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Preface

This manual describes using the Oracle Data Mining Java and PL/SQL Application 
Programming Interfaces (APIs) to perform data mining tasks for business 
applications, bioinformatics, and text mining.

Intended Audience
This manual is intended for anyone planning to write programs using the Oracle 
Data Mining Java or PL/SQL interface. 

Familiarity with Java or PL/SQL is assumed, as well as familiarity with databases 
and data mining.

Users of the Oracle Data Mining BLAST table functions should be familiar with 
NCBI BLAST and related concepts.

Structure
This manual is organized as follows:

■ Chapter 1, "Introduction"

■ Chapter 2, "ODM Java Programming"

■ Chapter 3, "ODM Java API Basic Usage"

■ Chapter 4, "DBMS_DATA_MINING"

■ Chapter 5, "ODM PL/SQL Sample Programs"

■ Chapter 6, "Sequence Matching and Annotation (BLAST)"

■ Chapter 7, "Text Mining"
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■ Appendix A, "Binning"

■ Appendix B, "ODM Tips and Techniques"

Where to Find More Information
The documentation set for Oracle Data Mining is part of the Oracle 10g Database 
Documentation Library. The ODM documentation set consists of the following 
documents, available online:

■ Oracle Data Mining Administrator’s Guide, Release 10g

■ Oracle Data Mining Concepts, Release 10g 

■ Oracle Data Mining Application Developer’s Guide, Release 10g (this document)

Last-minute information about ODM is provided in the platform-specific README 
file.

For detailed information about the Java API, see the ODM Javadoc in the directory 
$ORACLE_HOME/dm/doc/jdoc (UNIX) or %ORACLE_HOME%\dm\doc\jdoc 
(Windows) on any system where ODM is installed. 

For detailed information about the PL/SQL interface, see  the Supplied PL/SQL 
Packages and Types Reference.

For information about the data mining process in general, independent of both 
industry and tool, a good source is the CRISP-DM project (Cross-Industry Standard 
Process for Data Mining) (http://www.crisp-dm.org/).

Related Manuals
For more information about the database underlying Oracle Data Mining, see:

■ Oracle Administrator’s Guide, Release 10g

■ Oracle Database 10g Installation Guide for your platform.

For information about developing applications to interact with the Oracle Database, 
see 

■ Oracle Application Developer’s Guide — Fundamentals, Release 10g

For information about upgrading from Oracle Data Mining release 9.0.1 or release 
9.2.0, see 

■ Oracle Database Upgrade Guide, Release 10g 

■ Oracle Data Mining Administrator’s Guide, Release 10g   
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For information about installing Oracle Data Mining, see 

■ Oracle Installation Guide, Release 10g 

■ Oracle Data Mining Administrator’s Guide, Release 10g

Conventions
In this manual, Windows refers to the Windows 95, Windows 98, Windows NT, 
Windows 2000, and Windows XP operating systems.

The SQL interface to Oracle is referred to as SQL. This interface is the Oracle 
implementation of the SQL standard ANSI X3.135-1992, ISO 9075:1992, commonly 
referred to as the ANSI/ISO SQL standard or SQL92. 

In examples, an implied carriage return occurs at the end of each line, unless 
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also followed in this manual:

Convention Meaning

    .
    .
    .

Vertical ellipsis points in an example mean that information not 
directly related to the example has been omitted.

 . . . Horizontal ellipsis points in statements or commands mean that 
parts of the statement or command not directly related to the 
example have been omitted

boldface Boldface type in text indicates the name of a class or method.

italic text Italic type in text indicates a term defined in the text, the glossary, or 
in both locations.

typewriter In interactive examples, user input is indicated by bold typewriter 
font, and system output by plain typewriter font.

typewriter Terms in italic typewriter font represent placeholders or variables.

< > Angle brackets enclose user-supplied names.

[ ] Brackets enclose optional clauses from which you can choose one or 
none
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Documentation Accessibility 

Documentation Accessibility 
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of 
assistive technology. This documentation is available in HTML format, and contains 
markup to facilitate access by the disabled community. Standards will continue to 
evolve over time, and Oracle Corporation is actively engaged with other 
market-leading technology vendors to address technical obstacles so that our 
documentation can be accessible to all of our customers. For additional information, 
visit the Oracle Accessibility Program Web site at 
http://www.oracle.com/accessibility/. 

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples 
in this document. The conventions for writing code require that closing braces 
should appear on an otherwise empty line; however, JAWS may not always read a 
line of text that consists solely of a bracket or brace. 
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1
Introduction

Oracle Data Mining embeds data mining in the Oracle database. The data never 
leaves the database — the data, data preparation, model building, and model 
scoring activities all remain in the database. This enables Oracle to provide an 
infrastructure for data analysts and application developers to integrate data mining 
seamlessly with database applications.

Oracle Data Mining is designed for programmers, systems analysts, project 
managers, and others interested in developing database applications that use data 
mining to discover hidden patterns and use that knowledge to make predictions. 

There are two interfaces: a Java API and a PL/SQL API. The Java API assumes a 
working knowledge of Java, and the PL/SQL API assumes a working knowledge of 
PL/SQL. Both interfaces assume a working knowledge of application programming 
and familiarity with SQL to access information in relational database systems. 

This document describes using the Java and PL/SQL interface to write application 
programs that use data mining. It is organized as follows:

■ Chapter 1 introduces ODM. 

■ Chapter 2 and Chapter 3 describe the Java interface. Chapter 2 provides an 
overview; Chapter 3 provides details. Reference information for methods and 
classes is available with Javadoc. The demo Java programs are described in 
Table 3–1. The demo programs are available as part of the installation; see the 
README file for details.

■ Chapter 4 and Chapter 5 describe the PL/SQL interface. Basics are described 
inChapter 4, and demo PL/SQL programs are described in Chapter 5. 

■ Reference information for the PL/SQL functions and procedures is included in 
the PL/SQL Packages and Types Reference. The demo programs themselves are 
available as part of the installation; see the README file for details.



ODM Requirements and Constraints

1-2  Oracle Data Mining Application Developer’s Guide    

■ Chapter 6 describes programming with BLAST, a set of table functions for 
performing sequence matching searches against nucleotide and amino acid 
sequence data stored in an Oracle database. 

■ Chapter 7 describes how to use the PL/SQL interface to do text mining. 

■ Appendix A contains an example of binning.

■ Appendix B provides tips and techniques useful in both the Java and the 
PL/SQL interface.

1.1 ODM Requirements and Constraints
Anyone writing an Oracle Data Mining program must observe the following 
requirements and constraints: 

■ Attribute Names in ODM: All attribute names in ODM are case-sensitive and 
limited to 30 bytes in length; that is, attribute names may be quoted strings that 
contain mixed-case characters and/or special characters. Simply put, attribute 
names used by ODM follow the same naming conventions and restrictions as 
column names or type attribute names in Oracle.

■ Mining Object Names in ODM: All mining object names in ODM are 25 or 
fewer bytes in length and must be uppercase only. Model names may contain 
the underscore ("_") but no other special characters. Certain prefixes are 
reserved by ODM (see below) and should not be used in mining object names.

■ ODM Reserved Prefixes: The prefixes DM$ and DM_ are reserved for use by 
ODM across all schema object names in a given Oracle instance.

Users must not directly access these ODM internal tables, that is, they should 
not execute any DDL, Query, or DML statements directly against objects named 
with these prefixes. Oracle recommends that you rename any existing objects in 
the database with these prefixes to avoid confusion in your application data 
management. 

■ Input Data for Programs Using ODM: All input data for ODM programs must 
be presented to ODM as an Oracle-recognized table, whether a view, table, or 
table function output. 
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2
  ODM Java Programming

This chapter provides an overview of the steps required to perform basic Oracle 
Data Mining tasks and discusses the following topics related to writing data mining 
programs using the Java interface:

■ The requirements for compiling and executing programs.

■ How to perform common data mining tasks.

Detailed demo programs are provided as part of the installation. 

2.1 Compiling and Executing ODM Programs
Oracle Data Mining depends on the following Java archive (.jar) files:

$ORACLE_HOME/dm/lib/odmapi.jar$ORACLE_HOME/jdbc/lib/ojdbc14.jar
$ORACLE_HOME/jlib/orai18n.jar
$ORACLE_HOME/lib/xmlparserv2.jar

These files must be in your CLASSPATH to compile and execute Oracle Data Mining 
programs.

2.2 Using ODM to Perform Mining Tasks
This section describes the steps required to perform several common data mining 
tasks using Oracle Data Mining. Data mining tasks are usually performed in a 
particular sequence. The following sequence is typical:

1. Collect and preprocess (bin or normalize) data. (This step is optional; ODM 
algorithms can automatically prepare input data.)

2. Build a model
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3. Test the model and calculate lift (classification problems only)

4. Apply the model to new data

All work in Oracle Data Mining is done using MiningTask objects. 

To implement a sequence of dependent task executions, you may periodically check 
the asynchronous task execution status using the getCurrentStatus method or 
block for completion using the waitForCompletion method. You can then 
perform the dependent task after completion of the previous task. 

For example, follow these steps to perform the build, test, and compute lift 
sequence:

■ Perform the build task as described in Section 2.2.2 below.

■ After successful completion of the build task, start the test task by calling the 
execute method on a ClassificationTestTask or RegressionTestTask 
object. Either periodically check the status of the test operation or block until 
the task completes.

■ After successful completion of the test task, execute the compute lift task by 
calling the execute method on a MiningComputeLiftTask object.

You now have (with a little luck) a model that you can use in your data mining 
application.

2.2.1 Prepare Input Data
Different algorithms require different preparation and preprocessing of the input 
data. Some algorithms require normalization; some require binning (discretization). 
In the Java interface the algorithms can prepare data automatically. 

This section summarizes the steps required for different data preparation 
methodologies supported by the ODM Java API.

Automated Discretization (Binning) and Normalization
The ODM Java interface supports automated data preparation. If the user specifies 
active unprepared attributes, the data mining server automatically prepares the 
data for those attributes.

In the case of algorithms that use binning as the default data preparation, bin 
boundary tables are created and stored as part of the model. The model’s bin 
boundary tables are used for the data preparation of the dataset used for testing or 
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scoring using that model. In the case of algorithms that use normalization as the 
default data preparation, the normalization details are stored as part of the model. 
The model uses those details for preparing the dataset used for testing or scoring 
using that model.

The algorithms that use binning as the default data preparation are Naive Bayes, 
Adaptive Bayes Network, Association, k-Means, and O-Cluster. The algorithms that 
use normalization are Support Vector Machines and Non-Negative Matrix 
Factorization. For normalization, the ODM Java interface supports only the 
automated method.

External Discretization (Binning)
For certain distributions, you may get better results if you bin the data before the 
model is built. 

External binning consists of two steps: 

■ The user creates binning specification either explicitly or by looking at the data 
and using one of the predefined methods. For categorical attributes, there is 
only one method: Top-N Frequency. For numerical attributes, there are two 
methods: Equi-width and equi-width with winsorizing.

■ The user bins the data following the specification created.

Specifically, the steps for external binning are as follows:

1. Create DiscretizationSpecification objects to specify the bin boundary 
specifications for the attributes.

2. Call Transformation.createDiscretizationTables method to create 
bin boundaries

3. Call Transformation.discretize method to discretize/bin the data.

Note that in the case of external binning, the user needs to bin the data consistently 
for all build, test, apply, and lift operations.

Embedded Discretization (Binning)
Embedded binning allows users to define their own customized automated 
binning. The binning strategy is specified by providing a bin boundary table that is 
produced by the bin specification creation step of external binning.

Specifically, the steps for embedded binning are as follows:

1. Create DiscretizationSpecification objects to specify the bin boundary 
specifications for the attributes.
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2. Call the Transformation.createDiscretizationTables method to 
create bin boundaries.

3. Call the setUserSuppliedDiscretizationTables method in the 
LogicalDataSpecification object to attach the user created bin 
boundaries tables with the mining function settings object.

Keep in mind that because binning can have an effect on a model’s accuracy, it is 
best when the binning is done by an expert familiar with the data being binned and 
the problem to be solved. However, if there is no additional information that can 
inform decisions about binning or if what is wanted is an initial exploration and 
understanding of the data and problem, ODM can bin the data using default 
settings, either by explicit user action or as part of the model build.

ODM groups the data into 5 bins by default. For categorical attributes, the 5 most 
frequent values are assigned to 5 different bins, and all remaining values are 
assigned to a 6th bin. For numerical attributes, the values are divided into 5 bins of 
equal size according to their order.

After the data is processed, you can build a model.

For an illustration of binning, see Appendix A.

2.2.2  Build a Model
This section summarizes the steps required to build a model.

1. Prepocess and prepare the input data as required. 

2. Construct and store a MiningFunctionSettings object.

3. Construct and store a MiningBuildTask object.

4. Call the execute method; the execute method queues the work for asynchronous 
execution and returns an execution handle to the caller.

5. Periodically call the getCurrentStatus method to get the status of the task. 
Alternatively, use the waitForCompletion method to wait until all 
asynchronous activity for task completes.

After successful completion of the task, a model object is created in the database.

2.2.3 Find and Use the Most Important Attributes
Models based on data sets with a large number of attributes can have very long 
build times. To minimize build time, you can use ODM Attribute Importance to 
identify the critical attributes and then build a model using only these attributes. 
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Build an Attribute Importance Model
Identify the most important attributes by building an Attributes Importance model 
as follows:

1. Create a Physical Data Specification for input data set.

2. Discretize (bin) the data if required.

3. Create and store mining settings for the Attribute Importance.

4. Build the Attribute Importance model.

5. Access the model and retrieve the attributes by threshold.

Build a Model Using the Selected Attributes
After identifying the important attributes, build a model using the selected 
attributes as follows:

1. Access the model and retrieve the attributes by threshold or by rank.

2. Modify the Data Usage Specification by calling the function 
adjustAttributeUsage defined on MiningFunctionSettings. Only the 
attributes returned by Attribute Importance will be active for model building.

3. Build a model using the new Mining Function Settings.

2.2.4 Test the Model
This section summarizes the steps required to test a classification or a regression 
model.

1. Preprocess the test data as required. Test data must have all the active attributes 
used in the model and the target attribute in order to assess the model’s 
accuracy. 

2. Prepare (bin or normalize) the input data the same way the data was prepared 
for building the model.

3. Construct and store a task object. For classification problems, use 
ClassificationTestTask; for regression, use RegressionTestTask.

4. Call the execute method; the execute method queues the work for 
asynchronous execution and returns an execution handle to the caller.

5. Periodically, call the getCurrentStatus method to get the status of the task. 
As an alternative, use the waitForCompletion method to wait until all 
asychronous activity for the task completes.
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6. After successful completion of the task, a test result object is created in the DMS. 
For classification problems, the results are represented using 
ClassificaionTestResult object; for regression problems, results are 
represented using RegressionTestResult object.

2.2.5 Compute Lift
This section summarizes the steps required to compute lift using a classification 
model.

1. Lift operation is typically done using the test data. Data preparation steps 
described in the section above also apply to the lift operation.

2. Construct and store a MiningLiftTask object.

3. Call the execute method; the execute method queues the work for 
asynchronous execution and returns an execution handle to the caller.

4. Periodically, call the getCurrentStatus method to get the status of the task. 
As an alternative, use the waitForCompletion method to wait until all 
asychronous activity for the task completes.

5. After successful completion of the task, a MiningLiftResult object is created 
in the DMS. 

2.2.6 Apply the Model to New Data
You make predictions by applying a model to new data, that is, by scoring the data.

Any table that you score (apply a model to) must have the same format as the table 
used to build the model. If you build a model using a table that is in multi-record 
(transactional) format , any table that you apply that model to must be in 
multi-record format. Similarly, if the table used to build the model was in 
nontransactional (single-record) format, any table to which you apply the model 
must be in nontransactional format.

Note that you can score a single record, which must also be in the same format as 
the table used to build the model. 

The steps required to apply a classification, clustering, or a regression model are as 
follows:

1. Preprocess the apply data as required. The apply data must have all the active 
attributes that were present in creating the model.
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2. Prepare (bin or normalize) the input data the same way the data was prepared 
for building the model. If the data was prepared using the automated option at 
build time, then the apply data is also prepared using the automated option and 
other preparation details from building the model.

3. Construct and store a MiningApplyTask object. The MiningApplyOutput 
object is used to specify the format of the apply output table.

4.  Call the execute method; the execute method queues the work for 
asynchronous execution and returns an execution handle to the caller.

5. Periodically, call the getCurrentStatus method to get the status of the task. 
As an alternative, use the waitForCompletion method to wait until all 
asynchronous activity for the task completes.

6. After successful completion of the task, a MiningApplyResult object is 
created in the DMS and the apply output table/view is created at the 
user-specified name and location.
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3
ODM Java API Basic Usage

This chapter describes how to use the ODM Java interface to write data mining 
applications in Java. Our approach in this chapter is to use a simple example to 
describe the use of different features of the API. 

For detailed descriptions of the class and method usage, refer to the Javadoc that is 
shipped with the product. See the administrator’s guide for the location of the 
Javadoc.

3.1 Connecting to the Data Mining Server
To perform any mining operation in the database, first create an instance of 
oracle.dmt.odm.DataMiningServer class. This instance is used as a proxy to 
create connections to a data mining server (DMS), and to maintain the connection. 
The DMS is the server-side, in-database component that performs the actual data 
mining operations within ODM. The DMS also provides a metadata repository 
consisting of mining input objects and result objects, along with the namespaces 
within which these objects are stored and retrieved. 

