
Solstice X.25 9.2 Developer’s
Guide

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-1235–10
October 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunDocs, Solstice, SunLink, SunNet and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunDocs, Solstice, SunLink, SunNet et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface xix

Part I Network Layer Interface (NLI)

1. STREAMS Overview 3

1.1 Overview 3

2. About NLI 5

2.1 NLI Overview 5

2.2 NLI Commands 7

2.3 NLI ioctls 9

2.4 Support Functions 10

2.5 Support for OSI Connection-Mode Network Service (OSI CONS) 10

2.6 Addressing 10

2.7 Facilities and QOS Parameters 10

2.8 Operating System Support 11

3. Making and Receiving Calls 13

3.1 Making a Single Call 13

3.2 Receiving Data 16

3.3 Additional Call Information 18

3.3.1 Opening connections for OSI CONS Calls 18

3.3.2 Receiving Expedited Data 19

Contents iii

3.3.3 Dealing with Resets and Interrupts 20

4. Listening for Calls 23

4.1 Listening for a Single Call 23

4.2 Listening for Multiple Incoming Calls 27

5. Getting Statistics 29

5.1 Sample Program 29

6. NLI Commands and Structures 33

6.1 Commands and Structures Tables 33

6.2 x25_primitives C Union 35

6.3 Generic Structures 37

6.3.1 xaddrf —Define Addressing 37

6.3.2 lsapformat —Define an LSAP 38

6.3.3 extraformat —Define Standard X.25 Facilities 39

6.3.4 qosformat —Define OSI CONS QOS Parameters 43

6.4 NLI Commands 47

6.4.1 N_Abort —Abort Indication 48

6.4.2 N_CC—Call Response/Confirmation 48

6.4.3 N_CI—Call Request/Indication 49

6.4.4 N_DAck—Data Ack Request/Indication 51

6.4.5 N_Data —Data 52

6.4.6 N_DC—Clear Confirm 53

6.4.7 N_DI—Clear Request/Indication 54

6.4.8 N_EAck—Expedited Data Acknowledgement 56

6.4.9 N_EData —Expedited Data 57

6.4.10 N_PVC_ATTACH—PVC Attach 58

6.4.11 N_PVC_DETACH—PVC Detach 59

6.4.12 N_RC—Reset Response/Confirm 60

6.4.13 N_RI—Reset Request/Indication 61

iv Solstice X.25 9.2 Developer’s Guide ♦ October 1999

6.4.14 N_Xcanlis —Listen Cancel Command/Response 62

6.4.15 N_Xlisten —Listen Command/Response 63

7. Network Layer ioctls 67

7.1 ioctls Functional Grouping 67

7.2 N_getlinkstats —Retrieve Per-Link Statistics 70

7.3 N_getoneVCstats —Retrieve Per-Virtual-Circuit Statistics 72

7.4 N_getpvcmap —Get PVC Default Packet/Window Sizes 73

7.5 N_getstats —Get X.25 Multiplexor Statistics 74

7.6 N_getVCstats —Get Per-Virtual-Circuit Statistics 78

7.7 N_getVCstatus —Get Per-Virtual-Circuit Statistics 83

7.8 N_linkconfig —Configure the wlcfg Database 87

7.9 N_linkent —Configure a Newly Linked Driver 100

7.10 N_linkmode —Alter the Characteristics of a Link 100

7.11 N_linkread —Read the wlcfg Database 101

7.12 N_nuidel —Delete Specified NUI Mapping 102

7.13 N_nuiget —Read the Mapping for a Specified NUI 103

7.14 N_nuimget —Read all Existing NUI Mappings 103

7.15 N_nuiput —Store a set of NUIs 104

7.16 N_nuireset —Delete all Existing NUI Mappings 108

7.17 N_putpvcmap —Change PVC Packet and Window Sizes 109

7.18 N_traceoff ioctl—Cancel N_traceon 110

7.19 N_traceon —Turn on Packet Level Tracing 110

7.20 N_X25_ADD_ROUTE—Set Fields of X25_ROUTEStructure 112

7.21 N_X25_FLUSH_ROUTES—Flush all Routes 113

7.22 N_X25_GET_ROUTE—Obtain Routing Information 114

7.23 N_X25_GET_NEXT_ROUTE—Get Next Routing Entry 115

7.24 N_X25_RM_ROUTE—Remove Route From X25_ROUTE 116

7.25 N_zerostats —Reset X.25 Multiplexor Statistics Count 117

Contents v

8. Support Functions 119

8.1 Linking to the Support Library 119

8.2 Function Summary 120

8.3 The padent Structure 122

8.4 The xhostent Structure 123

8.5 endpadent —Closes the PAD Hosts Database 124

8.6 endxhostent —Closes the xhosts File 124

8.7 equalx25 —Compares two X.25 addresses 125

8.8 getnettype —Get Type of Network for a Link 126

8.9 getpadbyaddr —Get PAD Database Entry for Address 127

8.10 getpadent —Get Next Line in PAD Hosts Database 128

8.11 getxhostbyaddr —Get X.25 Host Name by Address 129

8.12 getxhostbyname —Get X.25 Address by Name 130

8.13 getxhostent —Reads Next Line of xhosts File 131

8.14 linkidtox25 —Convert Link Identifier to Numeric Form 131

8.15 padtos —Convert PAD Database Structure Into String 132

8.16 setpadent —Open and Rewind the PAD Hosts Database 134

8.17 setxhostent —Open and Rewind the xhosts File 135

8.18 stox25 —Convert X.25 Address to xaddrf Structure 135

8.19 x25_find_link_parameters —Finds Link Configuration Files and Builds a
Linked List of Links 137

8.20 x25_read_config_parameters —Reads a Configuration File Into a Data
Structure 138

8.21 x25_read_config_parameters_file —Reads a Configuration File Into a
Data Structure 139

8.22 x25_save_link_parameters —Update Configuration Files 141

8.23 x25_set_parse_error_function —Install a Function as Default Error
Handler 142

8.24 x25_write_config_parameters —Writes a Data Structure Into a
Configuration File Identified by a Link Number 143

vi Solstice X.25 9.2 Developer’s Guide ♦ October 1999

8.25 x25_write_config_parameters_file —Writes a Data Structure Into a
Configuration File Identified by a Filename 145

8.26 x25tolinkid —Convert Numeric Link Identifier to String 146

8.27 x25tos —Convert xaddrf Structure to X.25 Address 147

9. Error Codes 149

9.1 Originator and Reason Tables 149

9.2 Decoding Error Codes 151

Part II Data Link Protocol Interface (DLPI)

10. About DLPI 155

10.1 How DLPI Works 155

10.2 Addressing 156

10.3 Running DLPI Over LAPB 156

10.4 Running DLPI Over LLC2 157

11. DLPI Reference 159

11.1 DLPI Specific Message Primitives 159

11.1.1 Address Structures 161

11.1.2 Message Primitive Sequence Summary 163

11.1.3 DL_ATTACH_REQ—Identifies Physical Link to use 164

11.1.4 DL_BIND_ACK—Acknowledges Bind Request 165

11.1.5 DL_BIND_REQ—Specifies CLNS or CONS Service 166

11.1.6 DL_CONNECT_CON—Acknowledge DL_CONNECT_REQ168

11.1.7 DL_CONNECT_IND—Indicate Incoming Connection 169

11.1.8 DL_CONNECT_REQ—Establish a Connection 170

11.1.9 DL_CONNECT_RES—Accept a Connect Request 172

11.1.10 DL_DETACH_REQ—Undoes a Previous DL_ATTACH_REQ 173

11.1.11 DL_DISCONNECT_IND—Indicates Connection Disconnect 174

11.1.12 DL_DISCONNECT_REQ—Disconnects a Connection 175

11.1.13 DL_ERROR_ACK—Negative Acknowledgment 176

Contents vii

11.1.14 DL_INFO_ACK—Convey Info Summary 177

11.1.15 DL_INFO_REQ—Request Info Summary 178

11.1.16 DL_OK_ACK—Acknowledge Previous Primitive 179

11.1.17 DL_RESET_CON—Acknowledges DL_RESET_REQ 180

11.1.18 DL_RESET_IND—Indicates Remote Reset 180

11.1.19 DL_RESET_REQ—Request Connection Reset 181

11.1.20 DL_RESET_RES—Respond to Reset Request 182

11.1.21 DL_TOKEN_ACK—Acknowledges DL_TOKEN_REQ 183

11.1.22 DL_TOKEN_REQ—Assigns Token to Stream 183

11.1.23 DL_UNBIND_REQ—Summary 184

11.2 Sun-Specific ioctls 185

11.2.1 Common ioctls 185

11.2.2 LAPB ioctls 189

Part III Socket Interface

12. Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level
Interface 199

12.1 Introduction — The AF_X25 Domain 199

12.2 AF_X25 Domain Addresses 200

12.3 Creating Switched Virtual Circuits 201

12.3.1 Calling Side — Outgoing Call Setup 201

12.3.2 Calling Side — Setting the Local Address 202

12.3.3 Called Side — Incoming Call Acceptance 203

12.3.4 Address Binding 204

12.3.5 Binding by PID/CUDF 205

12.3.6 Masking Incoming Protocol Ids at Bit Level 205

12.3.7 AEF Matching Considerations 206

12.3.8 Explicit Link Selection—Calling Side 206

12.3.9 Explicit Link Selection—Called Side 207

viii Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.3.10 Accessing the Local and Remote Addresses 208

12.3.11 Finding the Link Used for a Virtual Circuit 209

12.3.12 Determining the LCN for a Connection 209

12.4 Sending Data 209

12.4.1 Control of the M-, D-, and Q-bits 210

12.4.2 Sending Interrupt and Reset Packets 212

12.5 Receiving Data 212

12.5.1 In-Band Data 212

12.5.2 Reading the M-, D-, and Q-bits 213

12.5.3 Receiving X.25 Messages in Records 214

12.5.4 Out-of-Band Data 214

12.6 Clearing a Virtual Circuit 216

12.7 Advanced Topics 217

12.7.1 Facility Specification and Negotiation 217

12.7.2 X25_SET_FACILITY /X25_GET_FACILITY ioctls 217

12.7.3 Fast Select User Data 227

12.7.4 Permanent Virtual Circuits 230

12.7.5 Call Acceptance by User 230

12.7.6 Accessing the Link (X.25) Address 231

12.7.7 Accessing High Water Marks of Socket 231

12.7.8 Accessing the Diagnostic Code 232

12.8 Routing ioctls 234

12.9 Miscellaneous ioctls 235

12.9.1 Obtaining Statistics 235

13. Sockets Programming Example 241

13.1 Include Files for User Programs 241

13.2 Compilation Instructions and Sample Programs 242

Contents ix

13.3 Structures Used by the X25_SET_FACILITY and X25_GET_FACILITY ioctl
Commands 242

Index 247

x Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Tables

TABLE P–1 Typographic Conventions xx

TABLE 2–1 NLI Commands and Structures 7

TABLE 2–2 PVC and Listening Commands and Structures 8

TABLE 6–1 NLI Commands and Structures 33

TABLE 6–2 PVC and Listening Commands and Structures 34

TABLE 6–3 Generic Structures 35

TABLE 6–4 Members of xaddrf Structure 37

TABLE 6–5 Members of lsapformat Structure 38

TABLE 6–6 Members of extraformat Structure 40

TABLE 6–7 QOS Parameters 44

TABLE 6–8 Call Response/Confirmation Message 49

TABLE 6–9 Call Request/Indication Message 50

TABLE 6–10 Data Message 52

TABLE 6–11 Clear Confirm Parameters 54

TABLE 6–12 Clear Request/Indication Parameters 55

TABLE 6–13 PVC Attach Parameters 58

TABLE 6–14 Listen Cancel Command/Response Parameters 60

TABLE 6–15 Listen Cancel Command/Response Parameters 63

TABLE 6–16 Variables for CUD matching 64

Tables xi

TABLE 6–17 Variables for address matching 65

TABLE 6–18 Listen Command/Response Parameters 66

TABLE 7–1 NUI mapping icotls 67

TABLE 7–2 Multiplexor ioctls 68

TABLE 7–3 Virtual circuit ioctls 68

TABLE 7–4 Packet level tracing ioctls 69

TABLE 7–5 Routing ioctls 69

TABLE 7–6 Link ioctls 69

TABLE 7–7 perlinkstats fields 70

TABLE 7–8 nliformat fields 71

TABLE 7–9 vcinfo structure fields 72

TABLE 7–10 getpvcmap fields 73

TABLE 7–11 N_getstats structure 74

TABLE 7–12 vcstatsf fields 78

TABLE 7–13 xstate summary 80

TABLE 7–14 perVC_stats summary 81

TABLE 7–15 vcstatusf fields 83

TABLE 7–16 xstate summary 84

TABLE 7–17 perVC_stats summary 85

TABLE 7–18 NET_MODEvalues 87

TABLE 7–19 bit map summary 93

TABLE 7–20 SUB_MODESsummary 94

TABLE 7–21 PSDNModes 95

TABLE 7–22 Intl_addr_recogn summary 96

TABLE 7–23 prty_encode_control values 97

TABLE 7–24 src_addr_control values 97

TABLE 7–25 thclass_type values 99

TABLE 7–26 linkoptformat fields 101

xii Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–27 nui_del fields 102

TABLE 7–28 nui_get fields 103

TABLE 7–29 Members of the nui_mget structure 104

TABLE 7–30 nui_put fields 105

TABLE 7–31 nuiformat fields 105

TABLE 7–32 facformat fields 106

TABLE 7–33 nui_reset fields 108

TABLE 7–34 pvcconf fields 109

TABLE 7–35 trc_regioc fields 111

TABLE 7–36 trc_ctrl fields 112

TABLE 8–1 PAD related functions 120

TABLE 8–2 xhosts functions 120

TABLE 8–3 X.25 addressing functions 121

TABLE 8–4 Configuration file functions 121

TABLE 8–5 Link functions 121

TABLE 8–6 Members of padent structure 122

TABLE 8–7 Members of xhostent structure 123

TABLE 8–8 Members of xaddrf structure 125

TABLE 8–9 getnettype parameters 126

TABLE 8–10 Network Type 127

TABLE 8–11 getpadbyaddr parameters 127

TABLE 8–12 getxhostbyaddr parameters 129

TABLE 8–13 getxhostbyname parameters 130

TABLE 8–14 linkidtox25 parameters 132

TABLE 8–15 padtos parameters 132

TABLE 8–16 strp character string values 133

TABLE 8–17 setpadent parameters 134

TABLE 8–18 setxhostent parameters 135

Tables xiii

TABLE 8–19 stox25 parameters 136

TABLE 8–20 Members of link_data structure 137

TABLE 8–21 read_confing_parameters parameters 138

TABLE 8–22 x25_read_config_parameters_file parameters 140

TABLE 8–23 x25_save_link_parameters parameters 141

TABLE 8–24 x25_set_parse_error_function parameter 142

TABLE 8–25 x25_write_config_parameters parameters 143

TABLE 8–26 write_link_config_parameters_file parameters 145

TABLE 8–27 x25tolinkid parameters 147

TABLE 8–28 x25tos parameters 147

TABLE 9–1 Reason when Originator is NS Provider 149

TABLE 9–2 Reason when Originator is NS User 150

TABLE 10–1 Solstice X.25 routines to associate PPA with a LAN device 158

TABLE 11–1 Local Management Service Message Primitives 159

TABLE 11–2 Connection Mode Service Message Primitives 160

TABLE 11–3 Connection Release Message Primitives 161

TABLE 11–4 Data Transfer Message Primitive 161

TABLE 11–5 Data Resynchronization Message Primitives 161

TABLE 11–6 Members of llc_dladdr structure 162

TABLE 11–7 Members of pstnformat structure 162

TABLE 11–8 Members of the dl_attach_req_t structure 164

TABLE 11–9 DL_ATTACH_REQerrors 165

TABLE 11–10 Members of the dl_bind_ack_t structure 166

TABLE 11–11 Members of the dl_bin_req_t structure 167

TABLE 11–12 DL_BIND_REQerrors 168

TABLE 11–13 Members of the dl_connect_con_t structure 168

TABLE 11–14 Members of the dl_connect_ind_t structure 169

TABLE 11–15 Members of the dl_connect_req_t structure 171

xiv Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–16 DL_CONNECT_REQerrors 171

TABLE 11–17 Members of the dl_connect_res_t structure 172

TABLE 11–18 DL_CONNECT_RESerrors 173

TABLE 11–19 Members of the dl_detach_req_t structure 173

TABLE 11–20 DL_DETACH_REQerrors 174

TABLE 11–21 Members of dl_disconnect_ind structure 174

TABLE 11–22 Members of the dl_disconnect_req_t structure 176

TABLE 11–23 DL_DISCONNECT_REQerrors 176

TABLE 11–24 Members of the dl_error_ack_t structure 177

TABLE 11–25 members of the dl_info_ack_t structure 178

TABLE 11–26 Members of the dl_info_req_t structure 179

TABLE 11–27 Members of the dl_ok_ack_t structure 179

TABLE 11–28 Members of the dl_reset_con_t structure 180

TABLE 11–29 Members of the dl_reset_ind_structure 180

TABLE 11–30 Members of the dl_reset_req_t structure 181

TABLE 11–31 DL_RESET_REQerrors 182

TABLE 11–32 Members of the dl_reset_res_t structure 182

TABLE 11–33 DL_RESET_RESerrors 182

TABLE 11–34 Members of the dl_token_ack_t structure 183

TABLE 11–35 Members of the dl_token_req_t structure 184

TABLE 11–36 Members of the dl_unbind_req_t structure 184

TABLE 11–37 Statistics Ioctls 185

TABLE 11–38 Stream Configuration Ioctls 185

TABLE 11–39 Members of the llc2_tnoic structure 186

TABLE 11–40 Members of the lapb_tnoic structure 187

TABLE 11–41 Members of the llc2_tnoic structure 188

TABLE 11–42 Members of the lapb_tnoic structure 189

TABLE 11–43 Members of the lapb_gstioc structure 190

Tables xv

TABLE 11–44 Members of the ll_snioc structure 190

TABLE 11–45 L_GETPPA errors 191

TABLE 11–46 Members of the ll_snioc structure 193

TABLE 11–47 L_SETPPA errors 194

TABLE 11–48 Members of the wan_tnioc structure 195

xvi Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Figures

Figure 1–1 STREAMS Format 4

Figure 2–1 NLI and STREAMS 6

Figure 2–2 NLI Message Format 6

Figure 10–1 DLPI Summary 155

Figures xvii

xviii Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Preface

This guide describes the programming interfaces provided as part of the SolsticeTM

X.25 9.2 product. It does not cover the installation or configuration of the product. For
this, refer to the installation instructions and Solstice X.25 9.2 Administration Guide.

How This Book Is Organized
This book contains the following parts and chapters:

Part I, Network Layer Interface, covers the network layer interface.

Chapter 1, provides a brief overview of STREAMS programming.

Chapter 2, provides some background information on the NLI programming
interface.

Chapter 3, contains example programs for making and receiving calls.

Chapter 4, contains example programs for listening for incoming calls.

Chapter 5, contains an example program for collecting statistics.

Chapter 6, provides reference material on NLI commands and structures.

Chapter 7, provides reference material on network layer ioctls.

Chapter 8, provides reference material on the available library routines.

Chapter 9, provides information on NLI error codes.

Part II, Data Link Protocol Interface (DLPI), covers the DLPI programming interface.

Chapter 10, provides background information on DLPI.

Chapter 11, provides reference information on DLPI.

Preface xix

Part III, Sockets Interface, covers the Sockets programming interface.

Chapter 12, provides reference material on sockets programming.

Chapter 13, contains a sockets programming example.

What Typographic Changes Mean
The following table describes the typographic changes used in this book

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-programlisting computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-programlisting
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

xx Solstice X.25 9.2 Developer’s Guide ♦ October 1999

PART I Network Layer Interface (NLI)

CHAPTER 1

STREAMS Overview

STREAMS defines a standard interface for character I/O within the kernel, and
between the kernel and the rest of the system. STREAMS creates, uses and
dismantles streams. A stream is a full-duplex processing and data transfer path
between a driver in kernel space and a process in user space.

1.1 Overview
A stream is made up of three parts—a stream head, optionally one or more modules,
and a driver. The stream structure is summarized in Figure 1–1. The stream head
provides the interface between the stream and the user processes. The module
processes data travelling between the stream head and the driver. The driver can be
a device driver, which has associated hardware, or a software driver.

STREAMS facilities are available using a series of system calls, which interact with
the driver.

3

User Space

Kernel Space

User Process

Stream

Head

Module

Driver

External
Interface

(optional)

Figure 1–1 STREAMS Format

For detailed information on STREAMS, refer to the STREAMS Programming Guide.

4 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 2

About NLI

The Solstice X.25 Network Layer Interface (NLI) provides acces to the X.25 Packet
Layer Protocol (PLP). The NLI defines the format that STREAMS messages must take
when interfacing to the network layer. This allows for the easy construction of user
level library software, and means that applications map conveniently onto the
STREAMS format.

2.1 NLI Overview
The Solstice X.25 Network Layer Interface provides access to the X.25 Packet Layer
Protocol (PLP). The NLI defines the format that STREAMS messages must take when
interfacing to the network layer. This allows for the easy construction of user level
library software, and means that applications map conveniently onto the STREAMS
format.

Solstice X.25 applications use the putmsg and getmsg system calls to interact with
the PLP driver.

5

User Space

Kernel Space

X.25 Application

X.25 PLP
module

LAPB
driver

External
Interface

Stream Head

putmsg getmsg

Figure 2–1 NLI and STREAMS

Messages passed using NLI have both a control and a data part. Primitives and
associated parameters are passed to the X.25 driver using the control part of the
message. Data, if there is any, is contained in the data part of the message.

Control part
contains primitives
and parameters

Data part
contains data

Figure 2–2 NLI Message Format

Solstice X.25 NLI provides the following:

� NLI messages

These determine the format of the control parts of putmsg and getmsg , and are
used to communicate with the network.

� A series of ioctls

These communicate with the Solstice X.25 code, rather than with the network.

� A series of library functions

These are not part of the NLI, but can be used along with it.

6 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

2.2 NLI Commands
Solstice X.25 NLI provides a series of NLI commands contained within C structures.
These determine the format of the control parts of putmsg and getmsg . The NLI
commands correspond to X.25 packet types, and are used to communicate with the
network. For example, when an application passes down the NLI command N_CI to
a stream using putmsg , this is translated into an X.25 Call Connect by the PLP
module. When the PLP module receives a Connect Indication, it translates it into an
N_CI command which is passed up to the application using a getmsg system call.

Table 2–1 summarizes the structures and their corresponding Packet Types and NLI
Commands. Refer to the sections indicated for detailed information.

TABLE 2–1 NLI Commands and Structures

NLI
Command X.25 Packet NLI Structure See section

N_Abort Abort Indication xabortf Section 6.4.1
“N_Abort —Abort
Indication” on page 48

N_CC Call Response/
Confirmation

xccnff Section 6.4.2 “N_CC—Call
Response/Confirmation”
on page 48

N_CI Call Request/ Indication xcallf Section 6.4.3 “N_CI—Call
Request/Indication” on
page 49

N_DAck Data Acknowledgment
Request/Indication

xdatacf Section 6.4.4
“N_DAck—Data Ack
Request/Indication” on
page 51

N_Data Data xdataf Section 6.4.5
“N_Data —Data” on page
52

About NLI 7

TABLE 2–1 NLI Commands and Structures (continued)

NLI
Command X.25 Packet NLI Structure See section

N_DC Clear Confirm xdcnff Section 6.4.6
“N_DC—Clear Confirm”
on page 53

N_DI Clear Request/Indication xdiscf Section 6.4.7
“N_DI—Clear Request/
Indication ” on page
54Section 6.4.13
“N_RI—Reset Request/
Indication” on page 61

N_EAck Expedited Data
Acknowledgment

xedatacf Section 6.4.8
“N_EAck—Expedited
Data Acknowledgement”
on page 56

N_EData Expedited Data xedataf Section 6.4.9
“N_EData —Expedited
Data” on page 57

N_RC Reset Response/Confirm xrscf Section 6.4.12
“N_RC—Reset Response/
Confirm” on page 60

N_RI Reset Request/Indication xrstf Section 6.4.13
“N_RI—Reset Request/
Indication” on page 61

The following commands and structures are also provided. They do not correspond
to X.25 packet types:

8 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 2–2 PVC and Listening Commands and Structures

NLI Command NLI Structure Description See section

N_PVC_ATTACH pvcattf Specify X.25
service to use
with PVC

Section 6.4.10
“N_PVC_ATTACH—PVC
Attach ” on page 58

N_PVC_DETACH pvcdetf Specify X.25
service to stop
using with PVC

Section 6.4.11
“N_PVC_DETACH—PVC
Detach ” on page 59

N_Xcanlis xcanlisf Cancel listening Section 6.4.14
“N_Xcanlis —Listen
Cancel Command/
Response” on page 62

N_Xlisten xlistenf Listen for
incoming calls Section 6.4.15

“N_Xlisten —Listen
Command/Response” on
page 63

2.3 NLI ioctls
Solstice X.25 NLI provides a series of ioctls. These are used to communicate with the
Solstice X.25 code itself, rather than with the network. For example, ioctls are used to
gather statistics about a link, or to set the parameters to be used on a link. This
distinguishes them from the NLI Commands given in Table 2–1. To use them
together, you might use an ioctl to set the parameters to be used on a link and then
use an NLI command to initiate a call over the link. The NLI ioctls can be used for
the following purposes:

� Operating on the Network User Identifiers mapping table

� Reading and resetting statistics

� Getting status information

� Operating on the X.25 Routing Table

� Overriding settings made using x25tool

About NLI 9

2.4 Support Functions
Solstice X.25 also includes a library of Sun-specific support functions that you can
use when writing applications. These are not part of the NLI, but can be used in NLI
applications.

2.5 Support for OSI Connection-Mode
Network Service (OSI CONS)
The Solstice X.25 NLI can support applications which use the OSI Connection-Mode
Network Service, as defined in X.223 and ISO 8878. To be consistent with these
documents, this service is referred to as OSI CONS in this guide. This service
provides the mapping between the OSI CONS primitives and the elements of the
X.25 Packet Layer Protocol.

2.6 Addressing
When making straightforward X.25 calls, you need to work with DTE and LSAP
addresses. When making OSI CONS calls, you use NSAP and LSAP addresses. See
Section 6.3.1 “xaddrf —Define Addressing” on page 37 for more information.

2.7 Facilities and QOS Parameters
The X.25 Recommendations allow service providers to offer a number of optional
facilities, that affect the way that calls are made and handled.

� Non-OSI extended addressing

� X.25 fast select request/indication with no restriction on response

� X.25 fast select request/indication with restriction on response

� X.25 reverse charging

� X.25 packet size negotiation

� X.25 window size negotiation

10 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

� X.25 network user identification

� X.25 Recognized Private Operating Agency selection

� X.25 Closed User Groups

� X.25 programmable facilities

� X.25 call deflection.

The following Quality of Service (QOS) parameters are available when writing OSI
CONS applications:

� Throughput Class

� Minimum Throughput Class

� Target Transit Delay

� Maximum Acceptable Transit Delay

� Use of Expedited Data

� Protection

� Priority

� Receipt Acknowledgment

2.8 Operating System Support
Solstice X.25 9.2 will run on Solaris 7 or Solaris 8. It is not compatible with earlier
versions of the Solaris operating system.

About NLI 11

12 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 3

Making and Receiving Calls

This chapter contains examples of how to make and receive calls. All of the examples
involve the application opening a stream to the X.25 PLP Driver. Once the stream has
been opened, it can be used for initiating, listening for, or accepting a connection.
There is a one-to-one mapping between X.25 virtual circuits and PLP driver streams.
Once a connection has been established on a stream, the stream cannot be used other
than for passing data and protocol messages for that connection.

Sample code for making OSI CONS calls, dealing with Expedited Data and Resets
and receiving a remote disconnect is given at the end of this section.

Note - There are copies of the code samples referred to in this chapter in the
/opt/SUNWconn/x25/samples.nli directory.

3.1 Making a Single Call
This section shows the process for making a single, straightforward call. The call
being made is a standard X.25 call. It does not have to deal with Expedited Data or
Resets. The disconnect is initiated locally. The steps for making a standard X.25 call
are:

1. Open a stream on the /dev/x25 device:

if ((x25_fd = open("/dev/x25", O_RDWR)) < 0) {
perror("Opening Stream");
exit(1);
}

2. Open a connection to the open stream.

13

1. Allocate a Connect Request structure.

2. Supply any quality of service and facilities parameters that are required.

3. Set the called (and optionally calling) addresses.

4. Pass the Connect Request down to the X.25 Driver.

5. Wait for the connect confirmation or rejection

#define FALSE 0
#define TRUE 1
#define CUDFLEN 4
#define DBUFSIZ 128
#include <memory.h>
#include <netx25/x25_proto.h>
struct xaddrf called = { 0, 0, { 14, { 0x23, 0x42, 0x31,
0x56, 0x56, 0x56, 0x56 }}, 0 };

/* no flags
* DTE = "23423156565656", null NSAP
*/

struct xcallf conreq;
struct strbuf ctlblk, datblk;
struct xdataf data;

main ()
{

.
/* Convert link to internal format */
called.link_id = 0;
conreq.xl_type = XL_CTL;
conreq.xl_command = N_CI;
conreq.CONS_call = FALSE;
/* This is not a CONS call */
conreq.negotiate_qos = FALSE;
/* Just use default */
memset(&conreq.qos, 0, sizeof(struct qosformat));
memcpy(&conreq.calledaddr, &called, sizeof(struct xaddrf));
memset(&conreq.callingaddr, 0, sizeof(struct xaddrf));

}

In the example, the entire QOS field is zeroed, allowing for future additions to
the structure. Setting the calling address to null, as shown, leaves the network
to fill in this value. For more information on QOS and Facilities, see Section 2.7
“Facilities and QOS Parameters” on page 10.

3. Send the message on the stream using the putmsg system call, passing any call
user data in the data part of the message:

char cudf[CUDFLEN] = { 1, 0, 0, 0 };
ctlblk.len = sizeof(struct xcallf);
ctlblk.buf = (char *) &conreq;
datblk.len = CUDFLEN;
datblk.buf = cudf;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

perror("Call putmsg");
exit(1);
}

14 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

4. Transfer the data.

In the data transfer phase, access is given to:

� the Q-bit, to support X.29-like services

� the M-bit, to signal packet fragmentation

� the D-bit, to request confirmation of data delivery

� Expedited data, to support X.29 and OSI CONS.

Normal and Q-bit data is sent and received using the N_Data message and
may be acknowledged using the N_DAck message. Expedited data uses the
N_EData message, and is acknowledged using an N_EAck message.

Once a connection has been successfully opened on a stream, sending a data
packet is straightforward:

char datbuf[DBUFSIZ];
/* Copy data into datbuf[] here*/
data.xl_type = XL_DAT;
data.xl_command = N_Data;
data.More = data.setQbit = data.setDbit = FALSE;
ctlblk.len = sizeof(struct xdataf);
ctlblk.buf = (char *) &data;
datblk.len = DBUFSIZ;
datblk.buf = datbuf;
retval = putmsg(x25_fd, &ctlblk, &datblk, 0);

Normally, the call to putmsg blocks if there are flow control conditions in the
connection which lead to either a full queue at the stream head, or a lack of
streams resources. To avoid blocking due to a full queue, open the stream with
the option O_NDELAYflagged. In this case, putmsg returns immediately, and
the failure is signalled by a return value (retval) of EAGAIN.

This procedure allows the application to carry out other processing (for
example, receiving data) before trying again. The best method to use depends
on the nature of the application.

5. Close the connection.

In this example, closure is initiated locally. The application sends a Disconnect
Request (N_DI) message on the stream. Unless this is being used to reject an
incoming call the X.25 driver signals that it has observed the message. It does this
by sending a Disconnect Confirm upstream when it receives the Clear Confirm. In
this way, the upper components can be certain that no messages will follow the
Disconnect.

In the case of rejection, the connection identifier supplied on the Connect
Indication must be returned in the disconnect message. The disconnect (reject) is
not acknowledged in this case.

As in the case of a remote disconnection, once the response has been received the
stream becomes idle, and remains in this state until the application sends out
another control message. This may be to close the stream, or to initiate a new
Listen or Connect request on it. The application should, however, not send any of
these messages until it receives the Disconnect Response.

Making and Receiving Calls 15

As described in Section 6.4.7 “N_DI—Clear Request/Indication ” on page 54, a
disconnect collision may occur. If this happens, no Clear Confirm is sent.

/* Coded and sent disconnect request, process response */
struct xdiscf *dis_ind;
struct xdcnff *dis_cnf;
struct extraformat *xqos = (struct extraformat *)0;
if (hdrptr->xl_type == XL_CTL) {

switch(hdrptr->xl_command) {
/* Disconnect Collision */

case N_DI:
dis_ind = (struct xdiscf*)hdrptr;
xqos = &dis_ind->indicatedqos.xtras;
break;

/* Disconnect Confirmation */
case N_DC:

dis_cnf = (struct xdcnff*)hdrptr;
xqos = &dis_cnf->indicatedqos.xtras;
break;

default:
return;

}
if (xqos) {

/*
* Print any charging information returned
*/
if (xqos->chg_cd_len) {

/* Print out Call Duration from chg_cd_field */
}

if (xqos->chg_mu_len) {
/* Print out Monetary Unit from chg_mu_field */

}
if (xqos->chg_sc_len) {

/* Print out Segment Count from chg_sc_field */
}

} /* end if (xqos) */
} /* end if (hdrptr->xl_type==XL_CTL) */

3.2 Receiving Data
In the same way as sending data, data reception is straightforward. When data is
received with the D-bit set, action may be required by the application. When the
initial Call Request is sent, it may request that data confirmation be at the
application-to-application level. If application-to-application confirmation is agreed
upon, then on receiving a packet with the D-bit set, an application must send a Data
Acknowledgment (N_DAck) message.

This example prints out incoming data as a string, if the Q-bit is not set:

16 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

S_X25_HDR *hdrptr;
struct xdataf *dat_msg;
struct xdatacf *dack;
for(;;) {

if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror(‘‘Getmsg fail’’);
exit(1);
}

hdrptr = (S_X25_HDR *) ctlbuf;
if (hdrptr->xl_type == XL_CTL) {
/* Deal with protocol message as required -

* see below
*/
}

if (hdrptr->xl_type == XL_DAT) {
dat_msg = (struct xdataf *) ctlbuf;
switch (dat_msg->xl_command) {

case N_Data:
if (dat_msg->More)

printf(‘‘M-bit set \n’’);
if (dat_msg->setQbit)

printf(‘‘Q-bit set \n’’);
else {

if (dat_msg->setDbit)
printf(‘‘D-bit set \n’’);

for (i = 1;i<datblk.len; i++)
printf(‘‘%c’’, datbuf[i]);

/*
* If application to application
* Dbit confirmation was negotiated
* at call setup time,
* send an N_DAck
*/

if (app_to_app && dat_msg->setDbit) {
dack = (struct xdatacf *)malloc(sizeof(struct xdatacf));
memset((char *)dack 0, sizeof(struct xdatacf));
dack- >xl_command = N_DAck;
dack->xl_type = XL_DAT;
ctlblk->len = sizeof(struct xdatacf);
ctlblk->buf = (char *)dack;
datblk->len = 0;
datblk->buf = (char *)0;
putmsg(x25_fd, &ctlblk, &datblk, &getflags);
}

} /* end else */
break;

case N_EData:
printf(‘‘***Expedited data received \n’’);

/* Must deal with it */
break;

case N_DAck:
printf(‘‘***Data Acknowledgment received \n’’);
break;

default:
break;

} /* end switch */
} /* end if */

} /* end for */

Making and Receiving Calls 17

3.3 Additional Call Information
The example in Section 3.1 “Making a Single Call” on page 13, is of a relatively
straightforward call. Procedures for making a call using OSI CONS, for receiving
expedited data, for dealing with resets and for receiving remotely initiated
disconnects are given in the following sections. These can be integrated into the
example above, as required.

3.3.1 Opening connections for OSI CONS Calls
The following example opens a connection for an OSI CONS call:

#define FALSE 0
#define TRUE 1
#define CUDFLEN 4
#define EXPLEN 4
#include <memory.h>
#include <netx25/x25_proto.h>
struct xaddrf called = { 0, 0, {14, { 0x23, 0x42, 0x31, 0x56,
0x56, 0x56, 0x56 }}, 0};
/* Subnetwork "A" (filled in later), no flags,

* DTE = "23423156565656", null NSAP */
struct xcallf conreq;
struct strbuf, ctlblk, datblk;
struct xedataf exp;

main ()
{

.

.

.
called.link_id = 0;
/*

* snidtox25 only fails if a
* NULL string is passed to it
*/

conreq.xl_type = XL_CTL;
conreq.xl_command = N_CI;
conreq.CONS_call = TRUE;
/* This is a CONS call */
conreq.negotiate_qos = TRUE;
/* Negotiate requested */
memset(&conreq.qos, 0, sizeof (struct qosformat));
conreq.qos.reqexpedited = TRUE; /* Expedited requested */
conreq.qos.xtras.locpacket = 8; /* 256 bytes */
conreq.qos.xtras.rempacket = 8; /* 256 bytes */
memcpy(&conreq.calledaddr, &called, sizeof(struct xaddrf));
memset(&conreq.callingaddr, 0, sizeof(struct xaddrf));

18 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

.

.

.
}

Note - When negotiate_qos is true (non-zero), setting the QOSfields to zero
means that the connection uses defaults for QOS and Facilities. If required, these can
be set to different values but it is recommended that the entire QOS structure be
zeroed first as shown. This is preferable to setting each field individually, as it allows
for any future additions to this structure. Setting the calling address to null leaves
the network to fill this value in.

The message is sent on the stream using the putmsg system call, with any call user
data being passed in the data part of the message:

char cudf[CUDFLEN] = { 1, 0, 0, 0 };
ctlblk.len = sizeof(struct xcallf);
ctlblk.buf = (char *) &conreq;
datblk.len = CUDFLEN;
datblk.buf = cudf;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

perror("Call putmsg");
exit(1);
}

At this stage, the application should wait for a response to the Call Request. The
response may be either a Connect Confirmation or a Disconnect (rejection) message.

3.3.2 Receiving Expedited Data
The preceding example allows for the possibility of receiving expedited data
messages, which are carried in X.25 interrupt packets. These must be dealt with
appropriately. Since only one expedited data packet can be outstanding in the
connection at any time, its sender is prevented from sending any further such
messages until the receiver has acknowledged it. The receiver does this by sending
an Expedited Acknowledgment (EAck) message. The EAck is sent in the same way
as an ordinary data packet, but with no data part.

If an application does not need to use the expedited data capability, then it responds
to receiving an EData by resetting or closing the connection.

When sending expedited data, the application must wait for an acknowledgment
before requesting further expedited transmissions.

char expdata[]= {1, 2, 3, 4};
exp.xl_type= XL_CTL;
exp.xl_command= N_Edata;
ctlblk.len= sizeof (struct xedataf);
ctlblk.buf= (char *) &exp;
datblk.len= EXPLEN;

Making and Receiving Calls 19

datblk.buf= expdata;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

error("Exp putmsg");
exit(1);
}

for (;;) {
if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror("Getmsg fail");
exit(1);
}

hdrptr = (S_X25_HDR *) ctlbuf;
if (hdrptr->xl_type == XL_CTL) {
/* Deal with protocol message as required */

}
if (hdrptr->xl_type == XL_DAT) {

dat_msg = (struct xdataf *) ctlbuf;
switch (dat_msg->xl_command) {

case N_Data:
/* process more data */

break;
case N_EData:

printf("***Expedited data received \n");
/* Must deal with */
.... send N_EAck

break;
case N_EAck: /* Expedited data received */

/* Further N_Edata can now be sent */
break;

default:
break;

}
}

3.3.3 Dealing with Resets and Interrupts
Resets and Interrupts are dealt with in a similar way, except that there is no data
passed with a Reset Request. When a Reset Request or Interrupt is issued, the
application must wait for the acknowledgment, as for an expedited request.
However, until this is received, the only action that can be taken is to issue a
Disconnect Request.

The diagnostic field in a Reset Request or Interrupt contains the reason for issuing
the reset. Standard values for this are defined in the include file
<netx25/x25_proto.h> , although the application can set any value. See Chapter 9
for more details.

When a Reset Indication is received, there are only two valid actions that may be
taken:

� send a Reset Confirmation message to acknowledge the reset

� send a Disconnect Request

In either case, pending data is flushed from the queue.

Reset Indications can be dealt with as part of the general processing of incoming
messages, as shown in the following disconnect handling example.

20 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

#include<netx25/x25_proto.h>
struct xrstf rst;
S_X25_HDR *hdrptr;
rst.xl_type= XL_CTL;
rst.xl_command= N_RI;
rst.cause= 0;
rst.diag= NU_RESYNC;
ctlblk.len= sizeof (struct rstf);
ctlblk.buf= (char *) &rst;
if (putmsg(x25_fd, &ctlblk, 0, 0) < 0) {

perror(" putnmsg");
exit(1);
}
for (;;) {

if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror("Getmsg fail");
exit(1);
}

hdrptr = (S_X25_HDR *) ctlbuf;
if (hdrptr->xl_type == XL_CTL) {

continue;
}

switch (hdrptr->xl_command) {
case N_RC: /* Reset complete */

/* Enter data transfer */
break;

default:
break;

} /* end switch */
} /* end for */

Control messages, like resets and interrupts, take higher priority than normal data
messages, both internally in the PLP driver, and across the network.

3.3.3.1 Receiving a Remote Disconnect
If the remote end initiates a Disconnect, then a Disconnect Indication (N_DI) message
(or possibly an N_Abort message, see Section 6.4.1 “N_Abort —Abort Indication” on
page 48) is received at the NLI. The application need not acknowledge this message
since, after sending a Disconnect, the X.25 driver silently discards all messages
received except for connect and accept messages. These are the only meaningful X.25
messages on the stream after disconnection.

The receiver of a Disconnect Indication should ensure that enough room is available
in the getmsg call to receive all parameters and, when present, up to 128 bytes of
Clear User Data. Handling such a Disconnect event would normally be part of the
general processing of incoming messages.

