), CREATION_DATE DATE,
ORGANISM VARCHAR2(256), SEQ_DATA CLOB);

Create a control file named sprot.ctl with the following contents:

LOAD DATA
INFILE sprot40_formatted.txt
INTO TABLE swissprot
REPLACE
FIELDS TERMINATED BY ’|’
TRAILING NULLCOLS
(
seq_id,
creation_date,
organism,
seq_data char(100000)
)

4. Finally, use the following command to load the data:

Using ODM BLAST

6-12 Oracle Data Mining Application Developer’s Guide

sqlldr userid=<user_name>/<passwd> control=sprot.ctl log=sprot.log
direct=TRUE data=sprot40_formatted.txt

The SwisProt data is now stored in the Oracle table swissprot.

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-13

Summary of BLAST Table Functions

The BLAST functionality is available as built-in table functions; these table functions
can be used in the FROM clause of a SQL query.

Table 6–2 BLAST Table Functions

Table Function Description

BLASTN_MATCH Table
Function

Perform a BLASTN search of the given nucleotide
sequence against the selected portion of the nucleotide
database

BLASTP_MATCH Table
Function on page 6-17

Perform a BLASTP search of the given amino acid
sequence against the selected portion of the protein
database

TBLAST_MATCH Table
Function on page 6-20

Perform BLAST searches involving translations of either
the query sequence or the database of sequences

 BLASTN_ALIGN Table
Function on page 6-23

Performs a BLASTN alignment of the given nucleotide
sequence against the selected portion of the nucleotide
database

BLASTP_ALIGN Table
Function on page 6-27

Perform a BLASTP alignment of the given amino acid
sequence against the selected portion of the protein
database

TBLAST_ALIGN Table
Function on page 6-30

Perform BLAST alignments involving translations of
either the query sequence or the database of sequences

BLASTN_MATCH Table Function

6-14 Oracle Data Mining Application Developer’s Guide

BLASTN_MATCH Table Function

This table function performs a BLASTN search of the given nucleotide sequence
against the selected portion of the nucleotide database. The database can be selected
using a standard SQL select and passed into the function as a cursor. It accepts the
standard BLAST parameters that are mentioned below. The match returns the
identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI
accession number), the score of the match, and the expect value.

Syntax
function BLASTN_MATCH (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 5,
 extend_gap_cost NUMBER default 2,
 mismatch_cost NUMBER default -3,
 match_reward NUMBER default 1,
 word_size NUMBER default 11,
 xdropoff NUMBER default 30,
 final_x_dropoff NUMBER default 50)
 return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 6–3 describes the input parameters for BLASTN_MATCH; Table 6–4, the
output parameters.

Table 6–3 Input Parameters for BLASTN_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-15

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0
invokes default behavior.

mismatch_cost The penalty for nucleotide mismatch. The default value is -3.
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1.
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 11.
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 50. Specifying 0 invokes default behavior.

Table 6–3 Input Parameters for BLASTN_MATCH Table Function

Parameter Description

BLASTN_MATCH Table Function

6-16 Oracle Data Mining Application Developer’s Guide

Table 6–4 Output Parameters for BLASTN_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-17

BLASTP_MATCH Table Function

This table function performs a BLASTP search of the given amino acid sequence
against the portion of the selected protein database. The database can be selected
using a standard SQL select and passed into the function as a cursor. We also accept
the standard BLAST parameters that are mentioned below. The match returns the
identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI
accession number), the score of the match, and the expect value.

Syntax
function BLASTP_MATCH (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default ’BLOSUM62’,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 6–5 describes the input parameters for BLASTN_MATCH; Table 6–6, the
output parameters.

Table 6–5 Input Parameters for BLASTP_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

BLASTP_MATCH Table Function

6-18 Oracle Data Mining Application Developer’s Guide

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default value is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default value is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25. Specifying 0 invokes default behavior.

Table 6–5 Input Parameters for BLASTP_MATCH Table Function

Parameter Description

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-19

Table 6–6 Output Parameters for BLASTP_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

TBLAST_MATCH Table Function

6-20 Oracle Data Mining Application Developer’s Guide

TBLAST_MATCH Table Function

This table function performs BLAST searches involving translations of either the
query sequence or the database of sequences. The available options are:

■ BLASTX: The query nucleotide sequence is translated and compared against a
protein database.

■ TBLASTN: The query amino acid sequence is compared against a translated
nucleotide database.

■ TBLASTX: The query nucleotide sequence is translated and compared against a
translated nucleotide database.

The database can be selected using a standard SQL select and passed into the
function as a cursor. We also accept the standard BLAST parameters that are
mentioned below. The match returns the identifier of the matched (target) sequence
(t_seq_id) (for example, the NCBI accession number), the score of the match, and
the expect value.

Syntax
function TBLAST_MATCH (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 translation_type VARCHAR2 default ’BLASTX’,
 genetic_code NUMBER default 1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default ’BLOSUM62’,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-21

Parameters
Table 6–7 describes the input parameters for TBLAST_MATCH; Table 6–8, the
output parameters.

Table 6–7 Input Parameters for TBLAST_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX,
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid
sequences. genetic_code is sort of like a mapping table.
NCBI supports 17 different genetic codes. The supported
genetic codes and their names are given in Table 6–1. The
default genetic code is 1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62.