In this step, we illustrate creating a DataMiningServer object and then logging in 
to get the connection. Note that there is a logout method to release all the 
resources held by the connection

// Create an instance of the DMS server and get a connection.
// The database JDBC URL, user_name, and password for data mining
// user schema
DataMiningServer dms = new DataMiningServer(
   "DB_URL",// JDBC URL jdbc:oracle:thin:@Host name:Port:SID 
   "user_name", 
   "password");
//Login to get the DMS connection
oracle.dmt.odm.Connection m_dmsConn = dms.login();
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3.2 Describing the Mining Data
In the ODM Java interface, oracle.dmt.odm.data.LocationAccessData 
(LAD) and oracle.dmt.odm.PhysicalDataSpecification (PDS) classes are 
used for describing the mining dataset (table/view in the user schema). To 
represent single-record format dataset, use an instance of 
NonTransactionalDataSpecification class, and to represent multi-record 
format dataset, use TransactionalDataSpecification class. Both classes are 
inherited from the common super class PhysicalDataSpecification. For more 
information about the data formats, refer to ODM Concepts. 

In this step, we illustrate creating LAD and PDS objects for both types of formats. 

3.2.1 Creating LocationAccessData
LocationAccessData (LAD) class encapsulates the dataset location details. The 
following code describes the creation of this object. 

// Create a LocationAccessData by specifying the table/view name
// and the schema name 
LocationAccessData lad =
          new LocationAccessData("input table name", "schema name");

3.2.2 Creating NonTransactionalDataSpecification
The NonTransactionalDataSpecification class contains the 
LocationAccessData object and specifies the data format as single-record case. 
The following code describes the creation of this object.

// Create the actual NonTransactionalDataSpecification
PhysicalDataSpecification pds =
          new NonTransactionalDataSpecification(lad);

3.2.3 Creating TransactionalDataSpecification
The TransactionalDataSpecification class contains a 
LocationAccessData object; it specifies the data format as multi-record case and 
it specifies the column roles. 

This dataset must contain three types of columns: Sequence-Id/case-id column to 
represent each case, attribute name column, and attribute value column. This 
format is commonly used when the data has a large number of attributes. For more 
information, refer to ODM Concepts. The following code illustrates the creation of 
this object. 
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// Create the actual TransactionalDataSpecification for transactional data.
PhysicalDataSpecification pds =
          new TransactionalDataSpecification(
                    "CASE_ID", //column name for sequence id
                    "ATTRIBUTES", //column name for attribute name
                    "VALUES", //column name for value
                    lad //Location Access Data
          );

3.3 MiningFunctionSettings Object
The class 
oracle.dmt.odm.settings.function.MiningFunctionSettings (MFS) is 
the common super class for all types of mining function settings classes. It 
encapsulates the details of function and algorithm settings, logical data, and data 
usage specifications. For more detailed information about logical data and data 
usage specification, refer to Javadoc documentation for 
oracle.dmt.odm.data.LogicalDataSpecification and 
oracle.dmt.odm.settings.function.DataUsageSpecification. 

An MFS object is a named object that can be stored in the DMS. If no algorithm is 
specified, the underlying DMS selects the default algorithm and its settings for that 
function. For example, Naive Bayes is the default algorithm for classification 
function. In this step, the ODM Java interface has the following function settings 
classes and a list of associated algorithm settings classes with each function.

oracle.dmt.odm.settings.function.ClassificationFunctionSettings
oracle.dmt.odm.settings.algorithm.NaiveBayesSettings (Default)
oracle.dmt.odm.settings.algorithm.AdaptiveBayesNetworkSettings
oracle.dmt.odm.settings.algorithm.SVMClassificationSettings

oracle.dmt.odm.settings.function.RegressionFunctionSettings
oracle.dmt.odm.settings.algorithm.SVMRegressionSettings (Default)

oracle.dmt.odm.settings.function.AssociationRulesFunctionSettings
oracle.dmt.odm.settings.algorithm.AprioriAlgorithmSettings (Default)

oracle.dmt.odm.settings.function.ClusteringFunctionSettings
oracle.dmt.odm.settings.algorithm.KMeansAlgorithmSettings (Default)
oracle.dmt.odm.settings.algorithm.OClusterAlgorithmSettings (Default)

oracle.dmt.odm.settings.function.AttributeImportanceFunctionSettings
oracle.dmt.odm.settings.algorithm.MinimumDescriptionLengthSettings 
(Defaults)
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oracle.dmt.odm.settings.function.FeatureExtractionFunctionSettings
oracle.dmt.odm.settings.algorithm.NMFAlgorithmSettings

In this step, we illustrate the creation of a ClassificationFunctionSettings 
object using Naive Bayes algorithm.

3.3.1 Creating Algorithm Settings
The class 
oracle.dmt.odm.settings.algorithm.MiningAlgorithmSettings is the 
common superclass for all algorithm settings. It encapsulates all the settings that 
can be tuned by a data-mining expert based on the problem and the data. ODM 
provides default values for algorithm settings; refer to the Javadoc documentation 
for more information about each the algorithm settings. For example, Naive Bayes 
has two settings: singleton_threshold and pairwise_threshold. The 
default values for both of these settings is 0.01. 

In this step we create a NaiveBayesSettings object that will be used by the next 
step to create the ClassificationFunctionSettings object.

// Create the Naive Bayes algorithm settings by setting both the pairwise  
// and singleton thresholds to 0.01.
NaiveBayesSettings nbAlgo = new NaiveBayesSettings(0.02f,0.02f);

3.3.2 Creating Classification Function Settings
An MFS object can be created in two ways: by using the constructor or by using 
create and adjust utility methods. If you have the input dataset, it is 
recommended that you use the create utility method because it simplifies the 
creation of this complex object. 

In this example, the utility method is used to create a 
ClassificationFunctionSettings object for a dataset, which has all 
unprepared categorical attributes and an ID column. Here we use automated 
binning; for more information about data preparation, see 

// Create classification function settings
ClassificationFunctionSettings mfs =
          ClassificationFunctionSettings.create(
                   m_dmsConn,       //DMS Connection
                   nbAlgo,          //NB algorithm settings
                   pds,             //Build data specification
                   "target_attribute_name", //Target column
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                   AttributeType.categorical, //Target attribute type
                   DataPreparationStatus.unprepared //Default preparation status
                   );

//Set ID attribute as an inactive attribute
mfs.adjustAttributeUsage(new String[]{"ID"},AttributeUsage.inactive);

3.3.3  Validate and Store Mining Function Settings
Because the MiningFunctionSettings object is a complex object, it is a good 
practice to validate the correctness of this object before persisting it. If you use 
utility methods to create MFS, then it will be a valid object. 

The following code illustrates validation and persistence of the MFS object.

// Validate and store the ClassificationFunctionSettings object
try {
 mfs.validate();
 mfs.store(m_dmsConn, "Name_of_the_MFS");
} catch(ODMException invalidMFS) {
  System.out.println(invalidMFS.getMessage());
  throw invalidMFS;
}

3.4 MiningTask Object
The class oracle.dmt.odm.task.MiningTask is the common superclass for all 
the mining tasks. This class provides asynchronous execution of mining operations 
in the database using DBMS_JOBS. For each execution of the task an 
oracle.dmt.odm.task.ExecutionHandle object is created. The 
ExecutionHandle object provides the methods to retrieve the status of the 
execution and utility methods like waitForCompletion, terminate, and 
getStatusHistory. Refer to the Javadoc API documentation of these classes for 
more information.

The ODM Java interface has the following task classes:

■ oracle.dmt.odm.task.MiningBuildTask
This class is used for building a mining model

■ oracle.dmt.odm.task.ClassificationTestTask
This class is used for testing a classification model



Build a Mining Model

3-6  Oracle Data Mining Application Developer’s Guide    

■ oracle.dmt.odm.task.RegressionTestTask
This class is used for testing a regression model

■ oracle.dmt.odm.task.CrossValidateTask
This class is used for testing a Naive Bayes model using cross validation

■ oracle.dmt.odm.task.MiningLiftTask
This class is used for computing lift in case of classification models

■ oracle.dmt.odm.task.MiningApplyTask
This class is used for scoring new data using the mining model

■ oracle.dmt.odm.task.ModelImportTask
This class is used for importing a PMML mining model to ODM Java API native 
model

■ oracle.dmt.odm.task.ModelExportTask
This class is used for exporting a ODM Java API native model to PMML mining 
model

3.5 Build a Mining Model
To build a mining model, the MiningBuildTask object is used. It encapsulates the 
input and output details of the model build operation. 

In this step, we illustrate creation, storing, and executing the MiningBuildTask 
object and task execution status retrieval by using ExecutionHandle object.

// Create a build task and store it.
MiningBuildTask buildTask =
          new MiningBuildTask(
          pds,
          "name_of_the_input_MFS",
          "name_of_the_model");

// Store the task
buildTask.store(m_dmsConn, "name_of_the_build_task");

// Execute the task
ExecutionHandle execHandle = buildTask.execute(m_dmsConn);

// Wait for the task execution to complete
MiningTaskStatus status = execHandle.waitForCompletion(dmsConnection);

After the build task completes successfully, the model is stored in the DMS with a 
name specified by the user. 
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3.6 MiningModel Object
The class oracle.dmt.odm.model.MiningModel is the common superclass for 
all the mining models. It is a wrapper class for the actual model stored in the DMS. 
Each model class provides methods for retrieving the details of the models. For 
example, AssociationRulesModel provides methods to retrieve the rules from 
the model using different filtering criteria. Refer to Javadoc API documentation for 
more details about the model classes.

In this step, we illustrate restoring the NaiveBayesModel object and retrieve the 
ModelSignature object. The ModelSignature object specifies the input 
attributes required to apply data using a specific model.

//Restore the naïve bayes model 
NaiveBayesModel nbModel = 
           (NaiveBayesModel)SupervisedModel.restore(
                    m_dmsConn, 
                    "name_of_the_model");

//Get the model signature 
ModelSignature nbModelSignature = nbModel.getSignature();

3.7 Testing a Model
After creating the classification model, you can test the model to assess its accuracy 
and compute a confusion matrix using the test dataset.

In this step, we illustrate how to test the classification model using the 
ClassificationTestTask object and how to retrieve the test results using the 
ClassificationTestResult object. 

3.7.1 Describe the Test Dataset
To test the model, a compatible test dataset is required. For example, if the model is 
built using single-record dataset, then the test dataset must be single-record dataset. 
All the active attributes and target attribute columns must be present in the test 
dataset.

To test a model, the user needs to specify the test dataset details using the 
PhysicalDataSpecification class.

     //Create PhysicalDataSpecification
      LocationAccessData lad = new LocationAccessData( 
                                 "test_dataset_name", 
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                                 "schema_name" );
      PhysicalDataSpecification pds = 
        new NonTransactionalDataSpecification( lad );

3.7.2 Test the Model
After creating the PhysicalDataSpecification object, create a 
ClassificationTestTask instance by specifying the input arguments required 
to perform the test operation. Before executing a task, it must be stored in the DMS. 
After invoking execute on the task, the task is submitted for asynchronous 
execution in the DMS. To wait for the completion of the task, use 
waitForCompletion method.

           //Create, store & execute Test Task
      ClassificationTestTask testTask = new ClassificationTestTask(
                   pds, //test data specification
                   "name_of_the_model_to_be_tested",
                   "name_of_the_test_results_object" ); 
      testTask.store(m_dmsConn, "name_of_the_test_task");      
      taskTask.execute(m_dmsConn); 

     //Wait for completion of the Test task
     MiningTaskStatus taskStatus = 
                 taskTask.waitForCompletion(m_dmsConn);

3.7.3 Get the Test Results
After successful completion of the test task, you can restore the results object 
persisted in the DMS using the restore method. The 
ClassificationTestResult object has get methods for accuracy and 
confusion matrix. The toString method can be used to display the test results.

//Restore the test results
ClassificationTestResult testResult = 
          ClassificationTestResult.restore(m_dmsConn, "name of the test 
results");

//Get accuracy
double accuracy = testResult.getAccuracy();

//Get confusion matrix
ConfusionMatrix confMatrix = testResult.getConfusionMatrix();

//Display results
System.out.println(testResult.toString());
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3.8 Lift Computation
Lift is a measure of how much better prediction results are using a model than 
could be obtained by chance. You can compute lift after the model is built 
successfully. You can compute lift using the same test dataset. The test dataset must 
be compatible with the model as described in Section 2.2.4.

In this step, we illustrate how to compute lift by using MiningLiftTask object 
and how to retrieve the test results using MiningLiftResult object. 

3.8.1 Specify Positive Target Value
To compute lift, a positive target value needs to be specified. This value depends on 
the dataset and the data mining problem. For example, for a marketing campaign 
response model, the positive target value could be "customer responds to the 
campaign". In the Java interface, oracle.dmt.odm.Category class is used to 
represent the target value.

      Category positiveCategory = new Category(
        "Display name of the positive target value",
        "String representation of the target value",
        DataType.intType //Data type
      );

3.8.2 Compute Lift
To compute lift, create a MiningLiftTask instance by specifying the input 
arguments that are required to perform the lift operation. The user needs to specify 
the number of quantiles to be used. A quantile is the specific value of a variable that 
divides the distribution into two parts: those values that are greater than the 
quantile value and those values that are less. Here the test dataset records are 
divided into the user-specified number of quantiles and lift is computed for each 
quantile.

           //Create, store & execute Lift Task
      MiningLiftTask liftTask = new MiningLiftTask (
                   pds, //test data specification
                   10, //Number of quantiles
                   positiveCategory, //Positive target value
                   "name_of_the_input_model",
                   "name_of_the_lift_results_object" ); 
      liftTask.store(m_dmsConn, name_of_the_lift_task");      
      liftTask.execute(m_dmsConn); 
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     //Wait for completion of the lift task
     MiningTaskStatus taskStatus = 
                  liftTask.waitForCompletion(m_dmsConn);

3.8.3 Get the Lift Results
After successful completion of the test task, you can restore the results object 
persisted in the DMS using restore method.MiningLiftResult. To get the lift 
measures for each quantile use getLiftResultElements(). Method 
toString() can be used to display the lift results.

//Restore the lift results
MiningLiftResult liftResult = 
          MiningLiftResult.restore(m_dmsConn, "name_of_the_lift_results");
//Get lift measures for each quantile
LiftResultElement[] quntileLiftResults =  
          liftResult.getLiftResultElements()
//Display results
System.out.println(liftResult.toString());

3.9 Scoring Data Using a Model
A classification or clustering model can be applied to new data to make predictions; 
the process is referred to as "scoring data."

Similar to the test dataset, the apply dataset must have all the active attributes that 
were used to build the model. Unlike test dataset, apply dataset does not have a 
target attribute column; the apply process predicts the values of the target attribute. 
ODM Java API supports real-time scoring in addition to batch scoring (i.e., scoring 
with an input table)

In this step, we illustrate how to apply a model to a table/view to make predictions 
and how to apply a model to a single record for real-time scoring. 

3.9.1 Describing Apply Input and Output Datasets
The Apply operation requires an input dataset that has all the active attributes that 
were used to build the model. It produces an output table in the user- specified 
format. 

//Create PhysicalDataSpecification
LocationAccessData lad = new LocationAccessData( 
                                 "apply_input_table/view_name", 
                                 "schema_name"



Scoring Data Using a Model

                     ODM Java API Basic Usage 3-11

                               );
PhysicalDataSpecification pds = 
          new NonTransactionalDataSpecification( lad );

//Output table location details
LocationAccessData outputTable =  new LocationAccessData(
          "apply_output_table/view_name", 
           "schema_name" );

3.9.2 Specify the Format of the Apply Output
The DMS also needs to know the content of the scoring output. This information is 
captured in a MiningApplyOutput (MAO) object. An instance of 
MiningApplyOutput specifies the data (columns) to be included in the apply 
output table that is created as the result of an apply operation. The columns in the 
apply output table are described by a combination of ApplyContentItem objects. 
These columns can be either from the input table or generated by the scoring task 
(for example, prediction and probability). The following steps create a 
MiningApplyOutput object:

        // Create MiningApplyOutput object using default settings
        MiningApplyOutput mao = MiningApplyOutput.createDefault();

        // Add all the source attributes to be returned with the scored result.
        // For example, here we add attribute "CUST_ID" from the original table 
        // to the apply output table
        MiningAttribute sourceAttribute =
                  new MiningAttribute("CUST_ID", DataType.intType,
                                      AttributeType.notApplicable);
        Attribute destinationAttribute = new Attribute(
                       "CUST_ID",DataType.intType);

        ApplySourceAttributeItem m_ApplySourceAttributeItem =
           new ApplySourceAttributeItem(sourceAttribute,destinationAttribute);
        // Add a source and destination mapping
        mao.addItem(m_ApplySourceAttributeItem);

3.9.3 Apply the Model
To apply the model, create a MiningApplyTask instance by specifying the input 
arguments that are required to perform the apply operation. 