The following example could be combined with the code from the data transfer
example in the previous section.

struct xdiscf *dis_msg;
if (hdrptr->xl_type == XL_CTL) {

switch (hdrptr->xl_command) {
/* Other events/indications dealt with

Making and Receiving Calls 21

* here - e.g. Reset Indication (N_RI)
*/
case N_DI:

dis_msg = (struct xdiscf *) hdrptr;
printf("Remote disconnect, cause = %x, diagnostic = %x \n",
dis_msg->cause, dis_msg->diag);

/* Any other processing needed here -
* e.g. change connection state
*/

return;
case N_Abort:

printf("***Connection Aborted \n"); /* etc. */
return;

default:
break;

}
}

Note - It is guaranteed that no X.25 interface messages are sent to the application once
a disconnect message has been passed up to it, wherever the message came from.

Although at this stage the stream is idle, it is in an open state and remains so until
some user action. This could be to close the stream, or to initiate a new Listen or
Connect request on it.

22 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 4

Listening for Calls

This chapter contains examples of how to listen for single or multiple incoming calls
and then accept or reject the call.

Note - There are copies of the code samples referred to in this chapter in the
/opt/SUNWconn/x25/samples.nli directory.

4.1 Listening for a Single Call
The steps for listening for a single incoming call are:

1. Send an N_Xlisten message to the X.25 driver.

This should carry the called address list in which the application is interested.

2. Wait for the response to the Listen Request.

The l_result flag will indicate success or failure. If the l_result flag indicates
failure, the application can decide either to close the stream or to try again later.

3. Wait for Connect Indication messages from the X.25 driver.

4. Decide whether to accept on this or a different stream.

5. Negotiate facilities and QOS, if required.

A Connect Confirmation message carrying the appropriate connection identifier is
then passed down on the stream on which the connection is being accepted.

6. Construct the listen message.

23

The listen message has two parts. Construct the control part of the message like
this:

struct xlistenf lisreq;
lisreq.xl_type = XL_CTL;
lisreq.xl_command = N_XListen;
lisreq.lmax = 1;

In this example, lmax has the value of 1, indicating that only one Connect
Indication is to be handled at a time.

The data part of the message contains the sequence of bytes that specify the Call
User Data string and address(es) which are to be listened for. The simplest case
for this would be to set “Don’t Care” values for both the CUD and address:

int lislen;
char lisbuf[MAXLIS];
lisbuf[0] = X25_DONTCARE; /* l_cumode*/
lisbuf[1] = X25_DONTCARE; /* l_mode*/
lislen = 2;

Alternatively, to set the CUD to match exactly the (X.29) value defined in the
array cudf[] (0x01000000), and the NSAP to match any sequence starting 0x80 ,
0x00 , the following would be used:

lislen = 0;
lisbuf[lislen++] = X25_IDENTITY; /* l_cumode */
lisbuf[lislen++] = CUDFLEN; /* l_culength */
memcpy(&(lisbuf[lislen]), cudf, CUDFLEN); /* l_cubytes */
lislen += CUDFLEN;
lisbuf[lislen++] = X25_STARTSWITH; /* l_mode */
lisbuf[lislen++] = X25_NSAP; /* l_type */
lisbuf[lislen++] = 4; /* l_length */
lisbuf[lislen++] = 0x80; /* l_add */
lisbuf[lislen++] = 0x00;

Or, to accept any CUD Field, with a DTE of 2342315656565:

#define MY_DTE_LEN 13
#define MY_DTE_OCTETS 7
char my_dte[MY_DTE_OCTETS] = {0x23,0x42,0x31,0x56,0x56,0x56,0x50};
lislen = 0;
lisbuf[lislen++] = X25_DONTCARE; /* l_cumode */
lisbuf[lislen++] = X25_IDENTITY; /* l_mode */
lisbuf[lislen++] = X25_DTE; /* l_type */
lisbuf[lislen++] = MY_DTE_LEN; /* l_length */
memcpy(&(lisbuf[lislen]), my_dte, MY_DTE_OCTETS); /* l_add */
lislen += MY_DTE_OCTETS;

Note - The l_add field uses packed hexadecimal digits and the l_length value
is actually the number of semi-octets, whereas the l_culength field specifies the
length of the l_cubytes field in octets.

24 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

7. Send the Listen Request down the open stream:

ctlblk.len = sizeof(struct xlistenf);
ctlblk.buf = (char *) &lisreq;
datblk.len = lislen;
datblk.buf = lisbuf;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

perror("Listen putmsg failure");
return -1;
}

8. Wait for the listen response; the result flag indicates success or failure:

#define DBUFSIZ 128
#define CBUFSIZ MAX(sizeof(struct xccnff), sizeof(struct xdiscf))
struct xlistenf *lis_msg;
ctlblk.maxlen = CBUFSIZ; /* See 4.1 above for declarations */
ctlblk.buf = ctlbuf;
datblk.maxlen = DBUFSIZ;
datblk.buf = datbuf;
for(;;) {

if (getmsg (x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror("Listen getmsg failure");
return -1;
}

lis_msg = (struct xlistenf *) ctlbuf;
if ((lis_msg->xl_type == XL_CTL) && (lis_msg->xl_command == N_XListen))

if (lis_msg->l_result != 0) {
printf("Listen command failed \n");
return -1;
}

else {
printf("Listen command succeeded \n");
return 0;
}

}

Cancelling a Listen Request is done in the same way, except that no data is
passed with the request. It cancels all successful Listens that have been made on
that stream.

9. Once the listening application has received a Listen Response indicating
success, it should wait for incoming Connect Indications.

When an N_CI message arrives, the application should inspect its parameters—
address, call user data, facilities, quality of service, and so on—then decide
whether to accept or reject the connection.

A listening application can accept a call either on the stream the indication
arrived on, or on some other stream. This other stream can be one which is
already open and free, or the application can open it.

Whatever method is used for the accept, the identifier conn_id in the Connect
Indication message must be copied into the accept message for matching by the
X.25 driver. If this identifier in the accept message does not match, a Disconnect is

Listening for Calls 25

sent to the accepting application. This causes the resource to hang on the stream
on which the incoming call was sent, since the connection is never accepted.

A listening application can reject the call by sending a N_DI message down the
stream on which the Connect Indication arrived. A Connect Indication cannot be
rejected on a different stream. The connection identifier must be quoted in the
message for matching, since there may be several Connect Indications passed to
the listening application. If there is no match for the rejection, the message is
silently discarded.

The rejecting listener can request one of two actions in response to the disconnect:

� Request immediate disconnect. The application sets the reason field to
NU_PERMANENT(0xF5).

� Search for further matching listeners. The application set the reason field to any
value except 0xF5.

The following code example shows how to reject an incoming call:

struct xcallf *conind;
struct xdiscf disc_msg;
/* Use getmsg to receive the Connect Indication

* use conind to point to it
*/

disc_msg.xl_type = XL_CTL;
disc_msg.xl_command = N_DI;
disc_msg.conind = conind->conind;
disc_msg.cause = cause; /* cause to be returned */
disc_msg.diag = diag; /* diagnostic to be returned */
if (disc_immed) /* no more searches */

disc_msg.reason = NU_PERMANENT; /* 0xF5 */
/* Send Rejection down stream with putmsg */

Note - The application must not accept a connection on a listening stream that
is capable of handling more than one Connect Indication at one time if there
could subsequently be other Connect Indications to be handled on that stream.
For example, the application issues a Listen Request to handle three Connect
Indications at one time. A Connect Indication is received and sent to the
application on the listen stream. The application must not accept this
connection on the listen stream because there could be two more Connect
Indications that can be sent subsequently.

10. Negotiate any facilities or OSI CONS QOS parameters required.

To do this, set the negotiate_qos flag in the Connect Response message. The
values received should then be copied into the response, and those facilities and/
or parameters (and any related flags) for which a different value is desired should
then be altered (see Section 2.7 “Facilities and QOS Parameters” on page 10).
Copy the entire QOS structure from the indication to the response. This allows for
future additions to this structure.

26 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

An example of negotiation is shown below. Here all the values are copied as
indicated, except the packet size, which is negotiated down to 256 if it is flagged
as negotiable, and is greater than 256:

struct xcallf *conind;
struct xccnff conresp;
/* Do a getmsg etc to receive the Connect Indication,

* assign conind to point to it.
*/

conresp.xl_type = XL_CTL;
conresp.xl_command = N_CC;
conresp.conn_id = conind->conn_id; /* Connection identifier */
conresp.CONS_call = TRUE /* This is a CONS call */
memset(&conresp.responder, 0, sizeof(struct xaddrf));
/* Let network fill in responding addr */
conresp.negotiate_qos = TRUE;
memcpy (&conresp.rqos, &conind->qos, sizeof (struct qosformat));
if (conind->qos.xtras.pwoptions & NEGOT_PKT) {

if (conind->qos.xtras.rempacket > 8)
conresp.rqos.xtras.rempacket = 8;

if (conind->qos.xtras.locpacket > 8)
conresp.rqos.xtras.locpacket = 8;

}
/* Set any other values to be negotiated here,

* then send the response down with a putmsg.
*/

Alternatively, the application may decide to accept (agree with) the indicated
values, in which case the negotiate_qos flag is set to zero.

If a connection is never established on a listening stream (using a matching
accept) then that stream remains listening on the address list supplied. On the
other hand, once an established connection has been disconnected, the stream
does not return to a listening state. Instead, it remains open in an idle state. If the
application needs to listen again, then the listen message must be re-sent.
Rejection does not alter the listening state of the stream.

4.2 Listening for Multiple Incoming Calls
Sample code for a listener that can handle several incoming PAD calls simultaneously
is provided in the file /opt/SUNWconn/x25/samples.nli/listen.c . Listeners
to handle other types of incoming calls are similar. The steps are:

1. Define the values you need.

Specify the maximum number of simultaneous calls you want to allow. Set the
maximum number of simultaneous calls depending on the processor power
available to you and the number of calls you expect to need to handle.

Listening for Calls 27

2. Open the X.25 device.

The open_stream() function does this. It requests notification from the kernel
when there is incoming data on the stream.

3. Listen for incoming data.

The do_listen() function specifies the information used to decide what to do
with an incoming call. The example shows two ways of doing this, one simple,
the other more complex. In the simple example, the program listens for any call
user data beginning with the four BCD digits 1234 .

4. Wait for incoming calls.

To do this, call the getmsg() function. If an incoming call arrives that matches
the criteria that you specified in step 1, the X25 driver will send an N_CI
indication. At this point, you could choose to do some more sophisticated
checking. The example program includes a function called try_next() that tells
the X.25 driver to see if the connect message is destined for another application,
and a function called reject_call() that tells the X.25 driver to reject the call.

5. Accept the incoming call.

Assuming the call is valid, the accept_call() function is used to accept it.
Note that when accepting incoming data, the application must copy the call
indication identifier into the connect confirm sent to the kernel.

6. Handle the incoming call as appropriate.

The sample code contains an example of a call that is handled by printing a
message and closing the device (which closes the connection).

7. Exit the program when finished.

28 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 5

Getting Statistics

This chapter contains an example of a program for gathering statistics. By using the
ioctls described in Chapter 7, you can write programs that specify more precisely
what kind of statistics you want to gather and whether they should apply to a
particular link or virtual circuit.

5.1 Sample Program
Note - There is a copy of this code sample in the
/opt/SUNWconn/x25/samples.stats directory.

The steps for writing this kind of program are:

1. Include the streams and X.25 header files.

2. Specify the location of the X.25 devices file descriptor.

3. Define a structure for containing the statistics.

In the example these are per-link X.25 statistics.

4. Open the X.25 driver.

5. Define the fields required by the ioctl(s) you are using.

In the example, this is N_getlinkstats , which retrieves per link X.25 statistics.

6. Specify where you want to gather statistics from.

For example, N_getlinkstats requires you to give a link number.

29

7. Gather the statistics.

How you do this depends on which ioctls you are using.

8. Display, or otherwise make use of, the statistics that have been gathered.

/**
* Copyright 20 Apr 1995 Sun Microsystems, Inc. All Rights Reserved
*
* This example shows how to open X25 driver,
* get X25 per_link statistics,
* and display (as an example) the number of transmit and
* received CALL packets.
*
* Many more information are available for X25 through this ioctl.
* Many other ioctls permit to get :
* - Global stats for : IXE, X25 packet layer protocol, LAPB, LLC2, and MLP
* - Per-link stats for : X25, LAPB, LLC2 and MLP
* - Per-VC stats
* Some other ioctls permit to reset those statistics.
*
**/

/*
* General includes for streams
*/

#include <fcntl.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/stropts.h>
#include <sys/stream.h>

/*
* the following includes are specific to X25
*/

#include <netx25/uint.h>
#include <netx25/x25_proto.h>
#include <netx25/x25_control.h>

/*
* location of x25 device file descriptor
*/

#define X25_DEV ‘‘/dev/x25’’

/* used to open X25 device */
int x25_fd;

/*
* io control structure used for all stream ioctl
* see STREAM programmer’s guide for more information about this structure.
*/

struct strioctl ioc;

/*
* this structure to be used to collect X25 per-link stats
*/

struct perlinkstats x25_s;

30 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

main()
{

/*
* open x25 driver
*/

x25_fd = open(X25_DEV, O_RDONLY);
if (x25_fd == -1)

{
perror(‘‘Failed to access X25 driver.\n’’);
exit(1);

}

/*
* set the general info for ioctl
*/

ioc.ic_cmd = N_getlinkstats;
ioc.ic_len = sizeof(x25_s);
ioc.ic_dp = (char *) &x25_s;

/*
* Set the link id.
* Specify the link number where to gather statistics.
* (2 in that particular case)
*/

x25_s.linkid = 2;

/*
* perform the STREAMS ioctl
*/

if (ioctl(x25_fd, I_STR, &ioc) < 0)
{
perror(‘‘Failed to gather X25 per-link statistics’’);
exit(2);

}

/*
* display some statistics
*/

printf(‘‘X25 statistics for link number 2\n’’);
printf(‘‘Number of CALL transmitted %10ld\n’’,

x25_s.mon_array[cll_out_s]);
printf(‘‘Number of CALL received %10ld \n’’,

x25_s.mon_array[cll_in_s]);
}

Getting Statistics 31

32 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 6

NLI Commands and Structures

Solstice X.25 NLI provides a set of NLI commands. These are contained within C
structures, which determine the format of the control parts of putmsg and getmsg .
The NLI commands correspond to X.25 packet types. NLI commands are used to
communicate with the network. For example, when an application passes down the
NLI command N_CI to a stream using putmsg , this is translated into an X.25 Call
Request by the PLP module. When the PLP module receives a Connect Indication, it
translates it into an N_CI message which is passed up to the application using a
getmsg system call.

The header files used by the NLI commands and structures are contained in the
/usr/include/netx25 directory.

6.1 Commands and Structures Tables
Table 6–1 summarizes the NLI commands and their corresponding Packet Types and
C structures:

TABLE 6–1 NLI Commands and Structures

NLI Command X.25 Packet NLI Structure

N_Abort Abort Indication xabortf

N_CC Call Response/ Confirmation xccnff

N_CI Call Request/ Indication xcallf

33

TABLE 6–1 NLI Commands and Structures (continued)

NLI Command X.25 Packet NLI Structure

N_DAck Data Acknowledgment Request/Indication xdatacf

N_Data Data xdataf

N_DC Clear Confirm xdcnff

N_DI Clear Request/Indication xdiscf

N_EAck Expedited Data Acknowledgement xedatacf

N_EData Expedited Data xedataf

N_RC Reset Response/Confirm xrscf

N_RI Reset Request/Indication xrstf

These commands and structures in do not correspond to X.25 packet types:

TABLE 6–2 PVC and Listening Commands and Structures

NLI Command NLI Structure Description

N_PVC_ATTACH pvcattf Specify X.25 service to use with PVC

N_PVC_DETACH pvcdetf Specify X.25 service to stop using with PVC

N_Xcanlis xcanlisf Cancel listening

N_Xlisten xlistenf Listen for incoming calls

All of the structures listed in Table 6–1 and Table 6–2 are defined in the
x25_primitives C union.

In addition to the structures that have a one-to-one mapping with NLI commands,
Solstice X.25 provides a number of structures that are used by several of the
commands. These are related to addressing and facilities, and are listed in Table 6–3:

34 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–3 Generic Structures

structure function

xaddrf contains addressing information

lsapformat defines the LSAP

extraformat defines optional X.25 facilities

qosformat defines OSI CONS Quality of Service (QOS) parameters

6.2 x25_primitives C Union
The Solstice X.25 software provides a series of data structures that determine the
control part of messages passed across the NLI. The format of the control part of
messages passed across the NLI is defined by structures in the following C union.

union X25_primitives {
struct xcallf xcall; /* Connect Request/Indication */
struct xccnff xccnf; /* Connect Confirm/Response */
struct xdataf xdata; /* Normal, Q-bit, or D-bit data */
struct xdatacf xdatac; /* Data ack */
struct xedataf xedata; /* Expedited data */
struct xedatacf xedatac; /* Expedited data ack */
struct xrstf xrst; /* Reset Request/Indication */
struct xrscf xrscf; /* Reset Confirm/Response */
struct xdiscf xdisc; /* Disconnect Request/Indication */
struct xdcnff xdcnf; /* Disconnect Confirm */
struct xabortf abort; /* Abort Indication */
struct xlistenf xlisten; /* Listen Command/Response */
struct xcanlisf xcanlis; /* Cancel Command/Response */
struct pvcattf pvcatt; /* PVC Attach */
struct pvcdetf pvcdet; /* PVC Detach */

};

All structures begin with the same members, as shown below:

typedef struct xhdrf {
unsigned char xl_type; /* XL_CTL/XL_DAT */
unsigned char xl_command; /* Command */

} S_X25_HDR;

Messages to and from applications are classified as control messages or data
messages. xl_type indicates whether a message is control or data using the values
XL_CTL for control and XL_DAT for data. Within each classification, the message

NLI Commands and Structures 35

identity is indicated by the xl_command qualifier. The combination of xl_type and
xl_command must be consistent.

When sending an NLI command to the x25 driver using putmsg , the size of the
data structure is determined by the command, and clearly is known in advance. The
.len member of the control buffer is used to hold this value, and the.maxlen
member is not used.

When reading a message with the getmsg call, the type of message cannot be
known before it is received, so a buffer large enough to hold any message should be
supplied. Put the size of this buffer in the.maxlen member of the control buffer
structure. The actual size of the message received will be placed in the.len member
on return from the getmsg call. To ensure that the buffer will be large enough,
declare it as being of type union X25_primitives .

Code Example 6–1 shows how a getmsg can be constructed.

CODE EXAMPLE 6–1 Constructing a getmsg

#include <stream.h>
#include <netx25/dx25_proto.h>

struct strbuf ctlb;
struct strbuf datab;

union X25_primitives buffer;
char data_buf[DATALEN];

.

.

.

ctlb.maxlen = sizeof (union X25_primitives);
ctlb.buf = (char *)buffer;

flag = MSG_ANY;
datab.maxlen = DATALEN;
datab.buf = data_buf;

getmsg (x25_fd, &ctlb, &datab, flag);

switch ((S_X25_HDR *)&buffer->xl_type) {
case N_Abort:

/* treat ’buffer’ as an Abort message
* datab.len should be 0
*/

break;

case N_CI:
/* Treat ’buffer’ as a Connect Indication

* data_buf[] contains Call User Data
* datab.len equals length of Call User Data
*/

break;

.

36 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

.

.

};

6.3 Generic Structures
The structures described in this section define addressing, facilities and QOS and are
used by a number of the commands described in Section 6.4 “NLI Commands” on
page 47.

6.3.1 xaddrf —Define Addressing
Addressing is defined by the xaddrf structure:

CODE EXAMPLE 6–2 xaddrf Structure

#define NSAPMAXSIZE 20

struct xaddrf {
uint32_t link_id;
unsigned char aflags;
struct lsapformat DTE_MAC;
unsigned char nsap_len;
unsigned char NSAP[NSAPMAXSIZE];

}

The members in the xaddrf structure are:

NLI Commands and Structures 37

TABLE 6–4 Members of xaddrf Structure

Member Description

link_id Holds the link number as an uint32_t. By default, link_id has a value of
0xFF . When link_id is 0xFF , Solstice X.25 attempts to match the called
address with an entry in a routing configuration file. If it cannot find a
match, it routes the call over the lowest numbered WAN link.

aflags Specifies the options required or used by the subnetwork to encode and
interpret addresses. Takes one of these values:

NSAP_ADDR 0x00NSAP field contains OSI-encoded NSAP address

EXT_ADDR 0x01NSAP field contains non-OSI-encoded extended address

PVC_LCI 0x02 NSAP field contains a PVC number.

DTE_MAC The DTE address, or LSAP as two BCD digits per byte, right justified, or the
PVC_LCI as three BCD digits with two digits per byte, right justified.

nsap_len The length in semi-octets of the NSAP as two BCD digits per byte, right
justified.

NSAP The NSAP or address extension (see aflags) as two BCD digits per byte,
right justified.

6.3.2 lsapformat —Define an LSAP
The LSAP is defined by the lsapformat structure:

CODE EXAMPLE 6–3 lsapformat Structure

#define LSAPMAXSIZE 9

struct lsapformat {
uint8 lsap_len;
uint8 lsap_add[LSAPMAXSIZE];

};

The members of the lsapformat structure are:

38 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–5 Members of lsapformat Structure

Member Description

lsap_len The length of the DTE address or LSAP as two BCD digits per byte, right
justified. An LSAP is always 14 digits long. A DTE address can be up to 15
decimal digits unless X.25 (88) and TOA/NPI addressing is used, in which
case it can be up to 17 decimal digits. A PVC_LCI is 3 digits long.

lsap_add The DTE address, LSAP or PVC_LCI as two BCD digits per byte, right
justified.

6.3.3 extraformat —Define Standard X.25 Facilities
Standard X.25 facilities are defined by the extraformat structure:

CODE EXAMPLE 6–4 extraformat Structure

#define MAX_NUI_LEN 64
#define MAX_RPOA_LEN 8
#define MAX_CUG_LEN 2
#define MAX_FAC_LEN 109
#define MAX_TARIFFS 4
#define MAX_CD_LEN MAX_TARIFFS * 4
#define MAX_SC_LEN MAX_TARIFFS * 8
#define MAX_MU_LEN 16

struct extraformat {
/* extraformat structure */

unsigned char fastselreq;
unsigned char restrictresponse;
unsigned char reversecharges
unsigned char pwoptions;
unsigned char locpacket, rempacket;
unsigned char locwsize , remwsize;
int nsdulimit;
unsigned char nui_len;
unsigned char nui_field[MAX_NUI_LEN];
unsigned char rpoa_len;
unsigned char rpoa_field[MAX_RPOA_LEN];
unsigned char cug_type;
unsigned char cug_field[MAX_CUG_LEN];
unsigned char reqcharging;
unsigned char chg_cd_len;
unsigned char chg_cd_field[MAX_CD_LEN];
unsigned char chg_sc_len;
unsigned char chg_sc_field[MAX_SC_LEN];
unsigned char chg_mu_len;
unsigned char chg_mu_field[MAX_MU_LEN];
unsigned char called_add_mod;
unsigned char call_redirect;

NLI Commands and Structures 39

struct lsapformat called;
unsigned char call_deflect;
unsigned char x_fac_len;
unsigned char cg_fac_len;
unsigned char cd_fac_len;
unsigned char fac_field[MAX_FAC_LEN];

};

The members of this structure are defined as follows:

TABLE 6–6 Members of extraformat Structure

Member Description

fastselreq Applies only to non-OSI applications, for example X.29. A
non-zero value means the X.25 facility fast select is to be
requested or indicated.

restrictresponsee Sets response to be a Clear Request.

reversecharges A non-zero value means that reverse charging is requested or
indicated for this connection

pwoptions Indicates per virtual-circuit options. The field is a bit map with
the following interpretation:

bit 0: 0 - Packet size negotiation NOT permitted.

1 NEGOT_PKT- Packet size negotiation permitted.

bit 1: 0 - Window size negotiation NOT permitted.

1 NEGOT_WIN- Window size negotiation permitted.

bit 2: 0 - No concatenation limit asserted.

1 ASSERT_HWM- Assert concatenation limit.

This field is used for two reasons: 1) The X.25 software always
indicates the values of the window and packet sizes operating
on the virtual circuit. However, the field pwoptions for an
incoming call indicates whether these values are negotiable. 2)
In Call Requests and Call Responses the NLI user can set a limit
value, nsdulimit , for packet concatenation by the X.25 level
that differs from the limit in the subnetwork configuration
database. It is not a negotiable option, so that whatever the user
has requested is used.

locpacket Contains the packet size for local-to-remote calls, using the
following notation: the actual packet size is 2 to the power of
the value specified. For example if the field locpacket is set to
7, the actual packet size is 27 or 128.

40 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–6 Members of extraformat Structure (continued)

Member Description

rempacket Contains the packet size for remote-to-local calls, using the
following notation: the actual packet size is 2 to the power of
the value specified. For example if the field rempacket is set to
7, the actual packet size is 27 or 128.

locwsize The window sizes for local-to-remote calls.

remwsize The window sizes for remote-to-local calls.

nsdulimit Specifies the packet concatenation limit.

nui_len The length of any Network User Identification used in Call
Requests and Responses.

nui_field Network User Identification used in Call Requests and
Responses. This is not available on X.25 (80) networks.

rpoa_len The length of any RPOA DNIC information used in Call
Requests. Valid values for rpoa_len are 0, 4, 8, 12 and 16.

rpoa_field Any Recognized Private Operating Agency (RPOA) DNIC
information. This is used in Call Requests only. It is stored as
two BCD digits per byte, right justified.

On X.25 (80) networks, this is restricted to one RPOA of 4 BCD
digits. Basic format encoding is used.

On X.25 (84) and X.25 (88) networks, there can be one or more
RPOAs. Extended format encoding is used if there is more than
one RPOA. The maximum number of RPOAs is 4.

cug_type Possible values are:

CUG — Closed User Group

BCUG — Bilateral CUG

0—No CUG used

cug_field Any applicable CUG information, stored as two BCD digits per
byte, right justified.

Note: Incoming Closed User Group facilities are assumed to
have been validated by the network. No further checking is
performed.

reqcharging Requests call charging in a Call Request or Connect Accept.

NLI Commands and Structures 41

TABLE 6–6 Members of extraformat Structure (continued)

Member Description

chg_cd_len Gives length of chg_cd_field .

chg_cd_field Specifies duration of the call if call charging is in use. Used in a
Disconnect Indication or Confirm.

chg_sc_len Gives length of chg_sc_field .

chg_sc_field Specifies segment count if call charging is in use. Used in a
Disconnect Indication or Confirm.

chg_mu_len Gives length of chg_mu_field .

chg_mu_field Specifies monetary unit if call charging is in use. Used in a
Disconnect Indication or Confirm.

called_add_mod A one byte field holding the reason for any address modification
as defined in the X.25 Recommendation, encoded as follows:

X0000001 —Called DTE busy. Call redirected. X0000111 —Call
distribution within hunt group. X0001001 —Called DTE out of
order. Call redirected. X0001111 —Called DTE has requested
systematic redirection. 11000000 —Called DTE deflected call.

11000001 —Called DTE busy. Gateway redirected call.
11001001 —Called DTE out of order. Gateway redirected call.

11001111 —Called DTE has requested systematic redirection.
Gateway redirected call.

X indicates that this bit is 0 if the address modification occurred
in a public data network and 1 if it occurred in a private
network.

call_redirect A one byte field holding the reason for a call redirection as
defined in the X.25 Recommendation, encoded as follows:

00000001 —Called DTE busy. Call redirected. 00000111 —Call
distribution within hunt group. 00001001 —Called DTE out of
order. Call redirected. 00001111 —Called DTE has requested
systematic redirection. 11000000 —Called DTE deflected call.

11000001 —Called DTE busy. Gateway redirected call.
11001001 —Called DTE out of order. Gateway redirected call.

11001111 —Called DTE has requested systematic redirection.
Gateway redirected call.

42 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–6 Members of extraformat Structure (continued)

Member Description

called Supplies the originally-called DTE address.

call_deflect A one byte field holding the reason for a call deflection as
defined in the X.25 Recommendation, encoded as follows:

11000000 —Called DTE deflected call.

11000001 —Called DTE busy. Gateway redirected call.
11001001 —Called DTE out of order. Gateway redirected call.

11001111 —Called DTE has requested systematic redirection.
Gateway redirected call.

deflected In a Clear Request, contains the DTE address, and if required,
the NSAP that a call is to be deflected to.

x_fac_len Indicates the length of a fac_field relating to X.25 facilities.

cg_fac_len Indicates the length of a fac_field relating to non-X.25
facilities for the calling network.

cd_fac_len Indicates the length of a fac_field relating to non-X.25
facilities for the called network.

fac_field This field is used in Call Requests and Connect Accepts only. It
allows for the passing of explicit facility encoded strings for X.25
facilities, and non-X.25 facilities for calling and called networks.

Note - The contents of this field, are not validated or acted
upon by the code. The X.25 facilities are inserted at the end of
any other X.25 facilities which are passed in the Call Request/
Accept (for example, packet/window sizes). If any non-X.25
facilities are supplied the appropriate marker is inserted before
the supplied facilities. Take care not to duplicate any facilities.

6.3.4 qosformat —Define OSI CONS QOS Parameters
OSI CONS-related quality-of-service parameters are defined in the quosformat
structure:

#define MAX_PROT 32
struct qosformat {

unsigned char reqtclass;

NLI Commands and Structures 43

unsigned char locthroughput, remthroughput;
unsigned char reqminthruput;
unsigned char locminthru, remminthru;
unsigned char reqtransitdelay;
unsigned short transitdelay;
unsigned char reqmaxtransitdelay;
unsigned short acceptable;
unsigned char reqpriority;
unsigned char reqprtygain;
unsigned char reqprtykeep;
unsigned char prtydata;
unsigned char prtygain;
unsigned char prtykeep;
unsigned char reqlowprtydata;
unsigned char reqlowprtygain;
unsigned char reqlowprtykeep;
unsigned char lowprtydata;
unsigned char lowprtygain;
unsigned char lowprtykeep;
unsigned char protection_type;
unsigned char prot_len;
unsigned char lowprot_len;
unsigned char protection[MAX_PROT];
unsigned char lowprotection[MAX_PROT];
unsigned char reqexpedited;
unsigned char reqackservice;
struct extraformat xtras;

};

The members of the qosformat structure are defined as follows:

TABLE 6–7 QOS Parameters

Member Description

reqtclass Indicates whether the throughput negotiation parameter is
selected. 0 indicates that it is not selected.

locthroughput Contains four-bit throughput encoding for local-to-remote
calls.

remthroughput Contains four-bit throughput encoding for remote-to-local
calls.

reqminthruput Indicates whether the minimum throughput negotiation
parameter is selected.

locminthru Contains four-bit throughput encoding for local to remote
calls.

remminthru Contains four-bit throughput encoding for remote to local
calls.

44 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–7 QOS Parameters (continued)

Member Description

reqtransitdelay Indicates whether the transit delay parameter is selected. 0
indicates that it is not selected.

transitdelay Contains the transit delay parameter as a 16-bit value. It is
used in Call Requests and Indications and Confirms.

reqmaxtransitdelay Indicates whether the calling NLI application specifies a
maximum acceptable value for the transit delay parameter
(“Lowest Quality Acceptable”).

Note: The transit delay selection relates only to Call
Requests and there is no transit delay QOS parameter in a
Call Response primitive. The correct response when the
indicated QOS is unattainable is to make a Clear Request.
Also, in a Connect Confirm, the value of the selected transit
delay will be placed in the transitdelay field when such
negotiation takes place.

acceptable Contains the maximum acceptable transit delay parameter, if
this is specified by the calling NLI application.

reqpriority Requests or indicates priority on a connection. 0 indicates
that priority is not used.

prtydata Contains the 8-bit value for the priority of data on the
connection.

reqprtygain Indicates that the field prtygain is used.

reqprtykeep Indicates that the field prtykeep is used.

prtygain Contains an 8-bit value for the priority to gain a connection.

prtykeep Contains the 8-bit value priority to keep a connection.

reqlowprtydata Indicates the field lowprtydata is used.

reqlowprtygain Indicates the field lowprtygain is used.

reqlowprtykeep Indicates the field lowprtykeep is used.

lowprtydata Contains the lowest acceptable priority value. Used on
N-CONNECTrequests by the calling NS_user .

NLI Commands and Structures 45

TABLE 6–7 QOS Parameters (continued)

Member Description

lowprtygain Indicates the priority of data on a connection. Used on
N-CONNECTrequests by the calling NS_user .

lowprtykeep Indicates priority for gaining a connection. Used on
N-CONNECTrequests by the calling NS_user .

protection_type Indicates the type of protection required. Values are:

PRT_SRCSource address specific

PRT_DSTDestination address specific

PRT_GLBGlobally unique

0 indicates that protection is not required.

On N-CONNECTrequests the calling NS_user may
optionally specify a lowest acceptable level of protection.

prot_len The length of the target protection.

protection The value of target protection.

lowprot_len The length of the lowest acceptable level of protection.

lowprotection The lowest acceptable level of protection.

46 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–7 QOS Parameters (continued)

Member Description

reqexpedited Indicates whether expedited data is required/selected. For
Connect Indications, a value of 1 implies that the expedited
data negotiation facility was present in the Incoming Call
packet, and that its use was requested. 0 indicates that
expedited data is not used.

Note: Negotiation is an OSI CONS procedure. When the
facility is present and indicates non-use, use cannot be
negotiated by Connect responses. See Section 6.4.3
“N_CI—Call Request/Indication” on page 49and Section
6.4.2 “N_CC—Call Response/Confirmation” on page 48for a
description of the use of the CONS_call field in Call
Requests and Call Responses.

If the CONS_call flag is set to 0, Expedited Data
Negotiation is not required—interrupt data is always
available in X.25. This means that this field is ignored on
Call Requests and Responses.

reqackservice Indicates whether the acknowledgement service is to be
used. Allowed values are:

0 indicates the service is not used.

1 signifies acknowledgment confirmation by the remote
DTE. In the case of acknowledgment confirmation by the
remote application, there is a one-to-one correspondence
between D-bit data and acknowledgments with one data
acknowledgment being received/sent for each D-bit data
packet sent/received over the X.25 interface.

2 signifies acknowledgment confirmation by the remote
application. In this case of acknowledgment confirmation by
the remote DTE, no acknowledgments are expected or given
over the X.25 interface.

Any non-zero value causes negotiation in the call setup
phase for use of the D-bit on the connection.

6.4 NLI Commands
This section describes the available NLI commands in alphabetical order. Refer to
Table 6–1 for a summary of the available commands and related structures.

NLI Commands and Structures 47

6.4.1 N_Abort —Abort Indication

Description
N_Abort is used when the X.25 driver needs to send a Disconnect to the application,
but there is no resource available in the system to construct a full Disconnect
Indication message. For this reason, this message should rarely be received. The
control part of an Abort Indication message has a format defined in the xabortf
structure. There is no data part.

Note - This message only appears in a getmsg , never in a putmsg . Code Example
6–1 shows how a getmsg can be constructed.

The xabortf structure is shown below:

struct xabortf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_Abort */

};

6.4.2 N_CC—Call Response/Confirmation

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;

struct xccnff confirm;
.
.
.
ctlb.len = sizeof(struct xccnff);
ctlb.buf = (char *)confirm;

putmsg(x25_fd, &ctlb, NULL,0);

Description
N_CCis used when calls are being accepted. When used with putmsg , N_CCis a Call
Response, when used with getmsg , it is a Call Confirmation. Code Example 6–1
shows how a getmsg can be constructed. When used with getmsg , ctlb.len is
replaced by cltb.maxlen . The control part of the Call Request or Indication is
defined by the xccnff structure. There is no data part.

The xccnff structure is shown below:

struct xccnff {
unsigned char xl_type; /* Always XL_CTL */

48 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

unsigned char xl_command; /* Always N_CC */
int conn_id; /* The connection id quoted on the associated

indication. */
unsigned char CONS_call; /* When set, indicates CONS call */
unsigned char negotiate_qos; /* When set, negotiate

facilities etc. else use
indicated values */

struct xaddrf responder; /* Responding address */
struct qosformat rqos; /* Facilities and CONS qos: if

negotiate_qos is set */
};

The members of the xccnff structure are:

TABLE 6–8 Call Response/Confirmation Message

Member Description

conn_id Connection identifier. conn_id must be returned in the Call Response
so that listening operates properly. This must be the same connection
identifier as was included in the Connection Request or Indication.

CONS_call Indicates that OSI CONS procedures should be used for responses. If
you are not using OSI CONS, this value should be 0.

negotiate_qos A non-zero value shows that facilities and quality of service (QOS) are
being negotiated. A zero value means the initiator is requesting all
default values.

responder The responding address.

rqos Selected facilities and OSI CONS QOS parameters to be passed to the
initiator.

6.4.3 N_CI—Call Request/Indication

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;
struct strbuf datab;

struct xcallf call;
char cud[MAX_LENGTH];

NLI Commands and Structures 49

.

.

.
ctlb.len = sizeof(struct xcallf);
ctlb.buf = (char *)call;

datab.len = cudlen;
datab.buf = cud;

putmsg(x25_fd, &ctlb, &datab, 0);

Description
N_CI is used when calls are requested or indicated across the X.25 interface. When
used with putmsg , N_CI is a Call Request, when used with getmsg , it is a Connect
Indication. Code Example 6–1shows how a getmsg can be constructed. The control
part of the Call Request or Indication is defined by the xcallf structure. The data
part of the message will contain any call user data.

The xcallf structure is shown below:

struct xcallf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_CI */
int conn_id; /*connection id returned in Call Response or

Disconnect */
unsigned char CONS_call; /*When set, indicates a CONS call*/
unsigned char negotiate_qos; /* When set, negotiate

facilities etc. or else use
defaults */

struct xaddrf calledaddr; /* The called address */
struct xaddrf callingaddr; /* The calling address */
struct qosformat qos; /* Facilities and CONS qos: if

negotiate_qos is set */
};

The members of the xcallf structure are:

TABLE 6–9 Call Request/Indication Message

Member Description

conn_id For incoming calls, an attempt is made to match the called address and
call user data with that of one of the listening applications. If a match
is found, then the indication is passed to that application with a
conn_id identifier, which must be returned in the Call Response or
Clear Request to accept or reject the connection. Leave this value as 0.

CONS_call Indicates that OSI CONS procedures should be used for the call.

negotiate_qos A non-zero value shows that facilities and quality of service (QOS) are
being negotiated. A zero value means the initiator is requesting all
default values.

50 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–9 Call Request/Indication Message (continued)

Member Description

calledaddr Holds the called address.

callingaddr The calling address.

qos Any facilities requested or indicated. To use the qos member, you must
set negotiate_qos .

6.4.4 N_DAck—Data Ack Request/Indication

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;

struct xdatacf dack;
.
.
.
ctlb.len = sizeof(struct xdatacf);
ctlb.buf = (char *)dack;

putmsg(x25_fd, &ctlb, NULL, 0);

Description

N_DAck acknowledges a previous Data Acknowledgment Request or Indication
which had the D-bit set. The D-bit requests end-to-end, as opposed to local,
acknowledgment. There is a one-to-one correspondence between D-bit data and
acknowledgments, with one Data Acknowledgment being received/sent for each
D-bit data packet sent/received. It is always the oldest outstanding D-bit packet that
is being acknowledged.

Refer to Section 6.3.4 “qosformat —Define OSI CONS QOS Parameters” on page 43
for details of requesting acknowledgment using the reqackservice member of the
qosformat structure. For OSI CONS calls, Data Acknowledgment must be
negotiated on the connection.

When used with putmsg , N_DAck is a Data Acknowledgment Request, when used
with getmsg , it is a Data Acknowledgment Indication. Code Example 6–1 shows

NLI Commands and Structures 51

how a getmsg can be constructed. The control part of the Data Acknowledgment
Request or Indication is defined by the xdatacf structure. There is no data part.

The xdatacf structure is shown below:

struct xdatacf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_DAck */

};

6.4.5 N_Data —Data

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;
struct strbuf datab;

struct xdataf control;
char data[MAX_LENGTH];
.
.
.
ctlb.len = sizeof(struct xdataf);
ctlb.buf = (char *)control;

datab.len = MAX_LENGTH;
datab.buf = data;

putmsg(x25_fd, &ctlb, &datab, 0);

Description

N_Data is used to transfer data across the X.25 interface. The synopsis shows a
putmsg . Code Example 6–1 shows how a getmsg can be constructed. The control
part of the Data packet is defined by the xdataf structure. The data part of the
message contains the user data.

The xdataf structure is shown below:

struct xdataf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_Data */
unsigned char More; /* Set when more data is required

to complete the nsdu */
unsigned char setDbit, /* Set when data carries X.25 D-bit */
unsigned char setQbit; /* Set when data carries X.25 Q-bit */

};

The members used by xdataf are.

52 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–10 Data Message

Member Description

More Shows whether there is more of this network service data unit to be
received/sent.

setQbit Requests or indicates that the Q-bit is set when user data is
transmitted/received. The Q-bit indicates that the data is intended for a
device attached to the DTE and not for the DTE itself.

setDbit Requests or indicates that the D-bit is set when user data is
transmitted/received. The D-bit requests end-to-end acknowledgement.

Note - No acknowledgement for this data is given to, or expected from, the
application unless the D-bit is set and application-to-application Receipt
Confirmation is being used.

6.4.6 N_DC—Clear Confirm

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;
struct strbuf datab;

struct xdcnff disc;
char cud[MAX_LENGTH];
.
.
.
ctlb.len = sizeof(struct xdcnff);
ctlb.buf = (char *)disc;

datab.len = cudlen;
datab.buf = cud;

putmsg(x25_fd, &ctlb, NULL, 0);

Description

N_DCis used to confirm a previous clear indication (N_DI). The example shows a
putmsg . Code Example 6–1 shows how a getmsg can be constructed. The control

NLI Commands and Structures 53

part of the Data packet is defined by the xdcnff structure. If Fast Select is in use,
the data part of the message contains any clear user data.

The xdcnff structure is shown below:

struct xdcnff {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_DC */
unsigned char indicated_qos; /* When set, facilities

indicated */
struct qosformat rqos; /* If indicated_qos is set, holds

facilities and CONS qos */
};

The members of the xdcnff structure are:

TABLE 6–11 Clear Confirm Parameters

Member Description

indicated_qos Non-zero value shows that facilities and QOS are being indicated.

rqos Contains the facilities indicated. This is only used with the Charging
Information facility.