TBLAST_MATCH Table Function

6-22 Oracle Data Mining Application Developer’s Guide

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25. Specifying 0 invokes default behavior.

Table 6–8 Output Parameters for TBLAST_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Table 6–7 Input Parameters for TBLAST_MATCH Table Function

Parameter Description

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-23

BLASTN_ALIGN Table Function

This table function performs a BLASTN alignment of the given nucleotide sequence
against the selected portion of the nucleotide database. The database can be selected
using a standard SQL select and passed into the function as a cursor. It accepts the
standard BLAST parameters that are mentioned below.

BLASTN_MATCH returns only the score and expect value of the match. It does not
return information about the alignment. BLASTN_MATCH is typically used when
you want to follow up a BLAST search with a Smith-Waterman alignment.

BLASTN_ALIGN does the BLAST alignment and returns the information about the
alignment.

Syntax
function BLASTN_ALIGN (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 5,
 extend_gap_cost NUMBER default 2,
 mismatch_cost NUMBER default -3,
 match_reward NUMBER default 1,
 word_size NUMBER default 11,
 xdropoff NUMBER default 30,
 final_x_dropoff NUMBER default 50)
 return table of row (
 t_seq_id VARCHAR2,
 pct_identity NUMBER,
 alignment_length NUMBER,
 mismatches NUMBER,
 positives NUMBER,
 gap_openings NUMBER,
 gap_list [Table of NUMBER],
 q_seq_start NUMBER,
 q_frame NUMBER,
 q_seq_end NUMBER,
 t_seq_start NUMBER,
 t_seq_end NUMBER,

BLASTN_ALIGN Table Function

6-24 Oracle Data Mining Application Developer’s Guide

 t_frame NUMBER,
 score NUMBER,
 expect NUMBER);

Parameters
Table 6–9 describes the input parameters for BLASTN_ALIGN; Table 6–10, the
output parameters.

Table 6–9 Input Parameters for BLASTN_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0
invokes default behavior.

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-25

mismatch_cost The penalty for nucleotide mismatch. The default value is -3.
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1.
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 11.
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 50. Specifying 0 invokes default behavior.

Table 6–10 Output Parameters for BLASTN_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with
the database sequence.

alignment_length Length of the alignment.

mismatches Number of base-pair mismatches between the query and the
database sequence.

positives Number of base-pairs with a positive match score between the
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end

The indices of the portion of the query sequence that is aligned

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indices of the portion of the target sequence that is aligned.

t_frame Translation frame number of the target sequence.

expect Expect value of the alignment.

Table 6–9 Input Parameters for BLASTN_ALIGN Table Function

Parameter Description

BLASTN_ALIGN Table Function

6-26 Oracle Data Mining Application Developer’s Guide

score Score corresponding to the alignment.

Table 6–10 Output Parameters for BLASTN_ALIGN Table Function

Parameter Description

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-27

BLASTP_ALIGN Table Function

This table function performs a BLASTP alignment of the given amino acid
sequences against the selected portion of the protein database. The database can be
selected using a standard SQL select and passed into the function as a cursor. You
can also use the standard BLAST parameters that are mentioned below.

BLASTP_MATCH function returns only the score and expect value of the match. It
does not return information about the alignment. The BLASTP_MATCH function
will typically be used where the user wants to follow up a BLAST search with a full
FASTA or Smith-Waterman alignment.

The BLASTP_ALIGN function does the BLAST alignment and returns the
information about the alignment. The schema of the returned alignment is the same
as that of BLASTN_ALIGN.

Syntax
function SYS_BLASTP_ALIGN (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default -1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default ’BLOSUM62’,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (
 t_seq_id VARCHAR2,
 pct_identity NUMBER,
 alignment_length NUMBER,
 mismatches NUMBER,
 positives NUMBER,
 gap_openings NUMBER,
 gap_list [Table of NUMBER],
 q_seq_start NUMBER,
 q_frame NUMBER,
 q_seq_end NUMBER,
 t_seq_start NUMBER,

BLASTP_ALIGN Table Function

6-28 Oracle Data Mining Application Developer’s Guide

 t_seq_end NUMBER,
 t_frame NUMBER,
 score NUMBER,
 expect NUMBER);

Parameters
Table 6–11 describes the input parameters for BLASTP_ALIGN; Table 6–12, the
output parameters.

Table 6–11 Input Parameters for BLASTP_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62.

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-29

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff X-dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25 Specifying 0 invokes default behavior.

Table 6–12 Output Parameters for BLASTP_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with
the database sequence.

alignment_length Length of the alignment.

mismatches Number of base-pair mismatches between the query and the
database sequence.

positives Number of base-pairs with a positive match score between the
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end

The indices of the portion of the query sequence that is aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indices of the portion of the target sequence that is aligned.

t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment.

Table 6–11 Input Parameters for BLASTP_ALIGN Table Function

Parameter Description

TBLAST_ALIGN Table Function

6-30 Oracle Data Mining Application Developer’s Guide

TBLAST_ALIGN Table Function

This table function performs BLAST alignments involving translations of either the
query sequence or the database of sequences. The available translation options are
BLASTX, TBLASTN, and TBLASTX. The schema of the returned alignment is the
same as that of BLASTN_ALIGN and BLASTP_ALIGN.