    //Create, store & execute apply Task
    MiningApplyTask applyTask = new MiningApplyTask(
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                     pds, //test data specification
                     "name_of_the_model", //Input model name
                     mao, //MiningApplyOutput object
                     outputTable, //Apply output table location details
                     "name_of_the_apply_results" //Apply results name
                     );

    applyTask.store(m_dmsConn, name_of_the_apply_task");      
    applyTask.execute(m_dmsConn); 

    //Wait for completion of the apply task
    MiningTaskStatus taskStatus = 
                  applyTask.waitForCompletion(m_dmsConn);

3.9.4 Real-Time Scoring
To apply the model to a single record, use the 
oracle.dmt.odm.result.RecordInstance class. Model classes that support 
record apply have the static apply method, which can take RecordInstance 
object as input and returns with the prediction and probability. 

In this step, we illustrate the creation of the RecordInstance object and score 
using Naive Bayes model’s apply static method.

//Create RecordInstance object for a model with two active attributes
RecordInstance inputRecord = new RecordInstance();

//Add active attribute values to this record
AttributeInstance attr1 = new AttributeInstance("Attribute1_Name", value);
AttributeInstance attr2 = new AttributeInstance("Attribute2_Name", value);
inputRecord.addAttributeInstance(attr1);
inputRecord.addAttributeInstance(attr2);

//Record apply, output record will have the prediction value and its probability 
value
RecordInstance outputRecord = NaiveBayesModel.apply(
m_dmsConn, inputRecord, "model_name");

3.10 Use of CostMatrix 
The class oracle.dmt.odm.CostMatrix is used to represent the costs of the false 
positive and false negative predictions. It is used for classification problems to 
specify the costs associated with the false predictions. A user can specify the cost 
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matrix in the classification function settings. For more information about the cost 
matrix, see ODM Concepts. 

The following code illustrates how to create a cost matrix object where the target 
has two classes: YES (1) and NO (0). Suppose a positive (YES) response to the 
promotion generates $2 and the cost of the promotion is $1. Then the cost of 
misclassifying a positive responder is $2. The cost of misclassifying a non-responder 
is $1.

        // Define a list of categories
        Category negativeCat = new Category("negativeResponse", "0", 
                                            DataType.intType);
        Category positiveCat = new Category("positiveResponse", "1", 
                                            DataType.intType);      

        // Define a Cost Matrix
        // AddEntry( Actual Category, Predicted Category, Cost Value)
        CostMatrix costMatrix = new CostMatrix();
        // Row 1
        costMatrix.addEntry(negativeCat, negativeCat, new Integer("0"));
        costMatrix.addEntry(negativeCat, positiveCat, new Integer("1"));
        // Row 2
        costMatrix.addEntry(positiveCat, negativeCat, new Integer("2"));
        costMatrix.addEntry(positiveCat, positiveCat, new Integer("0"));
        // Set Cost Matrix to MFS
        mfs.setCostMatrix(costMatrix);

3.11 Use of PriorProbabilities 
The class oracle.dmt.odm.PriorProbabilities is used to represent the prior 
probabilities of the target values. It is used for classification problems if the actual 
data has a different distribution for target values than the data provided for the 
model build. A user can specify the prior probabilities in the classification function 
settings. For more information about the prior probabilities, see ODM Concepts.

The following code illustrates how to create PriorProbabilities object, when 
the target has two classes: YES (1) and NO (0), and probability of YES is 0.05, 
probability of NO is 0.95.

        // Define a list of categories
        Category negativeCat = new Category(
                "negativeResponse", "0", DataType.intType);
        Category positiveCat = new Category(
                "positiveResponse", "1", DataType.intType);  
        // Define a Prior Probability 
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        // AddEntry( Target Category, Probability Value)
        PriorProbabilities priorProbability = new PriorProbabilities();
        // Row 1
        priorProbability.addEntry(negativeCat, new Float("0.95"));
        // Row 2
        priorProbability.addEntry(positiveCat, new Float("0.05"));       
        // Set Prior Probabilities to MFS 
          mfs.setPriors(priorProbability);

3.12 Data Preparation
Data Mining algorithms require the data to be prepared to build mining models and 
to score. Data preparation requirements can be specific to a function and an 
algorithm. ODM algorithms require binning (discretization) or normalization, 
depending on the algorithm. For more information about which algorithm requires 
what type of data preparation, see ODM Concepts. Java API supports automated 
binning, automated normalization, external binning, winsorizing, and embedded 
binning. 

In this section, we illustrate how to do the automated binning, automated 
normalization, external binning, and embedded binning.

3.12.1 Automated Binning and Normalization
In the MiningFunctionSettings, if any of the active attributes are set as 
unprepared attributes, the DMS chooses the appropriate data preparation (i.e., 
binning or normalization), depending on the algorithm, and prepares the data 
automatically before sending it to the algorithm codes. 

3.12.2 External Binning
The class oracle.dmt.odm.transformation.Transformation provides the 
utility methods to perform external binning. Binning is a two-step process, first bin 
boundary tables need to be created and then bin the actual data using the bin 
boundary tables as input. 

The following code illustrates the creation of bin boundary tables for a table with 
one categorical attribute and one numerical attribute. 

 //Create an array of DiscretizationSpecification
 //for the two columns in the table
 DiscretizationSpecification[] binSpec = new DiscretizationSpecification[2];

 //Specify binning criteria for categorical column.
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 //In this example we are specifying binning criteria 
 //as top 5 frequent values need to be used and 
 //the rest of the less frequent values need 
 //to be treated as OTHER_CATEGORY 
 
 CategoricalDiscretization binCategoricalCriteria = 
          new CategoricalDiscretization(5,"OTHER_CATEGORY");

 binSpec[0] = new DiscretizationSpecification(
          "categorical_attribute_name", binCategoricalCriteria);

 //Specify binning criteria for numerical column.
 //In this example we are specifying binning criteria 
 //as use equal width binning with 10 bins and use
 //winsorize technique to filter 1 tail percent 
   
 float tailPercentage = 1.0f; //tail percentage value

 NumericalDiscretization binNumericCriteria = 
          new NumericalDiscretization(10, tailPercentage);
 binSpec[1] = new DiscretizationSpecification(
          "numerical_attribute_name", binNumericCriteria);

  //Create PhysicalDataSpecification object for the input data
 LocationAccessData lad = new LocationAccessData( 
                                     "input_table_name",
                                     "schema_name" );         
 PhysicalDataSpecification pds = 
          new NonTransactionalDataSpecification( lad );
    
 //Create bin boundaries tables
 Transformation.createDiscretizationTables(
          m_dmsConn, //DMS connection
          lad,  pds, //Input data details
          binSpec,   //Binning criteria
          "numeric_bin_boundaries_table", 
          "categorical_bin_boundaries_table", 
          "schema_name>");

//Resulting discretized view location
LocationAccessData resultViewLocation = new LocationAccessData( 
           "output_discretized_view_name", 
           "schema_name" );
    
//Perform binning
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Transformation.discretize(
            m_dmsConn, // DMS connection
            lad, pds,  // Input data details
            "numeric_bin_boundaries_table", 
            "categorical_bin_boundaries_table>,
            "schema_name",   
            resultViewLocation, // location of the resulting binned view
            true                // open ended binning
            );

3.12.3 Embedded Binning
In case of external binning, the user needs to maintain the bin boundary tables and 
use these tables to bin the data. In case of embedded, the user can give the binning 
bin boundary tables as an input to the model build operation. The model will 
maintain these tables internally and use them for binning of the data for build, 
apply, test, or lift operations. 

The following code illustrates how to associate the bin boundary tables with the 
mining function settings.

//Create location access data objects for bin boundary tables
LocationAccessData numBinBoundaries = new LocationAccessData( 
            "numeric_bin_boundaries_table",
            "schema_name");

LocationAccessData catBinBoundaries = new LocationAccessData( 
            "categorical_bin_boundaries_table>,
            "schema_name");

//Get the Logical Data Specification from the MiningFunctionSettings class
LogicalDataSpecification lds = mfs.getLogicalDataSpecification();

//Set the bin boundary tables to the logical data specification  
lds.setUserSuppliedDiscretizationTables(numBinBoundaries, catBinBoundaries);

3.13 Text Mining
ODM Java API supports text mining for SVM and NMF algorithms. For these 
algorithms, an input table can have a combination of categorical, numerical, and 
text columns. The data mining server (DMS) internally performs the 
transformations required for the text data before building the model. 
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Note that for text mining, the case-id column must be specified in the 
NonTransactionalDataSpecification object, case-id column must have 
not-NULL unique values.

The following code illustrates how to set the text attribute in the ODM Java API.

//Set a caseid/sequenceid column for the dataset with active text attribute
Attribute sequenceAttr = new Attribute ("case_id_column_name", DataType.int);
pds.setSequenceAttribute( Attribute sequenceAttr )

//Set the text attribute
mfs.adjustAttributesType( new String[] {"text_attribute_column"}, 
            AttributeType.text );

3.14 Summary of Java Sample Programs
All the demo programs listed in the tables below are located in the directory 
$ORACLE_HOME/dm/demo/sample/java.

The summary description of these sample programs is also provided in $ORACLE_
HOME/dm/demo/sample/java/README.txt.

Note: Before executing these programs, make sure that the SH schema and user 
schema are installed with the datasets used by these programs. You also need to 
provide DB URL, username, and password in login method and a valid data 
schema name by changing the DATA_SCHEMA_NAME constant value in the program.

Table 3–1 Java Sample Programs 

Sample Program Description

ABNDemo.java Classification using the ABN algorithm

AIDemo.java Determine most important attributes using the Attribute 
Importance algorithm; then use the resulting AI model to build 
classification model using Naive Bayes algorithm

ARDemo.java Association (AR) model using the Apriori algorithm; extracting 
association rules

CostDemo.java Use of cost matrix; compare results with and without the cost 
matrix

DataPrepDemo.java Use of discretization methodologies: automated, external 
discretization, and user-supplied bin boundaries (embedded 
binning)

kMeansDemo.java Clustering using the k-Means algorithm
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NBDemo.java Classification using the Naive Bayes algorithm

NMFDemo.java Feature extraction and text mining using the Non-Negative 
Matrix Factorization (NMF) algorithm

OClusterDemo.java Clustering using the O-Cluster algorithm.

PMMLDemo.java Import and export a PMML model

PriorsDemo.java Use of prior probability; compare results with and without the 
prior probability

SVMCDemo.java Classification and text mining using the SVM algorithm.

SVMRDemo.java Regression using the SVM algorithm 

Table 3–1 (Cont.) Java Sample Programs 

Sample Program Description
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4
DBMS_DATA_MINING

This chapter discusses the following topics related to writing data mining programs 
with the PL/SQL interface:

■ The requirements for compiling and executing Oracle Data Mining programs.

■ How to perform common data mining tasks using Oracle Data Mining.

■ Tips and techniques for using the algorithms.

This chapter provides an overview of the steps required to perform basic Oracle 
Data Mining tasks. For detailed examples of how to perform these tasks, see the 
sample programs in Chapter 5. 

This chapter does not include detailed descriptions of the PL/SQL subprograms. 
For that information, see the DBMS_DATA_MINING and DBMS_DATA_MINING_
TRANSFORM chapters in the PL/SQL Packages and Types Reference.

The DBMS_DATA_MINING package provides PL/SQL support for in-database data 
mining. You can use the package to build a mining model, test the model, and apply 
this model to your data to obtain predictive and descriptive information.

See also:

■ Oracle Data Mining Concepts.

■ DBMS_DATA_MINING_TRANSFORM, a supplied package that supports data 
preprocessing for mining (described inPL/SQL Packages and Types Reference).

This chapter discusses the following topics:

■ Section 4.1, "Development Methodology"

■ Section 4.2, "Mining Models, Function, and Algorithm Settings"

■ Section 4.3, "Mining Operations and Results"
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■ Section 4.4, "Mining Data" 

■ Section 4.5, "Performance Considerations"

■ Section 4.6, "Rules and Limitations for DBMS_DATA_MINING"

■ Section 4.9, "Model Export and Import"

DBMS_DATA_MINING subprograms are presented in PL/SQL Packages and Types 
Reference. Sample code is described in Chapter 5 of this manual; the code itself is in 
the dm/demo/sample/plsql directory.

4.1 Development Methodology
The development methodology for data mining using the DBMS_DATA_MINING 
API is divided into two phases.

The first phase includes your application and data analysis and design, where you 
perform the following two steps:

1. Analyze your problem, and choose the mining function and algorithm.

2. Analyze the data to be used for building mining models (build data), testing 
predictive models (test data), and the new data on which the model will be 
applied (scoring data).

The second phase involves developing a mining application using DBMS_DATA_
MINING and DBMS_DATA_MINING_TRANSFORM packages.

3. Prepare the build, test, and scoring data using the DBMS_DATA_MINING_
TRANSFORM package or other third-party tool or direct SQL or PL/SQL utility 
scripts in a manner suitable for the chosen mining function and algorithm. An 
important caveat is that the three detests referred to above have to be prepared 
in an identical manner for mining results to be meaningful. This is an optional 
step. 

4. Prepare a settings table that overrides the default mining algorithm for a given 
mining function, and the default algorithm settings. This is also an optional 
step.

5. Build a mining model for the given training dataset.

6. For predictive models (classification and regression), test the model for its 
accuracy and other attributes. This amounts to applying the model on the test 
data (i.e., scoring the test data), and computing various matrix on the apply 
results.
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7. Retrieve the model signature to determine the mining attributes required by a 
given model for scoring. This information will help ascertain that the scoring 
data is suitable for a given model. This is an optional step.

8. Apply a classification, regression, clustering, or feature extraction model to new 
data to generate predictions and/or descriptive summaries and patterns about 
the data.

9. Retrieve the model details to understand why a model scored the data in a 
particular manner. This is an optional step.

10. Repeat steps 3 through 9 until you obtain satisfactory results.

4.2 Mining Models, Function, and Algorithm Settings
The DBMS_DATA_MINING package creates a mining model for a mining function 
using a specified mining algorithm that supports the function. The algorithm can be 
influenced by specific algorithm settings.

4.2.1 Mining Model
A model is identified by its name. Like tables in the database, a model has storage 
associated with it. But unlike a table, the form, shape, and content of this storage is 
opaque to the user. However, the user can view the contents of a model — that is, 
the patterns and rules that constitute a mining model — using algorithm-specific 
GET_MODEL_DETAILS functions. In addition, dm_user_models provides the 
model size in megabytes.

4.2.2 Mining Function
The DBMS_DATA_MINING package supports Classification, Regression, Association 
Rules, Clustering, and Feature Extraction. You can specify your choice of mining 
function through a parameter to the CREATE_MODEL procedure.

4.2.3 Mining Algorithm
Each mining function can be implemented using one or more algorithms. Table 4–1 
provides a list of supported algorithms. Oracle assumes a default algorithm for each 



Mining Models, Function, and Algorithm Settings

4-4  Oracle Data Mining Application Developer’s Guide    

mining function, but you can override this default through an explicit setting in the 
settings table.

Each algorithm has one or more settings or parameters that influence the way it 
builds the model. Oracle assumes a default set of algorithm settings for each mining 
algorithm. These defaults are available for your review through the table function 
GET_DEFAULT_SETTINGS. To override the defaults, you must provide the choice 
of the algorithm and the settings for the algorithm through a settings table input to 
the CREATE_MODEL procedure.

4.2.4 Settings Table
The settings table is a simple relational table with a fixed schema. You can choose the 
name of the settings table, but the column names and their types must be defined as 
specified below.

(setting_name VARCHAR2(30),
setting_value VARCHAR2(128))

The values provided in the settings table override the default values assumed by 
the system. The values inserted into the setting_name column are one or more of 
several constants defined in the DBMS_DATA_MINING package. Depending on what 
the setting name denotes, the value for the setting_value column can be a 
predefined constant or the actual numerical value corresponding to the setting 
itself. The setting_value column is defined to be VARCHAR2, so you must cast 
numerical inputs to string using the TO_CHAR() function before input into the 
settings table.

Table 4–1 DBMS_DATA_MINING Summary of Functions and Algorithms

Mining Function Mining Algorithm 

Classification Naive Bayes (NB) — default algorithm

Classification Adaptive Bayes Network (ABN)

Classification Support Vector Machine (SVM)

Regression Support Vector Machine (SVM) — default algorithm

Association Rules Apriori Association Rules (AR)

Clustering k-Means (KM)

Feature Extraction Non-Negative Matrix Factorization (NMF)
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Table 4–2 through Table 4–7 list the various setting names and the valid setting 
values, with a brief explanation of each setting
.

Table 4–2 DBMS_DATA_MINING Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)

algo_name Classification: One of:

■ algo_naive_bayes

■ algo_support_vector_machines

■ algo_adaptive_bayes_network

Regression:

■ algo_support_vector_machines

Association Rules:

■ algo_apriori_association_rules

Clustering:

■ algo_kmeans

Feature Extraction:

■ algo_non_negative_matrix_factor

Attribute Importance:

■ algo_ai_mdl

clas_priors_table_name VARCHAR2 string denoting the name of a relational table of 
fixed schema containing prior probabilities. The schema of 
this table is provided in Section 4.2.4.1 on page 4-10.