6.4.7 N_DI—Clear Request/Indication

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;
struct strbuf datab;

struct xdiscf disc;
char cud[MAX_LENGTH];
.
.
.
ctlb.len = sizeof(struct xdiscf);
ctlb.buf = (char *)disc;

datab.len = cudlen;
datab.buf = cud;

putmsg(x25_fd, &ctlb, &datab, 0);

54 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Description
N_DI is used when a Clear Request/Indication crosses the X.25 interface. When used
with putmsg , N_DI is a Clear Request, when used with getmsg , it is a Disconnect
Indication. Code Example 6–1shows how a getmsg can be constructed. The control
part of the Call Request or Indication is defined by the xdiscf structure. If Fast
Select is in use, the data part of the message contains any clear user data.

The X.25 cause and diagnostic bytes, cause and diag , are presented, as well as the
CONS originator and reason codes mapped from these. For a Clear Request the
user can specify a non-zero cause code. This has no effect for an OSI CONS call; the
value is set to zero by the system.

The Clear Request from an application is confirmed unless it is a rejection of a
previous Connect Indication. When it is not a rejection, the X.25 driver sends a Clear
Confirm to the application when the Clear Confirmation is received. This guarantees
that once the Clear Confirm is read by the application no more messages are sent on
this stream. For this reason, after requesting disconnection, the application should
read and discard all messages from the stream until the Clear Confirm is received.

For call rejection, no acknowledgment is sent. However, the application must supply
the connection identifier presented in the Connect Indication so that the appropriate
circuit is cleared. In the case of a Disconnect Indication, all messages sent
downstream except connect messages are discarded silently.

The xdiscf structure is shown below:

struct xdiscf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_DI */
unsigned char originator, /* Originator and Reason mapped

from */
reason, /* X.25 cause/diag in indications */
cause, /* X.25 cause byte */
diag; /* X.25 diagnostic byte */

int conn_id; /* The connection id (for reject only) */
unsigned char indicated_qos; /* When set, facilities

indicated */
struct xaddrf responder; /* CONS responder address */
struct xaddrf deflected; /* Deflected address */
struct qosformat qos; /* If indicated_qos is set, holds

facilities and CONS qos */
};

The members of the xdiscf structure are.

NLI Commands and Structures 55

TABLE 6–12 Clear Request/Indication Parameters

member Description

originator OSI CONS mapping of the X.25 cause byte.

reason OSI CONS mapping of the X.25 diagnostic byte. Refer to Chapter 9 for
further information.

cause The X.25 cause byte.

diag The X.25 diagnostic byte.

indicated_qos Non-zero value shows that facilities and QOS are being indicated.

responder Contains the responding address.

deflected Used in conjunction with the call_deflect facility in the qos
structure to convey the address of the remote DTE that the call is to be
deflected to.

qos Contains the facilities indicated. This is used with the Charging
Information facility and the Call Deflection facility.

Note - If a disconnect collision occurs, acknowledgement is taken to be complete.

6.4.8 N_EAck—Expedited Data Acknowledgement

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;

struct xedatacf eack;
.
.
.
ctlb.len = sizeof(struct xedatacf);
ctlb.buf = (char *)eack;

putmsg(x25_fd, &ctlb, NULL, 0);

56 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Description
N_EAck is used to acknowledge expedited data, carried by an X.25 Interrupt packet.
The example shows a putmsg . Code Example 6–1 shows how a getmsg can be
constructed. The control part of the Interrupt packet is defined by the xedatacf
structure. There is no data part. An acknowledgment must be sent immediately on
receipt of an Interrupt packet.

The xedatacf structure is shown below:

struct xedatacf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_EAck */

};

6.4.9 N_EData —Expedited Data

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;
struct strbuf datab;

struct xedataf edata;
char data[MAX_LENGTH];
.
.
.
ctlb.len = sizeof(struct xedataf);
ctlb.buf = (char *)edata;

datab.len = cudlen;
datab.buf = cud;

putmsg(x25_fd, &ctlb, &datab, 0);

Description
N_EData is used when expedited data, carried by an X.25 Interrupt packet, crosses
the X.25 interface. The example shows a putmsg . Code Example 6–1 shows how a
getmsg can be constructed. The control part of the Interrupt packet is defined by the
xedataf structure. The data part of the message contains the user data. The
expedited data is a confirmed primitive and must be acknowledged (see Section 6.4.8
“N_EAck—Expedited Data Acknowledgement” on page 56) before another expedited
data unit can be requested or indicated.

The xedataf structure is shown below:

struct xedataf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_EData */

};

NLI Commands and Structures 57

6.4.10 N_PVC_ATTACH—PVC Attach

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;

struct pvcattf attach;
.
.
.
ctlb.len = sizeof(struct pvcattf);
ctlb.buf = (char *)attach;

putmsg(x25_fd, &ctlb, NULL, 0);

Description
N_PVC_ATTCHis used when an application wants to attach to a PVC.The control
part of the PVC Attach is defined by the pvcattf structure. The example shows a
putmsg . Code Example 6–1 shows how a getmsg can be constructed.

The pvcattf structure is shown below:

struct pvcattf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_PVC_ATTACH */
unsigned short lci; /* Logical channel */
uint32_t link_id; /* Link # */
/* 0 for next 3 parameters implies use of default */
unsigned char reqackservice;
unsigned char reqnsdulimit;
int nsdulimit;
int result_code; /* Non-zero - error */

};

The members used by pvcattf are:

TABLE 6–13 PVC Attach Parameters

Member Description

lci Contains the logical channel identifier of the required PVC.

link_id Denotes the particular link identifier for the PVC.

58 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 6–13 PVC Attach Parameters (continued)

Member Description

reqackservice If non-zero, denotes that the receipt acknowledgement service is
requested by use of the D-bit. Setting reqackservice to 1 signifies
receipt confirmation by the remote DTE. Setting reqackservice to 2
signifies receipt confirmation by the remote application.

In the case of receipt confirmation by the remote DTE, no
acknowledgements are expected or given over the X.25 interface. In the
case of receipt confirmation by the remote application, there is a
one-to-one correspondence between D-bit data and acknowledgements
with one data acknowledgement being received/sent for each D-bit
data packet sent/received over the X.25 interface.

reqnsdulimit If this is non-zero, use value in nsdulimit .

nsdulimit Specifies the packet concatenation limit for NSDUs. If you want to use
this parameter, reqnsdulimit must be non-zero. (The X.25 driver
does not look at reqnsdulimit if nsdulimit is zero.)

result_code In the attach message sent to the user as acknowledgment, this member
denotes whether the attach was successful. The possible values are
defined in the netx25/x25_proto.h file.

6.4.11 N_PVC_DETACH—PVC Detach

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;
struct strbuf datab;

struct pvcdetf detach;
.
.
.
ctlb.len = sizeof(struct pvcdetf);
ctlb.buf = (char *)detach;

datab.len = cudlen;
datab.buf = cud;

putmsg(x25_fd, &ctlb, &datab, 0);

NLI Commands and Structures 59

Description

N_PVC_DETACHis used when an application wants to detach from a PVC. This
allows the use of a stream to be changed. The control part of the PVC Detach is
defined by the pvcdetf structure. The data part of the message contains any call
user data. The synopsis shows a putmsg . Code Example 6–1 shows how a getmsg
can be constructed.

The pvcdetf structure is shown below:

struct pvcdetf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_PVC_DETACH */
int reason_code; /* Reports why */

};

This structure has the following member:

TABLE 6–14 Listen Cancel Command/Response Parameters

Member Description

reason_code The reason for the detach, or a code indicating that a previous PVC
Detach was successful.

Note - The PVC Detach message is acknowledged to the user by returning another
PVC Detach message.

6.4.12 N_RC—Reset Response/Confirm

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;

struct xrscf rc;
.
.
.
ctlb.len = sizeof(struct xrscf);
ctlb.buf = (char *)rc;

putmsg(x25_fd, &ctlb, NULL, 0);

60 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Description

N_RCis used to respond to a previous reset. When used in a putmsg it is a Reset
Response. In a getmsg it is a Reset Confirm. Code Example 6–1 shows how a
getmsg can be constructed. The control part of the Reset Response or Confirm is
defined by the xrscf structure. There is no data part.

The xrscf structure is shown below:

struct xrscf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_RC */

};

Note - A Reset primitive is an acknowledged service (see the associated structure
xrscf). A collision between a Reset Indication and a Reset Request is taken to
acknowledge the Reset—no Reset Confirmation is then required before another Reset
Request can be sent. Normally, Resets are handled by the application.

6.4.13 N_RI—Reset Request/Indication

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;

struct xrstf reset;
.
.
.
ctlb.len = sizeof(struct xrstf);
ctlb.buf = (char *)reset;

putmsg(x25_fd, &ctlb, NULL, 0);

Description

N_RI is used for resets. When used in a putmsg it is a Reset Request. In a getmsg it
is a Reset Indication. Code Example 6–1 shows how a getmsg can be constructed.
The X.25 cause and diagnostic bytes, cause and diag , are presented as well as the
CONS originator and reason codes that are mapped from these. Refer to
Chapter 9 for further information.

For a Reset Request, the user can specify a non-zero cause code. This has no effect
for an OSI CONS call; the value is set to zero by the system.

NLI Commands and Structures 61

The control part of the Reset Request or Indication is defined by the xrstf structure.
There is no data part.

The xrstf structure is shown below:

struct xrstf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_RI */
unsigned char originator, /* Originator and Reason mapped */

reason, /* from X.25 cause/diag in indications */
cause, /* X.25 cause byte */
diag; /* X.25 diagnostic byte */

};

Note - A Reset primitive is an acknowledged service. It must be acknowledged
before another Reset can be requested. A collision between a Reset Indication and a
Reset Request is taken to acknowledge the Reset—no Reset Confirmation is then
required before another Reset Request can be sent. Normally, Resets are handled by
the application.

6.4.14 N_Xcanlis —Listen Cancel Command/Response

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;

struct xcanlisf canlis;
.
.
.
ctlb.len = sizeof(struct xcanlisf);
ctlb.buf = (char *)canlis;

putmsg(x25_fd, &ctlb, NULL, 0);

Description
N_Xcanlis is used to cancel an interest in incoming calls.

When used with putmsg , N_Xcanlis is a Listen Cancel Command, when used with
getmsg , it is a Listen Cancel Response. Code Example 6–1 shows how a getmsg can
be constructed. The control part of the Listen Command or Response is defined by
the xcanlisf structure. There is no data part.

62 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Note - The Cancel Request removes all listen addresses from the stream. There is no
way of cancelling a Listen on a particular address, for example, when the use of the
stream is about to be changed by the application.

The control part of a Listen Cancel Command or Response message has a format
defined in the xcanlisf structure:

struct xcanlisf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_Xcanlis */
int c_result; /* Result flag */

};

This structure has the following member:

TABLE 6–15 Listen Cancel Command/Response Parameters

Member Description

c_result A non-zero value of the c_result flag indicates failure of the operation
to cancel a Listen. This may indicate that the Listen was not present or
that some connect event is outstanding. The closure of a stream on which
there is a Listen also cancels the Listen, but in the case of the cancel
command message, the stream remains open.

6.4.15 N_Xlisten —Listen Command/Response

Synopsis
#include <stream.h>

#include <netx25/x25_proto.h >

struct strbuf ctlb;
struct strbuf datab;

struct xlistenf listen;
char lisbuf[MAXLIS];
.
.
.
ctlb.len = sizeof(struct xlistenf);
ctlb.buf = (char *)listen;

datab.len = lislen;
datab.buf = lisbuf;

NLI Commands and Structures 63

putmsg(x25_fd, &ctlb, &datab, 0);

Description

N_Xlisten is used to listen for incoming calls. When used with putmsg ,
N_Xlisten is a Listen Command, when used with getmsg , it is a Listen Response.
Code Example 6–1 shows how a getmsg can be constructed. The control part of the
Listen Command or Response is defined by the xlistenf structure.

The data part is treated as a byte stream of CUD and addresses conforming to the
following definition:

unsigned char l_cumode;
unsigned char l_culength;
unsigned char l_cubytes [l_culength];
unsigned char l_mode;
unsigned char l_type;
unsigned char l_length;
unsigned char l_add[(l_length+1)>>1];

Not all variables need be present. Refer to the individual variable descriptions below
for more details.

The fields l_cumode , l_culength and l_cubytes are used to match the CUD
field of the incoming call against that specified in the Listen request.

TABLE 6–16 Variables for CUD matching

Variable Name Description

l_cumode Defines the type of matching:

X25_DONTCAREThe listener ignores the CUD; l_culength and
l_cubytes are omitted.

X25_IDENTITY The listener match is only made if all bytes of the
CUD field are the same as the supplied l_cubytes .

X25_STARTSWITHThe listener match is only made if the leading bytes
of the CUD Field are the same as the supplied l_cubytes .

l_culength Length of the CUD in octets for an X25_IDENTITY or
X25_STARTSWITHCUD Field match. If l_culength is zero, the
l_cubytes are omitted. The range for l_culength is zero to 16
inclusive. If more than 16 bytes are present, the application still has to
check the full CUD Field.

l_cubytes String of bytes sought in the call user data field when l_cumode is
X25_IDENTITY or X25_STARTSWITH.

64 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

The fields l_mode , l_type , l_length and l_add are used to match the called
address field(s) of the incoming call against that specified in the Listen request.

TABLE 6–17 Variables for address matching

Variable Name Description

l_mode Defines the type of matching:

X25_DONTCARE

The listener ignores the address; l_type, l_length , and l_add are
omitted.

X25_IDENTITY

The listener match is only made if all digits of the address are the same
as the supplied l_add .

X25_STARTSWITH

The listener match is only made if the leading digits of the address are
the same as the supplied l_add .

X25_PATTERN

The listener match is made on partial addresses, allowing the use of
wildcard digits.

l_type The type of the address entry; l_type can have two values, X25_DTE or
X25_NSAP. It denotes the important addressing quantity. For X.25 (84)
and X.25 (88), for example, NSAP addresses (or extended addresses) are
the important addresses, while for X.25 (80), where there is no NSAP
address, the DTE address is the important quantity. Applications can be
distinguished by X.25 DTE subaddress where necessary. On many X.25
(84) and X.25 (88) networks, it is possible to listen on either X25_DTE or
X25_NSAPaddresses. This is not possible when running X.25 (84) or X.25
(88) over LLC2 on the LAN. In this case, the DTE address field is NULL
and the X25_NSAPfield is used.

l_length Length of the address l_add in BCD digits—the common format for X.25
DTE and NSAP addresses. If l_length is zero, then l_add is omitted.
The maximum values for l_length are 15 for X25_DTE and 40 for
X25_NSAP.

l_add Contains the address to be compared with the called address field of the
incoming call packet. l_add is omitted when l_length is zero.

Note - To use wildcards, represent * by 0x0F and ? by 0x0E . * represents 0 or more
characters. ? represents a single character.

NLI Commands and Structures 65

The xlistenf structure is shown below:

struct xlistenf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_Xlisten */
int lmax; /* Maximum number of CI’s at a time */
int l_result; /* Result flag */

};

The members of the xlistenf structure are.

TABLE 6–18 Listen Command/Response Parameters

Member Description

lmax Maximum number of Connect Indications that the listener can handle at
one time. Note: listen requests are cumulative but the lmax value
(number of simultaneously handled Connect Indications) is not. This
means that several listen requests can be made on a single stream, in
which case the lmax value contained in the last listen message specifies
the number of simultaneously handled Connect Indications.

l_result The result of the listen request is acknowledged upstream with the same
message. An error in the parameters or a lack of resources to set up the
listen causes this flag to be set to a non-zero value.

Note - For example code using listening, refer to Chapter 4.

66 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 7

Network Layer ioctls

This chapter describes the Network Layer ioctls alphabetically. Refer to the tables
below for functional groupings of Network Layer ioctls. Use the ioctls in this chapter
to communicate with the Solstice X.25 software. To communicate with the network,
for example to initiate calls, use the NLI commands described in Chapter 6.

Note - Note that some ioctls allow changes to be made to connections that may
currently be in use—potentially disrupting users.

The header files used by the NLI ioctls are contained in the /usr/include/netx25
directory.

7.1 ioctls Functional Grouping
These ioctls are related to NUI mapping. The NUI mapping table maps Network
User Identifiers to particular facilities. The ioctls described in this section let you
operate on NUI mappings. Note that any changes you make could disrupt other
users. For this reason you require root access to use the ioctls that let you change the
current settings.

67

TABLE 7–1 NUI mapping icotls

ioctl description access level

N_nuidel delete specified NUI mapping root only

N_nuiget read specified NUI mapping unrestricted

N_nuimget read all NUI mappings unrestricted

N_nuiput store a set of NUI mappings root only

N_nuireset delete all NUI mappings root only

These ioctls operate on a per multiplexor basis:

TABLE 7–2 Multiplexor ioctls

ioctl description access level

N_getstats read X.25 multiplexor statistics unrestricted

N_zerostats reset X.25 multiplexor statistics to zero root only

These ioctls operate on a per virtual circuit basis:

TABLE 7–3 Virtual circuit ioctls

ioctl description access level

N_getoneVCstats get status and statistics for VC
associated with current stream

unrestricted

N_getpvcmap get default packet and window sizes unrestricted

N_getVCstats get per VC statistics unrestricted

68 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–3 Virtual circuit ioctls (continued)

ioctl description access level

N_getVCstatus get per VC state and statistics unrestricted

N_putpvcmap change per VC packet and window
sizes

unrestricted

These ioctls start and stop packet level tracing:

TABLE 7–4 Packet level tracing ioctls

ioctl description access level

N_traceon start packet level tracing root only

N_traceoff stop packet level tracing root only

These ioctls manage the X.25 routing table. Using them may override values set
using x25tool . The ioctls are:

TABLE 7–5 Routing ioctls

ioctl description access level

N_X25_ADD_ROUTE add a new route or update an
existing route.

root only

N_X25_FLUSH_ROUTE clear all entries from table. root only

N_X25_GET_ROUTE obtain routing information for
specified address

unrestricted

N_GET_NEXT_ROUTE obtain routing information for the
next route in the table

unrestricted

N_RM_ROUTE remove the specified route root only

These ioctls operate on a link:

Network Layer ioctls 69

TABLE 7–6 Link ioctls

Header Header Header

N_getlinkstats retreive per link statistics unrestricted

N_linkconfig configure wlcfg database
for a link

unrestricted

N_linkent configure a newly linked
driver

unrestricted

N_linkr ead read the wlcfg database unrestricted

7.2 N_getlinkstats —Retrieve Per-Link
Statistics
Retrieve statistics for a particular link.

Associated Structure
The following structure is associated with this ioctl:

struct perlinkstats {
uint32_t linkid; /* link id (ppa) */
int network_state; /* Network State */
uint32_t mon_array[link_mon_size]; /* L3perlinkmonarray */

};

The members of the perlinkstats structure are:

70 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–7 perlinkstats fields

Member Description

linkid the number of the link.

network_state a code defining the network state. The codes are as follows:

1 Connecting to DXE

2 Connected resolving DXE

3 Random wait started

4 Connected and resolved DXE

5 DTE RESTART REQUEST

6 Waiting link disc reply

7 Buffer to enter WtgRES

8 Buffer to enter L3restarting

9 Buffer to enter L_disconnect

10 Registration request

mon_array the array containing the statistics. mon_array is defined in the file
x25_control.h.

N_getnliversion read current NLI version Read which version of the Network Layer
Interface is supported by the X.25 multiplexor. Solstice X.25 supports
version 3.

Associated Structure
The following structure is associated with this ioctl:

struct nliformat {
unsigned char version; /* NLI version number */

};

The members of the nliformat structure are:

TABLE 7–8 nliformat fields

Member Description

version the version of NLI supported by the X.25 multiplexor.

Network Layer ioctls 71

7.3 N_getoneVCstats —Retrieve
Per-Virtual-Circuit Statistics
This ioctl is used to retrieve per-virtual circuit state and statistics for the virtual
circuit associated with the stream on which the ioctl is made.

Associated Structure

The vcinfo structure is shown below:

struct vcinfo {
struct xaddrf rem_addr; /* = called for outward calls */
/* = caller for inward calls */
uint32_t xu_ident; /* link id */
uint32_t process_id; /* effective user id */
unsigned short lci; /* Logical Channel Identifier */
unsigned char xstate; /* VC state */
unsigned char xtag; /* VC check record */
unsigned char ampvc; /* =1 if a PVC */
unsigned char call_direction;
/* in=0, out=1 */
unsigned char domain; /* was in 8.0, not in R7. Put it back */
int perVC_stats[perVCmon_size];

};

The members of the vcinfo structure are:

TABLE 7–9 vcinfo structure fields

Member Description

rem_addr The called address if its an outgoing call, or the calling address for
incoming calls.

xu_ident The link identifier.

process_id The relevant user id.

lci The logical channel identifier.

xstate The VC state.

xtag The VC check record.

72 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–9 vcinfo structure fields (continued)

Member Description

ampvc Set to 1 if this is a PVC.

call_direction 0 indicates in incoming call, 1 an outgoing call.

perVC_stats An array containing the per-virtual circuit statistics. The array is
defined in the x25_control.h file.

7.4 N_getpvcmap —Get PVC Default
Packet/Window Sizes
This ioctl is used to read the default packet and window sizes of active PVCs.

Associated Structure
The following structure is associated with this ioctl:

struct pvcmapf {
struct pvcconff entries[MAX_PVC_ENTS]; /* Data buffer */
int first_ent; /* Where to start search */
unsigned char num_ent; /* Number entries returned */

};

The members of the pvcmapf structure are:

TABLE 7–10 getpvcmap fields

Member Description

entries Contains the structure for the returned mapping entries.

first_ent Informs the X.25 multiplexor where to start or restart the table read. It
should initially be set to 0, to indicate starting at the beginning of the
table. On return, it points to the next entry.

num_ent Indicate the number of mapping entries returned in the entries member.
It should be set to 0 before making the ioctl.

Network Layer ioctls 73

TABLE 7–10 getpvcmap fields (continued)

7.5 N_getstats —Get X.25 Multiplexor
Statistics
This ioctl is used to read the statistics counts for the X.25 multiplexor since network
start-up or since they were last reset by an N_zerostats ioctl (see below). Statistics
are maintained an a multiplexor basis—separate link statistics are not available.

Associated Structure
The N_getstats structure associated with this ioctl is an integer array of size
mon_size , defined in the file x25_control.h . Entries and meanings include the
following:

TABLE 7–11 N_getstats structure

Entry Description

cll_in_g Calls received and indicated

caa_in_gc Call established for outgoing

caa_out_g Call established for incoming

ed_in_g Interrupts received

ed_out_g Interrupts sent

rnr_in_g Receiver not ready received

rnr_out_g Receiver not ready sent

rr_in_g Receiver ready rvcd

rr_out_g Receiver ready sent

74 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–11 N_getstats structure (continued)

Entry Description

rst_in_g Resets received

rst_out_g Resets sent

rsc_in_g Restart confirms received

rsc_out_g Restart confirms sent

clr_in_g Clears received

clr_out_g Clears sent

clc_in_g Clear confirms received

clc_out_g Clear confirms sent

cll_coll_g Call collision count (not rjc)

cll_uabort_g Calls aborted by user b4 sent

rjc_buflow_g Calls rejd no buffs b4 sent

rjc_coll_g Calls rejd - collision DCE mode

rjc_failNRS_g Calls rejd negative NRS resp

rjc_lstate_g Calls rejd link disconnecting

rjc_nochnl_g Calls rejd no lcns left

rjc_nouser_g In call but no user on NSAP

rjc_remote_g Call rejd by remote responder

rjc_u_g Call rejd by NS user

dg_in_g DIAG packets in

Network Layer ioctls 75

TABLE 7–11 N_getstats structure (continued)

Entry Description

dg_out_g DIAG packets out

p4_ferr_g Format errors in P4

rem_perr_g Remote protocol errors

res_ferr_g Restart format errors

res_in_g Restarts received (inc DTE/DXE)

res_out_g Restarts sent (inc DTE/DXE)

vcs_labort_g Circuits aborted via link event

r23exp_g Circuits hung by r23 expiry

l2conin_g Link level connect established

l2conok_g LLC connections accepted

l2conrej_g LLC connections rejd

l2refusal_g LLC connect requests refused

l2lzap_g Oper requests to kill link

l2r20exp_g R20 retransmission expiry

l2dxeexp_g DXE/connect expiry

l2dxebuf_g DXE resolv abort - no buffers

l2noconfig_g No config base - error

xiffnerror_g Upper i/f bad M_PROTO type

xintdisc_g Internal disconnect events

76 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–11 N_getstats structure (continued)

Entry Description

xifaborts_g Interface abort_vc called

PVCusergone_g Count of non-user interactions

max_opens_g highest no. simul. opens so far

vcs_est_g VCs established since reset

bytes_in_g Total data bytes received

bytes_out_g Total data bytes sent

dt_in_g Count of data packets sent

dt_out_g Count of data packets received

res_conf_in_g Restart Confirms received

res_conf_out_g Restart Confirms sent

reg_in_g Registration requests received

reg_out_g Registration requests sent

reg_conf_in_g Registration confirms received

reg_conf_out_g Registration confirms sent

l2r28exp_g R28 retransmission expiry

Network Layer ioctls 77

7.6 N_getVCstats —Get
Per-Virtual-Circuit Statistics
This ioctl is used to retrieve per-virtual circuit state and statistics, for all virtual
circuits currently active over all configured links.

Associated Structure
The vcstatsf structure, defined in x25_control.h , takes this format:

struct vcstatsf {
int first_ent; /* Where to start search */
unsigned char num_ent /* Number entries returned */
struct pervcinfo vc; /* Data buffer, extendable by*/

/* malloc overlay*/
};

The members of the vcstatsf structure are:

78 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–12 vcstatsf fields

Member Description

first_ent Informs the X.25 multiplexor where to start or restart the table read. On
return, it is set to point the next entry.

num_ent Indicates the number of virtual circuit entries returned in the vc member.

vc This is either a single pervcinfo structure or an array of pervcinfo
structures, of size MAX_VC_ENTRIES, each containing the state and
statistics of an individual virtual circuit.

If a single pervcinfo structure is used, and num_ent is not 0, and
statistics are returned of the virtual circuit specified in the lci member of
the pervcinfo structure, with a link identifier specified using xu_ident .

If a single pervcinfo structure is used, and num_ent is 0, the number
of open virtual circuits is returned in first_ent .

If an array of pervcinfo structures is used, and num_ent is set to 0,
statistics are returned for the Logical Channel Number set using the lci
member.

If an array of pervcinfo structures is used, and num_ent is set to 1,
statistics are returned for all virtual circuits on the link specified using
xu_ident.

If an array of pervcinfo structures is used, and num_ent is set to
MAX_VC_ENTRIES, statistics are returned for all virtual circuits on all
links.

The contents of the pervcinfo structure are:

struct pervcinfo {
struct xaddrf rem_addr; /* = called for outward calls */
/* = caller for inward calls */
uint32_t xu_ident; /* link id */
uint32_t process_id; /* effective user id */
unsigned short lci; /* Logical Channel Identifier */
unsigned char xstate; /* VC state */
unsigned char xtag; /* VC check record */
unsigned char ampvc; /* =1 if a PVC */
unsigned char call_direction;
/* DIRECTION_xxx (see mib) */
unsigned char domain; /* was in 8.0, not in R7. Put it back */
uint32_t perVC_stats[perVCstat_size];
/* Per-VC statistics array */
/*

* move these to the end, so that the first bit of the struct is
* identical to the 8.0 one

*/
unsigned char vctype; /* what _is_ this? */
struct xaddrf loc_addr; /* = caller for outward calls */
/* = called for inward calls */

Network Layer ioctls 79

uint32_t start_time; /* time the VC was created */
};

xstate contains the state of the VC. Possible states and meanings are:

TABLE 7–13 xstate summary

Entry Description

Idle Record is not in use

AskingNRS CR is being validated by NRS

P1 VC state is READY

P2 VC in DTE CALL REQUEST

P3 VC in DXE INCOMING CALL

P5 VC in CALL COLLISION

DataTransfer VC in P4 (see xflags

DXEbusy VC in P4, DXE sent RNR

D2 VC in DTE RESET REQUEST

D2pending Wanting buffer for RESET

WtgRCU Waiting U RSC to int.err.

WtgRCN Waiting X.25 RSC for user

WtgRCNpending Buffer reqd to enter state

P4pending Buffer reqd for X.25 RSC

pRESUonly Buffer for user rst only

RESUonly User only being reset

80 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–13 xstate summary (continued)

Entry Description

pDTransfer Buffer for RSC to user

WRCUpending Buffer reqd internal RST

DXErpending Buffer reqd RST indication

DXEresetting Waiting U RSC to X.25 RI

P6 VC in DTE CLEAR REQUEST

P6pending Wanting buffer for CLEAR

WUcpending Buffer reqd DI no netconn

WUNcpending Buffer reqd internal DI

DXEcpending Buffer reqd CLR REQ->User

DXEcfpending Buffer reqd CLC to User

perVC_stats contains statistics counts, as follows:

TABLE 7–14 perVC_stats summary

Entry Description

cll_in_v Calls received and indicated

cll_out_v Calls sent

caa_in_v Call established for outgoing

caa_out_v Call established for incoming

dt_in_v Data packets received

Network Layer ioctls 81

TABLE 7–14 perVC_stats summary (continued)

Entry Description

dt_out_v Data packets sent

ed_in_v Interrupts received

ed_out_v Interrupts sent

rnr_in_v Receiver not ready received

rnr_out_v Receiver not ready sent

rr_in_v Receiver ready rvcd

rr_out_v Receiver ready sent

rst_in_v Resets received

rst_out_v Resets sent

rsc_in_v Restart confirms received

rsc_out_v Restart confirms sent

clr_in_v Clears received

clr_out_v Clears sent

clc_in_v Clear confirms received

clc_out_v Clear confirms sent

82 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

7.7 N_getVCstatus —Get
Per-Virtual-Circuit Statistics
Note - This ioctl has been superceded by the N_getVCstats ioctl. It is retained for
backward compatibility with Solstice X.25 8.x. When writing new applications, use
N_getVCstats .

This ioctl is used to retrieve per-virtual circuit state and statistics, for all virtual
circuits currently active over all configured links.

Associated Structure
The vcstatusf structure takes this format:

struct vcstatusf {
struct vcinfo vcs[MAX_VC_ENTS]; /* Data buffer */
int first_ent; /* Where to start search */
unsigned char num_ent; /* Number entries returned */

};

The members of the vcstatusf structure are:

TABLE 7–15 vcstatusf fields

Member Description

vcs An array of vcinfo structures, each of which contains the state and
statistics for an individual virtual circuit.

first_ent Informs the X.25 multiplexor where to start or restart the table read. It
should initially be set to 0, to indicate starting at the beginning of the
table. On return, it will be set to point to the next entry to be retrieved.

num_ent Indicates the number of virtual circuit entries returned in the vcs
member. It should be set to 0 before making the ioctl.

The contents of the vcinfo structure are:

struct vcinfo {
struct xaddrf rem_addr; /* = called for outward calls */
/* = caller for inward calls */
uint32_t xu_ident; /* link id */
uint32_t process_id; /* effective user id */
unsigned short lci; /* Logical Channel Identifier */

Network Layer ioctls 83

unsigned char xstate; /* VC state */
unsigned char xtag; /* VC check record */
unsigned char ampvc; /* =1 if a PVC */
unsigned char call_direction;
/* in=0, out=1 */
unsigned char domain; /* was in 8.0, not in R7. Put it back */
int perVC_stats[perVCmon_size];

};

The xstate member contains the state of the VC. Possible states and meanings are:

TABLE 7–16 xstate summary

Entry Description

Idle Record is not in use

AskingNRS CR is being validated by NRS

P1 VC state is READY

P2 VC in DTE CALL REQUEST

P3 VC in DXE INCOMING CALL

P5 VC in CALL COLLISION

DataTransfer VC in P4 (see xflags

DXEbusy VC in P4, DXE sent RNR

D2 VC in DTE RESET REQUEST

D2pending Wanting buffer for RESET

WtgRCU Waiting U RSC to int.err.

WtgRCN Waiting X.25 RSC for user

WtgRCNpending Buffer reqd to enter state

P4pending Buffer reqd for X.25 RSC

84 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–16 xstate summary (continued)

Entry Description

pRESUonly Buffer for user rst only

RESUonly User only being reset

pDTransfer Buffer for RSC to user

WRCUpending Buffer reqd internal RST

DXErpending Buffer reqd RST indication

DXEresetting Waiting U RSC to X.25 RI

P6 VC in DTE CLEAR REQUEST

P6pending Wanting buffer for CLEAR

WUcpending Buffer reqd DI no netconn

WUNcpending Buffer reqd internal DI

DXEcpending Buffer reqd CLR REQ->User

DXEcfpending Buffer reqd CLC to User

The perVC_stats member contains statistics. Entries are statistics counts, as
follows:

TABLE 7–17 perVC_stats summary

Entry Description

cll_in_v Calls received and indicated

cll_out_v Calls sent

caa_in_v Call established for outgoing

Network Layer ioctls 85

TABLE 7–17 perVC_stats summary (continued)

Entry Description

caa_out_v Call established for incoming

dt_in_v Data packets received

dt_out_v Data packets sent

ed_in_v Interrupts received

ed_out_v Interrupts sent

rnr_in_v Receiver not ready received

rnr_out_v Receiver not ready sent

rr_in_v Receiver ready rvcd

rr_out_v Receiver ready sent

rst_in_v Resets received

rst_out_v Resets sent

rsc_in_v Restart confirms received

rsc_out_v Restart confirms sent

clr_in_v Clears received

clr_out_v Clears sent

clc_in_v Clear confirms received

clc_out_v Clear confirms sent

86 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

7.8 N_linkconfig —Configure the wlcfg
Database
This ioctl is used to configure the wlcfg database for a link. The wlcfg database
appropriate to a link is carried as the M_DATApart of the ioctl N_linkconfig . The
U_LINK_ID member of the wlcfg structure specifies the link to be configured. The
wlcfg database structure is defined in the
/usr/include/netx25/x25_control.h file.

Note - This ioctl affects currently open connections and could therefore disrupt users
significantly. For this reason it can only be used by root.

The wlcfg database structure contains the members described below:

U_LINK_ID

The upper level link identifier which is quoted by upper level software in the
xaddrf address structure to specify which link a call is to be sent on. It is also used
to identify which link an incoming call arrived on.

NET_MODE

This determines the characteristics of the network protocol Possible values are:

TABLE 7–18 NET_MODEvalues

String Value Network, X.25 Type, or Country

X25_LLC 1 X.25(84/88)/LLC2

X25_88 2 X.25(88)

X25_84 3 X.25(84)

X25_80 4 X.25(80)

GNS 5 UK

AUSTPAC 6 Australia

DATAPAC 7 Canada

Network Layer ioctls 87

TABLE 7–18 NET_MODEvalues (continued)

String Value Network, X.25 Type, or Country

DDN 8 USA

TELENET 9 USA

TRANSPAC 10 France

TYMNET 11 USA

DATEX_P 12 Germany

DDX_P 13 Japan

VENUS_P 14 Japan

ACCUNET 15 USA

ITAPAC 16 Italy

DATAPAK 17 Sweden

DATANET 18 Holland

DCS 19 Belgium

TELEPAC 20 Switzerland

F_DATAPAC 21 Finland

FINPAC 22 Finland

PACNET 23 New Zealand

LUXPAC 24 Luxembourg

X25_Circuit 25 dialup call

88 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

X25_VSN

This determines the version of the X.25 protocol used over the network. Allowed
values are:

� 0 indicating X.25(80)

� 1 indicating X.25(84)

� 2 indicating X.25(88)

Setting NET_MODEto X25_LLC overrides an X.25 (80) value.

L3PLPMODE

Indicates whether the link is DTE or DCE. Allowed values are:

� 0 indicating DCE

� 1 indicating DTE

� 2 indicating that this is to be resolved by following the procedures in ISO 8208 for
DTE-DTE operation

LPC to HPC

Logical channel range assigned to PVCs.

LIC to HIC

Logical channel range assigned to one way incoming logical channels.

LTC to HTC

Logical channel range assigned to two-way logical channels.

LOCto HOC

Logical channel range assigned to one-way outgoing logical channels.

Note - In a DTE/DTE environment, one of the interacting pairs views these ranges
as a DCE, for example, LIC to HIC are viewed as one-way outgoing. HxC = LxC = 0
denotes no channels in that grouping.

NPCchannels , NICchannels , NTCchannels , NOCchannels and Nochnls

The number of logical channels assigned. This is calculated from the logical channel
ranges and can only be changed only by altering these ranges.

THISGFI

0x10 indicates Modulo 8. 0x20 indicates Modulo 128 sequence numbering operates
on the network.

LOCMAXPKTSIZE

The maximum acceptable size of local to remote data packets, expressed as a power
of 2.

Network Layer ioctls 89

REMMAXPKTSIZE

The maximum acceptable size of remote to local data packets expressed as a power
of 2.

LOCDEFPKTSIZE

The default local-to-remote packet size expressed as a power of 2.

REMDEFPKTSIZE

The default remote-to-local packet size on a particular link, expressed as a power of 2.

LOCMAXWSIZE

The maximum acceptable local to remote X.25 window size.

REMMAXWSIZE

The maximum acceptable remote to local X.25 window size.

LOCDEFWSIZE

The local-to-remote default window size.

REMDEFWSIZE

The remote-to-local default window size.

MAXNSDULEN

The default maximum length beyond which concatenation is stopped and the data
currently held is passed to the NS-user. This parameter can be overridden on a
per-circuit basis using the nsdulimit parameter on N-CONNECTrequests and
N-CONNECTresponses.

ACKDELAY

The maximum delay in ticks (0.1 second units) over which a pending
acknowledgement will be withheld. The default value is 5, the permitted range
1—32000.

T20value

The length of DTE timer T20, the Restart Request Response Timer, in ticks (0.1
second units). The default value is 1800. The permitted range is 0—32000.

T21value

The length of DTE timer T21, the Call Request Response Timer, in ticks (0.1 second
units). The default value is 2000. The permitted range is 0—32000.

T22value

The length of DTE timer T22, the Reset Request Response Timer, in ticks (0.1 second
units). The default value is 1800. The permitted range is 0—32000.

T23value

90 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

The length of DTE timer T20, the Clear Request Response Timer, in ticks (0.1 second
units). The default value is 1800. The permitted range is 0—32000.

Tvalue

The maximum time over which acknowledgments of data received from the remote
transmitter will be withheld. After this timer expires any withheld acknowledgments
are carried by a Receive Not Ready (RNR) packet. This timer ensures that non-receipt
of acknowledgment by the remote transmitter does not cause resets within the virtual
circuit. This timer does not cause transmission of window status every Tvalue ticks
(0.1 second units). The default value is 750. The permitted range is 0—32000.

T25value

The length of DTE timer T25, the Window Rotation Timer, in ticks (0.1 second units).
The default value is 1500, as specified in ISO 8208. The permitted range is 0—32000.

The code may be configured to be lenient in the case of flow control inhibition (see
Section 11.2 of ISO 8208). That is, a decision has to be made in order to cater for the
case when the remote station does not rotate the window fast enough to prevent
expiration of T25. ISO 8208 recommends strongly that high level protocols be used to
effect recovery, to achieve this, set T25 to either zero (implying infinite) or a very
large value.

The timer Tvalue , should be set to a value approximately half T25value , in order
to prevent the remote PLP from resetting on T25 expiration. The timer ACKDELAY
should be approximately 0.5 seconds, although this recommendation may change
after evaluation and experience is gained.

Finally, the idlevalue timer may be set according to how quickly the LAN
administration wishes the resource to be reclaimed, while connectvalue should be
about three times the T20 value.

Note also that ISO 8208 recommends that the retry values R20, R22 and R23 should
never be set to zero in order to cater for the possibility of collisions (see footnote to
Figure 6, ISO 8208).

T26value

The length of DTE timer T26, the Interrupt Response Timer, in ticks (0.1 second
units). The default value is 1800. The permitted range is 0—32000.

T28value

The length of DTE timer T28, the Registration Request Timer, in ticks (0.1 second
units). The default value is 1800. The permitted range is 0—32000.

idlevalue

The number of ticks (0.1 second units) over which a link-level connection associated
with no connections is maintained. This timer is meaningful on a LAN or on a
dial-up WAN connection. The default value is 600. The permitted range is 0—32000.

connectvalue

Network Layer ioctls 91

The number of ticks (0.1 second units) over which the DTE/DCE resolution phase
must be complete. On expiration of this timer, the link connection is disconnected
and all pending connections are aborted. The default value is 2000. The permitted
range is 0—32000.

R20value

The DTE Restart Request Retransmission Count. The default value is 1. The
permitted range is 1—255.

R22value

The DTE Restart Request Retransmission Count. The default value is 1. The
permitted range is 1—255.

R23value

The DTE Restart Request Retransmission Count. The default value is 1. The
permitted range is 1—255.

localdelay and accessdelay

In milliseconds, the values of the transit delay attributed to internal processing and
the effect of the line transmission rate. These values are used to check whether any
maximum acceptable end-to-end transit delay specified in an N-CONNECT request
or an N-CONNECT indication is in fact available.

locmaxthclass

The maximum value of the throughput class quality of service parameter in the
local-to-remote direction which is supported. According to ISO 8208 this parameter is
bounded in the range 3 and ≤ 12 corresponding to a range 75 to 48000 bits/second.

remmaxthclass

The maximum value of the throughput class quality of service parameter in the
remote-to-local direction which is supported. According to ISO 8208 this parameter is
bounded in the range 3 and ≤ 12 corresponding to a range 75 to 48000 bits/second.

locdefthclass

In some PSDNs, for example, TELENET, negotiation of throughput class is
constrained to be towards a configured default throughput class. In such cases the
flag thclass_neg_to_def (see below) is non-zero and locdefthclass is the
default for the local-to-remote direction. In other PSDNs, locdefthclass should be
set equal to the value of locmaxthclass (see above).