Syntax
function TBLAST_ALIGN (
 query_seq CLOB,
 seqdb_cursor REF CURSOR,
 subsequence_from NUMBER default 1,
 subsequence_to NUMBER default 0,
 translation_type VARCHAR2 default ’BLASTX’,
 genetic_code NUMBER default 1,
 filter_low_complexity BOOLEAN default false,
 mask_lower_case BOOLEAN default false,
 sub_matrix VARCHAR2 default ’BLOSUM62’,
 expect_value NUMBER default 10,
 open_gap_cost NUMBER default 11,
 extend_gap_cost NUMBER default 1,
 word_size NUMBER default 3,
 x_dropoff NUMBER default 15,
 final_x_dropoff NUMBER default 25)
 return table of row (
 t_seq_id VARCHAR2,
 pct_identity NUMBER,
 alignment_length NUMBER,
 mismatches NUMBER,
 positives NUMBER,
 gap_openings NUMBER,
 gap_list [Table of NUMBER],
 q_seq_start NUMBER,
 q_frame NUMBER,
 q_seq_end NUMBER,
 t_seq_start NUMBER,
 t_seq_end NUMBER,
 t_frame NUMBER,
 score NUMBER,
 expect NUMBER);

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-31

Parameters
Table 6–13 describes the input parameters for TBLAST_ALIGN; Table 6–14, the
output parameters.

Table 6–13 Input Parameters for TBLAST_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST
accepts bare sequences only. A bare sequence is just lines of
sequence data. Blank lines are not allowed in the middle of
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the
function. It should return two columns in its returning row, the
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for
the search. If -1 is specified, the sequence length is taken as
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX,
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid
sequences. genetic_code is sort of like a mapping table.
NCBI supports 17 different genetic codes. The supported
genetic codes and their names are given in Table 6–1. The
default genetic code is 1.

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the
query sequence that have low compositional complexity.
Filtering can eliminate statistically significant but biologically
uninteresting regions, leaving the more biologically interesting
regions of the query sequence available for specific matching
against database sequences. Filtering is only applied to the
query sequence.The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper
case characters as the query sequence and denote areas to be
filtered out with lower case. This customizes what is filtered
from the sequence.The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for
aligning any possible pair of residues. The different options are
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The
default is BLOSUM62.

TBLAST_ALIGN Table Function

6-32 Oracle Data Mining Application Developer’s Guide

expect_value The statistical significance threshold for reporting matches
against database sequences. The default value is 10. Specifying
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0
invokes default behavior.

word_size The word size used for dividing the query sequence into
subsequences during the search. The default value is 3.
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15.
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The
default value is 25. Specifying 0 invokes default behavior.

Table 6–14 Output Parameters for TBLAST_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with
the database sequence.

alignment_length Length of the alignment.

mismatches Number of base-pair mismatches between the query and the
database sequence.

positives Number of base-pairs with a positive match score between the
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end

The indices of the portion of the query sequence that is aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indices of the portion of the target sequence that is aligned.

Table 6–13 Input Parameters for TBLAST_ALIGN Table Function

Parameter Description

Summary of BLAST Table Functions

 Sequence Matching and Annotation (BLAST) 6-33

t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment.

expect Expect value of the alignment.

Table 6–14 Output Parameters for TBLAST_ALIGN Table Function

Parameter Description

TBLAST_ALIGN Table Function

6-34 Oracle Data Mining Application Developer’s Guide

Text Mining 7-1

7
 Text Mining

The PL/SQL interface enables you to perform Text Mining using a simple two-step
process:

Step 1: Given a Text document table, and an Oracle Text Index built against the
documents, extract the text "features" using a simple PL/SQL driver provided
with the ODM installation (see Section 5.2, "Summary of ODM PL/SQL Sample
Programs"). This driver demonstrates how to store all the text features
corresponding to a DocID into a table with nested table columns.

Step 2: Provided the table created in Step 1 as input to the CREATE_MODEL or
APPLY operation, as appropriate, to be classified using any classification
algorithm — such as SVM, or a clustering algorithm such as k-Means, or a
feature extraction algorithm such as NMF.

Note that this two-step process is flexible and can handle any general text input;
you just have to provide the text features in an input table whose schema
corresponds to the one depicted in dm/demo/sample/plsql/textfe.sql.

See also Chapter 13, "Text Mining Using ODM," in Oracle Data Mining Concepts.

7-2 Oracle Data Mining Application Developer’s Guide

Binning A-1

A
 Binning

This appendix provides a detailed example of binning.

Table A–1 displays original data before binning. Table A–2 shows the bin
boundaries for numeric data; Table A–3 shows bin boundaries for categorical data.
Table A–4 shows the results of binning.

Table A–1 Binning Illustration: Data before Binning

Table A–2 Binning Illustration: Bin Boundaries for Numeric Data

PERSON_ID AGE
WORK
CLASS EDUCATION

MARITAL_
STATUS OCCUPATION

2 27 Private HS-grad Married Crafts

8 46 Private Bach. Separ. Prof.