This input is applicable only for classification algorithms. 
The prior probabilities table must be present in the current 
user’s schema

clus_num_clusters TO_CHAR(numeric_expr >= 1)

Number of clusters generated by a clustering algorithm

Default value is 10

feat_num_features TO_CHAR(numeric_expr >= 1)

Number of features to be extracted

Default value estimated from the data by the algorithm

asso_max_rule_length TO_CHAR(2 <= numeric_expr <= 20)

Maximum rule length for AR algorithm

Default value is 4 
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asso_min_confidence TO_CHAR(0 <= numeric_expr <= 1)

Minimum confidence value for AR algorithm

Default value is 0.1

asso_min_support TO_CHAR(0 <= numeric_expr <= 1)

Minimum support value for AR algorithm

Default value is 0.1

Table 4–3 Algorithm Settings for Adaptive Bayes Network

Setting Name Setting Value (with Permissible Value Ranges)

abns_model_type Model type for Adaptive Bayes Network:

■ abns_single_feature (single feature)

■ abns_multi_feature (multi feature

■ abns_naive_bayes (naive bayes)

Default value is abns_multi_feature

abns_max_build_minutes TO_CHAR(numeric_expr >= 0)

The maximum time threshold for completion of model 
build. Default value is 0, which implies no time limit.

abns_max_nb_predictors TO_CHAR(numeric_expr > 0)

Maximum number of Naive Bayes predictors to be 
considered for model build, when the model type is chosen 
to be abns_naive_bayes. Default value is 10.

abns_max_predictors TO_CHAR(numeric_expr > 0)

Default is 25

Table 4–2 DBMS_DATA_MINING Function Settings

Algorithm Settings Setting Value (with Permissible Value Ranges)
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Table 4–4 Algorithm Settings for Naive Bayes

Setting Name Setting Value (with Permissible Value Ranges)

nabs_singleton_threshold TO_CHAR(0 <= numeric_expr <=1)

Value of singleton threshold for NB algorithm

Default value is 0.01

nabs_pairwise_threshold TO_CHAR (0 <= numeric_expr <=1)

Value of pairwise threshold for NB algorithm

Default value is 0.01

Table 4–5 Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)

svms_kernel_function Kernel for Support Vector Machine:

■ svms_linear (for Linear Kernel

■ svms_gaussian (for Gaussian Kernel)

Default value is svms_linear

svms_kernel_cache_size TO_CHAR(numeric_expr > 0)

Value of kernel cache size for SVM algorithm. Applies to 
Gaussian kernel only.

Default value is 50000000 bytes 

svms_conv_tolerance TO_CHAR(numeric_expr > 0)

Convergence tolerance for SVM algorithm

Default value is 0.001.

svms_std_dev TO_CHAR(numeric_expr > 0)

Value of standard deviation for SVM algorithm

This is applicable only for Gaussian kernel

Default value estimated from the data by the algorithm

svms_complexity_factor TO_CHAR(numeric_expr > 0)

Value of complexity factor for SVM algorithm

Default value estimated from the data by the algorithm
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svms_epsilon TO_CHAR(numeric_expr > 0)

Value of epsilon factor for SVM Regression

Default value estimated from the data by the algorithm

Table 4–6 Algorithm Settings for Non-Negative Matrix Factorization

Setting Name Setting Value (with Permissible Value Ranges)

nmfs_random_seed TO_CHAR(numeric_expr)

Number of iterations for NMF algorithm

Default value is –1

nmfs_num_iterations TO_CHAR(1 <= numeric_expr <= 500)

Number of iterations for NMF algorithm

Default value is 50

nmfs_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for NMF algorithm

Default value is 0.05

Table 4–7 Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)

kmns_distance Distance Function for k-Means Clustering:

■ kmns_euclidean

■ kmns_cosine

■ kmns_fast_cosine

Default value is kmns_euclidean

kmns_iterations TO_CHAR(0 < numeric_expr <= 20)

Number of iterations for k-Means algorithm

Default value is 3

kmns_conv_tolerance TO_CHAR(0 < numeric_expr <= 0.5)

Convergence tolerance for k-Means algorithm

Default value is 0.01

Table 4–5 (Cont.) Algorithm Settings for Support Vector Machines

Setting Name Setting Value (with Permissible Value Ranges)
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You can create a settings table as shown in the example below for an SVM 
classification model, and edit the individual values using SQL DML.

CREATE TABLE drugstore_settings (
  setting_name VARCHAR2(30),
  setting_value VARCHAR2(128))

BEGIN

kmns_split_criterion Split criterion for k-Means Clustering:

■ kmns_variance

■ kmns_size

Default value is kmns_variance

kmns_num_bins Number of histogram bins. Specifies the number of 
bins in the attribute histogram produced by k-Means. 
The bin boundaries for each attribute are computed 
globally on the entire training data set. The binning 
method is equi-width. All attributes have the same 
number of bins with the exception of attributes with a 
single value that have only one bin.

Range > 0

Default value is 10.

kmns_block_growth TO_CHAR(1 < numeric_expr <= 5)

Growth factor for memory allocated to hold cluster 
data

Default value is 2

kmns_min_pct_attr_support Minimum percentage support required for attributes 
in rules. Specifies the minimum percentage of values 
for an attribute in a given cluster required to include 
this attribute in the rule description of the cluster. 
That is, if the required support level is not met, the 
attribute would be omitted from the rule. This would 
allow retaining in the rule only the well-represented 
attributes. Setting the parameter value too high in 
data with missing values can result in very short or 
even empty rules.

Range >= 0 and <= 1

Default is 0.1.

Table 4–7 (Cont.) Algorithm Settings for k-Means

Setting Name Setting Value (with Permissible Value Ranges)
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-- override the default for convergence tolerance for SVM Classification
INSERT INTO drugstore_model_settings (setting_name, setting_value)
VALUES (dbms_data_mining.svms_conv_tolerance, TO_CHAR(0.081));
COMMIT;
END;

The table function GET_DEFAULT_SETTINGS provides you all the default settings 
for mining functions and algorithms. If you intend to override all the default 
settings, you can create a seed settings table and edit them using DML.

BEGIN
CREATE TABLE drug_store_settings AS
SELECT setting_name, setting_value
  FROM TABLE (DBMS_DATA_MINING.GET_DEFAULT_SETTINGS
 WHERE setting_name LIKE ’SVMS_%’;
-- update the values using appropriate DML
END;

You can also create a settings table based on another model’s settings using GET_
MODEL_SETTINGS, as shown in the example below.

BEGIN
CREATE TABLE my_new_model_settings AS
SELECT setting_name, setting_value 

FROM TABLE (DBMS_DATA_MINING.GET_MODEL_SETTINGS(’my_other_
model’));
END;

4.2.4.1 Prior Probabilities Table
Consult Oracle Data Mining Concepts for an explanation of the prior probabilities 
table. You can specify a prior probabilities table as an optional function setting 
when building classification models.

You must create the prior probabilities table using the fixed schema shown below. 
For numerical targets, use the following schema:

target_value      NUMBER
prior_probability NUMBER

For categorical targets, use the following schema:

target_value      VARCHAR2
prior_probability NUMBER
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Next, provide the name of the prior probabilities table as input to the setting_
value column in the settings table, with the corresponding value for the setting_
name column to be DBMS_DATA_MINING.clas_priors_table_name, as shown 
below:

BEGIN
INSERT INTO drugstore_settings (setting_name, setting_value) VALUES (DBMS_
DATA_MINING.class_priors_table_name, 
’census_priors’);
COMMIT;
END;

4.2.4.2 Cost Matrix Table
Consult Oracle Data Mining Concepts for an explanation of the cost matrix. You must 
create a cost matrix table with the fixed schema shown below. For numerical targets, 
use the following schema:

actual_target_value    NUMBER
predicted_target_value NUMBER
cost                   NUMBER

For categorical targets, use the following schema:

actual_target_value    VARCHAR2
predicted_target_value VARCHAR2
cost                   NUMBER

The DBMS_DATA_MINING package enables you to evaluate the cost of predictions 
from classification models in an iterative manner during the experimental phase of 
mining, and to eventually apply the optimal cost matrix to predictions on the actual 
scoring data in a production environment.

The data input to each COMPUTE procedure in the package is the result generated 
from applying the model on test data. In addition, if you also provide a cost matrix 
as an input, the COMPUTE procedure generates test results taking the cost matrix 
into account. This enables you to experiment with various costs for a given 
prediction against the same APPLY results, without rebuilding the model and 
applying it against the same test data for every iteration.

Once you arrive at an optimal cost matrix, you can then input this cost matrix to the 
RANK_APPLY procedure along with the results of APPLY on your scoring data. 
RANK_APPLY will provide your new data ranked by cost.



Mining Operations and Results

4-12  Oracle Data Mining Application Developer’s Guide    

4.3 Mining Operations and Results
There are essentially four classes of mining operations supported by the DBMS_
DATA_MINING package:

■ Operations that create, drop, and rename a model: CREATE_MODEL, DROP_
MODEL, RENAME_MODEL.

■ Operation that reads a model to score new data: APPLY.

■ Operation that enables ranking of APPLY results or other data that is presented 
using the same schema as that of APPLY results: RANK_APPLY.

■ Operations that read and describe a model: GET_MODEL_DETAILS, GET_
MODEL_SETTINGS, GET_MODEL_SIGNATURE.

■ Operations that help test a classification model, based on the results of an 
APPLY operation on the test data, or based on any other data that is presented 
using the same schema as that of the APPLY results: COMPUTE_CONFUSION_
MATRIX, COMPUTE_LIFT, and COMPUTE_ROC.

■ Operations that help transport a model from one schema to another, or from 
one database instance to another: EXPORT_MODEL, IMPORT_MODEL.

■ GET_DEFAULT_SETTINGS returns default values for all the settings.

Of these, the first set represents DDL-like operations. The last set represents utilities. 
The rest are query-like operations in that they do not modify the model. Besides 
these operations, the following capabilities are also provided as part of the Oracle 
Data Mining installation:

■ User Views — DM_USER_MODELS

■ Queries to compute metrics that test regression models.

Mining results are either returned as result sets or persisted as fixed schema tables.

4.3.1 Build Results
The CREATE_MODEL operation creates a mining model. The viewable contents of a 
mining model are provided to you through GET_MODEL_DETAILS functions for 
each supported algorithm. In addition, GET_MODEL_SIGNATURE and GET_MODEL_
SETTINGS provide descriptive information about the model.
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4.3.2 Apply Results
The APPLY operation creates and populates a fixed schema table with a given name. 
The schema of this table varies based on the particular mining function, algorithm, 
and target attribute type — numerical or categorical.

The RANK_APPLY operation takes this results table as input and generates another 
table with results ranked based on a top-N input, and for classification models, also 
based on cost. The schema of this table varies based on the particular mining 
function, algorithm, and the target attribute type — numerical or categorical.

4.3.3 Test Results for Classification Models
The COMPUTE routines provided in the package are the most popularly used metrics 
for classification. They are not tied to a particular model — they can compute the 
metrics from any meaningful data input as long as the schema of the input tables 
fits the specification of the apply results table and the targets tables. Please consult 
any of the COMPUTE descriptions in this document for details.

4.3.4 Test Results for Regression Models
The most commonly used metrics for regression models are root mean square error 
and mean absolute error. You can use the simple SQL queries provided below to 
compute these metrics by replacing the italicized tokens with table and column 
names appropriate for your application.

4.3.4.1 Root Mean Square Error
SELECT sqrt(avg((A.prediction - B.target_column_name) * 
                (A.prediction - B.target_column_name))) rmse 
  FROM apply_results_table A, targets_table B 
 WHERE A.case_id_column_name = B.case_id_column_name;

4.3.4.2 Mean Absolute Error
Given the targets_table generated from the test data with the schema:

(case_id_column_name VARCHAR2,
target_column_name NUMBER)

and apply results table for regression with the schema:

(case_id_column_name VARCHAR2, 
prediction NUMBER)
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and a normalization table (optional) with the schema:

(attribute_name VARCHAR2(30),
scale NUMBER,
shift NUMBER)

the query for mean absolute error is:

SELECT /*+PARALLEL(T) PARALLEL(A)*/
    AVG(ABS(T.actual_value - T.target_value)) mean_absolute_error
  FROM (SELECT B.case_id_column_name
          (B.target_column_name * N.scale + N.shift) actual_value
      FROM targets_table B,
           normalization_table N
     WHERE N.attribute_name = B.target_column_name AND
              B.target_column_name = 1) T,
       apply_results_table_name A
 WHERE A.case_id_column_name = T.case_id_column_name;

You can fill in the italicized values with the actual column and table names chosen 
by you. If the data has not undergone normalization transformation, you can 
eliminate those references from the subquery. See 
dm/demo/sample/plsql/svmrdemo.sql for an example.

4.4 Mining Data
The data input for all the mining operations should be through standard relational 
tables, where each row in the table represents a case, and each column in the table 
uniquely represents a mining attribute. We call this format single-record case. 

A table in the Oracle RDBMS supports 1000 columns. The DBMS_DATA_MINING 
package requires a mandatory case identifier column, which implies that you can 
provide 999 mining attributes using this representation, which is adequate for most 
business applications.

4.4.1 Wide Data Support
The notable exceptions to the common scenario are applications in the domains of 
bioinformatics, text mining, and such specialized areas where data is characterized 
to be wide and shallow — with relatively few cases numbering in the thousands, but 
with several thousand mining attributes.

You can provide such data in a multi-record case format, where attribute, value 
pairs are grouped into collections (nested tables) associated with a given case-id. 
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You must use the fixed collection types DM_Nested_Numericals and DM_
Nested_Categoricals to define columns that represent collections of numerical 
attributes and categorical attributes respectively.

A few caveats on the use of multi-record case format:

■ You can intersperse columns defined to be of the two types referred to above 
with scalar columns that represent individual attributes in a table or view.

■ For a given case-id, attribute names have to be unique across all the collections 
and individual columns.

■ Target (for classification, regression) must be a non-nested attribute. We cannot 
accept a target attribute represented in a nested column or the nested column 
itself.

From a data modeling perspective, the multi-record case format is analogous to the 
dimension-fact relationship commonly found in OLAP applications, where the 
dimension and fact tables are aggregated based on a common key for generating 
reports using materialized views or SQL queries. 

The main distinction between the OLAP fact table and the multi-record case is this: 
Each row in the fact table represents a column value, whereas each row in the 
multi-record collection represents an attribute name (paired with its corresponding 
value in another column in the nested table). The two fixed collection types are 
provided to highlight and enforce this distinction. These two types are defined with 
the reasonable assumption that mining attributes of the same type (numericals 
versus categoricals) are generally grouped together, just as a fact table contains 
values that logically correspond to the same entity.

Oracle strongly recommends that you present your multi-record case data using 
object views, and present the view as input to CREATE_MODEL and APPLY 
operations. Apart from the benefit of providing all your mining attributes through a 
single row-source without impacting their physical data storage, the view acts as a 
join specification on the underlying tables that can be used by the server for 
efficiently accessing your data.

We illustrate this discussion on wide data with a real-world example of an 
analytical pipeline for brain tumor research. The datasets of relevance are gene 
expression data from the instruments (fact table), and the clinical data about the 
patient (dimension table). The schemas of these tables are provided below.
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4.4.1.1 Clinical Data — Dimension Table
(case_id NUMBER,
name VARCHAR2(30)
type VARCHAR2(30)
subtype VARCHAR2(30),
gender CHAR(1),
age NUMBER,
status VARCHAR2(30))

4.4.1.2 Gene Expression Data — Fact Table
(case_id NUMBER,
gene VARCHAR2(30),
expr NUMBER)

Let us consider building a model with status as the target prediction, and with 
sex, age, and expr being the predictors. You can provide the build data input 
using an object view that combines the clinical_data table and the gene_
expression_data table with the schema:

(case_id NUMBER,
gender CHAR(1),
age NUMBER,
gene_expr DM_Nested_Numericals,
status VARCHAR2(30))

The query for constructing such an object view is relatively simple in Oracle SQL:

CREATE OR REPLACE VIEW gene_expr_build AS
SELECT C.case_id,

C.gender,
C.age,
CAST(MULTISET(
SELECT gene, expr
  FROM gene_expression_data
 WHERE case_id = C.case_id) AS DM_Nested_Numericals
) gene_expr,
C.status

 FROM clinical_data C

Now gene_expr_build can be provided as the input data_table_name for 
CREATE_MODEL.
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4.4.2 Attribute Types
Oracle Data Mining handles categorical and numerical attributes. See Oracle Data 
Mining Concepts for explanation and examples of attribute types.

The DBMS_DATA_MINING package infers the attribute type based on the type of the 
column representing the mining attribute. You must define all columns representing 
numerical attributes to be of type NUMBER. You must define all columns 
representing categorical attributes to be of type VARCHAR2 or CHAR.

In situations where you have numbers that are deemed categorical data by your 
application logic, you must typecast such attribute values using the TO_CHAR() 
operator and populate them into a VARCHAR2 or CHAR column representing the 
mining attribute.

In situations where you have numeric attribute values stored in a CHAR or 
VARCHAR2 column, you must typecast those attribute values using the TO_
NUMBER() operator and store them in a NUMBER column.

If persisting these transformed values in another table is not a viable option, you 
could also create a view with these conversions in place, and provide the view 
name to represent the training data input for the CREATE_MODEL operation.

4.4.3 Target Attribute
Classification and Regression algorithms require a target attribute. The package 
supports single targets. The target attribute for all classification algorithms can be 
numerical or categorical. SVM Regression supports only numerical target attributes.

4.4.4 Data Transformations
All mining operations assume the incoming data to be already prepared and 
transformed. You can preprocess your data using the DBMS_DATA_MINING_
TRANSFORM package, or by using any third-party tool, or using your own 
homegrown utilities based on SQL and/or PL/SQL scripts.

If you preprocess or transform the input data, you must also reverse-transform the 
results from APPLY to map the data back to its original form.

See PL/SQL Packages and Types Reference for a description of the DBMS_DATA_
MINING_TRANSFORM package. 