Note that locmaxthclass must be greater than or equal to locdefthclass .

remdefthclass

In some PSDNs, for example, TELENET, negotiation of throughput class is
constrained to be towards a configured default throughput class. In such cases the
flag thclass_neg_to_def is non-zero and remdefthclass is the default for the
remote-to-local direction. In other PSDNs, set remdefthclass equal to the value of
remmaxthclass (see above).

92 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Note that remmaxthclass must be greater than or equal to remdefthclass .

locminthclass

According to ISO 8208, the throughput class parameter must be greater than or equal
to 3 and less than or equal to 12. Some PSDNs may provide a different mapping, in
which case locminthclass is the minimum value in the local-to-remote direction.
Note that locmaxthclass must be less than or equal to locdefthclass which
must be greater than or equal to locminthclass .

remminthclass

According to ISO 8208, the throughput class parameter is defined in the range 3 and
12. Some PSDNs may provide a different mapping, in which case remminthclass
is the minimum value in the remote-to-local direction. Note that remmaxthclass
must be greater than or equal to remdefthclass which must be greater than or
equal to remminthclass .

CUG_CONTROL

This member controls Closed User Group actions in two ways. Firstly, it describes
the type, if any, of Closed User Group facilities subscribed to. This is used to choose
the appropriate encoding for any closed user group facilities in N-CONNECTrequests.
Secondly, it specifies the action to be taken if the Closed User Group optional facility
is present in an incoming call. It is a bit map where the bits have the following
meanings:

TABLE 7–19 bit map summary

Bit Description

0 subscription to CUGs with no Outgoing or Incoming Access

1 subscription to Preferential CUG

2 subscription to CUGs with Outgoing Access

3 subscription to CUGs with Incoming Access (For Information Only)

4 subscription to Basic Format CUGs

5 subscription to Extended format CUGs

6 reject incoming calls containing any Closed User Group facility

7 reserved

Bits 0 and 2 are mutually exclusive as are bits 4 and 5.

Network Layer ioctls 93

SUB_MODES

This member is a bit map, which contains information on the various subscription
options for a particular PSDN link. The entries mean:

TABLE 7–20 SUB_MODESsummary

Entry Description

SUB_EXTENDED Subscribe to extended call packets. This permits the use of
extended CALL REQUESTand CALL ACCEPTpackets.

BAR_EXTENDED Treat incoming extended call packets as a procedure
error.The use of extended call packets allows window and
packet size negotiation. Not setting the BAR_EXTENDED
member permits the use of extended INCOMING CALLand
CALL CONFIRMpackets.

SUB_FSELECT Subscribe to fast select with no restriction on response. This
permits the use of fast select on INCOMING CALLpackets.

SUB_FSRRESP Subscribe to fast select with restriction on response. This
permits the use of fast select with restricted response on
INCOMING CALLpackets.

SUB_REVCHARGE Subscribe to reverse charging. This permits the use of
reverse charges on INCOMING CALLpackets.

SUB_LOC_CHG_PREV Subscribe to local charging prevention. If set, this member
has two effects. It prevents the use of reverse charges on
INCOMING CALLpackets regardless of the setting of
SUB_REVCHARGE, and any CALL REQUESTpacket will have
the reverse charges facility automatically inserted.

SUB_TOA_NPI_FMT Subscribe to using TOA/NPI address format. This specifies
that all call set-up and clearing packets transmitted will
always use the TOA/NPI address format.

BAR_TOA_NPI_FMT Treat incoming TOA/NPI address formats as a procedure
error. The BAR_TOA_NPI_FMTentry if set specifies that any
call set-up and clearing packets received employing the
TOA/NPI address format will be treated as a procedure
error.

BAR_CALL_X32_REG Refuse to accept incoming calls while X.32 registration is
incomplete.

94 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–20 SUB_MODESsummary (continued)

Entry Description

SUB_NUI_OVERRIDE Subscribe to NUI override.The SUB_NUI_OVERRIDEentry if
set specifies that when an NUI is provided in a CALL
REQUEST, then any associated subscription time options
override the facilities which apply to the interface, for the
duration of that particular call.

BAR_INCALL Bar incoming calls.

BAR_OUTCALL Bar outgoing calls.

Some PSDNs require certain procedures to be followed which are not standard for all
X.25 networks. The structure psdn_local contains the flags used to tune the actions
of the X.25 driver to the requirements of the particular network to which the
configuration refers. The entries and values taken by the psdn_local structure are
described below.

PSDN_MODES

This is used to tune the various options for a particular PSDN link. It is a bit map in
which the various entries when set imply:

TABLE 7–21 PSDNModes

Mode Description

ACC_NODIAG Allow the omission of the diagnostic byte in incoming
RESTART, CLEAR and RESET INDICATION.

USE_DIAG Use diagnostic packets.

CCITT_CLEAR_LEN Restrict the length of a CLEAR INDICATION to 5 bytes and
a CLEAR CONFIRM to 3 bytes.

BAR_DIAG Disallow diagnostic packets.

DISC_NZ_DIAG Discard diagnostic packets on a non-zero LCN.

ACC_HEX_ADD Allow DTE addresses to contain hexadecimal digits.

BAR_NONPRIV_LISTEN Disallow a non-privileged user (that is, one without
superuser privilege) from listening for incoming calls.

Network Layer ioctls 95

TABLE 7–21 PSDNModes (continued)

Mode Description

INTL_PRIO Prioritize international calls.

DATAPAC_PRIORITY Use DATAPAC (1976) priority rules.

ISO_8882_MODE Use strict ISO8882 conformance.

X121_MAC_OUT Keep X.121 address in call packets to LAN.

X121_MAC_IN Put X.121 address in call packets from LAN.

The BAR_DIAGand DISC_NZ_DIAG entries specify the treatment of incoming
diagnostic packets. When BAR_DIAG is set, incoming diagnostic packets are handled
as follows. If USE_DIAG is set, and the link is configured as a DCE, then a diagnostic
packet is sent to the DTE. Otherwise, the incoming diagnostic packet is simply
discarded. When DISC_NZ_DIAG is set, diagnostic packets will be discarded when
received on non-zero logical channel numbers. If ACC_HEX_ADDis set, DTE
addresses are not restricted to containing only BCD digits.

intl_addr_recogn

The main use of this feature is in conjunction with the intl_prioritised member
discussed below. Possible values are:

TABLE 7–22 Intl_addr_recogn summary

Value Description

0 International calls are not distinguished.

1 The DNIC of the called DTE address is examined and compared to that held in
psdn_local members dnic1 and dnic2 . A mismatch implies an international
call.

2 International calls are distinguished by having a “1” prefix on the called DTE
address; for example, DATAPAC has this feature.

3 International calls are distinguished by having a “0” prefix on the called DTE
address.

dnic1 , dnic2

96 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

The first four BCD digits of the DNIC and is only used when intl_addr_recogn
has the value one.

intl_prioritised

This determines whether some prioritization method is to be used for international
calls, and is used in conjunction with prty_encode_control and
prty_pkt_forced_value .

intl_prioritised has two values: zero implying no priority, while non-zero
implies an attempt to prioritize according to ptry_encode_control .

intl_addr_recogn has the value one.

prty_encode_control

This describes how the priority request is to be encoded for this PSDN. Values are:

TABLE 7–23 prty_encode_control values

Value Description

0 The priority is encoded according to section 3.3.3 of Annex G, Blue Book Volume
VIII, Fascicle VIII.3 (CCITT, 1988).

1 Encode the priority request using the DATAPAC Priority Bit (1976 version).

2 Encode the priority request using the DATAPAC Traffic Class (1980 version which
uses the Calling Network facility marker).

prty_pkt_forced_value

If this entry is non-zero then it implies that all priority call requests and incoming
calls should have the associated packet size parameter forced to this value (note that
the actual packet size is two to the power of this parameter; for example, 7 implies
128 byte packets). A zero value implies no special action on packet size is required.

src_addr_control

This provides the means to override or set the calling address in outgoing call
requests for this PSDN. It takes the following values:

Network Layer ioctls 97

TABLE 7–24 src_addr_control values

Value Description

0 No special action. Calling DTE addresses are encoded as and if provided by the
network service user.

1 Force omission of the calling DTE address, even if the network service user
supplied one.

2 If the network service user does not supply a DTE address, use the configured
DTE address (local_address) for this PSDN (which can, of course, be NULL).

3 Force the calling DTE address to that contained in local_address , even if the
network service user supplied one.

dbit_control

This member specifies the action to be taken:

� during the call setup phase, where both parties do not agree on the use of the
D-bit;

� during the data transfer phase, on receipt of a data packet with the D-bit set,
where the use of the D-bit has not been agreed by both parties.

Actions which may be specified during the call setup phase are:

� Leave the D-bit set and pass the packet on.

� Zero the D-bit and pass the packet on.

� Clear the call.

Actions which may be specified during the data transfer phase are:

� Leave the D-bit set and pass the packet on.

� Zero the D-bit and pass the packet on.

� Reset the call.

thclass_neg_to_def

This accommodates certain network procedures which dictate that negotiation of
throughput class must be towards the default value (for example, TELENET), the
default value being configured into the member defthclass . A non-zero value in
this member requests use of this option, zero implies non-use.

thclass_type

This provides the means by which throughput class encodings can be used to assign
window and packet sizes (according to the arrays thclass_wmap and
thclass_pmap described below). It should be noted that some implementations of

98 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

X.25 do not use the X.25 packet and window negotiation but instead rely on
mapping the throughput class to these parameters (see thclass_type 1,2 and 3).
Thclass_type should be used on such PSDNs. Note also that the values of
locmaxthclass and remmaxthclass may have an effect on what is achieved
through the mapping.

The values assigned to thclass_type to indicate the mapping are:

TABLE 7–25 thclass_type values

Value Description

0 No special action is to be taken on throughput class.

1 Use only the low nibble of the throughput class parameter to map window and
packet size for both directions and encode the high nibble as zero. Note that the
window and packet sizes are intended to be asserted by the throughput class
parameter.

2 Use only the high nibble of the throughput class parameter to map window and
packet size for both directions and encode the low nibble as zero. Note that the
window and packet sizes are intended to be asserted by the throughput class
parameter.

3 Use both nibbles of the throughput class to map window and packet size for the
appropriate directions. Note that the window and packet sizes are intended to be
asserted by the throughput class parameter.

Values 1, 2 and 3 are intended for use on non-standard X.25 PSDN implementations.
Note the following.

For the special values 1 and 2:

� Do not select these values when window and packet sizes can appear in call setup
packets (that is, subscription to window and packet size negotiation) since this
algorithm is designed for those PSDNs which support only the mapping
procedure.

� In call requests, the network service user should specify equal values for
locthroughput and remthroughput in the qosformat , to ensure that the
correct behavior is obtained (see also high and low nibble usage for these two
values).

� The user will be barred from negotiating window and packet sizes, and the
throughput class will not be indicated in a connect indication.

For the value 3, window and packet sizes can be negotiated by the network service
user only through the throughput class parameter. Negotiations through the flow
negotiation parameters when subscribing to the extended facility option are

Network Layer ioctls 99

overridden. However, as for values 1 and 2, this value is intended only for cases
where this is the only means of negotiating window and packet sizes.

Since window and packet sizes can be mapped using these three values without the
use of window and packet negotiation facilities, it is important that the map
(thclass_wmap and thclass_pmap) is correct for the PSDN, in order to ensure
that both called and calling parties agree on the values associated with a particular
throughput class.

thclass_wmap , thclass_pmap

The mapping between the value of the throughput class (a number 0 to 15) and a
window and packet parameter. Zero in this table indicates that the currently set or
default value be used.

local_address

Holds the local DTE address for this X.25 link in a byte array,
local_address.lsap_add , with an associated length byte
local_address.lsap_len .

7.9 N_linkent —Configure a Newly
Linked Driver
This ioctl is sent downstream by the x25netd process to configure a newly linked
driver below the X.25 multiplexor. It supplies the parameters necessary to identify
the link via the identifier and to register the mode of the lower driver.

Note - This ioctl is only used when X.25 is initializing. As it affects currently open
connections and could therefore disrupt users significantly, it can only be used by
root. It should not be used by user applications, as it may be withdrawn from future
versions of Solstice X.25.

7.10 N_linkmode —Alter the Characteristics
of a Link
This ioctl is used to read or change the SUB_MODESMember of a particular wlcfg
database appropriate to a link. This configuration ioctl is used to alter characteristics
of a link’s operation, for example, to temporarily bar incoming calls.

100 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Note - This ioctl affects currently open connections and could therefore disrupt users
significantly. For this reason it can only be used by root.

Associated Structure
The parameters are carried as the M_DATApart of the N_linkmode ioctl as follows:

struct linkoptformat {
uint32_t U_LINK_ID;
unsigned short newSUB_MODES;
unsigned char rd_wr;

};

The members of the linkoptformat structure are:

TABLE 7–26 linkoptformat fields

Member Description

newSUB_MODE This is the new SUB_MODESvalue in a write ioctl or the current value
in a read ioctl.

U_LINK_ID This identifies the particular link and must match one of the wlcfg
database entries.

rd_wr This determines read or write mode. A value of zero indicates read
while non-zero indicates write.

In the case of read, the same structure is returned with the current value of
SUB_MODESfor the link.

7.11 N_linkread —Read the wlcfg
Database
This ioctl is used to extract the wlcfg database for a link in a running system for
examination. The wlcfg database is returned within the M_DATApart of the
N_linkread ioctl. Make sure that there is enough space in the data area to receive
the copy of the structure.

Network Layer ioctls 101

Refer to Section 7.8 “N_linkconfig —Configure the wlcfg Database” on page 87
for a complete list of the fields contained in the wlcfg database structure.

7.12 N_nuidel —Delete Specified NUI
Mapping
This ioctl deletes the mapping for a specified Network User Identifier (NUI).

Note - This ioctl can disrupt other users significantly. For this reason it can only be
used by root.

Associated Structure
The following structure is associated with this ioctl:

struct nui_del {
char prim_class; /* Always NUI_MSG */
char op; /* Always NUI_DEL */
struct nuiformat nuid; /* NUI to delete */

};

The members of the nui_del structure are:

TABLE 7–27 nui_del fields

Member Description

prim_class The value of this member is always NUI_MSG.

op The value of this member is always NUI_DEL.

nuid The Network User Identifier of the entry to be deleted

102 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

7.13 N_nuiget —Read the Mapping for a
Specified NUI
This ioctl is used to read the mapping for a specified Network User Identifier (NUI).

Associated Structure
The following structure is associated with this ioctl:

struct nui_get {
char prim_class; /* Always NUI_MSG */
char op; /* Always NUI_GET */
struct nuiformat nuid; /* NUI to get */
struct facformat nuifacility; /* NUI facilities */

The members of the nui_get structure are:

TABLE 7–28 nui_get fields

Member Description

prim_class The value of this member is always NUI_MSG.

op The value of this member is always NUI_DEL.

nuid The Network User Identifier of the entry you want to read.

nuifacility The NUI facilities associated with the entry you want to read.

7.14 N_nuimget —Read all Existing NUI
Mappings
This ioctl is used to read all existing mappings for Network User Identifiers (NUI).

Network Layer ioctls 103

Associated Structure

The following structure is associated with this ioctl:

struct nui_mget {
unsigned int first_ent; /* First entry required */
unsigned int last_ent; /* Last entry required */
unsigned int num_ent; /* No of entries required */
char buf[MGET_NBUFSIZE]; /* Data Buffer */

};

The members of the nui_mget structure are:

TABLE 7–29 Members of the nui_mget structure

Member Description

buf Contains the structure for the returned mapping entries.

first_ent Informs the X.25 multiplexor where to start or restart the table read. It
should initially be set to 0, to indicate starting at the beginning of the
table.

num_ent Indicates the number of mapping entries returned in the buf member.

last_ent Set on return to point past the last entry returned (that is, a subsequent
N_nuimget ioctl should have first_ent set to the value returned here).

7.15 N_nuiput —Store a set of NUIs
This ioctl is used to store a set of Network User Identifiers (NUIs) and associated
facilities mappings within the X.25 multiplexor. It is used in conjunction with the
NUI override facility option.

Note - This ioctl affects currently open connections and could therefore disrupt users
significantly. For this reason it can only be used by root.

Associated Structure

The following structures are associated with this ioctl:

104 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

struct nui_put {
char prim_class; /* Always NUI_MSG */
char op; /* Always NUI_ENT */
struct nuiformat nuid; /* NUI */

struct facformat nuifacility; /* NUI facilities */
};

The members of the nui_put structure are:

TABLE 7–30 nui_put fields

Member Description

prim_class This is always set to NUI_MSG.

op This is always set to NUI_ENT.

nuid The Network User Identifier of the entry you want to store. This is
stored in the nuiformat structure.

nuifacility Any relevant NUI facilities. These are stored in the facformat
structure.

The nuiformat structure looks like this:

#define NUIMAXSIZE 64
#define NUIFACMAXSIZE 32
struct nuiformat {

unsigned char nui_len;
unsigned char nui_string[NUIMAXSIZE]; /* Network User Identifier */

};

The members of the nuiformat structure are

TABLE 7–31 nuiformat fields

Member Description

nui_len The length of the NUI.

nui_string The NUI itself.

The facformat structure looks like this:

struct facformat {
unsigned short SUB_MODES; /* Mode tuning bits for net */

Network Layer ioctls 105

unsigned char LOCDEFPKTSIZE; /* Local default pkt size */
unsigned char REMDEFPKTSIZE; /* Local default pkt size */
unsigned char LOCDEFWSIZE; /* Local default window size */
unsigned char REMDEFWSIZE; /* Local default window size */
unsigned char locdefthclass; /* Local default value */
unsigned char remdefthclass; /* Remote default value */
unsigned char CUG_CONTROL; /* CUG facilities */

};

The members of the facformat structure are:

106 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–32 facformat fields

Member Description

SUB_MODES The subscription options for a PSDN link. Possible values and
meanings are:

SUB_EXTENDED

Subscribe to extended call packets.This allows for packet and window
size negotiation.

BAR_EXTENDED

Treat incoming extended call packets as a procedure error.

SUB_FSELECT

Subscribe to fast select with no restriction on response. This applies to
INCOMING CALL packets.

SUB_FSRRESP

Subscribe to fast select with restriction on response. This applies to
INCOMING CALLpackets.

SUB_REVCHARGE

Subscribe to reverse charging. This applies to INCOMING CALLpackets.

SUB_LOC_CHG_PREV

Subscribe to local charging prevention. This overrides the setting of
SUB_REVCHARGE.

SUB_TOA_NPI_FMT

Subscribe to using TOA/NPI address format.

BAR_TOA_NPI_FMT

Treat incoming TOA/NPI address formats as a procedure error.

SUB_NUI_OVERRIDE

Subscribe to NUI override. This specifies that when an NUI is provided
in a CALL REQUEST, any associated subscription time options override
the facilities which apply to the interface, for the duration of that
particular call.

BAR_INCALL

Bar incoming calls.

BAR_OUTCALL

Bar outgoing calls.

LOCDEFPKTSIZE Local default packets size

Network Layer ioctls 107

TABLE 7–32 facformat fields (continued)

Member Description

REMDEFPKTSIZE Remote default packet size

LOCDEFWSIZE Local default window size

REMDEFWSIZE Remote default window size

locdefthclass Local default value

remdefthclass Remote default value

CUG_CONTROL CUG facilities

7.16 N_nuireset —Delete all Existing NUI
Mappings
This ioctl is used to delete all existing mappings for Network User Identifiers (NUIs).

Note - This ioctl can disrupt other users significantly. For this reason it can only be
used by root.

Associated Structure
The following structure is associated with this ioctl:

struct nui_reset {
char prim_class; /* Always NUI_MSG */
char op; /* Always NUI_RESET */

};

The members of the nui_reset structure are:

108 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 7–33 nui_reset fields

Member Description

prim_class The value of this member is always NUI_MSG.

op The value of this member is always NUI_DEL.

7.17 N_putpvcmap —Change PVC Packet
and Window Sizes
This ioctl is used to change the packet and window sizes of a PVC from the defaults
configured for the link that the PVC is active on.

Note - This ioctl can disrupt other users significantly. For this reason it can only be
used by root.

Associated Structure
The following structure is associated with this ioctl:

struct pvcconff {
uint32_t link_id; /* Link # */
unsigned short lci; /* Logical channel */
unsigned char locpacket; /* Loc packet size */
unsigned char rempacket; /* Rem packet size */
unsigned char locwsize; /* Loc window size */
unsigned char remwsize; /* Rem window size */

};

The members of the pvcconff structure are:

Network Layer ioctls 109

TABLE 7–34 pvcconf fields

Member Description

link_id The identifier of the PVC you want to change

lci The logical channel identifier.

locpacket The local packet size to use.

rempacket The remote packet size to use

locwsize The local window size.

remwsize The remote window size.

7.18 N_traceoff ioctl—Cancel N_traceon
This ioctl is used to cancel a previously issued N_traceon ioctl.

Note - This ioctl affects currently open connections and could therefore disrupt users
significantly. For this reason it can only be used by root.

7.19 N_traceon —Turn on Packet Level
Tracing
This ioctl turns on packet level tracing for a particular link or all configured links.
Each incoming and outgoing X.25 packet will be sent up the stream on which the
N_traceon ioctl was made.

Note - This ioctl can have a serious impact on security. For this reason it can only be
used by root.

110 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Associated Structures
The following structures are associated with this ioctl:

struct trc_regioc {
uint8 all_links; /* Trace on all links */
uint8 spare[3]; /* for alignment */
uint32 linkid; /* Link */
uint8 level; /* Level of tracing required */
uint8 spare2[3]; /* for alignment */
uint32 active[MAX_LINKS+1]; /* tracing actively on */

};

The members of the trc_regioc structure are:

TABLE 7–35 trc_regioc fields

Member value

all_links Returns the linkids of all links for which tracing was activated in the
active array.

linkid Specify tracing for a particular link.

level The level of tracing required.

active Indicates that tracing is currently active.

Each X.25 packet is preceded by a trc_ctl structure:

/*
Types of tracing message

*/
#define TR_CTL 100 /* Basic */
#define TR_LLC2_DAT 101 /* Basic + LLC2 parameters */
#define TR_LAPB_DAT TR_CTL /* Basic for now */
#define TR_MLP_DAT TR_CTL /* Basic for now */
#define TR_X25_DAT TR_CTL /* Basic for now */
#define TR_DLPI 102 /* type used for tracing DLPI primitives */

/*
Format for control part of trace messages

*/
struct trc_ctl {

uint8 trc_prim; /* Trace msg identifier */
uint8 trc_mid; /* Id of protocol module */
uint16 trc_spare; /* for alignment */
uint32 trc_linkid; /* Link Id */
uint8 trc_rcv; /* Message tx or rx */
uint8 trc_spare2[3]; /* for alignment */
uint32 trc_time; /* Time stamp */
uint16 trc_seq; /* Message seq number */

Network Layer ioctls 111

};

TABLE 7–36 trc_ctrl fields

Member Description

trc_prim Always set to TR_X25_DAT.

trc_mid Always set to the module ID of the X.25 multiplexor (200).

trc_linkid The link identifier

trc_rcv Message receive or rx

trc_time Time stamp

trc_seq Message seq number

7.20 N_X25_ADD_ROUTE—Set Fields of
X25_ROUTEStructure
Sets the fields in the X25_ROUTEstructure to the desired values.

Note - This ioctl can disrupt other users significantly. For this reason it can only be
used by root.

Associated Structure

The x25_route_s data structure takes the following form:

typedef struct x25_route_s {
uint32_t index; /* used for reading next route */
u_char r_type;

#define R_NONE 0
#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4
#define R_AEF_SOURCE 5

CONN_ADR x121;

112 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

u_char pid_len;
#define MAX_PID_LEN 4

u_char pid[MAX_PID_LEN];
AEF aef;
int linkid;
X25_MACADDR mac;
int use_count;
char pstn_number[16];

} X25_ROUTE;

Example
#include <sys/strupts.h>

struct strioctl ioc ;
int fd ;
X25_ROUTE r;

fd = open(‘‘/dev/x25’’, O,RDW);
/*prepare route*/

initialize

io.ic_cmd = N_X25_ADD_ROUTE;
io.ic_timeout = 0; /*system default : 15 secs */
io.ic_len = sizeof(X25_ROUTE);
io.ic_dp = (char *)&r;

if (ioctl (fd, I_STR, &ioc) <0) {
perror(‘‘ xxxioctl’’);

}
}

7.21 N_X25_FLUSH_ROUTES—Flush all
Routes
Flushes all routes out of X25_ROUTEstructure.

Note - This ioctl can disrupt other users significantly. For this reason it can only be
used by root.

Associated Structure

The x25_route_s data structure takes the following form:

typedef struct x25_route_s {
uint32_t index; /* used for reading next route */
u_char r_type;

#define R_NONE 0

Network Layer ioctls 113

#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4
#define R_AEF_SOURCE 5

CONN_ADR x121;
u_char pid_len;

#define MAX_PID_LEN 4
u_char pid[MAX_PID_LEN];
AEF aef;
int linkid;
X25_MACADDR mac;
int use_count;
char pstn_number[16];

} X25_ROUTE;

Example
#include <sys/strupts.h>

struct strioctl ioc ;
int fd ;
X25_ROUTE r;

fd = open(‘‘/dev/x25’’, O,RDW);
/*prepare route*/

initialize

io.ic_cmd = N_X25_FLUSH_ROUTES;
io.ic_timout = 0;
io.ic_len = 0;
io.ic_dp = (char *)NULL;

if (ioctl(x25s, I_STR, &ioc))
perror("ioctl(X25_FLUSH_ROUTES)");

}
}

7.22 N_X25_GET_ROUTE—Obtain Routing
Information
Obtains the routing information for a given destination address.

Associated Structure

The x25_route_s data structure takes the following form:

typedef struct x25_route_s {
uint32_t index; /* used for reading next route */

114 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

u_char r_type;
#define R_NONE 0
#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4
#define R_AEF_SOURCE 5

CONN_ADR x121;
u_char pid_len;

#define MAX_PID_LEN 4
u_char pid[MAX_PID_LEN];
AEF aef;
int linkid;
X25_MACADDR mac;
int use_count;
char pstn_number[16];

} X25_ROUTE;

Example
#include <sys/strupts.h>

struct strioctl ioc ;
int fd ;
X25_ROUTE r;

fd = open(‘‘/dev/x25’’, O,RDW);
/*prepare route*/

initialize

io.ic_cmd = N_X25_GET_ROUTE;
io.ic_timeout = 0; /*system default : 15 secs */
io.ic_len = sizeof(X25_ROUTE);
io.ic_dp = (char *)&r;

if (ioctl (fd, I_STR, &ioc) <0) {
perror(‘‘ xxxioctl’’);

}
}

7.23 N_X25_GET_NEXT_ROUTE—Get Next
Routing Entry
Obtains routing information for the next entry in the routing table. When there are
no routes left, error will be -1, and errno will be set to ENOENT.

Associated Structure

The x25_route_s data structure takes the following form:

Network Layer ioctls 115

typedef struct x25_route_s {
uint32_t index; /* used for reading next route */
u_char r_type;

#define R_NONE 0
#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4
#define R_AEF_SOURCE 5

CONN_ADR x121;
u_char pid_len;

#define MAX_PID_LEN 4
u_char pid[MAX_PID_LEN];
AEF aef;
int linkid;
X25_MACADDR mac;
int use_count;
char pstn_number[16];

} X25_ROUTE;

Example
#include <sys/strupts.h>

struct strioctl ioc ;
int fd ;
X25_ROUTE r;

fd = open(‘‘/dev/x25’’, O,RDW);
/*prepare route*/

initialize

io.ic_cmd = N_X25_GET_NEXT_ROUTE;
io.ic_timeout = 0; /*system default : 15 secs */
io.ic_len = sizeof(X25_ROUTE);
io.ic_dp = (char *)&r;

if (ioctl (fd, I_STR, &ioc) <0) {
perror(‘‘ xxxioctl’’);

}
}

7.24 N_X25_RM_ROUTE—Remove Route
From X25_ROUTE
Removes the route for a given destination address.

Note - This ioctl can disrupt other users significantly. For this reason it can only be
used by root.

116 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Associated Structure

The x25_route_s data structure takes the following form:

typedef struct x25_route_s {
uint32_t index; /* used for reading next route */
u_char r_type;

#define R_NONE 0
#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4
#define R_AEF_SOURCE 5

CONN_ADR x121;
u_char pid_len;

#define MAX_PID_LEN 4
u_char pid[MAX_PID_LEN];
AEF aef;
int linkid;
X25_MACADDR mac;
int use_count;
char pstn_number[16];

} X25_ROUTE;

Example
#include <sys/strupts.h>

struct strioctl ioc ;
int fd ;
X25_ROUTE r;

fd = open(‘‘/dev/x25’’, O,RDW);
/*prepare route*/

initialize

io.ic_cmd = N_X25_RM_ROUTE;
io.ic_timeout = 0; /*system default : 15 secs */
io.ic_len = sizeof(X25_ROUTE);
io.ic_dp = (char *)&r;

if (ioctl (fd, I_STR, &ioc) <0) {
perror(‘‘ xxxioctl’’);

}
}

7.25 N_zerostats —Reset X.25 Multiplexor
Statistics Count
This ioctl is used to reset the statistics counts for the X.25 multiplexor.

Network Layer ioctls 117

Note - This ioctl affects currently open connections and could therefore disrupt users
significantly. For this reason it can only be used by root.

118 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 8

Support Functions

Solstice X.25 provides a library of functions that can be used in applications.

Many of the functions make use of the padent and xhostent structures, they are
therefore described first. A description of the functions follows, in alphabetical order.
The tables below group the functions together according to function. The PAD and
xhosts related functions are based on similar functions that are available with IP.

8.1 Linking to the Support Library
The support library for use on 32–bit systems resides in
/opt/SUNWconn/x25/lib/libsx25.so . To link against it, use a command like
this:

hostname% cc -o test test.c -L /opt/SUNWconn/x25/lib -R /opt/SUNWconn/x25/lib -lsx25

The support library for use on 64–bit systems resides in
/opt/SUNWconn/x25/lib/sparcv9/libsx25.so . To link against it, use a
command like this:

hostname% cc -o test test.c -L /opt/SUNWconn/x25/lib -R /opt/SUNWconn/x25/lib -lsx25

119

8.2 Function Summary
The header files used by the NLI support functions are contained in the
/usr/include/netx25 directory.

These functions are related to the PAD Hosts Database:

TABLE 8–1 PAD related functions

function description

endpadent closes the PAD Hosts Database

getpadbyaddr finds the PAD Hosts Database entry for a given address

getpadent reads the next line in the PAD Hosts Database

padtos converts a network PAD Hosts Database structure into a string

setpadent opens and rewinds the PAD Hosts Database

These entries are related to the xhosts file:

TABLE 8–2 xhosts functions

function description

endxhostent closes the xhosts file

getxhostbyaddr finds an entry in the xhosts file by address

getxhostbyname finds an entry in the xhosts by name

getxhostent reads the next line of the xhosts file

setxhostent opens and rewinds the xhosts file

These functions are related to X.25 addressing:

120 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 8–3 X.25 addressing functions

function description

equalx25 compares two X.25 addresses

stox25 converts an X.25 dot format address to an X.25 xaddrf structure

x25tos converts an X.25 xaddrf structure to an X.25 dot format address

These functions are related to configuration files:

TABLE 8–4 Configuration file functions

function description

x25_find_link_parameters finds link configuration files and builds
a linked list of links.

x25_read_config_parameters reads a configuration files into a data
structure by link number

x25_read_config_parameters_file reads a configuration file into a data
structure by filename

x25_save_link_parameters updates the configuration files

x25_write_config_parameters writes a data structure into a
configuration file identified by a link
number

x25_write_config_parameters_file writes a data structure into a
configuration file identified by a
filename

x25_set_parse_error_function installs a function as the default error
handler.

These functions are related to links:

Support Functions 121

TABLE 8–5 Link functions

function description

getnettype returns the type of network configured for a link

linkidtox25 converts a character format link identifier to numeric format

x25tolinkid converts a numeric link identifier to a string

8.3 The padent Structure
The padent structure is defined in the /usr/include/netx25/xnetdb.h file. It
has this format:

struct padent {
struct xaddrf xaddr;
unsigned char x29;
struct extraformat xtras;
unsigned char cud[MAxnetdb.hXCUDFSIZE + 1];

};

The padent structure contains a single entry from the
/etc/SUNWconn/x25/padmapconf file. This contains information about facilities
and so on to be used when making PAD calls to a particular address.

The members of the padent structure are:

TABLE 8–6 Members of padent structure

Member Description

xaddr The hosts X.25 address.

x29 The X.29 version specifier. Possible values are:

0—use the configured default X.29 address

1—use X.29(80) yellow book

2—use X.29(84) red book

3—use X.29(88) blue book

122 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 8–6 Members of padent structure (continued)

Member Description

xtras Any facilities and QOS parameters defined for this entry

cud Any Call User Data defined for this entry.

8.4 The xhostent Structure
The xhostent structure is defined in the /usr/include/netx25/xnetdb.h file.
It has this format:

struct xhostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char *h_addr;

};

The xhostent structure contains a single entry from the xhosts file. This contains
information mapping host names to X.25 addresses and is used when making PAD
calls. By default this file is in the /etc/SUNWconn/x25 directory.

The members of the structure are:

TABLE 8–7 Members of xhostent structure

Member Description

h_name A pointer to the name of the X.25 host, as defined in the xhosts file.

h_aliases A pointer to an array of character pointers that point to aliases for the
X.25 host.

h_addrtype The type of address being returned. This is always CCITT_X25 .

Support Functions 123

TABLE 8–7 Members of xhostent structure (continued)

Member Description

h_length The length in bytes of the structure that contains the X.25 address.

h_addr A pointer to an xaddrf structure containing the network address of the
X.25 host.

8.5 endpadent —Closes the PAD Hosts
Database
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

endpadent()

Description
endpadent closes the PAD Hosts Database.

Arguments
endpadent does not take any parameters.

8.6 endxhostent —Closes the xhosts File
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

endxhostent()

124 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Description
endxhostent closes the xhosts file. By default, this file is located in the
/etc/SUNWconn/x25/ directory.

Arguments
There are no parameters.

Return Value
This function has no return values.

8.7 equalx25 —Compares two X.25
addresses
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/x25db.h>

int equalx25 (
struct xaddrf *x1,
struct xaddrf *x2

);

Description
Compares two X.25 addresses by checking to see whether the two xaddrf structures
holding them are the same.

Arguments
The members of the structure are:

Support Functions 125

TABLE 8–8 Members of xaddrf structure

Member Description

x1 A pointer to the structure containing the first X.25 address for checking.

x2 A pointer to the structure containing the second X.25 address for checking.

Return Values

Returns 1 if the two structures are the same, and 0 if they are not.

8.8 getnettype —Get Type of Network for
a Link
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

int getnettype (
unsigned char *linkid

);

Description

Determines the type of network referred to by a particular link identifier.

Arguments

The parameters are:

TABLE 8–9 getnettype parameters

Parameter Description

linkid A pointer to the link identifier.

126 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Return Values

A negative value indicates an invalid link identifier. The possible network types are:

TABLE 8–10 Network Type

return value network type

LAN local area network

W80 wide area network conforming to 1980 X.25

W84 wide area network conforming to 1984 X.25

W88 wide area network conforming to 1988 X.25

MLPn A multi-link connection with n links.

8.9 getpadbyaddr —Get PAD Database
Entry for Address
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

struct padent * getpadbyaddr(
char *addr

);

Description

getpadbyaddr returns a pointer to the padent structure, containing the entry from
the PAD Hosts Database for the specified address. See Section 8.3 “The padent
Structure” on page 122 for a description of the padent structure.

Arguments

The parameters are:

Support Functions 127

TABLE 8–11 getpadbyaddr parameters

Parameter Description

addr A pointer to a structure containing the address of the host whose database
entry you want.

Return Value
getpadbyaddr returns a pointer to static storage. You must copy the value in order
to keep and reuse it. A return value of 0 indicates that no match was found.

8.10 getpadent —Get Next Line in PAD
Hosts Database
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

struct padent *getpadent()

Description
The getpadent subroutine returns a pointer to a padent structure, which contains
the next entry from the PAD Hosts Database. If necessary getpadent opens the file.

Arguments
There are no parameters.

Return Value
A return value of 0 indicates an error.

128 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

8.11 getxhostbyaddr —Get X.25 Host
Name by Address
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

struct xhostent *getxhostbyaddr(
char *addr,
int len, int type

);

Description

getxhostbyaddr searches the xhosts file for an entry with a matching X.25 host
address. By default, this file is located in the /etc/SUNWconn/x25 directory. It
returns a pointer to a xhostent structure containing information on the entry.

Arguments

The parameters are:

TABLE 8–12 getxhostbyaddr parameters

Parameter Description

addr A pointer to an xaddrf structure containing the address of the host whose
entry you want.

len The length in bytes of addr .

type The address type required. This is always CCITT_X25 .

Return Value

getxhostbyaddr returns a pointer to static storage. You must copy the value in
order to keep and reuse it. A return value of 0 indicates the address supplied is
either invalid or unknown.

Support Functions 129

8.12 getxhostbyname —Get X.25 Address
by Name
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

struct xhostent *getxhostbyname(
char *name

);

Description
getxhostbyname searches the xhosts file for an entry with a matching host
name.By default, this file is located in the /etc/SUNWconn/x25 directory. It returns
a pointer to a xhostent structure containing information on the entry.

Arguments
The parameters are:

TABLE 8–13 getxhostbyname parameters

Parameter Description

name A pointer to the address of a string containing the name of the host
whose entry you want.

Return Value
A pointer to the xhostent structure. A return value of 0 indicates the name
supplied is either invalid or unknown.

130 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

8.13 getxhostent —Reads Next Line of
xhosts File
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

struct xhostent *getxhostent(
);

Description
getxhostent reads the next line of the /etc/SUNWconn/x25/hosts file. It opens
the file if necessary.

Arguments
There are no parameters.

Return Value
A pointer to an xhostent structure. A return value of 0 indicates an error.

8.14 linkidtox25 —Convert Link Identifier
to Numeric Form
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

uint32_t linkidtox25(linkid)
unsigned char *linkid;

Description
Converts a character string link identifier to the numeric format used in X.25
primitives, with a range of 0 - 254.

Support Functions 131

Arguments

The parameters are:

TABLE 8–14 linkidtox25 parameters

Parameter Description

str_linkid A pointer to the string containing the character format link id.

Return Values

On success 0 is returned. On failure the value of MAX_LINKID is returned. By
default, this is 255.

8.15 padtos —Convert PAD Database
Structure Into String
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

int padtos (
struct padent *p,
unsigned char *strp

);

Description

Converts a PAD structure into a string containing all the facilities, CUGs, RPOAs and
call user data defined in the PAD structure. The validity of the structure is checked
before conversion.

Arguments

The parameters are:

132 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 8–15 padtos parameters

Parameter Description

p A pointer to the padent structure for conversion.

strp A pointer to the character string that will hold the result.

The character string pointed to by strp takes this format:

~CUD facilities year CUG RPOA

All of the values are optional:

TABLE 8–16 strp character string values

Value Description

CUD Call User Data. This is always preceded by a tilde (~).

Facilities Holds the values for packet size, window size, fast select and reverse
charging.

Year Possible values are 80, 84 and 88. These correspond to the X.29(80)
Yellow Book, X.29(84) Red Book and X.29(88) Blue Book.

CUG Specifies any call user groups that apply to this call. Preceded by g, G,
b or B. b and B signify bilateral CUGs.

RPOA Signifies any Recognized Private Operating Agency. Always preceded
by T or t.

For example this string:

~hello p7/9w4/2fr 80 B1234 T5678

has the following meaning:

The CUD is hello . There is a local-to-remote packet size of 7 a remote-to-local
packet size of 9, a local-to-remote window size of 4 a remote -to-local window size
of 2. Fast select and reverse charging are set. The X.29(80) Yellow Book
recommendation is being used. The bilateral CUG is 1234 and the RPOA is 5678.

Support Functions 133

Return Values
On success this function returns 0. A negative return value indicates that the pad
structure was invalid.

8.16 setpadent —Open and Rewind the
PAD Hosts Database
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

void setpadent(
int stayopen

);

Description
setpadent opens and rewinds the PAD Hosts Database.

Arguments
The parameters are:

TABLE 8–17 setpadent parameters

Parameter Description

stayopen If this is set to 0, the PAD Hosts Database is closed after each getpadent
call. Otherwise, the PAD Hosts Database is not closed.

134 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

8.17 setxhostent —Open and Rewind the
xhosts File
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

void setxhostent(
int stayopen

);

Description

setxhostent opens the xhosts file and rewinds it. By default, this file is located
in the /etc/SUNWconn/x25 directory.

Arguments

The parameters are:

TABLE 8–18 setxhostent parameters

Parameter Description

stayopen Determines whether the file is closed once it has been rewound. 0
indicates the file is to be closed.

8.18 stox25 —Convert X.25 Address to
xaddrf Structure
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/x25db.h>

int stox25 (
unsigned char *cp, /* X.25 dot format address */

Support Functions 135

struct xaddrf *xad, /* The returned structure */
int lookup

);

Description
Converts an X.25 format address into an xaddrf structure. Can also be used as a
validity check for X.25 addresses.

Arguments
The parameters are:

TABLE 8–19 stox25 parameters

Parameter Description

cp Points to a character string containing the X.25 address for conversion.

xad Points to the xaddrf structure containing the X.25 dot format address.

lookup Determines the level of address checking carried out before the address is
converted. 0 indicates no address checking is carried out. This allows for
faster conversion, but means the address may not be valid for the type of
network it is used on. A non-zero value means that the address format is
checked with the configuration file for the link.

Return Values
0 indicates successful completion. A negative return value indicates that the X.25
address was invalid.

136 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

8.19 x25_find_link_parameters —Finds
Link Configuration Files and Builds a
Linked List of Links
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/x25db.h>
#include <netx25/config_functions.h>

int x25_find_link_parameters (
struct link_data ** lptr

);

Description
This function scans the directory containing the X.25 configuration files and builds a
linked list of data structures.

Arguments
The members of the structure are:

TABLE 8–20 Members of link_data structure

Member Description

lptr Points to the address of a pointer to a link_data structure. Memory for these
structures is dynamically allocated using calloc() .

Return Values
Returns 0 on success.