10 34 Private HS-grad Separ. Agricultural

11 23 Sta-gov < Bach. NeverM Cleric.

41 30 Private < Bach. Married Sales

COLUMN_
NAME

LOWER_
BOUNDARY

UPPER_
BOUNDARY BIN_ID DISPLAY_NAME

AGE 17 24.3 1 17-24.3

AGE 24.3 31.6 2 24.3-31.6

AGE 31.6 38.9 3 31.6-38.9

A-2 Oracle Data Mining Application Developer’s Guide

Table A–3 Binning Illustration: Bin Boundaries for Categorical Data

AGE 38.9 46.2 4 38.9-46.2

AGE 46.2 53.5 5 46.2-53.5

COLUMN_NAME CATEGORY BIN_ID
DISPLAY_
NAME

WORKCLASS Loc-gov 1 Government

WORKCLASS Fed-gov 1 Government

WORKCLASS Sta-gov 1 Government

WORKCLASS Private 2 Others

EDUCATION HS-grad 1 HS-grad

EDUCATION < Bach. 2 < Bach.

EDUCATION Bach. 3 Bach.

EDUCATION Masters 4 Masters

MARITAL_STATUS Married 1 Married

MARITAL_STATUS NeverM 2 NeverM

MARITAL_STATUS Divorc. 3 Divorc.

MARITAL_STATUS Widowed 4 Widowed

MARITAL_STATUS Separ. 5 Separ.

OCCUPATION Prof 1 Prof

OCCUPATION Crafts 2 Crafts

OCCUPATION Exec. 3 Exec.

OCCUPATION Sales 4 Sales

OCCUPATION Cleric 5 Cleric

OCCUPATION 6 Other_occ

COLUMN_
NAME

LOWER_
BOUNDARY

UPPER_
BOUNDARY BIN_ID DISPLAY_NAME

Use of Automated Binning

 Binning A-3

Table A–4 Binning Illustration: Assignment of Original Data to Bins

A.1 Use of Automated Binning
The Java interface supports automated binning. An important advantage of
automated binning is that it allows ODM to handle raw data. Automated binning
also allows initial exploration of problems about which there is little or no
information to guide binning decisions.

Currently automatic binning requires closed intervals for numerical bins. This can
result in certain values being ignored. For example, if the salary range in the build
data table is 0 to 1,000,000, any salary greater than 1,000,000 is ignored when the
model is applied. If you are trying to identify likely purchasers of a high-end
consumer product, attributes indicating the wealthiest individuals are likely to be
deleted, and you probably won’t find the best targets. Manual binning has the
option of making extreme bins open-ended, that is, with infinite boundaries.

PERSON_ID AGE
WORK
CLASS WEIGHT EDUCATION

MARITAL_
STATUS OCCUPATION

2 2 2 2 1 1 2

8 4 2 1 3 5 1

10 3 2 1 1 5 6

11 1 1 1 2 2 5

41 2 2 2 2 1 4

Use of Automated Binning

A-4 Oracle Data Mining Application Developer’s Guide

ODM Tips and Techniques B-1

B
 ODM Tips and Techniques

This section contains information about some special considerations for clustering
models, for SVM models, and for NMF models.

B.1 Clustering Models
ODM supports two algorithms for clustering:

■ k-Means
■ O-Cluster

The two algorithms treat data differently. This section discusses important
considerations about data for clustering.

B.1.1 Attributes for Clustering
Binary attributes should have data mining type as follows:

■ Numeric for k-Means

■ Categorical for O-Cluster

B.1.2 Binning Data for k-Means Models
You can either bin the data manually or let the algorithm do the binning. For
k-Means, it is usually best to let the algorithm do the binning. If you bin manually,
the first bin number must be 1. We recommend that you have the same number of
bins per attribute in order to have the same scale in the distance computation. For
example, if age is binned in 20 bins (1...20), and there is a binary attribute (gender),
the binary attribute should be binned as 1 and 20 instead of 1 and 2. If this is not
done, the algorithm would still work but the results will be unreliable.

SVM Models

B-2 Oracle Data Mining Application Developer’s Guide

B.1.3 Binning Data for O-Cluster Models
You can either bin the data manually or let the algorithm do the binning. For
O-Cluster, it is usually best to let the algorithm do the binning. If you bin manually,
the first bin number must be 1. In the case of O-Cluster, manual binning should not
over-smooth or under-smooth the histograms of numeric attributes. The number of
bins does not need to be the same across attributes but should be chosen to capture
the attribute value distribution accurately.

B.2 SVM Models
This section describes the ways in which you can affect model build quality and
performance with SVM models.

B.2.1 Build Quality and Performance
The user can influence both the SVM model quality (accuracy) and performance
(build time) through two basic mechanisms: data preparation and model settings.

Poor choice of settings or data preparation can lead to serious performance
degradation. Poor settings choice can also lead to inaccurate models. For example, a
model can predict only one class. ODM offer- built in mechanisms that estimate
appropriate settings for the problem at hand.

SVM estimates three settings: complexity factor, standard deviation for Gaussian
kernels, and epsilon for regression models. These three settings are estimated by
default.

Default settings are overridden by specifying a value for the setting when creating
the algorithm settings object (Java) or by inserting a row in the settings table for that
setting (DBMS_DM).