The suggestion to customers with wide data is to perform transforms before 
forming WD views on data in single-record (2D) or multi-record (transactional) 
format. It is possible to use dbmsdmxf for multi-record format. In this case, all 
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attributes are transformed in a similar way. In most of the cases, attributes in 
transactional (multi-record) form are of the same scale and thus this approach 
works. Otherwise, our suggestion is to split the data into sets of similar items and 
then transform them separately.

4.5 Performance Considerations
If you have mining attributes numbering in the few hundreds, and your application 
requires them to be represented as columns in the same row of the table, here are 
some data storage issues to consider. For a table with several columns, the key 
question to consider is the (average) row length, not the number of columns. 
Having more than 255 columns in a table built with a smaller block size typically 
results in intra-block chaining. Oracle stores multiple row pieces in the same block 
owing to pragmatics of design, but the overhead to maintain the column 
information is minimal as long as all row pieces fit in a single data block. If the rows 
don’t fit in a single data block, you may consider using a larger database block size 
(or use multiple block sizes in the same database). For more details, consult the 
Oracle Data Mining Concepts and the Oracle Database Performance Tuning Guide.

4.6 Rules and Limitations for DBMS_DATA_MINING
The use of DBMS_DATA_MINING is subject to the following rules and limitations:

■ The CREATE_MODEL and APPLY operations require a case identifier column of 
type VARCHAR2, CHAR, or NUMBER. The length of the case identifier values is 
limited to 128 bytes.

■ The model name must not be greater than 25 bytes in length, must not be 
enclosed in quotes, and should not contain any special characters except 
underscores (’_’). In other words, DBMS_DATA_MINING does not treat model 
names in a case-sensitive manner like Oracle schema objects and up-cases all 
model names internally.

■ All schema objects with prefix DM_, DM$P, DM$J, DM$T are system objects that 
should not be read or updated by the user. Direct queries against these tables 
may be possible, but the queries may provide meaningless results. Direct DML 
against these tables can irrevocably corrupt your model. Hence Oracle strongly 
recommends that you do not perform any operations on these system objects.

■ Oracle Data Mining does not support a general privilege model that spans 
multiple users. GRANT and REVOKE of read and update privileges on a mining 
model across user schemas are not yet supported. The user can only read and 
update models that are generated in a given schema owned by that user. 



Summary of Data Types, Constants, Exceptions, and User Views

                     DBMS_DATA_MINING 4-19

Models in one schema or database instance can be exported using EXPORT_
MODEL to other schemas or database instances.

■ As a corollary, results of all mining operations are restricted to being generated 
in the schema corresponding to the user session from which a particular mining 
operation is launched.

■ In any given session, you must commit all DML to schema objects before 
invoking operations in the DBMS_DATA_MINING package.

4.7 Summary of Data Types, Constants, Exceptions, and User Views
The DBMS_DATA_MINING and the DBMS_DATA_MINING_TRANSFORM packages use 
the data types shown in Table 4–8.

Table 4–8 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose

DM_ABN_Detail This type represents each row of the model detail output 
generated by GET_MODEL_DETAILS_ABN

DM_ABN_Details This type represents the ABN model details generated by GET_
MODEL_DETAILS_ABN

DM_Centroid This type represents the centroid of a cluster. It is used when 
retrieving cluster details using GET_MODEL_DETAILS_KM.

DM_Child This type represents each child node of a cluster

DM_Children This type represents a set of children nodes for a given cluster 
identifier

DM_Cluster This type represents a cluster retrieved using GET_MODEL_
DETAILS_KM

DM_Clusters This type represents a set of clusters

DM_Conditional This type represents each conditional probability from a set of 
conditional probabilities associated with each mining attribute 
used in a Naive Bayes or Adaptive Bayes Network model

DM_Conditionals This type represents conditional probabilities associated with a 
given mining attribute used in a Naive Bayes or Adaptive 
Bayes Network model. It is used when retrieving model details 
using GET_MODEL_DETAILS_NB or GET_MODEL_DETAILS_
ABN respectively.
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DM_Histogram_Bin This type represents a histogram associated with a cluster 
identifier. It is used when retrieving cluster details using GET_
MODEL_DETAILS_KM 

DM_Histograms This type represents a set of histograms

DM_Item This type represents an item in a set of items

DM_Items This type represents the set of items in an ItemSet

DM_ItemSet This type represents an ItemSet

DM_ItemSets This type represents frequent Itemsets in Association 
models.

DM_Model_Settings This type represents the algorithm settings retrieved using the 
GET_MODEL_SETTINGS function.

DM_Model_Signature This type represents a list of model signature attributes 
generated by GET_MODEL_SIGNATURE

DM_Modelname_List This type represents a list of model names provided as input 
for the parameter model_names in EXPORT_MODEL and 
IMPORT_MODEL procedures.

DM_NB_Detail his type represents the each row of the model detail output 
generated by GET_MODEL_DETAILS_NB

DM_NB_Details This type represents the NB model details generated by GET_
MODEL_DETAILS_NB.

DM_Nested_
Categoricals

This type represents a nested table of categorical attributes, 
used for representing wide data.

DM_Nested_Numericals This type represents a nested table of numerical 
attributes, used for representing wide data.

DM_NMF_Attribute This type represents each attribute in an attribute set for NMF 
model details

DM_NMF_Attribute_Set This type represents a set of attributes that correspond to a 
feature identifier, returned by GET_MODEL_DETAILS_NMF.

DM_NMF_Feature This type represents a feature in a NMF model

DM_NMF_Feature_Set This type represents a set of features returned by GET_MODEL_
DETAILS_NMF.

DM_Predicate This type represents each predicate in the set of predicates in a 
rule.

Table 4–8 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose
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.Table 4–9 through Table 4–16 list the constants to be used for various settings in the 
settings table.

DM_Predicates This type represents a set of predicates that constitute either 
the antecedent or the consequent of a rule.

DM_Ranked_Attribute This type represents an entry in the set of ranked attribute 
returned by GET_MODEL_DETAILS_AI, ranked by the 
attribute’s importance.

DM_Ranked_Attributes This type represents a list of ranked attributes returned by 
GET_MODEL_DETAILS_AI.

DM_Rule This type represents each rule in a list of rules generated by 
either GET_ASSOCIATION_RULES or GET_MODEL_DETAILS_
KM.

DM_Rules This type represents rules retrieved for Association Rules or 
k-means models using GET_ASSOCIATION_RULES and GET_
MODEL_DETAILS_KM respectively.

DM_SVM_Attribute This type represents each attribute in an attribute set for SVM 
model details

DM_SVM_Attribute_Set This type represents a set of attributes returned by GET_
MODEL_DETAILS_SVM for a linear model.

DM_SVM_Linear_Coeff This type represents an entry in the set of linear coefficients 
returned by GET_MODEL_DETAILS_SVM

DM_SVM_Linear_Coeff_
Set

This type represents the set of linear coefficients returned by 
GET_MODEL_DETAILS_SVM for an SVM model built using the 
linear kernel.

Table 4–9 DBMS_DATA_MINING Constants Summary: Mining Function

Constant Purpose

association Parameter value for mining_function in CREATE_
MODEL, representing association mining function

attribute importance Parameter value for mining_function in CREATE_
MODEL, representing attribute importance mining 
function

classification Parameter value for mining_function in CREATE_
MODEL, representing classification mining function

Table 4–8 DBMS_DATA_MINING Summary of Data Types

Data Type Purpose
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regression Parameter value for mining_function in CREATE_
MODEL, representing regression mining function

clustering Parameter value for mining_function in CREATE_
MODEL, representing clustering mining function

feature_extraction Parameter value for mining_function in CREATE_
MODEL, representing Feature Extraction mining function

Table 4–10 DBMS_DATA_MINING Constants Summary: Function Settings

Constant Purpose

clas_priors_table_name Setting name representing prior probability table name for 
classification function

clus_num_clusters Setting name representing number of clusters for clustering 
function

feat_num_features Setting name representing number of features for feature 
selection function

asso_max_rule_length Setting name representing maximum rule length

asso_min_confidence Setting name representing minimum confidence

asso_min_support Setting name representing minimum support

Table 4–11 DBMS_DATA_MINING Constants Summary: Algorithm Settings

Constant Purpose

algo_name Setting name representing the mining algorithm

algo_apriori_association_rules Setting value for Apriori algorithm for 
association rules

algo_naive_bayes Setting value for Naive Bayes (NB) algorithm for 
classification

algo_support_vector_machines Setting value for Support Vector Machine (SVM) 
algorithm for classification or regression

algo_nonnegative_matrix_factor Setting value for Non-Negative Matrix 
Factorization (NMF) for feature selection

algo_kmeans Setting value for k-Means (KM) for clustering

Table 4–9 (Cont.) DBMS_DATA_MINING Constants Summary: Mining Function

Constant Purpose
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algo_ai_mdl Setting value for Minimum Description Length 
based algorithm for Attribute Importance.

Table 4–12 DBMS_DATA_MINING Constants Summary: Adaptive Bayes Network

Constant Purpose

abns_model_type Setting name representing ABN model type

abns_single_feature Setting value representing single feature ABN model

abns_multi_feature Setting value representing multi feature ABN model

abns_naive_bayes Setting value representing Naive Bayes ABN model

abns_max_build_minutes Setting name representing maximum time threshold to 
complete an ABN model build

abns_max_nb_predictors Setting name representing the maximum number of Naive 
Bayes predictors to be considered for building an ABN 
model of type abns_naive_bayes

Table 4–13 DBMS_DATA_MINING Constants Summary: Naive Bayes

Constant Purpose

nabs_singleton_threshold Setting value for singleton threshold for Naive Bayes

nabs_pairwise_threshold Setting value for pair-wise threshold for Naive Bayes

Table 4–14 DBMS_DATA_MINING Constants Summary: Support Vector Machines

Constant Purpose

svms_kernel_function Setting name representing the kernel function for SVM

svms_linear Setting value for Linear Kernel for SVM

svms_guassian Setting value for Gaussian Kernel for SVM

svms_kernel_cache_size Setting name representing for Kernel Cache Size for Support 
Vector Machine

svms_conv_tolerance Setting name representing tolerance for SVM

svms_std_dev Setting name representing standard deviation for 

Table 4–11 (Cont.) DBMS_DATA_MINING Constants Summary: Algorithm Settings

Constant Purpose
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svms_complexity_factor Setting name representing complexity factor for SVM

svms_epsilon Setting name representing epsilon for SVM Regression

Table 4–15 DBMS_DATA_MINING Constants Summary: Non-Negative Matrix 
Factorization

Constant Purpose

nmfs_num_iterations Setting name representing number of iterations

nmfs_conv_tolerance Setting name representing convergence tolerance

nmfs_random_seed Setting name representing random seed for NMF

Table 4–16 DBMS_DATA_MINING Constants Summary: k-Means

Constant Purpose

kmns_distance Setting name representing distance function

kmns_euclidean Setting value representing Euclidean distance 
function

kmns_cosine Setting value representing cosine distance function

kmns_fast_cosine Setting value representing fast cosine distance 
function

kmns_iterations Setting name representing number of iterations

kmns_conv_tolerance Setting name representing convergence tolerance

kmns_split_criterion Setting name representing split criterion

kmns_variance Setting value representing variance as the split 
criterion

kmns_size Setting value representing size as the split criterion

kmns_block_growth Setting name representing growth factor for memory 
allocated to hold cluster data

kmns_num_bins Setting value for number of histogram bins

kmns_min_pct_attr_support Setting value for minimum percentage report 
required for attributes in rules

Table 4–14 (Cont.) DBMS_DATA_MINING Constants Summary: Support Vector 

Constant Purpose
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Table 6–18 lists the errors generated by DBMS_DATA_MINING.

Table 4–17 DBMS DATA_MINING Errors Summary

Oracle Error Description

ORA-40201 Invalid input parameter %s

ORA-40202 Column %s does not exist in the input table %s

ORA-40203 Model %s does not exist

ORA-40204 Model %s already exists

ORA-40205 Invalid setting name %s

ORA-40206 Invalid setting value for setting name %s

ORA-40207 Duplicate or multiple function settings

ORA-40208 Duplicate or multiple algorithm settings for function %s

ORA-40209 Invalid setting: %s for function %s

ORA-40211 Algorithm name: %s is invalid

ORA-40212 Invalid target data type in input data for function: %

ORA-40213 Contradictory values for settings: %s, %s

ORA-40214 Duplicate setting: %s

ORA-40215 Model %s is incompatible with current operation

ORA-40216 Feature not supported

ORA-40219 Apply result table %s is incompatible with current operation

ORA-40220 Maximum number of attributes exceeded

ORA-40221 Maximum target cardinality exceeded

ORA-40222 Data mining model export failed, job name=%s, error=%s

ORA-40223 Data mining model import failed, job name=%s, error=%s

ORA-40225 Model is currently in use by another process

ORA-40251 No support vectors were found

ORA-40252 No target values were found

ORA-40253 No target counter examples were found

ORA-40261 Input data for model build contains negative values

ORA-40262 NMF: number of features not between [1, %s]
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Table 4–18 lists the user views provided by Oracle to obtain information about the 
models generated using DBMS_DATA_MINING.

4.8 Summary of DBMS_DATA_MINING Subprograms
. 

ORA-40271 No statistically significant features were found

ORA-40272 Apply rules prohibited for this model mode

ORA-40273 Invalid model type %s for Adaptive Bayes Network algorithm

Table 4–18 DBMS_DATA_MINING Summary of User Views

User View Purpose

DM_USER_MODELS Lists all models in a given user’s schema.

Table 4–19 DBMS_DATA_MINING Summary of Subprograms

Data Type Purpose

APPLY Procedure Applies a model to scoring data

CREATE_MODEL Procedure Creates (builds) a mining model

COMPUTE_CONFUSION_
MATRIX Procedure   

Computes the confusion matrix from the APPLY results on 
test data for a classification model; also provides the 
accuracy of the model

COMPUTE_LIFT Procedure Computes lift for a given positive target value from the 
APPLY results on test data for a classification model

COMPUTE_ROC Procedure Computes Receiver Operating Characteristic for target 
attributes with binary class from the APPLY results on test 
data for a classification model.

DROP_MODEL Procedure Drops a model

EXPORT_MODEL Procedure Exports one or more models from a schema

GET_ASSOCIATION_RULES 
Function 

This table function returns the rules from an Association 
model

GET_DEFAULT_SETTINGS 
Function 

This table function returns all the default settings for all 
mining functions and algorithms.

Table 4–17 DBMS DATA_MINING Errors Summary

Oracle Error Description
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4.9 Model Export and Import
Data mining models can be moved between Oracle databases or schemas. For 
example, in an organization, data mining specialists may build and test data mining 
models in a data mining lab. After models are built and tested in the lab, the chosen 
model may be moved to a scoring engine used by applications. Because data 
mining lab and scoring engine usually do not share the same database, the model 
must be exported from the lab and then imported to the scoring engine. Model 
export and import can be a routine procedure. As new data are accumulated, data 
mining specialists will build and test new models, and newer and better models 
will be loaded onto the scoring engine on a regular basis. DBAs will want to back 
up and restore models in their routine database maintenance. 

Native export and import of data mining models are supported in the following 
scenarios:

GET_FREQUENT_ITEMSETS 
Function 

Returns a set of rows that represent the frequent itemsets 
from an Association model.

GET_MODEL_DETAILS_ABN 
Function 

Provides the details of an Adaptive Bayes Network 
model

GET_MODEL_DETAILS_KM 
Function 

Provides the details of a k-Means model

GET_MODEL_DETAILS_NB 
Function 

Provides the details of a Naive Bayes model

GET_MODEL_DETAILS_NMF 
Function

Provides the details of an NMF model

GET_MODEL_DETAILS_SVM 
Function 

Provides the details of a SVM model

GET_MODEL_SETTINGS 
Function 

Provides the settings used to build a model

GET_MODEL_SIGNATURE 
Function 

Provides the signature of a model

IMPORT_MODEL Procedure Imports one or more models into the current schema

RANK_APPLY Procedure Ranks the predictions from the APPLY results for a 
classification model

RENAME_MODEL Procedure Renames a model

Table 4–19 (Cont.) DBMS_DATA_MINING Summary of Subprograms

Data Type Purpose
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■ Database export/import: When a DBA exports a full database using utility 
expdp, all the existing data mining models in the database are exported. By the 
same token, when a DBA imports a database dump using utility impdp, all the 
data mining models in the dump are restored. 

■ Schema export/import: When a user or DBA exports a schema using expdp, all 
the data mining models in the schema are exported. When the user or DBA 
imports the schema dump using impdp, all the models in the dump are 
imported. 

■ Selective model export/import: Users can export specific models using DBMS_
DATA_MINING.EXPORT_MODEL and import specified models using DBMS_
DATA_MINING.IMPORT_MODEL. 

4.9.1 Limitations
The use of model export and import is subject to the following limitations: 

■ Only models built by the DBMS_DATA_MINING interface are supported.

■ Only local export and import via dump files is supported. That is, models from 
a given local schema or database can be exported into a dump file. Models in a 
dump file can be imported into a local database or schema.

4.9.2 Prerequisites
Prerequisites for model export are as follows:

■ A valid directory object must be made available to the operator who has write 
privileges. See CREATE_DIRECTORY in the PL/SQL Packages and Types Reference.

■ The source must be an Oracle database with Data Mining option installed.