Support Functions 137

8.20 x25_read_config_parameters —
Reads a Configuration File Into a Data
Structure
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>
#include <netx25/config_functions.h>

int x25_read_config_parameters (
int linkid
struct config_ident *ipt,
struct LINK_config_data *lpt,
struct X25_config_data *xpt,
struct MLP_config_data *mpt,
struct LAPB_config_data *lbp,
struct LLC2_config_data *l2p,
struct WAN_config_data *wpt,
int *flags

);

Description
x25_read_config_parameters reads the configuration file for the specified link
into a data structure.

Arguments
The parameters are:

TABLE 8–21 read_confing_parameters parameters

Parameter Description

linkid The identifier of the link concerned.

ipt A pointer to the config_ident structure containing the link identifier.
Setting this variable is mandatory.

lpt A pointer to the link_item structure containing link information. Setting
this variable is mandatory.

xpt A pointer to the wlcfg structure containing the layer 3 (X.25) parameters. If
you set this variable to NULL, information on these parameters is omitted.

138 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 8–21 read_confing_parameters parameters (continued)

Parameter Description

mpt A pointer to the mlp_item structure containing the MLP parameters. If
you set this variable to NULL, information on these parameters is omitted.
As the number of devices required by an MLP link is unknown, this
routine allocates memory as required using calloc().

lbp A pointer to the lliun_t structure containing the layer 2 LAPB
parameters. If you set this variable to NULL, information on these
parameters is omitted.

l2p A pointer to the lliun_t structure containing the LLC2 parameters. If you
set this variable to NULL, information on these parameters is omitted.

wpt A pointer to the wan_tnioc structure containing the layer 1 (physical)
parameters. If you set this variable to NULL, information on these
parameters is omitted.

flag Indicates whether data is being read for LLC2, LAPB or MLP.

Return Value

A return value of 0 indicates success.

8.21 x25_read_config_parameters_file —
Reads a Configuration File Into a Data
Structure
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>
#include <netx25/config_functions.h>

int X25_read_config_parameters_file (
char filename
struct config_ident *ipt,
struct LINK_config_data *lpt,
struct X25_config_data *xpt,
struct MLP_config_data *mpt,

Support Functions 139

struct LAPB_config_data *lbp,
struct LLC2_config_data *l2p,
struct WAN_config_data *wpt,
int *flag

);

Use
x25_read_config_parameters reads the specified configuration file into a data
structure.

Description
The parameters are:

TABLE 8–22 x25_read_config_parameters_file parameters

Parameter Description

filename The name of the file concerned.

ipt A pointer to the config_ident structure containing the link identifier.
Setting this variable is mandatory.

lpt A pointer to the link_item structure containing link information.
Setting this variable is mandatory.

xpt A pointer to the wlcfg structure containing the layer 3 (X.25) parameters.
If you set this variable to NULL, information on these parameters is
omitted.

mpt A pointer to the mlp_item structure containing the MLP parameters. If
you set this variable to NULL, information on these parameters is
omitted. As the number of devices required by an MLP link is unknown,
this routine allocates memory as required using calloc().

lbp A pointer to the lliun_t structure containing the layer 2 LAPB
parameters. If you set this variable to NULL, information on these
parameters is omitted.

l2p A pointer to the lliun_t structure containing the LLC2 parameters. If
you set this variable to NULL, information on these parameters is omitted.

140 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 8–22 x25_read_config_parameters_file parameters (continued)

Parameter Description

wpt A pointer to the wan_tnioc structure containing the layer 1 (physical)
parameters. If you set this variable to NULL, information on these
parameters is omitted.

flag Indicates whether data is being read for LLC2, LAPB or MLP.

Return Value
A return value of 0 indicates success.

8.22 x25_save_link_parameters —
Update Configuration Files
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/x25db.h>
#include <netx25/config_functions.h>

int x25_save_link_parameters (
struct link_data * linkid

);

Description
This function takes the information in the LINK_config_data structures and
updates the X.25 configuration files as necessary.

Arguments
The parameters are:

Support Functions 141

TABLE 8–23 x25_save_link_parameters parameters

Parameter Description

linkid A pointer to the address of a link_data structure, which is the first in a
linked list.

Return Values
Returns 0 on success.

8.23 x25_set_parse_error_function —
Install a Function as Default Error
Handler
Synopsis
#include <netx25/config_functions.h>

int (*x25_set_parse_error_function(int (*func)(char *)))(char *)

Description
By default, errors are handled by printing a message to stderr and continuing. The
x25_set_parse_error_function function allows a different function to be
installed for use, for example with windowing programs.

Arguments
The parameters are:

TABLE 8–24 x25_set_parse_error_function parameter

Parameter Description

func A pointer to a function which is installed as the default error handler.
This function will be called with a single argument, a pointer to the error
string. If this is set to NULL, the default action if restored.

142 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 8–24 x25_set_parse_error_function parameter (continued)

Return Values
The address of the previous error function is returned.

8.24 x25_write_config_parameters —
Writes a Data Structure Into a
Configuration File Identified by a Link
Number
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>
#include <netx25/config_functions.h>

int x25_write_config_parameters (struct config_ident *idptr,
struct LINK_config_data *ptr,
struct X25_config_data *xptr,
struct MLP_config_data *mptr,
struct LAPB_config_data *lbptr,
struct LLC2_config_data *l2ptr,
struct WAN_config_data *wptr);

Description
x25_write_config_parameters writes the specified data structure(s) into a
configuration file identified by the number of the link it configures.

Arguments
The parameters are:

Support Functions 143

TABLE 8–25 x25_write_config_parameters parameters

Parameters Description

idptr A pointer to the config_ident structure containing the link
identifier. Setting this variable is mandatory.

ptr A pointer to the link_item structure containing link information.
Setting this variable is mandatory.

xptr A pointer to the wlcfg structure containing the layer 3 (X.25)
parameters. This parameter is mandatory.

mptr A pointer to the mlp_item structure containing the MLP parameters.
If you set this variable to NULL, information on these parameters is
omitted.

lbptr A pointer to the lliun_t structure containing the layer 2 LAPB
parameters. If you set this variable to NULL, information on these
parameters is omitted.

l2ptr A pointer to the lliun_t structure containing the LLC2 parameters.
If you set this variable to NULL, information on these parameters is
omitted.

wptr A pointer to the wan_tnioc structure containing the layer 1
(physical) parameters. If you set this variable to NULL, information on
these parameters is omitted.

Return Value
A return value of 0 indicates success.

144 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

8.25 x25_write_config_parameters_file —
Writes a Data Structure Into a
Configuration File Identified by a
Filename
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>
#include <netx25/config_functions.h>

int x25_write_config_parameter_file (char *infname,
struct config_ident *idptr,
struct LINK_config_data *ptr,
struct X25_config_data *xptr,
struct MLP_config_data *mptr,
struct LAPB_config_data *lbptr,
struct LLC2_config_data *l2ptr,
struct WAN_config_data *wptr);

Use
x25_write_config_parameters_file writes the specified data structure(s) into
a configuration file identified by its filename.

Description

TABLE 8–26 write_link_config_parameters_file parameters

Parameter Description

filename The name of the file to contain the data structure.

idptr A pointer to the config_ident structure containing the link identifier.
Setting this variable is mandatory.

ptr A pointer to the link_item structure containing link information. Setting
this variable is mandatory.

xptr A pointer to the wlcfg structure containing the layer 3 (X.25) parameters.
This parameter is mandatory.

Support Functions 145

TABLE 8–26 write_link_config_parameters_file parameters (continued)

Parameter Description

mptr A pointer to the mlp_item structure containing the MLP parameters. If
you set this variable to NULL, information on these parameters is omitted.

lbptr A pointer to the lliun_t structure containing the layer 2 LAPB
parameters. If you set this variable to NULL, information on these
parameters is omitted.

l2ptr A pointer to the lliun_t structure containing the LLC2 parameters. If
you set this variable to NULL, information on these parameters is omitted.

wptr A pointer to the wan_tnioc structure containing the layer 1 (physical)
parameters. If you set this variable to NULL, information on these
parameters is omitted.

Return Value
A return value of 0 indicates an error.

8.26 x25tolinkid —Convert Numeric Link
Identifier to String
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/xnetdb.h>

int x25tolinkid(linkid, str_linkid)
uint32_t linkid;
unsigned char *str_linkid;

Description
Converts a link identifier of the numeric format used in X.25 primitives to a
character string.

Arguments
The parameters are:

146 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 8–27 x25tolinkid parameters

Parameters Description

linkid The numeric format link identifier.

str_linkid A pointer to the string that is to contain the character format link
identifier

Return Values
On success 0 is returned. On failure -1 is returned.

8.27 x25tos —Convert xaddrf Structure to
X.25 Address
Synopsis
#include <netx25/x25_proto.h>

#include <netx25/x25db.h>

int x25tos (
struct xaddrf *xad, /* The X.25 structure */
unsigned char *cp, /* The returned string */
int lookup

);

Description
Converts an xaddrf structure into an X.25 address. Before doing so, it checks the
validity of the xaddrf structure.

Arguments
The parameters are:

Support Functions 147

TABLE 8–28 x25tos parameters

Parameters Description

xad Points to the xaddrf structure for conversion.

cp Points to the string the X.25 address will be written to.

lookup Determines the level of address checking carried out before the structure
is converted. 0 indicates no checking is carried out. This allows for faster
conversion, but means the structure may not be valid for the type of
network it refers to. A non-zero value means that the structure is checked
using the configuration files.

Return Values

0 indicates successful completion. A negative return value indicates that the structure
was invalid.

148 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 9

Error Codes

This chapter contains a summary of error codes returned by the NLI programming
interface.

9.1 Originator and Reason Tables
The following tables list the OSI error codes defined in <netx25/x25_proto.h> .

To identify the originator in N_RI and N_DI messages:

NS_USER1

NS_PROVIDER2

To specify the reason when the originator is the Network Service provider in N_DI
messages:

TABLE 9–1 Reason when Originator is NS Provider

Code Value

NS_GENERIC 0xE0

NS_DTRANSIENT 0xE1

NS_DPERMANENT 0xE2

NS_TUNSPECIFIED 0xE3

149

TABLE 9–1 Reason when Originator is NS Provider (continued)

Code Value

NS_PUNSPECIFIED 0xE4

NS_QOSNATRANSIENT 0xE5

NS_QOSNAPERMANENT 0xE6

NS_NSAPTUNREACHABLE 0xE7

NS_NSAPPUNREACHABLE 0xE8

NS_NSAPPUNKNOWN 0xEB

To specify the reason when the originator is the Network Service user in N_DI
messages:

TABLE 9–2 Reason when Originator is NS User

Code Value

NU_GENERIC 0xF0

NU_DNORMAL 0xF1

NU_DABNORMAL 0xF2

NU_DINCOMPUSERDATA 0xF3

NU_TRANSIENT 0xF4

NU_PERMANENT 0xF5

NU_QOSNATRANSIENT 0xF6

NU_QOSNAPERMANENT 0xF7

150 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 9–2 Reason when Originator is NS User (continued)

Code Value

NU_INCOMPUSERDATA 0xF8

NU_BADPROTID 0xF9

To specify the reason when the originator is the Network Service provider in N_RI
messages:

NS_RUNSPECIFIED 0xE9

NS_RCONGESTION 0xEA

To specify the reason when the originator is the Network Service user in N_RI
messages:

NU_RESYNC 0xFA

Note - These codes are defined in ISO 8208 and are mapped from X.25 cause and
diagnostic codes as described in ISO 8878.

9.2 Decoding Error Codes
You can decode the error codes listed in this chapter using the /opt/SUNWconn/
x25/bin/x25diags utility. Enter x25diags followed by the hexadecimal value
returned. For example:

hostname% x25diags E4
diag is 228 (decimal), E4 (hexa) :

OSI Network service problem :
Connection rejection -- reason unspecified (permanent condition)

Error Codes 151

152 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

PART II Data Link Protocol Interface (DLPI)

CHAPTER 10

About DLPI

The Data Link Provider Interface (DLPI) is a standard defined by the Open Group.
DLPI is defined by technical standard C614. Copies of this standard are available
from the Open Group.

10.1 How DLPI Works
DLPI defines the format that STREAMS messages must take when interfacing to the
datalink layer. The diagram below summarizes the way it works:

Data Link Service
User

DLPI

Request/Response
Primitives

Indication/Confirmation
Primitives

Network
Layer

Datalink
Layer

Data Link Service
Provider

Figure 10–1 DLPI Summary

Like NLI, DLPI uses the putmsg and getmsg system calls and certain ioctl
commands. See Chapter 11 for more information.

155

Note - The DLPI message primitives provided support LLC and LLC1 as well as
LLC2. However, as LLC and LLC1 are not used by Solstice X.25, this is not
documented here. Refer to A STREAMS-based Data Link Provider Interface—Version
2 for information on working with LLC and LLC1.

10.2 Addressing
A DLS User is identified by two pieces of information. The Physical Point of
Attachment (PPA) defines the point at which the system is attached to a physical
communications medium. The Datalink Service Access Point (DLSAP) identifies the
service access point associated with a stream.

10.3 Running DLPI Over LAPB
You cannot use LAPB on a link that is already in use with X.25, so you need to build
the stream architecture before you can run DLPI over the LAPB protocol.

The stream architecture for LAPB must be:

LAPB Driver

wanmodeModule

Serial Driver

user space

kernel space

DLPI interface

156 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

The serial driver manages the chip that controls the serial line. The wanmod module
is installed between the serial driver and the LAPB driver. The wanmod driver
controls the signals sent by the serial driver and informs the LAPB driver when the
connection has been established at the physical level (i.e. when the cable is plugged
in). The LAPB driver then implements the LAPB protocol and the DLPI interface.

See Section 11.1.2 “Message Primitive Sequence Summary” on page 163, for
additional information.

10.4 Running DLPI Over LLC2
The stream architecture for LLC2 must be:

LLC2 Driver

LAN Driver

user space

kernel space

DLPI interface

The previous version of the LLC2 driver did not carry out plumbing and PPA
assignment, and applications that were designed to run directly over LLC2 were
obliged to perform these steps themselves. The LLC2 driver supplied with Solstice
X.25 9.2 now takes care of these tasks at system boot time, by means of
/etc/rc2.d/S40llc2 .

The relationship between the PPA and a particular LAN device is defined by the files
in the directory /etc/llc2/default . Instead of choosing an arbitrary PPA and
configuring LLC2 to use it, an application must find the PPA that is associated with
the required LAN device and attach to it. Applications need now only do the
following:

� determine the PPA associated with the required LAN device;

� open /dev/llc2 ;

� issue a DLPI attach request for the desired PPA.

About DLPI 157

Two routines have been added to the Solstice X.25 code to take account of the change
in the LLC2 driver:

TABLE 10–1 Solstice X.25 routines to associate PPA with a LAN device

Routine Description

x25_device_instance() Finds the LAN device for a given X.25 link.

x25_device_to_ppa() Finds the LLC2 PPA assigned to that LAN device.

See Section 11.1.2 “Message Primitive Sequence Summary” on page 163, for
additional information.

158 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 11

DLPI Reference

The DLPI message primitives and Sun specific ioctls described in this chapter act as
an interface to LAPB, or to both LAPB and LLC2. LAPB provides a
connection-oriented service only, so the connectionless primitives cannot be used
with LAPB. For information on ioctls exclusive to LLC2, refer to the llc2 man page.
LLC2 provides both connection-oriented and connectionless services. The
connectionless service is generally referred to as LLC1 and is not a supported part of
the Solstice X.25 product.

The primitives and ioctls are described in alphabetical order. Refer to the summary
tables at the start of each section for functional groupings.

The header files used by the message primitives and ioctls described in this chapter
are contained in the /usr/include/netdlc , /usr/include/netx25 and
/usr/include/sys directories.

All of the message primitives listed conform to the DLPI standard. They must be
used with the getmsg(2) and putmsg(2) system calls. For more information, see the
STREAM’s Programmer Guide.

11.1 DLPI Specific Message Primitives
These message primitives are related to local management services:

159

TABLE 11–1 Local Management Service Message Primitives

name summary

DL_INFO_REQ requests information

DL_INFO_ACK acknowledges a request for information

DL_ATTACH_REQ identifies the physical link to attach to

DL_BIND_ACK acknowledges a bind request

DL_DETACH_REQ identifies the physical link to detach from

DL_BIND_REQ specifies whether connectionless or connection oriented
mode is to be use, and supplies the LSAP to bind to

DL_UNBIND_REQ requests an unbind

DL_OK_ACK positively acknowledges a previous primitive

DL_ERROR_ACK negatively acknowledges a previous primitive

These message primitives are related to connection mode services:

TABLE 11–2 Connection Mode Service Message Primitives

name summary

DL_CONNECT_REQ establishes a connection

DL_CONNECT_IND indicates that a remote user wants to establish a connection

DL_CONNECT_RES accepts a connect request from a remote user

DL_CONNECT_CON acknowledges a connect request

DL_TOKEN_REQ determines the token associated with a stream (LLC2 only)

DL_TOKEN_ACK acknowledges a token (LLC2 only)

These message primitives are related to connection release:

160 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–3 Connection Release Message Primitives

name summary

DL_DISCONNECT_REQ disconnects a connection

DL_DISCONNECT_IND informs that a connection has been disconnected or not
established

The following non-DLPI message primitive is related to data transfer:

TABLE 11–4 Data Transfer Message Primitive

name summary

M_DATA carries data within a stream, and between a stream and a
user process

These message primitives are related to connection resynchronization.

TABLE 11–5 Data Resynchronization Message Primitives

DL_RESET_REQ resynchronizes a connection

DL_RESET_IND indicates that the remote end is resynchronizing the
connection

DL_RESET_RES completes reset processing

DL_RESET_CON confirms that reset processing is complete

11.1.1 Address Structures
DLPI uses data link service access point (DLSAP) addresses. These are used when
connecting to a given address by the DL_CONNECT_REQ, DL_CONNECT_CONand
DL_CONNECT_INDprimitives. Addressing is handled differently for LLC2 and LAPB.

DLPI Reference 161

11.1.1.1 LLC2 Address Structure
The LLC2 DLSAP is contained in the following structure:

struct llc_dladdr {
u_char dl_mac[6]; /* MAC address */
u_char dl_sap; /* LLC SAP */

};

The file /usr/include/netdlc/llc2.h contains the structure definition.

The members of the llc_dladdr structure are:

TABLE 11–6 Members of llc_dladdr structure

Members Description

dl_mac The MAC address

dl_sap The LLC SAP (service access point).

11.1.1.2 LAPB Address Structure
The address field is only required when LAPB is being used over a Public Switched
Telephone Network (PSTN). In this case, the dl_address fields contain the PSTN
address, in the format defined by the pstnformat structure:

struct pstnformat {
uint8 pstn_len; /* Address length in octets */
uint8 pstn_add[20]; /* LAPB Address in hexadecimal */

};

The members of the pstnformat structure are:

TABLE 11–7 Members of pstnformat structure

Members Description

pstn_len The length of the address as bytes.

pstn_add The LSAP in hexadecimal format. This can be up to 20 digits long.

The file /usr/include/netx25/sdlpi.h contains the structure definition.

162 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

11.1.2 Message Primitive Sequence Summary

LLC2
The diagram below summarizes the order that the DLPI message primitives are used
to establish a connection and transfer data in connection oriented mode when LLC2
is used:

Calling Network Called

DL_A TTACH_REQ

DL_BIND_REQ

DL_BIND_ACK

DL_CONNECT_REQ

DL_CONNECT_CON

M_DA TA

M_DA TA

DL_A TTACH_REQ

DL_OK_ACK

DL_BIND_REQ

DL_BIND_ACK

DL_CONNECT_IND

DL_CONNECT_RES

M_DA TA

M_DA TA

DL_OK_ACK

DL_DISCONNECT_REQ

DL_OK_ACK

DL_UNBIND_REQ

DL_OK_ACK DL_OK_ACK

DL_OK_ACK
DL_OK_ACK

DL_DET ACH_REQ
DL_DET ACH_REQ

DL_UNBIND_REQ

DL_DISCONNECT_IND

The file /opt/SUNWconn/x25/samples.dlpi/llc2.c contains an example.

LAPB
The diagram below summarizes the order that the DLPI message primitives are used
to establish a connection and transfer data in connection oriented mode when LAPB
is used:

DLPI Reference 163

DTE Network DCE

DL_A TTACH_REQ

DL_OK_ACK

DL_BIND_REQ

DL_BIND_ACK

DL_CONNECT_IND

DL_CONNECT_RES

M_DA TA

DL_A TTACH_REQ

DL_OK_ACK

DL_BIND_REQ

DL_BIND_ACK

DL_CONNECT_IND

DL_CONNECT_RES

M_DA TA

M_DA TAM_DA TA

DL_OK_ACK
DL_OK_ACK

DL_OK_ACK

DL_UNBIND_REQ

DL_OK_ACK
DL_OK_ACK

DL_OK_ACK
DL_DET ACH_REQ

DL_DET ACH_REQ

DL_UNBIND_REQ

DL_DISCONNECT_REQ
DL_DISCONNECT_IND

When using LAPB, the connect phase is handled automatically by the network. The
LAPB protocol automatically establishes the connection as soon as the cable has been
plugged in. The connect indicator CONNECT_INDwill automatically notify the user
when the connection has been established.

The file /opt/SUNWconn/x25/samples.dlpi/lapb.c contains an example.

11.1.3 DL_ATTACH_REQ—Identifies Physical Link to use
This primitive is sent in an M_PROTOmessage block. It identifies the physical link to
be used. In most cases this is a card or a port plus a card. The physical link is
identified by a Physical Point of Attachment (PPA).

Associated Structure:
typedef struct {

t_uscalar_t dl_primitive; /* set to DL_ATTACH_REQ */
t_uscalar_t dl_ppa; /* id of the PPA */

} dl_attach_req_t;

The members of the dl_attach_req_t structure are:

164 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–8 Members of the dl_attach_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_ppa Contains the PPA (or hardware device) the stream should be bound to.
The PPA values are defined at system configuration time with the
L_SETPPAioctl. This applies to LAPB only. For LLC2 the PPA is
associated with the hardware at system boot time.

Errors

TABLE 11–9 DL_ATTACH_REQerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state.

DL_BADPPA The specified PPA was invalid (was not configured with the L_SETPPA
ioctl).

DL_SYSERR Could not allocate memory to handle the connection.

11.1.4 DL_BIND_ACK—Acknowledges Bind Request
If a bind request is successful, a DL_BIND_ACKmessage will be sent upstream to
acknowledge the request. This message is sent in an M_PCPROTOmessage block.

Associated Structure
typedef struct {

t_uscalar_t dl_primitive; /* DL_BIND_ACK */
t_uscalar_t dl_sap; /* DLSAP addr info */
t_uscalar_t dl_addr_length; /* length of complete DLSAP addr */
t_uscalar_t dl_addr_offset; /* offset from start of M_PCPROTO */
t_uscalar_t dl_max_conind; /* allowed max. # of con-ind */
t_uscalar_t dl_xidtest_flg; /* responses supported by provider */

} dl_bind_ack_t;

DLPI Reference 165

The members of the dl_bind_ack_t structure are:

TABLE 11–10 Members of the dl_bind_ack_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_sap Contains the SSAP.

dl_addr_length The length of the DLSAP. When interfacing to LLC2, this is 7. For
LAPB it is 0.

dl_addr_offset Offset of DLSAP address, in bytes, from the beginning of the
M_PCPROTOmessage block. The DLSAP address is stored as an struct
llc_dladdr structure when working with LLC2 and as a
pstnformat structure when working with LAPB. See Section 11.1.1
“Address Structures” on page 161 for more information.

dl_max_conind Equals the value of max_conind passed down in the DL_BIND_REQ
message.

dl_xidtest_flg Valid for LLC2 only. Contains the value (DL_AUTO_XID|
DL_AUTO_TEST), because the LLC2 driver has the capability of
responding automatically to TEST and XID commands.

11.1.5 DL_BIND_REQ—Specifies CLNS or CONS Service
This primitive is sent in an M_PROTOmessage block. It specifies whether the
connectionless or connection oriented service should be used and provides the LSAP
if required.

This message primitive must be set to connection oriented mode when used with
either LAPB or LLC2. Connectionless mode is not supported.

The LSAP is one octet long and can be any value.

Associated Structure:
typedef struct {

t_uscalar_t dl_primitive; /* set to DL_BIND_REQ */
t_uscalar_t dl_sap; /* info to identify dlsap addr */
t_uscalar_t dl_max_conind; /* max # of outstanding con_ind */
uint16_t dl_service_mode; /* CO, CL or ACL */
uint16_t dl_conn_mgmt; /* if non-zero, is con-mgmt stream */

166 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

t_uscalar_t dl_xidtest_flg; /* auto init. of test and xid */
} dl_bind_req_t;

The members of the dl_bin_req_t structure:

TABLE 11–11 Members of the dl_bin_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_sap One byte SSAP. For LLC2, this parameter must be set to an even
value other than 0. For LAPB, this parameter must be set to 0.
The full DLSAP is returned in the DL_BIND_ACK response.

dl_max_conind The maximum number of outstanding DL_CONNECT_IND
messages allowed on the stream. A value of zero prevents the
stream from accepting any DL_CONNECT_INDmessages. When
using LAPB, set this parameter to 1. When using with LLC2, set
the calling side to 0 and the called side to >0.

dl_service_mode Set to DL_CODLSto indicate that connection-oriented service
(LLC2 or LAPB) is desired.

dl_conn_mgmt Set to non-zero to use this stream as the “connection
management” stream for the PPA. When set to a non-zero
value, this handles incoming DL_CONNECT_IND messages
that do not match any other stream, or where the maximum
number of outstanding connection messages specified in
dl_max_conind has been exceeded.

dl_xidtest_flg Valid for LLC2 only. Specifies whether or not the LLC2 driver is
to automatically reply to XID /TEST commands. It is a bit-mask
of the following two flags:

DL_AUTO_XID—Respond to XID commands.

DL_AUTO_TEST—Respond to TEST commands.If this field is
zero, the LLC2 client will receive all incoming TEST and XID
commands, and will be expected to respond to them.

Note - Multiple LLC2 streams may be bound to the same SAP, but only one listen
stream is allowed per SAP.

DLPI Reference 167

Errors

TABLE 11–12 DL_BIND_REQerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state.

DL_UNSUPPORTEDThe requested service mode is not supported (only DL_CODLSand
DL_CLDLSare supported).

DL_BOUND Attempt to bind a second listen stream, or a second “connection
management” stream.

DL_BADADDR Attempt to bind to a zero or odd SAP.

DL_SYSERR Could not allocate STREAMS resources.

11.1.6 DL_CONNECT_CON—Acknowledge
DL_CONNECT_REQ
Positively acknowledges a previous DL_CONNECT_REQprimitive. Is sent upstream
when a UA frame arrives to ack a previously sent SABMEor SABMframe. This
message consists of one M_PROTOmessage block containing the following structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_CON */
t_uscalar_t dl_resp_addr_length; /* responder’s address len */
t_uscalar_t dl_resp_addr_offset; /* offset from start of block */
t_uscalar_t dl_qos_length; /* length of qos structure */
t_uscalar_t dl_qos_offset; /* offset from start of block */
t_uscalar_t dl_growth; /* set to zero */

} dl_connect_con_t;

The members of the dl_connect_con_t structure are:

168 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–13 Members of the dl_connect_con_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_resp_addr_length The length of the DLSAP. This is 7 when working with LLC2
and 0 or 21 when working with LAPB.

dl_resp_addr_offset Offset to the responder (destination) address, stored in struct
llc_dladdr or struct pstnformat format.

dl_qos_length Always set to 0.

dl_qos_offset Always set to 0.

11.1.7 DL_CONNECT_IND—Indicate Incoming Connection
Indicates that a remote user wants to establish a connection. This primitive is sent
upstream when a SABMEor SABMis received from the network.

Associated Structure
This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_IND */
t_uscalar_t dl_correlation; /* provider’s correl. token */
t_uscalar_t dl_called_addr_length; /* length of called address */
t_uscalar_t dl_called_addr_offset; /* offset from start of block */
t_uscalar_t dl_calling_addr_length; /* length of calling address */
t_uscalar_t dl_calling_addr_offset; /* offset from start of block */
t_uscalar_t dl_qos_length; /* length of qos structure */
t_uscalar_t dl_qos_offset; /* offset from start of block */
t_uscalar_t dl_growth; /* set to zero */

} dl_connect_ind_t;

The members of the dl_connect_ind_t structure are:

DLPI Reference 169

TABLE 11–14 Members of the dl_connect_ind_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_correlation Unique identifier for the connection, to be passed back
downstream in a DL_CONNECT_RESor
DL_DISCONNECT_RESmessage later on. Can also be passed
upstream in a subsequent DL_DISCONNECT_INDmessage.

dl_called_addr_length Set to 7 when interfacing with LLC2 and 21 when interfacing
with LAPB.

dl_called_addr_offset Offset to the called (destination) address, which is stored in
struct llc_dladdr or struct lapbformat format.

dl_calling_addr_length Set to 7 when working with LLC2 and 0 when working with
LAPB.

dl_calling_addr_offset Offset to the calling (source) address, which is stored in
struct llc_dladdr or struct pstnformat format.

dl_qos_length Always set to 0.

dl_qos_offset Always set to 0.

11.1.8 DL_CONNECT_REQ—Establish a Connection
Used to establish a connection. When the user issues this primitive, a SABMEor SABM
frame is sent across the network to the destination.

Associated Structure

This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_REQ */
t_uscalar_t dl_dest_addr_length; /* len. of dlsap addr */
t_uscalar_t dl_dest_addr_offset; /* offset */
t_uscalar_t dl_qos_length; /* len. of QOS parm val */
t_uscalar_t dl_qos_offset; /* offset */
t_uscalar_t dl_growth; /* set to zero */

170 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

} dl_connect_req_t;

The members of the dl_connect_req_t structure are:

TABLE 11–15 Members of the dl_connect_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_dest_addr_length Set to 7 when working with LLC2 and 21 when working
with LAPB.

dl_dest_addr_offset Offset, in bytes, from beginning of M_PROTO message
block. The destination DLSAP address should be encoded as
a struct llc_dladdr . This field and
dl_dest_addr_length combined give the remote address
if you are working with LLC2 and the PSTN address if you
are working with dial-up LAPB. They are not used if you are
working with non dial-up LAPB.

dl_qos_length Will be ignored.

dl_qos_offset Will be ignored.

This primitive is positively acknowledged with a DL_CONNECT_CONprimitive. If
there is a local error, this primitive is nack’ed with a DL_ERROR_ACK, with the
possible error codes listed below. If the destination cannot be reached, this primitive
is nack’ed with a DL_DISCONNECT_INDprimitive.

Errors

TABLE 11–16 DL_CONNECT_REQerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state.

DL_BADADDR The destination DLSAP address was invalid, for one of the following
reasons: dl_dest_addr_length is incorrect, zero or, odd SAP (when
using LLC2) loopback connection to the same SAP

DLPI Reference 171

TABLE 11–16 DL_CONNECT_REQerrors (continued)

Error Description

DL_ACCESS Attempt to connect a second LLC2 stream, bound to the same SAP, to
the same destination DLSAP (really need to return an “address already
in use” error in this case, but no such error exists in DLPI).

DL_SYSERR Could not allocate memory.

11.1.9 DL_CONNECT_RES—Accept a Connect Request
Accept a connect request from a remote user. Causes a UA frame to be sent over the
network (to ack the SABMEor SABMthat was received earlier). This message consists
of one M_PROTOmessage block containing the following structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_RES */
t_uscalar_t dl_correlation; /* provider’s correlation token */
t_uscalar_t dl_resp_token; /* token of responding stream */
t_uscalar_t dl_qos_length; /* length of qos structure */
t_uscalar_t dl_qos_offset; /* offset from start of block */
t_uscalar_t dl_growth; /* set to zero */

} dl_connect_res_t;

The members of the dl_connect_res_t structure are:

TABLE 11–17 Members of the dl_connect_res_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_correlation Contains the correlation number passed upstream in the
DL_CONNECT_INDmessage.

dl_resp_token Contains the token of the stream that will accept the connection, if the
accepting stream is not the listen stream (applies to LLC2 only).

dl_qos_length Will be ignored.

dl_qos_offset Will be ignored.

172 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Errors

TABLE 11–18 DL_CONNECT_RESerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state, or the accepting stream is not in
state DL_IDLE (attached and bound) or is not attached to the same PPA.

DL_BADCORR The dl_correlation parameter does not correspond to the ID of a
pending connection.

DL_BADTOKEN The dl_resp_token parameter does not correspond to a currently
open stream.

DL_ACCESS Accepting stream is not bound to the same SAP as the listen stream.

DL_PENDING Attempt to accept a connection on the listen stream when there are
other outstanding connect indications on the listen stream, or an
attempt to accept a connection on the “connection management” stream.

DL_SYSERR Could not allocate STREAMS resources.

11.1.10 DL_DETACH_REQ—Undoes a Previous
DL_ATTACH_REQ
Undoes a previous DL_ATTACH_REQ. This primitive is sent in an M_PROTOmessage
block.

Associated Structure
typedef struct {

t_uscalar_t dl_primitive; /* set to DL_DETACH_REQ */
} dl_detach_req_t;

The members of the dl_detach_req_t structure are:

DLPI Reference 173

TABLE 11–19 Members of the dl_detach_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

Errors:

TABLE 11–20 DL_DETACH_REQerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state.

11.1.11 DL_DISCONNECT_IND—Indicates Connection
Disconnect
Informs the user that the connection has been disconnected, or that a pending
connection has been aborted. This message is passed upstream when a DISC frame is
received from the network, or if the ack timer expires (because either the remote end
didn’t respond to a SABME/ DL_CONNECT_REQ, or to a SABM, or because during data
transfer the connection went down).

Associated Structure

This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_DISCONNECT_IND */
t_uscalar_t dl_originator; /* USER or PROVIDER */
t_uscalar_t dl_reason; /* permanent or transient */
t_uscalar_t dl_correlation; /* association with connect_ind */

} dl_disconnect_ind_t;

The dl_disconnect_ind_t structure has the following members:

174 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–21 Members of dl_disconnect_ind structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_originator Set to either:

DL_USER—a DISC frame was received from the network.

DL_PROVIDER—the ack timer expired.

dl_reason Set to:

DL_CONREJ_DEST_UNREACH_TRANSIENT—a pending connection was
aborted.

DL_DISC_TRANSIENT_CONDITION—an active connection was
disconnected.

DL_DISC_PERMANENT_CONDITION— the physical level is not
connected.

dl_correlation If a pending incoming call is being aborted, this contains the
correlation value that was passed in the DL_CONNECT_INDprimitive.

11.1.12 DL_DISCONNECT_REQ—Disconnects a Connection
Used to disconnect a connection. Can be used to disconnect an active connection (in
state DL_DATAXFER), to refuse an incoming connection (which was indicated by the
reception of a DL_CONNECT_INDprimitive), or to cancel a previous
DL_CONNECT_REQprimitive before the DL_CONNECT_CONacknowledgment is
received back from the other end.

When the user issues this primitive, one of two things will happen, depending on
the state that the stream is in:

1. In state DL_DATAXFERor if cancelling a previous DL_CONNECT_REQ, a DISC
command frame is sent across the network to the destination.

2. If refusing an incoming connection, a DMresponse frame is sent (in response to the
SABMEthat was received earlier).

Associated Structure

This message consists of one M_PROTOmessage block containing the following
structure:

DLPI Reference 175

typedef struct {
t_uscalar_t dl_primitive; /* DL_DISCONNECT_REQ */
t_uscalar_t dl_reason; /* norm., abnorm., perm. or trans. */
t_uscalar_t dl_correlation; /* association with connect_ind */

} dl_disconnect_req_t;

The fields associated with the dl_disconnect_req_t structure are:

TABLE 11–22 Members of the dl_disconnect_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_reason Any value passed here will be ignored, as LLC2 and LAPB have no
means of carrying a “disconnect reason” across the network.

dl_correlation If the user is rejecting an incoming call, this needs to be set to the
correlation value supplied in the received DL_CONNECT_INDprimitive.
Otherwise, this parameter should be set to 0.

Errors

TABLE 11–23 DL_DISCONNECT_REQerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state.

DL_BADCORR Non-zero correlation value supplied when not rejecting an incoming
call, or invalid correlation value supplied when rejecting an incoming
call.

11.1.13 DL_ERROR_ACK—Negative Acknowledgment
This primitive is sent upstream to negatively acknowledge a previous primitive.

176 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Associated Structure
It is sent in an M_PCPROTOmessage block, with the following structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_ERROR_ACK */
t_uscalar_t dl_error_primitive; /* primitive in error */
t_uscalar_t dl_errno; /* DLPI error code */
t_uscalar_t dl_unix_errno; /* UNIX system error code */

} dl_error_ack_t;

The members of the dl_error_ack_t structure are:

TABLE 11–24 Members of the dl_error_ack_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_error_primitive Set to the name of the primitive in error.

dl_unix_errno Unix error code, if dl_errno is equal to DL_SYSERR

dl_errno Contains the DLPI error code.

11.1.14 DL_INFO_ACK—Convey Info Summary
The LLC2 and LAPB drivers respond to the DL_INFO_REQwith a DL_INFO_ACK
message.

Associated Structure
This message consists of one M_PCPROTOmessage block, with the following structure:

typedef struct {
t_uscalar_t dl_primitive; /* set to DL_INFO_ACK */
t_uscalar_t dl_max_sdu; /* Max bytes in a DLSDU */
t_uscalar_t dl_min_sdu; /* Min bytes in a DLSDU */
t_uscalar_t dl_addr_length; /* length of DLSAP address */
t_uscalar_t dl_mac_type; /* type of medium supported */
t_uscalar_t dl_reserved; /* value set to zero */
t_uscalar_t dl_current_state; /* state of DLPI interface */
t_scalar_t dl_sap_length; /* length of dlsap SAP part */
t_uscalar_t dl_service_mode; /* CO, CL or ACL */
t_uscalar_t dl_qos_length; /* length of qos values */

DLPI Reference 177

t_uscalar_t dl_qos_offset; /* offset from start of block */
t_uscalar_t dl_qos_range_length; /* available range of qos */
t_uscalar_t dl_qos_range_offset; /* offset from start of block */
t_uscalar_t dl_provider_style; /* style1 or style2 */
t_uscalar_t dl_addr_offset; /* offset of the dlsap addr */
t_uscalar_t dl_version; /* version number */
t_uscalar_t dl_brdcst_addr_length; /* length of broadcast addr */
t_uscalar_t dl_brdcst_addr_offset; /* offset from start of block */
t_uscalar_t dl_growth; /* set to zero */

} dl_info_ack_t;

The members of the dl_info_ack_t structure are:

TABLE 11–25 members of the dl_info_ack_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_mac_type Valid for LLC2 only. Set to the value returned by the
hardware driver underneath LLC2.

dl_mdlc_type Valid for LAPB only. Set to the value returned by the
hardware driver underneath LAPB.

dl_current_state Indicates the current DLPI state of the interface.

dl_sap_length For LLC2, set to 1, which indicates that the SAP is one byte
long, and follows the physical address in the DLSAP
address. For LAPB, set to 0.

dl_addr_offset Offset to the DLSAP address of this stream.

dl_brdcst_addr_off Offset to the hardware broadcast address.

The QOS fields are always set to 0 when used over Ethernet/802.3.
(dl_qos_length , dl_qos_offset , dl_qos_range_length ,
dl_qos_range_offset). Their settings above other media (FDDI, Token Ring, etc.)
is to be defined. For descriptions of the other parameters, refer to the DLPI
specifications.

11.1.15 DL_INFO_REQ—Request Info Summary
This primitive requests information about the stream.

178 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Associated Structure
This primitive is sent in an M_PROTOmessage block, with the following structure:

typedef struct {
t_uscalar_t dl_primitive; /* set to DL_INFO_REQ */

} dl_info_req_t;

The members of the dl_info_req_t structure are:

TABLE 11–26 Members of the dl_info_req_t structure

Member Description

dl_primitive The name of this primitive.

11.1.16 DL_OK_ACK—Acknowledge Previous Primitive
This primitive is sent upstream to positively acknowledge a previous primitive. It is
sent in an M_PCPROTOmessage block

Associated Structure
typedef struct {

t_uscalar_t dl_primitive; /* DL_OK_ACK */
t_uscalar_t dl_correct_primitive; /* primitive acknowledged */

} dl_ok_ack_t;

The members of the dl_ok_ack_t structure are:

TABLE 11–27 Members of the dl_ok_ack_t structure

Members Description

dl_primitive Should be set to the name of this primitive.

dl_correct_primitive Set to the name of the primitive being acknowledged.

DLPI Reference 179

11.1.17 DL_RESET_CON—Acknowledges DL_RESET_REQ
Positively acknowledges a previous DL_RESET_REQprimitive. This primitive is sent
upstream when a UA frame arrives to ack a previously sent SABMEframe.

Associated Structure

This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_CON */

} dl_reset_con_t;

The members of the dl_reset_con_t structure are:

TABLE 11–28 Members of the dl_reset_con_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

11.1.18 DL_RESET_IND—Indicates Remote Reset
Indicates that the remote user is resynchronizing the connection. This primitive is
sent upstream when a SABMEor SABMis received from the network, while in state
DL_DATAXFER.

Associated Structure

This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_IND */
t_uscalar_t dl_originator; /* Provider or User */
t_uscalar_t dl_reason; /* flow control, link error, resync */

} dl_reset_ind_t;

The members of the dl_reset_ind_structure are:

180 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–29 Members of the dl_reset_ind_structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_originator Always set to DL_USER.

dl_reason Always set to DL_RESET_RESYNCH(there is no means of carrying a
“reset reason” across the network).

11.1.19 DL_RESET_REQ—Request Connection Reset
Used to resynchronize a connection. When the user issues this primitive while the
stream is in state DL_DATAXFER, a SABMEor SABMframe is sent across the network
to the destination.

Associated Structure
This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_REQ */

} dl_reset_req_t;

This primitive is positively acknowledged with a DL_RESET_CONprimitive. If there
is a local error, this primitive is negatively acknowledged with a DL_ERROR_ACK,
with the possible error codes listed below.

The members of the dl_reset_req_t structure are:

TABLE 11–30 Members of the dl_reset_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

DLPI Reference 181

Errors

TABLE 11–31 DL_RESET_REQerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state.