B.2.2 Data Preparation
Default data preparation is overridden by specifying the data as prepared (ODM).
In DBMS_DM there is no default data preparation. Data preparation must be
specifically invoked.

ODM and DBMS_DM accept two types of predictors: numeric and categorical. In
ODM, the logical data specification identifies the data type of each predictor.
DBMS_DM identifies all database numeric types as numeric predictors and all
database string types as categorical predictors. SVM requires all predictors to be
numeric and the range of values restricted to a small interval around 0. Hence

SVM Models

 ODM Tips and Techniques B-3

numeric predictors are normalized and categorical predictors are exploded
(described below).

B.2.3 Numeric Predictor Handling
Normalization of numeric predictors is typically required for two reasons: (1) so
that the relative influence of the various predictors on the model is not distorted by
their relative scaling, and (2) to avoid computational overflow/underflow. To the
first point, note that an SVM model (ai) parameter applies to an entire training
vector, rather than individual predictors within the vector; hence large individual
vector values can dominate. In addition (point 2), note that the kernel computation
includes sum of dot products of two potentially large values. Such sums can result
in overflow, or, as the exponent of a Gaussian, underflow.

Our offerings for normalization include z-score and min-max normalization. Each
normalization technique has advantages and drawbacks. Z-score has the advantage
of not distorting the shape of the distribution. However, z-score’d data can still have
many large (absolute) values (outside of range {-1, 1}. The number and size of large
values can differ greatly across attributes, depending upon their relative
non-normality. In addition, the z-score’d range differs from the exploded categorical
range {0,1}. Min-max normalization avoids the large value issue and has the same
range as the categorical data but may suffer compression of its dense range in the
presence of large extreme values. The user could potentially address the min-max
normalization drawback with some procedure for handling outliers.

B.2.4 Categorical Predictor Handling
Categorical predictors are exploded into arrays of indicator variables. This is
transparent to the user in both interfaces. For example, a predictor, VAR, which
takes on one of three possible values: A, B or C becomes three predictors that one
could think of as VAR_A, VAR_B and VAR_C. Each of these exploded predictors is
a binary attribute with values in the set {0,1}. If VAR_A is 1, then VAR = "A". If
VAR_A is 0 then VAR is NOT equal to "A". For multi-valued categorical predictors
with no implicit order, explosion, as specified, is the most sensible procedure.

For binary predictors or multi-valued categoricals with an implicit order there are
choices. Consider a predictor taking on values in the set {LOW, MEDIUM, HIGH}.
The user could choose to recode the values to {0, 0.5, 1}, or, use some other mapping
that is intended to reflect the relative distance between the categories. The recoded
predictor would then be passed as numeric field.

SVM Models

B-4 Oracle Data Mining Application Developer’s Guide

Binary predictors take on one of two possible values. E.g. a binary predictor might
take on values from the set {NO, YES}. The decision to recode such predictors to {0,
1} depends upon whether there is a preferred positive value or not.

B.2.5 Regression Target Handling
In the Java API, for performance and accuracy, we internally normalize regression
targets. In DBMS_DM, the user can choose to normalize the target externally.
Consider a regression target with large absolute values. Because the predictors are
constrained, the coefficients (ai) must be large, or the number of non-zero
coefficients must be large, or both, otherwise it is impossible to predict a large
value. The range of the coefficients is restricted by the ComplexityFactor (C)
setting,. With a small C, the performance and, possibly, the accuracy of SVM can be
poor. With a large C, the training time can increase significantly. In addition, the
model can be larger than would be otherwise necessary. To avoid this issue we
normalize the targets. Since the goal is to avoid large values, min-max
normalization is often a good choice (see numeric predictor handling discussion
above).

B.2.6 SVM Algorithm Settings
Several of the algorithm settings can significantly affect SVM accuracy and
performance. The issues and considerations in choosing setting values are discussed
briefly in the sections below. In the literature, cross-validation and grid search
techniques are often used to select parameters. These methods, while accurate, are
very expensive. Rather than saddle users with an expensive procedure, we have
opted for computationally inexpensive procedures that fit easily within our
implementation framework. The intent is to provide settings that should give the
model adequate complexity for the problem at hand. If the user requires greater
accuracy and is willing to incur the additional computational expense, our defaults
can be used as the starting point for a grid search.

B.2.7 Complexity Factor (C)
The complexity factor, C, determines the trade-off between minimizing model error
on the training data and minimizing model complexity. Its responsibility is to avoid
over-fit (an over-complex model fitting noise in the training data) and under-fit (a
model that is too simple). Overfit exists if the model fits the training data well but
does poorly on held-aside test data. Underfit exists if the model does poorly on both
training and test data. If the user wishes to override the default C after seeing the
model result, the user can obtain the internally computed default value as a starting

SVM Models

 ODM Tips and Techniques B-5

point for a grid search. Both the java API and PL/SQL interfaces have methods for
getting the Complexity factor. The subsequent discussion provides qualitative
description of the impact of C on the model build.