■ For database and schema export, the new Data Pump utility expdp must be 
used. 

Prerequisites for model import are as follows: 

■ There must be a valid directory object pointing to where dump files reside, and 
the operator must have read and write privileges. 

■ The destination database must have Data Mining option or Data Mining 
Scoring Engine option installed. 

■ Dump files must be created by expdp or EXPORT_MODEL. 
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■ For database and schema import, the new Data Pump import utility impdp 
must be used 

See also:

■ Data Pump Export, Oracle 10g Database Utilities, Part I.

■ Data Pump Import, Oracle 10g Database Utilities, Part II.

4.9.3 Choose the Right Utility
There are two ways to export models: 

■ Export all models, in a user schema or in the entire database.

■ Export selected models in a user schema. 

To export all data mining models in a user schema, you can either run expdp or use 
EXPORT_MODEL with the parameter model_filter set to NULL. Note the 
difference between the two operations: When you run expdp to export the schema, 
all objects in the schema including data mining models are exported. When you run 
EXPORT_MODEL with a NULL model_filter, only the models will be exported. 

There are also two ways to import models from the dump file: 

■ Import all models as well as other database objects and data.

■ Import models only, either all or a selected few from the dump file. 

In general, if you want to import the full dump file set, run impdp. This imports all 
database objects and data, including all data mining models, from the dump file set. 
If you want to import models only, use IMPORT_MODEL. When the parameter 
model_filter is set to NULL, all models are imported from the dump. If valid 
model names are assigned in model_filter, this operation imports only named 
models from the dump file set.

4.9.4 Temp Tables
Data mining model export and import jobs will create and manage two temporary 
tables in the user schema: DM$P_MODEL_EXPIMP_TEMP and DM$P_MODEL_
TABKEY_TEMP. Users should not manipulate these tables. 
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5
 ODM PL/SQL Sample Programs

This chapter provides sample code using DBMS_DATA_MINING for all the 
supported algorithms. The dataset used is the Drug Depot dataset that is available 
as part of the sample schema in Oracle10g. Please refer to Oracle Database Sample 
Schemas for information on sample schemas. 

All samples are available in the directory $ORACLE_
HOME/dm/demo/sample/plsql. 

ODM sample datasets need to be loaded into a user schema prior to using the 
sample programs. Refer to the following scripts for creating Oracle tablespace, user 
schema, and loading ODM sample datasets:

$ORACLE_HOME/dm/admin/odmtbs.sql
$ORACLE_HOME/dm/admin/odmuser.sql
$ORACLE_HOME/dm/admin/dmuserld.sql
$ORACLE_HOME/dm/admin/dmshgrants.sql

5.1 Overview of ODM PL/SQL Sample Programs
The ODM PL/SQL sample programs illustrate the main operations of the data 
mining process:

■ Preparing the data 

■ Building a model

■ Testing the model

■ Applying the model to new data (scoring the data)

Data mining models can be either supervised or unsupervised. 

Supervised models predict the value of a specified variable, called the target 
variable, together with the confidence associated with each prediction. Supervised 
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models are illustrated in the sample programs for Naive Bayes (NB), Adaptive 
Bayes Networks (ABN), and Support Vector Machines (SVM).

Unsupervised models have no target variable; they are used to predict group 
membership or relationships of an individual. Unsupervised models are illustrated 
in the sample programs for Clustering, Association Rules, and Non-Negative 
Matrix Factorization. Attribute Importance is also illustrated.

The PL/SQL sample programs rely on two sets of data:

■ Individual datasets: All samples named algorithm_demo.sql are based on 
these datasets. These datasets must be loaded using $ORACLE_
HOME/dm/admin/dmuserld.sql in the user schema executing these demos.

■ SH schema dataset: All samples named algorithm_sh.sql are based on 
datasets derived from the SH schema. The SH schema must be installed as part 
of RDBMS installation. The script 
$ORACLE_HOME/dm/admin/dmshgrants.sql must be run by a user with 
privileges to access the SH schema, and the script 
$ORACLE_HOME/dm/admin/dmsh.sql must be run in the user schema 
executing these demos.

The file $ORACLE_HOME/dm/demo/data/README.txt explains the datasets.

Each sample program for demonstrating Classification (NB, ABN, SVM) contains 
code that prepares the input data using DBMS_DATA_MINING_TRANSFORM, builds a 
model, tests a model, and then scores the model against new data. It demonstrates 
how to generate test results such as a confusion matrix, lift, ROC, and ranked Apply 
results.

The samples for Regression using SVM normalize the input data, build models, and 
test models using metrics such as root mean squared error, apply the models to new 
data, and generate ranked results.

The samples for Association demonstrate model build, and show how to obtain 
frequent itemsets and association rules for a given support and confidence.

The samples for Clustering demonstrate model build, and show how to obtain 
clustering details such as histograms, child nodes, and rules. The clusters are scored 
and ranked based on their probability.

The samples for Feature Extraction demonstrate model build, and show how to 
obtain details of various features. The features are scored and ranked based on their 
probability. 

There is one sample program demonstrating the BLAST interface for biological 
sequence match and alignment.
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Finally, there are three sample programs that demonstrate text mining for extracting 
features from a text document into a nested table column, text classification using 
SVM, and text feature extraction using NMF, respectively.

5.2 Summary of ODM PL/SQL Sample Programs
All the sample programs listed in the tables below are located in the directory 
$ORACLE_HOME/dm/demo/sample/plsql.

The summary description of these sample programs is also provided in $ORACLE_
HOME/dm/demo/sample/plsql/README.txt.

Table 5–1 PL/SQL Samples Based on Individual Datasets

Sample Program Description

aidemo.sql Attribute Importance using an MDL-based algorithm.

abndemo.sql Classification using Adaptive Bayes Network algorithm

ardemo.sql Association using Apriori algorithm

blastdemo.sql BLAST sequence matching and alignment

kmdemo.sql Clustering using k-Means algorithm

nbdemo.sql Classification using Naive Bayes algorithm

nmfdemo.sql Feature Extraction using NMF algorithm

svmcdemo.sql Classification using SVM algorithm

svmrdemo.sql Regression using SVM algorithm

Table 5–2 PL/SQL Samples Based on SH Schema

Sample Program Description

ai_sh.sql Attribute Importance using an MDL-based algorithm

abn_sh.sql Classification using Adaptive Bayes Network algorithm

ar_sh_.sql Association using Apriori algorithm

akm_sh.sql Clustering using k-Means algorithm

nb_sh.sql Classification using Naive Bayes algorithm

nmf_sh.sql Feature Extraction using NMF algorithm
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svmc_sh.sql Classification using SVM algorithm

svmr_sh.sql Regression using SVM algorithm

textfe.sql Demonstrates extracting text features from a CLOB/VARCHAR2 
column into a nested table column in a table that can be 
provided as input to CREATE_MODEL

textnmf.sql Text feature extraction using NMF

textsvmc.sql Text classification using SVM

Table 5–2 (Cont.) PL/SQL Samples Based on SH Schema

Sample Program Description
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6
   Sequence Matching and Annotation

(BLAST)

This chapter describes table functions included with ODM that permit you to 
perform similarity searches against nucleotide and amino acid sequence data stored 
in an Oracle database. You can use the table functions described in this chapter for 
ad hoc searches or you can embed them in applications. The inclusion of these table 
functions in ODM positions Oracle as a platform for bioinformatics.

This chapter discusses the following topics:

■ NCBI BLAST

■ Using ODM BLAST

6.1 NCBI BLAST
The National Center for Biotechnology Information (NCBI) implemented one of the 
commonly used versions of the Basic Local Alignment Search Tool (BLAST). 

Sequence alignments provide a way to compare new sequences with previously 
characterized sequences. Both functional and evolutionary information can be 
inferred from well-designed queries and alignments. BLAST provides a method for 
searching of both nucleotide and protein databases. Since the BLAST algorithm 
detects local alignments, regions of similarity embedded in otherwise unrelated 
sequences can be detected.

The BLAST algorithm searches nucleotide and amino acid query sequences against 
databases of nucleotide and amino acid sequences. Based on the nature of the query 
and the database sequences, NCBI BLAST provides the following variants:

■ BLASTP compares an amino acid query sequence against an amino acid 
sequence database. 
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■ BLASTN compares a nucleotide query sequence against a nucleotide sequence 
database. 

■ BLASTX compares a nucleotide query sequence translated along all six reading 
frames (both strands) against a amino acid sequence database. 

■ TBLASTN compares an amino acid query sequence against a nucleotide 
sequence database translated along all six reading frames (both strands). 

■ TBLASTX compares the six-frame translations of a nucleotide query sequence 
against the six-frame translations of a nucleotide sequence database.

For more information about NCBI BLAST, see the NCBI BLAST Home Page at 
http://www.ncbi.nlm.nih.gov/BLAST/.

The table functions described in this chapter implement several of the variants of 
NCBI BLAST version 2.0.

6.2 Using ODM BLAST
This section contains several examples of using the ODM BLAST table functions to 
perform searches on nucleotide or amino acid sequences. 

Most table function parameters have defaults. The defaults were carefully chosen so 
that users who have limited experience with BLAST will obtain good results.

6.2.1 Using BLASTN_MATCH to Search DNA Sequences
The BLAST table functions accept the CLOB (Character Large OBject) data type as 
the query sequence. It is not possible to construct a CLOB in an ad hoc SQL query. 
One way to construct a CLOB is to create a table and insert the query sequence into 
the table. Another option is to construct a CLOB using the programmatic interface if 
the BLAST query is part of a larger program. Suppose that the table query_db has 
the schema (sequence_id VARCHAR2(32), sequence CLOB). The following 
SQL query inserts the query sequence into query_db:

INSERT INTO query_db VALUES (’1’, ’AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGT’);

Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB 
has attributes seq_id, publication date, modification date, organism, 
and sequence, among other attributes. There is no required schema for the table 
that stores the sequences. The only requirement is that the table contain an identifier 
and the sequence and any number of other optional attributes.
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The portion of the database to be used for the search can be specified using SQL. 
The full power of SQL can be used to perform more sophisticated selections.

6.2.1.1 Searching for Good Matches in DNA Sequences
The following query does a BLAST search of the given query sequence against the 
human genome and returns the seq_id, score, and expect value of matches 
that score > 25:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
    BLASTN_MATCH (
       (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE organism = ’human’),
       1,
       -1,
       0,
       0,
       10,
       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.score > 25;

Note: The parameter value of 0 invokes the default values in most cases. See the 
syntax for details.

6.2.1.2 Searching DNA Sequences Published After a Certain Date
The following query does the BLAST search against all sequences published after 
Jan 01, 2000:

SELECT t.t_seq_id, t.score, t.expect
FROM TABLE (
    BLASTN_MATCH (
       (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE publication_date > ’01-JAN-2000’),
       1,
       -1,
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       0,
       0,
       10,
       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.score > 25;

You can obtain other attributes of the matching sequence by joining the BLAST 
result with the original sequence table as follows:

SELECT t.t_seq_id, t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
    BLASTN_MATCH (
       (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE publication_date > ’01-JAN-2000’),
       1,
       -1,
       0,
       0,
       10,
       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25;

6.2.2 Using BLASTP_MATCH to Search Protein Sequences
Suppose that the table PROT_DB stores protein sequences. Insert the protein query 
sequence to be used for the search into query_db.

6.2.2.1 Searching for Good Matches in Protein Sequences
The following query does a BLASTP search of the given query sequence against 
protein sequences in PROT_DB and returns the identifier, score, name, and 
expect value of matches that score > 25:
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SELECT t.t_seq_id, t.score, t.expect, p.name
FROM PROT_DB p, TABLE(
       BLASTP_MATCH (
         (SELECT sequence FROM query_db WHERE sequence_id = ’2’),
         CURSOR(SELECT seq_id, sequence FROM PROT_DB),
         1,
         -1,
         0,
         0,
         ’BLOSUM62’,
         10,
         0,
         0,
         0,
         0,
         0)
       )t WHERE t.t_seq_id = p.seq_id AND t.score > 25
          ORDER BY t.expect;

6.2.3 Using BLASTN_ALIGN to Search and Align DNA Sequences
Suppose that the table GENE_DB stores DNA sequences. Suppose that GENE_DB 
has attributes seq_id, publication date, modification date, organism, 
and sequence among other attributes. 

6.2.3.1 Searching and Aligning for Good Matches in DNA Sequences
The following query does a BLAST search and alignment of the given query 
sequence against the human genes and returns the publication_date, organism, 
and the alignment attributes of matching sequences that score > 25 and where more 
than 50% of the sequence is conserved in the match:

SELECT t.t_seq_id, t.alignment_length, t.pct_identity,
       t.q_seq_start, t.q_seq_end, t.t_seq_start, t.t_seq_end,
       t.score, t.expect, g.publication_date, g.organism
FROM GENE_DB g, TABLE (
    BLASTN_ALIGN (
       (SELECT sequence FROM query_db WHERE sequence_id = ’1’),
       CURSOR (SELECT seq_id, sequence FROM GENE_DB
        WHERE publication_date > ’01-JAN-2000’),
       1,
       -1,
       0,
       0,
       10,



Using ODM BLAST

6-6  Oracle Data Mining Application Developer’s Guide    

       0,
       0,
       0,
       0,
       11,
       0,
       0)
) t WHERE t.t_seq_id = g.seq_id AND t.score > 25
    AND t.pct_identity > 50;

You can use BLASTP_ALIGN and TBLAST_ALIGN in a similar way.

6.2.4 Output of the Table Function
The output of a BLAST query is a table; the output table is described as the output 
table for the specific query.

Here are two examples of queries and the resulting output tables.

Query 1 is as follows:

select T_SEQ_ID AS seq_id, score, EXPECT as evalue
  from TABLE(
       BLASTP_MATCH (
         (select sequence from query_db),
         CURSOR(SELECT seq_id, seq_data
                FROM swissprot
                WHERE organism = ’Homo sapiens (Human)’),
         1,
         -1,
         0,
         0,
         ’BLOSUM62’,
         10,
         0,
         0,
         0,
         0,
         0)
       ); 

The output for query 1 is as follows:
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SEQ_ID        SCORE     EVALUE
-------- ----------     ----------
P31946          205     5.8977E-18
Q04917          198     3.8228E-17
P31947          169     8.8130E-14
P27348          198     3.8228E-17
P58107           49     7.24297332

Query 2 is as follows:

select T_SEQ_ID AS seq_id, ALIGNMENT_LENGTH as len,
       Q_SEQ_START as q_strt, Q_SEQ_END as q_end, Q_FRAME, T_SEQ_START as t_
strt,
       T_SEQ_END as t_end, T_FRAME, score, EXPECT as evalue
  from TABLE(
       BLASTP_ALIGN (
         (select sequence from query_db),
         CURSOR(SELECT seq_id, seq_data
                FROM swissprot
                WHERE organism = ’Homo sapiens (Human)’ AND
                      creation_date > ’01-Jan-90’),
         1,
         -1,
         0,
         0,
         ’BLOSUM62’,
         10,
         0,
         0,
         0,
         0,
         0)
       );  

The output for Query 2 is as follows:

SEQ_ID    LEN Q_STRT Q_END Q_FRAME T_STRT T_END T_FRAME   SCORE  EVALUE
-------- ---- ------ ----- ------- ------ ----- ------- ------- ----------
P31946     50      0    50       0     13    63       0     205  5.1694E-18
Q04917     50      0    50       0     12    62       0     198  3.3507E-17
P31947     50      0    50       0     12    62       0     169  7.7247E-14
P27348     50      0    50       0     12    62       0     198  3.3507E-17
P58107     21     30    51       0    792   813       0      49  6.34857645
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6.2.5 Sample Data for BLAST
We provide a few sample datasets and queries to test if the BLAST functions work 
correctly after ODM is installed. 

The DM_USER schema contains the following sequence data tables.

SWISSPROT: This table contains the sequences in Release 40 of the SwissProt     
dataset. This table has the sequence identifier, creation_date, organism, 
and sequence_data attributes. It has 101,602 protein sequences.

SQL> describe SWISSPROT;
Name                                    Null?    Type
--------------------------------------- -------  -------------
SEQ_ID                                          VARCHAR2(32)
CREATION_DATE                                   DATE
ORGANISM                                        VARCHAR2(256)
SEQ_DATA                                        CLOB

PROT_DB: This table consists of 19 protein sequences from the SwissProt     
dataset.

SQL> describe prot_db;
Name                                     Null?    Type
---------------------------------------- -------  -------------
SEQ_ID                                            VARCHAR2(32)
SEQ_DATA                                          CLOB

ECOLI10: This table contains 10 nucleotide sequences from the ecoli dataset.

SQL> describe ECOLI10;
Name                                      Null?    Type
----------------------------------------- -------- ---------------
    SEQ_ID                                         VARCHAR2(32)
    SEQ_DATA                                       CLOB

Table 6–1 displays genetic codes and associated names.

Table 6–1 Table of Genetic Codes

Genetic Code Name

1 Standard

2 Vertebrate Mitochondrial
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There are several public domain sequence databases available. One of them is the 
SwissProt database, which is a highly curated collection of protein sequences. The 
SwissProt database can be downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/swissprot/release/sprot40.dat

In addition to the raw sequence data, the SwissProt database contains several other 
attributes of the sequence including organism, date published, date modified, 
published literature references, annotations, etc. BLAST requires only the sequence 
identifier and the sequence data to be stored to perform searches. 