11.1.20 DL_RESET_RES—Respond to Reset Request
Respond to a reset request (an incoming DL_RESET_IND). Causes a UA frame to be
sent over the network (to ack the SABMEor SABMthat was received earlier).

Associated Structure
This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_RES */

} dl_reset_res_t;

The members of the dl_reset_res_t structure are:

TABLE 11–32 Members of the dl_reset_res_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

Errors

182 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–33 DL_RESET_RESerrors

Error Description

DL_OUTSTATE Primitive issued from an invalid state.

DL_SYSERR Could not allocate STREAMS resources.

11.1.21 DL_TOKEN_ACK—Acknowledges DL_TOKEN_REQ
The DL_TOKEN_REQprimitive is positively acknowledged with a DL_TOKEN_ACK
primitive, which is encoded in an M_PCPROTOmessage block containing the
following structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_TOKEN_ACK */
t_uscalar_t dl_token; /* Connection response token */

}dl_token_ack_t;

The members of the dl_token_ack_t structure are:

TABLE 11–34 Members of the dl_token_ack_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

dl_token Contains the connection response token.

11.1.22 DL_TOKEN_REQ—Assigns Token to Stream
Used to determine the token associated with a LLC2 stream (LAPB does not
support). This token can then be supplied in the DL_CONNECT_RESprimitive to
indicate that the connection should be accepted on a different stream from the listen
stream. The accepting stream must be attached and bound to the same PPA and SAP
as the listen stream.

DLPI Reference 183

Note - This primitive is not supported by LAPB.

Associated Structure

This message consists of one M_PROTOmessage block containing the following
structure:

typedef struct {
t_uscalar_t dl_primitive; /* DL_TOKEN_REQ */

} dl_token_req_t;

The members of the dl_token_req_t structure are:

TABLE 11–35 Members of the dl_token_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

11.1.23 DL_UNBIND_REQ—Summary
This primitive unbinds the STREAM that was bound by a previous DL_BIND_REQ. It
is sent in an M_PROTOmessage block.

Associated Structure:
typedef struct {

t_uscalar_t dl_primitive; /* DL_UNBIND_REQ */
} dl_unbind_req_t;

The members of the dl_unbind_req_t structure are:

TABLE 11–36 Members of the dl_unbind_req_t structure

Member Description

dl_primitive Should be set to the name of this primitive.

184 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

11.2 Sun-Specific ioctls
The following ioctls are specific to Sun. Take care when using them in programs that
interwork with other versions of X.25.

These ioctls must be used with the ioctl(2) system call.

The following ioctls are related to statistics:

TABLE 11–37 Statistics Ioctls

name summary

L_GETSTATS reads per-link statistics (LAPB only)

L_ZEROSTATS zeros per-link statistics (LAPB only)

L_GETGSTATS reads global layer two statistics (LAPB only)

These ioctls are related to configuring a stream:

TABLE 11–38 Stream Configuration Ioctls

name summary

L_SETPPA sets the PPA. (LAPB only)

L_GETPPA retrieves the PPA (LAPB only)

L_SETTUNE sets tunable parameters for a PPA

L_GETTUNE retrieves the tunable parameters for a PPA

W_SETTUNE sets wanmod tunable parameters for a PPA (LAPB only)

11.2.1 Common ioctls
The ioctles described in this section can be used over both LAPB and LLC2.

DLPI Reference 185

11.2.1.1 L_GETTUNE—Retrieves Tunable Parameters for a PPA

The L_GETTUNEioctl retrieves the tunable parameters in the LLC2 and LAPB drivers
for a given PPA.

Associated Structures

LLC2 uses the llc2_tnioc structure.

/* Ioctl block for LLC2 L_GETTUNE command */
struct llc2_tnioc {

u_char lli_type; /* Table type = LI_LLC2TUNE */
u_char lli_spare[3]; /* (for alignment) */
u_int lli_ppa; /* PPA (0xff for all PPAs) */
llc2tune_t llc2_tune; /* Table of tuning values */

};

/* LLC2 tuning structure */
typedef struct llc2tune {

u_short N2; /* Maximum number of retries */
u_short T1; /* Acknowledgment time (unit 0.1 sec) */
u_short Tpf; /* P/F cycle retry time (unit 0.1 sec) */
u_short Trej; /* Reject retry time (unit 0.1 sec) */
u_short Tbusy; /* Remote busy check time (unit 0.1 sec) */
u_short Tidle; /* Idle P/F cycle time (unit 0.1 sec) */
u_short ack_delay; /* RR delay time (unit 0.1 sec) */
u_short notack_max; /* Maximum number of unack’ed Rx I-frames */
u_short tx_window; /* Transmit window (if no XID received) */
u_short tx_probe; /* P-bit position before end of Tx window */
u_short max_I_len; /* Maximum I-frame length */
u_short xid_window /* XID window size (receive window) */
u_short xid_Ndup; /* Duplicate MAC XID count (0 => no test) */
u_short xid_Tdup; /* Duplicate MAC XID time (unit 0.1 sec) */

} llc2tune_t;

The members of the llc2_tnoic structure are:

TABLE 11–39 Members of the llc2_tnoic structure

Member Description

lli_type The table type

lli_ppa The PPA

llc2_tune A table of tuning values

LAPB uses the lapb_tnioc structure

186 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

/* Ioctl block for LAPB L_GETTUNE command */
struct lapb_tnioc {

u_char lli_type; /* Table type = LI_LLAPBTUNE */
u_char lli_spare[3]; /* (for alignment) */
u_int lli_ppa; /* PPA (0xff for all PPAs) */
lapbtune_t lapb_tune; /* Table of tuning values */

};

/* LAPB tuning structure */
typedef struct lapb_tune {

uint16 N2; /* Maximum number of retries */
uint16 T1; /* Acknowledgment time (unit 0.1 sec) */
uint16 Tpf; /* P/F cycle retry time (unit 0.1 sec) */
uint16 Trej; /* Reject retry time (unit 0.1 sec) */
uint16 Tbusy; /* Remote busy check time (unit 0.1 sec) */
uint16 Tidle; /* Idle P/F cycle time (unit 0.1 sec) */
uint16 ack_delay; /* RR delay time (unit 0.1 sec) */
uint16 notack_max; /* Maximum number of unack’ed Rx I-frames */
uint16 tx_window; /* Transmit window size */
uint16 tx_probe; /* P-bit position before end of Tx window */
uint16 max_I_len; /* Maximum I-frame length */
uint16 llconform; /* LAPB conformance */

} lapbtune_t;

The members of the lapb_tnoic structure are:

TABLE 11–40 Members of the lapb_tnoic structure

Member Description

lli_type The table type

lli_ppa The PPA

lapb_tune A table of tuning values

11.2.1.2 L_SETTUNE—Sets Tunable Parameters for a PPA
The L_SETTUNEioctl sets tunable parameters in the LLC2 and LAPB drivers for a
given PPA.

Associated Structures
LLCS uses the llc2_tnioc structure

/* Ioctl block for LLC2 L_SETTUNE command */
struct llc2_tnioc {

DLPI Reference 187

u_char lli_type; /* Table type = LI_LLC2TUNE */
u_char lli_spare[3]; /* (for alignment) */
u_int lli_ppa; /* PPA (0xff for all PPAs) */
llc2tune_t llc2_tune; /* Table of tuning values */

};

/* LLC2 tuning structure */
typedef struct llc2tune {

u_short N2; /* Maximum number of retries */
u_short T1; /* Acknowledgment time (unit 0.1 sec) */
u_short Tpf; /* P/F cycle retry time (unit 0.1 sec) */
u_short Trej; /* Reject retry time (unit 0.1 sec) */
u_short Tbusy; /* Remote busy check time (unit 0.1 sec) */
u_short Tidle; /* Idle P/F cycle time (unit 0.1 sec) */
u_short ack_delay; /* RR delay time (unit 0.1 sec) */
u_short notack_max; /* Maximum number of unack’ed Rx I-frames */
u_short tx_window; /* Transmit window (if no XID received) */
u_short tx_probe; /* P-bit position before end of Tx window */
u_short max_I_len; /* Maximum I-frame length */
u_short xid_window; /* XID window size (receive window) */
u_short xid_Ndup; /* Duplicate MAC XID count (0 => no test) */
u_short xid_Tdup; /* Duplicate MAC XID time (unit 0.1 sec) */

} llc2tune_t;

The members of the llc2_tnoic structure are:

TABLE 11–41 Members of the llc2_tnoic structure

Member Description

lli_type The table type

lli_ppa The PPA

llc2_tune A table of tuning values

LAPB uses the lapb_tnioc structure

/* Ioctl block for LAPB L_SETTUNE command */
struct lapb_tnioc {

u_char lli_type; /* Table type = LI_LLAPBTUNE */
u_char lli_spare[3]; /* (for alignment) */
u_int lli_ppa; /* PPA (0xff for all PPAs) */
lapbtune_t lapb_tune;/* Table of tuning values */

};

/* LAPB tuning structure */
typedef struct lapb_tune {

uint16 N2; /* Maximum number of retries */
uint16 T1; /* Acknowledgment time (unit 0.1 sec) */
uint16 Tpf; /* P/F cycle retry time (unit 0.1 sec) */
uint16 Trej; /* Reject retry time (unit 0.1 sec) */

188 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

uint16 Tbusy; /* Remote busy check time (unit 0.1 sec) */
uint16 Tidle; /* Idle P/F cycle time (unit 0.1 sec) */
uint16 ack_delay; /* RR delay time (unit 0.1 sec) */
uint16 notack_max; /* Maximum number of unack’ed Rx I-frames */
uint16 tx_window; /* Transmit window size */
uint16 tx_probe; /* P-bit position before end of Tx window */
uint16 max_I_len; /* Maximum I-frame length */
uint16 llconform; /* LAPB conformance */

} lapbtune_t;

The members of the lapb_tnoic structure are:

TABLE 11–42 Members of the lapb_tnoic structure

Member Description

lli_type The table type

lli_ppa The PPA

lapb_tune A table of tuning values

11.2.2 LAPB ioctls
The ioctls described in this section can only be used over LAPB.

11.2.2.1 L_GETGSTATS—Reads Global Layer 2 Statistics
The L_GETGSTATSioctl reads global layer 2 statistics from the LAPB driver.

Associated Structures
The lapb_gstioc structure is used.

/* Ioctl block for L_GETGSTATS ioctl */
struct lapb_gstioc {

uint8 lli_type; /* Table type = LI_GSTATS */
uint8 lli_spare[3]; /* (for alignment) */
uint32 lapbgstats[globstatmax];

/* global statistics table */
};

DLPI Reference 189

/* Global L2 statistics */
#define frames_tx 0 /* frames transmitted */
#define frames_rx 1 /* frames received */
#define sabme_tx 2 /* SABMEs transmitted */
#define sabme_rx 3 /* SABMEs received */
#define bytes_tx 4 /* data bytes transmitted */
#define bytes_rx 5 /* data bytes received */
#define globstatmax 6 /* size of global stats array */

The members of the lapb_gstioc structure are:

TABLE 11–43 Members of the lapb_gstioc structure

Member Description

lli_type The table type

lapbgstats The global statistics table

11.2.2.2 L_GETPPA—Returns the PPA Associated With a Stream
This ioctl returns the PPA and link index associated with the stream.

Associated Structure:
/* Ioctl block for L_SETPPA and L_GETPPA commands */

struct ll_snioc {
uint8 lli_type; /* Table type = LI_SPPA */
uint8 lli_class; /* DTE/DCE/extended */
uint16 lli_slp_pri; /* SLP priority */
uint32 lli_ppa; /* PPA/ Subnetwork ID character */
uint32 lli_index; /* Link index */

};

The members of the ll_snioc structure are:

190 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

TABLE 11–44 Members of the ll_snioc structure

Member Description

lli_type The table type. This should always be LI_SPPA.

lli_class This indicates the type of link. LC_LLC2 must be used for LLC2;
LC__LAPBDTEor LC_LAPBDCEmust be used for LAPB. The file /usr/
include/netdlc/ll_proto.h contains a complete list of values.

lli_slp_pri This determines the priority of SLP when MLP is used.

lli_ppa The PPA identifier

lli_index The link index. This must be set with the muxid value returned by the
I-LINK ioctl when LAPB is placed over a serial driver.

Errors

TABLE 11–45 L_GETPPA errors

Error Description

ENODEV No such device or a DL_ATTACH_REQhas not been sent.

11.2.2.3 L_GETSTATS—Retrieves Per-Link Statistics
The L_GETSTATSioctl reads per-link (i.e., per-PPA) statistics from the LAPB driver.

Associated Structures
The lapb_stioc structure is used

/* Ioctl block for L_GETSTATS ioctl */
struct lapb_stioc {

uint8 lli_type; /* Table type = LI_STATS */
uint8 lli_spare[3]; /* (for alignment) */
uint32 lli_ppa; /* PPA */
lapbstats_t lli_stats; /* Table of stats values */

};

DLPI Reference 191

The lapbstats_t structure needed for L_GETSTATSis defined as follows:

CODE EXAMPLE 11–1 lapbstats_t structure

typedef struct lapb2_stats {
uint32 lapbmonarray[laphstatmax]; /* array of LAPB stats */

} lapbstats_t;

/* Statistics table definitions */
#define tx_ign 0 /* no. ignored + not sent */
#define rx_badlen 1 /* bad length frames received */
#define rx_unknown 2 /* unknown frames received */
#define t1_exp 3 /* no. of T1 timeouts */
#define t4_exp 4 /* no. of T4 timeouts */
#define t4_n2_exp 5 /* T4 timeouts after N2 times */

#define RR_rx_cmd 6 /* RR = Receive Ready */
#define RR_rx_rsp 7 /* tx = transmitted */
#define RR_tx_cmd 8 /* rx = received */
#define RR_tx_rsp 9 /* cmd/rsp = command/response */
#define RR_tx_cmd_p 10 /* p = p-bit set */

#define RNR_rx_cmd 11 /* RNR = Receive Not Ready */
#define RNR_rx_rsp 12
#define RNR_tx_cmd 13
#define RNR_tx_rsp 14
#define RNR_tx_cmd_p 15

#define REJ_rx_cmd 16 /* REJ = Reject */
#define REJ_rx_rsp 17
#define REJ_tx_cmd 18
#define REJ_tx_rsp 19
#define REJ_tx_cmd_p 20

#define SABME_rx_cmd 21 /* SABME = Set Asynchronous */
#define SABME_tx_cmd 22 /* Balanced Mode Extended */

#define DISC_rx_cmd 23 /* DISC = Disconnect */
#define DISC_tx_cmd 24

#define UA_rx_rsp 25 /* UA = Unnumbered */
#define UA_tx_rsp 26 /* Acknowledgment */

#define DM_rx_rsp 27 /* */
#define DM_tx_rsp 28

#define I_rx_cmd 29 /* I = Information */
#define I_tx_cmd 30

#define FRMR_rx_rsp 31 /* FRMR = Frame Reject */
#define FRMR_tx_rsp 32

#define tx_rtr 33 /* no. of retransmitted frames */
#define rx_bad 34 /* erroneous frames received */
#define rx_dud 35 /* received and discarded */
#define rx_ign 36 /* received and ignored */

#define I_rx_rsp 37
#define I_tx_rsp 38

192 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

#define UI_rx_cmd 39
#define UI_tx_cmd 40

#define XID_rx_cmd 41
#define XID_rx_rsp 42
#define XID_tx_cmd 43
#define XID_tx_rsp 44

#define TEST_rx_cmd 45
#define TEST_rx_rsp 46
#define TEST_tx_cmd 47
#define TEST_tx_rsp 48

#define llc2statmax 40

11.2.2.4 L_SETPPA—Associates a PPA With a Physical Device
This ioctl associates a PPA with a physical device underneath the layer two provider.

Associated Structure:
/* Ioctl block for L_SETPPA and L_GETPPA commands */

struct ll_snioc {
uint8 lli_type; /* Table type = LI_SPPA */
uint8 lli_class; /* DTE/DCE/extended */
uint16 lli_slp_pri; /* SLP priority */
uint32 lli_ppa; /* PPA/ Subnetwork ID character */
uint32 lli_index; /* Link index */

};

The members are:

TABLE 11–46 Members of the ll_snioc structure

Member Description

lli_type The table type. This should always be LI_SPPA.

lli_class This indicates the type of link. LC_LAPBDTEor LC_LAPBDCEmust be
used for LAPB. The file /usr/include/netdlc/ll_proto.h
contains a complete list of values.

lli_slp_pri This determines the priority of SLP when MLP is used.

DLPI Reference 193

TABLE 11–46 Members of the ll_snioc structure (continued)

Member Description

lli_ppa The PPA identifier

lli_index The link index. This must be set with the muxid value returned by the
I-LINK ioctl when LAPB is placed over a serial driver.

Errors

TABLE 11–47 L_SETPPA errors

Error Description

EBUSY The PPA is already being used by another stream.

ENODEV The specified lli_index has not been found.

11.2.2.5 L_ZEROSTATS—Clears the Per-Link Statistics Count
The L_ZEROSTATSioctl clears per-link statistics in the LLC2 and LAPB drivers.

Associated Structure
/* Ioctl block for L_ZEROSTATS ioctl */

struct ll_hdioc {
uint8 lli_type; /* Table type = LI_PLAIN */
uint8 lli_spare[3]; /* (for alignment) */
uint32 lli_ppa; /* PPA (0xff for all links) */

};

11.2.2.6 W_SETTUNE—Sets wanmod Tunable Parameters
The W_SETTUNEioctl sets the tunable parameters of the LAPB wanmod module. This
controls physical parameters such as the maximum frame length and line speed.

194 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Associated Structure

The following is from the file /usr/include/netx25/wan_control.h .

/* Ioctl block for WAN W_SETTUNE command
*/
struct wan_tnioc {

uint8 w_type; /* Always = WAN_TUNE */
uint8 w_spare[3]; /* (for alignment) */
uint32 w_snid; /* subnetwork id character (’*’ => ’all’) */
wantune_t wan_tune; /* Table of tuning values

*/
};
/* WAN tuning structure */
typedef struct wantune {

uint16 WAN_options; /* WAN options */
struct WAN_hddef WAN_hd; /* HD information. */
} wantune_t;

/*
This is the structure which contains all tuneable information
*/
struct WAN_hddef {

uint16 WAN_maxframe; /* WAN maximum frame size */
int WAN_baud; /* WAN baud rate */
uint16 WAN_interface ; /* WAN physical interface */

}
union {

uint16 WAN_cptype; /* Variant type */
struct WAN_x21 WAN_x21def;
struct WAN_v25 WAN_v25def;
} WAN_cpdef ; /* WAN call procedural definition *

* for hardware interface. */
};
/*
This contains all of the national network specific timeouts.
*/
struct WAN_v25 {

uint16 WAN_cptype; /* Variant type. */
uint16 callreq; /* Abort time for call request command *

};

The members of the wan_tnioc structure are:

TABLE 11–48 Members of the wan_tnioc structure

Member Description

w_snid The link id. It should be set to the same value as lli_ppa in the
L_SETPPA L_SETTUNEioctls.

WAN_options Reserved for future use. Must be set to 0.

WAN_maxframe The maximum frame size to be used on this interface (unit is octet).

DLPI Reference 195

TABLE 11–48 Members of the wan_tnioc structure (continued)

Member Description

WAN_baud The speed of the line (unit is baud, 0 is used for external clocking).

WAN_interface The type of interface. Should always be set to WAN_V28

WAN_cptype The type of interface. Set this to WAN_NONEif no calling procedures are
used (the most frequent case), or to WAN_V25bis if a calling procedure
and V25bis modem are used. In this instance, the WAN_v25structure
must be filled.

196 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

PART III Socket Interface

CHAPTER 12

Compatibility with SunNet X.25 7.0
Sockets-Based Packet Level Interface

This chapter describes the sockets-based interface to the Solstice X.25 Packet Layer
interface. In the current release, the sockets-based interface has been replaced by a
streams-based interface. The sockets-based interface is supported for backward-compatibility
with SunNet X.25 7.0 only. We strongly encourage you modify your existing X.25
applications to run over the streams-based interface described in the chapters of this
manual.

Note - The sockets-based interface is a source-compatible—not a
binary-compatible—interface. Applications that used the socket interface in SunOS
4.x must be recompiled to run on SunOSTM 5.x. See Section 13.2 “Compilation
Instructions and Sample Programs ” on page 242for instructions on compiling
programs to use the sockets-based interface on SunOS 5.x.

12.1 Introduction — The AF_X25 Domain
This chapter assumes some familiarity with SunOS sockets and address domains
(families). Briefly, the socket layer of the network system deals with the interprocess
communications provided by the system. A socket is a descriptor that acts as a
bidirectional endpoint for communications and is “typed” by the semantics of the
communications it supports. The type of the socket is defined at socket creation time
and used in selecting those services which are appropriate to support it. The socket
type SOCK_STREAM provides sequenced, reliable, two-way, connection-based byte
streams with an out-of-band data transmission mechanism. An address domain
specifies an address format which is used to interpret addresses specified in later
operations using the socket.

199

Solstice X.25 defines an address domain, AF_X25. Within this domain only the socket
type SOCK_STREAM is supported. Like other SOCK_STREAM sockets, an AF_X25
domain socket is composed of two byte streams: an in-band stream and an
out-of-band stream. However, unlike other sockets, there are two different kinds of
out-of-band messages: X.25 status and interrupt data.

12.2 AF_X25 Domain Addresses
Addresses in the AF_X25 domain consist of two parts: a DTE address of up to 15
BCD digits and Call User Data of up to 16 bytes. (The leading bytes of the Call User
Data is often a protocol identifier [PID] used to identify a specific application using
X.25.) You can use either subaddressing (part of 15-digit DTE address) or both
subaddressing and Call User Data as part of the binding mechanism to match
Incoming Call packets with a server process.

An AF_X25 domain address is described by a CONN_DB structure:

typedef struct conn_db_s {
u_char hostlen; /*address length in BCD digits */
u_char host[(MAXHOSTADR+1)/2]; /* DTE address */
u_char datalen; /* user data length in bytes */
u_char data[MAXDATA]; /* user data */

} CONN_DB;

The constants MAXHOSTADR and MAXDATA are defined in the include file
x25_pk.h. Currently, MAXHOSTADR is 15, so the length of the host field is 8, and
MAXDATA is 102. Use these constants, whenever possible, instead of hard-coded
values.

The 15-digit DTE address comprises three components: a Data Network
Identification Code (DNIC), a Network Terminal Number (NTN), and a subaddress.
A full X.121 address is the concatenation of a DNIC, NTN, and subaddress, in that
order. For example, if the DNIC is 4042, the NTN is 3831, and subaddress is 06, the
full X.121 address is 4042383106.

Note that only eight bytes are provided for the X.121 address, which could be up to
15 digits in length. This is because each byte holds two BCD digits in packed format
(it takes only four bits to represent a BCD digit). Thus the address 4042383106 will be
stored as five bytes, with hexadecimal values 0x40, 0x42, 0x38, 0x31, and 0x06, in that
order.

The necessary include files are listed in Chapter 13. For more information on address
binding, see Section 12.3.4 “Address Binding ” on page 204.

200 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.3 Creating Switched Virtual Circuits
To set up a switched virtual connection between a local and remote system, a socket
in the AF_X25 domain is created using the standard socket call:

int s; /* socket to be created */
s = socket(AF_X25, SOCK_STREAM, 0);

If a signal handler routine is to be used, it is necessary to associate a proper process
group ID with the socket. Refer to the section Section 12.5.4 “Out-of-Band Data ” on
page 214 of this chapter to see how this is done. X.25 facility specification and
negotiation may be done after creating a socket. See Section 12.7.1 “Facility
Specification and Negotiation” on page 217 of this chapter for more information
regarding facility specification.

After a socket has been created, the client executes one of the two sequences
described in the following subsections to set up the virtual circuit.

12.3.1 Calling Side — Outgoing Call Setup
The calling side initiates a virtual circuit connection by calling connect, supplying the
called (remote) DTE address (including subaddress, if any) and a user data field as
arguments. After connect completes successfully, the socket may be used for data
transfer.

int s /* socket */, error;
CONN_DB addr;
error = connect(s, &addr, sizeof(addr));

Solstice X.25 supports multiple physical interfaces (or links). A single link maps to a
serial port device, such as zsh0 .

A link is automatically selected for the outgoing call. Among multiple links, Solstice
X.25 routes outgoing calls based on the called address. Calls are routed according to
the full or partial addresses (X.121, or NSAP or non-NSAP extended addresses) you
specify in a routes file, the syntax for which is described in Solstice X.25 9.2
Administration Guide. The lowest-numbered link is the default.

If the interface supports 1984 X.25, the user may also specify a Called Address
Extension Facility (AEF). In this case, Solstice X.25 will use the Called AEF to route
the call over a particular link, provided the user has not specified an X.121 address.
If the user wants the call to be routed based on the Called AEF, the hostlen field
should be set to zero:

addr.hostlen = 0;

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 201

Where AEFs are used for routing, Solstice X.25 will select the interface to use and
will also supply the X.121 address (if any) for the Call Request packet. In addition, if
it is a LAN interface, Solstice X.25 will supply the necessary LSAP address.

Called and Calling AEFs are described in the section Section 12.7.1 “Facility
Specification and Negotiation” on page 217.

Note - error is used in most examples to indicate the return code. A value of zero
indicates a successful operation. A non-zero value indicates an unsuccessful
operation. The cause of the error is stored in a global variable errno which is used
throughout this manual. Values of errno are enumerated in <errno.h>. These values
are listed in intro(2) in the SunOS Reference Manual. Programmers may access errno
by inserting the following line in their programs: extern int errno; Note that errno
indicates the cause of the very last system call failure and is therefore invalid for
operations returning an error value of zero. To get more information on the meaning
of the error string printed, use the perror function.

12.3.2 Calling Side — Setting the Local Address
Often, the receiver of an Incoming Call needs to know the address of the caller in
order to validate the call. By default, the calling address in the Call Request is set to
the address (including the subaddress, if any) specified in the configuration file of
the link over which the Call Request is sent. There are several parameters in the link
configuration file, all described in the preceding subsection, that determine how
Solstice X.25 preprocesses the calling address to satisfy the requirements of the
interface.

You may specify a different address using the X25_WR_LOCAL_ADR ioctl. The
address is specified in a CONN_ADR structure.

typedef struct conn_adr_s {
u_char hostlen; /* length of BCDs */
u_char host[(MAXHOSTADR+1)/2];

} CONN_ADR;

Here, as in the CONN_DB structure, hostlen is the length of the address in BCD
digits, and host contains the address in packed BCD format. The
X25_WR_LOCAL_ADR ioctl call is issued as follows:

CONN_ADR addr;
int s, error;
error = ioctl(s, X25_WR_LOCAL_ADR, &addr);

The setting of the source address—and whether the X25_WR_LOCAL_ADR ioctl has
effect—is controlled by the setting of the Source Address Control parameter in the
Link Mode Parameters window in x25tool . See Solstice X.25 9.2 Administration
Guide for instructions on setting this parameter.

202 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.3.3 Called Side — Incoming Call Acceptance
The called side initiates listening for incoming calls by calling bind , supplying the
called (local) DTE address (including subaddress, if any) and protocol identifier to be
used for matching with incoming calls:

int s, error;
CONN_DB bind_addr;
error = bind(s, &bind_addr, sizeof(bind_addr));

Here, bind_addr contains the address and protocol identifier of the called side. The
protocol identifier is specified in the data field of the CONN_DB structure and is
matched with the user data in incoming calls. More information on how to specify
the address and protocol identifier for the bind call, and how incoming calls are
matched with bound addresses and protocol identifiers, follows.

After bind has been called, listen is called to begin waiting for incoming calls.
Incoming calls will be queued until they are accepted by means of the accept call.
backlog specifies the maximum number of incoming calls (no more than five) to
queue (waiting for accept) before clearing additional incoming calls.

int s, backlog, error;
error = listen(s, backlog);

Finally, accept is called to block until an incoming call is received that matches the
address and protocol identifier specified in the bind call. accept is passed a pointer
to a CONN_DB structure (and length), which will be filled in with the calling DTE’s
(remote) address and user data field. The user data field in an Incoming Call packet
consists of a protocol identifier followed by any additional user data. After an
incoming call matches the binding criteria, accept returns the socket news, to be
used for data transfer. news inherits the process group ID from s .

int s, news;
int from_addr_len;
CONN_DB from;
from_addr_len = sizeof(from);
news = accept(s, &from, &from_addr_len);

The remote address returned in from will be exactly as received (that is, in exactly
the same form as received in the calling address field in the Incoming Call packet).

Note that on entry into the accept call, from_addr_len should be set to the size of the
CONN_DB structure. On return, it will be set to the length of the actual address
returned in from.

A typical caller of accept would be a server process that forks a new process (after
calling accept) to handle each new socket. The sample programs (see Chapter 13”)
provided with Solstice X.25 illustrate how this can be done.

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 203

12.3.4 Address Binding
When an Incoming Call packet is received by Solstice X.25, the called address and
user data field are matched against all listening sockets. In addition, if the interface
supports 1984 X.25, and if the listener has specified a value for the Called AEF, the
Called AEF field in the Incoming Call (if any) will be matched with the Called AEF
specified by the listener. If a match is found, the call is accepted and the user process
associated with that socket will be notified when the user process does an accept.
This permits incoming calls to be bound to the correct user process. X.25 supports
binding by either address or by both address and protocol identifier. The method
used is determined by the fields of the CONN_DB structure passed to bind.

The address a socket is bound to is specified in the host field of the CONN_DB
parameter passed to the bind call. The address is specified in packed BCD format,
and the hostlen field contains the length of the address in BCD digits.

You can specify the bound address in a number of ways, depending on whether you
want to accept all calls (from any link, for any subaddress), or all calls for a specific
subaddress (from any link, for a particular subaddress), or calls from a specific link
for any subaddress, or calls for a specific address (from a specific link, for a specific
subaddress).

If you want to accept all calls (from any link, for any subaddress), set the bits
ANY_LINK (0x80) and ANY_SUBADDRESS (0x40) in the hostlen field and do not
specify any address:

bind_addr.hostlen = ANY_LINK | ANY_SUBADDRESS;

If you want to accept calls from any link, but only for a specific subaddress, specify
only the subaddress, and set the ANY_LINK bit in the hostlen field:

bind_addr.hostlen |= ANY_LINK;

If you want to accept calls from a specific link, but for any subaddress, specify the
link address (without the subaddress) and set the ANY_SUBADDRESSbit in the
hostlen field:

bind_addr.hostlen |= ANY_SUBADDRESS;

If you want to accept calls for a specific address (including subaddress) specify the
exact address in the CONN_DB structure passed to bind. In this case, the address
you specify must exactly match the called address field of the received Incoming Call
packet. The address of a link may be obtained with an X25_RD_LINKADR ioctl call
(see the section Section 12.7.6 “Accessing the Link (X.25) Address ” on page 231 of
this chapter for details).

The sample programs provided with Solstice X.25 illustrate the above features.

204 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.3.5 Binding by PID/CUDF
To bind by protocol identifier (PID), you must specify a protocol identifier in the data
field of the CONN_DB parameter passed to bind. The datalen field contains the
length of the protocol identifier. You can specify up to 102 bytes of protocol identifier,
but only the first 16 bytes will be used for matching with user data in Incoming Call
packets.

The user data field in an Incoming Call may be longer than the protocol identifier
specified in bind. The match will be considered successful if the protocol identifier
specified in bind is an initial sub-string of the user data in an Incoming Call. Thus, if
you specify a zero-length protocol identifier in bind, it will match the user data in
any Incoming Call.

You can enforce exact matching of the protocol identifier with user data in Incoming
Call packets by setting the bit EXACT_MATCH (0x80) in datalen:

bind_addr.datalen |= EXACT_MATCH;

In this case, user data in an Incoming Call packet should match the protocol
identifier specified in bind exactly (in content and length) in order for the match to
be considered successful.

See Chapter 13,” for references to sample code. A simple example is given below:

CONN_DB bind_addr;
int s, error;
/*We want to accept calls from any link, for the subaddress 01.
* We must specify the two digit subaddress 01 and set the ANY_LINK
* bit in the hostlen field.
*/
bind_addr.hostlen = 2 | ANY_LINK; /* there are 2 BCD digits */
bind_addr.host[0] = 0x01;
/* We will specify a protocol identifier consisting of a single byte
* with value 0x02.
*/
bind_addr.datalen = 1;
bind_addr.data[0] = 0x02;
error = bind(s, &bind_addr, sizeof(bind_addr));

12.3.6 Masking Incoming Protocol Ids at Bit Level
The user data in an Incoming Call may be masked (that is, bitwise ANDed), using a
specified mask value, before it is matched with the protocol identifier specified in a
bind call. The mask is specified in a MASK_DATA_DB structure using the
X25_WR_MASK_DATA ioctl. Here is an example:

typedef struct mask_data_bd_s {
u_char masklen;
u_char mask[MAXMASK];

} MASK_DATA_DB;

MASK_DATA_DB m;
int s, error;

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 205

m.masklen = 3;
m.mask[0] = 0xff;
m.mask[1] = 0x00;
m.mask[2] = 0xff;

error = ioctl(s, X25_WR_MASK_DATA, &m);

MAXMASKis currently 16. masklen holds the length of the mask data in bytes, and
mask is the actual mask value. In the above example, the first three bytes of user
data in an Incoming Call will be masked: the first byte with 0xff, the second with
0x00, and the third with 0xff. The masked user data will then be matched with the
specified protocol identifier. Note that the specified protocol identifier will not be
masked before matching occurs, so in the above example, the second byte of the
specified protocol identifier must be zero if any match is to succeed.

12.3.7 AEF Matching Considerations
A listener may specify a Called AEF. In this case, the Incoming Call packet must
have the Called AEF, and it should match the Called AEF specified by the listener
exactly, in order for the match to succeed. If the listener has not specified a Called
AEF, any Called AEF present in the Incoming Call packet will be accepted, provided
the match succeeds in other ways (Called Address and PID).

12.3.8 Explicit Link Selection—Calling Side
As discussed in a previous subsection, Solstice X.25 automatically selects a link for
an outgoing call if so requested by the caller. If you do nothing to call automatic link
selection into play, the call is sent over the lowest numbered WAN link by default.
The calling side can override automatic link selection, and specify a desired link
using the X25_SET_LINK ioctl:

int s, error;
int linkid; /* id of desired link for outgoing call */
CONN_DB addr; /* destination address */
linkid = 3; /* want to send call over link 3 */
error = ioctl(s, X25_SET_LINK, &linkid);

/* check error here */

error = connect(s, &addr, sizeof(addr));

Note that a full X.121 address must be specified (and so indicated by setting the
ANY_LINK bit as described earlier) if you want Solstice X.25 to process the address as
required by the PSDN, using the parameters specified in the link configuration file.
Otherwise, the address set in the Call Request packet will be exactly what you
specified, and so you must take care to provide the address in exactly the form
required by the PSDN.

206 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Since setting the link prevents Solstice X.25 from consulting the routing table, all the
information required to establish connection with the remote user must be provided.
For example, if the link selected supports 1984 X.25, Called and Calling AEFs may be
required. If the link selected is a LAN interface, the LSAP address of the remote user
must be provided. This is done as follows:

typedef struct {
u_char lsel;
u_char maclen;

#define MACADDR_LEN 6
u_char macaddr[MACADDR_LEN];

} X25_MACADDR;

X25_MACADDR dst_mac; /* LSAP address */
int s; /* socket */

/* set the lsel, maclen and macaddr fields here */

error = ioctl(s, X25_WR_MACADDR, &dst_mac);

If the lsel field is set to zero, Solstice X.25 will use the value specified in the link
configuration file. After connection is established, the LSAP address of the remote
user can be read using the X25_RD_MACADDRcommand:

X25_MACADDR dst_mac; /* LSAP address */
int s; /*socket */

error = ioctl(s, X25_RD_MACADDR, &dst_mac);

12.3.9 Explicit Link Selection—Called Side
The called side may restrict the calls it wishes to examine for a possible match to a
particular link by means of the X25_SET_LINK ioctl.

int s, linkid, error;
CONN_DB addr; /* address and protocol identifier */

linkid = 2; /* restrict calls to link 2 */
error = ioctl(s, X25_SET_LINK, &linkid);

/* check error here */

error = bind(s, &addr, sizeof(addr));

The ANY_SUBADDRESSand ANY_LINK bits can still be used in the same way as
explained in the sectionSection 12.3.4 “Address Binding ” on page 204 of this chapter.
The ANY_LINK bit, in this context, serves as an abbreviation for the link address, and
you do not have to specify the link address explicitly. A zero-length address also
works in the same way as described in the Section 12.3.4 “Address Binding ” on
page 204 section. Otherwise, you must specify the address in exactly the form it will
be received. That is, it must exactly match the called address field of the received
Incoming Call packet.

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 207

12.3.10 Accessing the Local and Remote Addresses
Once a connection is established, the calling and called sides may use the
getsockname and getpeername calls to obtain the local and remote X.121 addresses:

int s, error;
CONN_DB local; /* local address */
int local_len; /* local address length */
CONN_DB remote; /* remote address */
int remote_len; /* remote address length */

/* get local address */
local_len = sizeof(local);
error = getsockname(s, &local, &local_len);

/* get remote address */
remote_len = sizeof(remote);
error = getpeername(s, &remote, &remote_len);

The local and remote addresses can also be obtained using the
X25_RD_LOCAL_ADR and X25_RD_REMOTE_ADR ioctl calls:

int s, error;
CONN_ADR local; /* local address */
CONN_ADR remote; /* remote address */

/* get local address */
error = ioctl(s, X25_RD_LOCAL_ADR, &local);

/* get remote address */
error = ioctl(s, X25_RD_REMOTE_ADR, &remote);

Note that for getsockname and getpeername, the CONN_DB structure is used, and
for the ioctl calls, the CONN_ADR structure is used. In both cases, the host field will
contain the address in packed BCD format, and the hostlen field will contain the
address length in BCD digits.

For the called side, the remote address will be defined only after the connection is
complete. The remote address obtained using either of the above two methods will
be exactly as obtained from the Incoming Call packet. After the call is established,
the local address (obtained by either method) will be exactly as received in the called
address field in the Incoming Call packet.

For the calling side, the remote address will be exactly as specified in the connect
call. If the ANY_LINK bit was set in the hostlen field, it will be also set when it is
read by the user using either of the above methods. The source address for the
calling side will be either a zero-length address (indicating that the appropriate link
address was used), or exactly what the user specified using the
X25_WR_LOCAL_ADR ioctl call (including the SUBADR_ONLY bit if it is used).

208 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.3.11 Finding the Link Used for a Virtual Circuit
If you let Solstice X.25 select the link for an outgoing call, or make an accept call that
accepts incoming calls from any link, you may use the X25_GET_LINK ioctl to obtain
the identifier of the link used for the call:

int s, error;
int linkid; /* link identifier */

error = ioctl(s, X25_GET_LINK, &linkid);

If this call is made before connection establishment and you have not explicitly
selected a link, linkid will be set to -1 on return from the call. After connection
establishment, linkid will have a value in the range zero through one less than the
maximum number of links configured.

An important use for this ioctl arises when the called side determines the remote
address in order to call back the remote DTE. In this situation, the remote address is
presented in exactly the form it arrived in the Call Request. For some PSDNs, this
may not contain a DNIC. Hence, the only way you can call the remote DTE back is
by finding out the link id for the call using the X25_GET_LINK ioctl, and explicitly
selecting this link using the X25_SET_LINK ioctl when calling the remote DTE back.
In this situation, you should not set the ANY_LINK bit in the hostlen field of the
CONN_DB parameter to the connect call.

12.3.12 Determining the LCN for a Connection
To find out which logical channel is associated with a connection, do the following:

int s, lcn;
error = ioctl(s, X25_RD_LCGN, &lcn);

Here, s is the socket associated with the connection (or virtual circuit). On return
from the call, lcn is set to the logical channel number associated with socket s. If the
returned value of lcn is 0, there is no connected virtual circuit associated with the
socket.

12.4 Sending Data
The send call is used to send data over a virtual circuit. send is passed the socket, a
pointer to the data to be transmitted, the length of the data, and a flag indicating the
type of data to be sent. Interrupt data is sent by setting flags to MSG_OOB.
Otherwise, flags should be set to zero. The returned count indicates the number
of bytes transmitted by send .

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 209

int count, len, flags, s;
char *msg;
count = send(s, msg, len, flags);

Note that for normal data, you can use the write system call instead of send. The call:

write(s, msg, len)

is equivalent to:

send(s, msg, len, 0)

The X.25 protocol has the concept of an X.25 message. A complete X.25 message is a
sequence of one or more packets with the M-bit (More bit) set in all but the final
packet. Normally, X.25 sends the data specified in a send call as a complete message.
This means that the data will be segmented into packets as required by the PSDN,
and the M-bit will be set in all but the final packet. If the user wishes to pass the data
in a complete X.25 message in pieces (that is, using multiple send calls), the setting
of the M-bit must be controlled using the X25_SEND_TYPE ioctl as described below.

Note - In the current release of Solstice X.25, send() returns a positive result after a
virtual circuit is closed at the remote end. This behavior is different from SunNet
X.25 7.0. To be notified when the virtual circuit has been closed, use the
X25_OOB_ON_CLEARioctl, as described in Section 12.7.8 “Accessing the Diagnostic
Code” on page 232.

12.4.1 Control of the M-, D-, and Q-bits
The settings of M-, D- and Q-bits in transmitted packets are changed by means of the
X25_SEND_TYPE ioctl call.

ints, send_type;
error = ioctl(s, X25_SEND_TYPE, &send_type);

send_type provides the new settings of the M-, D-, and Q-bits. The M-, D-, and
Q-bits are encoded into the send_type field by bit shifting as shown below.