Very large value of C places extreme penalty on errors, so that SVM seeks a perfect
separation of target classes, or, in the case of regression, a perfect
(epsilon-insensitive — see below) fit. Assuming the data to have at least some noise,
this is over-fit. Large C leaves the parameters of the model (ai) unconstrained, i.e.,
the model is complex with high capacity for fitting data. Conversely, small C places
low penalty on errors and high constraints on the model parameters, which can
lead to under-fit.

Standard Deviation — Gaussian Kernels Only
Standard deviation is an SVM setting applying to Gaussian Kernels only. This
parameter, in conjunction with C, affects the trade-off between error on the training
data and generalization. For fixed C, underfit results as the standard deviation gets
large, and overfit results as the standard deviation goes to zero.

To facilitate using the default values computed in ODM as a starting point, methods
exist to extract the setting values.

B.2.8 Epsilon — Regression Only
Epsilon is an SVM setting applying to regression models only. The parameter
separates small errors from large errors. Small errors are considered to have no
associated penalty. Only large errors are penalized. In the Java API, if the default
target normalization is used the value of epsilon is re-scaled accordingly. In DBMS_
DM, epspilon needs to be re-scaled by the user. By default, epsilon is estimated
internally.

The epsilon parameter affects the number of support vectors and, thus, indirectly,
the trade-off between model complexity and generalization (over-fit and under-fit
as possible consequences). An estimate of the standard deviation of the additive
noise in the target variable is needed to find an appropriate epsilon value and thus
minimize predictive error. The estimate can be based either on domain knowledge
or it can be obtained from the residuals of a crude model (e.g., polynomial, KNN)
built on the training data.

B.2.9 Kernel Cache — Gaussian Kernels Only
The most expensive operation in building a gaussian SVM model is the
computation of kernels. The general approach taken to build is to converge within a

NMF Models

B-6 Oracle Data Mining Application Developer’s Guide

chunk of data at a time, then to test for violators outside of the chunk. Build is
complete when there are no more violators within tolerance. The size of the chunk
is chosen such that the associated kernels can be maintained in memory in a "Kernel
Cache". The larger the chunk size, presumably, the better the chunk represents the
population of training data and the fewer number of times new chunks will need to
be created. Generally, larger caches imply faster builds. Default size is 50M.

B.2.10 Tolerance
Tolerance is the maximum size of a violation of convergence criteria such that the
model is considered to have converged. The default value is 0.001. Larger values
imply faster building but less accurate models.

B.3 NMF Models
Traditionally, as part of standard numerical analysis, matrix factorization is a
common preprocessing procedure prior to solving a liner system of equations. For
data mining, matrix factorization offers a way to reduce the dimensionality of a
dataset and extract features that reveal interesting structure in the data or provide
inputs to further types of analysis. In matrix factorization, the number of the
dataset- independent columns is reduced by projection onto a lower dimensional
space (e.g., smaller matrices).

Rank reduction by factorization can reveal interesting low-dimensional subspaces
embedded in large dimensionality datasets space and is a useful operation for
pattern discovery and feature extraction. For example, the traditional Principal
Component Analysis (PCA) uses a projection of the data on dimensions along
which it varies the most and can be used to visualize the most dominant structure
in a dataset.

Non-negative matrix factorization (NMF), by imposing non-negativity constraints
on the factors, has been shown to be a useful decomposition and feature extraction
method in fields such as object detection and recognition and to be a valuable
alternative PCA1. By forcing a dataset (matrix) to "fit" into a product of smaller
datasets (matrices), NMF compresses the data and tends to eliminate some of the
redundancies and expose the most common patterns. By using a parts-based or
component-based decomposition, and in contrast to PCA and other techniques, the
compressed version of the data is not random looking and can be used to
understand interesting patterns and common trends in the dataset. The NMF

1 Daniel D. Lee, and H. Sebastian Seung, Learning the parts of objects by non-negative
matrix factorization. Nature 1999, Oct 21, 401(6755), 788-793.

NMF Models

 ODM Tips and Techniques B-7

decomposition also induces a numerical taxonomy that can be used for grouping
the rows or columns of the original dataset. The extracted features can be used as
inputs to other analysis tasks such as classification or indexing. This procedure has
proven useful in face recognition problems or the discovery of semantic features in
texts2.

Given an N (rows) x M (columns) 2D dataset A and k < N, M, NMF computes an
approximation of the original data, A ~ W H, where W is N by k, and H is k by M.
Starting from random initial conditions, W and H are iteratively updated until
convergence to a local minimum is achieved, monitored by the minimization of the
Euclidean cost function. A must have positive entries, and so are W and H by
construction. Even though localization is not an explicit property of the algorithm,
NMF appears to produce quite localized and sparse features that facilitate the
interpretation of results and the transparency of the model. For example, when
NMF is applied to a dataset of facial images, the extracted features are facial parts:
eyes, noses, etc. When the dataset is a document/keyword matrix, then NMF
extracts "semantic" features3.

When NMF is used as a feature extractor, it can benefit from scaling individual
attributes to a common scale via normalization. This would facilitate pattern
discovery and make dimensionality reduction more effective. A preferred approach
would be to perform outlier treatment (e.g., by using a winsorizing transformation)
and then perform min-max normalization. Having individual attributes on a
common scale would help ranking and interpretation of feature coefficients in terms
of there relative magnitude. Additionally, applying a normalization transformation
would allow NMF to operate on negative data as well. Otherwise, the data need to
be shifted to the positive range manually on a per-attribute basis.