Depending on the needs of your specific application, different sets of these 
attributes may be important. Therefore, the database schema required to store the 
data needs to be appropriately designed. You can use a scripting language to parse 
the required fields from the SwissProt data and format the fields so that they can be 
loaded into an Oracle database. 

3 Yeast Mitochondrial

4 Mold Mitochondrial, Protozoan Mitochondrial, Coelenterate 
Mitochondrial, Mycoplasma, Spiroplasm

5 Invertebrate Mitochondrial

6 Ciliate Nuclear, Dasycladacean Nuclear, Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Macronuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial Code

Table 6–1 (Cont.) Table of Genetic Codes

Genetic Code Name
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The following Perl script outputs the sequence identifier, creation_date, organism, 
and sequence data in the required format for sqlldr is given below. (sqlldr is a 
program to load data into an Oracle database.)

#!/bin/perl
#swissprot.pl < input > output
#Input: protein db as provided by SWISSPROT
#
my $string = "";
my $indicator = "";
$sq = 0;
$ac = 0;

while(<>)
{
    #chop;
    if ( /^\/\// ) {
      print "\n";
      $sq = 0;
      $ac = 0;
      next;
    }
    if ($sq == 1) {
        @words = split;
        foreach $word (@words) {
          print "$word";
        }
        next;
    }
    if( /^AC(\s+)(\w+);/ ) {
      if ($ac == 0) {
        $indicator = $2;
        print "$indicator|";
        $sq = 0;
        $dt = 0;
        $ac = 1;
        next;
      }
    }
    if ( /^OS(\s+)(.*)\./ ) {
        $organism = $2;
        print "$organism|";
        next;
    }
    if ( /^DT(\s+)(\S+)/ ) {
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        if ($dt == 0) {
           print "$2|";
           $dt = 1;
        }
    }
    if ( /^SQ(\s+)/ ) {
        $sq = "1";
        next;
    }
}

Follow these steps to download, parse, and save the SwissProt data in an Oracle 
database:

1. Download SwisProt data to the file sprot40.dat.

2. Save the perl script in a file named swissprot.pl, type the command

swissprot.pl sprot40.dat > sprot_formatted.txt

This command will read the SwissProt data stored in sprot40.dat, format it, 
and write it out to sprot_formatted.txt.

3. In order to load the data using sqlldr, you must create a table to hold the data 
and a control file. Create the table swissprot using the following SQL 
statement:

create table swissprot (SEQ_ID VARCHAR2(32), CREATION_DATE DATE,
ORGANISM VARCHAR2(256), SEQ_DATA CLOB);

Create a control file named sprot.ctl with the following contents:

LOAD DATA
INFILE sprot40_formatted.txt
INTO TABLE swissprot
REPLACE
FIELDS TERMINATED BY ’|’
TRAILING NULLCOLS
(
seq_id,
creation_date,
organism,
seq_data char(100000)
)

4. Finally, use the following command to load the data:
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sqlldr userid=<user_name>/<passwd> control=sprot.ctl log=sprot.log
direct=TRUE data=sprot40_formatted.txt

The SwisProt data is now stored in the Oracle table swissprot. 
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Summary of BLAST Table Functions

The BLAST functionality is available as built-in table functions; these table functions 
can be used in the FROM clause of a SQL query. 

Table 6–2 BLAST Table Functions

Table Function Description

BLASTN_MATCH Table 
Function

Perform a BLASTN search of the given nucleotide 
sequence against the selected portion of the nucleotide 
database

BLASTP_MATCH Table 
Function  on page 6-17

Perform a BLASTP search of the given amino acid 
sequence against the selected portion of the protein 
database

TBLAST_MATCH Table 
Function  on page 6-20 

Perform BLAST searches involving translations of either 
the query sequence or the database of sequences

 BLASTN_ALIGN Table 
Function  on page 6-23

Performs a BLASTN alignment of the given nucleotide 
sequence against the selected portion of the nucleotide 
database 

BLASTP_ALIGN Table 
Function  on page 6-27

Perform a BLASTP alignment of the given amino acid 
sequence against the selected portion of the protein 
database

TBLAST_ALIGN Table 
Function  on page 6-30

Perform BLAST alignments involving translations of 
either the query sequence or the database of sequences 
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BLASTN_MATCH Table Function

This table function performs a BLASTN search of the given nucleotide sequence 
against the selected portion of the nucleotide database. The database can be selected 
using a standard SQL select and passed into the function as a cursor. It accepts the 
standard BLAST parameters that are mentioned below. The match returns the 
identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI 
accession number), the score of the match, and the expect value. 

Syntax
function BLASTN_MATCH (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 5,
  extend_gap_cost NUMBER default 2,
  mismatch_cost NUMBER default -3,
  match_reward NUMBER default 1,
  word_size NUMBER default 11,
  xdropoff NUMBER default 30,
  final_x_dropoff NUMBER default 50)
  return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 6–3 describes the input parameters for BLASTN_MATCH; Table 6–4, the 
output parameters.

Table 6–3 Input Parameters for BLASTN_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.
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subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0 
invokes default behavior.

mismatch_cost The penalty for nucleotide mismatch. The default value is -3. 
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1. 
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 11. 
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 50. Specifying 0 invokes default behavior.

Table 6–3 Input Parameters for BLASTN_MATCH Table Function

Parameter Description
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Table 6–4 Output Parameters for BLASTN_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.
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BLASTP_MATCH Table Function

This table function performs a BLASTP search of the given amino acid sequence 
against the portion of the selected protein database. The database can be selected 
using a standard SQL select and passed into the function as a cursor. We also accept 
the standard BLAST parameters that are mentioned below. The match returns the 
identifier of the matched (target) sequence (t_seq_id) (for example, the NCBI 
accession number), the score of the match, and the expect value.

Syntax
function BLASTP_MATCH (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default ’BLOSUM62’,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
  return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);

Parameters
Table 6–5 describes the input parameters for BLASTN_MATCH; Table 6–6, the 
output parameters.

Table 6–5 Input Parameters for BLASTP_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.
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subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default value is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default value is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25. Specifying 0 invokes default behavior.

Table 6–5 Input Parameters for BLASTP_MATCH Table Function

Parameter Description
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Table 6–6 Output Parameters for BLASTP_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match. 

expect The expect value of the returned match.
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TBLAST_MATCH Table Function

This table function performs BLAST searches involving translations of either the 
query sequence or the database of sequences. The available options are:

■ BLASTX: The query nucleotide sequence is translated and compared against a 
protein database.

■ TBLASTN: The query amino acid sequence is compared against a translated 
nucleotide database.

■ TBLASTX: The query nucleotide sequence is translated and compared against a 
translated nucleotide database. 

The database can be selected using a standard SQL select and passed into the 
function as a cursor. We also accept the standard BLAST parameters that are 
mentioned below. The match returns the identifier of the matched (target) sequence 
(t_seq_id) (for example, the NCBI accession number), the score of the match, and 
the expect value.

Syntax
function TBLAST_MATCH (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  translation_type VARCHAR2 default ’BLASTX’,
  genetic_code NUMBER default 1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default ’BLOSUM62’,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
  return table of row (t_seq_id VARCHAR2, score NUMBER, expect NUMBER);
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Parameters
Table 6–7 describes the input parameters for TBLAST_MATCH; Table 6–8, the 
output parameters.

Table 6–7 Input Parameters for TBLAST_MATCH Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX, 
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid 
sequences. genetic_code is sort of like a mapping table. 
NCBI supports 17 different genetic codes. The supported 
genetic codes and their names are given in Table 6–1. The 
default genetic code is 1. 

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62.
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expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior.

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior.

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25. Specifying 0 invokes default behavior.

Table 6–8 Output Parameters for TBLAST_MATCH Table Function

Attribute Description

t_seq_id The sequence identifier of the returned match.

score The score of the returned match.

expect The expect value of the returned match.

Table 6–7 Input Parameters for TBLAST_MATCH Table Function

Parameter Description
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BLASTN_ALIGN Table Function

This table function performs a BLASTN alignment of the given nucleotide sequence 
against the selected portion of the nucleotide database. The database can be selected 
using a standard SQL select and passed into the function as a cursor. It accepts the 
standard BLAST parameters that are mentioned below. 

BLASTN_MATCH returns only the score and expect value of the match. It does not 
return information about the alignment. BLASTN_MATCH is typically used when 
you want to follow up a BLAST search with a Smith-Waterman alignment.

BLASTN_ALIGN does the BLAST alignment and returns the information about the 
alignment.

Syntax
function BLASTN_ALIGN (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 5,
  extend_gap_cost NUMBER default 2,
  mismatch_cost NUMBER default -3,
  match_reward NUMBER default 1,
  word_size NUMBER default 11,
  xdropoff NUMBER default 30,
  final_x_dropoff NUMBER default 50)
  return table of row ( 
    t_seq_id VARCHAR2,
    pct_identity NUMBER,
    alignment_length NUMBER,
    mismatches NUMBER,
    positives NUMBER,
    gap_openings NUMBER,
    gap_list [Table of NUMBER],
    q_seq_start NUMBER,
    q_frame NUMBER,
    q_seq_end NUMBER,
    t_seq_start NUMBER,
    t_seq_end NUMBER,
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    t_frame NUMBER,   
    score NUMBER, 
    expect NUMBER);

Parameters
Table 6–9 describes the input parameters for BLASTN_ALIGN; Table 6–10, the 
output parameters.

Table 6–9 Input Parameters for BLASTN_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1. 

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1. 

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. 

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior. 

open_gap_cost The cost of opening a gap. The default value is 5. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 2. Specifying 0 
invokes default behavior.
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mismatch_cost The penalty for nucleotide mismatch. The default value is -3. 
Specifying 0 invokes default behavior.

match_reward The reward for a nucleotide match. The default value is 1. 
Specifying 0 invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 11. 
Specifying 0 invokes default behavior.

xdropoff Dropoff for BLAST extensions in bits. The default value is 30. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 50. Specifying 0 invokes default behavior.

Table 6–10 Output Parameters for BLASTN_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the 
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with 
the database sequence.

alignment_length Length of the alignment.

mismatches Number of base-pair mismatches between the query and the 
database sequence.

positives Number of base-pairs with a positive match score between the 
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end 

The indices of the portion of the query sequence that is aligned

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indices of the portion of the target sequence that is aligned.

t_frame Translation frame number of the target sequence.

expect Expect value of the alignment.

Table 6–9 Input Parameters for BLASTN_ALIGN Table Function

Parameter Description
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score Score corresponding to the alignment.

Table 6–10 Output Parameters for BLASTN_ALIGN Table Function

Parameter Description
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BLASTP_ALIGN Table Function

This table function performs a BLASTP alignment of the given amino acid 
sequences against the selected portion of the protein database. The database can be 
selected using a standard SQL select and passed into the function as a cursor. You 
can also use the standard BLAST parameters that are mentioned below. 

BLASTP_MATCH function returns only the score and expect value of the match. It 
does not return information about the alignment. The BLASTP_MATCH function 
will typically be used where the user wants to follow up a BLAST search with a full 
FASTA or Smith-Waterman alignment.

The BLASTP_ALIGN function does the BLAST alignment and returns the 
information about the alignment. The schema of the returned alignment is the same 
as that of BLASTN_ALIGN.

Syntax
function SYS_BLASTP_ALIGN (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default -1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default ’BLOSUM62’,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
 return table of row ( 
    t_seq_id VARCHAR2,
    pct_identity NUMBER,
    alignment_length NUMBER,
    mismatches NUMBER,
    positives NUMBER,
    gap_openings NUMBER,
    gap_list [Table of NUMBER],
    q_seq_start NUMBER,
    q_frame NUMBER,
    q_seq_end NUMBER,
    t_seq_start NUMBER,
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    t_seq_end NUMBER,
    t_frame NUMBER,   
    score NUMBER, 
    expect NUMBER);

Parameters
Table 6–11 describes the input parameters for BLASTP_ALIGN; Table 6–12, the 
output parameters.

Table 6–11 Input Parameters for BLASTP_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1.

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

filter_low_complexity TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence. The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence. The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62.

expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior. 
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open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior.

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior.

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior.

x_dropoff X-dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25 Specifying 0 invokes default behavior.

Table 6–12 Output Parameters for BLASTP_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the 
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with 
the database sequence.

alignment_length Length of the alignment.

mismatches Number of base-pair mismatches between the query and the 
database sequence.

positives Number of base-pairs with a positive match score between the 
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end 

The indices of the portion of the query sequence that is aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indices of the portion of the target sequence that is aligned.

t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment.

Table 6–11 Input Parameters for BLASTP_ALIGN Table Function

Parameter Description
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TBLAST_ALIGN Table Function

This table function performs BLAST alignments involving translations of either the 
query sequence or the database of sequences. The available translation options are 
BLASTX, TBLASTN, and TBLASTX. The schema of the returned alignment is the 
same as that of BLASTN_ALIGN and BLASTP_ALIGN.

Syntax
function TBLAST_ALIGN (
  query_seq CLOB,
  seqdb_cursor REF CURSOR,
  subsequence_from NUMBER default 1,
  subsequence_to NUMBER default 0,
  translation_type VARCHAR2 default ’BLASTX’,
  genetic_code NUMBER default 1,
  filter_low_complexity BOOLEAN default false,
  mask_lower_case BOOLEAN default false,
  sub_matrix VARCHAR2 default ’BLOSUM62’,
  expect_value NUMBER default 10,
  open_gap_cost NUMBER default 11,
  extend_gap_cost NUMBER default 1,
  word_size NUMBER default 3,
  x_dropoff NUMBER default 15,
  final_x_dropoff NUMBER default 25)
 return table of row ( 
    t_seq_id VARCHAR2,
    pct_identity NUMBER,
    alignment_length NUMBER,
    mismatches NUMBER,
    positives NUMBER,
    gap_openings NUMBER,
    gap_list [Table of NUMBER],
    q_seq_start NUMBER,
    q_frame NUMBER,
    q_seq_end NUMBER,
    t_seq_start NUMBER,
    t_seq_end NUMBER,
    t_frame NUMBER,   
    score NUMBER, 
    expect NUMBER);
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Parameters
Table 6–13 describes the input parameters for TBLAST_ALIGN; Table 6–14, the 
output parameters.

Table 6–13 Input Parameters for TBLAST_ALIGN Table Function

Parameter Description

query_seq The query sequence to search. This version of ODM BKLAST 
accepts bare sequences only. A bare sequence is just lines of 
sequence data. Blank lines are not allowed in the middle of 
bare sequence input.

seqdb_cursor The cursor parameter supplied by the user when calling the 
function. It should return two columns in its returning row, the 
sequence identifier and the sequence string.

subsequence_from Start position of a region of the query sequence to be used for 
the search. The default is 1. 

subsequence_to End position of a region of the query sequence to be used for 
the search. If -1 is specified, the sequence length is taken as 
subsequence_to. The default is -1.

translation_type Type of the translation involved. The options are BLASTX, 
TBLASTN, and TBLASTX. The default is BLASTX.

genetic_code Used for translating nucleotide sequences to amino acid 
sequences. genetic_code is sort of like a mapping table. 
NCBI supports 17 different genetic codes. The supported 
genetic codes and their names are given in Table 6–1. The 
default genetic code is 1. 

filter_low_
complexity

TRUE or FALSE. If TRUE, the search masks off segments of the 
query sequence that have low compositional complexity. 
Filtering can eliminate statistically significant but biologically 
uninteresting regions, leaving the more biologically interesting 
regions of the query sequence available for specific matching 
against database sequences. Filtering is only applied to the 
query sequence.The default is FALSE.

mask_lower_case TRUE or FALSE. If TRUE, you can specify a sequence in upper 
case characters as the query sequence and denote areas to be 
filtered out with lower case. This customizes what is filtered 
from the sequence.The default is FALSE.

sub_matrix Specifies the substitution matrix used to assign a score for 
aligning any possible pair of residues. The different options are 
PAM30, PAM70, BLOSUM80, BLOSUM62, and BLOSUM45. The 
default is BLOSUM62.
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expect_value The statistical significance threshold for reporting matches 
against database sequences. The default value is 10. Specifying 
0 invokes default behavior. 

open_gap_cost The cost of opening a gap. The default value is 11. Specifying 0 
invokes default behavior. 

extend_gap_cost The cost of extending a gap. The default value is 1. Specifying 0 
invokes default behavior. 

word_size The word size used for dividing the query sequence into 
subsequences during the search. The default value is 3. 
Specifying 0 invokes default behavior. 

x_dropoff Dropoff for BLAST extensions in bits. The default value is 15. 
Specifying 0 invokes default behavior.

final_x_dropoff The final X dropoff value for gapped alignments in bits. The 
default value is 25. Specifying 0 invokes default behavior.

Table 6–14 Output Parameters for TBLAST_ALIGN Table Function

Parameter Description

t_seq_id Identifier (for example, the NCBI accession number) of the 
matched (target) sequence

pct_identity Percentage of the query sequence that identically matches with 
the database sequence.

alignment_length Length of the alignment.

mismatches Number of base-pair mismatches between the query and the 
database sequence.

positives Number of base-pairs with a positive match score between the 
query and the database sequence.

gap_openings Number of gaps opened in gapped alignment.

gap_list List of offsets where a gap is opened.

q_seq_start,
q_seq_end 

The indices of the portion of the query sequence that is aligned.

q_frame Translation frame number of the query.

t_seq_start,
t_seq_end

The indices of the portion of the target sequence that is aligned.