#define M_BIT 0 /* number of bits to shift to set "more"
* bit */

#define D_BIT 2 /* number of bits to shift to set end-to-end
* acknowledge bit */

#define Q_BIT 3 /* number of bits to shift to set qualified
* data bit */

For example, to set the Q-bit in a packet:

intsend_type = (1 << Q_BIT), s;
error = ioctl(s, X25_SEND_TYPE, &send_type);

210 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

M_BIT determines whether or not a packet is the final piece of a complete X.25
message. If M_BIT is set, subsequent send calls are treated as part of a single X.25
message. If M_BIT is not set, the next send ends the current X.25 message. For
example, the following code allows a complete X.25 message to be sent in three
pieces:

ints, send_type, error;
/* Set M_BIT to indicate multiple pieces */
send_type = (1 << M_BIT);
error = ioctl(s, X25_SEND_TYPE, &send_type);
/* send first piece */
error = send(s, &first_piece, sizeof(first_piece), 0);
/* send next piece */
error = send(s, &second_piece, sizeof(second_piece), 0);
/* Clear M_BIT to indicate end of message */
send_type = 0;
error = ioctl(s, X25_SEND_TYPE, &send_type);
/* send final piece */
error = send(s, &final_piece, sizeof(final_piece), 0);

If the M-bit is turned on using the X25_SEND_TYPEioctl, it will stay turned on until
it is turned off. The X.25 recommendation states that the M-bit shall be turned on
only in packets that are “full”—that is, packets that have the maximum size for that
virtual circuit. So if the M-bit is turned on, and the next send does not supply a full
X.25 packet, X.25 will wait until enough send calls have been issued to build a full
X.25 packet before transmitting the next packet with the M-bit turned on.

The Q-bit qualifies the data in Data packets. A local DTE sets the Q-bit to indicate
that the data being sent is significant for a device connected to the remote DTE. It is
often used by a remote host when sending control packets to a PAD, to distinguish
the control packets from packets containing user data.

The D-bit allows a local DTE to specify end-to-end acknowledgment of data packets.
Normally, a DTE receives acknowledgement only from its local DCE. The D-bit is
significant only in call setup and data packets.

D_BIT and Q_BIT control the settings of those bits in an X.25 packet. These bits are
manipulated in the same manner as the M_BIT was above. Since the X.25
recommendation states that the D_BIT and Q_BIT bits should remain constant for
each packet in a complete X.25 message, D_BIT and Q_BIT should only be changed
at the beginning of an X.25 message.

Unlike M_BIT, D_BIT and Q_BIT are turned off automatically after a complete X.25
message has been sent. Hence, to set these bits in a series of complete X.25 messages,
you should turn them on at the start of each complete X.25 message. If the complete
X.25 message is a sequence of full packets with the more bit turned on in all but the
last packet in the sequence, the setting of D_BIT and Q_BIT will be the same for all
the packets unless you explicitly change the setting in between.

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 211

12.4.2 Sending Interrupt and Reset Packets
An interrupt packet may be sent in the following manner. The interrupt user data is
contained in intr:

int s;
char intr = 0; /* set this variable to contain the interrupt

* user data (in this case 0) */
error = send(s, &intr, 1, MSG_OOB);

If the link supports 1984 X.25, you may send up to 32 bytes of interrupt data. On
1980 links, you may send only one byte.

A reset packet may be sent in the following manner:

X25_CAUSE_DIAG diag;
int error, s;
diag.flags = 0;
diag.datalen = 2;
diag.data[0] = 0; /* cause */
diag.data[1] = 67; /* diagnostic */
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

This will cause a Reset to be sent with the cause code and diagnostic specified by the
user. See Section 12.7.8 “Accessing the Diagnostic Code” on page 232 of this chapter
for more information.

12.5 Receiving Data
To read data from an X.25 socket, call recv. Data may be either in-band (normal data)
or out-of-band (interrupt data and status). To receive out-of-band data, set flags to
MSG_OOB. To receive normal data, set flags to 0.

int s, len, flags, count;
char *buf;
count = recv(s, buf, len, flags);

Note that for normal data, you can use the read system call instead of recv. The call:

read(s, buf, len)

is equivalent to:

recv(s, buf, len, 0)

12.5.1 In-Band Data
Calling recv with flags set to zero reads in-band data. Normally, each recv returns
one complete X.25 message. It is very important to note that if the size of the receive
buffer is not sufficient to hold the entire X.25 message, the excess is discarded and no

212 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

error indication is returned. This is a feature of SunOS sockets, not of Solstice X.25.
count returns a count of the number of bytes returned by recv. If the user wishes to
read an X.25 message in pieces smaller than a complete message, the
X25_RECORD_SIZE ioctl should be used as described in the section Section 12.5.3
“Receiving X.25 Messages in Records ” on page 214of this chapter.

Unless non-blocking I/O has been requested, the recv call will block unless there is
some data that can be returned to the user. If the connection is cleared (due to
normal or abnormal reasons) while recv is blocked, recv will return a count of zero.
A return value of zero from recv is an indication that the connection has been
cleared, and the user must close the socket at this point.

12.5.2 Reading the M-, D-, and Q-bits
To determine the values of the M-, D-, and Q-bits in received frames, call the
X25_HEADER ioctl before the virtual circuit has been created.

ints, need_header;
error = ioctl(s, X25_HEADER, &need_header);

If need_header is set to one, subsequent recvs will return the data preceded by a
one-byte header that contains the values of the M-, Q-, and D-bits encoded as bit
shifts as follows:

#define M_BIT 0 /* number of bits to shift for M-bit */
#define D_BIT 2 /* number of bits to shift for D-bit */
#define Q_BIT 3 /* number of bits to shift for Q-bit */

For example, to check for the presence of the Q-bit in a packet, the following
sequence might be used:

char buf[1025];
int s, need_header = 1, count, error;
error = ioctl(s, X25_HEADER, &need_header);

. . .
count = recv(s, buf, sizeof(buf), 0);
if (count > 0 && (buf[0] & (1 << Q_BIT)))

/* then Q bit is on */

The X25_HEADERioctl must be issued either before the connect call (for outgoing
calls), or before the accept call (for incoming calls). For PVCs, the X25_HEADERioctl
must be issued before the X25_SETUP_PVCioctl. For the duration of the call, the
X25_HEADERioctl must not be used to change the header setting. For example, if a
message is received when the header setting is on and the user turns it off before
reading the message, the user will receive a one-byte header along with the message,
even though he is not expecting it.

If the header is requested, X.25 does not wait for a complete X.25 message to be
assembled before returning any data to the user. Rather, partial messages (indicated
by the presence of M_BIT) are returned to the user as they become available. Note

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 213

that the buffer supplied in the recv call must be large enough to accommodate the
extra byte of header information.

12.5.3 Receiving X.25 Messages in Records
By default, each recv returns a complete X.25 message. To force recv to return data
before a complete X.25 message has been assembled, issue the X25_RECORD_SIZE
ioctl after the socket is created:

int s, record_size, error;
/* Set record_size to n, where n is the number of

* maximum size packets with more bit turned on that
* will be received before the accumulated data is
* returned in a recv call.
*/

error = ioctl(s, X25_RECORD_SIZE, &record_size);

Here, record_size specifies the number of full (maximum size) packets with M-bit
turned on that X.25 will receive before the accumulated data is returned to the user
as a record (or message). Thus, the maximum record size seen by the user will be
record_size times the maximum packet size for the virtual circuit. If a complete X.25
message comprises less than record_size packets, it will be returned to the user as in
the normal case.

The X25_RECORD_SIZE ioctl is useful when complete X.25 messages are potentially
very long, so that either they cannot be buffered in the socket receive buffers (limited
by the high water mark), or it is too much of a performance bottleneck for the
application to wait for the whole message to be assembled before processing it, or
the application does not wish to dedicate very large buffers for receiving data. If
record boundaries (that is, message boundaries) are important, this method must not
be used. Rather, the X25_HEADER ioctl must be used, as indicated earlier, to obtain
a header byte for each packet that indicates whether or not the packet is the last one
in a record (that is, message).

12.5.4 Out-of-Band Data
Out-of-band data is managed by a combination of ioctl calls, the passing of the
MSG_OOB flag to recv, and an optional signal, SIGURG. To determine whether
out-of-band data has been received, call the X25_OOB_TYPE ioctl:

ints, oob_type;
error = ioctl(s, X25_OOB_TYPE, &oob_type);

If out-of-band data does not exist, oob_type is set to zero. Otherwise, oob_type is set
to a value indicating the type of out-of-band data that has been received. The types
of out-of-band data are:

214 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

#define INT_DATA 30 /* interrupt data */
#define VC_RESET 32 /* virtual circuit reset */

INT_DATA indicates that interrupt data has been received. The interrupt data is read
by calling recv with flags set to MSG_OOB. In general, the following sequence occurs
upon receipt of an interrupt packet:

1. X.25 receives an interrupt request packet. The interrupt is queued and causes a
SIGURGsignal.

2. The user reads the interrupt packet (with recv), automatically causing an
Interrupt Confirmation packet to be sent.

Up to 32 bytes of interrupt data may be received if the interface supports 1984
X.25.

It is not necessary to issue a recv call with flags set to MSG_OOB if the interrupt
type is something other than INT_DATA.

VC_RESET indicates that the virtual circuit associated with the socket has been
reset.

The SunNet X.25 7.0 interface had an additional type of out-of-band data,
MSG_TOO_LONG, which indicated that a message was discarded because of the
socket buffer limitations. This type of out-of-band data does not exist in the
current release, because an X.25 message will not get discarded when it gets too
long. “Too long” means that too many packets are received with the M-bit set to 1
and the user has not asked for individual packets with the X25_HEADERioctl.
Instead of getting discarded, the X.25 message will be sent upstream as soon as
its length goes over MAXNSDULEN, whether or not the end of the message has
been seen (that is, a packet with the M-bit set to 0). MAXNSDULENis one of the
configurable Layer 3 parameters described in Solstice X.25 9.2 Administration Guide.

If this happens, there are three possible courses of action that may be taken:

� Increase the socket high water mark using the X25_WR_SBHIWAT ioctl to a
maximum of 32767.

� Request a header on every packet using the X25_HEADER ioctl. This will
result in every packet being returned to the user with an extra header byte.

� Use the X25_RECORD_SIZE ioctl to specify the maximum number of full
packets in a complete X.25 message that X.25 should receive before returning
the accumulated data to the user as a record.

Out-of-band messages are serialized in a FIFO (first in, first out) queue, except
for interrupt data, which preempts all other out-of-band messages. If the ioctl
call X25_OOB_TYPE indicates INT_DATA, then the interrupt packet will be the
next packet read on the out-of-band channel, that is, when recv is called with
flags set to MSG_OOB. The INT_DATA condition remains true until the
out-of-band packet has been read.

The following piece of code may be used to set up the function func as the
signal handler for the SIGURG signal:

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 215

int func();
(void) signal(SIGURG, func);

The signal SIGURG, which indicates an urgent condition present on a socket,
may be enabled to indicate an abnormal condition or the arrival of abnormal
data at an AF_X25 socket. The signal causes func, the signal handler procedure,
to be called. The signal procedure must be called before connect on the calling
side and listen on the called side.

A process receiving the SIGURG signal must examine all potential causes for
the signal in order to identify the source of the signal. For example, if a process
has multiple AF_X25 sockets open when it receives the SIGURG signal, each
open AF_X25 socket will have to be queried with the X25_OOB_TYPE ioctl to
determine the signal source. It could well be that the signal did not originate
with X.25, but from some other source.

Upon socket creation, the socket is not associated with a process group ID. If a
signal handler routine is used, the user should associate a proper process
group ID with the socket as shown below:

int pgrp, error;
pgrp = getpid(); /* get the current process id */
error = ioctl(s, SIOCSPGRP, &pgrp);

When a signal handler routine is awakened, pending system calls, for example,
recv, accept, connect, select, etc., will be aborted with errno set to EINTR
(interrupted system call). The signal handler routine func may be disabled at
any time by assigning a default action SIG_DFL to SIGURG:

(void) signal(SIGURG, SIG_DFL);

A more general explanation of signals is in the SunOS 4.x documentation on
socket programming.

12.6 Clearing a Virtual Circuit
The close system call is used to discontinue use of a socket and all of the resources
held by the socket, as follows:

int s, error;
error = close(s);

The close call closes the virtual circuit associated with a socket and frees the
resources used by the socket. More specifically, close will send a Clear Request
packet and then wait for a Clear Confirmation packet if the socket has an active
virtual circuit associated with it. An active virtual circuit is one that is either

216 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

connected, or is in the early stages of connection (that is, Call Request has been sent,
but Call Connected has not been received). In this case, if a Clear Confirmation
packet is not received after the amount of time specified in the link configuration file,
the socket will be closed and close will return. If the socket does not have an active
virtual circuit associated with it, close will return immediately.

12.7 Advanced Topics
This section includes material on a variety of advanced topics.

12.7.1 Facility Specification and Negotiation
X.25 user facilities are specified on a per-call basis. The X25_SET_FACILITY ioctl is
used to set facilities one at a time. The X25_GET_FACILITY ioctl is used to read
facilities one at a time. These ioctl commands support all facilities (1980 and 1984
X.25).

Facilities are set in two places: before issuing a connect call, in order to request
desired facilities in the Call Request packet; and before issuing a listen call, in order
to negotiate the facilities proposed in an Incoming Call packet.

Facilities are usually read in two places: after a call to connect has succeeded, and
after a call to accept has succeeded. This is done to determine the values of the
facilities in effect for the resulting connection. Facilities can be read at any time, in
general, to determine values which were previously set.

12.7.2 X25_SET_FACILITY /X25_GET_FACILITY ioctls
Note - The sockets-based interface provides access only to those facilities that were
supported in SunNet X.25 7.0. These are a subset of the facilities supported in
Solstice X.25 9.2.

The X25_SET_FACILITY ioctl command is used to set the following facilities:

reverse charge (*) (#)
fast select (*) (#)
non-default packet size (*)
non-default window size (*)
non-default throughput (*)
minimum throughput class (#)
closed user group (*) (#)
RPOA selection (*) (#)
network transit delay (#)

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 217

end-to-end transit delay
network user identification (#)
charging information request
expedited data negotiation
called AEF
calling AEF (#)
non-X.25 facilities

All of the above facilities can be sent in a Call Request packet. The ones that can be
used with a 1980 X.25 interface are marked with an (*), although only the basic forms
of the closed user group facility and the RPOA selection can be used in this case. The
ones that cannot be sent in a Call Accepted packet are marked with a (#). Solstice X.25
does not permit users to set facilities in Clear Request and Clear Confirm packets.

All of the above facilities can be read using the X25_GET_FACILITY ioctl command.
In addition, the following can also be read:

charging information, monetary unit
charging information, segment
charging information, call duration
called line address modified notification
call redirection notification

Sample programs provided with Solstice X.25 illustrate the use of these facilities.
Here, we discuss each of the above facilities in more detail and provide code
segments to illustrate their use. For convenience, the variables used in the discussion
below are declared here. (Chapter 13” has a listing of the relevant data structures
used by the X25_SET_FACILITY and X25_GET_FACILITY ioctl commands.)

FACILITY f; /* facility structure */
int s; /* socket */
int error; /* ioctl return value */

For brevity, the value returned by ioctl calls is not checked for error.

In the discussion that follows, we show how the user can send facilities in the Call
Request packet. In order to send a facility in the Call Accepted packet, the listener
should either set the facility before invoking listen, or should set it before causing the
Call Accepted packet to be sent (that is, the listener should have used the
X25_CALL_ACPT_APPROVAL ioctl command, described later, to cause Solstice X.25
to permit call approval by the user).

The exceptions to this are end-to-end transit delay, expedited data negotiation, Called
AEF, and non-X.25 facilities. To send these in the Call Accepted packet, the listener
must do call approval, and must set these facilities after accept returns, but before the
X25_SEND_CALL_ACPT ioctl command is used to send the Call Accepted packet.

12.7.2.1 Reverse Charge
There are two possible values for this facility: 1 indicates reverse charging, and 0
indicates no reverse charging.

218 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

This is set as follows:

u_char reverse_charge;
reverse_charge = 1;
f.type = T_REVERSE_CHARGE;
f.f_reverse_charge = reverse_charge;
error = ioctl(s, X25_SET_FACILITY, &f);

This facility is read as follows:

f.type = T_REVERSE_CHARGE;
error = ioctl(s, X25_GET_FACILITY, &f);
reverse_charge = f.f_reverse_charge;

Setting this facility before making the connect call causes this facility to be sent in the
Call Request. Setting this facility before making the listen call causes Incoming Calls
with the reverse charging facility to be accepted. (Calls that are not reverse-charged
are always acceptable.) The listener should read the value of the facility after the
accept call returns to find out if the call is reverse-charged.

Note - Reverse charging must be allowed for this ioctl to work. You allow for
reverse charging in the x25tool CUG and Facilities window. To access the CUG and
Facilities window, from the x25tool Link Editor window, select CUG and Facilities.
Click on Incoming Reverse Charging. See Solstice X.25 9.2 Administration Guide for
further details.

12.7.2.2 Fast Select
There are three possible values for this facility. FAST_OFF indicates that fast select is
not in effect. FAST_CLR_ONLY indicates fast select with restriction on response, and
FAST_ACPT_CLR indicates fast select with no restriction on response.

This is set as follows:

u_char fast_select_type;
fast_select_type = FAST_CLR_ONLY;
f.type = T_FAST_SELECT_TYPE;
f.f_fast_select_type = fast_select_type;
error = ioctl(s, X25_SET_FACILITY, &f);

This is read as follows:

f.type = T_FAST_SELECT_TYPE;
error = ioctl(s, X25_GET_FACILITY, &f);
fast_select_type = f.f_fast_select_type;

If this facility is set before making the connect call, the Call Request packet is sent
out with this facility. If this facility is set before making the listen call, the behavior
that follows will depend on whether or not restriction on response was indicated,
and on whether the Incoming Call has this facility. In order for an Incoming Call
bearing the fast select facility to be acceptable, the listener should have specified fast

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 219

select (with or without restriction). However, an Incoming Call not bearing the fast
select facility will still be acceptable to a listener who has specified fast select with no
restriction on response. The type of fast select in effect will be either the type of fast
select in the Incoming Call, or fast select with restriction on response if either end of
the connection has specified fast select with restriction on response. If the Incoming
Call does not specify fast select, and is accepted by a listener who has specified fast
select with no restriction on response, fast select will not be in effect for the duration
of the call.

A listener that has specified fast select (with or without restriction) must use the
X25_SEND_CALL_ACPT ioctl to accept the call or use close to clear the call, after
successful completion of the accept call, regardless of whether fast select is in effect
for the call. If the type of fast select in effect after accept is either FAST_OFF or
FAST_ACPT_CLR, the user may either accept or clear the call. If the type of fast
select in effect is FAST_CLR_ONLY, the user cannot accept the call (it can only be
cleared). The handling of user data in conjunction with fast select is described later.

12.7.2.3 Packet Size
Packet size is set in the Call Request packet as follows:

u_short sendpktsize, recvpktsize;
/* set sendpktsize, recvpktsize to desired values */
f.type = T_PACKET_SIZE;
f.f_sendpktsize = sendpktsize;
f.f_recvpktsize = recvpktsize;
error = ioctl(s, X25_SET_FACILITY, &f);

It is read as follows:

f.type = T_PACKET_SIZE;
error = ioctl(s, X25_GET_FACILITY, &f);
sendpktsize = f.f_sendpktsize;
recvpktsize = f.f_recvpktsize;

Setting packet size in the Call Request causes the values set to be proposed for the
call (a zero value indicates the default for the link). Reading the value after the call is
set up yields the result of negotiation.

Packet sizes are set and read in bytes, so that, for example, 128, 256, and 512 are legal
values.

12.7.2.4 Window Size
Window size is set in the Call Request packet as follows:

u_short sendwndsize, recvwndsize;
/* set sendwndsize, recvwndsize to desired values */
f.type = T_WINDOW_SIZE;
f.f_sendwndsize = sendwndsize;
f.f_recvwndsize = recvwndsize;

220 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

error = ioctl(s, X25_SET_FACILITY, &f);

It is read as follows:

f.type = T_WINDOW_SIZE;
error = ioctl(s, X25_GET_FACILITY, &f);
sendwndsize = f.f_sendwndsize;
recvwndsize = f.f_recvwndsize;

Setting the window size in the Call Request causes the values set to be proposed for
the call (a zero value indicates the default for the link). Reading the value after the
call is set up yields the result of negotiation.

12.7.2.5 Throughput
Throughput is set in the Call Request packet as follows:

u_char sendthruput, recvthruput;
/* set sendthruput, recvthruput to desired values */
f.type = T_THROUGHPUT;
f.f_sendthruput = sendthruput;
f.f_recvthruput = recvthruput;
error = ioctl(s, X25_SET_FACILITY, &f);

It is read as follows:

f.type = T_THROUGHPUT;
error = ioctl(s, X25_GET_FACILITY, &f);
sendthruput = f.f_sendthruput;
recvthruput = f.f_recvthruput;

When throughput is set in the Call Request, the values set are proposed for the call
(a zero value indicates the default for the link). Reading the value after the call is set
up yields the result of negotiation.

12.7.2.6 Minimum Throughput Class
Minimum throughput class is set in the Call Request packet as follows:

u_char min_sendthruput, min_recvthruput;
/* set min_sendthruput, min_recvthruput to desired values */
f.type = T_MIN_THRU_CLASS;
f.f_min_sendthruput = min_sendthruput;
f.f_min_recvthruput = min_recvthruput;
error = ioctl(s, X25_SET_FACILITY, &f);

It is read as follows:

f.type = T_MIN_THRU_CLASS;
error = ioctl(s, X25_GET_FACILITY, &f);
min_sendthruput = f.f_min_sendthruput;
min_recvthruput = f.f_min_recvthruput;

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 221

This facility may only be set in a Call Request packet, and read from an Incoming
Call packet. The receiver of the Incoming Call packet should clear the call (with an
appropriate diagnostic) if the proposed minimum throughput values cannot be
supported.

12.7.2.7 Closed User Group

The user may set one of three types of Closed User Group facility: CUG_REQ (no
outgoing access), CUG_REQ_ACS (with outgoing access), and CUG_BI (bilateral
CUG). For CUG_REQ and CUG_REQ_ACS, the CUG is a decimal integer in the range
0-9999 (for 1980 X.25 interfaces, the valid range is 0-99). The extended form of the
facility is used for CUG indices in the range 100-9999. This facility is set as follows:

u_short cug_index;
/* set cug_index to appropriate value */
f.type = T_CUG;
f.f_cug_req = CUG_REQ; /* could be CUG_REQ_ACS or CUG_BI */
f.f_cug_index = cug_index;
error = ioctl(s, X25_SET_FACILITY, &f);

To read this facility:

f.type = T_CUG;
error = ioctl(s, X25_GET_FACILITY, &f);
cug_req = f.f_cug_req;
cug_index = f.f_cug_index;

12.7.2.8 RPOA Selection

Solstice X.25 supports the setting of up to three (MAX_RPOA) RPOA transit
networks (in the extended form). If only one is specified, the non-extended form of
the facility is used. An RPOA transit network is specified as a decimal integer in the
range 0-9999.

This facility is set as follows:

u_short rpoa0, rpoa1, rpoa2;
/* set rpoa0, rpoa1, rpoa2 */
f.type = T_RPOA;
f.f_nrpoa = 3;
f.f_rpoa_index[0] = rpoa0;
f.f_rpoa_index[1] = rpoa1;
f.f_rpoa_index[2] = rpoa2;
error = ioctl(s, X25_SET_FACILITY, &f);

To read this facility:

f.type = T_RPOA;
error = ioctl(s, X25_GET_FACILITY, &f);
rpoa0 = f.f_rpoa_index[0];
rpoa1 = f.f_rpoa_index[1];
rpoa2 = f.f_rpoa_index[2];

222 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.7.2.9 Network Transit Delay
The Transit Delay Selection and Indication facility (TDSAI) is set in the Call Request
as follows:

u_short tr_delay; /* desired transit delay in milliseconds */
/* set tr_delay */
f.type = T_TR_DELAY;
f.f_tr_delay = tr_delay;
error = ioctl(s, X25_SET_FACILITY, &f);

This is read as follows:

f.type = T_TR_DELAY;
error = ioctl(s, X25_GET_FACILITY, &f);
tr_delay = f.f_tr_delay;

12.7.2.10 End-to-End Transit Delay

This is set in the Call Request as follows:

u_short req_delay, desired_delay, max_delay;
/* set the requested, desired, and maximum delays */
f.type = T_ETE_TR_DELAY;
f.f_req_delay = req_delay;
f.f_desired_delay = desired_delay;
f.f_max_delay = max_delay;
error = ioctl(s, X25_SET_FACILITY, &f);

This is read as follows:

f.type = T_ETE_TR_DELAY;
error = ioctl(s, X25_GET_FACILITY, &f);
req_delay = f.f_req_delay;
desired_delay = f.f_desired_delay;
max_delay = f.f_max_delay;

If f_desired_delay is set, f_req_delay must be non-zero; if f_max_delay is set,
f_desired_delay must be non-zero. Delay is specified in milliseconds.

12.7.2.11 Network User Identification
This is set as follows (in the example below, NUI is an ASCII string):

char nui_str[] = "sunhost";
f.type = T_NUI;
f.f_nui.nui_len = strlen(nui_str);
bcopy(nui_str, f.f_nui.nui_data, strlen(nui_str));
error = ioctl(s, X25_SET_FACILITY, &f);

Solstice X.25 permits a maximum length of 64 (MAX_NUI) for Network User
Identification facility.

To read this facility:

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 223

f.type = T_NUI;
error = ioctl(s, X25_GET_FACILITY, &f);
nui_str = f.f_nui.nui_data;

12.7.2.12 Charging Information Request
This write-only facility is set as follows:

f.type = T_CHARGE_REQ;
f.f_charge_req = 1;
error = ioctl(s, X25_SET_FACILITY, &f);

12.7.2.13 Charging Information
By setting f.type to T_CHARGE_REQ as specified above you make available the
following read-only facilities. The facility types are T_CHARGE_MU,
T_CHARGE_SEG, and T_CHARGE_DUR. For example, the Charging Information
(monetary unit) is read as follows:

typedef struct charge_info_s {
u_char charge_len;

#define MAX_CHARGE_INFO 64
u_char charge_data[MAX_CHARGE_INFO];

} CHARGE_INFO;

CHARGE_INFO charge_mu;
f.type = T_CHARGE_MU;
error = ioctl(s, X25_GET_FACILITY, &f);
charge_mu = f.f_charge_mu;

The T_CHARGE_SEGand T_CHARGE_DURfacilities are read in a way similar to the
T_CHARGE_MUexample above; that is, by using T_CHARGE_SEGor T_CHARGE_DUR
for the f.type value, and using f_charge_seg or f_charge_dur in place of
f_charge_mu .

The maximum length for the charging information facility permitted by Solstice X.25
is 64 (MAX_CHARGE_INFO). This facility should be read after the call is cleared, but
before the socket is closed, since it is received in the Clear Request or Clear Confirm
packets.

12.7.2.14 Called Line Address Modified Notification
This is a read-only facility received in either the Call Accepted or Clear Indication
packets. It is read as follows:

u_char line_addr_mod;
f.type = T_LINE_ADDR_MOD;
error = ioctl(s, X25_GET_FACILITY, &f);
line_addr_mod = f.f_line_addr_mod;

224 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.7.2.15 Call Redirection Notification
This is a read-only facility received in either the Call Accepted or Clear Indication
packets. It is read as follows:

typedef struct call_redir_s {
u_char cr_reason;
u_char cr_hostlen;
u_char cr_host[(MAXHOSTADR+1)/2];

} CALL_REDIR;

CALL_REDIR call_redir;
f.type = T_CALL_REDIR;
error = ioctl(s, X25_GET_FACILITY, &f);
call_redir = f.f_call_redir;

12.7.2.16 Expedited Data Negotiation
This facility is set as follows:

u_char expedited = 1;/* 0 indicates non-use of expedited data */
f.type = T_EXPEDITED;
f.f_expedited = expedited;
error = ioctl(s, X25_SET_FACILITY, &f);

It is read as follows:

f.type = T_EXPEDITED;
error = ioctl(s, X25_GET_FACILITY, &f);
expedited = f.f_expedited;

12.7.2.17 Called/Calling AEF
There are three types of address extensions: OSI NSAP (AEF_NSAP), Partial OSI
(AEF_PARTIAL_NSAP), and Non-OSI (AEF_NON_OSI). The Calling AEF may only
be present in the Call Request packet.

Solstice X.25 9.2 Administration Guide describes how Solstice X.25 may be set up to
automatically supply the Calling AEF (referred to as address extension) in a Call
Request packet.

The Called AEF is set as follows:

typedef struct aef_s {
u_char aef_type;

#define AEF_NONE 0
#define AEF_NSAP 1
#define AEF_PARTIAL_NSAP 2
#define AEF_NON_OSI 3

u_char aef_len;
#define MAX_AEF 40

u_char aef[(MAX_AEF+1)/2];
} AEF;

AEF aef;
aef.aef_type = AEF_NON_OSI;
aef.aef_len = 7; /* length in nibbles */
aef.aef[0] = 0x12;

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 225

aef.aef[1] = 0x34;
aef.aef[2] = 0x56;
aef.aef[3] = 0x70; /* Note, unused nibble is zero */
f.type = T_CALLED_AEF;
f_called_aef = aef;
error = ioctl(s, X25_SET_FACILITY, &f);

The Called AEF is read as follows:

f.type = T_CALLED_AEF;
error = ioctl(s, X25_GET_FACILITY, &f);
aef = f_called_aef;

The Calling AEF is set and read similarly (using T_CALLING_AEF in place of
T_CALLED_AEF and f_calling_aef in place of f_called_aef).

12.7.2.18 Non-X.25 Facilities

These are for expert use only. Solstice X.25 permits a maximum of 64
(MAX_PRIVATE) bytes of non-X.25 facilities. These are not looked at by Solstice X.25,
but just passed through. Non-X.25 facilities consist of a sequence of facility blocks,
where each block begins with a facility marker indicating non-X.25 facilities
supported by either the local or remote network, or some arbitrary facility marker.
This is set as follows:

typedef struct private_fact_s {
u_char p_len; /* total length of facilities*/

#define MAX_PRIVATE 64
u_char p_fact[MAX_PRIVATE];

/* facilities exactly as they
* are present in Call Request or
* Call Accept packets
*/

} PRIVATE_FACT;

PRIVATE_FACT private;
/* set the p_len and p_fact fields */
f.type = T_PRIVATE;
f.f_private = private;
error = ioctl(s, X25_SET_FACILITY, &f);

It is read as follows:

f.type = T_PRIVATE;
error = ioctl(s, X25_GET_FACILITY, &f);
private = f.f_private;

12.7.2.19 Determining Which Facilities are Present

Since facilities can be read only one at a time, the user needs a way to determine
which facilities are present. Solstice X.25 provides the following mechanism for doing
this.

226 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

The user can read a bit mask that has one bit reserved for each of the facilities
described above. This is read as:

u_int fmask;
f.type = T_FACILITIES;
error = ioctl(s, X25_GET_FACILITY, &f);
fmask = f.f_facilities;

The following mask bits are defined:

F_REVERSE_CHARGE /* reverse charging */
F_FAST_SELECT_TYPE /* fast select */
F_PACKET_SIZE /* packet size */
F_WINDOW_SIZE /* window size */
F_THROUGHPUT /* throughput */
F_MIN_THRU_CLASS /* minimum throughput class */
F_CUG /* closed user group selection */
F_RPOA /* ROPA transit network */
F_TR_DELAY /* network transit delay */
F_ETE_TR_DELAY /* end to end transit delay */
F_NUI /* network user identification */
F_CHARGE_REQ /* charging information request */
F_CHARGE_MU /* charging information, monetary unit */
F_CHARGE_SEG /* charging information, segment */
F_CHARGE_DUR /* charging information, call duration */
F_LINE_ADDR_MOD /* called line address modified notification */
F_CALL_REDIR /* call redirection notification */
F_EXPEDITED /* expedited data negotiation */
F_CALLED_AEF /* called AEF */
F_CALLING_AEF /* calling AEF */
F_PRIVATE /* non-X.25 facilities */

For example, to determine if the Call Redirection facility has been received, the
following segment of code could be used:

if ((fmask & F_CALL_REDIR) != 0) {
/*

* Read its value.
*/

CALL_REDIR call_redir;
f.type = T_CALL_REDIR;
error = ioctl(s, X25_GET_FACILITY, &f);
call_redir = f.f_call_redir;
}

12.7.3 Fast Select User Data
The fast select facility is handled in the following way.

12.7.3.1 Calling Side
To send fast select data, fast_select_type must be set to the proper value (with
the X25_SET_FACILITY ioctl) before connect is called (see the section Section
12.7.1 “Facility Specification and Negotiation” on page 217of this chapter for more
information). Using the CONN_DBstructure, a calling DTE can specify a user data field

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 227

up to 102 bytes (including the optional protocol identifier). If 102 bytes of call user
data are not enough for the current fast select message, use the X25_WR_USER_DATA
ioctl before calling connect to pass the additional user data. The user data specified
in connect will precede this additional user data. To write user data:

typedef struct user_data_db_s {
u_char datalen;
u_char data[MAX_USER_DATA];
} USER_DATA_DB;
int s, error;
USER_DATA_DB user_data;
error = ioctl(s, X25_WR_USER_DATA, &user_data)

Here, MAX_USER_DATA is 124.

If connect returns –1 and errno is EFASTDATA, the remote side has cleared the call
by sending a Clear Indication packet with up to 32 bytes (1980) or 128 bytes (1984) of
user data. At this time, the user can read the user data in the Clear Indication packet
with calls to the X25_RD_USER_DATA ioctl until the returned datalen in
USER_DATA_DB structure is 0 or less than MAX_USER_DATA, then close the socket
with close.

To read user data:

USER_DATA_DB user_data;
int s, error;
error = ioctl(s, X25_RD_USER_DATA, &user_data);

If connect returns 0, it indicates that the connection has been set up successfully. If
the connection is over an interface that supports 1984 X.25, the remote user may have
sent user data in the Call Accepted packet. (This will happen only if the initiator of
the connection has specified fast select with no restriction on response.) Thus the
initiating user must repeatedly read any user data using the X25_RD_USER_DATA
ioctl until the returned length in the USER_DATA_DB structure is less than
MAX_USER_DATA.

When a call is cleared after being connected, the Clear Indication packet may contain
user data if the interface supports 1984 X.25 and fast select is in effect for that call.
Either the initiator of the connection or the responder can send user data in the Clear
Request packet. Thus when a call with fast select is cleared by the remote user, user
data must be read in the same way as for the other cases.

For 1980 X.25 interfaces, if the connection was accepted by the remote user, the Call
Accepted and Clear Request packets will not have any user data; the only time that
the Clear Request can have user data is when a fast select call is cleared immediately
(this is detectable by means of the EFASTDATA error return).

228 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

12.7.3.2 Called Side
To receive a fast select incoming call, the called side must specify either
FAST_ACPT_CLR or FAST_CLR_ONLY as the value for fast_select_type using the
X25_SET_FACILITY ioctl, before issuing the listen call.

If the Incoming Call has the fast select facility, it will be accepted only if the listener
has specified fast select. The incoming call will also be accepted if it does not have
the fast select facility and the listener has specified FAST_ACPT_CLR.

The call will be rejected if there are more than 16 bytes of user data, and the called
side has either not specified the fast select facility at all, or has specified FAST_OFF
(which is equivalent to not specifying fast select).

After accept returns, the called side may use the X25_GET_FACILITY ioctl to
determine the type of fast select in effect. For example, if the called side has specified
FAST_ACPT_CLR and the calling side has specified FAST_CLR_ONLY, after accept
returns, the type of fast select in effect will be FAST_CLR_ONLY. If fast select is
indicated, the called side can read the user data that was received in the Call Request
by looking at the CONN_DB structure returned by accept. If more than 102 bytes of
user data were received, the extra bytes can be read with the X25_RD_USER_DATA
ioctl.

The X25_WR_USER_DATA ioctl can be used to specify user data to be sent back in
the response to the fast select Call Request. To write more than MAX_USER_DATA
bytes of user data, a second X25_WR_USER_DATA ioctl can be used to append the
additional data after that from the first X25_WR_USER_DATA ioctl (total length of
all user data may not exceed 128 bytes).

If the type of fast select in effect is FAST_CLR_ONLY, the called side can only clear
the fast select call by closing the socket (which causes the user data specified by
X25_WR_USER_DATA to be sent in the Clear Request). If the type of fast select in
effect after accept returns is FAST_ACPT_CLR, the called side has the option, after
writing the reply message with the X25_WR_USER_DATA ioctl, of either sending a
Clear Request packet with close or sending a Call Accepted packet with the
X25_SEND_CALL_ACPT ioctl and thereby entering the normal data transfer state.

int news, error;
error = ioctl(news, X25_SEND_CALL_ACPT);

When the value in effect is FAST_CLR_ONLY, the called side can only close the
socket with the close system call after writing the reply message.

FAST_OFF is the type of fast select that will be in effect when the listener has
specified FAST_ACPT_CLR and the incoming call does not have the fast select
facility. Even in this case, the listener must use the X25_SEND_CALL_ACPT ioctl to
put the connection into normal data transfer state.

Note - In the current release (and not in SunNet X.25 7.0), the listen socket should
not be closed until after the incoming fast select call has been either cleared (with
close) or accepted (with X25_SEND_CALL_ACPT).

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 229

12.7.4 Permanent Virtual Circuits
Since permanent virtual circuits are always in data transfer state, there is no need to
issue a connect on the calling side, or bind, listen, and accept on the called side.
Instead, use an ioctl call to bind the socket to a logical channel number and to
specify other parameters.

typedef struct pvc_db_s {
u_short lcn; /* lcn of PVC */
u_short sendpktsize; /* Maximum packet size */
u_short recvpktsize; /* Maximum packet size */
u_char sendwndsize; /* Output flow control window */
u_char recvwndsize; /* Input flow control window */
} X25_PVC_DB;
X25_PVC_DB pvc_parms;
int pvc_so;
pvc_so = socket(AF_X25, SOCK_STREAM, 0);
error = ioctl(pvc_so, X25_SETUP_PVC, &pvc_parms);

In the current release, the sendpktsize , recvpktsize , sendwndsize , and
recvwndsize parameters are ignored. The default value in the link configuration file
is always used. By default, the lowest numbered WAN link is used for the
permanent virtual circuit. If you desire some other link for the permanent virtual
circuit, you must select the desired link using the X25_SET_LINK ioctl as described
earlier, after the socket call, but before the X25_SETUP_PVC ioctl. Permanent virtual
circuits are not supported over LAN interfaces.

12.7.5 Call Acceptance by User
Normally Incoming Call packets are examined and responded to by X.25. If the call
is accepted, a Call Accepted packet is sent by X.25 directly. In the event a user
process wants to have additional checks before sending a Call Accepted packet, an
X25_CALL_ACPT_APPROVAL ioctl may be used.

int approved_by_user, s, error;
error = ioctl(s, X25_CALL_ACPT_APPROVAL, &approved_by_user);

where approved_by_user = 0 means the approval is done by X.25, and
approved_by_user = 1 means approval is done by the user process. By default (that
is, if this call is not issued), approval is done by X.25. Note that if a user wants to do
call approval, the X25_CALL_ACPT_APPROVAL ioctl must be issued before the
listen call is issued.

Regardless of the value of approved_by_user, X.25 always performs address
matching and facilities negotiation before notifying accept. If a user process assumes
the final incoming call approval, accept will return without sending a Call Accepted
packet. At this time, the user process should reply as soon as possible to avoid the
Call Request timeout on the remote calling side. To accept the call, use:

int news, error;
error = ioctl(news, X25_SEND_CALL_ACPT);

230 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Here, news is the socket descriptor returned by accept.

The X25_SEND_CALL_ACPT ioctl call is also needed for fast select calls, as
described in an earlier section. To reject the call, simply close the socket:

int news;
close(news);

where news is the socket descriptor returned by accept.

12.7.6 Accessing the Link (X.25) Address
The X.25 client can set the local link X.121 (X.25) address through an X.25 socket
owned by the superuser. (The default value is established in the Interface
Configuration window in x25tool , as described in Solstice X.25 9.2 Administration
Guide):

typedef struct link_adr_s {
int linkid; /* id of link */
u_char hostlen; /* length of BCDs */
u_char host[(MAXHOSTADR+1)/2];

} LINK_ADR;
LINK_ADR addr;
int so, error;
error = ioctl(so, X25_WR_LINKADR, &addr);

Set linkid to the identifier of the desired link.

The local link X.121 address can be read at any time with:

LINK_ADR addr;
int s;
error = ioctl(s, X25_RD_LINKADR, &addr);

The returned addr is actually the link address specified in x25tool (for the link
specified in the linkid field of the LINK_ADR structure) unless a new address has
been assigned to the link.

The X25_WR_LINKADR ioctl can be used to assign new X.25 addresses to a link.

12.7.7 Accessing High Water Marks of Socket
The AF_X25 socket provides a flow control mechanism using high and low water
marks on both the send and receive sides of an X.25 virtual circuit. When the amount
of queued data goes above the high water mark, additional data is blocked until the
queued data falls below the low water mark. Blocking received data is accomplished
by not acknowledging receipt of packets until the user reads the data. Blocking send
data is accomplished by blocking the user process invoking send or write .

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 231

The default high water mark for both sending and receiving is 2048 bytes. The low
water mark is always set to half the high water mark. Note that the high water mark
is only an approximation of the maximum amount of data allowed to be queued up.

A user process may set or read the high water mark as described below. To read:

typedef struct so_hiwat_db_s {
short sendhiwat;
short recvhiwat;

} SO_HIWAT_DB;
SO_HIWAT_DB hiwater;
int s, error;
error = ioctl(s, X25_RD_SBHIWAT, &hiwater);

To write:

error = ioctl(s, X25_WR_SBHIWAT, &hiwater);

12.7.8 Accessing the Diagnostic Code
The user may read the cause or diagnostic code in a Clear Indication or Reset
Indication packet received from the remote end. The user may also write the cause or
diagnostic code in Clear Request and Reset Request packets to be transmitted to the
remote end.

typedef struct x25_cause_diag_s {
u_char flags;
define RECV_DIAG 0
define DIAG_TYPE 1
define WAIT_CONFIRMATION 2
/* bit 0 (RECV_DIAG)=

* 0: no cause and diagnostic codes
* 1: receive cause and diagnostic codes.
* bit 1 (DIAG_TYPE)=
* 0: reset cause and diagnostic codes in data array
* 1: clear cause and diagnostic codes in data array
* bit 2 (WAIT_CONFIRMATION)=
* 0: no wait after X25_WR_DIAG_CODE ioctl
* 1: wait returned cause and diagnostic codes after
* X25_WR_DIAG_CODE ioctl.
*/

u_char datalen; /* byte count of data array */
u_char data[64];

} X25_CAUSE_DIAG;
X25_CAUSE_DIAG diag;
int s, error;

To read:

error = ioctl(s, X25_RD_CAUSE_DIAG, &diag);

To write:

error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

The data field in X25_CAUSE_DIAG contains the cause and diagnostic code.