If NMF is used to cluster column instances -— e.g., by using the amplitudes from
the rows of H— then according to the nature of the problem, one may consider
normalizing the rows, the columns, or both, prior to using NMF.

2 Same as footnote 1, above.
3 Same as footnote 1, above.

NMF Models

B-8 Oracle Data Mining Application Developer’s Guide

Index

A
Adaptive Bayes Network algorithm, 4-6, 4-23
algorithm

mining, 4-3
algorithm settings

Adaptive Bayes Network, 4-6
k-means, 4-8
Naive Bayes, 4-7
Non-Negative Matrix Factorization (NMF), 4-8
Support Vector Machines, 4-7

apply
input and output datasets, 3-10
model, 2-6
results, 4-13

Attribute Importance
using, 2-4

attributes
clustering models, B-1
find, 2-4
target, 4-17
types, 4-17
using, 2-4

automated binning, 3-14

B
binning, 2-4

automated, 3-14
embedded, 3-16
external, 3-14
for k-means, B-1

BLAST
NCBI, 6-1

ODM, 6-2
output, 6-6
sample data, 6-8

BLAST table functions
summary of, 6-13

BLASTN_ALIGN table function, 6-5, 6-23
BLASTN_MATCH table function, 6-2, 6-14
BLASTP_ALIGN table function, 6-27
BLASTP_MATCH table function, 6-4, 6-17
build results, 4-12

C
CLASSPATH for ODM, 2-1
clinical data table, 4-16
clustering models

attributes, B-1
tips, B-1

compute lift, 3-9
constants summary

algorithm settings, 4-22
mining functions, 4-21

cost matrix, 3-12, 4-11

D
data

mining, 4-14
preparation, 2-2, 3-14

data mining server (DMS), 3-1, 3-16
data transformations, 4-17
DBMS_DATA_MINING sample programs, 5-1
DNA sequences, 6-2
Index-1

E
embedded binning, 3-16
errors summary, 4-25
export and import

model, 4-27
external binning, 3-14

F
feature extraction, B-6
function

mining, 4-3
function settings

summary of, 4-5
functions and algorithms

summary of, 4-4

G
gene expression data table, 4-16
genetic codes, 6-8

J
Java sample programs, 3-17

K
k-Means algorithm, 4-8, 4-24

L
lift computation, 3-9
lift results, 3-10
limitations

Model Export and Import, 4-28
limitations and rules

DBMS_DATA_MINING, 4-18
LocationAccessData (LAD), 3-2

M
matching

sequences, 6-1
matrix factorization, B-6

mean absolute error, 4-13
mining

data, 4-14
models, 4-3
operations, 4-12
results, 4-12

MiningFunctionSettings object, 3-3
MiningModel object, 3-7
MiningTask object, 3-5
model

apply, 2-6, 3-1, 3-10, 3-11
data format, 2-6

building, 2-4, 3-1, 3-6
mining, 4-3
score, 3-1
scoring, 3-10, 3-11
testing, 3-7

results, 3-8
Model Export and Import, 4-27

limitations and prerequisites, 4-28

N
Naive Bayes algorithm, 4-7, 4-23

sample programs, 3-1
NCBI, 6-1
NMF models

tips, B-6
Non-Negative Matrix Factorization (NMF)

algorithm, 3-16, 4-8, 4-24
normalization, 2-3, 3-14

NMF, 2-3, B-7
Support Vector Machines, 2-3

O
ODM BLAST, 6-2
ODM PL/SQL sample programs, 5-1, 5-3
ODM programming

basic usage, 3-1
common tasks, 2-1
Java interface, 2-1
PLSQL interface, 4-1
Index-2

ODM programs
compiling, 2-1
executing, 2-1

operations
mining, 4-12

output of BLAST query, 6-6

P
performance, 4-18
PLSQL interface, 4-1
preparation

of data, 3-14
prerequisites

Model Export and Model Import, 4-28
prior probabilities, 3-13, 4-10
protein sequences, 6-4

R
real-time scoring, 3-12
results

apply, 4-13
build, 4-12
lift, 3-10
mining, 4-12
test, 4-13

root mean square error, 4-13
rules and limitations

DBMS_DATA_MINING, 4-18

S
sample programs

DBMS_DATA_MINING, 5-1
Java, 3-17
ODM PL/SQL, 5-1

scoring
data, 2-6, 3-10
real-time, 3-12

sequence matching, 6-1
sequences

DNA, 6-2
protein, 6-4

settings table, 4-4

SH schema, 5-3
subprograms

DBMS_DATA_MINING, 4-26
Support Vector Machines algorithm, 3-16, 4-7, 4-23

normalizatioin, 2-3
SVM models

tips, B-2

T
target attributes, 4-17
target value, 3-9
TBLAST_ALIGN table function, 6-30
TBLAST_MATCH table function, 6-17, 6-20
test results, 4-13
text mining, 3-16, 7-1
Top-N Frequency, 2-3
transformations, 4-17

U
user views summary, 4-26

W
wide data, 4-14
Index-3

Index-4

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Structure
	Where to Find More Information
	Conventions
	Documentation Accessibility