Table 6–13 Input Parameters for TBLAST_ALIGN Table Function

Parameter Description
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t_frame Translation frame number of the target sequence.

score Score corresponding to the alignment.

expect Expect value of the alignment.

Table 6–14 Output Parameters for TBLAST_ALIGN Table Function

Parameter Description
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7
    Text Mining

The PL/SQL interface enables you to perform Text Mining using a simple two-step 
process:

Step 1: Given a Text document table, and an Oracle Text Index built against the 
documents, extract the text "features" using a simple PL/SQL driver provided 
with the ODM installation (see Section 5.2, "Summary of ODM PL/SQL Sample 
Programs"). This driver demonstrates how to store all the text features 
corresponding to a DocID into a table with nested table columns.

Step 2: Provided the table created in Step 1 as input to the CREATE_MODEL or 
APPLY operation, as appropriate, to be classified using any classification 
algorithm — such as SVM, or a clustering algorithm such as k-Means, or a 
feature extraction algorithm such as NMF.

Note that this two-step process is flexible and can handle any general text input; 
you just have to provide the text features in an input table whose schema 
corresponds to the one depicted in dm/demo/sample/plsql/textfe.sql. 

See also Chapter 13, "Text Mining Using ODM," in Oracle Data Mining Concepts.
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A
    Binning

This appendix provides a detailed example of binning.

Table A–1 displays original data before binning. Table A–2 shows the bin 
boundaries for numeric data; Table A–3 shows bin boundaries for categorical data. 
Table A–4 shows the results of binning. 

Table A–1 Binning Illustration: Data before Binning

Table A–2 Binning Illustration: Bin Boundaries for Numeric Data

PERSON_ID AGE
WORK
CLASS EDUCATION

MARITAL_
STATUS OCCUPATION

2 27 Private HS-grad Married Crafts

8 46 Private Bach. Separ. Prof.

10 34 Private HS-grad Separ. Agricultural

11 23 Sta-gov < Bach. NeverM Cleric.

41 30 Private < Bach. Married Sales

COLUMN_
NAME

LOWER_ 
BOUNDARY

UPPER_
BOUNDARY BIN_ID DISPLAY_NAME

AGE 17 24.3 1 17-24.3

AGE 24.3 31.6 2 24.3-31.6

AGE 31.6 38.9 3 31.6-38.9
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Table A–3 Binning Illustration: Bin Boundaries for Categorical Data

AGE 38.9 46.2 4 38.9-46.2

AGE 46.2 53.5 5 46.2-53.5

COLUMN_NAME CATEGORY BIN_ID
DISPLAY_
NAME

WORKCLASS Loc-gov 1 Government

WORKCLASS Fed-gov 1 Government

WORKCLASS Sta-gov 1 Government

WORKCLASS Private 2 Others

EDUCATION HS-grad 1 HS-grad

EDUCATION < Bach. 2 < Bach.

EDUCATION Bach. 3 Bach.

EDUCATION Masters 4 Masters

MARITAL_STATUS Married 1 Married

MARITAL_STATUS NeverM 2 NeverM

MARITAL_STATUS Divorc. 3 Divorc.

MARITAL_STATUS Widowed 4 Widowed

MARITAL_STATUS Separ. 5 Separ.

OCCUPATION Prof 1 Prof

OCCUPATION Crafts 2 Crafts

OCCUPATION Exec. 3 Exec.

OCCUPATION Sales 4 Sales

OCCUPATION Cleric 5 Cleric

OCCUPATION 6 Other_occ

COLUMN_
NAME

LOWER_ 
BOUNDARY

UPPER_
BOUNDARY BIN_ID DISPLAY_NAME



Use of Automated Binning

                     Binning A-3

Table A–4 Binning Illustration: Assignment of Original Data to Bins

A.1 Use of Automated Binning 
The Java interface supports automated binning. An important advantage of 
automated binning is that it allows ODM to handle raw data. Automated binning 
also allows initial exploration of problems about which there is little or no 
information to guide binning decisions.

Currently automatic binning requires closed intervals for numerical bins. This can 
result in certain values being ignored. For example, if the salary range in the build 
data table is 0 to 1,000,000, any salary greater than 1,000,000 is ignored when the 
model is applied. If you are trying to identify likely purchasers of a high-end 
consumer product, attributes indicating the wealthiest individuals are likely to be 
deleted, and you probably won’t find the best targets. Manual binning has the 
option of making extreme bins open-ended, that is, with infinite boundaries.

PERSON_ID AGE
WORK
CLASS WEIGHT EDUCATION

MARITAL_
STATUS OCCUPATION

2 2 2 2 1 1 2

8 4 2 1 3 5 1

10 3 2 1 1 5 6

11 1 1 1 2 2 5

41 2 2 2 2 1 4
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B
    ODM Tips and Techniques

This section contains information about some special considerations for clustering 
models, for SVM models, and for NMF models.

B.1 Clustering Models
ODM supports two algorithms for clustering:

■ k-Means
■ O-Cluster

The two algorithms treat data differently. This section discusses important 
considerations about data for clustering.

B.1.1 Attributes for Clustering
Binary attributes should have data mining type as follows:

■ Numeric for k-Means

■ Categorical for O-Cluster

B.1.2 Binning Data for k-Means Models
You can either bin the data manually or let the algorithm do the binning. For 
k-Means, it is usually best to let the algorithm do the binning. If you bin manually, 
the first bin number must be 1. We recommend that you have the same number of 
bins per attribute in order to have the same scale in the distance computation. For 
example, if age is binned in 20 bins (1...20), and there is a binary attribute (gender), 
the binary attribute should be binned as 1 and 20 instead of 1 and 2. If this is not 
done, the algorithm would still work but the results will be unreliable.
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B.1.3 Binning Data for O-Cluster Models
You can either bin the data manually or let the algorithm do the binning. For 
O-Cluster, it is usually best to let the algorithm do the binning. If you bin manually, 
the first bin number must be 1. In the case of O-Cluster, manual binning should not 
over-smooth or under-smooth the histograms of numeric attributes. The number of 
bins does not need to be the same across attributes but should be chosen to capture 
the attribute value distribution accurately.

B.2 SVM Models
This section describes the ways in which you can affect model build quality and 
performance with SVM models.

B.2.1 Build Quality and Performance
The user can influence both the SVM model quality (accuracy) and performance 
(build time) through two basic mechanisms: data preparation and model settings.

Poor choice of settings or data preparation can lead to serious performance 
degradation. Poor settings choice can also lead to inaccurate models. For example, a 
model can predict only one class. ODM offer- built in mechanisms that estimate 
appropriate settings for the problem at hand.

SVM estimates three settings: complexity factor, standard deviation for Gaussian 
kernels, and epsilon for regression models. These three settings are estimated by 
default.

Default settings are overridden by specifying a value for the setting when creating 
the algorithm settings object (Java) or by inserting a row in the settings table for that 
setting (DBMS_DM). 

B.2.2 Data Preparation
Default data preparation is overridden by specifying the data as prepared (ODM). 
In DBMS_DM there is no default data preparation. Data preparation must be 
specifically invoked.

ODM and DBMS_DM accept two types of predictors: numeric and categorical. In 
ODM, the logical data specification identifies the data type of each predictor. 
DBMS_DM identifies all database numeric types as numeric predictors and all 
database string types as categorical predictors. SVM requires all predictors to be 
numeric and the range of values restricted to a small interval around 0. Hence 
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numeric predictors are normalized and categorical predictors are exploded 
(described below). 

B.2.3 Numeric Predictor Handling
Normalization of numeric predictors is typically required for two reasons: (1) so 
that the relative influence of the various predictors on the model is not distorted by 
their relative scaling, and (2) to avoid computational overflow/underflow. To the 
first point, note that an SVM model (ai) parameter applies to an entire training 
vector, rather than individual predictors within the vector; hence large individual 
vector values can dominate. In addition (point 2), note that the kernel computation 
includes sum of dot products of two potentially large values. Such sums can result 
in overflow, or, as the exponent of a Gaussian, underflow.

Our offerings for normalization include z-score and min-max normalization. Each 
normalization technique has advantages and drawbacks. Z-score has the advantage 
of not distorting the shape of the distribution. However, z-score’d data can still have 
many large (absolute) values (outside of range {-1, 1}. The number and size of large 
values can differ greatly across attributes, depending upon their relative 
non-normality. In addition, the z-score’d range differs from the exploded categorical 
range {0,1}. Min-max normalization avoids the large value issue and has the same 
range as the categorical data but may suffer compression of its dense range in the 
presence of large extreme values. The user could potentially address the min-max 
normalization drawback with some procedure for handling outliers.

B.2.4 Categorical Predictor Handling
Categorical predictors are exploded into arrays of indicator variables. This is 
transparent to the user in both interfaces. For example, a predictor, VAR, which 
takes on one of three possible values: A, B or C becomes three predictors that one 
could think of as VAR_A, VAR_B and VAR_C. Each of these exploded predictors is 
a binary attribute with values in the set {0,1}. If VAR_A is 1, then VAR = "A". If 
VAR_A is 0 then VAR is NOT equal to "A". For multi-valued categorical predictors 
with no implicit order, explosion, as specified, is the most sensible procedure. 

For binary predictors or multi-valued categoricals with an implicit order there are 
choices. Consider a predictor taking on values in the set {LOW, MEDIUM, HIGH}. 
The user could choose to recode the values to {0, 0.5, 1}, or, use some other mapping 
that is intended to reflect the relative distance between the categories. The recoded 
predictor would then be passed as numeric field. 
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Binary predictors take on one of two possible values. E.g. a binary predictor might 
take on values from the set {NO, YES}. The decision to recode such predictors to {0, 
1} depends upon whether there is a preferred positive value or not.

B.2.5 Regression Target Handling
In the Java API, for performance and accuracy, we internally normalize regression 
targets. In DBMS_DM, the user can choose to normalize the target externally. 
Consider a regression target with large absolute values. Because the predictors are 
constrained, the coefficients (ai) must be large, or the number of non-zero 
coefficients must be large, or both, otherwise it is impossible to predict a large 
value. The range of the coefficients is restricted by the ComplexityFactor (C) 
setting,. With a small C, the performance and, possibly, the accuracy of SVM can be 
poor. With a large C, the training time can increase significantly. In addition, the 
model can be larger than would be otherwise necessary. To avoid this issue we 
normalize the targets. Since the goal is to avoid large values, min-max 
normalization is often a good choice (see numeric predictor handling discussion 
above). 

B.2.6 SVM Algorithm Settings
Several of the algorithm settings can significantly affect SVM accuracy and 
performance. The issues and considerations in choosing setting values are discussed 
briefly in the sections below. In the literature, cross-validation and grid search 
techniques are often used to select parameters. These methods, while accurate, are 
very expensive. Rather than saddle users with an expensive procedure, we have 
opted for computationally inexpensive procedures that fit easily within our 
implementation framework. The intent is to provide settings that should give the 
model adequate complexity for the problem at hand. If the user requires greater 
accuracy and is willing to incur the additional computational expense, our defaults 
can be used as the starting point for a grid search. 

B.2.7 Complexity Factor (C)
The complexity factor, C, determines the trade-off between minimizing model error 
on the training data and minimizing model complexity. Its responsibility is to avoid 
over-fit (an over-complex model fitting noise in the training data) and under-fit (a 
model that is too simple). Overfit exists if the model fits the training data well but 
does poorly on held-aside test data. Underfit exists if the model does poorly on both 
training and test data. If the user wishes to override the default C after seeing the 
model result, the user can obtain the internally computed default value as a starting 



SVM Models

                     ODM Tips and Techniques B-5

point for a grid search. Both the java API and PL/SQL interfaces have methods for 
getting the Complexity factor. The subsequent discussion provides qualitative 
description of the impact of C on the model build.

Very large value of C places extreme penalty on errors, so that SVM seeks a perfect 
separation of target classes, or, in the case of regression, a perfect 
(epsilon-insensitive — see below) fit. Assuming the data to have at least some noise, 
this is over-fit. Large C leaves the parameters of the model (ai) unconstrained, i.e., 
the model is complex with high capacity for fitting data. Conversely, small C places 
low penalty on errors and high constraints on the model parameters, which can 
lead to under-fit. 

Standard Deviation — Gaussian Kernels Only
Standard deviation is an SVM setting applying to Gaussian Kernels only. This 
parameter, in conjunction with C, affects the trade-off between error on the training 
data and generalization. For fixed C, underfit results as the standard deviation gets 
large, and overfit results as the standard deviation goes to zero. 

To facilitate using the default values computed in ODM as a starting point, methods 
exist to extract the setting values.

B.2.8 Epsilon — Regression Only
Epsilon is an SVM setting applying to regression models only. The parameter 
separates small errors from large errors. Small errors are considered to have no 
associated penalty. Only large errors are penalized. In the Java API, if the default 
target normalization is used the value of epsilon is re-scaled accordingly. In DBMS_
DM, epspilon needs to be re-scaled by the user. By default, epsilon is estimated 
internally. 

The epsilon parameter affects the number of support vectors and, thus, indirectly, 
the trade-off between model complexity and generalization (over-fit and under-fit 
as possible consequences). An estimate of the standard deviation of the additive 
noise in the target variable is needed to find an appropriate epsilon value and thus 
minimize predictive error. The estimate can be based either on domain knowledge 
or it can be obtained from the residuals of a crude model (e.g., polynomial, KNN) 
built on the training data.

B.2.9 Kernel Cache — Gaussian Kernels Only
The most expensive operation in building a gaussian SVM model is the 
computation of kernels. The general approach taken to build is to converge within a 
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chunk of data at a time, then to test for violators outside of the chunk. Build is 
complete when there are no more violators within tolerance. The size of the chunk 
is chosen such that the associated kernels can be maintained in memory in a "Kernel 
Cache". The larger the chunk size, presumably, the better the chunk represents the 
population of training data and the fewer number of times new chunks will need to 
be created. Generally, larger caches imply faster builds. Default size is 50M. 

B.2.10 Tolerance
Tolerance is the maximum size of a violation of convergence criteria such that the 
model is considered to have converged. The default value is 0.001. Larger values 
imply faster building but less accurate models.

B.3 NMF Models
Traditionally, as part of standard numerical analysis, matrix factorization is a 
common preprocessing procedure prior to solving a liner system of equations. For 
data mining, matrix factorization offers a way to reduce the dimensionality of a 
dataset and extract features that reveal interesting structure in the data or provide 
inputs to further types of analysis. In matrix factorization, the number of the 
dataset- independent columns is reduced by projection onto a lower dimensional 
space (e.g., smaller matrices). 

Rank reduction by factorization can reveal interesting low-dimensional subspaces 
embedded in large dimensionality datasets space and is a useful operation for 
pattern discovery and feature extraction. For example, the traditional Principal 
Component Analysis (PCA) uses a projection of the data on dimensions along 
which it varies the most and can be used to visualize the most dominant structure 
in a dataset. 

Non-negative matrix factorization (NMF), by imposing non-negativity constraints 
on the factors, has been shown to be a useful decomposition and feature extraction 
method in fields such as object detection and recognition and to be a valuable 
alternative PCA1. By forcing a dataset (matrix) to "fit" into a product of smaller 
datasets (matrices), NMF compresses the data and tends to eliminate some of the 
redundancies and expose the most common patterns. By using a parts-based or 
component-based decomposition, and in contrast to PCA and other techniques, the 
compressed version of the data is not random looking and can be used to 
understand interesting patterns and common trends in the dataset. The NMF 

1 Daniel D. Lee, and H. Sebastian Seung,  Learning the parts of objects by non-negative 
matrix factorization. Nature 1999, Oct 21, 401(6755), 788-793.
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decomposition also induces a numerical taxonomy that can be used for grouping 
the rows or columns of the original dataset. The extracted features can be used as 
inputs to other analysis tasks such as classification or indexing. This procedure has 
proven useful in face recognition problems or the discovery of semantic features in 
texts2. 

Given an N (rows) x M (columns) 2D dataset A and k < N, M, NMF computes an 
approximation of the original data, A ~ W H, where W is N by k, and H is k by M. 
Starting from random initial conditions, W and H are iteratively updated until 
convergence to a local minimum is achieved, monitored by the minimization of the 
Euclidean cost function. A must have positive entries, and so are W and H by 
construction. Even though localization is not an explicit property of the algorithm, 
NMF appears to produce quite localized and sparse features that facilitate the 
interpretation of results and the transparency of the model. For example, when 
NMF is applied to a dataset of facial images, the extracted features are facial parts: 
eyes, noses, etc. When the dataset is a document/keyword matrix, then NMF 
extracts "semantic" features3.

When NMF is used as a feature extractor, it can benefit from scaling individual 
attributes to a common scale via normalization. This would facilitate pattern 
discovery and make dimensionality reduction more effective. A preferred approach 
would be to perform outlier treatment (e.g., by using a winsorizing transformation) 
and then perform min-max normalization. Having individual attributes on a 
common scale would help ranking and interpretation of feature coefficients in terms 
of there relative magnitude. Additionally, applying a normalization transformation 
would allow NMF to operate on negative data as well. Otherwise, the data need to 
be shifted to the positive range manually on a per-attribute basis.

If NMF is used to cluster column instances -— e.g., by using the amplitudes from 
the rows of H— then according to the nature of the problem, one may consider 
normalizing the rows, the columns, or both, prior to using NMF.

2 Same as footnote 1, above.
3 Same as footnote 1, above.
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