232 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Upon receiving a Clear Indication or Reset Indication packet, the
X25_RD_CAUSE_DIAG ioctl may be issued to determine the cause and diagnostic
associated with the packet. The datalen field contains the length in bytes of the
information in data. When reading the diagnostic, if bit RECV_DIAG (that is, bit 0) is
set, it indicates that the information in data is valid. If bit DIAG_TYPE (that is, bit 1)
is set, it indicates that the diagnostic was received in a Clear Indication; otherwise, it
was received in a Reset Indication.

The X25_WR_CAUSE_DIAG ioctl enables the user to send a Clear Request or Reset
Request packet with the desired cause and diagnostic codes. If the user supplies only
one byte in the data field, X.25 will use the cause code DTE_ORIGINATED, and use
the provided byte as the diagnostic.

The X25_WR_CAUSE_DIAG ioctl call will send a Clear Request or Reset Request. To
send a Clear Request, set bit DIAG_TYPE (that is, bit 1) in flags:

X25_CAUSE_DIAG diag;
int s, error;
diag.flags = 1 << DIAG_TYPE; /* Clear Request */
diag.datalen = 2;
diag.data[0] = 0;
diag.data[1] = 67;
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

To send a Clear Request and wait for confirmation, set bit WAIT_CONFIRMATION
(that is, bit 2) in flags:

X25_CAUSE_DIAG diag;
int s, error;
diag.flags = (1 << DIAG_TYPE) | (1 << WAIT_CONFIRMATION);
diag.datalen = 2;
diag.data[0] = 0;
diag.data[1] = 67;
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

To send a Reset Request and wait for confirmation:

X25_CAUSE_DIAG diag;
int s, error;
diag.flags = 1 << WAIT_CONFIRMATION;
diag.datalen = 2;
diag.data[0] = 0;
diag.data[1] = 0; /* can be any valid diagnostic */
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

A close is still necessary to free all resources held by this socket and the associated
virtual circuit after a Clear Indication or Clear Confirmation packet is received. After
the DTE receives a Clear Indication packet, recv will return zero bytes after all
unread data has been read. Calling send after the Clear Indication packet is received
will not return an error. Note that this behavior is different from that of SunNet X.25
7.0, in which send does return an error.

To be notified when a Clear Indication packet is received, so that you can use the
X25_RD_CAUSE_DIAGioctl, you can use the following mechanism: Enable a third

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 233

type of out-of-band data (see Section 12.5.4 “Out-of-Band Data ” on page 214) and
receive the SIGURGsignal when this type of out-of-band data arrives. To enable the
signalling of Clear Indication packets, use the following ioctl:

error = ioctl(s, X25_OOB_ON_CLEAR, 0);

This will enable the reception of the following type of out-of-band data, which can
be read with the X25_OOB_TYPEioctl:

#define VC_CLEARED 31 /* virtual circuit cleared */

See Section 12.5.4 “Out-of-Band Data ” on page 214 for a complete description of
how to handle out-of-band data.

Note - If an X25_WR_CAUSE_DIAG ioctl is not issued before close, X.25 fills an
appropriate cause and diagnostic code in any Clear Request packet sent as a result
(this will not happen if the connection is inactive at the time the call is issued).

12.8 Routing ioctls
In this section, we describe the ioctls used to manage the Solstice X.25 routing
function in the sockets-based interface. The Solstice X.25 routing function is
described in detail in Solstice X.25 9.2 Administration Guide. The data structure used
for routing is as follows:

typedef struct x25_route_s {
uint32_t index;
u_char r_type;

#define R_NONE 0
#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4

CONN_ADR x121;
u_char pid_len;

#define MAX_PID_LEN 4
u_char pid[MAX_PID_LEN];
AEF aef;
int linkid;
X25_MACADDR mac;
int use_count;
char reserved[16];

} X25_ROUTE;

The following declarations will be used in the code segments used for illustration:

int s, error;
X25_ROUTE r;

234 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

To add a route, set the fields in the X25_ROUTEstructure to desired values, and
execute the X25_ADD_ROUTEioctl as follows:

error = ioctl(s, X25_ADD_ROUTE, &r);

To obtain the routing information for a given destination address, set the destination
address in the X25_ROUTEstructure and execute the X25_GET_ROUTEioctl:

error = ioctl(s, X25_GET_ROUTE, &r);

To remove a route for a given destination address, set the destination address in the
X25_ROUTEstructure and execute the X25_RM_ROUTEioctl:

error = ioctl(s, N_X25_RM_ROUTE, &r);

To flush all routes out, execute the X25_FLUSH_ROUTESioctl:

error = ioctl(s, X25_FLUSH_ROUTES);

The following code segment illustrates how one may cycle through all the routes
configured in the system and obtain the parameters for each of them:

r.index = 0;
do {

error = ioctl(s, X25_GET_NEXT_ROUTE, &r);
if (error == 0)

/* print the route */;
while (error == 0);

When there are no routes left, error will be -1, and errno will be set to ENOENT.

The X25_ADD_ROUTE, X25_RM_ROUTE, and X25_FLUSH_ROUTESioctls require
superuser privilege; X25_GET_ROUTEand X25_GET_NEXT_ROUTEdo not.

12.9 Miscellaneous ioctls
This section describes some miscellaneous ioctl calls that were either not covered in
the previous sections, or are supported from previous releases for backward
compatibility. This does not imply backward compatibility with all user-written
software for previous releases of Solstice X.25.

12.9.1 Obtaining Statistics
Use the X25_GET_NLINKS ioctl to determine the number of links configured:

int s, error, nlinks;
error = ioctl(s, X25_GET_NLINKS, &nlinks);

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 235

The X.25 software maintains statistics for levels 1, 2, and 3. The statistics are made
available for any socket at any time (that is, the sockets over which the calls for
reading statistics are issued need not have superuser privilege).

The X25_RD_LINK_STATISTICS ioctl is used to read statistics of levels 1 and 2:

struct ss_dstats {
int32_t ssd_ipack; /* input packets */
int32_t ssd_opack; /* output packets */
int32_t ssd_ichar; /* input bytes */
int32_t ssd_ochar; /* output bytes */

};

/* error stats */
struct ss_estats {

int32_t sse_abort; /* abort received */
int32_t sse_crc; /* CRC error */
int32_t sse_overrun; /* receiver overrun */
int32_t sse_underrun; /* xmitter underrun */

};
typedef struct x25_link_stat_db_s {

int linkid; /* link identifier */
u_short state;
/* 0: initial state

* 1: SABM outstanding
* 2: FRMR outstanding
* 3: DISC outstanding
* 4: information transfer state
*/

u_short hs_sentsabms; /* sabms sent */
struct ss_dstats hs_data; /* data stats */
struct ss_estats hs_errors; /* error stats */

} X25_LINK_STAT_DB;

X25_LINK_STAT_DB link_stats;
int s, error;
error = ioctl(s, X25_RD_LINK_STATISTICS, &link_stats);

The linkid field in the X25_LINK_STAT_DB structure identifies the interface whose
statistics are to be read.

The X25_RD_PKT_STATISTICS ioctl is used for reading packet-level statistics for a
specified logical channel:

typedef struct x25_pkt_stat_db_s {
int linkid; /* link identifier */
u_short lcn; /* logical channel identifier */
u_char state; /* level 3 lcn state */

/* current state of virtual circuit
ST_OFF (0): virtual circuit not active
ST_LISTEN (1): passive wait for incoming call
ST_READY (2): connection in process of being established

(connection NOT up yet)
ST_SENT_CALL (3): wait for call connected packet
ST_RECV_CALL (4): wait user to send call accepted packet
ST_CALL_COLLISION (5): call collision state
ST_RECV_CLR (6): unused (should indicate reception of a

clear packet)
ST_SENT_CLR (7): wait for clear confirmation packet

236 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

ST_DATA_TRANSFER (8): in normal data transfer
ST_SENT_RES (9): wait reset confirmation packet

*/
u_char sub_state; /* level 3 lcn sub_state */
/* valid only when state is ST_DATA_TRANSFER

bit 0 (RECV_RNR): remote busy
bit 1 (RECV_INT): wait user to read interrupt data
bit 2 (SENT_INT): wait for interrupt confirmation
bit 3 (SENT_RNR): local busy

*/
u_char intcnt; /* number of received interrupt datum */
u_char resetcnt; /* times of virtual circuit reset */
int sendpkts; /* number of output packets */
int recvpkts; /* number of input packets */
short pgrp; /* process group of socket, if not 0 */
short flags; /* flag bits. If bit 0 is set, it */
/* indicates an incoming call. */
/* Otherwise, it is an outgoing call. */

} X25_PKT_STAT_DB;

X25_PKT_STAT_DB pkt_stats;
int s, error;
error = ioctl(s, X25_RD_PKT_STATISTICS, &pkt_stats);

The linkid field in the X25_PKT_STAT_DB structure identifies a link, and lcn
identifies the logical channel whose statistics are to be read. Note that pkt_stats.lcn
needs to be set to the proper logical channel number before making the
X25_RD_PKT_STATISTICS ioctl call.

Solstice X.25 also provides ioctl commands to read the status of all of the links
currently active and all the virtual circuits currently active. Use the
X25_GET_NEXT_LINK_STATioctl to obtain link status as follows:

/* The following is used to cycle through all the interfaces -
* static HDLC links as well as links used for LLC2.
*/

typedef struct x25_next_link_stat_s {
u_char opt; /* search option */

#define GET_FIRST 0 /* get first one */
#define GET_NEXT 1 /* get next one */

u_char specific; /* applies to specified interface */
u_char link_type; /* HDLC_TYPE, LLC_TYPE */
int linkid; /* interface id */
X25_MACADDR mac; /* always null in current release */

/* Level 2 states */
#define LINKSTATE_DOWN 0 /* initial state */
#define LINKSTATE_SABM 1 /* SABM outstanding */
#define LINKSTATE_FRMR 2 /* FRMR outstanding */
#define LINKSTATE_DISC 3 /* DISC outstanding */
#define LINKSTATE_UP 4 /* info transfer state */

u_short state; /* link state--see preceding defines */
u_short hs_sentsabms; /* sabms sent */
struct ss_dstats hs_data; /* data stats */
struct ss_estats hs_errors; /* error stats */

} X25_NEXT_LINK_STAT;

int s;
int error;

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 237

X25_NEXT_LINK_STAT lstats;

lstats.opt = GET_FIRST;
lstats.specific = 0;
do {

error = ioctl(s, X25_GET_NEXT_LINK_STAT, &lstats);
if (error == 0)
/* print the statistics */;
} while (error == 0);

If the statistics for a specific link are required, set specific to 1, and linkid to the id of
the interface whose statistics are required. After the first call, the opt field will
automatically be changed to GET_NEXT. When the statistics for all the links are
returned, error will be -1, and errno will be set to ENOENT.

Use the X25_GET_NEXT_VC_STAT ioctl to obtain the status of all the virtual circuits
as follows:

CODE EXAMPLE 12–1 Reading Virtual Circuit Status

/* X25_NEXT_VC_STAT is used to cycle through all virtual circuits,
* over HDLC as well as LLC type links.
*/

typedef struct x25_next_vc_stat_s {
u_char opt; /* search option */
u_char specific; /* applies to specified linkid */
u_char link_type; /* HDLC_TYPE, LLC_TYPE */
int linkid; /* link id */
u_short lcn; /* logical channel to return */
u_char state; /* level 3 lcn state */

#define ST_OFF 0
#define ST_LISTEN 1
#define ST_READY 2
#define ST_SENT_CALL 3
#define ST_RECV_CALL 4
#define ST_CALL_COLLISION 5
#define ST_RECV_CLR 6
#define ST_SENT_CLR 7
#define ST_DATA_TRANSFER 8
#define ST_SENT_RES 9

u_char sub_state; /* level 3 lcn sub_state */
#define RECV_RNR 0
#define RECV_INT 1
#define SENT_INT 2
#define SENT_RNR 3

u_char intcnt; /* number of received interrupts */
u_char resetcnt; /* times of virtual circuit reset */
int sendpkts; /* number of output packets */
int recvpkts; /* number of input packets */
short pgrp; /* process group, if any */
short flags; /* various flags for future */

#define INCOMING_CALL 0x01
#define IS_A_PVC 0x02

struct sockaddr sa; /* Remote X.121/IP address */
AEF aef; /* Remote AEF, if any */
X25_MACADDR mac; /* Remote mac for LLC links */

} X25_NEXT_VC_STAT;

238 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

int s;
int error;
X25_NEXT_VC_STAT vstats;

vstats.opt = GET_FIRST;
vstats.specific = 0;
do {

error = ioctl(s, X25_GET_NEXT_VC_STAT, &vstats);
if (error == 0)
/* print the statistics */;
} while (error == 0);

hoIf the statistics of virtual circuits for a specific link are required, set specific to 1,
and linkid to the id of the desired interface. After the first call, the opt field will
automatically be changed to GET_NEXT. When the statistics for all the virtual
circuits are returned, error will be -1, and errno will be set to ENOENT.

12.9.1.1 Obtaining Version Number
The X25_VERSION ioctl returns the version number of the Solstice X.25 kernel code.
You can issue this call on any socket. The version number returned for the current
release of Solstice X.25 is 92.

int so, version, error;
error = ioctl(s, X25_VERSION, &version);

Compatibility with SunNet X.25 7.0 Sockets-Based Packet Level Interface 239

240 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

CHAPTER 13

Sockets Programming Example

This chapter discusses include files and structures, and provides references to
example code.

Note - The sockets-based interface is a source-compatible—not a
binary-compatible—interface. Applications that used the socket interface in SunOS
4.x must be recompiled to run on SunOS 5.x. See Section 13.2 “Compilation
Instructions and Sample Programs ” on page 242” for instructions on compiling
programs to use the sockets-based interface on SunOS 5.0.

13.1 Include Files for User Programs
Sockets-based Solstice X.25 application programs need to have the following include
statements in addition to any standard SunOS system files that may be needed:

#include <sys/iocom.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sundev/syncstat.h>
#include <netx25/x25_pk.h>
#include <netx25/x25_ctl.h>
#include <netx25/x25_ioctl.h>

This is illustrated in the sample programs provided.

241

13.2 Compilation Instructions and Sample
Programs
To use the 7.0 socket interface, user programs should be linked against libsockx25
stored in /opt/SUNWconn/lib . Use the -L option to link the
/opt/SUNWconn/lib directory into your program. A program named test can be
linked against the socket library as follows:

hostname% cc -o test test.c -L/opt/SUNWconn/lib -lsockx25 -lsocket -lnsl

You can find sample programs for the 7.0 socket interface in
/opt/SUNWconn/x25/samples.socket .

13.3 Structures Used by the
X25_SET_FACILITY and
X25_GET_FACILITY ioctl Commands
The following structures are referenced in Section 12.7.2 “X25_SET_FACILITY /
X25_GET_FACILITY ioctls” on page 217.

CODE EXAMPLE 13–1 Structures Used by ioctls that Set and Get X.25 Facilities

/* Packet sizes allowed are 0 (default), 16, 32, 64,
* 128, 256, 512, 1024,2048, 4096
*/

typedef struct packet_size_s {
u_short sendpktsize;
u_short recvpktsize;
} PACKET_SIZE;

/* window sizes allowed are 0:
* (default), 1-7 (normal), 1-127 (extended)
*/

typedef struct window_size_s {
u_char sendwndsize;
u_char recvwndsize;

} WINDOW_SIZE;
/* throughput values allowed are

* 0 (default), 3 (75) , 4 (150), 5 (300),
* 6 (600), 7 (1200), 8 (2400), 9 (4800),
* 10 (9600), 11 (19200), 12 (48000)
*/

242 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

typedef struct throughput_s {
u_char sendthruput:4;
u_char recvthruput:4;

} THROUGHPUT;

typedef struct cug_s {
u_char cug_req;

#define CUG_NONE 0 /* no CUG */
#define CUG_REQ 1 /* CUG */
#define CUG_REQ_ACS 2 /* CUG with outgoing access */
#define CUG_BI 3 /* bilateral CUG */

u_short cug_index;
} CUG;

typedef struct rpoa_s {
u_char nrpoa; /* number of RPOAs requested */

#define MAX_RPOA 3
u_short rpoa_index[MAX_RPOA]; /* rpoas;

nrpoa = 1 => normal format */
} RPOA;
/* Zero value for a field means the field is not specified; if a

* field has zero value, that and the foll. fields are not sent.
*/

typedef struct ete_tr_delay_s {
u_short req_delay;
u_short desired_delay;
u_short max_delay;

} ETE_TR_DELAY;

typedef struct nui_s {
u_char nui_len; /* NUI length */

#define MAX_NUI 64
u_char nui_data[MAX_NUI] /* NUI */

} NUI;

typedef struct charge_info_s {
u_char charge_len;

#define MAX_CHARGE_INFO 64
u_char charge_data[MAX_CHARGE_INFO];

} CHARGE_INFO;

typedef struct call_redir_s {
u_char cr_reason;
u_char cr_hostlen;
u_char cr_host[(MAXHOSTADR+1)/2];

} CALL_REDIR;

typedef struct aef_s {
u_char aef_type;

#define AEF_NONE 0
#define AEF_NSAP 1
#define AEF_PARTIAL_NSAP 2
#define AEF_NON_OSI 3

u_char aef_len;
#define MAX_AEF 40

u_char aef[(MAX_AEF+1)/2];
} AEF;

Sockets Programming Example 243

typedef struct precedence_s {
u_char precedence_req; /* no precedence when = 0

* else precedence level
*/

u_char precedence; /* valid when precedence_req = 1 */
} PRECEDENCE;

typedef struct private_fact_s {
u_char p_len; /* total length of facilities */

#define MAX_PRIVATE 64
u_char p_fact[MAX_PRIVATE];

/* facilities exactly as they
* are present in Call Request or
* Call Accept packets
*/

} PRIVATE_FACT;

typedef struct facility_s {
u_int type;

#define T_FACILITIES 0x00000001
#define T_REVERSE_CHARGE 0x00000002
#define T_FAST_SELECT_TYPE 0x00000003
#define T_PACKET_SIZE 0x00000004
#define T_WINDOW_SIZE 0x00000005
#define T_THROUGHPUT 0x00000006
#define T_CUG 0x00000007
#define T_RPOA 0x00000008
#define T_TR_DELAY 0x00000009
#define T_MIN_THRU_CLASS 0x0000000a
#define T_ETE_TR_DELAY 0x0000000b
#define T_NUI 0x0000000c
#define T_CHARGE_REQ 0x0000000d
#define T_CHARGE_MU 0x0000000e
#define T_CHARGE_SEG 0x0000000f
#define T_CHARGE_DUR 0x00000010
#define T_LINE_ADDR_MOD 0x00000011
#define T_CALL_REDIR 0x00000012
#define T_EXPEDITED 0x00000013
#define T_CALLED_AEF 0x00000014
#define T_CALLING_AEF 0x00000015
#define T_STDSERVICE 0x00000016
#define T_OSISERVICE 0x00000017
#define T_PRECEDENCE 0x00000018
#define T_PRIVATE 0x00000019

union {
u_intfacilities;/* quick way to check

* if a facility is present
*/

#define F_REVERSE_CHARGE 0x00000001
#define F_FAST_SELECT_TYPE 0x00000002
#define F_PACKET_SIZE 0x00000004
#define F_WINDOW_SIZE 0x00000008
#define F_THROUGHPUT 0x00000010
#define F_MIN_THRU_CLASS 0x00000020
#define F_CUG 0x00000040
#define F_RPOA 0x00000080
#define F_TR_DELAY 0x00000100
#define F_ETE_TR_DELAY 0x00000200
#define F_NUI 0x00000400

244 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

#define F_CHARGE_REQ 0x00000800
#define F_CHARGE_MU 0x00001000
#define F_CHARGE_SEG 0x00002000
#define F_CHARGE_DUR 0x00004000
#define F_LINE_ADDR_MOD 0x00008000
#define F_CALL_REDIR 0x00010000
#define F_EXPEDITED 0x00020000
#define F_CALLED_AEF 0x00040000
#define F_CALLING_AEF 0x00080000
#define F_STDSERVICE 0x00100000
#define F_OSISERVICE 0x00200000
#define F_PRECEDENCE 0x00400000
#define F_PRIVATE 0x00800000

u_char reverse_charge;
/* permit/request reverse charge */

u_char fast_select_type;
#define FAST_OFF 0 /* don’t use fast select */
#define FAST_CLR_ONLY 1 /* restricted response */
#define FAST_ACPT_CLR 2 /* unrestricted response */

PACKET_SIZE packet_size; /* packet sizes */
WINDOW_SIZE window_size; /* window sizes */

THROUGHPUT throughput; /* used for throughput
negotiation */

THROUGHPUT min_thru_class; /* minimum throughput class */
CUG cug; /* closed user group */
RPOA rpoa; /* RPOA specification */
u_short tr_delay; /* network transit delay */
ETE_TR_DELAY ete_tr_delay; /* end-to-end transit delay */
NUI nui; /* network user identification */
u_char charge_req; /* request charging info */
CHARGE_INFO charge_mu; /* charging info, monetary unit */
CHARGE_INFO charge_seg; /* charging info, segment */
CHARGE_INFO charge_dur; /* charging info, call duration */
u_char line_addr_mod; /* called line addr modified */
CALL_REDIR call_redir; /* call redirect notification */
u_char expedited; /* expedited data negotiation */
AEF called_aef; /* called aef */
AEF calling_aef; /* calling aef */
u_char osiservice; /* set when VC carries CLNP data */
u_char stdservice; /* set for DDN services */
PRECEDENCE prec; /* precedence for standard services */
PRIVATE_FACT private; /* non-X.25 local/rem facilities */

} facility;
} FACILITY;

/* Some convenient definitions. */
#define f_facilities facility.facilities
#define f_reverse_chargefacility.reverse_charge
#define f_fast_select_typefacility.fast_select_type
#define f_packet_size facility.packet_size
#define f_recvpktsize facility.packet_size.recvpktsize
#define f_sendpktsize facility.packet_size.sendpktsize
#define f_window_size facility.window_size
#define f_recvwndsize facility.window_size.recvwndsize
#define f_sendwndsize facility.window_size.sendwndsize
#define f_throughput facility.throughput
#define f_recvthruput facility.throughput.recvthruput
#define f_sendthruput facility.throughput.sendthruput
#define f_min_thru_classfacility.min_thru_class
#define f_min_recvthruputfacility.min_thru_class.recvthruput

Sockets Programming Example 245

#define f_min_sendthruputfacility.min_thru_class.sendthruput
#define f_cug facility.cug
#define f_cug_req facility.cug.cug_req
#define f_cug_index facility.cug.cug_index
#define f_rpoa facility.rpoa
#define f_nrpoa facility.rpoa.nrpoa
#define f_rpoa_req facility.rpoa.rpoa_req
#define f_tr_delay facility.tr_delay
#define f_ete_tr_delay facility.ete_tr_delay
#define f_req_delay facility.ete_tr_delay.req_delay
#define f_desired_delay facility.ete_tr_delay.desired_delay
#define f_max_delay facility.ete_tr_delay.max_delay
#define f_nui facility.nui
#define f_charge_req facility.charge_req
#define f_charge_mu facility.charge_mu
#define f_charge_seg facility.charge_seg
#define f_charge_dur facility.charge_dur
#define f_line_addr_mod facility.line_addr_mod
#define f_call_redir facility.call_redir
#define f_cr_reason facility.call_redir.cr_reason
#define f_cr_hostlen facility.call_redir.cr_hostlen
#define f_cr_host facility.call_redir.cr_host
#define f_expedited facility.expedited
#define f_called_aef facility.called_aef
#define f_cd_aef_type facility.called_aef.aef_type
#define f_cd_aef_len facility.called_aef.aef_len
#define f_cd_aef facility.called_aef.aef
#define f_calling_aef facility.calling_aef
#define f_cg_aef_type facility.calling_aef.aef_type
#define f_cg_aef_len facility.calling_aef.aef_len
#define f_cg_aef facility.calling_aef.aef
#define f_osiservice facility.osiservice
#define f_stdservice facility.stdservice
#define f_prec facility.prec
#define f_precedence_reqfacility.prec.precedence_req
#define f_precedence facility.prec.precedence
#define f_private facility.private

246 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

Index

Numbers
1988 support

indicating, 87

A
Abort Indication, 7, 35, 48
acknowledgement service

field in CONS QOS data structure, 47
address

structure of in sockets-based interface, 200
address binding

in sockets-based interface, 204
address domain

for X.25 addresses in sockets-based
interface, 199

address length
as stored in address data structure, 39

address matching
options for, 65, 69

address structure
LAPB, 162
LLC2, 162

addresses, local and remote
accessing in sockets-based interface, 208

addressing functions, 122
AEF matching considerations

in sockets-based interface, 206
AF_X25 address domain, 200

automatic link selection
in sockets-based interface, 206

B
backward compatibility

interface description, 199
restrictions on, with previous versions of

SunLink X.25, 235
BCD encoding

of address in sockets-based interface, 200
binding in sockets-based interface, 200, 205

C
call acceptance, 25

in sockets-based interface, 230
call approval by user

in sockets-based interface, 230
call redirection notification

in sockets-based interface, 225
call rejection, 26, 55
Call Request

response to, 19
Call Request/Indication, 7, 35
Call Response/Confirmation, 7, 35
Call User Data

binding incoming calls by, 205

Index-247

location in connect/request indication
message, 50, 60

matching options for, 64, 69
use in binding to process, 200

called address list, 23
called line address modified notification

in sockets-based interface, 224
called/calling AEF

in sockets-based interface, 225
calling address

accepting or setting in sockets-based
interface, 202

calling side
outgoing call setup in sockets-based

interface, 201
calls

listening, 23, 27
making, 13
OSI CONS, 18

receiving, 16
cause code

sending in sockets-based interface, 233
charging information

setting/getting in sockets-based
interface, 224

Clear Confirm, 8, 35
Clear Confirmation packet, 217
Clear Indication

notification of reception in sockets-based
interface, 234

Clear Request/Indication, 8, 35
Closed User Group

field in facilities/QOS data structure, 41
parameters for, 93
setting in sockets-based interface, 222

CommandX25_ADD_ROUTE ioctl
in sockets-based interface, 235

compatibility
between sockets- and streams-based

interfaces, 241
compilation

requirement for SunOS 4.x
applications, 199

configurable parameters
changing, 87
examining, 101

CONN_DB structure
in sockets-based interface, 200

conn_id identifier, 26
Connect Indication, 23
connect indication, 26
connect request/indication

contents of message, 50, 51
connect response/confirmation

contents of message, 49, 51
connection

opening for a CONS call, 18
control messages

priority of, 21

D
D-bit, 15, 16

control of, 98
control of in sockets-based interface, 210
how to set, 210
reading using sockets-based interface, 213

Data, 7, 35
data

receiving, 16
receiving using sockets-based

interface, 212
sending, 15
sending using sockets-based interface, 209

Data Acknowledgment Request/Indication, 7,
35

data structure
fields in, for address structure, 37

data transfer phase
overview of, 15

DATAPAC Priority Bit, 97
DATAPAC Traffic Class, 97
diagnostic byte

allowing omission of, 96
diagnostic code

accessing in sockets-based interface, 232
sending in sockets-based interface, 233

diagnostic packets
allowing for specialized treatment of, 96

Disconnect, 26
disconnect

remote, 16, 21
disconnect behavior

after application receives disconnect
message, 22

Index-248 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

disconnect collision, 56
disconnect confirm, 54, 59
Disconnect Indication, 21
Disconnect Request, 20, 21
disconnect request/indication, 56, 59
DL_ATTACH_REQ, 160
DL_BIND_REQ, 160
DL_CONNECT_CON, 160
DL_CONNECT_IND, 160
DL_CONNECT_REQ, 160
DL_CONNECT_RES, 160
DL_DETACH_REQ, 160
DL_DISCONNECT_IND, 161
DL_DISCONNECT_REQ, 161
DL_ERROR_ACK, 160
DL_INFO_ACK, 160
DL_INFO_REQ, 160
DL_OK_ACK, 160
DL_RESET_CON, 161
DL_RESET_IND, 161
DL_RESET_REQ, 161
DL_TOKEN_ACK, 160, 183
DL_TOKEN_REQ, 160
DL_UNBIND_REQ, 160
DLPI, 155
driver configuration, 100
DTE address

as stored in address data structure, 38
as stored in configurable-parameters

structure, 100
DTE-DTE operation, 89
DTE/DCE resolution, 89, 92

E
EAck message, 19
end-to-end transit delay

in sockets-based interface, 223
endpadent, 122, 124
endxhostent, 122, 125
equalx25, 122, 125
errno

pointer to list of values for, 202
error return code

in sockets-based interface, 202
Expedited Data, 8, 15, 19, 35
Expedited Data Acknowledgement, 8, 35
Expedited Data negotiation

in sockets-based interface, 225
extended call packets, 94, 107
extraformat, 35, 39 to 41

F
facformat, 105
facilities, 23, 26

determining which are present, in
sockets-based interface, 226

negotiation and specification in
sockets-based interface, 217

setting in sockets-based interface, 217
fast select

field in facilities/QOS data structure, 40
receiving in sockets-based interface, 229
setting/getting in sockets-based

interface, 219
subscription options, 94, 107
user data, 227
user data in sockets-based interface, 227

flags
for address data structure, 38

flow control, 15

G
getmsg, 7
getnettype, 122, 126
getpadbyaddr, 122, 127
getpadent, 122, 128
getxhostbyaddr, 122, 129
getxhostbyname, 122, 130
getxhostent, 122, 131

H
header files

required for sockets-based interface, 241
high and low water marks

accessing in sockets-based interface, 231
high water mark

for sockets, 215

I
idle timer, 91
in-band data

Index-249

receiving using sockets-based
interface, 213

include files
user programs for sockets-based

interface, 241
incoming call

acceptance of in sockets-based
interface, 203

additional user criteria in sockets-based
interface, 230

ioctl to temporarily bar, 100
selecting link for, 207
specifying barring of, 95, 107

Interrupt, 20
interrupt data

sending using sockets-based interface, 209
interrupt packet

sending using sockets-based interface, 212
sequence upon receipt in sockets-based

interface, 215
ioctls, 7

network layer, 70
ISO 8208, 89

L
L3PLPMODE, 89
L_GETGSTATS, 185
L_GETSTATS, 185
L_GETTUNE, 185
L_SETTUNE, 185
L_ZEROSTATS, 185
lapb_gstioc, 189
lapbstats_t, 192
library functions, 7
link identifier

as defined in wlcfg structure, 87
obtaining with sockets-based interface, 209

link selection, explicit
in sockets-based interface, 206
in streams-based interface, 87

link statistics
ioctl for obtaining, 236
STREAMS interface, 70

link status
obtaining in socket-based interface, 237
STREAMS interface, 72

linkidtox25, 122, 131

linkoptformat, 101
listen, 24

how to perform in socket-based
interface, 203

listen cancel command/response
data structure for, 63

listen message, 24
constructing, 24

Listen Request, 23, 25
sending, 25

listen response, 25
listen stream, 27

reusing, 27
listens

address matching, 65
Call User Data matching, 64

LLC2 connection-mode service primitives
DL_CONNECT_CON, 168
DL_CONNECT_IND, 169
DL_CONNECT_REQ, 170
DL_CONNECT_RES, 172
DL_DISCONNECT_IND, 174
DL_RESET_CON, 180
DL_RESET_IND, 180
DL_RESET_REQ, 181
DL_RESET_RES, 182
DL_TOKEN_REQ, 183
Filename |

CommandDL_DISCONNECT_REQ, 175
LLC2 driver, setting and tuning parameters

for, 186, 187
llc_dladdr, 162
local address

how to set when calling, 97
how to set when calling in sockets-based

interface, 202
setting by X.25 client, 231

local and remote addresses
obtaining following a connection, 208

local management service primitives
DL_ATTACH_REQ, 164
DL_BIND_ACK, 165
DL_BIND_REQ, 166
DL_DETACH_REQ, 173
DL_DISABMULTI_REQ, 179
DL_ERROR_ACK, 176
DL_INFO_ACK, 177

Index-250 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

DL_INFO_REQ, 178
DL_OK_ACK, 179
DL_UNBIND_REQ, 184

logical channel number
obtaining in sockets-based interface, 209

lsapformat, 35, 38

M
M-bit, 15

how to set, 210
reading using sockets-based interface, 213
usage in sockets-based interface, 210

message
control part, definition of, 35

minimum throughput class
setting in sockets-based interface, 221

modulo 8 or 128
specification of, 89

multiple links
obtaining number configured in

sockets-based interface, 235
routing among, 201
routing among in sockets-based

interface, 234
support for in sockets-based interface, 201

N
N_Abort, 7, 33, 35, 48
N_CC, 7, 33, 48
N_CI, 7, 34, 35, 50
N_DAck, 7, 35, 51
N_Data, 7, 15, 35, 52
N_DC, 8, 35, 54
N_DI, 8, 35, 55
N_EAck, 8, 35, 57
N_EData, 8, 15, 35, 57
N_getnliversion ioctl, 71
N_getpvcmap ioctl, 73
N_getstats, 74
N_getVCstats, 83
N_getVCstatus, 78, 83
N_linkconfig, 87
N_linkconfig ioctl, 87
N_linkmode, 74, 100
N_linkread, 74
N_nuidel ioctl, 102

N_nuiget ioctl, 103
N_nuimget, 103
N_nuiput, 104
N_nuiput ioctl, 102
N_nuireset, 108
N_putpvcmap, 109
N_PVC_ATTACH, 9, 35
N_PVC_ATTCH, 58
N_PVC_DETACH, 9, 35, 60
N_RC, 8, 35, 61
N_RI, 8, 35, 61
N_traceoff, 110
N_traceon, 110
N_traceon ioctl, 110
N_X25_FLUSH_ROUTE, 113
N_X25_GET_NEXT_ROUTE, 115
N_X25_GET_ROUTE, 114
N_X25_RM_ROUTE, 116
N_Xcanlis, 9, 35, 62
N_Xlisten, 9, 23, 35, 64
N_zerostats, 117
NET_MODE, 87
network characteristics, 87
Network Layer Interface, see NLI, 7
Network User Identification

field in facilities/QOS data structure, 41
setting/getting in sockets-based

interface, 223
Network User Identifier

ioctl for deleting all existing mappings
for, 108

ioctl to delete mapping for, 102
ioctl to read all existing mappings for, 103
ioctl to read mapping for, 103
ioctl to store set of, 104
specifying override, 95, 107

NLI commands, 7, 33
NLI Message Format, 7
NLI messages, 7
NLI overview, 7
non-OSI encoded extended address

in address data structure, 38
non-X.25 facilities

in sockets-based interface, 226
NSAP address

field in address data stucture, 38
nui_mget, 104, 108

Index-251

nui_put, 105
nui_reset, 108

O
OSI CONS, 18, 26
OSI-encoded NSAP address

in address data structure, 38
out-of-band data

managing in sockets-based interface, 214
outgoing call

barring, 95
in sockets-based interface, 201

selecting a link for in sockets-based
interface, 206

specifying barring of, 108
overview, 155

P
packet level tracing

ioctl for initiating, 110
packet size

changing from link defaults for a PVC, 109
default, local and remote, 90
reading default for a PVC, 73
setting in sockets-based interface, 220

packet-level statistics
obtaining in sockets-based interface, 236

padent, 122
padtos, 122, 132
Permanent Virtual Circuit

parameters for attach, 58, 59
use in sockets-based interface, 230

perVC_stats, 81
perVC_stats array, 85
pervcinfo, 79
PLP driver stream, 13
protocol identifier

binding incoming calls by, 205
masking bits in, 205
masking in sockets-based interface, 205
use in binding to process, 200

PSDN-specific modes, 87
pstnformat, 162
putmsg, 7, 14, 19
pvcattf, 9, 35, 58
pvcconff, 109

pvcdetf, 9, 35, 60

Q
Q-bit, 15, 16

control of in sockets-based interface, 210
reading using sockets-based interface, 213

QOS, 23
qosformat, 35, 44

R
R20 counter, 91, 92
R22 counter, 91
R23 counter, 91
receiving data, 16

using sockets-based interface, 212
remote disconnect, 21
Reset Confirmation, 20
Reset Indication

possible responses to, 20
reset indication/request

collision between, 61, 62
reset packet

sending using sockets-based interface, 212
Reset Request, 20
Reset Request/Indication, 8, 35
Reset Response/Confirm, 8, 35
resets

handling of, 20
reverse charging

field in facilities/QOS data structure, 40
setting option, 94, 107
setting/getting in sockets-based

interface, 218
route

removing, 116
removing (flushing) a .. in sockets-based

interface, 235
routing

in sockets-based interface, 235
of outgoing calls, 116, 201

routing information
ioctl to obtain, 114
ioctl to obtain in sockets-based

interface, 235
routing ioctls

Index-252 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

in sockets-based interface, 234
RPOA selection

in sockets-based interface, 222

S
send call

in sockets-based interface, 209
sending data, 15
setpadent, 122, 134
setxhostent, 122, 135
signal handling

in sockets-based interface, 216
SOCK_STREAM socket type, 199
socket

definition of, 199
socket high water mark, 215
sockets programming example, 241
sockets-based interface, 199
source address control, 97
statistics

obtaining for socket-based interface, 236
reading count, 74
resetting count, 117
retrieving per-virtual circuit .., 78, 83

statistics ioctls
L_GETGSTATS, 189
L_GETSTATS, 191

stox25, 122, 135
stream

opening, 13
stream configuration ioctls

L_GETPPA, 190
L_GETTUNE, 186

subaddress
binding on, 204
setting in sockets-based interface, 202

subscription options
specifying, 94

SunLink X.25 version number
obtaining in sockets-based interface, 239

support functions, 119
switched virtual circuits

creating with sockets-based interface, 201

T
T20 timer, 91

TELENET
throughput-class-negotiation

requirement, 98
throughput

setting in sockets-based interface, 221
throughput class

negotiating toward default, 92
TOA/NPI address format, 94, 107
transit delay, 92
transit delay selection

in sockets-based interface, 223

U
U_LINK_ID, 87
user data

passing additional in sockets-based
interface, 228

V
vcinfo, 83
vcinfo structure, 72
vcstatusf, 83
version

X.25 protocol (80/84/88), 89
version number

obtaining in sockets-based interface, 239
virtual circuit

active, in sockets-based interface, 217
clearing in sockets-based interface, 216
examining possible states, 80, 84
reading status, 237

W
W_SETTUNE, 185, 194
window size

changing from default for a link for a
PVC, 109

default, local and remote, 90
reading default for PVC, 73
setting in sockets-based interface, 221
specifying, 90

wlcfg, 87
wlcfg database

configuring for a specific link, 87
reading for a specific link, 101

Index-253

write call
used to send data in sockets-based

interface, 210

X
X.121 address

accessing for link in sockets-based
interface, 231

format in socket-based interface, 200
X.25 driver, 7
X.25 message

receiving in records in sockets-based
interface, 214

X.25 primitives, 35
X.25 routing, 201
x25_find_link_parameters, 122, 137
X25_FLUSH_ROUTES ioctl

in sockets-based interface, 235
X25_GET_FACILITY ioctl

in sockets-based interface, 218
X25_GET_LINK ioctl

in sockets-based interface, 209
X25_GET_NEXT_LINK_STAT ioctl

in sockets-based interface, 237
X25_GET_NEXT_ROUTE ioctl

in sockets-based interface, 235
X25_GET_NEXT_VC_STAT ioctl

in sockets-based interface, 238
X25_GET_NLINKS ioctl

in sockets-based interface, 235
X25_GET_ROUTE ioctl

in sockets-based interface, 235
X25_HEADER ioctl

in sockets-based interface, 213
X25_OOB_TYPE ioctl

in sockets-based interface, 214
x25_primitives, 35
X25_primitives, 36
X25_RD_LINK_STATISTICS ioctl

in sockets-based interface, 236
X25_RD_LINKADR ioctl

in sockets-based interface, 204
X25_RD_LOCAL_ADR ioctl

in sockets-based interface, 208
X25_RD_PKT_STATISTICS ioctl

in sockets-based interface, 236
X25_RD_REMOTE_ADR ioctl

in sockets-based interface, 208
x25_read_config_parameters, 122, 138
x25_read_config_parameters_file, 122, 139
X25_RECORD_SIZE ioctl

in sockets-based interface, 214
X25_RM_ROUTE ioctl

in sockets-based interface, 235
X25_ROUTE, 112
X25_ROUTE structure

in sockets-based interface, 235
x25_route_s, 112 to 115, 117
x25_save_link_parameters, 122, 141
X25_SEND_TYPE ioctl

in sockets-based interface, 210
X25_SET_FACILITY ioctl

in sockets-based interface, 217
X25_SET_LINK ioctl

in sockets-based interface, 206, 230
x25_set_parse_error_function, 122, 142
X25_SETUP_PVC ioctl

in sockets-based interface, 230
X25_VERSION ioctl

in sockets-based interface, 239
X25_VSN

version number specified in configurable
parameters structure, 89

X25_WR_LOCAL_ADR ioctl
in sockets-based interface, 202

X25_WR_SBHIWAT ioctl
in sockets-based interface, 215

x25_write_config_parameters, 122, 143
x25_write_config_parameters_file, 122, 145
x25tolinkid, 122, 146
x25tos, 122, 147
xabortf, 7, 33, 35, 48
xaddrf, 35, 37
xcallf, 7, 34, 35, 50
xcanlisf, 35
xccnff, 7, 33, 35, 49
xdatacf, 7, 35
xdataf, 7, 35, 52
xdcnff, 8, 35, 54
xdiscf, 35, 55
xedatacf, 8, 35, 57
xedataf, 8, 35, 57
xhostent, 123
xhosts, 122

Index-254 Solstice X.25 9.2 Developer’s Guide ♦ October 1999

xl_command, 36
xl_type, 36
xlistenf, 9, 35
xrscf, 8, 35, 61

xrstf, 8, 35, 62
xstate, 84

Index-255