	1 Introduction
	1.1� ODM Requirements and Constraints

	2 ODM Java Programming
	2.1� Compiling and Executing ODM Programs
	2.2� Using ODM to Perform Mining Tasks
	2.2.1� Prepare Input Data
	2.2.2� Build a Model
	2.2.3� Find and Use the Most Important Attributes
	2.2.4� Test the Model
	2.2.5� Compute Lift
	2.2.6� Apply the Model to New Data

	3 ODM Java API Basic Usage
	3.1� Connecting to the Data Mining Server
	3.2� Describing the Mining Data
	3.2.1� Creating LocationAccessData
	3.2.2� Creating NonTransactionalDataSpecification
	3.2.3� Creating TransactionalDataSpecification

	3.3� MiningFunctionSettings Object
	3.3.1� Creating Algorithm Settings
	3.3.2� Creating Classification Function Settings
	3.3.3� Validate and Store Mining Function Settings

	3.4� MiningTask Object
	3.5� Build a Mining Model
	3.6� MiningModel Object
	3.7� Testing a Model
	3.7.1� Describe the Test Dataset
	3.7.2� Test the Model
	3.7.3� Get the Test Results

	3.8� Lift Computation
	3.8.1� Specify Positive Target Value
	3.8.2� Compute Lift
	3.8.3� Get the Lift Results

	3.9� Scoring Data Using a Model
	3.9.1� Describing Apply Input and Output Datasets
	3.9.2� Specify the Format of the Apply Output
	3.9.3� Apply the Model
	3.9.4� Real-Time Scoring

	3.10� Use of CostMatrix
	3.11� Use of PriorProbabilities
	3.12� Data Preparation
	3.12.1� Automated Binning and Normalization
	3.12.2� External Binning
	3.12.3� Embedded Binning

	3.13� Text Mining
	3.14� Summary of Java Sample Programs

	4 DBMS_DATA_MINING
	4.1� Development Methodology
	4.2� Mining Models, Function, and Algorithm Settings
	4.2.1� Mining Model
	4.2.2� Mining Function
	4.2.3� Mining Algorithm
	4.2.4� Settings Table
	4.2.4.1� Prior Probabilities Table
	4.2.4.2� Cost Matrix Table

	4.3� Mining Operations and Results
	4.3.1� Build Results
	4.3.2� Apply Results
	4.3.3� Test Results for Classification Models
	4.3.4� Test Results for Regression Models
	4.3.4.1� Root Mean Square Error
	4.3.4.2� Mean Absolute Error

	4.4� Mining Data
	4.4.1� Wide Data Support
	4.4.1.1� Clinical Data — Dimension Table
	4.4.1.2� Gene Expression Data — Fact Table

	4.4.2� Attribute Types
	4.4.3� Target Attribute
	4.4.4� Data Transformations

	4.5� Performance Considerations
	4.6� Rules and Limitations for DBMS_DATA_MINING
	4.7� Summary of Data Types, Constants, Exceptions, and User Views
	4.8� Summary of DBMS_DATA_MINING Subprograms
	4.9� Model Export and Import
	4.9.1� Limitations
	4.9.2� Prerequisites
	4.9.3� Choose the Right Utility
	4.9.4� Temp Tables

	5 ODM PL/SQL Sample Programs
	5.1� Overview of ODM PL/SQL Sample Programs
	5.2� Summary of ODM PL/SQL Sample Programs

	6 Sequence Matching and Annotation (BLAST)
	6.1� NCBI BLAST
	6.2� Using ODM BLAST
	6.2.1� Using BLASTN_MATCH to Search DNA Sequences
	6.2.1.1� Searching for Good Matches in DNA Sequences
	6.2.1.2� Searching DNA Sequences Published After a Certain Date

	6.2.2� Using BLASTP_MATCH to Search Protein Sequences
	6.2.2.1� Searching for Good Matches in Protein Sequences

	6.2.3� Using BLASTN_ALIGN to Search and Align DNA Sequences
	6.2.3.1� Searching and Aligning for Good Matches in DNA Sequences

	6.2.4� Output of the Table Function
	6.2.5� Sample Data for BLAST

	Summary of BLAST Table Functions
	BLASTN_MATCH Table Function
	BLASTP_MATCH Table Function
	TBLAST_MATCH Table Function
	BLASTN_ALIGN Table Function
	BLASTP_ALIGN Table Function
	TBLAST_ALIGN Table Function

	7 Text Mining
	A Binning
	A.1� Use of Automated Binning

	B ODM Tips and Techniques
	B.1� Clustering Models
	B.1.1� Attributes for Clustering
	B.1.2� Binning Data for k-Means Models
	B.1.3� Binning Data for O-Cluster Models

	B.2� SVM Models
	B.2.1� Build Quality and Performance
	B.2.2� Data Preparation
	B.2.3� Numeric Predictor Handling
	B.2.4� Categorical Predictor Handling
	B.2.5� Regression Target Handling
	B.2.6� SVM Algorithm Settings
	B.2.7� Complexity Factor (C)
	B.2.8� Epsilon — Regression Only
	B.2.9� Kernel Cache — Gaussian Kernels Only
	B.2.10� Tolerance

	B.3� NMF Models

	Index

